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„At bottom, robotics is about us. It is the discipline of emulating our lives,  

of wondering how we work.” 

Rod Grupen (2008) 
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1. Introduction 

 

1.1. Social interaction 

Behaviour ecology defines social behaviour as interactions between individuals of the same 

species that has fitness consequences (Székely et al 2010), and which, at the functional level, 

is organised for achieving different goals such as finding a suitable mate, evading predators, 

cooperating in the acquisition of food etc. In contrast to many traits that are passively selected 

by the environment, social behaviour relies complex mechanisms where animals create a 

selective environment for themselves by interacting with each other. Accordingly, features of 

social behaviour and social traits have evolved specifically to contribute to the survival of the 

individual if group living provides some selective advantage (Székely et al 2010).  

In general, social interactions between individuals can be categorised as competitive or 

cooperative. Competition refers to interactions among two or more individuals in which the 

fitness of one is lowered by the presence of another (Begon et al 2006). Individuals compete 

for resources, territory, mate etc. required for growth, survival and reproduction in order to 

increase their fitness. In contrast, cooperation is defined as interactions with benefit for all 

participants involved (i.e. which increase the reproductive success of the participants) (Noë 

2006).  

The so-called kin-selection theory provides a solution to the problem of cooperative 

behaviour between relatives and helps to understand the evolution of social behaviour (e.g. 

West et al 2002). Individuals predicted to behave less competitively and more cooperatively 

toward their relatives, because they share a relatively high proportion of their genes. 

Consequently, by helping kin (i.e. relative), individuals are helping copies of their own genes 

(Hamilton 1964). 

At the same time, this theory did not solve the riddle of cooperation among unrelated 

individuals from the same or from different species. The latter issue referred to as the central 

theoretical problem of sociobiology (Wilson 1975) and has been studied by a large number of 

researchers.  

 

1.2. Cooperative interactions between members of different species 

Because of the functional similarities in the life of different species one may expect that a 

range of social behaviours reflect some commonalities (matching competencies) based on 
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ancient homologies or convergent evolutionary processes. Given that group living or limited 

co-existence may also confer some advantages in the case of different species social 

behaviour could also emerge in heterospecific contexts, both developmentally and on an 

evolutionary time scale (e.g. interspecific communication, see also Kostan 2002, Miklósi & 

Gácsi 2012). One well known example for this is the collaboration between honey guide birds 

(Indicator indicator) and African tribal people in order to find honey by locating beehives in 

the forest (Isack & Reyer 1989). In another case Bshary et al (2006) show that the grouper 

(Plectropomus pessuliferus) and the giant moray eel (Gymnothorax javanicus) hunt 

cooperatively, probably, because they have complementary behavioural skills, and the two 

partners, belonging to different species, are able to coordinate their actions at the behavioural 

level, that is, the grouper uses a specific visual signal to lure the moray eel on a hunting trip 

(Bshary et al 2006).  

The evolution of such interspecific social interaction has long been a topic in the field of 

behavioural ecology, evolutionary biology and ethology, as well as different cognitive 

prerequisites required for various forms of social behaviour to take place in humans and non-

humans alike. Three paths have been reviewed in the study of cooperation between non-

related individuals from the same or from different species (for a review see Dugatkin 2002). 

Trivers (1971) argued that one path to cooperative behaviour, among humans and non-human 

animals, is reciprocity which most likely evolves when the minor cost paid by the helper 

individual is made up for when the other individual restores the favour in the future. Another 

possibility is mutualism which occurs in “harsh” environment where the cost of not being 

cooperative is immediate and the benefit of cooperation outweighs cheating (i.e. by-product 

mutualism, e.g. Dugatkin 2002). The third and probably the most controversial one is trait-

group selection where natural selection operates at two levels: within groups and between 

groups. Group selection models showed that cooperation is favoured when the response to 

between-group selection outweighs the response to within-group selection (see Sober & 

Wilson 1998 for a review). 

In addition to examine fitness consequences, the study of cognitive abilities involved in social 

interactions is also essential. For example effective cooperative hunting requires skills of 

communication (e.g. initializing the hunt) and behavioural synchronisation (e.g. Clutton-

Brock 1977, 1996) that relies on cognitive abilities like role differentiation and coordinated 

movements (Boesch & Boesch 1989). Effective communication for initializing the joint hunt 

via signals appears more difficult to achieve between heterospecific interactants of sharply 

different behavioural patterns. Based on an observational study Pryor and co-workers (1990) 



7 
 

described cooperative fishing between fisherman and bottlenose dolphins (Tursiops truncatus) 

in Brazil where the water is extremely turbid with limited visibility of fish. Authors observed 

that the cooperative fishing is initiated by the dolphins’ rolling movements at the surface and 

followed by casting the nets by the fisherman. They also found evidence that the direction of 

dolphins’ movements indicated the location of the fish and the intensity of the movement 

carried information about the school size.  

In case of joint hunting between groupers (Plectropomus pessuliferus) and giant moray eels 

(Gymnothorax javanicus) researchers observed that groupers actively visited moray eels and 

performed head-shaking movements (Bshary et al 2006). Morays usually responded to head 

shaking by leaving their crevices. Authors suggested that “groupers use visual signals to 

engage morays in a joint hunt”. Thus similar head-shaking behaviour have never observed in 

moray eels, researchers argued that groupers’ signalling is unlikely to represent a 

generalization of the morays’ natural intraspecific repertoire to an interspecific context. 

Although observational studies provide some notable insights for animal social interaction, 

results of these monitoring are difficult to interpret. For instance the simplest explanation of 

dolphins’ behaviour through joint fishing with humans is that the observed rolling behaviour 

is an element of dolphins’ natural behavioural repertoire which occurs also in the absence of 

the fisherman. In this case rolling was probably due to increased motivation by larger prey 

density and the intensity of the rolling behaviour conveys no information for humans about 

the school size. Although authors claimed that fishing is “highly ritualized and involved 

learned behaviour in both men and dolphins” (Pryor et al 1990), these observations did not 

allow to draw conclusions about the underlying mechanisms. Well designed and controlled 

experimental paradigm is needed to examine mechanism, function, developmental and 

evolutionary aspects of social interactions. 

 

1.3. Animal-robot interaction as a special case of social interaction 

Investigating social behaviour of animals living in groups by the means of controlled 

experiments is essential in the study of animal behaviour. However, the nature of social 

interactions makes experimental investigations very difficult due to many different reasons. 

First, the behaviour of the individuals is dependent on their interaction partners. Second, it is 

nearly impossible to manipulate and control behaviour of a living individual for longer 

duration, and third the interaction is always influenced by prior experiences related to 

participating individuals (see also Krause et al 2011). 
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One solution to these problems has been to use artificial stimuli or stimulus objects that 

resembled to different degree conspecific companions. For example, in the early years of 

ethology Tinbergen (1951) used this method to evoke social behaviour (e.g. courtship or 

territorial behaviour) in different animal species (e.g. sticklebacks – Gasterosteus aculeatus). 

The use of more or less schematic models in a systematic way allowed researchers to 

determine which properties of the stimulus act as behavioural releasers (cf. sign stimulus) and 

have the potential to evoke particular behaviour (cf. modular action patterns) which are 

comparable to that observed under natural conditions (e.g. Lack 1943, Kramer 1937). 

Nowadays behaviour biologists and engineers are developing more complex models, 

autonomous or remote controlled devices, which are able to stimulate subject animals. This 

trend has become even more popular with the possibility to construct more sophisticated 

stimuli, “robots” (Mitri et al 2013). Krause et al (2011) argued that using such artificial agents 

(robots) as social partners could enhance controllability and reproducibility in the 

experimental techniques.  

In the past 10 years many robots have been used to investigate social-communicative 

behaviour in wide-range of animals. Most of these studies examined intraspecific interactions 

and used life-like ‘conspecific robots’ aimed to mimic the morphology and particular 

behaviour of the species studied. Although none of the following studies controlled for the 

importance of life-likeness they seemingly assumed that the bodily appearance (embodiment) 

must be as similar as possible to the species studied for evoking animals’ social 

responsiveness.  

 

1.3.1.  Analysis of the honeybee dance communication system 

One of the first examples the “mechanical” bee, was designed for investigating various 

components of honeybees’ (Apis mellifera) wagging dance (Michelsen et al 1992). The model 

carried a scent and was controlled by a computer, thus selected components of the dance 

could be manipulated independently from each other. Some cases it gave conflicting 

information about the food location. Results of the experiments showed that the wagging run 

and sound convey altogether the essential information about the distance and direction of the 

food source, while the eight-form of the dance seemed to be less important. The accuracy of 

transferred directional information was similar to that obtained in experiments with live 

dancers, however live dancing bees recruited 5-10 times more bees than did the model. 

Authors suggested that the crude nature of the mechanical bee effected bees’ willingness to 
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follow the model. In order to examine the latter hypothesis researchers developed the 

biomimetic dancing bee (Landgraf et al 2010, 2012) which was extended with camera sensors 

and precise motion data obtained from high-speed dance recordings. They hypothesised that 

camera sensors that enable the robot to react on the environment (i.e. interactive behaviour/ 

contingent reactivity) might be the key to the recruitment of followers. Results showed that 

the biomimetic bee was able to collect more recruits than the mechanical bee. Authors 

suggested that this difference might due to the fact that the biomimetic bee was able to 

continuously dance for many hours while the previous model had limited time ability for 

dancing. It has been previously shown that bees following more than 20 waggle runs most 

likely fly to the communicated place, thus repeated runs of the robot seemed to be crucial for 

the outcome. However in the absence of control trials in Landgraf et al’s studies it remains 

unclear whether the life-like embodiment and/or the interactive behaviour of the biomimetic 

bee will eventuate more effective bee-robot interaction. 

 

1.3.2.  Analysis of different channels of animal communication by means of robots 

In a playback experiment Narins et al (2005) used an electromechanical model frog in order to 

investigate which stimulus (visual and/or acoustic) is essential for evoking aggressive 

behaviour in male dart-poison frog (Epipedobates femoralis). In the bimodal trials the 

presence of the frog model accompanied by playback calls, while only one of the stimulus 

(model frog or playback calls) was presented in unimodal control trials. They found that only 

bimodal signals were effective to elicit physical attacks by a territorial male. Partan and co-

workers (2009) studied alarm behaviour of the eastern grey squirrel (Sciurus carolinensis) 

with a squirrel robot (Figure 1/A) and used the same method as in the previous experiment 

(Narins et al 2005). In five conditions they separated and combined audio (recorded grey 

squirrel alarm calls) and visual stimuli (presence of the robot and tail motion). They found 

that wild squirrels showed enhanced responses to multisensory, audio/visual signals of alarm 

compared to unisensory (either audio or visual) signals. Results of the two experiments are in 

line with the law of heterogeneous summation which states that “the independent and 

heterogeneous features of a stimulus situation are additive in their effects upon behaviour” 

(McFarland 2006). Experiments mentioned above are good examples for how naturally 

complex, multimodal signals can be investigated by robots as they allow researchers to 

examine one channel at a time. 
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Figure 1. A: The squirrel robot (from Partan et al 2009); B: The robotic bowerbird (from Patricelli et al 2006); C: The 

“robofish” (from Faria et al 2010) 

 

1.3.3.  Analysis of mating behaviour in birds 

It has been raised that during courtship males from several different species adjust their 

displays according to not only external factors (e.g. presence of predators, for example see 

Godin 1995) but to cues and signals used by females (e.g. Patricelli et al 2002). Patricelli et al 

(2006) used robotic female bowerbirds (Chlamydera maculata) that mimicked female 

startling (i.e. rapidly moving back into the upright position from crouched position and then 

remained there until the end of courtship) (Figure 1/B) in order to test the hypothesis that 

males reduce the intensity of their courtship displays after startling females. With this 

standardised method they found that males did not always display at maximum intensity, but 

rather reduced their intensity in response to female startling during courtship. At the same 

time they found no evidence that males’ courtship success is related to this flexible mating 

behaviour.  

1.3.4. Analysis of collective behaviour 

Another research field which utilize robots for more controlled experimental design is the 

examination of collective behaviour of animals (i.e. animals moving in groups). These studies 

focused on group dynamics, interactions between individuals and potential leadership of a 

particular individual. Results of previous theoretical studies in fish suggested that individual 
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attributes (behaviour, nutritional and information quality, body size etc.), shoal size and 

relative spatial position of the individuals may affect leadership (for details see Krause et al 

2000, Reebs 2001). However, more empirical and theoretical work is necessary to determine 

key factors of leadership especially in larger shoals (Krause et al 2000). Faria et al (2010) 

examined collective behaviour in three-spined sticklebacks (Gasterosteus aculeatus) and 

utilized the ‘Robofish’ (Figure 1/C) to define different aspects of leadership and recruitment. 

This study revealed that the robot was able to act as a leader: it could recruit a single fish from 

the refuge and initiate a turn in groups of ten. Although Robofish was no larger than the other 

individuals these result suggest that body size may not as important as previously thought 

(Reebs 2001). This study also provided first evidence that interactions between individuals in 

the shoal are mediated by topological, rather than metrical distances. 

1.3.5. Dog-robot interaction experiments 

In the last decade there has been a growing interest in building robots which are able to 

interact in a socially meaningful way with humans (Miklósi & Gácsi 2012). It turned out 

quickly that this new direction of research needs collaboration from different scientific fields. 

Whereas the design, construction and operation are mainly engineering tasks, integration of 

“social robots” into human society requires contribution of social sciences, psychology, 

sociology, philosophy or ethics. However detailed investigation of human-robot interaction is 

also essential and gives behavioural sciences an important role. It has been suggested that 

closer look at human-animal interaction, especially research on social relationship between 

humans and dogs, may provide important insights for social robotics (Miklósi & Gácsi 2012). 

This statement based on the idea that any social behaviour of other species which are 

recognisable for humans could be incorporated into these robots. This interdisciplinary 

research area at the interface of ethology and robotics is often referred to as “ethorobotics” 

(e.g. Partan 2009). 

Due to the reasons mentioned above and further advantages of using robots (see Krause et al 

2011), several recent studies have been focused on dog-robot interaction. For example, 

Kubinyi and her colleagues (2004) investigated adult and juvenile dogs’ social behaviour in a 

neutral and in a feeding situation toward different partners: a dog-like robot (AIBO) with or 

without puppy-scented fur, a 2-month-old puppy and a remote control car (see Figure 2/A). 

Results showed that the dogs’ age, the experimental context and external features of the AIBO 

had an effect on dogs’ behaviour. Order of the partners based on their attractiveness was the 

following: puppy, furry AIBO, AIBO, remote control car. Authors concluded that the AIBO 
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had limited ability to act as social partner for dogs, however in adult dogs, the approach and 

the orientation evoked by the puppy and the furry robot did not differ in any situations. In 

another study (Leaver & Reimchen 2007), which focused on intraspecific communication, 

dogs encountered a life sized dog model which had either a short or a long, wagging or not 

wagging tail (Figure 2/B). Researchers hypothesised that dogs (especially small sized dogs) 

would approach the short-tailed and non-wagging tail model with increased caution than a 

wagging long-tailed one due to the reduced availability of social cues. Results supported the 

expectation on body size and tail movements as smaller dogs behaved more cautiously 

towards the model while the wagging long-tailed replica triggered faster and continuous 

approach.  

 

Figure 2. A: The remote control car, the AIBO, the AIBO with fur and the puppy (from Kubinyi 

et al 2004); B: the short and long-tailed life sized dog model (from Leaver & Reimchen 2007); C: 

the PeopleBot (from Lakatos et al 2014) 

In line with similar investigations with other species these two experiments used a mechanical 

partner resembled to the studied species. However, special social relationship between 

humans and dogs would allow the utilization of humanoid robots as partners in such 

experiments. As far as I know, only one published study by Lakatos and co-workers (2014) 

used a human-like robot (PeopleBot, see Figure 2/C) with one moveable arm in order to 

examine whether the level of sociality shown by the robot affects dogs’ comprehension on its 
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pointing gestures. In the beginning of the test dogs’ had the opportunity to observe the 

encounter of the robot and the owner. This interaction was social-interactive (i.e. the owner 

and the robot shook each other’s hand, conversed with one another and walked around the 

room together etc.) or non-interactive  (i.e. instead of shaking hands and talking to the robot, 

the owner typed on the keyboard of the robot, walked around the room in opposite directions 

etc.). This interaction phase was followed by a pointing phase where the robot stood between 

two identical plastic pots (potential hiding places), gained the attention of the dog and turned 

its body towards the baited pot while displaying the pointing gesture. In the social condition 

the robot called the dog by its name before the pointing while in the nonsocial condition the 

robot emitted a beeping sound when pulling up its arm in front of its body. Results showed 

that dogs looked longer at the head of the robot during the interaction phase in the social- 

compared to the nonsocial condition. During the pointing phase dogs’ performed at chance 

level in both groups, i.e. they choose the indicated and non-indicated pot randomly, however 

they gazed at the indicated pot longer in the social condition than in the nonsocial one. 

Authors concluded that the contigent reactivity shown by the robot (in the social-interactive 

condition) was not enough to evoke the same set of social behaviours from the dog as with 

humans in a similar situation. At the same time dogs’ gazing behaviour suggested that 

sociality had a positive effect on dog-robot interaction. 

Experiments described above utilized robots designed to resemble conspecific individuals or 

familiar social partners from different species (Lakatos et al 2014) in order to examine 

different aspects of social behaviours. In this case subjects’ social behaviour was evoked by 

the behaviour displayed by the artificial partner (e.g. tail movements, Leaver & Reimchen 

2007) and/or induced by the artificial partners’ familiar bodily appearance (embodiment). 

However, this method did not allow researchers to separate the effect of the partners’ 

behaviour and embodiment on animals’ social responsiveness. 

 

1.4. The separation of behaviour from the body 

The conceptual separation of behaviour and cognition (mind) from the body has a long history 

in the cognitive sciences (e.g. Ziemke & Lowe 2009) with the assumption that cognition and 

behaviour is embodied (i.e. strongly dependent upon features of the agent’s body) (Pfeifer & 

Scheier 1999). This issue could be put to test in several forms, given the advance in 

technology. One important question could be whether animals or humans are able to 

recognise and react to behaviour patterns independently from the embodiment.  
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This approach opens ways for experimenting, in which researchers look at the extent and 

limitation (both on the part of the observer and the agent) to engage in social interaction. Such 

data would be important to reveal the flexibilities of animal and human mind, including 

evolutionary and developmental factors. 

In his classic study Meltzoff (1995) reported that 18-month-old infants imitated the 

movements of a human hand but failed to replicate the same movement when it was executed 

by a robotic “hand”. He argued that the infants at this age are attributing intentions to humans 

but not to non-human agents. Results of the inanimate control had the potential to confirm the 

hypothesis that infants not responding exclusively to the physics of the situation (arm 

movements) but they had psychological understanding on the human actors’ action. In a later 

study Meltzoff and co-workers (2010) demonstrated that 18-month-old infants follow more 

likely human-like robot’s gaze if they saw it act in social-communicative interaction with the 

human experimenter. Authors concluded that the emergence of social interaction between 

infant and robot depends also on their prior experience. Human-like physical features of the 

robot alone (e.g. presence of the eyes) was not sufficient to generalise from human experience 

in infants.  

In a series of experiments Gy. Gergely et al (1995) and Csibra et al (1999) examined 6- to 12-

month-olds’ understanding on goal-directed action of geometrical figures. During habituation 

events they repeatedly presented infants with a simple animation in which a small circle 

approaches and contacts another (bigger) circle by jumping over an obstacle. This ‘rational’ 

action can be interpreted as an action to achieve the goal. In the test phase the same jumping 

action became unnecessary to achieving the goal in the absence of the obstacle (‘nonrational’ 

action). The other test event presented a straight-line approach to the same position and 

considered as ‘rational’ action. Results showed that 9- and 12-month-olds but not 6-month-old 

infants looked at the ‘nonrational’ action longer in the test phase than the ‘rational’ action. 

Authors concluded that 9- and 12-month-old infants applied the rationality principle to the 

observed action and attributed goals to an agent had no human-like features while 6-month-

olds did not.  

Several years later Kamewari and his colleagues (2005) raised that human-like features of the 

agent might affect 6-month-olds’ psychological reasoning and they probably regard the action 

as goal-directed if it is displayed by a human or a humanoid robot. They used the same 

paradigm as Gy. Gergely et al (1995) and Csibra et al (1999) and demonstrated that infants of 

this age attributed goals to both human action and humanoid motion but not to a moving box.  
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Experiments mentioned above provided important findings on early human cognitive abilities 

by using non-living unfamiliar agents as partners and therefore separating the effects of the 

partners’ behaviour and body. Results revealed some developmental progress of 

psychological reasoning and goal-attribution which can be affected by human-like features at 

particular age (Gy. Gergely et al 1995, Csibra et al 1999, Kamewari et al 2005). At the same 

time human-likeness itself seemed to be less effective in eliciting social behaviours from 

infants (e.g. gaze following) while previous social experience in this case proved to be 

essential (Meltzoff et al 2010). 

 

1.4.1. The general concept of the Unidentified Moving Object (UMO) 

Using artificial agents in a social context may also reveal the animals’ ability to recognise 

some aspects of the other’s behaviour and the quality and quantity of experience needed for 

such recognition to emerge and/or to get improved. In this way, the effects of behaviour and 

embodiment can be investigated separately allowing us to identify those external and 

behavioural features (i.e. key stimulus) of the partner that are important for the animal to 

engage in social interactions. As far as we know, however, such approach, in which the 

embodiment and the behaviour of the agent are varied in a systematic way, has not yet been 

utilized in animals. One interesting question would be whether animals are able to generalise 

their previous experience with natural partners in such situations independently from the 

artificial partners’ embodiment. Previous studies used animal models resembling the species 

studied and expected that subjects considered the robot as a conspecific (e.g. Partan et al 

2009). In this case we cannot exclude the possibility that subjects’ willingness to interact with 

the robot caused solely by the contextual information of its embodiment and not its behaviour.  

One feasible solution would be the utilization of an unfamiliar artificial partner that is able to 

execute actions with the same function in different manners. In this case the embodiment 

should be as distinct as possible from the range of objects and living animal species with 

which the subject interacts in a social way under habitual (natural) conditions. In principle this 

agent can take any form and shape, so we introduce the general term of an unidentified 

moving object (UMO) which emphasises that at the time of the first encounter the animal 

subject has no previous experience with that particular artificial agent. The overall goal of 

such experiments is to find out under which conditions is the subject able and willing to 

interact with the UMO given the possibility that both the embodiment and the behaviour can 

be modified, and interactions can be repeated both in space and time.  
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From an ethological point of view, using a non-living non-human like agent as a social 

partner has further advantages in studying dogs’ social behaviour. It has been suggested that 

the presence of a human experimenter, especially in a social context is particularly effective in 

influencing the behaviour of dogs and often leads to mistaken or counterproductive behaviour 

(e.g. Kupán et al 2011). For example, Erdőhegyi et al (2007) showed that dogs were not able 

to solve a reasoning task in a social context (i.e. when the human experimenter used gazing 

cues and directional gestures), while the elimination of these signals resulted in better 

performance. Several studies revealed that socio-communicative context exerts strong effects 

on dogs’ social and physical cognitive abilities. For example the so-called A not B 

perseverative search error (search for a hidden object at its initial hiding place even after 

observing it being hidden at another location) occurs exclusively in social context in which 

the hiding procedure is associated with eye contact, addressing signals and gaze shifts 

between the hiding location and the dog (e.g. Topál et al 2009a). Due to these findings we 

believe that eliminating human influence as much as possible from the experiment has the 

potential to reveal different aspects of dogs’ cognitive abilities. 

 

1.5. Aims and questions 

Our studies aimed to provide supporting evidence for the above concept of using UMOs with 

different embodiments and behaviours. We decided to use dogs as subjects, especially 

because they are becoming very popular in studying complex social behaviours. Dogs may 

also be favourable subjects for these studies because they have shared a common environment 

with humans (a heterospecific agent) for a long time, and they live also in human families at 

present. Thus dogs may be especially skilful at interacting with non-dog-type agents (UMOs) 

if they can recognise some aspects of the behaviour of those unfamiliar agents. We designed 

our experiments by adopting recently used methods in human-dog interaction studies to see 

whether dogs display similar social behaviour toward a human and an UMO.  

As a first step in Experiment 1 we investigated whether different behaviour of the UMO has 

an effect on dogs’ social behaviour in a problem situation. We endowed the ‘social’ UMO 

with different properties that are general characteristics of entities with minds (people or 

animals) to which infants may be sensitive (for a review see Rakison & Poulin-Dubois 2001). 

We also used a ‘mechanical’ UMO which differed only in behavioural properties from the 

‘social’ UMO and a human partner who acted as similar as possible to the ‘mechanical’ UMO 

in order to control for the embodiment of the partner.  
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We hypothesised that dogs’ would increase their social behaviour toward the ‘social’ UMO 

compared to the ‘mechanical’ UMO if they recognised some social aspects of the UMO’s 

behaviour. We also assumed that dogs would utilize similar amount of behaviours toward the 

human and the ‘mechanical’ UMO partners. This would indicate that the behaviour of the 

partner might play more important role for evoking subjects’ social responsiveness than the 

embodiment. 

As a next step in Experiment 2 we were curious about whether dogs are able to flexibly adjust 

their social behaviour to fit their UMO partners’ different capabilities. We utilized the same 

problem situation as in Experiment 1 except that the problem could be solved in two different 

ways by the two UMOs. According to the results of a previous study with human partners in a 

similar situation (Horn et al 2012), we hypothesised that dogs are able to discriminate 

between different roles of their inanimate partners and they would prefer the appropriate 

partner, who is able to help in that particular situation.  We also assumed that dogs would 

display similar amount of behaviours toward the two UMOs. 

In Experiment 3 we focused more on communicative interaction between dogs and different 

animate and inanimate partners. Ample evidence suggests that dogs comprehend the human 

pointing gestures (for a review see Miklósi & Soproni 2006), however, the underlying 

mechanism is still unclear. It has been recently shown that both evolutionary and ontogenetic 

factors might have a role (Miklósi & Topál 2013, Udell et al 2014), at the same time, the 

relative contribution of these factors is difficult to determine with previously used methods. In 

this experiment dogs in one group had opportunity to interact socially with the UMO or the 

human partner in a similar problem situation as in Experiment 1 (Context 1), while dogs in the 

other group had no interaction with the UMO or the human partner during this phase. After, 

all of the subjects faced with a two-way choice task in which the partner approached one of 

the hiding places and then they were allowed to make a choice (Context 2). During this phase 

the UMOs and the human partners acted in a very similar way. We assumed that dogs 

experience human directional signals in everyday life (Context 1), thus previous interaction 

with the human partner is not necessary for dogs to rely on this signal in the test situation 

(Context 2). We also hypothesised that after previous social interaction dogs would be able to 

generalise the social behaviour of the UMO to the test situation i.e. they would consider the 

UMO’s movement as an indication. We emphasised that results of this experiment might have 

useful insight on how do communicative signals between dogs and humans achieve their 

function. 
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The aim of Experiment 4 was to investigate whether dogs’ behaviour can be influenced by a 

human or an UMO partner in a food-choice task. Previous studies demonstrated that dogs had 

a tendency to change their food preference in accordance with their human partner’s choice 

and suggested social influencing/learning as an underlying mechanism (Prato-Previde et al 

2008, Marshall-Pescini et al 2012). In line with these findings we hypothesised that dogs 

would change their ‘original’ preference for options between small and large amount of food 

after having witnessed a human’s explicit preference for the other. However they would 

‘follow’ an inanimate UMO’s preference exclusively after previous social interaction with it.  

In Experiment 5 we focused more on practical applications of dog-robot interaction and 

designed an experiment in order to provide useful information to the SWARMIX Project (for 

details see Practical applications paragraph below). Our questions were whether dogs are 

able to generalise different acoustic signals to novel contexts. Few experimental studies have 

so far investigated stimulus generalisation in dogs. One study demonstrated that frequency of 

correct responses to learnt verbal commands decreases in novel context (Braem & Mills 

2010), but no such study exists about the generalisation of previously learnt acoustic signals. 

In the present experiment dogs were trained to perform oriented movement (go left/right) in 

response to different acoustic signals, then they were exposed to novel test situations where 

they had to rely on the same acoustic signals to solve a series of new spatial tests. We 

hypothesised that dogs are able to generalise learnt acoustic signals to novel contexts. 

 

1.5.1. Practical applications 

The Swiss SWARMIX (Synergistic Interactions in Swarms of Heterogeneous Agents) project 

(2011-2014) is about developing a flying robot (Swinglet) working in cooperation with 

humans and rescue dogs to solve distributed tasks that require a wide diversity of sensory-

motor and cognitive skills. The aim is to provide high level of autonomy to each participant, 

and at the same time to set up efficient interaction and information flow between all system 

components. To reach this goal it is essential to examine different aspects of dog-robot 

interaction more precisely dogs’ socio-communicative behaviour toward non-living partners. 

Our studies have been designed also to provide useful information for the SWARMIX project 

and support the effective development of the Swinglet aimed to cooperating with rescue dogs 

and human handlers. 
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2. Experiments 

 

2.1. Experiment 1
1
: The emergence of social interaction between dog and 

an Unidentified Moving Object (UMO) 

The method of the present study originates from the well-documented observations on 

communicative interactions between dogs and humans in problem solving situations (for 

details see Miklósi et al 2000, Miklósi et al 2003, Gaunet 2010). In these scenarios a human 

hides a piece of food in the presence of a dog at an inaccessible location. After the departure 

of the hider the dog has the opportunity to interact with a naive human (owner) entering the 

room for a short time. The original experiment (Miklósi et al 2000) involved also two control 

conditions in which dogs were left alone after the hiding or no food was hidden. Dogs seemed 

to utilize both gazing and gaze alternations between the place of food and the owner (cf. 

“showing behaviour”) during the interaction and these behaviours were more frequent in the 

presence of the owner and hidden food than in the absence of a human or when no food had 

been hidden. In most cases dogs were also successful to direct the naive human to the place of 

the hidden food (see also Lakatos et al 2012). 

Based on these findings, we aimed to compare how adult pet dogs perform in an analogous 

problem solving task with different partners. There are three different partners: ‘mechanical’ 

or ‘social’ UMOs and a ‘mechanical’ human (see below). Using a between-subject design we 

compare the emergence of dogs’ social and communicative behaviours toward the different 

partners. We endowed the social UMO with different external (eye spots) and internal (goal 

directedness, interactive responsiveness, varied movements) properties that are general 

characteristics of entities with minds (people or animals) to which infants may be sensitive 

(for a review see Rakison & Poulin-Dubois 2001).  

We have hypothesised that dogs would display similar behaviour toward the mechanical 

partners (UMO and human). At the same time they are expected to increase their social 

behaviours toward the social UMO after repeated encounters, which would indicate that they 

are able to recognise some aspects of the UMOs’ social behaviour. 

 

                                                           
1
 Based on: Gergely, A., Petró, E., Topál, J., & Miklósi, Á. 2013. What are you or who are you? The 

emergence of social interaction between dog and an Unidentified Moving Object (UMO). PLoS ONE, 

8, e72727. doi:10.1371/journal.pone.0072727. 
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2.1.1. Materials and Methods 

 

Subjects 

 

Fifty adult pet dogs were recruited from the Family Dog database of the Department of 

Ethology, Eötvös Loránd University. We excluded 3 dogs because they displayed high level 

of anxiety-related behaviours in the experimental room (N=2) or upon encountering the UMO 

(N=1). The remaining 47 dogs were assigned to one of three experimental conditions: 

Mechanical UMO (N= 15, 5 males, 10 females, mean age±SD: 3.6±2.3 years), Social UMO 

(N=17, 9 males, 8 females, mean age±SD: 4.6±3.2 years) and Mechanical Human (N=15, 7 

males, 8 females, mean age±SD: 3.7±3.2 years) (for details see Appendix, Table 8). Only 

dogs older than 1 year were recruited, and there was no upper age limit to participate. 

Therefore some old dogs (older than 10) were also included and this increased the age range. 

Importantly, however, our analysis of the dogs’ mean age did not show significant differences 

between the 3 groups (One-way ANOVA F2,44=0.504, p=0.607). Subjects were allowed to 

participate only if they could be motivated with dry dog food. Each subject participated only 

in one condition. 

 

Apparatus 

 

Dogs were tested at the Department of Ethology, Eötvös Loránd University in a 4.5m x 3.5m 

test room. In this experiment we used a remote control (RC) car (#32710 RTR SWITCH, 28 

cm x 16 cm x 13 cm) as UMO which was supplemented with two magnets on its back and 

front. The car was controlled by Experimenter 2 (E2), who was standing in the corner of the 

lab (see Figure 3). Throughout the experiment she avoided carefully getting engaged with the 

dog. 

A metal wire mesh box (61 cm x 46 cm x 54 cm) was used as a hiding location, with a fixed 

magnet inside, and three transparent plastic bowls (10 cm x10 cm) were used as potential food 

sources, one was equipped with two metal sheets. We recorded each trial with four cameras in 

the test room (see Figure 3).  

Three magnets with different strength were used in the experiment. The weakest magnet was 

placed on the front of the car (UMO) which was supposed to connect to one of the metal 

sheets on the bowl with the food. Hence the UMO carried the food into the box that was now 

inaccessible for the dog. The moderately strong magnet was placed inside the box. It was 

supposed to attach to the other metal sheet on the bowl when the UMO transported the bowl 
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into the box. Thus the UMO was “able to” leave the food inside the box. The most powerful 

magnet was placed on the back of the UMO. This was used when the UMO reversed into the 

box in order to carry the food to the dog. 

 

 

Figure 3: Experimental room and paths of partners’ move. O=place of the owner, D=place of the 

dog, E= position of Experimenter 2, F=place of the three plates (i.e. potential food sources), 

A=start point of the partner (UMO or Human), B=place of the box. Green circles indicate the 

location of the cameras. The triangle presents distance between the dog the partner and the 

place of the inaccessible food (box). Black lines show the paths of the partner to the plate 

(location of the food), to the box and back to the start point. Orange lines show the different path 

of the Social UMO compared to the Mechanical partners (UMO or Human) to each plates, box 

and different start points during the 2
nd

 to 6
th

 trials (red X). Blue lines show the path which in 

the partner goes back to the box from the start point and bring the food to the dog. 
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Test-partners 

In the Mechanical UMO and Social UMO groups we used the same RC car as a partner. 

However, the Mechanical UMO, moved always along the same path during the experiment, 

and approached the plastic bowl always from the same location.  

In contrast, the Social UMO had two eye spots (2 cm in diameter, placed on the engine hood) 

(see Figure 4), and it moved along varied paths in the room during the experiments, it went to 

different start points in the lab, approached both empty and baited bowls (“made a choice” see 

below), and started to move when the dog looked at it in particular situations (responded to 

dog’s behaviour) (for details see Procedure). In order to control for the embodiment we 

included a Mechanical Human group in which a female human was the partner. We wanted to 

make her behaviour highly similar to that displayed by the Mechanical UMO. She was 

wearing sun glasses to avoid any kind of eye contact with the dog, she was wearing blue T-

shirt and brown trousers, she did not display any social cues during the test and she did not 

speak at all. She was moving along the same route as the RC car in the Mechanical UMO 

group with constant speed (see Figure 3). 

 

 

Figure 4: The three test partners: a; Mechanical UMO b; Social UMO c; Mechanical Human (for 

more details see text). 

 

 

Procedure 

 

Familiarization 

1. The owner and the dog (on leash) entered the room and walked around. There were three 

empty bowls, the UMO (at the start point), in the Mechanical and Social UMO groups, or 

female human in the Mechanical Human group, and the metal box placed at a fixed location; 

E2 stood in the corner of the lab. The dog could sniff and explore the room on leash for 1 

minute. Then the owner sat down at a predetermined location and held the dog in front of 

him/herself. 
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2. Experimenter 1 (E1) entered the room and put three pieces of dry food into one of the tree 

bowls and left the room. 

3. The owner took off the leash and encouraged the dog to eat the food (e.g. „It’s yours”; 

„Come on take it” etc.). After having eaten the food the owner called the dog back. This 

procedure (Steps 2 and 3) was repeated two times. 

4. The UMO or the female human started to move around the room (for 30 seconds) in full 

view of the dog. In the Mechanical UMO and Mechanical Human groups they were circling 

around the bowls travelling on the same path. In contrast, the Social UMO moved along 

varied routes in the room. All partners moved in the same amount of time. 

5. Steps 2 and 3 were repeated two times, except that the Mechanical and Social UMO or the 

Mechanical Human were moving always in the same way as in Step 4. After the second 

feeding the partner returned to the start point. 

 

Test trials 

In Mechanical UMO and Mechanical Human groups the experiment consisted of 6 trials. One 

trial consisted of the following steps: 

1. E1 entered the room put three pieces of food into one bowl (she baited always the same 

bowl during the trials), and then left. 

2. The Mechanical UMO or the Mechanical Human approached the baited bowl, carried it 

into the box, left it inside, and returned to the predetermined start point. The bowl was 

inaccessible for the dogs but they could see it and smell the food. 

3. Owner released the dog from the leash, and it was allowed to move freely for 30 seconds. 

By knocking at the door E1 informs the owner to call the dog back.  

4. The Mechanical UMO or the Mechanical Human returned to the box and brought/took out 

the bowl, and stopped with it in front of the dog. 

5. The owner let the dog eat the food, and the partner returned to the start point. 

 

The Social UMO group consisted of 7 trials. The 1
st
 and the 7

th
 trials were exactly the same as 

test trials in the Mechanical UMO and Mechanical Human groups; including the position of 

the start point of the partner (see Figure 3). 

The 2
nd

 to 6
th

 trials were similar to the 1
st
 and 7

th
 one, except that during Step 1 the 

experimenter varied the position of the baited bowl, at the end of Step 2 the car stops at 

various points in the lab (potential start points, see Figure 3) and finally during Step 3 E2 
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started to move the car toward the box after the dog displayed the first, short (approximately 1 

s long) glance at it. 

  

Behavioural variables and data analysis 

All trials were videotaped and dogs’ behaviour (Table 1) during the 30 s of free movement 

was analysed later with Solomon Coder 060612 (András Péter http://solomoncoder.com). 

 

Name of behaviour element Definition 

Looking at the partner Looking duration (s) at the partner (UMO or human) 

Latency of looking at the partner 
Time span (s) from owner releasing the dog until the dog 

looks first at the partner (UMO or human) 

Latency of touching the partner 

Time span (s) from owner releasing the dog until the dog 

touches first the partner (UMO or human) with its 

muzzle 

Frequency of gaze alternation 

Number of looks from the partner (UMO or human) to 

the box (place of food) directly or vice versa regardless 

of order 

Table 1. The definitions of coded behavioural elements 

 

Inter-observer agreement (between two coders) was assessed by recoding a randomly selected 

25% of the subjects (Cohen’s Kappa, 0.98). 

For statistical analysis we used IBM SPSS Statistics 21. For the Binary GLMM (for Binomial 

distribution) we calculated the Ratio of looking (number of dogs who looked or did not look) 

at the partner (UMO or Human) in each trial, and the Ratio of touching (number of dogs who 

touched or did not touch the partner (UMO or Human) with muzzle in each trial. 

In the first series of analyses we studied the effect of the repetition, and difference in 

embodiment and behaviour by comparing the Mechanical UMO and Mechanical Human 

groups. The square-transformed Looking at the partner was analysed by the means of a 

GLMM (Generalized Linear Mixed Model) for Normal distribution. We analysed Ratio of 

looking and touching dogs variables with Binary GLMM (for Binomial distribution) to 

examine whether the subjects looked or did not look at or touched or did not touch the partner 

(UMO or Human) during the 30 s. Next we analysed whether there was a difference in the 
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Latency of touching the partner between the Mechanical UMO and Mechanical Human 

groups (GLMM for Normal distribution). We also analysed the Frequency of gaze alternation 

between the partner and the place of food in the two Mechanical groups (GLMM for Poisson 

distribution).We compared the Ratio of looking dogs (with Binary GLMM), and Latency of 

looking at the partner (GLMM for Normal distribution) variables among all the 3 groups. 

Finally, we compared all first trials and last trials among all three groups for all observed 

behavioural variables (Kruskal-Wallis test with Dunn post-hoc test). 

 

2.1.2. Results 

 

Comparison of Mechanical UMO and Mechanical Human groups 

First we compared the two mechanical groups (Mechanical UMO and Mechanical Human) to 

see whether dogs showed comparable behaviour toward the Mechanical UMO and the 

Mechanical Human. Dogs in both groups were looking longer at the partner over repeated 

trials (F5,136=7.59, p<0.0001). At the same time dogs looked longer toward the Mechanical 

UMO than toward the Mechanical Human (F1,12=5.37, p=0.039) (Figure 5/a). Gaze 

alternations between the partner and the place of food became more frequent with repeated 

trials in both groups (F5,55=3.35, p=0.01), and on the whole dogs in the Mechanical Human 

group displayed more gaze alternations than dogs in the Mechanical UMO group (F1,47=4.5, 

p=0.038) (Figure 5/b). More dogs touched the partner in the Mechanical UMO group 

(F1,46=10.38, p=0.002), however this behaviour did not change with the trials (F5,95=1.02, 

p=0.4) (Figure 5/c). Dogs also touched the partner sooner in the Mechanical UMO group than 

dogs in the Mechanical Human group (F1,22=4.37, p=0.048), but this latency did not change 

with the trials (F5,17=1.98, p=0.134) (Figure 5/d). 
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Figure 5a-d: Comparison of different behavioural measures between the Mechanical UMO 

(M_UMO) and Mechanical Human (M_Human) group during a 30 sec period in each trial when 

dogs were allowed to move freely. a; mean duration of looking at the partner (UMO or Human) 

b; mean frequency of gaze alternations between the partner (UMO or Human) and the place of 

food c; ratio of dogs who touched the partner with its muzzle (UMO or Human) d; mean latency 

of touching the partner with muzzle (UMO or Human). 
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Analysis of the Ratio of looking dogs and Latency of looking at the partner variables 

Interactivity of the Social UMO did not allow us to compare most behavioural variables 

during trials 2
th

 to 6
th

 because the partner started to move when the dog looked at it (see 

Methods). However, we could analyse how many dogs looked at the partner (Ratio of looking 

dogs) and the latency of this action (Latency of looking at the partner). We found that trials 

had an effect on how many dogs looked at the partner at all (F6,39=36.7, p<0.0001) (Figure 

6/a). Groups also differed in the Ratio of looking dogs (F2,8=10.3, p=0.005). More dogs 

looked at the partner in the Social UMO group than in the Mechanical UMO (p=0.001) or in 

the Mechanical Human group (p=0.033). At the same time fewer dogs looked at the 

Mechanical Human than the Mechanical UMO (p=0.035). In general, dogs looked sooner at 

the partner as trials went by (F6,67=10.9, p<0.0001), and group also had an effect (F2,46=11.15, 

p<0.0001). Dogs in the Social UMO group looked first to the partner sooner than dogs in the 

Mechanical Human group (p=0.0001), but there were no differences between the two types of 

UMOs (p=0.069) or between the two mechanical partners (p=0.18) (Figure 6/b). 

 

 

0 

0.2 

0.4 

0.6 

0.8 

1 

1 2 3 4 5 6 7 

R
a
ti

o
 o

f 
lo

o
k

in
g
 d

o
g
s 

(m
ea

n
, 

9
5
%

 C
I)

 

Trial 

M_UMO 

M_Human 

S_UMO 

a 



29 
 

 

Figure 6a-b: Comparison of the ratio of looking dogs and the latency of looking at the partner in 

the Mechanical UMO (M_UMO), Mechanical Human (M_Human) and Social UMO (S_UMO) 

groups during a 30 sec period in each trial when dogs were allowed to move freely. a; ratio of 

dogs looked at the partner b; mean latency of looking at the partner. 

 

Comparison of dogs’ behaviour in the first and last trials 

The aim of these comparisons was to examine whether dogs showed more intensive gazing 

and touching behaviours toward the Social UMO than dogs in the mechanical groups toward 

the Mechanical UMO or the Mechanical Human. This effect could emerge as the result of 

differential type of interactions in trials 2
th

 to 6
th

 (see Methods). In the first trial there were no 

differences among the three groups in any of the measured behaviour variables, however 

during the last trial all variables differed significantly across the groups (see Table 2).  

 

Kruskal-Wallis Test, Dunn Post-hoc (N=47, df=2) 

Name of the behaviour variable First trial* Last trial** 

Looking at the partner χ
2
=1.59, p=0.45 χ

2
=27.46, p<0.0001 

  S_UMO vs. M_UMO  p=0.008 

  S_UMO vs. M_Human  p<0.0001 

Frequency of gaze alternation χ
2
=1.91, p=0.38 χ

2
=9.03, p=0.011 

  M_UMO vs. S_UMO  p=0.008 
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Latency of looking at the partner χ
2
=5.61, p=0.06 χ

2
=15.2, p<0.0001 

  S_UMO vs. M_UMO  p<0.0001 

Latency of touching the partner χ
2
=1.04, p=0.59 χ

2
=11.365, p=0.003 

  S_UMO vs. M_Human  p=0.003 

  M_UMO vs. M_Human  p=0.046 

Table 2: Comparison of dogs’ behaviour during the first and last trials of each group.  

* The second column shows the comparison of the first trials among the three groups; all are 

non-significant. ** Third column shows the comparison of the last trials, and Dunn’s post hoc 

comparisons among the groups (S_UMO= Social UMO, M_UMO= Mechanical UMO, 

M_Human= Mechanical Human). 

 

Dogs looked longer at the Social UMO than the Mechanical UMO or the Mechanical Human 

during the last trial (Figure 7/a). Dogs also altered their gaze more frequently between the 

Social UMO and the place of food during the last trial compared to the Mechanical UMO, but 

no such difference was present in relation the Mechanical Human (Figure 7/b). They were 

also faster to look at the partner in the Social UMO group than in the Mechanical Human 

group (Figure 7/c). Latency of touching showed the same pattern. Dogs touched the Social 

UMO and the Mechanical UMO sooner than the Mechanical Human (Figure 7/d).  
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Figure 7a-d: Analysis of the dogs’ behavioural variables during the first and last trials in each 

group. a; mean duration of looking at the partner (UMO or Human) b; mean frequency of gaze 

alternations between the partner (UMO or Human) and the place of food c; mean latency of  

looking at the partner (UMO or Human) d; mean latency of touching the partner with muzzle 

(UMO or Human) (* p<0.05, ** p<0.005). 

 

2.1.3. Discussion 

 

The aim of this study was to investigate whether dogs are able to differentiate agents on the 

basis of their behaviour and show social behaviours toward an UMO (Unidentified Moving 

Object) if the agent behaves appropriately in an interactive situation. The present experiment 

showed that these behaviour features also emerge in the dogs while they are interacting with 

an UMO, moreover the onset of these behaviours is facilitated by the social features of the 

UMO: Dogs look longer and show more gaze alternation if the UMO carries eyes, shows 

variations in its path of movement, displays goal-directed behaviour and contingent reactivity 

(reacts to the looking action of the dog by retrieving the inaccessible food item). The 

similarity in the dogs’ behaviour toward the human (as reported in Miklósi et al 2000) and the 

UMOs in the present experiment leads to a range of interesting insights. 

First, in order to control for the embodiment we included also a ‘mechanical human’ who 

looked very differently from the UMO but showed very similar gross movements to the 

Mechanical UMO, e.g. moved along the same path and did not show contingent reactivity to 

the dog. Naturally, the human used the hand to handle the food.  
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Despite the fact that dogs probably recognised the human in terms of embodiment they were 

attracted much less to the human as dogs looked longer and touched sooner the Mechanical 

UMO than the Mechanical Human (see Figure 5). This could be explained by the fact that 

dogs have never met the UMO before, and therefore they did not have any expectations about 

the behaviour of this moving object. Moreover, their previous experience with typical humans 

may have induced some wariness toward the Mechanical Human that manifested in shorter 

looking and touching duration but in increased gaze alternation.  

Second, dogs show a drop in gaze alternation after the penultimate trial (5th) toward both 

mechanical partners but not toward the Social UMO (see Figure 6). Although the nature of 

this phenomenon is unclear, we suggest that dogs have changed their behaviour strategy 

toward these agents. The increase in looking time and gaze alternation frequency may have 

been caused by the dogs’ tendency to generalise their previous experience with humans in 

such situations. Thus they may have recognised the correspondence between their earlier 

experience and the present situation despite the fact that the UMO is strikingly different from 

a human. Accordingly, this drop may indicate that dogs gave up showing communicative 

behaviours toward the agent, and instead ‘waited’ until the agent solved the problem. This is 

also supported by the observation that such drop did not emerge in the case of the Social 

UMO that replicated the behaviour of a typical human partner under these conditions.  

Third, in the present experiment we did not want to account for all possible social features 

that may facilitate the interaction between the dog and the UMO. Thus the Social UMO 

displayed morphological (eyespots), motor (travelling along divergent paths) and interactive 

(starting to move upon being gazed at) characters which made it appear more animate and 

social at the same time. Despite all these differences the dogs’ behaviour was very similar 

toward all partners in the very first trial (although they had the opportunity to observe these 

agents during the familiarization phase), but changed over repeated interactions (Figure 7). 

This indicates that the presence of the physical features, like eyespots and varied movements 

were not the key components for dogs in the case of the Social UMO. Instead, goal 

directedness and interactivity that was displayed in the first and subsequent encounters played 

a key role in the development and maintenance of social behaviours. These properties of the 

agent were found to be also significant in allowing human infants to discriminate animate-

inanimate displays (Csibra et al 1999, Opfer 2002). Decreased latency of looking at the Social 

UMO can be explained by the fact that it started to move when the dog glanced at it once. 

Such contingency could emerge quickly in the case of associative learning which has been 

recently implicated in the development of ‘sense of agency’ (for a review see Heyes 2013). 
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Indeed, interaction between social beings (including human infants and caretakers etc.) are 

accompanied by such forms of learning. However, the present study is more focused on the 

‘emergent’ behaviours which could be regarded as ‘by products’ of this contingency and 

which make the interaction appear more social. Thus we find it interesting that in parallel with 

dogs’ increased looking behaviour other social behaviours (e.g. touching, gaze alternation) 

occurred toward the Social UMO more often than toward the Mechanical UMO. 

Interestingly, in another study dogs seemed not to show much social interest toward dog-like 

robot (AIBO) despite close morphological similarity (Kubinyi et al 2004). Although there are 

also parallels between the general behaviour pattern of AIBO and the dog, during the 

interactions the robot did not show any direct reactions to initiative behaviours of the dogs. 

This also suggests that, not denying the importance for certain morphological features (cf. 

sign stimuli) in releasing social behaviour, the interactive character of the behaviour on the 

part of the robot (or in our case the UMO) is more important for evoking social 

responsiveness than the embodiment per se. 
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2.2. Experiment 2: Dogs are able to adjust their social behaviour in 

accordance with their inanimate partners’ different capabilities 

 

In the first experiment we found that dogs were willing to interact socially with an UMO in a 

problem situation where they had no access to the hidden food, and displayed similar 

behaviours (gazing and gaze alternations) as they utilized with human partners. Our results 

also showed that the onset of these behaviours is facilitated by the social features of the UMO. 

As a next step we studied the flexibility of dogs’ ‘requesting behaviour’ (see Miklósi et al 

2000) toward UMO partners with different capabilities. 

In a recent study Horn and co-workers (2012) investigated whether dogs adapt their social 

behaviour flexibly to the actions of their human partners in a similar problem situation. The 

experiment started with a training phase where dogs were trained to use efficiently a rotatable 

disc food-container to obtain 6 pieces of food. This apparatus was equipped with a blocking 

mechanism that, when activated, blocked the rotation of the disc, thus only 3 pieces of food 

were accessible for dogs. During this phase dogs had an opportunity to encounter with two 

experimenters, the Filler and the Helper. One experimenter played the role of the Filler who 

filled the empty apparatus up, while the other experimenter (Helper) unblocked the apparatus 

when it got blocked. The two experimenters entered the testing room (and left) through 

different doors. Training was followed by a Learning phase in which dogs had the opportunity 

to further learn about the specific abilities of Filler and the Helper. In this phase, dogs 

underwent twelve trials in which they could observe the actions of the Filler and eight trials in 

which they saw the actions of the Helper. Then dogs were divided into two conditions and 

participated in different test trials. For half of the dogs, the experimenters (with their back 

turned toward the dog) stood in front of the door they used routinely for enter and exit 

throughout the previous phases. For the other half of the dogs, however, the positions of the 

experimenters were swapped. In one of the test trials the apparatus was empty, while in the 

other trial the apparatus was blocked. Dogs were expected to choose (approach and gazing) 

the Filler when the apparatus was empty and the Helper when it was blocked independently of 

their actual position. Results showed that dogs spent more time in the proximity of the Filler 

when the apparatus was empty, however they preferred to approach and touch the Helper 

independently of the problem situation and the experimenters’ position. They also found that 

dogs’ behaviour in the second test trial was influenced by the problem situation they faced in 

the first test trial.  
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Authors concluded that dogs probably understood the problem of the empty but not the 

blocked apparatus (or the role of the Filler but not the Helper). At the same time increased 

social behaviour toward the Helper might be due to the unbalanced social experience gained 

through the training trials during which only the Helper interacted socially with the dog.  

The method of our second experiment was based on this study (Horn et al 2012) but the 

different roles in problem-solving were played by UMOs with different abilities. In our task 

situation dogs were presented with a problem box with two lockable holes, one on the front 

and one on the top. Both holes were small enough to prevent the dog to reach the hidden food. 

However, front hole was suitable for one of the UMOs (a remote control car), while the top 

hole was fitted to the other UMO (a remote control crane) to help the dogs to obtain the food. 

Dogs had the opportunity to observe both UMOs actions 5-5 times before test trials which 

followed the procedure of Horn et al (2012). We aimed to find out whether dogs interact with 

the respective agent which was observed to be able to solve the problem and whether they 

display similar behaviours toward each partner. We hypothesised that dogs would approach 

and touch first the car when the front hole is open and the crane when the top hole ensures 

access to the food. Since results of Experiment 1 (see above) suggested that eyespots and 

varied movements were not the key components for dogs in the case of the ‘Social UMO’ we 

decided to exclude these attributes from the present study. 

 

2.2.1. Materials and Methods 

Subjects 

Fifty-eight adult pet dogs were recruited from the Family Dog database of the Department of 

Ethology, Eötvös Loránd University. We excluded 10 dogs because they displayed high level 

of anxiety (N=6) or they were not sufficiently motivated (N=4). The remaining 48 dogs were 

divided into two experimental conditions (See Table 3). For details see Appendix Table 9. 

Only dogs older than 1 year were recruited, and there was no upper age limit to participate. 

Our analysis of the dogs’ mean age did not show significant differences between the 2 

conditions (Mann-Whitney test, N=48, U=202.5, p=0.074). Subjects were allowed to 

participate only if they could be motivated with sausage.  
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Apparatus 

Dogs were tested at the Department of Ethology, Eötvös Loránd University in a 4.5 m×3.5 m 

test room. Partners (UMOs) were parking (P1/P2) outside of the room and we used two 

guillotine doors (Door A and Door B) for operating them in and out of the test room. 

Experimenter 2 (E2) opened the door for Experimenter 3 (E3) by means of a string connected 

to the guillotine and E3 opened the other door for E2 vice versa (Figure 8). Throughout the 

experiment E2 and E3 were standing in the two corners of the lab and carefully avoided 

getting engaged with the dog. Experimenter 1 (E1) was filling up the bowl with food and 

acted as a hider throughout the experiment. E1 always used Door C for enter and exit (see 

Figure 8). A wooden opaque box (80 cm x 48 cm x 38cm) served as hiding location (B) with 

two holes (see Figure 9), one on the top of the box (TH) and one on the front side of the box 

(FH). A plastic bowl (7.5 cm x 7.5 cm) equipped with a 8 cm long metal screw and one 

additional metal sheet in the front of the bowl was used to contain food. The UMOs were able 

to bring the bowl out of the box with magnets (the car was equipped with a front magnet and 

the crane carried one in the end of its telescopic boom). The UMOs differed in their physical 

abilities i.e. the car could obtain the food through the front hole while the crane was too large 

to use the front hole but it could reach the food through the top hole with its telescopic boom 

(see Figure 9). In this experiment we used sausage instead of dry dog food because it has 

stronger smell, thus dogs could smell it more easily inside the opaque box. Trials were 

recorded by four cameras which were connected to monitoring and recording equipment in 

the adjacent room. 
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Figure 8. Experimental set-up. O=place of the owner, D=place of the dog, E2/3=position of 

Experimenter 2 and 3, B=place of the wooden box, FH=front hole, TH=top hole, P1&P2= 

outside parking places of the UMOs, T1&T2=positions of the UMOs during test trials. Green 

lines show the paths of the car from Door A or B to the FH and then to the dog. Red lines show 

the paths of the crane from Door A or B to the TH and then to the dog. Dotted lines indicate the 

position of the strings connected to Door A and B. Green circles indicate the location of the 

cameras. 

Test partners 

In this experiment we used the same remote-controlled car as in Experiment 1 and a remote-

controlled crane (Hobby Engine Premium Label RC Crane Truck 2.4 Ghz, 65 cm x 17 cm x 

15 cm) as test partners (see Figure 9). Both UMOs were equipped with magnets to attach to 

the bowl with food. The car was controlled by E2 and the crane was controlled by E3. Door A 

was used consequently by the car and Door B by the crane during the experiment for half of 

the subjects and vice versa for the other half of the subjects. 
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Figure 9. The wooden box with two lockable holes and the test partners (UMOs). Arrows 

indicate the respective hole used by the car or the crane during the test for retrieving the food 

for the dog. 

Procedure 

Familiarization 

1. The owner and the dog entered the room and walked around. Inside the room the apparatus 

was already set up, however the UMOs were not yet present. The dog could sniff and explore 

the room on leash for 1 minute. Then the owner sat down at a predetermined location (O) and 

held the dog in front of him/herself.  

2. E1 entered the room and put one piece of food into the bowl. The owner unleashed the dog 

and encouraged it to eat the food (e.g. „It’s yours”; „Come on take it” etc.). After having eaten 

the food the owner called the dog back.  

3. E1 put another piece of food into the bowl and took it to one of the two determined 

position: next to the box (for the car) or on the top of the box (for the crane). One of the 

UMOs then come in, approached the bowl and carried it to the dog. This procedure was 

repeated two times and the order of the test partners was counterbalanced between subjects. 

 

Learning-phase 

1. After having called the dog’s attention E1 put one piece of food into the bowl and hid it 

through one of the two holes (FH or TH) on the box then closed the other hole and then left 

the room. The owner unleashed the dog and encouraged it to try to retrieve the food (note that 
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this was not possible). If the dog did not find the open hole the owner was allowed to point at 

it. After 30 seconds the owner called the dog back.   

2. The UMO that was suitable for taking out the bowl via the currently open hole entered 

through the guillotine door, approached the wooden box and took the bowl out. Then the 

UMO approached the dog, stopped in front of it (within 40 cm), thus the dogs was able to eat 

the food from the bowl. 

We repeated this procedure (Steps 1 & 2) 10 times in total: 5-5 trials with the different UMOs 

(i.e. car-when FH was open; crane-when TH was open) in a predetermined order (car 1, crane 

2: 1-2-1-2-2-1-2-1-1-2 or 2-1-2-1-1-2-1-2-2-1). At the end of the learning phase E1 asked the 

owner to go out of the room with the dog for 30 seconds. 

 

Test trials 

1. While the owner and the dog were waiting outside E2 and E3 placed the two UMOs on the 

floor next to Door A and B (T1 and T2, see Figure 8). In the Same side condition UMOs were 

placed in front of their ‘respective’ doors (i.e.  the door they used routinely for enter and exit 

during the learning phase). 

In the Changed side condition the position of the UMOs was swapped (i.e. were placed at the 

‘opposite’ door).2. The owner and the dog entered the room. After having called the dog’s 

attention E1 put a piece of food into the bowl and hid it through one of the two holes (FH or 

TH) on the box then closed the other hole and left the room. The owner and the dog (on leash) 

went to the box and the dog was allowed to sniff into the box through the open hole. After 

they sat back to the predetermined location the owner took of the leash, and the dog was 

allowed to move freely for 30 seconds. The owner was asked to encourage the dog in the 

same way to get the food as she/he did during the learning phase.  

3. The dog was called back and held by the owner and then the UMO who was ‘able to’ help 

in the current situation started to move and gave the food to the dog. 

4. The owner and the dog left the room again for 30 sec. 

5. We repeated this procedure (Step 1-3) once more in the very same way except that the food 

has been hidden by E1 through the other hole, thus during Step 3, the other partner could help 

the dog to get the food. The order of the first opened hole (TH or FH) was counterbalanced 

between subjects (see Table 3). 

During the behavioural coding we focused on the 30 seconds during the two test trials in order 

to analyse dogs’ behaviour toward the UMOs. 
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 Same side condition Changed side condition 

Learning phase car: door A 

crane: door B 

car: door B 

crane: door A 

car: door A 

crane: door B 

car: door B 

crane: door A 

Test Phase 

(baited hole) 

1
st
 FH 

2
nd

 TH 

1
st
 TH 

2
nd

 FH 

1
st
 FH 

2
nd

 TH 

1
st
 TH 

2
nd

 FH 

1
st
 FH 

2
nd

 TH 

1
st
 TH 

2
nd

 FH 

1
st
 FH 

2
nd

 TH 

1
st
 TH 

2
nd

 FH  

No. of dogs 

(males & 

females) 

mean age±SD 

(years) 

N=12 

7 & 5 

4±2.2 

N=12 

3 & 9 

3.6±2.3 

N=12 

3 & 9 

4.2±2 

N=12 

7 & 5 

3.2±2.2 

Table 3. Experimental design  

 

Behavioural variables and data analysis 

All trials were videotaped and dogs’ behaviour (Table 4) during the 30 s free movement 

episode was analysed later with Solomon Coder 060612 (András Péter 

http://solomoncoder.com).  

 

Name of behaviour element Definition 

First look (score 0/1)* 
The dog looks first at one of the partners (car or crane) after 

owner releasing the dog 

First approach (score 0/1)* 
The dog approaches one of the partners within 1 m with his 

nose 

First touch (score 0/1)* 
The dog touches first the partner (car or crane) with its 

muzzle 

Looking time toward the 

partner (s) 

Duration of gazing toward the ‘appropriate’ and ‘irrelevant’ 

partner (car or crane) 

Number of gaze alternations 

Total number of looks from the ‘appropriate’ and 

‘irrelevant’ partner (car or crane) to the box (place of food) 

directly or vice versa regardless of order 

Table 4. The definitions of coded behavioural elements. * Score 1 was given if the dog interacted 

(looked at, approached, touched) the appropriate partner (i.e. car when FH open & crane when 
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TH open), and score 0 was given if the dog interacted with the ‘irrelevant’ partner (i.e. car when 

TH open & crane when FH open). 

 

Inter-observer agreement (between two coders) was assessed by recoding a randomly selected 

25% of the subjects (Cohen’s Kappa, 0.97). 

For statistical analysis we used IBM SPSS Statistics 21. First we compared First look, First 

approach, First touch variables to chance level (0.5) to examine whether subjects showed a 

tendency to choose the appropriate partner first. Then we analysed these variables and the 

Number of gaze alternations with Binary GLMM (for Binomial distribution) in order to 

examine the effect of condition, test partner (car vs. crane) and the repetition of test trials. We 

calculated the ratio of looking at the car and crane from Looking at the partner variable and 

we analysed it with GLMM for Normal distribution.  

2.2.2. Results 

One-sample Binomial test showed that dogs looked first (p=0.003), approached first 

(p=0.009) and touched first (p=0.028) the appropriate partner according to the problem 

situation during test trials (Figure 10). Binary GLMM revealed that condition (F3,88=2.215, 

p=0.092) and test partner (F1,88=0.294, p=0.589) had no effect on First look variable, however 

repeated test trials effected this behaviour (F1,88= 6.8, p=0.01) (Figure 10).  

 

Figure 10. Mean scores for the First look, First approach and First touch variables in test trials. 

Dotted line indicates chance performance (0.5). * p<0.05 
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Moreover GLMM showed no main effect in case of First approach (F5,72= 2.16, p=0.07) and 

First touch (F5,61= 2.33, p=0.06) variables. Similarly, the analysis of Looking time toward the 

partner and the Number of gaze alternations did not show significant effects (F5,90= 0.39, 

p=0.85 - Figure 11/a and F5,70= 0.604, p=0.697 -Figure 11/b) which indicates that dogs had no 

preference in looking at the car or at the crane.  

 

 

Figure 11a-b. Analysis of dogs looking behaviour toward test partners during test trials. a: 

Duration of looking at the car and the crane; b: Frequency of gaze alternation between car-box 

and crane-box. ns>0.05 
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2.2.3. Discussion 

Results of the second study showed that dogs direct their social behaviour in accordance with 

the actions and different capabilities of their inanimate partners in a problem situation, i.e. 

they first approached, touched and looked at the partner which could help in that particular 

situation. However, time spent looking at the partners and the frequency of gaze alternations 

between partners and the place of the hidden food were independent from the type of the 

partner, i.e. dogs did not show any preference toward one of the partners. These results are in 

agreement with previous findings of Horn et al (2012) although it seems that dogs in the 

present study discriminate the different roles of the two partners equally well. Dogs’ better 

performance with the UMOs might be due to methodological differences between the two 

studies. First, in the present study dogs’ opportunity to learn about partners’ actions was 

equalized. Second, it is possible that the problem of the box with two holes was easier to the 

dogs to understand compared to the blocking mechanism of the apparatus in the Horn et al 

(2012) experiment. Third, unbalanced social experience with the partners which proved to be 

an important factor for dogs in similar situation (see Horn et al 2012) was controlled in our 

experiment by using non-living agents as partners. Fourth, UMOs’ different abilities were 

determined by physical constraints, i.e. the car was unable to use the top hole in the absence 

of a telescopic boom while the size of the crane limited access to the hidden food through the 

front hole. However, several studies have shown that dogs have limited abilities in physical 

cognitive tasks (e.g. Fiset et al 2000, Brauer et al 2006, Fiset & LeBlanc 2007), thus dogs are 

also expected to have difficulties to solve this task where they should comprehend the 

physical constraints of the different UMOs to retrieve food from the box through different 

openings. 

In the present study we propose discrimination learning as underlying mechanism which 

involves the ability to learn to discriminate between similar stimuli through differential 

reward contingencies (Kehoe 2008). However, much of the research investigating learning 

mechanisms related to stimulus discrimination in dogs showed that it took dogs anywhere 

from 20 to 300 trials to learn to discriminate between objects that differ on figurative 

characteristics (e.g. shape, color, size etc.) (e.g. Milgram et al 1994, Tapp et al 2003). In these 

experiments dogs obtained the food reward immediately after choosing the correct object. 

Dogs also had difficulties to find a hidden food indicated solely by a physical marker (object) 

in a two-way choice task (e.g. Agnetta et al 2000, Riedel et al 2006). In this case dogs 
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seemingly did not associate between the place of the marker and the location of the hidden 

food even after more than 70 trials (Agnetta et al 2000).  

Lesser need for learning in the present experiment (10 trials) can be explained as follows: (1) 

latter studies used stationary object, while the UMOs were moving which might triggered 

dogs’ attention (i.e. increased salience of the UMO partners); (2) the social context of the 

present study might facilitate learning in dogs. The second idea is supported by the results of 

the marker study mentioned above that dogs’ performance increased significantly in the 

simultaneous presence of the marker and the human experimenter (i.e. social context) (Riedel 

et al 2006). 
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2.3. Experiment 3
2
: Dogs rapidly develop socially competent behaviour 

while interacting with a contingently responding Unidentified Moving 

Object (UMO).  

 

The key question in socio-communicative interaction is how do communicative signals 

achieve their function, i.e. how does the action of the sender become a signal for the receiver? 

It is widely accepted that two fundamental mechanisms play major role in the emergence of 

communicative interactions. (1) The hypothesis of (evolutionary) ritualization assumes 

(Hinde and Tinbergen 1958) that during evolution a neutral behaviour is transformed 

gradually into a communicative behaviour with signal properties if it has predictably modifies 

the behaviour of the partner. During this process the behaviour pattern is subjected to changes 

making it repetitive, exaggerated and stereotyped (Hinde 1970). (2) Ontogenetic ritualization 

takes place if the individuals shape mutually their behaviour during repeated instances of 

social interactions. In this case one individual originally performs behaviour X to which its 

partner reacts consistently with behaviour Y. As a consequence after many dyadic interactions 

the first individual comes to anticipate the other’s action. Importantly, action X is not 

necessarily a communicative interaction in the first place but develops into one as a result of 

mutual interaction and learning (Tomasello 1996). 

Several studies have focused on the relative contribution of evolutionary vs. ontogenetic 

mechanisms controlling certain communicative signals and their species or context specific 

aspects. For example Halina et al (2013) examined gestural communication of captive 

bonobos and suggested that ontogenetic ritualization is the main underlying mechanism due to 

the flexibility and variability of these signals. In contrast, Hobaiter & Byrne (2011) argued 

that ape gestures are rather innate and acquired as a function of evolutionary ritualization. 

They also claimed that observed variation across individuals can be attributed to sampling 

effect. 

Similar argument has emerged in relation to the comprehension of human pointing gestures in 

dogs (see Miklósi & Soproni 2006, Udell et al 2010a for reviews). One assumption is that 

dogs learn to use human communicative signals during the early ontogeny (ontogenetic 

ritualization), thus this ability emerges as a consequence of habitual interaction between dog 

and human owner (e.g. Udell et al 2008, Elgier et al 2009).   

                                                           
2
 Based on: Gergely, A., Petró, E., Topál, J., Kosztolányi, A., & Miklósi, Á. 2014. Dogs rapidly 

develop socially competent behaviour while interacting with a contigently responding Unidentified 

Moving Object (UMO). submitted manuscript, PNAS. 
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The alternative explanation is that during the process of domestication dogs have become 

more sensitive to specific human behavioural cues, e.g. pointing (evolutionary ritualization: 

e.g. Riedel et al 2006), gazing (Soproni et al 2001). It was argued that the superior ability to 

rely on the human pointing gesture in young dog puppies over socialised wolf puppies 

supports partly this latter argument (e.g. Gácsi et al 2009). 

Recent discussion converged to the idea that actually both mechanisms might play a role (e.g. 

Miklósi & Topál 2013, Udell et al 2014) in the emergence of such interspecific signalling but 

question is still open how the relative contribution of evolutionary and ontogenetic 

ritualization could be determined. Methodologically three different approaches were used so 

far: (1) Deprivation of social experience (e.g. shelter dogs, e.g. Udell et al 2010b, Hare et al 

2010); (2) Demonstration of the effect of learning on the performance in a communicative 

interaction between dogs and humans (e.g. Udell et al 2008, Elgier et al 2009); (3) Testing the 

effectiveness of (relatively) novel communicative human signals in typical dog populations 

(Lakatos et al 2009). These methods were not really effective in determining the contribution 

of ontogenesis /evolution and raised also some methodological problems.  

Tomasello et al (1997) proposed that observing infants’ and apes’ reaction to novel signals 

would be a feasible method to examine their understanding on communicative signs. It is also 

assumed that lesser need for learning (or experience) or rapid learning in these tasks with the 

novel signal suggests contribution of genetic predisposition. In line with the latter suggestion 

researchers used the so-called triangulation method in order to examine animals’ mental state 

attribution ability (e.g. Heyes 1993). In general, this method consists two phases: (1) First, the 

naïve individual is exposed to specific experience (or has to learn to discriminate) in Context 

1 then (2) the individual is exposed to a novel context (Context 2) which overlaps only in 

specific ways with Context 1 by sharing only a small set of specific features. Results with 

chimpanzees showed that certain problems (e.g. cue detection) were learned faster when it 

was presented in Context 2 than it was presented first, in Context 1, suggesting that some 

features of the first task had facilitated chimpanzees’ performance in the second (Tomasello et 

al 1997).  

However, in the case of socio-cognitive investigations this method is not really informative 

because the social partner (as a ‘cue’) carries over a too large part of the contextual 

information from Context 1 to Context 2. For example, dogs experience humans pointing 

gestures in everyday life (Context 1), this experience with humans including possible genetic 

predisposition does not allow to set up an experiment (Context 2) which overlaps only 
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specifically with Context 1 because the presence of the human in both contexts. Thus the 

relative role of evolutionary/developmental processes is difficult to judge. 

In the present study we propose a new method which is based on the following ideas by 

introducing an unfamiliar moving object UMO to the experimental setting. Accordingly, (1) 

the subject is exposed to a specific social interaction in Context 1 and a different one in 

Context 2; (2) the social agent (UMO) shares no physical attributes with neither the subject 

(dog) nor other social potential social partner (human) in order to exclude previous 

experience; (3) social interactions share specific features with the natural social interactions 

among conspecifics (or familiar social partners, C). The underlying assumptions are that (1) 

subject has earlier experience with C and knows that C is able to perform action X and Y, (2) 

based on (1) subject recognises that UMO is performing action X, (3) and subject infers that 

UMO can also perform action Y. 

The present study has been designed to provide support of the latter concept. We decided to 

model a well-documented communicative interaction between dog and human in which the 

dog has opportunity to find the hidden food based on partner’s directional movement toward 

one of the two potential hiding places. We presented two different partners in four different 

conditions to the dogs in a between subject design. The Helper UMO and the Non-Helper 

UMO was a remote control car, in the Helper Human and Non-Helper Human group the 

partner was a female human (see Experiment 1). We assumed that dogs will consider human’s 

movement as a signal from the beginning, while they were expected to need learning about 

the informative aspect of the UMO’s directional movement. Based on previous studies with 

infants (Meltzoff et al 2010) we hypothesised that dogs who had opportunity to interact 

socially with the UMO will consider UMO’s movement as an indication (communicative 

signal) and perform better in the two-way choice task, while dogs without any previous 

experiences with the UMO will failing to recognise the communicative aspects of the 

directional signal and perform at chance level.  

 

2.3.1. Materials and Methods 

 

Subjects  

Eighty-two adult pet dogs were recruited from the Family Dog database of the Department of 

Ethology, Eötvös Loránd University. We excluded 8 dogs because they showed strong side 

bias (they were approached only the pot in the left/right in all 16 trials: 2 dogs in the Non-
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helper Human group; 2 dogs in the Non-helper UMO group; 3 dogs in the Helper Human 

group; 1 dog in the Helper UMO group) and 14 dogs because they were not sufficiently 

motivated with food. The remaining 60 dogs were divided to four different groups: Non-

helper Human (N=15, 6 males, 9 females, mean age±SD 4.70±2.48), Non-helper UMO 

(N=15, 7 males, 8 females, mean age±SD 3.57±1.64), Helper Human (N=15, 10 males, 5 

females, mean age±SD 4.20±2.46) and Helper UMO (N=15, 6 males, 9 females, mean 

age±SD 3.17±2.05). For details see Appendix Table 10. Dogs’ age between groups did not 

differ (ANOVA, F3,56=1.42, p=0.25). We tested only those dogs who could be motivated by 

food.  

 

Apparatus 

Dogs were tested at the Department of Ethology, Eötvös Loránd University in a 4.5 m x 3.5 m 

test room. Each trial was recorded by four cameras (see Figure 12). 

In the Helper Human and Helper UMO groups we used a metal wire mesh box (61 cm x 46 

cm x 54 cm) with a magnet fixed in it. The role of the box was that the dog could only get the 

food with the partners’ help. In these groups we also used a plastic plate (10 cm x 10 cm) with 

two metal sheets on its sides. The food was placed on these plates during the familiarization 

phase in the Helper groups. 

We covered the dogs’ eyes with an occluder (102 cm x 76 cm) between test trials. 

 

Test partners 

In the Non-helper UMO and Helper UMO groups we used the same remote control (RC) car 

as in Experiment 1 and 2. The car was equipped with a magnet on its front and a small 

loudspeaker under the cover. As an attention-getting cue we used a high pitched beeping 

sound (3200 Hz) emitted from the loudspeaker. 

In the Non-helper Human and Helper Human groups the partner was played by a female 

human. The Non-helper Human wore sunglasses and did not use any verbal or non-verbal 

cues during the test. She used the same beeping sound to call the dogs’ attention as the UMO. 

In the Helper Human group the human partner could use verbal and non-verbal cues too. She 

said „Hi (Dog’s Name), look!” to call dogs’ attention. Test partners’ starting point was at a 

predetermined location (see Figure 12). 
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Procedure 

 

Pre-training phase 

The pre-training was necessary that the dogs understand that the pot would contain food. 

The owner and the dog entered and the dog was allowed to explore the room, meanwhile the 

experimenters informed the owner about the test. After this the owner sat in the chair and held 

the dog in front of him/herself (Figure 12/a). Experimenter 1 (E1) came in with a pot and put 

it down. She attracted the dog’s attention with a piece of food in her hand (she said: „Hi 

(Dog’s Name), look!”). She put one piece of food into the pot and the owner was allowed to 

release the dog. If the dog ate it, the owner called the dog back. We repeated it four times then 

E1 left the room with the pot. The pre-training was exactly the same for each group.  

 

Familiarization phase 

 

Non-helper Human group 

The partner came in and walked around the room for 2:30 minutes, during this the owner held 

the dog in front of him/herself. Then the partner stopped at the starting point (Figure 12/a). 

 

Non-helper UMO group 

E2 brought the UMO inside, placed it at the starting point and then she stood in the corner on 

the right side of the dog (Figure 12/a). The familiarization was the same as in the Non-helper 

Human group, except that the human partner was replaced by the UMO. 

 

Helper Human group 

E1 brought the box in and placed it halfway between the dog and the partner on the left side 

of the room. During this the human partner came in and stood at the starting point. Then E1 

went out for a piece of food and the plastic plate and came back. She attracted the dog’s 

attention with the piece of food in her hand („Hi (Dog’s Name), look!”) and put it into the 

plate. She attached the plate to the magnet inside the box. After E1 left the room the dog was 

released to explore the room and try to get the food for 15 s. When the time elapsed, the 

owner called the dog back. Then the partner called the dog’s attention („Hi (Dog’s Name), 

look!”) and brought out the plate with the food from the box to the dog. The dog ate the piece 

of food and the partner went back to the starting point. Then E1 came in and placed the box to 
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the other side of the room and the procedure was repeated described above. The trial was 

repeated 6 times LRLRLR order (L=box placed to the left; R=box placed to the right). 

During the 15 s exploration phase, at the moment when the dog looked at the partner, the 

partner started to move and brought the plate out. 

 

Helper UMO group 

The familiarization was the same as in the Helper Human group, except that the human 

partner was replaced by the UMO and the Helper UMO was called the dog’s attention with 

the beeping sound. 

 

Test phase 

E1 entered the room with two identical pots and placed them on each side of the partner (see 

Figure 12/b) and attracted the dog’s attention with a piece of food in her hand („Hi (Dog’s 

Name), look!”). Then the dog’s eyes were covered by an occluder, E1 put one piece of food 

into one of the pots and then left the room. The occluder was removed and the partner called 

the dog’s attention (according to the group) from the start point (see Figure 12/b) and 

approached the baited pot, touched it with her leg (in Non-helper and Helper Human groups) 

or its front (in Non-helper and Helper UMO groups) and went/moved back to its/her starting 

point (i.e. indication). The owner released the dog, and it was allowed to choose between the 

pots. If the dog chose the baited one, it could eat the food, but if it went to the other one, the 

owner did not let the dog to get it (the owner could show the piece of food in the baited one, 

but the dog was not allowed to eat it). Dogs were presented with sixteen test trial during 

which the baiting followed RLRLLRLRRLLRLRRL order. 
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Figure 12. Experimental layout for A: Pre-training and Familiarization phase; B: Test phase. 

O=place of the owner, D=place of the dog, E2= position of Experimenter 2, B=place of the wire-

mesh box, the interrupted line indicate box’s position in the other side of the room, P= start 

point of the partner (UMO or Human), two brown circles indicate the place of the pots during 

test trials. Green circles indicate the location of the cameras. 

 

Behavioural Variables and Data Analysis 

All trials were videotaped and the dogs’ behaviour (Table 5) during the familiarization and 

the test phase was analysed with Solomon Coder 090913 (András Péter 

http://solomoncoder.com). 

 

Name of behaviour element Definition 

Familiarization phase 

Looking at the partner (0/1) 

We scored each familiarization trial in the Helper UMO 

group as 1 if the dog looked at the partner within the 15 

s or as 0 if the dog did not look at the partner within the 

15 s 
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Test phase 

Looking at the partner (%) 

Looking duration (s) at the partner during the indication 

(from the emission of the attention getting sound until 

the partner went/moved back to its/her starting point) 

divided by the total time of the indication (s) * 100 

Choice 

We scored each trial as 1 (if the dog approached the 

baited pot within 10 cm) or 0 (if the dog approached the 

non-baited pot within 10 cm) 

Table 5. The definitions of coded behavioural elements 

 

For statistical analysis we used IBM SPSS Statistics 21.  

First we calculated the percent of correct choices from the 16 test trials for each individual. 

One-sample Wilcoxon signed-rank test were applied to compare dogs’ performance in each 

group compared to chance level (50%). We used Binary GLMM (Generalized Linear Mixed 

Model) to compare dogs’ performance among the groups and the effect of repeated trials. 

Sixteen test trials were divided into 4 phases in order to examine within task learning in dogs 

with Binary GLMM (1
st
 phase: 1-4 trials, 2

nd
 phase: 5-8 trials, 3

rd
 phase 9-12 trials, 4

th
 phase 

13-16 trials). Every phase included two left and two right trials. 

We also used Binary GLMM to analyse the effect of repeated familiarization trials and group 

(Helper UMO and Helper Human) on Look at the partner (0/1) variable. Moreover we 

compared Looking at the partner (%) variable among groups with Independent-samples 

Kruskal-Wallis Test with Dunn post-hoc tests. 

 

2.3.2. Results 

 

During the test phase dogs’ chose  the baited (correct) container more often than can be 

expected by chance in all groups except in the Non-helper UMO group (Wilcoxon signed 

rank test, Non-helper UMO N=15, T(+)=60, p=0.095; Non-helper Human N=15, T(+)=88.5, 

p=0.002; Helper UMO N=15, T(+)=120, p=0.001; Helper Human N=15, T(+)=115, p=0.002) 

(Figure 13).   
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Figure 13. Dogs’ performance in the 4 groups relying on partners’ directional signal in a two-

way choice task. Asterisks indicate significant differences from chance level (50%). ns>0.05, 

p<0.05; * p<0.01 

 

The Binary GLMM showed that test group (F3,941=3.66, p=0.012) and repeated test trials 

(F15,941=4.60, p<0.001) also had an effect on dogs’ performance while pairwise  comparisons 

revealed that dogs in the Helper UMO (p=0.005) and Helper Human (p=0.003) groups were 

more successful than dogs in the Non-helper UMO group.  

Analysis of trial phases showed that it had an effect on dogs’ performance only in the Helper 

UMO group (Binary GLMM, F3,944=3,38, p=0.018). Results of the within group analysis 

revealed that in the Helper UMO group dogs’ performance was better in the 2nd phase 

(p=0.046) and 3rd (p=0.004) phase compared to the 1st phase, while it decreased during the 

4th phase compared to the 3rd phase (p=0.033) (Figure 14/a). Results showed a similar 

decrease in the Helper Human group between the 3rd and 4th phases (p=0.039) which might 

be caused by fatigue or decreased motivation (Figure 14/b). In the Non-helper UMO group 

dogs’ performance did not change during the test (Figure 14/a) while in the Non-helper 

Human group it increased in the 3rd phase compared to the 1st phase (p=0.011) (Figure 14/b). 

Results of the between group analysis revealed that dogs’ performance in the 1st and 4th 

phase did not differ in the Non-helper UMO and Helper UMO group, however in the 2nd and 

3rd phases dogs in the Helper UMO group were more successful than dogs in the Non-helper 

UMO group (1st phase: p=0.17; 2nd phase: p=0.044; 3rd phase: p=0.017; 4th phase: p=0.23). 
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Dogs in the Helper Human group performed better in the 1st and 2nd phases than dogs in the 

Non-helper UMO group (1st phase: p=0.022; 2nd phase: p=0.044). 

 

 

Figure 14a-b. Dogs’ performance in each test phase. a: Non-helper UMO and Helper UMO 

groups; b: Non-helper Human and Helper Human groups. * p<0.05, ** p<0.01 

 

Repeated familiarization trials in the Helper UMO and Helper Human groups influenced the 

number of  dogs looking at the partner in the problem situation (Binary GLMM, F5,173=2.95, 

p=0.014), but not the type of the helper partner (Helper UMO vs. Helper Human, 

F1,173=1.155, p=0.284 ). Pairwise comparisons revealed that every trial (2nd, 3rd, 4th, 5th and 
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6th) differed from the 1st one (1st vs. 2nd p=0.001; 1st vs. 3rd p<0.001; 1st vs. 4th p=0.002; 

1st vs. 5th p<0.001; 1st vs. 6th p=0.001). 

As a next step we analysed Looking duration at the partner (%) in order to exclude the 

possibility that between-group differences in dogs’ performance were due to the different 

amount of attention paid to the partner’s action (approach) during the test trials. We found 

that group had an effect on how long dogs were looking at the partner (Kruskal-Wallis test, 

χ
2
=27.7, p<0.001). Pairwise comparisons showed that dogs were looking equally long to the 

indicating partner in groups where the type of the partner was similar (Dunn post-hoc test, 

Non-helper UMO vs. Helper UMO p=1.00; Non-helper Human vs. Helper Human p=1.00), 

but in general they looked longer to the Human partner during the indication compared to the 

UMO partner (Non-helper UMO vs. Non-helper Human p<0.001; Non-helper UMO vs. 

Helper Human p=0.001; Helper UMO vs. Non-helper Human p=0.006; Helper UMO vs. 

Helper Human p=0.037) (Figure 15). 

 

 

Figure 15. Percentage of time spent looking at the partner during the indication in all four test 

groups. ns>0.05, * p<0.05, ** p<0.001 
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2.3.3. Discussion 

 

In the present study we have shown that dogs are able to use directional movement (approach) 

of a non-living partner (UMO) as effectively as similar human action to locate the hidden 

food. Previous social interaction with the UMO seemed to be indispensable for dogs to 

interpret partners’ movement as a significant cue because dogs performed at chance with the 

non-helper UMO. We also found evidence that previous interaction with the UMO also 

enhances learning about the communicative aspects of the action. At the same time dogs 

utilized human indication efficiently from the beginning and irrespectively of prior experience 

in the familiarisation phase.  

Dogs in the present study had no previous experiences with the ‘signalling’ UMO. They 

perceived its skills only in the familiarisation phase (Context 1) in which dogs in the critical 

group received help from the UMO to get the unreachable reward. We assume that based on 

this short social interaction dogs had formed some expectations about the behaviour of the 

UMO which facilitated the recognition of the directional action in the novel situation (Context 

2).  

Analysis of dogs’ performance revealed further interesting results. In the Helper Human 

group dogs’ performance was high from the beginning while dogs in the Non-helper Human 

group started at chance performance and improved over repeated trials. No evidence of 

learning was found during repeated trials with the Non-helper UMO, in contrast, a rapid 

learning occurred in the Helper UMO group. The lesser need for learning about a novel action 

of the social UMO also suggests that dogs are able to generalise from their previous social 

interactions.  

This may suggest that dogs recognise that the partner is attempting to communicate with them 

via some signal (Tomasello et al 1997). The Helper UMO was probably associated with some 

agency cues in dogs over previous interactions, thus these dogs tended to relate to the UMO 

socially in the novel testing context. This interpretation is also in agreement with findings that 

dogs failed to use a static physical marker by itself as a simple spatial index but consider it as 

a communicatively significant sign if any human behaviour towards the target location 

involved (Agnetta et al 2000, Riedel et al 2006). Apparently, dogs consider the Non-helper 

UMO’s action merely as a physical marker, and in the absence of specific experience they 

could not learn the associative link between its movements and the place of food during 16 

trials. 
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We assume that the observed flexibility of our family dogs’ social behaviour is due to the fact 

that they have shared environment with heterospecific agents (i.e. with their owners and other 

humans) thus they are probably able to generalise their wide range of social experience with 

humans to another type of agent as well. These results support the findings that dogs are able 

to attend to some social aspect of an UMO’s behaviour which resembles neither conspecific 

neither human (see Experiment 1). The relative little experience with the UMO suggests that 

it is unlikely that the present results can be explained solely on the basis of ontogenetic 

ritualisation. Our results indicate that genetic predisposition is also involved which facilitates 

the competent reaction to actions performed by UMOs if they show behaviour signs 

characteristic to a social partner (Miklósi and Topál 2013). 
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2.4. Experiment 4: Dogs are willing to follow the preference of their 

inanimate partner in a food choice task 

In order to examine an UMO’s ‘social influence’ on dogs’ behaviour, we have decided to 

focus on whether dogs can be influenced by an inanimate partner in a food-choice task. 

In series of experiments researchers investigated dogs’ choice between small (1 piece) and big 

amount (6 or 8 pieces) of food with or without human influence (Prato-Previde et al 2008, 

Marshall-Pescini et al 2011a, 2012). In these studies dogs first were presented with repeated 

trials in which the two different amounts of food had been offered to them, then dogs were 

allowed to choose freely between the two food quantities. Results showed that 70-80% of the 

subjects preferred the larger food quantity in the absence of any influence from the 

experimenter or the owner. However when an unfamiliar experimenter (Marshall-Pescini et al 

2011a) or the owner (Prato-Previde et al 2008, Marshall-Pescini et al 2011a) showed 

preference toward the small food quantity (i.e. approached the plate containing the smaller 

food quantity, picked up the piece of food and with an enthusiastic tone of voice, said: “Oh 

wow, this is delicious, lovely, so good!”) before the dogs’ choice, the dogs choose randomly 

between the two food quantities. Marshall-Pescini and her colleagues (2012) investigated the 

influence of different human social cues on dogs’ choice behaviour in the same task. They 

found that the most efficient cues were the hand-food contact presented with a ‘hand-to mouth 

action’ (when the experimenter picked up the food bringing it level to the mouth), the same 

action combined with voice (“Oh wow, this is delicious, lovely, so good!”) and gaze 

alternations between the dog and the food. Authors suggested stimulus enhancement as an 

underlying mechanism for this social influence and suggested that dogs might considered 

picking up the food as a communicative cue directed to them. 

In the present experiment we used a modified version of the latter experiment (Marshall-

Pescini et al 2012) in order to investigate the effect of a human or an UMO partner’s action on 

dogs’ choice behaviour. One major difference between the methods was how the two food 

quantities were presented to the dogs. In the aforementioned previous studies plates with food 

were placed by the experimenter on the ground, which is a problematic point of the procedure 

because several experiments demonstrated the effect of the human experimenter on dogs’ 

behaviour in various tasks (e.g. Erdőhegyi et al 2007, Riedel et al 2006). In order to remove 

the effect of human influence from the procedure, plates in our experiment were moved 

remotely (by two plastic strips) from a separated part of the lab.  
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We hypothesised that dogs’ willingness to choose the food quantity ‘preferred’ by the UMO 

can be enhanced by previous social interaction with this unfamiliar partner. 

 

2.4.1. Materials and Methods 

Subjects 

Eighty-two adult pet dogs were recruited from the Family Dog Database of the Department of 

Ethology, Eötvös Loránd University. We excluded 12 dogs because they showed strong side 

bias (they approached the same plate in every trial: 3 dogs in the Human partner group; 5 

dogs in the Non-helper UMO group; 4 dogs in the Helper UMO group) and 7 dogs because of 

methodological problems (e.g. the places of the two food quantity were not counterbalanced: 

4 dogs in the Non-helper UMO group; 3 dogs in the Helper UMO group). We excluded one 

additional dog because the owner influenced the dog’s choice (i.e. she pushed him toward one 

of the two potential hiding places). The remaining 62 dogs were divided in three groups: 

Human partner (N=17; 7 males, 10 females; mean age±SD 4.11±2.32), Non-helper UMO 

(N=22; 9 males, 13 females; mean age±SD 3.43±2.42) and Helper UMO (N=23; 13 males, 10 

females; mean age±SD 4.7±3.3). For details see Appendix Table 11. Dogs’ age did not differ 

between the groups (one-way ANOVA, F2,59=1.29, p=0.28). We only tested dogs who could 

be motivated by food.  

 

Apparatus 

The dogs were tested at the Department of Ethology, Eötvös Loránd University in a 3 m x 5 m 

test room. Each trial was recorded by three cameras (Figure 17). 

We set up an occluder (2 m x 3 m) at the end of the room. The two white plates (25 cm x 40 

cm) were moved by Experimenter 1 (E1) from behind the occluder by the means of plastic 

strips (i.e. non-social placement). Sausage was used as small (one piece) and large (six pieces) 

quantity of food reward. 

In the Helper UMO group we used a metal wire mesh box (61 cm x 46 cm x 54 cm) with a 

magnet fixed in it and a plastic plate (10 cm x 10 cm) with two metal sheets on its sides. The 

role of the box was that the dog could only get the food with the help of the partner. 
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Test partners 

In the Human partner group the partner was played by a female human. 

In the Non-helper and Helper UMO groups we used a remote control (RC) car (#7304 

Traxxas 1/16 Ford Mustang Boss 302; 37 cm x 18,5 cm x 12 cm) as a partner with a magnet 

on its front (Figure 16). High pitched beeping sound (3200 Hz) emitted by a speaker built into 

the UMO was used as attention grabber (same sound as in Experiment 4). The UMO was 

controlled by Experimenter 2 (E2). 

 

 

Figure 16. The UMO used in Experiment 4 

 

Procedure 

 

Phase 1  

1. E1 went behind the occluder with the two plates and waited there motionless. Then the 

owner and the dog entered and the dog was allowed to explore the room for 60 seconds.  

2. The owner sat on the chair, called the dog back and then held the dog in front of him/her 

(Figure 17/a). Meanwhile E1 put one piece of food on one of the plates and six pieces of food 

on the other plate and pushed them to their predetermined location by the means of plastic 

strips.  

3. After the dog oriented its head towards the plates E2 asked the owner to release the dog 

who could choose between the plates. E1 pulled back the not chosen plate before the dog 

could reach it. Then the owner called the dog back. 

Steps 2-3 were repeated (altogether six trials). The position of the plates containing large and 

small food quantities was counterbalanced (RLLRRL or LRRLLR). After the last trial the 

owner and the dog left the room. 
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Figure 17. Experimental layout (not to scale) for Phase 1 and 3 (A) and Phase 2 (B). O=place of 

the owner, D=place of the dog, E1= position of Experimenter 1, E2= position of Experimenter 2, 

C= position of the occluder, P= start point of the partner (UMO or Human) in Phase 2 and 3, F1 

and F2= place of the plates, B=place of the wire-mesh box, the interrupted line indicate box’s 

position in the other side of the room. Green circles indicate the location of the cameras. 

Phase 2 

Human partner group: The owner and the dog entered the room. The dog could move freely 

in the room for 2 min, while E2 was talking with the owner and made contact with the dog, 

i.e. the partner behaved naturally. 

Non-helper UMO group: Before the owner and the dog came back, E2 placed the UMO to the 

starting point (see Figure 17/b). Then the owner and the dog entered, the owner sat on the 

chair and held the dog in front of him/her. E2 stood in the corner of the lab. The UMO started 

to move around the room for 2 minutes and then stopped at the starting point. During the first 

round the UMO stopped in front of the dog for a few seconds, thus the dog could smell it. 

Helper UMO group: Before the owner and the dog came back, E1 placed the box on one side 

of the room and E2 placed the UMO on the other side of the room (Figure 17/b). After the 

owner and the dog entered the owner sat on the chair and held the dog in front of him/her 

while E2 stood in the corner. E1 attracted the dog’s attention („Hi (Dog’s name), look!”) with 
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a piece of food in her hand, put it in the plastic plate and attached the plate to the magnet 

inside the box. Then she left the room and the owner released the dog who could move freely 

in the room and try to get the food for 15 s. After the time elapsed the UMO called the dog’s 

attention with the beeping sound and went into the box. The UMO beeped again at the 

moment when it touched the plate. Then the UMO brought out the plate, approached the dog 

and then the dog could eat the food. E1 came in, relocated the box on the other side of the 

room, at the same time the UMO went to the former place of the box (i.e. the place of the box 

and the starting point of the UMO was switched in every trial). The above described 

procedure was repeated (a total of six times). From the 2
nd

 trial onward the UMO started to 

move immediately at the moment when the dog looked at it (during the exploration time), and 

brought out the plate from the box. In these trials the UMO beeped only at the moment when 

it touched the plate inside the box. 

After the last trial the owner and the dog left the room again.  

 

Phase 3 

In this phase the partner indicated the food quantity chosen by the dog less than 3 times out of 

six in Phase 1 (i.e. the non-preferred quantity of food). If the dog chose equally between the 

food quantities in Phase 1, the partner indicated the small quantity. 

Human partner group: The owner and the dog entered the room and the owner sat on the chair 

and held the dog in front of him/her. The human partner (E2) stood at the starting point (see 

Figure 17/a). E1 put one piece of food on one of the plates and six pieces of food on the other 

plate and pushed the plates toward the predetermined locations by the means of plastic strips. 

E2 went to the plate containing the ‘non-preferred’ quantity of food, crouched down, lifted up 

one piece of food to the level of her mouth and said „Hmmm!” in a high pitched voice. Then 

she put the food back and stood at the starting point facing toward the occluder. The owner 

released the dog who could choose between the plates. E1 pulled the non-chosen plate back 

before the dog could reach it. When the dog ate the chosen food quantity the owner called the 

dog back and the partner turned towards the dog again. During this phase the human partner 

(E2) did not make eye contact with the dog. 

Non-helper and Helper UMO group: Before the owner and the dog came back, E2 placed the 

UMO at the starting point (see Figure 17/a). After the owner and the dog entered the owner 

sat on the chair and held the dog front of him/her. E2 stood in the corner on the right side of 

the dog. E1 put one piece of food on one of the plates and six pieces of food on the other plate 
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and pushed the plates toward the predetermined locations by the means of plastic strips. The 

UMO approached the plate containing the ‘non-preferred’ quantity of food, stopped behind 

the plate, attracted the dog’s attention by emitting a beep and then moved back to the starting 

point. The owner released the dog who could choose between the plates. E1 pulled back the 

non-chosen plate before the dog could reach it. When the dog ate the chosen food quantity the 

owner called the dog back. 

We repeated the above described procedures a total of six times. The sides of the small and 

large food quantities were counterbalanced between the sides (RLLRRL or LRRLLR). 

 

Behavioural Variables and Data Analysis 

All phases were videotaped and the dogs’ behaviour (Table 6) was analysed later with 

Solomon Coder 100314 (András Péter http://solomoncoder.com).  

 

Name of behaviour element Definition 

Phase 1 

Choice (0/1) 

Dog’s choice was scored as 1 if it selected the plate 

indicated by the partner in Phase 3 (i.e. touched or only 

approached the plate within 10 cm-s with its nose). 

Score 0 was given if the dog selected the non-indicated 

plate. 

Phase 2 

Looking at the partner (0/1) 

Familiarization trial was scored as 1 if the dog looked at 

the partner (UMO or human) within 15 s or as 0 if the 

dog did not look at the partner (UMO or human) within 

15 s. 

Phase 3 

Looking at the partner (%) 

Looking duration at the partner (s) during the trial (from 

the appearance of the plates until the owner released the 

dog) divided by the total time of the trial (s) * 100 
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Choice 

A trial was scored as 1 if the dog’s first choice was the 

plate indicated by the partner (i.e. touched or at least 

approached the plate within 10 cm-s with its nose). 

Score 0 was given if the dog selected first the non-

indicated  plate. 

Table 6. The definitions of coded behavioural elements 

 

For statistical analysis we used IBM SPSS Statistics 21. 

First we calculated the percentage of dogs’ food quantity choice (small vs. big) during Phase 

1 and 3, then we compared them to chance level (50%) with one-sample Wilcoxon signed-

rank test. Based on Prato-Previde et al (2008) only dogs who preferred the larger food 

quantity during Phase 1, were included in the further analysis. We used Binary GLMM in 

order to examine the effect of the test phase (Phase 1 vs. Phase 3), group, interaction between 

group and test phase and repeated test trials on dogs’ choice. Looking at the partner (%) 

variable was compared between groups with Kruskal-Wallis test and Dunn post-hoc tests for 

pairwise comparisons. 

 

2.4.2. Results 

 

Analysis of dogs’ behaviour showed that during Phase 1 dogs’ choice differed from chance 

level in all 3 groups (one-sample Wilcoxon signed-rank test, Human partner N=17, T(-

)=3.542, p<0.001, Helper UMO N=23, T(-)=3.626, p<0.001, Non-helper UMO N=22, T(-

)=3.571, p<0.001). However in Phase 3 dogs in the Human partner group changed their 

preference toward the indicated food quantity (N=17, T(+)=2.656, p=0.008) while in the 

Helper UMO group they were at chance level (N=23, T(+)=0.97, p=0.923). Dogs in the Non-

helper UMO group did not change their behaviour due to the indication in Phase 3, they 

continued to prefer the same food quantity as in Phase 1 (N=22, T(-)=2.351, p=0.019) (Figure 

18).  
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Figure 18. Percentage of dogs’ choice in Phase 1 and 3 compared to chance level (50%). ns>0.05, 

* p<0.05 

 

As a next step we calculated the percentage of dogs showing small/big/no food quantity 

preferences in each group separately. This grouping based on their choice in Phase 1 (Table 

7).  

 

Preference for 

Small (S) quantity 

(choosing S 4-6 

times) 

Large (L) quantity 

(choosing L 4-6 

times) 

No preference 

(choosing S and L 

3-3 times) 

Human group (N=17) 
24%  

(N=4) 

65% 

(N=11) 

12% 

(N=2) 

Non-helper UMO group 

(N=22) 

23% 

(N=5) 

50% 

(N=11) 

27% 

(N=6) 

Helper UMO group 

(N=23) 

17% 

(N=4) 

48% 

(N=11) 

35% 

(N=8) 

Total N=62 
21% 

(N=13) 

52% 

(N=32) 

27% 

(N=17) 

Table 7. Percentage of subjects based on their preference in Phase 1. 
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In the following analysis we included only those 33 dogs who showed explicit preference for 

the big amount of food in Phase 1. 

Binary GLMM showed that group (F2,378=4.559, p=0.011), test phase (F1,378=21.28, p<0.001) 

and group x test phase interaction (F2,378=3.226, p=0.041) had a significant effect on dogs’ 

‘Choice’ behaviour. Pairwise comparisons revealed that this variable differed only between 

the Human partner and Non-helper UMO groups (p=0.002) (Human partner vs. Helper UMO 

p=0.06, Helper UMO vs. Non-helper UMO p=0.218). Phase 1 and 3 differed in the Human 

partner (p<0.001) and Helper UMO groups (p=0.029), while in the Non-helper UMO group 

we found no significant difference between phases (p=0.23). However dogs performance in 

Phase 1 did not differ between groups (Human partner vs. Non-helper UMO p=0.637, Human 

partner vs. Helper UMO p=0.999, Helper UMO vs. Non-helper UMO p=0.636), while Phase 

3 varied between the Human partner and Non-helper UMO group (p<0.001), Human partner 

and Helper UMO group (p=0.004) (Figure 19). 

 

 

Figure 19. Analysis of dogs’ choice in Phase 1 and 3. * indicates difference between phases 

within group, † indicates difference between groups. * p<0.05, ** p<0.001, † p<0.01, †† p<0.001 

 

During Phase 2 dogs looked longer at the partner through repeated trials in the Helper UMO 

group (F5,84=67.13, p<0.001), actually all trials differed from the first trial (1. vs. 2.: p<0.001; 

1. vs. 3.: p<0.001; 1. vs. 4.: p<0.001; 1. vs. 5.: p<0.001; 1. vs. 6.: p<0.001).  
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In Phase 3 Looking at the partner behaviour was affected by group (χ
2
=9.59, p=0.008). Dogs 

in the Human partner group looked longer at their partner than dogs in the Non-helper UMO 

(p=0.025) and Helper UMO group (p=0.016), while there was no difference in this variable 

between the two UMO groups (p=1.00).  

 

2.4.3. Discussion 

 

The aim of the present experiment was to investigate whether dogs’ choice behaviour between 

small and large amount of food can be influenced by different partners (human or UMO) and 

previous interactions with the non-living partner (UMO).  

Earlier it has been reported that 70-80% of the dogs choose the larger food quantity in similar 

situation (Prato-Previde et al 2008, Marshall-Pescini et al 2011a, 2012). However our results 

showed that only 52% of the subjects preferred the larger quantity (in Phase 1), while 21% 

preferred the smaller amount and 27% showed no explicit preference. We assume that dogs’ 

reduced preference for the larger quantity in our study (as compared to earlier reports) was 

due to the changes in the procedure(i.e. plates containing food were presented in a non-social 

manner for details see Materials and Methods). Our results support the notion that the human 

presence and touch had an impact on dogs’ behaviour in previous experiments (e.g. Prato-

Previde et al 2008, Marshall-Pescini et al 2012).  

In accordance with Prato-Previde et al (2008) and Marshall-Pescini et al (2012) we found that 

the human partners’ preference has the potential to change dogs’ choice behaviour. In 

contrast, dogs in the Non-helper UMO group did not change their preference after observing 

the UMO approaching the ‘non-preferred’ food location. At the same time after having 

witnessed that the Helper UMO favoured the small quantity dogs chose the large quantity of 

food significantly less than in the free choice situation (see Figure 19). This result is in line 

with our former findings that previous social interaction with the UMO has an effect on dogs’ 

behaviour (see Experiment 1 and 3). Using the terminology of previous studies (e.g. Prato-

Previde et al 2008, Marshall-Pescini et al 2011a, 2012) we can conclude that after a short 

social interaction an UMO can ‘change dogs’ preference’ in a food choice task.  

It has been shown that dogs have the tendency to follow human signals (e.g. pointing, gaze 

following, for a review see Miklósi et al 2004) especially in socio-communicative context 

(e.g. Téglás et al 2012). This behaviour occurs also when these signals are contradictory (e.g. 

Szetei et al 2003, Bräuer et al 2006). For example Szetei and co-workers (2003) demonstrated 

that dogs tend to choose the food location pointed at by a human even if the human indicated 
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the empty location, however direct visual information about the location of food reduced the 

effect of the human’s indication. Partner’s signal in the studies mentioned above usually 

named as ‘incorrect’ or ‘misleading’, while the behaviour of the dogs following this 

indication interpreted as ‘counterproductive’. At the same time we can assume that in every-

day life human directional gestures are reliable sources of information about the environment 

for dogs, thus it seems adaptive to follow them, even if they in contrast with direct perceptual 

information (like small vs. big food quantity).  Several experiments showed that individual 

food preference can be affected and changed by social learning in different species and 

highlighted the adaptive value of this flexibly behaviour (e.g. rabbits -Bilkó et al 1994, rats - 

Galef 1995, Galef & Whiskin 2001). Thus, we propose that dogs’ willingness to follow their 

partners’ preference in a food choice task might have adaptive value and can be interpreted as 

an effective and flexible behaviour.  
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2.5. Experiment 5
3
: Dogs are able to generalise directional acoustic signals 

to different contexts and tasks  

Results of Experiment 1-4 investigated the key elements of dog-robot social interaction and 

provide important insights for SWARMIX project aimed to build up a system in which flying 

robots, rescue dogs and human handlers are cooperating with each other efficiently to solve 

search and rescue tasks. The so-called mixed swarms require high level of autonomy of each 

participant and fluent information flow between all system components. The most challenging 

tasks are (1) that dogs must work efficiently in the absence of the handler and (2) be able to 

follow commands and use given information by the flying robot in order to complete the task. 

These two requirements led us to design an experiment where we focused on dogs’ spatial 

navigation and signal generalisation ability. 

Several studies have shown that dogs are able to use both egocentric and allocentric 

navigation spontaneously to solve different spatial tasks (e.g. Head et al 1995, Milgram et al 

1999, Chan et al 2001) and that their spatial encoding process is flexible and can be adjusted 

to the particularities of the situation. For example, Fiset et al (2006) examined the geometric 

components used by domestic dogs in an object permanence task and reported that dogs 

preferred a linear egocentric frame of reference when they were searching for the location of a 

disappearing object regardless of the distance between their own spatial coordinates and those 

of the hiding position. Thus, dogs’ performance in finding the hidden object did not differ 

when the object was moved from 100 cm to 142 cm from the starting point, that is, they did 

not simultaneously use the vector components of direction and of distance to locate the target 

object. At the same time, dogs seem to have difficulty using allocentric cues to locate a 

hidden object in some situations (e.g. detour task, see Fiset & Malenfant, 2013), but they may 

be able to use allocentric spatial information when the linear egocentric information is not 

available. Fiset et al (2006) also found that the angular deviation between adjacent hiding 

locations and the position of the dog had an effect on dogs’ performance: the subjects 

performed more correctly if the angular deviation between the two hiding places was 15° 

rather than only 5°. Dogs tried to minimise angular deviation from the target in a detour task 

in which the shortest route to reach the desired goal was unavailable but the target was visible. 

                                                           
3
 Based on: Gergely, A., Topál, J., Dóka, A., & Miklósi, Á. 2014. Dogs are able to generalise 

directional acoustic signals to different contexts and tasks. Applied Animal Behaviour Science, 156, 

54–61. 
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Thus, they preferred the less divergent path over the shortest route. However, if the target was 

invisible they chose the shortest route regardless of the angular deviation (Chapuis 1983). 

In a landmark discrimination task Milgram et al (2002) trained dogs to choose the food-

container closest to a small landmark (yellow wooden peg) in a two way choice task. Next, 

dogs were exposed to a similar task with a novel landmark (pink heart-shaped object), and 

finally, this novel landmark was moved to novel positions. Dogs’ performance remained 

stable throughout these novel conditions. The authors concluded that dogs generalised both to 

the shape and relative position of the landmark, thus they were using a general concept of the 

landmark to solve this two-way choice task. 

Dogs are also able to learn go/no-go tasks based on differences in stimulus quality and go-

left/go-right tasks based on differences in stimulus location, whereas the opposite stimulus-

action pairings are more difficult to learn (Lawicka 1964, Dobrzecka et al 1966, Dobrzecka & 

Konorski 1967, Konorski 1967, Dobrzecka & Konorski 1968, Lawicka 1969). The authors 

suggested that the quality of a stimulus best serves as a cue for the quality of a response, 

whereas the location of a stimulus facilitates the orientation of the action (Quality-Location 

Hypothesis). Although several researchers assumed that this hypothesis is fundamental to 

understanding possible constraints of learning (e.g. Miller & Bowe 1982), others argued that 

the quality-location distinction effect in these studies stems from the experimental design and 

is highly affected by the inclusion or exclusion of naturalistic features (e.g. Harrison 1984, 

Neill & Harrison 1987). The finding that herding dogs can be directed by voice commands (or 

whistles) of different tone and pitch of the human shepherd during cooperative herding 

(McConnell & Baylis 1985) also casts some doubt on the Quality-Location Hypothesis.  

The main goal of the present study, therefore, was to find out whether dogs trained to perform 

oriented movement (go left/ right) in response to different acoustic signals are able to 

generalise this experience to novel contexts. In this latter phase of the training we also 

investigated whether or not salient objects placed in the target area improve dogs’ learning 

efficiency in the go left/ right task. We assumed that dogs trained to approach a conspicuous 

target (small object on the ground) upon hearing the signal would show a better performance 

than those who had to approach a specific spatial location (left/right corner) in the room. The 

less specific nature of the latter task (i.e. the absence of a specific target object which could be 

approached) predicts a slower learning rate (c.f. Fiset et al 2006). In the second part of the 

study, dogs were exposed to novel situations where they had to rely on the same acoustic 

signals to solve a series of new spatial tests. We applied several novel targets in these test 

situations at different distances and angular deviations in relation to the dogs’ starting 
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position. We measured the dogs’ performance which was calculated on the basis of the 

number of correct choices after receiving the sound signal. We assume that dogs’ 

performance would not drop in the novel context independent of their distance to the target, 

partly because they are able to generalise learnt behaviour to novel contexts (e.g. Lindsay 

2000, Braem & Mills 2010). 

 

2.5.1. Materials and methods 

Subjects 

Sixteen adult pet dogs (mean age±SD: 5.5±2.5 years) were recruited for this study. The 

participants were 5 male and 11 female dogs from different breeds (for details see Appendix 

Table 12). All dogs were previously clicker trained by the owner (by the means of the shaping 

procedure) and trained for fetching and going ahead. Regarding the training of the ‘going 

ahead’ command, dogs were trained for two different tasks as a part of the obedience training: 

(1) based on the combination of owners’ verbal and hand signals, owners used clicker-training 

to positively reinforce moving away from the owner in a straight line (0% deviation) in a 

given direction without a visible target, (2) dogs were also trained with clicker to go ahead 

and lie down next to special visible targets (yellow cones) based on the direction of the 

owners’ hand signal. Dogs and their owners were recruited through the website of Department 

of Ethology (http://kutyaetologia.elte.hu/).  

Equipment and Signals 

The Click & Treat (C&T) Collar was developed by Tamás Ferenczy (see Figure 20). It 

consists of two parts: the collar and the remote control unit. The collar is a cylindrical collar-

mounted device in which the double-barrelled treat storage, the dispenser, the control 

electronics, the loudspeaker, the radio modules, and the batteries are located. The storage can 

be baited with 16 pieces of dry dog food (Kennel Kost premium dog food), by placing 8-8 

pieces into each barrel. Four different signals can be emitted directly from the collar by 

pressing different buttons on the remote control: (1) click sound (0.3 s long; 1700 Hz); (2) 

click sound + food; (3) high pitched (HP) sound (0.3 s long, 2150 Hz ‘beeping’ repeated 3 

times, 0.1 s pauses in between trials); (4) low pitched (LP) sound (0.3 s long, 1150 Hz 

‘beeping’ repeated three times 0.1 s pauses in between trials). The radio connection has a 

working radius of maximally 400 m.  
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Figure 20. The Click&Treat collar and the controller 

 

Procedure 

Familiarization, Basic training, Advanced training, and warm-up session before testing took 

place in a 4.5 m x 3.5 m test room at the Department of Ethology, Eötvös Loránd University 

Budapest. Testing was carried out on a plain green area on the University Campus. 

Familiarization 

The aim of the familiarization was to introduce the C&T Collar to the dogs, and to train them 

to go to one of the potential targets in the room. After arriving at the department with their 

owner, the dog took part in the following procedure (Steps 1 to 6): 

1. The experimenter filled up the collar with dry food then gave it to the owner. The owner 

held the collar in his/her hand, called the dog, then pushed the ‘click + food’ button on the 

controller. The dog was allowed to eat the reward (one piece of dry dog food) which dropped 

from the collar to the floor. We repeated this procedure 10 times. Then, the experimenter 

asked the owner to push the ‘click’ button but no food was given. If the dog looked down to 

the floor after the click sound, we moved to the next step. If the dog did not look down, then 

the dog was given another set of 10 trials of ‘click + food’ until the dog looked down after the 

click sound in the absence of food rewards. 
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2. The owner gave verbal commands (for example Sit!, Down!, Lay! etc.) to the dog. All 

commands referred to actions known by the dog prior to this study. If the dog acted in line 

with the command, then she pushed the ‘click + food’ button and the dog received a piece of 

reward. Each dog participated in 14 trials. 

3. The owner put the collar on the dog and Step 2 was repeated 14 times. 

4. The owner and the dog sat down. The experimenter brought a small black cardboard 

rectangle (18x24 cm) to the room and put it on the floor. She placed it in front of the dog at a 

distance of 1.5 m. She called the dog and acted as if she placed one piece of food under the 

rectangle and then stepped back. The owner encouraged the dog to approach the rectangle 

verbally (Let’s go!). If the dog approached the rectangle within 10 cm, the experimenter 

pushed the ‘click + food’ button and the dog was allowed to eat the treat. We repeated this 

two times. 

5. We repeated Step 4, except that the rectangle was now at a distance of 3 m from the dog. 

6. The experimenter brought a second rectangle (which was identical to the first one) to the 

room. She placed the rectangles into the two corners of the room 3 m from the dog. She 

stepped next to one of the rectangles and repeated the previous training four times (in LRLR 

or RLRL order; L=left, R=right). 

Training phase 

Basic training 

The aim of this phase was to develop associations between sounds and spatially oriented 

motor responses (going left or right). This phase consisted of series of training trials.  

Two target objects (cardboard rectangles) were placed at two corners of the lab. The owner 

and the dog (with the mounted collar) were sitting in front of the rectangles (see Figure 21). 

Upon hearing one of the two sounds (HP or LP) emitted from the collar, the owner 

encouraged the dog to approach one of the rectangles (using only neutral verbal utterances 

like “Let’s go!”). Owners did not display any gestures e.g. pointing. If the dog approached the 

object located in the designated corner (i.e. which matched with the emitted sound) in 10 

seconds within 20 cm (‘approaching zone’), the dog received the reward from the collar. 

In the first series, we played one sound 10 times (left or right) and then the other sound also 

10 times. This was followed by a second series in which sound signals were alternated in 

LRLRRLRLLR (trials 1-10) and RLRLLRLRRL (trials 11-20) order. 
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Figure 21. Experimental layout for the Basic training phase. The black cross indicates the dogs’ 

starting position, the O indicates the owner’s and the E the experimenter’s position. The black 

rectangles indicate the location of two identical target objects, the interrupted lines indicate the 

20 cm ‘approaching zone’. D1, D2 and D3 indicate the locations of the three doors (0.6 m width) 

in the lab. 

These blocks of ten trials were then repeated until they reached learning criterion. Criterion 

for learning the basic training task was set as 10 consecutive correct trials.  

If the dog approached the ‘incorrect’ object (within 20 cm), the owner called the dog back and 

the trial was repeated with the same sound signal. If the dog failed to show the correct 

response two times in a row, then the owner was allowed to point at the correct rectangle 

during the subsequent trial. We considered the trial also as incorrect and the dog did not get 

the reward if it passed along the midline in between the objects without approaching either of 

them.  

For half of the subjects (N=8) the HP sound was the ‘go left’ signal and the LP sound was the 

‘go right’ signal. For the other half (N=8) of the subjects we reversed the reference (left/right) 

of the signals. 
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Dogs participated in 10-30 Basic training trials per session (mean±SE: 16±4) and each 

training session was terminated when the owner indicated that the dog was getting tired and 

inattentive. Owners and their dogs visited the department once or twice weekly.  

Advanced training 

The aim of the advanced training was to investigate whether changes in the training situation 

influence dogs’ performance and generalization capability. Subjects were divided into two 

groups: 

Rotation training: For half of the dogs (N=8) we rotated the position of the rectangles and the 

orientation of the dog and the owner by 90°. Then subjects participated in 10-trial training 

sessions as described above until reaching the criterion (10 consecutive correct trials).  

No target training: For the other half of dogs (N=8) we repeated the Basic training without 

target objects until they reached the criterion (10 consecutive correct trials). Dogs received the 

reward if they approached the former location of the rectangle within 20 cm.  

Owners and their dogs visited the department once or twice weekly, and they participated 10-

20 Advanced training trials per visit (mean±SE: 14±2). 

Testing phase 

Test trials were staged outdoors on the campus of the Eötvös Loránd University in a 40 m x 

40 m grassy area with some peripheral woods. We could not use a fenced area, thus some 

students and dog walkers were usually walking nearby during the test and were asked verbally 

to avoid the test area during the testing. Each session started with a short 6-trial warm-up 

training performed in the experimental room (in these trials we used the same procedure as in 

the Advanced training). Each testing session consisted of 5 different types of trials 

(‘condition’). Three different targets and 5 different distances with different angular 

deviations from the position of the dog were utilized: Close ball, Distant ball, Close tree, 

Distant tree and Human (see Figure 22). We decided to use the unbaited C&T collar during 

the testing in order to exclude accidental falls of the reward during fast running and the 

possible loss of the reward in high grass or snow in winter. Reward was provided by the 

owner after the dogs’ return. 

In each condition the owner and the dog were standing in front of two targets (trees, balls or 

two female humans). Dogs were wearing the empty C&T collar. After the sound was emitted 

from the collar, the dog was allowed to set off. The owner was not allowed to say anything to 

the dog except “GO!” or “Go ahead!” without any additional verbal or gestural signals.  
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If the dog approached the correct target within 1 m, then it received verbal praise from the 

owner during first two trials. In the remaining 8 trials they received food or a ball as a reward 

from the owner except in the Human condition in which the female humans provided the 

reward in order to maintain dogs’ motivation. Approach toward the incorrect target was 

considered a failed trial: the owner was instructed to call the dog back and then the trial was 

repeated with the same sound. 

Order of the test conditions was counterbalanced among dogs. Exact testing places, angles, 

targets and their relative positions were constant. Dogs were provided with 10 trials in each 

condition using a LRLRRLRLLR or RLRLLRLRRL orders. 

Dogs took part in only one test condition per day, thus the test session contained 5 occasions 

with intervals of no more than one week.  

 

 

Figure 22. Experimental design of testing conditions. The black cross indicates the dogs’ starting 

position, the O indicates the owner’s and the E the experimenter’s position. The black circles 

indicate the location of two target objects (balls/trees/humans) in the different testing conditions. 
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 Clever Hans control trials 

The aim of these trials was to control for owners’ and experimenter’s influence on dogs’ 

performance. After finishing the testing sessions, dogs participated in 10 additional Advanced 

training trials in the laboratory setting, but in this case owners were wearing opaque 

sunglasses and they were listening to loud music during the test. This prevented them from 

hearing the played sound signal and from seeing in which direction the dog was moving. The 

experimenter, who controlled the C&T collar, was facing the wall when she pushed the sound 

button on the controller, thus she did not see the dog either. The experimenter turned back to 

the scene only after the sound was emitted and informed the owner what had happened (if the 

dog went to the proper side the owner had to praise the dog, if the dog went to the wrong side 

the owner had to call the dog back). We predicted that, if no Clever Hans effect was involved 

in the Basic and Advanced training, then the changed appearance and behaviour of the owner 

and experimenter would not affect the dogs’ performance. 

Variables and Data analysis 

The experimenter coded the performance of the dog in situ during the basic and advanced 

training, test conditions and also during Clever Hans control (she marked each trial as correct 

or incorrect). Test conditions were videotaped and analysed later with Solomon coder 060612 

(András Péter http://solomoncoder.com). Trials of training sessions were also supervised by 

coding recorded videos. 

Measured variables: 

Target: The dog approached one of the targets within 20 cm during training trials (rectangle), 

or within 1 m during test trials (tree/ball/human).  

First movement: The direction of dog’s first three steps from the start point (left/right/straight 

from the middle line) in test trials. 

We scored correct trials with 1, and incorrect trials with 0. We considered a trial as correct if 

(1) the dog went to the specific target (rectangle/tree/ball/human) on the side indicated by the 

specific sound (left/right) (i.e. Target variable), (2) the dog made the first three steps toward 

the target (rectangle/tree/ball/human) indicated by the specific sound signal (left/right) (i.e. 
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First movement variable). If the dog moved towards the middle area we considered it as an 

incorrect trial. 

Sometimes it happened that dogs stopped before reaching one of the targets and did not go 

further in 10 sec. In this case, the owner was instructed by the experimenter to call the dog 

back, and the same trail was repeated. In this case, the First movement score was based on the 

direction taken on the first trial and Target score was determined by the performance on the 

subsequent trial.  

For the statistical analysis, the test conditions were split into two groups based on their 

angular deviations. Test conditions in which the angular deviation was sharper or wider than 

the training angle (53°) were grouped together, thus Close tree and Distant ball tests formed 

the ‘Angle < 53°’ condition, and Close ball, Distant tree and Human tests formed the ‘Angle > 

53°’ condition. For statistical analysis we used IBM SPSS Statistics 21. 

First we compared dogs’ performance between the last 15 trials of the Basic training and first 

15 trials of the Advanced training with Wilcoxon matched-pairs signed rank test in order to 

analyse the effect of changes in the training environment (i.e. the absence and rotated position 

of the targets). We also compared dogs’ performance in the Rotation and the No target group 

with Mann-Whitney test. As a next step, we analysed dogs’ choice in all test conditions and 

Clever Hans control and we compared dogs’ performance to chance level (50%) with one-

sample Wilcoxon signed-rank tests. We used GLMM for Binomial Distribution in order to 

examine the effect of the training type, condition and repeated test trials on dogs’ performance 

in all test conditions and Clever Hans control. In the end we also compared dogs’ accuracy 

between the two test condition group, the Angle < 53° and the Angle > 53° condition, with 

GLMM for Binomial distribution. 

 

2.5.2. Results 

Dogs reached the criterion in 72 ±36 (mean ±SD) correct trials on average in the Basic 

training, and in 34 ±12 (mean ±SD) additional trials in the Advanced training. We excluded 

one dog because it failed to reach the training criterion in 180 trials in the Basic training. 

Another dog’s owner quit the study after completing the first test condition; therefore the data 

of this dog are included only in the analysis of the Basic training, Advanced training and 

Distant tree test condition.  

Due to our criterion, dogs’ accuracy was 100% in the last 10 trials of the Basic training, thus 

we decided to use the last 15 trials in the Basic training and the first 15 trials in the Advanced 
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training in order to compare dogs’ performance between the two training types. We found that 

dogs’ performance decreased significantly (Wilcoxon matched-pairs signed rank test, N=15, 

T(+)=120, p=0.001), which indicates that dogs in neither group generalised automatically 

from the Basic training to the Advanced training in which the objects were either rotated or 

removed. The performance did not differ between the Rotation and the No target group 

(Mann-Whitney test, N=15, U=36, p=0.397). However, dogs in both groups showed a rapid 

recovery, because they needed 16±3 and 15±1 trials respectively to reach the criterion which 

did not differ between the two groups (Mann-Whitney test, U=28, p=0.95). 

In the test conditions, only two dogs failed to reach targets in 60 seconds in the Distant tree 

condition, and one of them failed also in the Close tree condition. 

According to test conditions, first we compared mean scores for the Target and First 

movement variables. We found that these two variables did not differ (matched samples 

McNemar test, N=15, df=1, p=1.00), thus we decided to use Target variable for further 

analysis. Subjects performed better than chance in each test condition (one-sample Wilcoxon 

signed-rank test, Close ball N=14, T (+)= 105, p<0.001; Distant ball N=14, T(+)= 105, 

p<0.001; Close tree N=13, T(+)= 91, p<0.001; Distant tree N=13, T(+)= 91, p<0.001; Human 

N=14, T(+)=105, p<0.001). This shows that the dogs went to the correct target 

(ball/tree/human) more frequently than to the target on the incorrect side (Figure 23). Dogs 

performed also above chance level in the Clever Hans control condition (one-sample 

Wilcoxon signed-rank test, N=14, T(+)= 105, p<0.001). The order of test conditions did not 

have any effect on dogs’ performance (Friedman test, N=15, df=4, p=0.92). 
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Figure 23. Percent (%) of correct trials in each Test conditions (Close ball, Distant ball, Close 

tree, Distant tree, Human) and in the Clever Hans control. Asterisks indicate the significant 

differences from chance level (50%). * p < 0.001 

 

Results of the Binomial GLMM showed no significant variability among test conditions 

(F5,761=1.11, p=0.35), and repeated trials had also no effect (F9,761=1.3, p=0.230). Dogs’ 

accuracy in Test conditions was independent from the Advanced training type (F1,809=0.004, 

p=0.947) and interaction between Advanced training type and Test condition was also not 

significant (F1,809=0.68, p=0.630). 

Results of the GLMM for Binomial distribution showed that dogs’ performance was lower in 

the Angle < 53° condition group, in which the angular deviation was sharper than the training 

angle compared to dogs’ accuracy in the Angle > 53° condition group (F1,661=5.33, p=0.021) 

(Figure 24). 
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Figure 24. Means of the correct trials in the two experimental groups which differ with regard to 

the visual angle (Angle < 53
◦
: Distant ball, Close tree; Angle > 53

◦
: Close ball, Distant tree, 

Human). * p < 0.05. 

 

2.5.3. Discussion 

 

The objective of the present study was to investigate whether dogs are capable of learning to 

go left/right after training using two qualitatively different sound signals and whether they can 

generalise this experience to novel contexts. Contrary to previous findings suggesting that 

dogs failed to rely on tone frequency cues in a go left/go right task (e.g. Lawicka 1969), our 

results showed that dogs had no difficulty in learning directional responses based on 

qualitatively different sound signals after a relatively short training. The control testing aimed 

to exclude human influence (i.e. Clever Hans effect) also supported our findings that the 

dogs’ performance was based on their attention to the signals. 

Methodological differences may explain this discrepancy: (1) Dogs in our study were clicker 

trained family dogs from different breeds with well described training history, while Lawicka 

tested 8 laboratory mongrels with unknown training background. (2) In our study, signals 

were emitted and dogs were rewarded directly from the C&T collar, while in Lawicka’s 

experiment sound sources were loudspeakers situated at 2 m from the starting platform and 

the target objects contained the reward.  
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This latter difference might have drawn dogs’ attention more toward the target object than the 

sound signals from the C & T collar and caused the prolonged learning time. Our results 

support the presumption that the Quality-Location effect is not a general constraint of 

learning, but more likely it emerges under particular experimental designs and conditions 

(Harrison 1984, Neill & Harrison 1987).  

In order to examine context dependency of learning, we changed the training situation after 

the Basic training by either removing the target objects (No target training) or rotating the 

position of the targets and the dog (Rotation training). We found that dogs’ performance 

decreased equally in both conditions. Braem & Mills (2010) reported also that dogs show a 

decline in performing a newly learned command in a novel environment. In contrast to our 

prediction, dogs that participated in the No target training showed as rapid recovery as dogs in 

the Rotating training. We presume that during the Basic training, dogs learnt to ‘go left/right’ 

(egocentric action) instead of ‘approaching the target on the left/right’, thus the absence of the 

target objects in the Advanced training (in the No target training condition) did not affect their 

performance. The lack of such difference could also be explained by the fact that the reward 

was not hidden into/behind the target object (c.f. Lawicka 1969, Fiset et al 2006) but it was 

dropped directly from the C&T collar worn by the dog. 

In the testing phase, dogs were exposed to a novel area (outdoor field), novel targets 

(balls/trees/humans), and extended distances (9.5 to 19.5 m) and angular deviations (36° to 

87°) in order to reveal whether they are able to generalise the ‘go left/right’ task (see Figure 

22). Dogs’ performance was significantly above chance level in all test conditions, thus they 

approached the correct target matching with the sound command significantly more often than 

expected. Target types and their relative distance from the dog had no influence on dogs’ 

performance, similarly to previous findings in search for disappearing objects in dogs (Fiset et 

al 2006). However dogs’ performance in this task decreased as a function of angular deviation 

between two adjacent hiding locations and the relative position of the dog (Fiset et al 2006). If 

the target is visible, then the angular deviation is the most relevant factor for dogs in a detour 

task, and they show a preference for using the less divergent route (Chapuis 1983). A similar 

result was also reported for chimpanzees. The spatial separation of two adjacent hiding 

locations together with the varying angular deviation influenced animals’ accuracy in a spatial 

delayed response object choice task (Harrison & Nissen 1941). Our results also showed that 

dogs’ performance was lower if, in the test condition, the angular deviation between the 

adjacent targets and the dogs’ position was sharper than the angle experienced in the training 
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angle. This is the first evidence that angular deviation influences dogs’ ability to generalise 

learned directional commands from the training context to a novel context. 

Dogs’ similar accuracy in all test conditions after different Advanced training suggests that 

dogs learnt the general rule of ‘go left/right’, and that they were able to utilize this rule in 

unfamiliar environments. Dogs showed similar generalization ability in a landmark 

discrimination task by efficiently using novel landmarks in novel positions for locating target 

objects. This was also interpreted as learning the general concept of the landmark (Milgram et 

al 2002).  
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3. General discussion 

 

In our studies we found evidence that dogs are willing to interact with an Unidentified 

Moving Object (UMO) resembled neither conspecific nor human. Behavioural elements 

displayed by the dogs during these encounters were in line with previously observed social 

behaviour toward human partners (e.g. Miklósi et al 2000, Horn et al 2012, Lakatos et al 

2009, Marshall-Pescini et al 2012).  

In the first study we showed that dogs’ social behaviour toward the UMO increased as a 

function of the sociality of the inanimate partner. This result supports the hypothesis that 

interactive behaviour of the artificial partner might affects dogs’ social behaviour (Lakatos et 

al 2014). We endowed the ‘social’ UMO with different behavioural features like goal-

directedness and interactive behaviour (i.e. contingent reactivity) that are typical 

characteristics of entities with minds. These properties were proved to be important for infants 

during the development of animate-inanimate distinction (for a review see Rakison & 

Pouline-Dubois 2001). This result suggests that dogs and human infants might sensitive to 

similar social features in an artificial partner. This is in line with previous studies that 

demonstrated ‘human-like’ social competence in dogs (see Miklósi & Topál 2013 for a 

review).  

At present most researchers aim to use robots that resemble the studied species as closely as 

possible (e.g. Faria et al 2010). Although such an approach is important in the study of the 

effect or morphological and behavioural features in different situations, our findings highlight 

that the use of UMOs could have several advantages, primarily because this way one can 

separate the effects of behaviour from the embodiment (Krause et al 2011). This allows the 

researchers to investigate to what degree the animal is able to deal with the UMO purely on 

the basis of behaviour displayed. Our results suggested that morphological features of the 

UMO (i.e. varied movements and the presence of eye-spots) were probably not as effective as 

the behavioural characteristics (i.e. goal-directedness and interactive behaviour) to elicit dogs’ 

social behaviour. This might indicate that it is not the embodiment but the behaviour of the 

artificial partner is crucial for dogs to engage in social interaction. 

In our second study (Experiment 2) we found that dogs are able to discriminate between 

different roles of their UMO partners within a short period of time and they used similar 

behaviours flexibly toward these agents in accordance with their different capabilities.  
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This study followed the methodological paradigm used by Horn et al (2012) in a similar 

problem situation. Results of this experiment suggested that physical complexity of the given 

problem might affected dogs’ ability to recognise different problem solving abilities of their 

human partners (i.e. filling up the empty apparatus with food vs. solve the physical problem 

of the blocked apparatus). Authors also assumed that unbalanced social experience with the 

human partners influenced dogs’ behaviour independently from their abilities. Our results 

supported the latter statement as dogs in Experiment 2 had the same amount of social 

experience with the two UMOs and they were able to discriminate the different roles of the 

two partners equally well.  

At the same time we can raise the possibility that previous social experience with humans 

might also affected dogs behaviour in such situations. For example in everyday life dogs had 

opportunity to observe that the owner is able to solve different physical problems and, at the 

same time, she provides food. These experiences about the owners’ abilities can be 

generalised to other humans (i.e. the experimenters) and novel context (i.e. test situation). We 

emphasise that these factors were eliminated from our study by using a social partner which 

was completely unfamiliar to the dogs, therefore they did not have any expectations about the 

UMOs’ abilities and behaviour. 

Another alternative explanation would be that dogs in the present study discriminated the two 

partners on the basis of the association between hiding place (front hole vs. top hole) and the 

physical (observable) characterisics of the UMO (car vs. crane) which could be observed 

consistently next to that particular location during the Learning phase. In this case it is not 

necessary for dogs to recognise the role and/or any specific ability of their partner. For 

success, a dog must simply recognize and follow the “rule” of choosing the UMO whose 

location was used as a food-hiding place in the test trial. Therefore, we can assume that the 

most important moment of the Learning trial for the dogs was the presence of the particular 

UMO next to the particular hiding location. From this perspective dogs’ opportunity to learn 

about the partners’ location was unequal. That is, the crane was constantly visible next to the 

box while taking out the food via the top hole whereas the car, after having reached the box, 

disappeared through the front hole and then reappeared with the food. If we accept this 

explanation, then, we would expect higher performance in test trials in which the appropriate 

partner was the crane compared to test trials in which the appropriate partner was the car. 

However, results do not show significant effects of the different UMOs on dogs’ performance. 

Moreover, previous findings on dogs’ discrimination learning ability showed that they had 

difficulties using a visual cue (referred to as landmark or beacon) as a marker of the food 
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location even after 400 trials (Milgram et al 1999). Although this alternative hypothesis 

cannot be fully excluded, the lesser need for learning in our study (which consisted of only 10 

trials) suggests that this explanation might not clarify the observed performance. 

Our third study (Experiment 3) provided evidence that dogs are able to find the hidden food 

based on the directional movements of an UMO in a two-way choice task exclusively after 

short social interaction. This result is in line with a previous study with infants as they were 

more willing to follow a humanoid robot’s gaze after they have observed a social interaction 

between the experimenter and the robot (Meltzoff et al 2010). In contrast, dogs failed to use a 

humanoid robot’s pointing gesture even if they have previously witnessed a socio-

communicative interaction episode between the owner and the robot (Lakatos et al 2014). 

Authors concluded that sociality shown by the robot was not enough to elicit the same set of 

social behaviours from the dogs as was possible with humans. However, we can raise an 

alternative explanation to interpret dogs’ poor performance in the aforementioned study. It is 

also possible that dogs had difficulties to obtain information about the artificial partners’ 

sociality via third-party interaction in which dogs participated as observers (i.e. social 

eavesdropping). It has been shown that dogs are capable of discerning cooperative and 

noncooperative human intent based on third-party interactions (Marshall-Pescini et al 2011b), 

however no study have investigated this issue in dogs with non-living social partners. Dogs’ 

performance in our study suggests that direct social interaction with the artificial partner 

might be more efficient to gather information about the partner’s sociality than third-party 

interaction. 

We emphasise that this experiment also provides some notable insights for human-dog 

communicative interaction. Several studies have shown that dogs are especially skilful in 

comprehending human gestural signals (e.g. Lakatos et al 2009), however several different 

(not necessarily exclusive) hypotheses have been raised in attempting to interpret dogs’ high 

performance in these tasks. One assumption is that dogs must learn to use human 

communicative signals during the early ontogeny, thus this ability due to the fact that they 

have wide range of experiences in communicating with humans (e.g. Udell et al 2008, Elgier 

et al 2009). Another explanation suggested that during the process of domestication dogs have 

been selected by humans to be sensitive to human behavioural cues including behaviour 

directed toward some locations (e.g. Agnetta et al 2000, Riedel et al 2006).  

In Experiment 3 dogs only had opportunity to engage in a short social interaction with the 

unfamiliar UMO during the familiarisation phase in which the UMO helped the dogs to get 

the unreachable food. This experience seemed to be enough for dogs to consider the UMO’s 
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movement as a signal during test trials. Tomasello et al (1997) suggested that lesser need for 

learning about novel signals indicates subjects’ ability to generalise from previous 

experiences in the novel situation and considering the new signal as a communicative one. On 

the other hand, if the subjects are failing to recognise that the other is intending to 

communicate with them via some sign they must learn the sign through prolonged learning 

process. Thus our results might indicate that dogs’ social skills are flexible enough to 

generalise from previous experience with humans and give rise to the notion that specific 

evolutionary (selective) processes might be associated with the emergence of such 

‘flexibility’.  

It should be noted that our findings are open to post hoc interpretations of associative nature 

(Byrne & Bates 2007), however a close investigation shows that this interpretation may be 

actually more complex. Taking on face value one may argue that dogs associate the actions of 

the UMO with getting food reward. However, dogs in the familiarisation phase (Context 1) 

observe the following sequence of events (Efam): (1) Produces attention-getting sound (Efam1) 

UMO approaches the food plate in the cage (food visible) (Efam2); (2) UMO approaches the 

dog (Efam3). In contrast, in the test (Context 2), the dogs observe (Etest) the following 

sequence: (1) UMO produces attention-getting sound (Etest1); (2) UMO approaches the bowl 

(Etest2); UMO leaves the bowl (Etest3). Apart from many contextual differences between 

Context 1 and 2 (location of food, food bowls etc.), only Efam1 and Etest1 is the same, and the 

following events are different (Efam 2≠ Etest2 and Efam 3≠ Etest3). Note that in Efam 3 and Etest3 

the UMO actually moves in different directions (approach vs. departure). Based on learning 

theory dogs should have associated the last action with the reward during familiarization 

phase and learn the whole sequence of events backward. In addition there is much everyday 

experience that family dogs’ performance in executing a newly learnt actions drops 

significantly in a novel context (Bream & Mills 2010), and usually more trials (experience) 

are need to establish an association between an arbitrary action of the partner and the presence 

of food (e.g. Udell et al 2008, Elgier et al 2009). Although some underlying associative 

mechanisms may play a role here, in our view the interpretation of the dog’s behaviour and 

performance as being based on more general inference from previous social experience is a 

viable alternative explanation.  

Our last study (Experiment 4) which focused on the effects of UMOs’ sociality on dogs’ 

behaviour showed that dogs have tendency to follow the UMOs’ indication in a food-choice 

task, even if it is clearly went against their preference.  
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Same behaviour observed in dogs with human experimenter in a study, in which the human 

picked up the food bringing it level to the mouth and holding it there for 5 seconds (i.e. hand-

to-mouth movement, Marshall-Pescini et al 2012). It has been suggested that dogs’ 

‘counterproductive’ behaviour (i.e. choosing the smaller amount of food) in this experiment 

might be due to certain types of training requirements (i.e. dogs need to follow their handlers’ 

signals). Following the ‘rule’ to choose the food indicated by the human might serve to 

maintain owner-dog social cohesion (Prato-Previde et al 2008). Contrary to these assumptions 

later studies demonstrated that the owner and the stranger (i.e. unfamiliar experimenter) did 

not influence the dogs’ behaviour differently (Marshall-Pescini et al 2011a). Researchers 

concluded that the stranger’s unfamiliarity was overshadowed by the communicative cues 

displayed by her during the experiment. Several studies provided evidence that human 

ostensive-communicative cues are important in the dogs’ learning process from humans (e.g. 

Pongracz et al. 2004, Topál et al 2009a), in contrast Marshall-Pescini et al (2012) showed that 

human influence on dogs’ choice behaviour also occurred independently from these cues. At 

the same time, the hand-food contact proved to be essential for dogs to change their choice 

behaviour while they ignored the experimenter’s behaviour in certain conditions where the 

human only approached the food and displayed ostensive-communicative cues (i.e. high 

pitched voice, gazing and gaze alternations). They concluded that such social bias is induced 

predominantly by the goal-directedness of the human action (e.g. grasping the food), and in 

some measure, is also affected by the ostensive dog-directedness of the human demonstration 

(eye contact, dog-directed talk). Our results are in line with this statement hence 

demonstrating goal-directedness (in this case approaching the target) by the UMO during the 

test phase was not effective to elicit this social bias (i.e. changed choice behaviour). However, 

altogether with dog-directedness of the UMOs’ behaviour during the familiarization phase (in 

this case attention getting and contingent reactivity) seemed to be more powerful. 

Furthermore, in this study (Marshall-Pescini et al 2012) authors suggested stimulus 

enhancement (in this case grasping the food) as an underlying “social influencing/learning 

mechanism”. Since the UMO in our study was unable to picking up the food but rather 

approached it which suggested local enhancement as an underlying mechanism which occurs 

when an animal directs its behaviours to a certain place because that individual observed 

another individual in that location (e.g. Galef & Giraldeau 2001). This indicates the 

possibility that social influencing can emerge between dogs and an UMO and support latter 

findings that social influencing may often be explained by relatively simple (but powerful) 

mechanisms in dogs (Mersmann et al 2011).  
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In Experiment 5 we showed that dogs are able to learn directional responses (i.e. go left/right) 

based on qualitatively different sound signals and generalise this rule to novel contexts and 

tasks. In accordance with Harrison (1984) and Neill & Harrison (1987) we found that the 

Quality-Location effect (see introduction of Experiment 5) is not a general constraint of 

learning but rather emerges as a result of specific experimental designs and conditions. Our 

results showed that dogs had no difficulties to generalise previously learned sound signals to 

novel context where they faced with different target objects at different distances. Only the 

training angle between the target objects and the dog influenced dogs’ performance in the 

novel context. It has been shown that dogs’ are sensitive to the angular deviation between two 

adjacent hiding locations and the relative position of the dog in an object permanence task 

(Fiset et al 2006) and also in a detour task (Chapuis 1983), however this is the first evidence 

that angular deviation influenced dogs’ ability to generalise learned directional commands 

from the training context to a novel context. This study also provide significant findings for 

dog training and the Swiss SWARMIX project aimed to develop an autonomous flying robot 

working in cooperation with rescue dogs and human handlers to solve efficiently search and 

rescue tasks. This system requires high level of autonomy of dogs since they have to working 

at distance from the human handler. Combined with recently developed motion tracking 

system (Gerencsér et al 2013), our new device (the Click & Treat collar) offers the potential 

to control dogs’ movements and maintain dogs’ motivation also in the absence of the handler. 

Furthermore sound signals can be utilized also by the flying robot in order to lead the dogs to 

particular locations. In summary, these results clearly show that dogs can internalise a simple 

behaviour rule for taking directional action upon hearing qualitatively different signals. This 

capacity of dogs has long been used in traditional settings (e.g. shepherds have long known 

how to train herding dogs by whistle sound), but our elaborated method offers the possibility 

to train dogs explicitly if needed for specific employments (e.g. search and rescue, Ferworn et 

al 2006). 

In conclusion our studies provided new insights in the social behaviour of dogs. The 

utilization of an unfamiliar UMO as a social partner revealed that dogs are reacted to 

particular behaviours (e.g. goal-directedness and interactivity - i.e. contingent reactivity) even 

if the partner’s embodiment is distinct from familiar social partners with which the subject 

interacts in a social way. In human infants the understanding of basic concepts defining the 

other (e.g. agency, directedness, attention etc.) has been investigated by the means of visual 

displays showing moving simulated agents in 2D (e.g. Gy. Gergely et al 1995, Csibra et al 

1999, Kovács et al 2010).  
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After being habituated to certain events, infants are confronted with unexpected, unnatural 

events, and researchers deduce the infants’ ability of representing these specific concepts by 

noting increase in looking time at the time of change (‘surprise effect’, see Munkata 2000 for 

a review). Although it is possible to apply the method to some species of animals we have 

little knowledge about how animals perceive the two dimensional representations of real 

world objects (see Bovet & Vauclair 2000 for a review). Thus it would be more advantageous 

to use real 3D situation to test for similar mental skills in non-human species. We believe that 

the systematic use of UMOs offers this possibility. Moreover the use of UMOs could also 

help answering the question of how much of the social skills are grounded in the species’ 

embodiment, that is, whether animals are able to represent and deal with social behaviour 

independently from the body displaying it. Previous social experience makes testing of such 

socio-cognitive abilities difficult among conspecifics, but the unfamiliarity to UMOs and the 

possibility to use wide range of embodiments make such investigations possible. For example, 

interaction with UMOs could help in discerning the mental mechanisms related to different 

forms of social learning (Buchsbaum et al 2005). The use of UMOs can also expand the 

comparison of socio-cognitive skills in different species. The comparison of behavioural data 

collected within a species is often difficult because there are many possible factors that could 

account for the observed differences (Kamil 1998). The use of UMOs, which are unfamiliar to 

all participants that, however, behave in a certain way, could offer a potential way to study the 

differential capacities of species to interact socially. If the UMOs are deployed in a systematic 

way (varying their social behaviour) then flexibility of social behaviour across different 

contexts could also be revealed.  

We emphasise that dogs are especially good candidates for being studied in this way. They 

are living and have been selected for living in a relationship with humans whose embodiment 

and behaviour is very different. Despite this divergence dogs and humans are able to develop 

complex communicative and cooperative interactions (Topál et al 2009b). At the moment we 

do not know to what extent dogs rely on general behavioural homologies present in the social 

behaviour of both species, and to what degree they extend this basic understanding by 

learning through everyday experience. Future experiments could reveal the ability of dogs to 

generalise across contexts and agents, and whether this ability is species specific or emerges 

as a result of exposure to humans. 
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3.1. Outlook 

 

Future comparative studies between human infants, primates, wolves (Canis lupus) and dogs 

could provide useful insights about species specific social competence in dogs and humans 

by using different UMOs as social partners. This might also reveal more precisely the 

relative contribution of evolutionary and ontogenetic mechanisms behind certain social 

skills in dogs.  

Further investigations also needed to assign different learning mechanisms involved in dog-

UMO interactions. For investigating the role of the associative explanation of dogs’ 

performance in Experiment 3 we already started to develop different social interactions 

between the subjects and the UMO (e.g. social play with toys) which allow dogs to gather 

information about the sociality of the partner without making associatations between the 

actions of the UMO and getting food reward. We are also planning to replicate Experiment 3 

with the remote-control crane that has telescopic boom, thus we could model more 

realistically human’s pointing gesture and investigate dogs’ understanding on different 

visual features of this signal.  

We also designed an experiment in order to examine whether perseverative search error in 

dogs contributed to social cues displayed by an UMO in the A-not-B object search task. It 

has been demonstrated that dogs tend to commit perseverative search error in the presence of 

human ostensive-communicative signals (e.g. Topál et al 2009b). One may hypothesize that 

dogs, after having interacted with an UMO socially, would commit perseverative error in an 

A-not-B error task in which the UMO ‘acted as a Hider’. If so, this would indicate a more 

flexible social competence in dogs or might suggest an alternative mechanism behind this 

search error. 

In summary, we can conclude that the diverse usability of the UMO makes this method a 

valuable source of studying general and specific questions of animal behaviour such as 

interspecific communication, social learning, physical and social cognition. 
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6. Summary 

 

This dissertation contains the results of experiments on the socio-communicative aspects of 

dog-robot interaction. In contrast to previous studies, which often relied on using artificial 

agents (i.e. robots) as social partner resembled to the species studied, we utilized an 

Unidentified Moving Object (UMO) with bodily appearance (embodiment) distinct from 

familiar social partners. We emphasised that this method has the potential to identify 

separately external and behavioural features (i.e. key stimulus) of the partner that are 

important for the animal to engage in social interaction. 

To test this, we designed an experiment in which dogs faced with a problem situation where 

partners, differed in particular external and behavioural characteristics, helped the dog to get 

the food. We found that dogs displayed similar social behaviours (i.e. gazing and gaze 

alternations between the partner and the food) toward a human and an UMO partner. Our 

results also showed that dogs’ social behaviour increased as a function of the UMO’s social 

features (i.e. goal-directed behaviour, contingent reactivity etc.). In our second experiment we 

demonstrated that dogs’ are able to discriminate between different roles of their helping UMO 

partners in a similar problem situation and they used same social behaviours flexibly toward 

these agents in accordance with their different capabilities. 

Previous studies suggested that dogs are especially skilful in comprehending human 

communicative signals with directional components (e.g. pointing gesture). At the same time 

researchers argued about the contribution of evolutionary and ontogenetic mechanisms in the 

emergence of this social skill. Our third study provided evidence that dogs are able to find the 

hidden food based on the directional movements of an unfamiliar UMO after short social 

interaction. Based on this result we can assume that dogs’ social skills are flexible enough to 

generalise from previous experience with humans and highlighted the importance of 

evolutionary mechanisms behind this social skill. 

In our next experiment we tested whether dogs’ choice behaviour can be influenced by an 

UMO partner as effectively as a human experimenter in a food-choice task. We found that 

dogs have tendency to follow the UMOs’ “indication” in a food-choice task after short social 

interaction, even if it is clearly went against their preference. The nature of the UMO’s 

indication suggests local enhancement as an underlying mechanism and indicates the 

possibility that this type of social learning can emerge also with non-living partners with 

agency cues in dogs. 
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Our last experiment focused more on practical applications on dog-robot interaction and 

investigated whether dogs are able to generalise different directional acoustic signals to novel 

contexts. Our results showed that dogs had no difficulties to use previously learned sound 

signals in novel context where they faced with different target objects at different distances, 

however dogs’ performance decreased as a function of angular deviation between two 

adjacent hiding locations and the relative position of the dog. 

In summary, this work provides the first evidence that certain social characteristics of an 

artificial partner resembled neither dog neither human can affect dogs’ social responsiveness 

and also enhance social learning. All these suggest that the use of UMOs’ has the potential to 

study different aspects of dogs’ social behaviour and cognition. 
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7. Összefoglaló 

 

Disszertációmban a kutya-robot interakció különböző szocio-kommunikatív aspektusait 

vizsgáltuk. Korábbi tanulmányokkal ellentétben, melyek a vizsgált fajhoz hasonlító robotokat 

alkalmaztak szociális partnerként, mi olyan Azonosítatlan Mozgó Tárgyat (AMoT) 

használtunk mely külső megjelenésében távol áll minden ismert szociális partnertől, amellyel 

az alany korábban interakcióba léphetett. Véleményünk szerint ez a módszerrel lehetővé teszi, 

hogy meghatározzuk a partner azon külső (megjelenés) és belső (viselkedés) tulajdonságait 

melyek az alanyok számára fontosak a szociális interakció kialakításához. 

Ennek vizsgálatához először egy problémamegoldó helyzetben vizsgáltuk a kutyák szociális 

viselkedését ahol különböző viselkedésű és kinézetű partnerek segítettek a kutyáknak 

hozzájutni a jutalomfalathoz. Eredményeink szerint a kutyák hasonló szociális 

viselkedéselemeket (pl. nézés és tekintetváltás) mutattak mind az AMoT mind az ember 

irányába. Továbbá kimutattuk, hogy az AMoT szociális viselkedésének (cél-orientált és 

interaktív viselkedés) hatására a kutyák AMoT felé mutatott szociális viselkedése 

kifejezettebbé vált.  A következő kísérletünk eredményei arra utalnak, hogy a kutyák hasonló 

helyzetben képesek különbséget tenni eltérő képességekkel rendelkező AMoT-ok között és 

rugalmasan alkalmaznak hasonló szociális viselkedéselemeket az adott helyzetben segíteni 

tudó AMoT irányába. 

Számos korábbi tanulmány kimutatta, hogy a kutyák kifejezetten hatékonyan alkalmaznak 

különböző emberi jelzéseket, mint pl. a mutatás vagy a tekintet iránya. Ugyanakkor vita 

alakult ki arról, hogy milyen mértékben felelősek evolúciós és egyedfejlődési mechanizmusok 

a kutyák fent említett képességének kialakításában. Harmadik kísérletünk kimutatta, hogy 

rövid szociális interakciót követően a kutyák egy AMoT jelzése (mozgásiránya) alapján is 

képesek megtalálni az elrejtett jutalomfalatot. Ez az eredmény arra utal, hogy a kutya szociális 

viselkedése kellőképpen flexibilis ahhoz, hogy korábbi, emberekkel való tapasztalatait 

alkalmazza egy ismeretlen partnerrel szemben. Mindezen felismerések erősítik az evolúciós 

mechanizmusok jelentőségét a kutyák szociális képességeinek kialakításában. 

Következő kísérletünkben arra voltunk kíváncsiak, hogy az AMoT is képes-e az emberhez 

hasonlóan befolyásolni a kutyák viselkedését egy étel-választó feladatban. Az AMoT 

eredményeink szerint hatással volt a kutyák étel-választó viselkedésére egy rövid szociális 

interakciót követően akkor is, ha az AMoT „jelzése” a kutyák által eredetileg nem preferált 
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étel felé irányult. Ez az első vizsgálat mely arra utal, hogy szociális tanulás kialakulhat nem-

élő, de az ágencia jegyeit mutató partner esetében is kutyáknál. 

Utolsó vizsgálatunkban a kutya-robot interakció gyakorlati alkalmazhatóságára 

koncentráltunk és arra kerestük a választ, vajon a kutyák képesek-e a különböző hangok 

irányjelző funkcióját megtanulni, és ezt az ismeretüket új helyzetekben is alkalmazni. 

Eredményeink szerint a kutyák gond nélkül alkalmazták a hangjelzéseket új helyzetekben is, 

és teljesítményükre csak a céltárgyak és a kutya között bezárt szög változása volt hatással. 

Összefoglalva, az általunk végzett kísérletekben elsőként mutattuk ki, hogy egy mesterséges 

partner bizonyos szociális tulajdonságai hatással vannak a kutyák társas viselkedésére és 

tanulási folyamatikra akkor is, ha a partner nem hasonlít se kutyára se emberre. Ezek az 

eredmények alátámasztják, hogy az AMoT-ok alkalmazása kutyák esetében lehetőséget nyújt 

a szociális viselkedés és kogníció különböző aspektusainak vizsgálatára. 
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8. Appendix 

 

Table 8. The parameters of the subjects in Experiment 1. 

Name Sex 

Age 

(year) Breed Condition 

Bambusz male 1 Golden retriever Mechanical UMO 

Bilbó male 5 Border collie Mechanical UMO 

Bodza female 4 Labrador retriever Mechanical UMO 

Kamiko female 4 Mongrel Mechanical UMO 

Kócos male 1 Mongrel Mechanical UMO 

Kyra female 5 Mongrel Mechanical UMO 

Luna female 10 Hungarian vizsla Mechanical UMO 

Lüszi female 3 Samoyed Mechanical UMO 

Max male 5 Mongrel Mechanical UMO 

Mignon female 1 Mongrel Mechanical UMO 

Panka female 4 Hungarian Vizsla Mechanical UMO 

Römi female 4 Mongrel Mechanical UMO 

Smafu female 3 Mongrel Mechanical UMO 

Sonja female 2 English setter Mechanical UMO 

Zserbó male 2 Mongrel Mechanical UMO 

Angel female 10 Mudi Social UMO 

Baltazár male 1.5 Dachshund Social UMO 

Boldizsár male 9 Mongrel Social UMO 

Chili female 6 Mudi Social UMO 

Csicsi female 1 Mudi Social UMO 

Early male 5 Mongrel Social UMO 

Ebony female 3 Schipperke Social UMO 

Jenny female 2 Mongrel Social UMO 

Kormi male 9 Mongrel Social UMO 

Maci male 5 Mongrel Social UMO 

Nózi male 4 Bichon havanese Social UMO 

Remy female 3 Mudi Social UMO 

Rumli male 1.5 Mongrel Social UMO 

Shiva female 2 Mongrel Social UMO 

Szépség male 1 Labrador retriever Social UMO 

Zora female 10 Mongrel Social UMO 

Zserbó2 male 4.5 Mongrel Social UMO 

Akira female 2.5 Mongrel Mechanical Human 

Babzsák male 4 Chiwawa Mechanical Human 

Borisz male 6 Whippet Mechanical Human 

Csibész male 3 Mongrel Mechanical Human 

Csoki female 3 Bichon havanese Mechanical Human 

Fecske female 11 Mudi Mechanical Human 
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Gina female 2 Mongrel Mechanical Human 

Kabala male 11 Hungarian Vizsla Mechanical Human 

Kormi2 male 1 Mongrel Mechanical Human 

Lolka female 2 Hungarian Vizsla Mechanical Human 

Momo female 1 Golden retriever Mechanical Human 

Olivér male 1.5 French bulldog Mechanical Human 

Rozi female 2 Miniature snauzer Mechanical Human 

Szofi female 4 German Shorthair Pointer Mechanical Human 

Zorro male 2 Mongrel Mechanical Human 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



109 
 

Table 9. The parameters of the subjects in Experiment 2. 

Name Sex Age 

(year) 

Breed Condition Door used by 

the car 

Dorka female 5 Groenandale Same side Door A 

Bregyó male 2 Golden retriever Same side Door A 

Zoé female 3 Foxi Same side Door A 

Misu male 3 Mongrel Same side Door A 

Milo male 3 Jack russel terrier Same side Door A 

Walter male 2.5 Golden retriever Same side Door A 

Peti male 2 Labrador retriever Same side Door A 

Panka female 1.5 Cocker spaniel Same side Door A 

Vackor male 8 Puli Same side Door A 

Hermi female 4 Mongrel Same side Door A 

Zizi female 7 Malinois Same side Door A 

Shaggy male 7 Nova Scotia  

duck tolling retriever 

Same side Door A 

Bekecs female 1.5 Mudi Same side Door B 

Szörpi female 5 Aussie Same side Door B 

Ozzy male 6 Aussie Same side Door B 

Miró male 1.5 Aussie Same side Door B 

Happy male 5 Collie Same side Door B 

Dóri female 7 Hungarian vizsla Same side Door B 

Zselé female 5 Mongrel Same side Door B 

Eni female 3 Shiba Inu Same side Door B 

Luna female 1 Mongrel Same side Door B 

Lola female 6 Mongrel Same side Door B 

Pandia female 5 Dogo Argentino Same side Door B 

Lea female 4 Boxer Same side Door B 

Bodor male 8 Mongrel Changed side Door A 

Fruti female 4 Mongrel Changed side Door A 

Csele female 3 Mudi Changed side Door A 

Gyurma female 1 Mongrel Changed side Door A 

Kira female 2 Husky Changed side Door A 
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Mázli female 1.5 Mongrel Changed side Door A 

Bambusz female 7.5 Hungarian vizsla Changed side Door A 

Orka male 4.5 German shepherd Changed side Door A 

Leki male 5 Mongrel Changed side Door A 

Jamie female 1.5 Labrador retriever Changed side Door A 

Rose female 2 Mongrel Changed side Door A 

Panka female 3 Golden retriever Changed side Door A 

Negro male 8 Mongrel Changed side Door B 

Chili female 1.2 Mongrel Changed side Door B 

Roy male 1 Mongrel Changed side Door B 

Fanny female 3 Groenendael Changed side Door B 

Kevin male 6 Golden retriever Changed side Door B 

Tofu male 5 Mongrel Changed side Door B 

Balu male 3 German shepherd Changed side Door B 

Lessie male 3 Labrador retriever Changed side Door B 

Zotya male 3 Mongrel Changed side Door B 

Shelly female 2.5 Dogo Argentino Changed side Door B 

Jenny female 1 Hovawart Changed side Door B 

Muffin female 1.5 Golden retriever Changed side Door B 
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Table 10. The parameters of the subjects in Experiment 3. 

Name Sex Age (year) Breed Group 

Dylan male 8 Labrador retriever Non-helper Human 

Valter male 1.5 Golden retriever Non-helper Human 

Liza female 9 Hungarian vizsla Non-helper Human 

Dóri female 5 Hungarian vizsla Non-helper Human 

Freya female 1.5 Pitbull Non-helper Human 

Berry male 2 French bulldog Non-helper Human 

Fifi male 5 Mongrel Non-helper Human 

Ananász female 8 Labrador retriever Non-helper Human 

Luna female 6 Mongrel Non-helper Human 

Panka female 3 Golden retriever Non-helper Human 

Lea female 4.5 Boxer Non-helper Human 

Szamóca female 7 Whippet Non-helper Human 

Swini male 2 Border collie Non-helper Human 

Vito male 4 Bullmastiff Non-helper Human 

Arwen female 4 Border collie Non-helper Human 

Sessi female 3 Dogo Argentino Non-helper UMO 

Lujzi female 3.5 Mongrel Non-helper UMO 

Mazsi male 6 Mongrel Non-helper UMO 

Fanta female 4 Labarador retriever Non-helper UMO 

Zsakett male 3 Beagle Non-helper UMO 

Foltos female 5 Beagle Non-helper UMO 

Joker male 3 Border collie Non-helper UMO 

Pimpa female 2 Mongrel Non-helper UMO 

Joker2 male 4 West highland white terrier Non-helper UMO 

Zora female 1 Border collie Non-helper UMO 

Lili female 1 Mongrel Non-helper UMO 

Panni female 6 Mongrel Non-helper UMO 

Matt male 3 Border collie Non-helper UMO 

Zserbó male 6 Mongrel Non-helper UMO 

Baltazár male 3 Mongrel Non-helper UMO 

Marci male 1.5 Mongrel Helper Human 



112 
 

Maci female 6 Mongrel Helper Human 

Zselé female 4 Mongrel Helper Human 

Lír male 2 Border collie Helper Human 

Joda male 8 Mongrel Helper Human 

Füge male 1 Mongrel Helper Human 

Kencefice female 5 Mongrel Helper Human 

Kárin female 7 Mongrel Helper Human 

Yahoo male 8.5 Border collie Helper Human 

Zserbó female 3 Mongrel Helper Human 

Faust male 5 Groenendale Helper Human 

Tony male 4 Beagle Helper Human 

Buksi male 5 Transylvanian Hound Helper Human 

Apollo male 2 Husky Helper Human 

Peti male 1 Golden retriever Helper Human 

Arnie male 3 Hungarian vizsla Helper UMO 

Amper male 5 Border collie Helper UMO 

Hamu female 1 Newfoundland Helper UMO 

Zsebi female 3 Golden retriever Helper UMO 

Suvi female 3 Border collie Helper UMO 

Cooper male 1 Border collie Helper UMO 

Josephin female 2 Border collie Helper UMO 

Frida female 4 Mongrel Helper UMO 

Boci female 2.5 Mongrel Helper UMO 

Macska male 5 Golden retriever Helper UMO 

Lovag male 1 Hungarian vizsla Helper UMO 

Maja female 3 Border collie Helper UMO 

Nia female 9 Labrador retriever Helper UMO 

Athina female 2 Miniature schnauzer Helper UMO 

Joey male 3 Golden retriever Helper UMO 
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Table 11. The parameters of the subjects in Experiment 4. 

Name Sex Age 

(year) 

Breed Group 

Zizi female 7 Malinois Human partner 

Bodor male 8 Mongrel Human partner 

Kira female 2 Husky Human partner 

Negro male 5 Mongrel Human partner 

Rozi female 3 Puli Human partner 

Mázli male 1.5 Mongrel Human partner 

Walter male 2.5 Golden retriever Human partner 

Matyi male 5 Mongrel Human partner 

Flamy male 2 Golden retriever Human partner 

Bambusz female 7.5 Hungarian vizsla Human partner 

Jamie female 1.5 Labrador retriever Human partner 

Csele female 3 Mudi Human partner 

Gyurma female 1 Mongrel Human partner 

Lili female 5 Hungarian vizsla Human partner 

Orka female 4.5 German shepherd Human partner 

Bendegúz male 7.5 Labrador retriever Human partner 

Lili2 female 4 Mongrel Human partner 

Cyndi female 1 Whippet Non-social UMO 

Füge male 2 Mongrel Non-social UMO 

Zara female 2 Mongrel Non-social UMO 

Scotch male 3 Dachshund Non-social UMO 

Lina female 4 Staffordshire terrier Non-social UMO 

Szaffi female 8 Cocker spaniel Non-social UMO 

Zsigmond male 1 Mongrel Non-social UMO 

Boni female 7 Fox terrier Non-social UMO 

Kifli female 5 Jack russel terrier Non-social UMO 

Mandula male 1 Dachshund Non-social UMO 

Lola female 2 Dogue de Bordeaux Non-social UMO 

Brenda female 4 Fox terrier Non-social UMO 

Twiggy female 3 Sheltie Non-social UMO 
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Zora female 4 Mongrel Non-social UMO 

Vito male 5 Bullmastiff Non-social UMO 

Saphira female 1 Sheltie Non-social UMO 

Casper male 3 Sheltie Non-social UMO 

Joda male 10 Mongrel Non-social UMO 

Misu male 3 Mongrel Non-social UMO 

Zserbó female 1 Cocker spaniel Non-social UMO 

Dolli female 4 Mongrel Non-social UMO 

Kanóc male 1.5 West highland white 

terrier 

Non-social UMO 

Maci male 5.5 Mongrel Social UMO 

Marcipán male 1 Hungarian vizsla Social UMO 

Boni female 2 Mongrel Social UMO 

Kessy female 8.5 Mongrel Social UMO 

Csoki male 3.5 German pointer Social UMO 

Csoma male 9 Transylvanian Hound Social UMO 

Brúnó male 4 Mongrel Social UMO 

Ada female 10 Doberman Social UMO 

Ropi female 9 Mongrel Social UMO 

Sissy female 1 Yorkshire terrier Social UMO 

Lili female 3 German shepherd Social UMO 

Redőny male 2 Mongrel Social UMO 

Raiki male 3 German shepherd Social UMO 

Mese female 3 Hungarian vizsla Social UMO 

Scotty male 11 Sheltie Social UMO 

Pandora female 3 Mongrel Social UMO 

Zsömi male 1.5 Mongrel Social UMO 

Vackor male 7 Pumi Social UMO 

Jona male 10 Bichon bolognese Social UMO 

Lizy female 1.5 German shepherd Social UMO 

Alfi male 1.5 Tervueren Social UMO 

Borzas male 3 Mongrel Social UMO 

Dorka female 5 Mongrel Social UMO 
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Table 12. The parameters of the subjects in Experiment 5. 

Name Sex 

Age 

(year) Breed 

Left 

sound Advanced training type 

Brigi female 6 Hungarian vizsla High Rotation 

Echo male 3 Boucheron High No target 

Mangó female 5 

Nova Scotia  

duck tolling retriever High Rotation 

Nia female 9 Labrador retriever High Rotation 

Tücsök female 9 Mudi High No target 

Bodor male 8 Mongrel High No target 

Frutti female 3 Mongrel High Rotation 

Tódor male 8 Border collie High No target 

Dorka female 5 Groenendale Low Rotation 

Csele female 1.5 Mudi Low No target 

Lana female 2 Croatian sheepdog Low Rotation 

Amper male 5 Border collie Low Rotation 

Maja female 2.5 Border collie Low No target 

Angie female 9 Golden retriever Low No target 

Hermi female 3 Mongrel Low Rotation 

Nico male 3 Boxer Low No target 

 




