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Recent results on well-balanced orientations

Attila Bernáth⋆, Satoru Iwata⋆⋆, Tamás Király⋆ ⋆ ⋆, Zoltán Király‡,

and Zoltán Szigeti§

Abstract

In this paper we consider problems related to Nash-Williams’ well-balanced
orientation theorem and odd-vertex pairing theorem. These theorems date to
1960 and up to now not much is known about their relationship to other subjects
in graph theory. We investigated many approaches to find a more transparent
proof for these theorems and possibly generalizations of them. In many cases
we found negative answers: counter-examples and NP -completeness results.
For example we show that the weighted and the degree-constrained versions
of the well-balanced orientation problem are NP -hard. We also show that it
is NP -hard to find a minimum cost feasible odd-vertex pairing or to decide
whether two graphs with some common edges have simultaneous well-balanced
orientations or not.

Nash-Williams’ original approach was to define best-balanced orientations
with feasible odd-vertex pairings: we show here that not every best-balanced
orientation can be obtained this way. However we prove that in the global case
this is true: every smooth k-arc-connected orientation can be obtained through
a k-feasible odd-vertex pairing.

The aim of this paper is to help to find a transparent proof for the well-
balanced orientation theorem. In order to achieve this we propose some other
approaches and raise some open questions, too.
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1 Introduction

In 1960 Nash-Williams proved his strong orientation theorem about the existence of
well-balanced (and best-balanced) orientations. He did this proving a stronger result,
the so-called odd-vertex pairing theorem. These two results give rise to many intrigu-
ing questions, some of which are answered in this paper. For example we show that it
is NP -hard to find a minimum cost well-balanced orientation (given the cost for the
two possible orientations of each edge) or a well-balanced orientation satisfying lower
and upper bounds on the out-degrees at each vertex. The same results are proved for
best-balanced orientations. For feasible odd-vertex pairings we have similar results:
we prove that it is NP -hard to find a minimum cost feasible odd-vertex pairing (where
the cost of choosing a pair of odd-degree vertices is given for each pair). We propose
several other properties observed for k-arc-connected orientations but in most of the
cases we prove with counter-examples that these do not extend to well-balanced orien-
tations. Many of the results of this paper (although not all of them) appeared already
in two technical reports of the Egerváry Research Group, in [13] and [2]: in some
cases we omit details and refer the reader to these papers. In this work we present
our results in a way that starts with the most natural and straightforward questions
and goes towards the more involved and sophisticated ones: this method intends to
make the paper easier to read.

Let us give a more detailed overview of the results of this paper. Let G := (V, E) be
an undirected (or a directed) graph. For two vertices u, v ∈ V of G the local edge-
connectivity λG(u, v) from u to v in G is defined to be the maximum number of
pairwise edge (arc resp.) disjoint paths from u to v in G. G is k-edge-connected (k-
arc-connected resp.) if λG(u, v) ≥ k ∀(u, v) ∈ V ×V . More generally, for U ⊆ V, G
is k-edge-connected (k-arc-connected resp.) in U if λG(u, v) ≥ k ∀(u, v) ∈ U×U .

Nash-Williams’ well-balanced orientation theorem [19] states that for any undi-

rected graph G there exists an orientation ~G of G for which λ ~G(u, v) ≥ ⌊1
2
λG(u, v)⌋

∀(u, v) ∈ V × V : such an orientation will be called well-balanced. For global edge-
connectivity this specializes to: G has a k-arc-connected orientation if and only if G
is 2k-edge-connected.

Let G := (V +s, E) be an undirected graph. The operation splitting off is defined
as follows: two edges rs, st incident to s are replaced by a new edge rt. The splitting
off theorem of Lovász [15] concerns global edge-connectivity: if G is k-edge-connected
in V (k ≥ 2) and d(s) is even then there exists a pair of edges rs, st incident to s
whose splitting off maintains the k-edge-connectivity in V. Lovász [15] also showed
that the global case of the well-balanced orientation theorem is an easy consequence
of his splitting off theorem. Mader [17] generalized Lovász’ result for local edge-
connectivity: if d(s) ≥ 4 and no cut edge of G is incident to s then there exists a pair
of edges rs, st incident to s whose splitting off maintains the local edge-connectivities
in V. A simple proof for Mader’s theorem can be found in [7]. Mader [17] provided
a new proof for the well-balanced orientation theorem by applying his splitting off
theorem.

Let ~G := (V +s, E) be a directed graph. Splitting off can be naturally reformulated
for directed graphs: two arcs rs, st are replaced by rt. Mader [18] proved a splitting off
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theorem preserving global arc-connectivity in directed graphs: if G is k-arc-connected
in V and ̺(s) = δ(s) then there exists a pair of arcs rs, st incident to s whose splitting
off maintains the k-arc-connectivity in V. An example of Enni [4] shows that there
is no splitting off theorem preserving local arc-connectivities in directed graphs. In
Question 3 we provide a smaller example showing that even if ~G is a well-balanced
orientation of G there is no splitting off that preserves local arc-connectivities in V.

Nash-Williams’ odd vertex pairing theorem [19] states that every undirected graph
G has a pairing M (a set of new edges on the set TG of odd degree vertices of G
such that dM(v) = 1 ∀v ∈ TG) that is feasible (dM(X) ≤ bG(X) ∀X ⊂ V, where

bG(X) := dG(X) − 2⌊RG(X)
2
⌋ and RG(X) := max{λG(x, y) : x ∈ X, y /∈ X}). A

simpler proof of the odd vertex pairing theorem can be found in [8]. For the global
case, let us call a pairing M to be k-feasible (where k is a nonnegative integer) if
dM(X) ≤ dG(X) − 2k ∀∅ 6= X ( V : in this case the odd vertex pairing theorem
(i.e. the existence of a k-feasible pairing in a 2k-edge-connected graph) can be proved
easily by the global splitting off theorem as it was shown in [14].

The well-balanced orientation theorem is trivial for Eulerian graphs (any Eulerian
orientation will do) but this special case plays an important role in the theory. It was
shown in [14] that for Eulerian graphs, an orientation is well-balanced if and only if
it is Eulerian.

Nash-Williams [19] showed that if M is a feasible pairing of G then for every

Eulerian orientation ~G + ~M of G + M , ~G is well-balanced and furthermore it is
smooth, that is the in-degree and the out-degree of every vertex differ by at most one.
A smooth well-balanced orientation is called best-balanced. We show (Question 8)
that not every best-balanced orientation can be defined by a feasible pairing. On the
other hand we prove in Theorem 8.1 that for the global case it can be: every smooth
k-arc-connected orientation can be defined with a k-feasible pairing.

The above mentioned two proofs of the odd-vertex pairing theorem (the original due
to Nash-Williams and that of András Frank) both imply a polynomial algorithm to
find a feasible odd-vertex pairing, though it is not explicitly stated in either of them.
An explicit algorithm for this problem is sketched in [10], it states that an odd-vertex
pairing (and consequently a best-balanced orientation) can be found in O(nm2) time
in a graph and in O(n6) time in a multigraph. It is a natural question to look for a
feasible odd-vertex pairing of minimum cost where the cost for any pair of odd-degree
vertices is given. However we show (Corollary 9.2) that this problem is NP -complete,
even for the global case. Another natural question is whether one can find a well-
balanced orientation of minimum cost (with costs given for the two orientations of
every edge) or whether one can find a well-balanced orientation satisfying some other
constraints, for example lower and upper bounds on the out-degrees at each vertex.
In his survey paper [8] András Frank mentions these questions when he writes the
following about his proof of the odd-vertex pairing theorem: I keep feeling that there
must be an even more illuminating proof which finally will lead to methods to solve
the minimum cost and/or degree-constrained well-balanced orientation problem. Here
we present negative answers in this direction: we prove the NP -completeness of these
problems (see Theorem 4.3). We have similar results for best-balanced orientations.
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Nash-Williams [20] formulated the following extension of the well-balanced orien-
tation theorem for a subgraph chain of length two: if H is a subgraph of G, then
there exists an orientation of H that can be extended to an orientation of G both
being best-balanced. A simple proof is given in [14]: it is shown there that the odd
vertex pairing theorem easily implies this. It was also shown that the global case of
this extension has a simple proof. We show that the general subgraph chain property

is not valid, that is this extension cannot be generalized for subgraph chain of length
three, neither for the global case (see Question 6).

The authors of [14] generalized further the above extension by showing that the
following edge disjoint subgraphs property is valid: if {G1, G2, ..., Gk} is a partition of

G into edge disjoint subgraphs then there is an orientation ~G of G such that each ~Gi

and ~G are best-balanced orientations of Gi and of G. We show that deciding for two
non-edge-disjoint graphs whether they have simultaneous best-balanced orientations
is NP-complete, even for two Eulerian graphs (see Question 7).

Király and Szigeti [14] also showed that for every pairing M of G there exists an

Eulerian orientation ~G + ~M of G + M so that ~G is best-balanced. We mention that,
for an Eulerian subgraph H of G, any Eulerian orientation of H can be extended to
a best-balanced orientation of G.

Frank [6] proved the following reorientation property for the k-arc-connected ori-
entations: given two k-arc-connected orientations of G, there exists a series of k-arc-
connected orientations of G (leading from the first to the second given orientation),
such that in each step we reverse a directed path or a circuit. For well-balanced
(or best-balanced) orientations it is not known whether the reorientation property is
valid.

Frank [5] also proved that the linkage property is valid for the k-arc-connected ori-
entation problem, namely there exists a k-arc-connected orientation whose in-degree
function satisfies lower and upper bounds if and only if there is one satisfying the
lower bound and one satisfying the upper bound. É. Tardos [21] showed that the link-
age property is not valid for the well-balanced orientation problem. Here we present
another example (see Question 16).

The original proof of the odd vertex pairing theorem in [19] and Frank’s proof
[8] as well relies heavily on the skew-submodularity of the function bG. We show
(Question 10) that the existence of a feasible pairing cannot be generalized to arbitrary
skew-submodular functions. Skew-submodular functions correspond to local edge-
connectivity, while crossing submodular functions can be considered as generalizations
of global edge-connectivity. For such a function it is an open problem whether there
exists a feasible pairing. However the corresponding orientation theorem can be proved
easily (see Theorem 10.1).

By the proof of Frank [6] it is easy to see that the following matroid property is
valid for smooth k-arc-connected orientations: the family of sets, over smooth k-arc-
connected orientations, consisting of vertices whose in-degree is larger than the out-
degree, forms the basis of a matroid. We show that this is not true for best-balanced
orientations (see Question 14).

The aim of this paper is to help to find a transparent proof for the well-balanced
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orientation theorem. A possible way could be to find a convenient generalization
that has a simple inductive proof. Here we think of results like Theorems 3.7, 3.8
and 3.9. Unfortunately we do not have direct proofs for them, they follow easily
from the odd vertex pairing theorem. This result (Theorem 3.4) is a miracle, it has
no generalization, no application (except the well-balanced orientation theorem), no
relation to any other result in graph theory.

The rest of this paper is organized as follows. In Section 2 we introduce some
further notations. In Section 3 we summarize known results on well-balanced orien-
tations and odd-vertex pairings. In Section 4 we consider well-balanced orientations
with extra requirements: we prove the NP -completeness of questions such as finding
a well-balanced orientation of minimum cost or one satisfying lower and upper bounds
on the out-degrees. In Section 5 we consider mixed graphs and their well-balanced
orientations. In Section 6 we look at the splitting-off operation. In Section 7 we con-
sider the question of orienting two graphs with possibly some common edges resulting
in an orientation that is simultaneously well-balanced. In Section 8 we show that
not every best-balanced orientation can be defined with a feasible odd-vertex pairing,
however this is true in the global case. In the next section we investigate the structure
of feasible pairings. In Section 10 we deal with a more general setting and investi-
gate feasible pairings for connectivity functions. In the last section we show that the
matroid property that is valid for k-arc-connected orientations does not extend to
well-balanced orientations.

2 Notation

A directed graph is denoted by ~G = (V, A) and an undirected graph by G = (V, E).

For a directed graph ~G, a set X ⊆ V , a vector z : A→ R and u, v ∈ V, let δ ~G(X) :=
|{uv ∈ A : u ∈ X, v /∈ X}|, ̺ ~G(X) := δ ~G(V − X), f ~G(X) := ̺ ~G(X) − δ ~G(X),
δz

~G
(X) :=

∑
{uv∈A:u∈X, v/∈X} z(uv), ̺z

~G
(X) := δz

~G
(V − X), λ ~G(u, v) := min{δ ~G(Y ) :

u ∈ Y, v /∈ Y }, and
←−
G := (V, {vu : uv ∈ A}). For an undirected graph G, a set

X ⊆ V and u, v ∈ V, let ∆G(X) := {uv ∈ E : u ∈ X, v /∈ X}, dG(X) := |∆G(X)|,
dG(X, Y ) := |{uv ∈ E(G) : u ∈ X − Y, v ∈ Y − X}|, λG(u, v) := min{dG(X) : u ∈
X, v /∈ X}, RG(X) := max{λG(x, y) : x ∈ X, y /∈ X}, R̂G(X) := 2⌊RG(X)/2⌋,
bG(X) := dG(X)− R̂G(X) and TG := {v ∈ V : dG(v) is odd}. Observe that ∀X ⊆ V,

f ~G(X) =
∑

v∈X

f ~G(v). (1)

Let G = (V, E) be an undirected graph. G is connected if for every pair of vertices
u, v there is a (u, v)-path in G. G is called k-edge-connected if G− F is connected
for ∀F ⊆ E with |F | ≤ k − 1. For a function r : V × V → Z+

0 , we say that G is
r-edge-connected if λG(u, v) ≥ r(u, v) for every pair u, v of vertices.

Let D = (V, A) be a directed graph. D is strongly connected if for every ordered
pair (u, v) ∈ V × V of vertices there is a directed (u, v)-path in D. D is called k-
arc-connected if D − F is strongly connected for ∀F ⊆ A with |F | ≤ k − 1. For a
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function r : V × V → Z+
0 , we say that D is r-arc-connected if λD(u, v) ≥ r(u, v) for

every ordered pair u, v of vertices.
An orientation ~G of G is called well-balanced if ~G satisfies (2), smooth if ~G

satisfies (3) and best-balanced if it is smooth and well-balanced. Let us denote by
Ow(G) and Ob(G) the set of well-balanced and best-balanced orientations of G. Note

that if ~G is best-balanced then so is
←−
G .

λ ~G(x, y) ≥ ⌊λG(x, y)/2⌋ ∀ (x, y) ∈ V × V, (2)

|f ~G(v)| ≤ 1 ∀ v ∈ V. (3)

A pairing M of G is a new graph on vertex set TG in which each vertex has degree
one. Let M be a pairing of G. An orientation ~M of M that satisfies (4) is called

good. Note that by Claim 3.5 if ~M is good then every Eulerian orientation ~G+ ~M of
G + M that extends ~M defines a best-balanced orientation of G. Pairing M is well-
orientable if there exists a good orientation of M, M is strong if every orientation
of M is good and M is feasible if (5) is satisfied. Clearly an oriented pairing ~M is

good iff
←−
M is good. Let us denote by Pf (G) the set of feasible pairings of G.

f ~M(X) ≤ bG(X) ∀X ⊆ V, (4)

dM(X) ≤ bG(X) ∀X ⊆ V. (5)

We shall use that for subsets X, Y, Z ⊆ V we have

dG(X) + dG(Y ) = dG(X ∩ Y ) + dG(X ∪ Y ) + 2dG(X, Y ), (6)

dG(X) + dG(Y ) + dG(Z) ≥ dG(X ∩ Y ∩ Z) + dG(X − (Y ∪ Z)) +

dG(Y − (X ∪ Z)) + dG(Z − (X ∪ Y )). (7)

3 Known results

The following theorems are due to Nash-Williams [19], [20].

Theorem 3.1. A graph G has a k-arc-connected orientation if and only if G is 2k-
edge-connected.

Theorem 3.2. Every graph has a best-balanced orientation.

Theorem 3.3. For every subgraph H of G, there exists a best-balanced orientation of
H that can be extended to a best-balanced orientation of G.

Theorem 3.4. Every graph has a feasible pairing.

The following results were shown in [14] by Király and Szigeti.

Claim 3.5. The following statements are equivalent:

~G ∈ Ow(G), (8)

δ ~G(X) ≥ ⌊
R(X)

2
⌋ ∀ X ⊆ V, (9)

f ~G(X) ≤ bG(X) ∀ X ⊆ V. (10)
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Claim 3.6. A pairing is feasible if and only if it is strong.

Theorem 3.7. Every pairing is well-orientable.

Theorem 3.8. For every partition {E1, E2, ..., Ek} of E(G), if Gi = (V, Ei) then G

has a best-balanced orientation ~G, such that the inherited orientation of each Gi is
also best-balanced.

Theorem 3.9. For every partition {X1, ..., Xl} of V = V (G), G has an orientation ~G

such that ~G, ((~G/X1)...)/Xl and ~G/(V −Xi) (1 ≤ i ≤ l) are best-balanced orientations
of the corresponding graphs.

Theorem 3.9 implies the following slight refinement of the best-balanced orientation
theorem.

Theorem 3.10. Let G be an undirected graph and M be a pairing of G. Then G has
a well-balanced orientation ~G with |f ~G(X)| ≤ 1 whenever dM(X) ≤ 1.

4 Well-balanced orientations with extra require-

ments

It is a natural question whether one can find a well-balanced orientation of minimum
cost (with costs given for the two orientations of every edge) or whether one can find
a well-balanced orientation satisfying some other constraints, for example lower and
upper bounds on the out-degrees at each vertex. Here we present negative answers
in this direction: we prove the NP -completeness of these problems. Let us introduce
the problems we want to consider and give some motivation.
For well-balanced orientations we look at the following problems:

Problem 1. : MinCostWellBalanced

Instance: A graph G, nonnegative integer costs for the two orientations of each edge,
integer K.
Question: Is there a well-balanced orientation of G with total cost not more than
K?

Problem 2. : BoundedWellBalanced

Instance: A graph G = (V, E), l, u : V 7→ Z+ bounds with l ≤ u.

Question: Is there a well-balanced orientation ~G of G with l(v) ≤ δ ~G(v) ≤ u(v) for
every v ∈ V ?

Problem 3. : MinVertexCostWellBalanced

Instance: A graph G, integer costs c : V 7→ Z, integer B.
Question: Is there a well balanced orientation ~G of G with

∑
v∈V (c(v)δ ~G(v))≤B?

For best-balanced orientations we consider the following problems:
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Problem 4. : MinCostBestBalanced

Instance: A graph G, nonnegative integer costs for the two orientations of each edge,
integer K.
Question: Is there a best-balanced orientation of G with total cost not more than
K?

Problem 5. : BoundedBestBalanced

Instance: A graph G = (V, E), l, u : V 7→ Z+ bounds with ⌊dG(v)/2⌋ ≤ l(v) ≤
u(v) ≤ ⌈dG(v)/2⌉ for each v ∈ V .

Question: Is there a well-balanced orientation ~G of G with l(v) ≤ δ ~G(v) ≤ u(v) for
every v ∈ V (i.e. a best-balanced orientation with these bounds)?

Problem 6. : MinVertexCostBestBalanced

Instance: A graph G, integer costs c : V 7→ Z, integer B.
Question: Is there a best-balanced orientation ~G of G with

∑
v∈V (c(v)δ ~G(v))≤B?

Problems MinCostWellBalanced and MinCostBestBalanced are quite
natural weighted versions of the original problem, the problem of finding a well-
balanced or a best-balanced orientation. The constrained versions BoundedWell-

Balanced and BoundedBestBalanced also arise naturally: they are mentioned
in the survey paper of András Frank [8] and a related problem, when we have only
bounds from one side (say, upper bounds) in a best-balanced orientation is still an
open problem mentioned in [3] (though we have to mention that a related question
was shown to be hard, namely it has been shown by [1] that it is NP -hard to de-
cide whether a graph has an r-arc-connected orientation with upper bounds on the
out-degrees even for a 0− 1-valued symmetric function r). The third approach is mo-
tivated by the following observation: in an orientation problem with arc-connectivity
requirements, finding the out-degree function of a solution is polynomially equivalent
with finding a solution. The authors of [13] introduce the following polyhedron for a
graph G = (V, E) (see Section 9 in [13]):

P := {x ∈ RV : x(Z) ≥ iG(Z) + ⌊RG(Z)/2⌋ ∀Z ⊆ V, x(V ) = |E|,

⌊dG(v)/2⌋ ≤ x(v) ≤ ⌈dG(v)/2⌉ ∀v ∈ V }.

This polyhedron corresponds to the fractional relaxations of good out-degree func-
tions of a best-balanced orientation. It is proved in [13] that this polyhedron is not
necessarily integral: here we prove that optimization over the integer hull of this
polyhedron (that is, problem MinVertexCostBestBalanced) is NP -complete.
Problem MinVertexCostWellBalanced is just the counterpart of this problem
for well-balanced orientations.

Now we give some known results that will be needed later. The following is a simple
observation: the proof is left to the reader.

Lemma 4.1. If ~G and ~G′ are two orientations of a graph G = (V, E) with δ ~G(x) =

δ ~G′(x) for all x ∈ V then ~G′ can be obtained from ~G by reversing directed cycles.
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Corollary 4.2. If ~G and ~G′ are two orientations of a graph G = (V, E) with δ ~G(x) =
δ ~G′(x) for all x ∈ V then

~G is well-balanced ⇐⇒ ~G′ is well-balanced.

Proof. Directly from lemma 4.1. Alternatively, we can show that λ ~G(x, y) = λ ~G′(x, y)
for all x, y ∈ V using the fact δ ~G(X) =

∑
x∈X δ ~G(x) − iG(X) = δ ~G′(X) for any

X ⊆ V .

For well-balanced orientations we have the following results.

Theorem 4.3. Problems MinCostWellBalanced, BoundedWellBalanced

and MinVertexCostWellBalanced are NP -complete.

Proof. The problems are clearly in NP . In order to show their completeness we will
give a reduction from Vertex Cover (see [11], Problem GT1). For a given instance
G′ = (V ′, E ′) and k ∈ N of the Vertex Cover problem consider the following
undirected graph G = (V, E). The vertex set V will contain one designated vertex
s, dG′(v) + 1 vertices xv

0, x
v
1, x

v
2, . . . , x

v
dG′ (v) for every v ∈ V ′, and one vertex xe for

every e ∈ E ′. Let us fix an ordering of V ′, say V ′ = {v1, v2, . . . , vn}. The edge set
E contains a circuit on s, xv1

0 , xv2

0 . . . , xvn

0 in this order, one edge from s to xv
1 for

every v ∈ V ′, edges between xv
i and xv

i+1 for every v ∈ V ′ and every i between 0
and dG′(v) − 1, two parallel edges between s and xe for every e ∈ E ′ and finally for
each v ∈ V ′ take an arbitrary order of the dG′(v) = d edges of G′ incident to v, say
e1, e2, . . . , ed and include the edge (xv

i , xei−1) for any 2 ≤ i ≤ d − 1 and the edges
(xv

d, xed−1) and (xv
d, xed) (i.e. distribute the edges of G′ incident to v arbitrarily among

vertices xv
2, . . . , x

v
d resulting dG(xv

i ) = 3 for each 2 ≤ i ≤ d).
The construction is illustrated in Figure 1. The edges drawn bold indicate a mul-

tiplicity of 2.
Notice that for every v ∈ V ′ and 0 ≤ i ≤ dG′(v) we have dG(xv

i ) = 3 and for
every e ∈ E ′ we have dG(xe) = 4. What is more, it is easy to check, that λG(x, y) =
min(dG(x), dG(y)) for every x, y ∈ V (for example one can check that this is true if
y = s from which it follows for arbitrary x, y).

Define a partial orientation of G: orient the circuit s, xv1

0 , xv2

0 . . . , xvn

0 to become a
directed circuit in this order, orient the edges from xv

i to xv
i+1 for every v ∈ V ′ and

every i between 0 and dG′(v) − 1, orient the two parallel edges from xe towards s
for every e ∈ E ′ and finally for each v ∈ V ′, 2 ≤ i ≤ dG′(v) and e ∈ E ′ if there
is an edge between xv

i and xe then orient this edge from xv
i to xe (so we have given

the orientation of every edge except those of form (s, xv
1) for v ∈ V ′). Figure 2 is an

illustration.
Let us call the subgraph G−{(s, xv

1) : v ∈ V ′} by G1 and the above given orientation

of this graph by ~G1. Observe that ~G1 is a strongly connected graph and λ ~G1
(xe, s) = 2

for each e ∈ E ′.

Claim 4.4. Problem MinCostWellBalanced is NP -complete.

Proof: For a given instance G′ = (V ′, E ′) and k ∈ N of Vertex Cover consider
the following instance of MinCostWellBalanced: let the graph G be as described
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Figure 1: Construction of graph G

above, let K = k be the bound on the total cost and define the orientation-costs as
follows. For the edges of G1 orienting these edges costs nothing in the way as given
in ~G1, but reversing any one will cost exactly k + 1. It remains to define the costs
of orientations of edges between s and xv

1 for each v ∈ V ′: such an edge costs 1, if
oriented from s to xv

1 and 0 in the other direction. So we only have freedom choosing
the orientation of these edges, if we don’t want to exceed the cost limit k.

First we claim that if there is a vertex cover S ⊆ V ′ of size not more than k
then there is a well-balanced orientation ~G of G of cost not more than k: for each
v ∈ S orient the edge (s, xv

1) from s to xv
1 and orient the other edges in the direction

which costs nothing. This has clearly cost at most k and it is easy to check that
λ ~G(s, xe) = 2 for each e ∈ E ′ which together with the former observations gives that
~G is well-balanced.

On the other hand suppose that we have found a well-balanced orientation ~G of G
of cost at most k: this is possible only if there are at most k vertices in V ′ such that
the edges (s, xv

1) are oriented from s to xv
1 exactly for these edges and all the other

edges are oriented in the direction which costs 0. We claim that these vertices form
a vertex cover of G′: if edge e = (vj, vk) ∈ E ′ was not covered (where j < k are the
indices of the vertices in the fixed ordering), then ̺ ~G(X) = 1 would contradict the

well-balancedness of ~G, where

X = {xe}
⋃
{xvi

0 : j ≤ i ≤ k}
⋃
{x

vj

i : 1 ≤ i ≤ dG′(vj)}
⋃
{xvk

i : 1 ≤ i ≤ dG′(vk)}

(Figure 2 illustrates the cut, too).
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Figure 2: The partial orientation and the cut

Claim 4.5. Problem BoundedWellBalanced is NP -complete.

Proof: For an instance G′ = (V ′, E ′) and k ∈ N of Vertex Cover consider the
following instance of BoundedWellBalanced: let the graph G be as described
above and upper bound on the out-degree of s given by u(s) = k + 1, and lower
bounds l(xv

i ) = 2 for each v ∈ V ′ and i ∈ {0, 2, . . . , dG′(v)} (observe that these are
in fact exact prescriptions for these out-degrees, notice, that we excluded i = 1): the
other bounds can be trivial, that is l(x) = 0 and u(x) = dG(x) if it was not specified
otherwise. We refer the reader to [2] for the details.

Claim 4.6. Problem MinVertexCostWellBalanced is NP -complete.

Proof: For an instance G′ = (V ′, E ′) and k ∈ N of Vertex Cover consider the
following instance of MinVertexCostWellBalanced: let the graph G be as
described above and vertex-costs the following: let c(s) = 1 and c(xv

i ) = −k for each
v ∈ V ′ and i ∈ {0, 2, . . . , dG′(v)} (and zero for the rest of the vertices). Finally, let
B = −4k|E ′|+ k + 1. For more details see [2].

For best-balanced orientations we have the following results.

Theorem 4.7. Problems MinCostBestBalanced, BoundedBestBalanced and
MinVertexCostBestBalanced are NP -complete.

Proof. The problems are clearly in NP . To show completeness we reduce Vertex

Cover as before, but we need to change the construction a bit. For a given instance
G′ = (V ′, E ′) and k ∈ N of the Vertex Cover problem, modify the construction of
the graph G = (V, E) as follows: add 2|E ′|+ |V ′|−2k = N new vertices z1, z2, . . . , zN

and connect each of these vertices with s. So these new vertices will have degree 1
and s will have degree 4|E ′| + 2|V ′| + 2− 2k in G. Denote this modified graph with
G = (V, E).

Define again a partial orientation of G: this is the same as the one defined above in
the first construction, with the addition that for each i between 1 and N orient the
edge (s, zi) from s to zi.
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Again call the subgraph G−{(s, xv
1) : v ∈ V ′} by G1 and the above given orientation

of this graph by ~G1. Again we have λG(x, y) = min(dG(x), dG(y)) for every x, y ∈ V ,
λ ~G1

(x, y) ≥ 1 for every x, y ∈ V − {z1, z2, . . . , zN} and λ ~G1
(xe, s) = 2 for each e ∈ E ′.

Claim 4.8. Problem MinCostBestBalanced is NP -complete, even for 1− 0 ori-
entation costs.

Proof: For a given instance G′ = (V ′, E ′) and k ∈ N of Vertex Cover consider
the following instance of MinCostBestBalanced: let the graph G be as described
above, let K = 0 be the bound on the total cost and define the orientation-costs as
follows. For the edges of G1 orienting these edges costs nothing in the way as given
in ~G1, but reversing any one will cost exactly 1. It remains to define the costs of
orientations of edges between s and xv

1 for each v ∈ V ′: these edges can be oriented
in any direction with 0 cost. Details again can be found in [2].

Claim 4.9. Problem BoundedBestBalanced is NP -complete.

Proof: For an instance G′ = (V ′, E ′) and k ∈ N of Vertex Cover consider the
following instance of BoundedBestBalanced: let the graph G be as described
above and bounds on the out-degrees of odd degree vertices of G given as follows (of
course, for even-degree vertices x ∈ V one has l(x) = dG(x)/2 = u(x)):

• l(xv
i ) = 2 = u(xv

i ) for each v ∈ V ′ and i ∈ {0, 2, . . . , dG′(v)} (exact prescrip-
tions),

• l(zi) = 0 = u(zi) for each i = 1, 2, . . . , N (exact prescriptions),

• l(xv
1) = 1 and u(xv

1) = 2 for each v ∈ V ′ (so we only have freedom here).

For the details see [2].

Claim 4.10. Problem MinVertexCostBestBalanced is NP -complete.

Proof: For an instance G′ = (V ′, E ′) and k ∈ N of Vertex Cover consider the
following instance of MinVertexCostWellBalanced: let the graph G be as
described above and vertex-costs the following: let c(zi) = 1 for each i = 1, 2, . . . , N
and c(xv

i ) = −1 for each v ∈ V ′ and i ∈ {0, 2, . . . , dG′(v)} (and zero for the rest of
the vertices). Finally, let B = −2 (

∑
(dG′(v) : v ∈ V ′)) = −4|E ′|. Details again can

be found in [2].

5 Mixed graphs

A mixed graph is determined by the triple (V, E, A) where V is the set of vertices, E
is the set of undirected edges and A is the set of directed edges. The underlying undi-
rected graph is obtained by deleting the orientation of the arcs in A. An orientation
of a mixed graph means that we orient the undirected edges (and leave the directed
ones).
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A possible way to prove the well-balanced orientation theorem could be to charac-
terize mixed graphs whose undirected edges can be oriented to have a well-balanced
orientation of the underlying undirected graph. The following problem was mentioned
in Section 4.2 of [13]:

Problem 7. Given a mixed graph, decide whether it has an orientation that is a
well-balanced orientation of the underlying undirected graph.

The following question is an open problem:

Question 1. Is Problem 7 NP -complete?

While we don’t know the answer to Question 1, the proof of Claim 4.8 immediately
gives the NP -completeness of the following, related problem.

Problem 8. Given a mixed graph, decide whether it has an orientation that is a
best-balanced orientation of the underlying undirected graph.

We have to mention that the global case of these questions can be solved: one
can decide whether a mixed graph has a k-arc-connected orientation, even with the
presence of lower and upper bounds on the out-degrees of the required orientation.

6 Splitting off

We have seen in the introduction that splitting off theorems are very useful in the
proof of the global or local well-balanced orientation theorem. We also mention that
Mader’s proof [17] for the well-balanced orientation theorem as well as Frank’s proof
[8] for Theorem 3.4 uses Mader’s splitting off theorem.

The odd vertex pairing theorem would be an easy task if the following was true.

Question 2. For every 2-edge-connected graph G there exists a pair of adjacent edges
rs, st such that for Grt := G− {rs, st}+ rt we have:

bG(X) ≥ bGrt
(X) ∀X ⊆ V. (11)

Counter-example 2 Let G = (U, V ; E) be the complete bipartite graph K3,4. Let
us denote the vertices as follows: U := {a, b, c, d} and V := {x, y, z}. By symmetry,
{rs, st} is either {xd, dy} or {az, zb}. In the first case bG(z) = 0 < 2 = bGxy

(z)
and in the second case bG({a, x, y}) = 3 < 5 = bGab

({a, x, y}). In both cases (11) is
violated.

Question 3. If ~G is a best-balanced orientation of G := (V +s, E) and ̺ ~G(s) = δ ~G(s)

then there exist rs, st ∈ A(~G) so that for ~Grt := ~G− {rs, st}+ rt we have

λ ~Grt
(x, y) ≥ λ ~G(x, y) ∀(x, y) ∈ V × V. (12)
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Figure 3: There is no good directed splitting-off at s

Counter-example 3 Let G := (V + s, E) and ~G := (V + s, A) be defined as fol-
lows (see Figure 3): V := {u, v, w, z}, E := {uv, us, uz, vz, vs, vw, ws, wz, zs}, A :=

{uv, us, zu, vz, sv, vw, ws, zw, sz}. It is easy to check that ~G ∈ Ob(G). In particular
λ ~G(v, z) = λ ~G(z, v) = 2. Suppose that for some (r, t) ∈ {(u, z), (u, v), (w, z), (w, v)},
(12) is satisfied. Then, by (12), 3 = ̺ ~Grt

({r, t}) + δ ~Grt
({r, t})≥λ ~Grt

(v, z) +λ ~Grt
(z, v)≥

λ ~G(v, z) + λ ~G(z, v)=4, a contradiction.

We note that this is a smaller counter-example for a conjecture of Jackson than
Enni’s one: for details see [4].

Question 4. If ~G is a best-balanced orientation of G := (V +s, E) and ̺ ~G(s) = δ ~G(s)

then there exist rs, st ∈ A(~G) so that ~Grt is a best-balanced orientation of Grt.

Question 4 is an open problem. However the following is true.

Theorem 6.1. For every pair rs, st of edges of a graph G := (V + s, E) there exists

a best-balanced orientation ~G of G so that rs, st ∈ A(~G) and ~Grt is a best-balanced
orientation of Grt.

Proof. By Theorem 3.4, there exists a feasible pairing M of G. Then M is a pairing
of Grt and hence, by Theorem 3.7, Grt + M has an Eulerian orientation ~Grt + ~M
so that ~Grt ∈ Ob(Grt). Wlog. assume that rt is directed as ~rt in ~Grt. Then, for
~G := ~Grt− rt+ rs+ st, ~G+ ~M is Eulerian, that is, since M ∈ Pf (G), ~G ∈ Ob(G).

Question 5. For every graph G = (V + s, E) with d(s) ≥ 4 there exist rs, st ∈ E

such that for every best-balanced orientation ~Grt of Grt, ~G := ~Grt − rt + rs + st is a
best-balanced orientation of G.

Question 5 is an open problem. If Question 5 had an affirmative answer, it would
give us a possible way to prove the best-balanced orientation theorem.

7 Simultaneously well-balanced orientations

In this section we consider some possible generalizations of Theorem 3.3 and Theorem
3.8. Here we consider the statements of these theorems as assuring simultaneous
(compatible) best-balanced orientations of some graphs.

The first two questions correspond to the global and local cases related to Theorem
3.3, i.e. the subgraph-chain-property.
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Question 6. Let G3 be a subgraph of G2 and G2 a subgraph of G1. Then, for i = 1, 2, 3,
there exists an orientation ~Gi of Gi such that ~Gj is a restriction of ~Gi if 1 ≤ i < j ≤ 3
and

(a) Local case: ~Gi ∈ Ow(Gi).

(b) Global case: ~Gi is a ki-arc-connected orientation of Gi provided that Gi is 2ki-
edge-connected.

Counter-examples 6 Let Gi := (Vi, Ei) (i = 1, 2, 3) be defined as in Figure 4, that
is

(a) V1 = V2 = V3 := {a1, b1, c1, d1}, E3 := {a1d1, a1d1, b1c1, b1c1}, E2 := E3 ∪
{a1b1, c1d1}, E1 := E2 ∪ {a1c1, b1d1}. Let X := {a1, b1}, Y := {a1, d1}.

(b) V1 = V2 = V3 := {a1, a2, a3, b1, b2, b3, c1, c2, c3, d1, d2, d3}, E3 := {a2b2, b2c3,
c3b3, b3c2, c2d2, d2a3, a3d3, d3a2} ∪ {x3x1, x3x1 : x ∈ {a, b, c, d}}, E2 := E3 ∪
{a1b1, c1d1} ∪ {x1x2, x1x2, x2x3, x2x3 : x ∈ {a, b, c, d}}, E1 := E2 ∪ {a1c1, b1d1}
and k3 = 1, k2 = 2, k1 = 3. Let X := {a1, a2, a3, b1, b2, b3},
Y := {a1, a2, a3, d1, d2, d3}.

We prove at the same time for (a) and (b) that the required orientations do not exist.

Suppose that they do exist. It is easy to check that ~G1 and ~G3 are Eulerian orientations
of G1 and G3, whence, by (1), f ~G1

(X) = 0 = f ~G1
(Y ) and f ~G3

(X) = 0. G2 is 2k-
edge-connected and dG2

(Y ) = 2k, so f ~G2
(Y ) = 0. Then f ~G1− ~G2

(X) = f ~G1− ~G3
(X) =

f ~G1
(X)−f ~G3

(X) = 0 and f ~G1− ~G2
(Y ) = f ~G1

(Y )−f ~G2
(Y ) = 0. Note that E(G1−G2) =

E1 − E2 = {a1c1, b1d1} and a1 ∈ X ∩ Y, c1 ∈ V − (X ∪ Y ), b1 ∈ X − Y, d1 ∈ Y −X,
contradiction.

Regarding general simultaneous orientations, we may ask the following question:
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Question 7. Given two graphs (neither edge-disjoint nor containing each other), is
there a good characterization for having simultaneous best-balanced orientations?

The next theorem and corollary shows that this problem is NP -complete even for
Eulerian graphs.

Theorem 7.1. Deciding whether two Eulerian graphs, G1 = (V1, E1) and G2 =
(V2, E2) have Eulerian orientations that agree on the common edges E1 ∩E2, is NP -
complete.

Proof. The problem is clearly in NP . For the completeness we show a reduction from
one-in-three 3sat (see [11], Problem LO4). For a given 3SAT formula, n denotes
the number of variables, the clauses are denoted by C1, . . . , Cm, and Ji denotes the
set of indices of the clauses that contain the variable xi.

Construct first the graph G1 = (V1, E1) as follows. Each connected component
Gi

1 = (V i
1 , Ei

1) of G1 corresponds to a clause Ci namely V i
1 contains the vertices

{Ci, C
′
i} and the vertices {xi

j, x
i
j : i ∈ Jj} and Ei

1 contains the edge CiC
′
i, the edges

{xi
jx

i
j : i ∈ Jj}, the edges {Cix

i
j, C

′
ix

i
j} if xj occurs in Ci and the edges {Cix

i
j, C

′
ix

i
j}

if xj occurs in Ci. Note that vertices corresponding to literals are of degree two and
vertices corresponding to clauses are of degree four.

The graph G2 = (V2, E2) is constructed in such a way that each connected compo-
nent of G2 is a cycle. One cycle has color classes {Ci : 1 ≤ i ≤ m} and {C ′

i : 1 ≤ i ≤
m} and contains the edges {CiC

′
i : 1 ≤ i ≤ m}. We also have cycles for 1 ≤ i ≤ n

with color classes {xj
i : j ∈ Ji} and {xj

i : j ∈ Ji} containing the edges {xj
ix

j
i : j ∈ Ji}.

The details of the proof can be found in [13].

We remark that another construction can be made by adding some extra vertices,
in which both graphs are connected.

Corollary 7.2. Deciding whether two graphs have simultaneous best-balanced orien-
tations is NP-complete.

8 Feasible pairing defining a best-balanced orien-

tation

Nash-Williams’ original idea was that every feasible pairing provides a best-balanced
orientation. In fact Theorem 3.6 shows that every feasible pairing provides lots of best-
balanced orientations. A natural question is whether every best-balanced orientation
can be defined by a feasible pairing.

Question 8. For every best-balanced orientation ~G of G there exists a feasible pairing
M and an orientation ~M of M such that ~G + ~M is Eulerian.

Counter-example 8 Let G := (V, E) and ~G := (V, A) be defined as follows (see
Figure 5):
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Figure 5: A best-balanced orientation which can not be defined with a feasible pairing

V := {a, b, c, p, q, r, x, y, z}, E := {ap, aq, ar, bp, bq, br, cx, cy, cz, xp, py, yq, qz, zr, rx},
A := {ap, qa, ra, bp, qb, rb, xc, yc, cz, px, py, yq, zq, zr, xr}. It is easy to check that
~G ∈ Ob(G).

We show that if M ∈ Pf (G), then ab ∈ M. Note that TG = {a, b, c, x, y, z}. Let
X := {a, b, p, r, x}, Y := {a, b, p, q, y}, Z := {a, b, q, r, z}. Note that dG(W ) = 5 and
R̂(W ) = 4 hence bG(W ) = 1 for W ∈ {X, Y, Z}. Then, by (5) and (7), 3=bG(X) +
bG(Y )+bG(Z) ≥ dM(X)+dM(Y )+dM(Z)≥dM(X∩Y ∩Z)+dM(X−(Y ∪Z))+dM(Y −
(X∪Z))+dM(Z−(X∪Y )) = dM({a, b})+dM(x)+dM(y)+dM(z) ≥ 0+1+1+1 = 3,
so dM({a, b}) = 0 that is ab ∈M.

Then for every orientation ~M of any feasible pairing M of G either δ ~M(a) = 0 or

δ ~M(b) = 0. Then, since f ~G(a) = f ~G(b) = 1, ~G + ~M cannot be Eulerian.

The following theorem shows that the answer for Question 8 is affirmative for global
edge-connectivity.

Theorem 8.1. Let G := (V, E) be a 2k-edge-connected graph and let ~G := (V, A) be
a smooth k-arc-connected orientation of G. Then there is a pairing M of G and an
orientation ~M of M so that

dM(X) ≤ dG(X)− 2k ∅ 6= ∀X ⊂ V and (13)

~G + ~M is Eulerian. (14)

Proof. By induction on |A|. We shall apply the following stronger version of Mader’s
splitting off theorem [18] due to Frank [9].
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Theorem 8.2. Let ~H := (U + s, F ) be k-arc-connected in U. If δ ~H(s) − ̺ ~H(s) <

̺ ~H(s) < 2δ ~H(s) then there exist rs, st ∈ F so that ~Hrt := ~H − {rs, st} + rt is k-arc-
connected in U.

Case 1 If there is s ∈ V with d(s) ≥ 2k + 2. Then, by (3) and Theorem 8.2, there

exist rs, st ∈ A so that ~Grt is k-arc-connected in V − s. It follows, by the assumption
of Case 1 and (3), that ~Grt is k-arc-connected. Note that TGrt

= TG. |A(~Grt)| < |A| so

by induction there is a pairing M of Grt and an orientation ~M of M so that (13) and

(14) are satisfied for (Grt, M) and for (~Grt, ~M) and hence for (G, M) and for (~G, ~M)
and we are done.

Case 2 If there is s ∈ V with d(s) = 2k. This case can be handled in the same way
as Case 1 but here we have to make a complete splitting off at s.

Case 3 Otherwise, d(s) = 2k + 1 ∀s ∈ V . Then TG = V. By a result of Mader
[16], since there is no vertex v with ̺ ~G(v) = δ ~G(v), there exists uv ∈ A such that
~G′ := ~G− uv is k-arc-connected. Note that, by the assumption of Case 3 and (3), ~G′

satisfies (3). |A(~G′)| < |A| so by induction there is a pairing M ′ on TG′ = TG−{u, v}

and an orientation ~M ′ of M ′ so that (13) and (14) are satisfied for (G′, M ′) and for

(~G′, ~M ′). Let M := M ′ + uv and ~M := ~M ′ + vu. Then ~G + ~M = (~G′ + ~M ′) + uv + vu
is Eulerian. Moreover, ∅ 6= ∀X ⊂ V either dM(X) = dM ′(X) and dG(X) = dG′(X) or
dM(X) = dM ′(X) + 1 and dG(X) = dG′(X) + 1 so (13) is satisfied for G and M.

9 The structure of feasible pairings

We call a pairing M a feasible matching (in G), if M is a subgraph of G (i.e., a
matching in G) and M is a feasible pairing.

Theorem 9.1. Deciding whether a graph has a feasible matching is NP -complete,
even for planar three-regular graphs.

Proof. We claim that a 2-connected 3-regular graph G = (V, E) has a feasible
matching if and only if G is Hamiltonian. Indeed, for a perfect matching M of G, the
2-regular graph G−M is Hamiltonian if and only if G−M is 2-edge-connected that
is if and only if dG−M(X) ≥ 2 for all ∅ 6= X ⊂ V or equivalently if M is feasible.

It is known that deciding whether a graph has a Hamiltonian cycle is NP -complete
even for planar 2-connected 3-regular graphs [12].

Corollary 9.2. We are given a graph G and a weight on each pair of distinct odd-
degree vertices. Finding the minimum weight strong pairing is NP -hard, even for
planar 3-regular graphs and for 0− 1-valued weighting.

We mention that the proof given here shows that the feasible matching problem
and the minimum weight feasible pairing problem is NP -complete even for the global
case with k = 1.

Another question on the structure of feasible pairings has been investigated in [13].
The following question was answered negatively there (see Question 13 in [13]):
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Section 10. Feasible pairing for connectivity functions 19

Question 9. Let a, b, c, d ∈ TG. If there exist M1, M2 ∈ Pf (G) such that ab, cd ∈M1

and ad, bc ∈M2 then there exists M3 ∈ Pf (G) such that ac, bd ∈M3.

10 Feasible pairing for connectivity functions

A set function b : V → R is called skew-submodular if for every X, Y ⊆ V, at least
one of the following two inequalities is satisfied:

b(X) + b(Y ) ≥ b(X ∩ Y ) + b(X ∪ Y ), (15)

b(X) + b(Y ) ≥ b(X − Y ) + b(Y −X). (16)

A set function p is called skew-supermodular if −p is skew-submodular. We men-
tion that, by [19], R̂G is skew-supermodular and hence bG is skew-submodular. A set
function b on V is called crossing submodular if (15) is satisfied for every X, Y ⊆ V
with X ∩ Y, X − Y, Y −X, V − (X ∪ Y ) 6= ∅.

Question 10. Let b : V → Z+
0 be a symmetric, skew-submodular function with b(∅) =

0 and b(X) ≡ |X∩Tb| mod 2, where Tb = {v : b(v) is odd}. Then there exists a pairing
M on Tb that satisfies

dM(X) ≤ b(X) ∀ X ⊆ V. (17)

Counter-example 10 Let b(X) be defined on V with |V | = 6 as follows: b(X) := 0
if X = ∅, V ; 1 if |X| is odd and 2 otherwise. It is easy to see that b satisfies all the
conditions. Note that Tb = V. For any pairing M on Tb, we may choose X ⊂ V with
dM(X) = 3 but then X violates (17).

Note that, by Theorem 3.4, the answer for Question 10 is affirmative for b(X) =
bG(X).

The problem corresponding to the global case is the following open problem.

Question 11. Let b : V → Z+
0 be a symmetric crossing submodular function with

b(∅) = 0 and b(X) ≡ |X ∩ Tb| mod 2. Then there exists a pairing M on Tb that
satisfies (17).

If the answer to Question 11 was affirmative then it would imply the following
theorem that can be proved directly.

Theorem 10.1. Let G = (V, E) be an undirected graph. Let b : V → Z+
0 be a crossing

submodular function with b(X) + d(X) even for every X ⊆ V . Then there exists an

orientation ~G of G

f ~G(X) ≤ b(X) ∀ X ⊆ V. (18)

Proof. Let ~G = (V, A) be an arbitrary orientation of G. Let P := {z ∈ R|A| : 0 ≤
za ≤ 1 ∀a ∈ A, δz

~G
(X) − ̺z

~G
(X) ≤ (b(X) − f ~G(X))/2 ∀X ⊆ V }. By the modularity

of f ~G and by the assumptions, (b(X)−f ~G(X))/2 is integral and crossing submodular.
Then, by the Edmonds-Giles theorem, P is an integral polyhedron. The vector 1

2
✶
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belongs to P because b is non-negative. Then P contains an integral vector z. Let ~G′

be the orientation obtained from ~G by reversing the arcs a ∈ A(~G) for which z(a) = 1.
Then, since z is a 0− 1 vector in P, f ~G′(X) = ̺ ~G′(X)− δ ~G′(X) = (̺ ~G(X)− ̺z

~G
(X) +

δz
~G
(X))− (δ ~G(X)− δz

~G
(X) + ̺z

~G
(X)) = f ~G(X) + 2(δz

~G
(X)− ̺z

~G
(X)) ≤ b(X) ∀X ⊆ V,

and hence ~G′ is the desired orientation.

Note that if G is 2k-edge-connected and b(X) = dG(X) − 2k ∀∅ 6= X ⊂ V and
b(∅) = b(V ) = 0, then Theorem 10.1 is equivalent to Theorem 3.1. We remark that
Theorem 10.1 also follows from a theorem of Frank [5] on orientations satisfying a
G-supermodular function.

Question 12. Let d : V → Z+
0 be a symmetric function that satisfies d(∅) = 0 and

∀X, Y ⊆ V

d(X) + d(Y ) + d(X △ Y ) = d(X ∩ Y ) + d(X ∪ Y ) + d(X − Y ) + d(Y −X), (19)

d(X) + d(Y )− d(X ∪ Y )is even if X ∩ Y = ∅. (20)

Let R̂ : V → Z+
0 be an even valued, symmetric, skew-supermodular function. Suppose

that R̂(X) ≤ d(X) ∀X ⊆ V. Then there exists a pairing M on Td that satisfies

dM(X) ≤ d(X)− R̂(X) ∀ X ⊆ V. (21)

Counter-example 12 Let V := {u, v, w, z}, G := (V, {uw, uz, vw, vz, wz}), H :=
(V, {uv}), d(X) := dG(X)− dH(X), R̂(X) := 2 if |X ∩ {w, z}| = 1 and 0 otherwise.
Since for a proper subset X, dG(X) ≥ 1 and dH(X) ≤ 1, d(X) ≥ 0 ∀X ⊆ V. Clearly, d
is integer valued and symmetric. dG and dH satisfy (19) and (20), consequently d also
satisfies them. It is easy to see that R̂ satisfies all the conditions. Note that Td = V. Let
M be an arbitrary pairing on Td. Let e be the edge of M incident to w. Let X := {u, w}
and let Y := {v, w}. Then e leaves either X or Y but d(X)−R̂(X) = 0 = d(Y )−R̂(Y )
so either X or Y violates (21).

Note that, by Theorem 3.4, the answer for Question 12 is affirmative for d(X) =
dG(X) and R̂(X) = R̂G(X).

Question 13. Let G = (V, E) be a graph and R̂ : V → Z+
0 an even valued, symmetric,

skew-supermodular function. Suppose that R̂(X) ≤ dG(X) ∀X ⊆ V. Then there exists
a pairing M on TG that satisfies

dM(X) ≤ dG(X)− R̂(X) ∀ X ⊆ V. (22)

Question 13 is an open problem. If R̂ satisfies R̂(X ∪ Y ) ≤ max{R̂(X), R̂(Y )}
∀X, Y ⊂ V then R̂(X) = max{r(x, y) : x ∈ X, y ∈ V −X} for some symmetric, even
valued r : V × V → Z+

0 and hence, by Theorem 3.4, such a pairing exists.

11 Matroid property

If ~G is an orientation of G then let T+
~G

:= {v ∈ V (G) : ̺ ~G(v) > δ~G(v)}. Note that if

~G is smooth, then |T+
~G
| = |TG|/2.
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The following strict reorientation property was proved for k-arc-connected orien-
tations by Frank in [6]: if ~G1 and ~G2 are k-arc-connected orientations of a graph
G = (V, E) and ̺ ~G1

(u) < ̺~G2
(u) at a vertex u ∈ V then there exists a directed path

in ~G1 from u to some vertex v ∈ V with ̺ ~G1
(v) > ̺~G2

(v) such that reversing this path

in ~G1 results in a k-arc-connected digraph. This result has interesting consequences,
for example when restricted to smooth k-arc-connected orientations (which is not de-
stroyed by such a reorientation) then it is equivalent with the following statement: for

a 2k-edge-connected graph G the family T := {T+
~G

: ~G is a smooth k-arc-connected

orientation of G} is the base family of a matroid. Another consequence of the strict
reorientation property is that k-arc-connected orientations of a graph satisfy the so
called linkage property. In this section we investigate whether any of the above prop-
erties hold for well-balanced orientations.

First we investigate the matroid property:

Question 14. T := {T+
~G

: ~G ∈ Ob(G)} is the base family of a matroid.

Counter-example 14 Let G, ~G ∈ Ob(G), X, Y and Z be as in Figure 5. Then
←−
G ∈ Ob(G) hence B1 := {a, b, c} and B2 := {x, y, z} are in T . Suppose that T is
the base family of a matroid. Then for c ∈ B1 − B2 there must exist u ∈ B2 − B1

such that B1 − {c} + {u} ∈ T , by symmetry we may suppose that {a, b, x} ∈ T .

Then there exists ~G′ ∈ Ob(G) so that T+
~G′

= {a, b, x}. Whence, by (10) and (1),

1=bG(X)≥f ~G′(X)=
∑

u∈X f ~G′(u)=3, contradiction.

We can see from the previous proof that the reorientation property in the strict
sense as introduced above is not true for well-balanced orientations. A weakening of
the reorientation property is formulated by the following question:

Question 15. Let ~Ga, ~Gb ∈ Ow(G). Then there exist ~G0 = ~Ga, ~G1, ..., ~Gl = ~Gb ∈

Ow(G) such that ~Gk is obtained from ~Gk−1 by reversing a directed path or a directed
cycle (1 ≤ k ≤ l).

Question 15 is an open problem. However, a less weak reorientation property was
shown not to hold in [1], namely the following statement was disproved there: if
~G1, ~G2 ∈ Ow(G) such that ∃x ∈ V (G) with ̺ ~G1

(x) 6= ̺ ~G2
(x) then ∃u, v ∈ V (G) with

̺ ~G1
(u) < ̺~G2

(u) and ̺ ~G1
(v) > ̺~G2

(v) such that reversing a directed path in ~G1 from
u to v results in another well-balanced orientation. We recall that, by Frank [6], the
answer for Question 15 is affirmative for global edge-connectivity.

Now we investigate whether the linkage property holds for well-balanced orienta-
tions.

Question 16. Let l, u : V → Z+
0 such that l(v) ≤ u(v) for all v ∈ V . Then there

exists ~G ∈ Ow(G) such that l(v) ≤ ̺ ~G(v) ≤ u(v) ∀v ∈ V if and only if there exist
~G1, ~G2 ∈ Ow(G) such that l(v) ≤ ̺ ~G1(v) ∀v ∈ V and ̺ ~G2(v) ≤ u(v) ∀v ∈ V.

Counter-example 16 Let G, ~G1 := ~G, ~G2 :=
←−
G ∈ Ow(G), X, Y and Z as in

Figure 5. Let the functions l and u be defined as follows: l(a) = l(b) = 2 and
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l(t) = ⌊dG(t)
2
⌋ ∀t ∈ V − a − b, u(c) = 1 and u(t) = ⌈dG(t)

2
⌉ ∀t ∈ V − c. Then

l(v) ≤ ̺ ~G1(v) ∀v ∈ V and ̺ ~G2(v) ≤ u(v) ∀v ∈ V. Let ~G3 ∈ Ow(G) such that
l(v) ≤ ̺ ~G3(v) ∀v ∈ V. Recall that bG(X) = bG(Y ) = bG(Z) = 1. Then, by Claim 3.5,
1 = bG(X) ≥ f ~G3(X) = f ~G3(x)+f ~G3(p)+f ~G3(a)+f ~G3(b)+f ~G3(r) = f ~G3(x)+0+1+1+0,
so f ~G3(x) ≤ −1 and hence f ~G3(x) = −1. Similarly, f ~G3(y) = f ~G3(z) = −1. Then, since
f ~G3(V ) = 0, f~G3(c) = 1, that is ̺ ~G3(c) = 2 > 1 = u(c). Thus there is no well-
balanced orientation of G whose in-degree function satisfies both the lower and upper
bounds.

Question 16 is valid for the global case by Frank [5]. This follows from the facts that
the in-degree vectors of k-arc-connected orientations form a base-polyhedron and for
such polyhedra the linkage property holds, but as mentioned before it follows easily
from the strict reorientation property, too.
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