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A note on parity constrained orientations

Tamás Király⋆ and Jácint Szabó⋆⋆

Abstract

This note extends the results of Frank, Jordán, and Szigeti [1] on parity
constrained orientations with connectivity requirements. Given a hypergraph
H, a non-negative intersecting supermodular set function p, and a preferred
in-degree parity for every node, a formula is given on the minimum number of
nodes with wrong in-degree parity in an orientation of H covering p. It is shown
that the minimum number of nodes with wrong in-degree parity in a strongly
connected orientation cannot be characterized by a similar formula.

1 Introduction

In [1], Frank, Jordán, and Szigeti proved that the existence of a parity-constrained
k-rooted-connected orientation of a graph can be characterized by a partition-type
condition. In this note it is shown that the requirement of k-rooted-connectivity can
be replaced by any requirement given by a non-negative intersecting supermodular set
function. We also extend the characterization to hypergraphs, and show a min-max
formula on the minimal number of nodes violating the parity condition. The proof is
based on the ideas in [1]. In the last chapter we show that it is not possible to give a
similar characterization for parity-constrained strongly connected orientations.

For a hypergraph H = (V, E) and a set X ⊆ V , iH(X) denotes the number of
hyperedges of H spanned by X. For a partition F , eH(F) denotes the number of
cross-hyperedges of H; in other words,

eH(F) = |E| −
∑

X∈F

iH(X). (1)

A directed hypergraph consists of hyperarcs: hyperedges that have one node des-
ignated as head node. An orientation of a hypergraph H is a directed hypergraph
obtained by selecting a node from each hyperedge of H as head node. For a directed
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Pázmány Péter sétány 1/C, Budapest, Hungary, H-1117. e-mail: tkiraly@cs.elte.hu . Supported
by the Hungarian National Foundation for Scientific Research, OTKA T037547 and OTKA N034040.
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hypergraph D = (V,A) and a set X ⊆ V , ̺D(X) denotes the number of hyperarcs in
D which have their head node inside X and have at least one node outside of X.

A set function p : 2V → Z is called intersecting supermodular if

p(X) + p(Y ) ≤ p(X ∩ Y ) + p(X ∪ Y )

holds whenever X ∩ Y 6= ∅. A set function p : 2V → Z is monotone decreasing if
p(X) ≥ p(Y ) whenever ∅ 6= X ⊆ Y . We always assume that p(∅) = 0. Clearly,
if p(V ) = 0 and p is monotone decreasing, then p is non-negative. For intersecting
supermodular functions the converse is also true:

Claim 1.1. If p is intersecting supermodular, non-negative, and p(V ) = 0, then p is
monotone decreasing.

Proof. Let ∅ 6= X ( Y ⊆ V , and let Z := (V − Y ) ∪ X. By the intersecting
supermodularity and non-negativity of p, p(Y ) ≤ p(Y )+p(Z) ≤ p(Y ∩Z)+p(Y ∪Z) =
p(X) + p(V ) = p(X).

An orientation D = (V,A) of a hypergraph H = (V, E) covers a set function p if
̺D(X) ≥ p(X) for every X ⊆ V . If the in-degrees of the orientation are specified,
then the following is true (see e.g. [2]):

Lemma 1.2. Let H = (V, E) be a hypergraph, p : 2V → Z+ a non-negative set
function, and m : V → Z+ an in-degree specification such that m(V ) = |E|. Then H

has an orientation covering p such that the in-degree of each node v ∈ V is m(v) if
and only if

m(X) ≥ iH(X) + p(X) for every X ⊆ V .

For non-negative intersecting supermodular set functions, the following can be
proved using basic properties of polymatroids:

Theorem 1.3. Let H = (V, E) be a hypergraph, and p : 2V → Z+ an intersecting
supermodular and non-negative set function. Then H has an orientation covering p

if and only if

eH(F) ≥
∑

X∈F

p(X) for every partition F . (2)

2 Main result

Let H = (V, E) be a hypergraph, T ⊆ V a fixed set, and p : 2V → Z a set function
such that p(V ) = 0. An orientation of H is called (p, T )-feasible if it covers p and
the in-degree of v ∈ V is odd if and only if v ∈ T . A set X ⊆ V is called even
if |X ∩ T | + iH(X) + p(X) is even; X is called odd if |X ∩ T | + iH(X) + p(X) is
odd (the notion of odd and even sets will be used with respect to different H, T ,
and p values, but the actual meaning will always be clear from the context). Clearly,
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̺D(X) ≥ p(X) + 1 must hold for an odd set X in a (p, T )-feasible orientation of H.
We define the following set function:

pT (X) :=

{

p(X) if X is even,

p(X) + 1 if X is odd.
(3)

Note that pT depends on H too. The definition implies that

pT (X) ≡ |X ∩ T | + i(X) mod 2 (4)

for every X ⊆ V . Given a partition F , the value

µT (F) :=
∑

Z∈F

pT (Z) − eH(F)

is called the deficiency of F , which depends also on H and p.

Claim 2.1. For given H, T , and p, the deficiency of every partition has the same
parity.

Proof. According to (1), the deficiency of a partition F has the same parity as |E| +
∑

Z∈F
iH(Z) +

∑

Z∈F
pT (Z), which by (4) has the same parity as |E| + |T |.

It is easy to see that if an orientation D of H is (p, U)-feasible for some U ⊆ V ,
then |T∆U | ≥ max{µT (F) : F is a partition}. The main result of this note is that if
p is non-negative, intersecting supermodular, and there exists an orientation covering
p, then equality can be attained.

Theorem 2.2. Let H = (V, E) be a hypergraph, T ⊆ V a fixed set, and p : 2V →
Z+ an intersecting supermodular and non-negative set function for which p(V ) = 0.
Suppose that H has an orientation covering p, i.e. (2) holds. Then there exists a set
U ⊆ V such that

|T∆U | = max{µT (F) : F is a partition} (5)

and H has a (p, U)-feasible orientation.

Proof. Indirectly, let us consider a counterexample where |V | + |E| is minimal. A
partition F is called non-trivial if F 6= {V }. Let µ := max{µT (F) : F is a non-trivial
partition}. If µ is negative and odd, then the deficiency of the trivial partition is 1.
Let us delete an arbitrary hyperedge from H. By induction, the remaining hypergraph
has a (p, T )-feasible orientation. By adding the deleted hyperedge oriented arbitrarily,
we get an orientation satisfying (5).

If µ is negative and even, then we delete an arbitrary hyperedge e from H, and
let T ′ := T∆{v} for some v ∈ e. By induction, this hypergraph has a (p, T ′)-feasible
orientation. By adding the hyperarc e with head v, we get a (p, T )-feasible orientation.

In the following we assume that µ is non-negative. Let F∗ = {V1, . . . , Vt} be a non-
trivial partition of maximal cardinality for which µT (F∗) = µ holds. Let H∗ = (V∗, E∗)
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denote the hypergraph obtained by contracting each partition member Vi to a node
vi, let p∗ denote the contracted set function, and let T∗ ⊆ V∗ consist of the nodes vi

for which |Vi ∩ T | + iH(Vi) is odd (thus pT∗

∗ (vi) = pT (Vi) for every i). It follows from
the choice of F∗ that

∑

v∈X
pT∗

∗ (v) − pT∗

∗ (X) − iH∗
(X) is non-negative and even for

every X ⊆ V∗.
First we transform T into a set U such that |T∆U | = µ,

∑

t

i=1 pU∗

∗ (vi) = |E∗|, and
∑

v∈X
pU∗

∗ (v) − pU∗

∗ (X) − iH∗
(X) ≥ 0 for every X ⊆ V∗. If µ = 0 then U := T

is appropriate, so suppose that µ > 0. An even set X ⊆ V∗ is called critical if
∑

v∈X
pT∗

∗ (v) − pT∗

∗ (X) − iH∗
(X) = 0; thus every even singleton is critical. By the

intersecting supermodularity of p, the intersection and union of intersecting critical
sets are critical. If every node of V∗ is covered by a critical even set, then there is a
partition of V∗ consisting of critical even sets, which induces a partition on V that
violates (2). Thus there is an odd singleton vi ∈ V∗ that is not covered by a critical

even set. Let T ′ := T∆{v} for an arbitrary v ∈ Vi. Then
∑

t

i=1 p
T ′

∗

∗ (vi) = |E∗|+ µ− 1,

and
∑

v∈X
p

T ′

∗

∗ (v) − p
T ′

∗

∗ (X) − iH∗
(X) ≥ 0 holds for every X ⊆ V∗. If we repeat the

above procedure µ times, we obtain the required U .

Claim 2.3. There exists a (p∗, U∗)-feasible orientation D∗ of H∗ for which the in-
degree of vi is pU∗

∗ (vi) (i = 1, . . . , t).

Proof. We know that
∑

t

i=1 pU∗

∗ (vi) = |E∗|. Lemma 1.2 implies that a good orientation
exists if and only if

∑

v∈X
pU∗

∗ (v) ≥ pU∗

∗ (X)+iH∗
(X) for every X ⊆ V∗. This is satisfied

due to the way U was constructed.

Let D∗ be a fixed (p∗, U∗)-feasible orientation of H∗, and let D0 denote the directed
hypergraph on V corresponding to the hyperarcs of D∗. From now on, the parity of
sets is determined with respect to U or U∗. The next step is to show that it is possible
to obtain a directed hypergraph D′

∗ by deleting exactly one hyperarc entering each
odd singleton {vi}, such that ̺D′

∗
(X) ≥ p∗(X) still holds for every X ⊆ V∗. Let {vi}

be an odd singleton. If a hyperarc a with head vi cannot be deleted, then there exists
an even set Xa ⊆ V∗ such that a enters Xa and ̺D∗

(Xa) = p∗(Xa). We call such a
set tight – notice that every tight set is even. Since D∗ is a feasible orientation and
p∗ is intersecting supermodular, the intersection and union of intersecting tight sets
are also tight sets. Thus if no hyperarc with head vi can be deleted, then there exists
a tight set X ⊆ V∗ such that every hyperarc of D∗ with head vi enters X. But this
is impossible, since ̺D∗

(X) = p∗(X) ≤ p(Vi) < pU(Vi) = ̺D∗
(vi) by the monotone

decreasing property of p and the fact that Vi is an odd set. Therefore we can delete a
hyperarc a with head vi, and change U∗ by adding/deleting vi, so that {vi} becomes
an even set.

By repeating the above operation for every odd singleton {vi} (always considering
the updated parameters when deciding the parity of sets), we get a directed hyper-
graph D′

∗. Let D′
0 denote the directed hypergraph on V corresponding to the hyperarcs

of D′
∗, let H ′ denote the hypergraph obtained from H by deleting the hyperedges cor-

responding to hyperarcs in D0 − D′
0, and let U ′ be the new parity requirement set,

i.e. U ′ := U∆{v : ̺D0−D′

0
(v) = 1}. It is easy to see that ̺D′

0
(X) ≥ p(X) holds if

X is the union of some members of F∗, and ̺D′

0
(Vi) = p(Vi) = pU ′

(Vi) for every i.
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Furthermore, if D′
0 can be extended to a (p, U ′)-feasible orientation of H ′, then D0

can be extended similarly to a (p, U)-feasible orientation of H.
In the following we construct an orientation of H[Vi] for every i, which together

with D′
0 will give a (p, U ′)-feasible orientation of H ′. Let pi : 2Vi → Z be defined as

pi(X) := p(X) − ̺D′

0
(X) (X ⊆ Vi).

Then pi is intersecting supermodular, monotone decreasing, and pi(Vi) = 0 since
̺D′

0
(Vi) = p(Vi). We define Ui ⊆ Vi by

Ui := (U ′ ∩ Vi)∆{v ∈ Vi : ̺D′

0
(v) ≡ 1 mod 2}.

Let pUi

i
: 2Vi → Z be the set function defined similarly to (3) but with respect to

H[Vi], pi, and Ui.

Claim 2.4. The following holds for each Vi and for every partition F of Vi:

eH[Vi](F) ≥
∑

Z∈F

pUi

i
(Z). (6)

Proof. Suppose that there is a partition F for which the inequality does not hold.
Then eH[Vi](F) ≤

∑

Z∈F
pUi

i
(Z)− 2 by Claim 2.1. We define the following partition of

V : F i := F∪F∗−{Vi}. We consider the original deficiency of F i: µT (F i) = µT (F∗)−
pT (Vi)+

∑

Z∈F
pT (Z)−eH[Vi](F) ≥ µT (F∗)+

∑

Z∈F
pUi

i
(Z)−eH[Vi](F)−2 ≥ µT (F∗) =

µ, since
∑

Z∈F
pUi

i
(Z) ≤

∑

Z∈F
pT (Z)−̺D′

0
(Vi)+1 ≤

∑

Z∈F
pT (Z)−pT (Vi)+2. Thus

F i would be a partition of deficiency µ with more elements than F∗, in contradiction
with the way F∗ was chosen.

By induction, Theorem 2.2 is true for H[Vi], pi, and Ui. Thus Claim 2.4 implies
that there is an orientation Di of H[Vi] such that ̺Di

(X) ≥ pi(X) for every X ⊆ Vi,
and ̺Di

(v) is odd if and only if v ∈ Ui.
Let D′ be the directed hypergraph obtained as the union of D′

0 and D1, . . . , Dt.
The above property means that ̺D′(X) ≥ p(X) if X ⊆ Vi for some i, and ̺D′(v) is
odd if and only if v ∈ U ′. The construction method of D′

0 implies that ̺D′(X) ≥ p(X)
also holds if X is the union of some members of F∗.

Suppose that there are sets for which ̺D′(X) < p(X); let X be such a set, with
the property that X ⊆ Vi or Vi ⊆ X or X ∩ Vi = ∅ holds for a maximum number of
members of F∗. There must be a member Vi of F∗ for which none of those relations
are true, since X is neither a subset of a member of F∗, nor the union of some members
of F∗. Since ̺D′(Vi) = p(Vi), the intersecting supermodularity of p implies that either
̺D′(X ∩ Vi) < p(X ∩ Vi) or ̺D′(X ∪ Vi) < p(X ∪ Vi). But both cases are impossible
due to the way X was chosen.

We obtained that D′ is a (p, U ′)-feasible orientation of H ′. This means that if D

is the directed hypergraph obtained as the union of D0 and D1, . . . , Dt, then D is a
(p, U)-feasible orientation of H. This completes the proof of Theorem 2.2
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3 Remarks

The Berge-Tutte formula on the size of a maximum matching in a graph G = (V,E)
easily follows from Theorem 2.2. To see this, we define the graph G′ = (V ′, E ′) by
adding one node ve to V for every e ∈ E, and by replacing every edge e = uv in E

by edges uve and vve. For v ∈ V , let p({v}) := dG(v) − 1, and let p(X) := 0 on
every other set. Let T consist of the nodes in V for which dG(v)− 1 is odd. It is easy
to see that every orientation of G′ covering p determines a matching of G (an edge
e = uv is in the matching if the orientation contains the directed edges uve and vve),
and the number of nodes not covered by the matching equals the number of nodes
that do not match the parity-specification T . Therefore Theorem 2.2 implies that if
F is a partition of V ′ for which µT (F) :=

∑

Z∈F
pT (Z) − eG′(F) is maximal, then

2ν(G) ≥ |V | − µT (F). The following Claim proves the Berge-Tutte formula.

Claim 3.1. Let W := {v ∈ V : {v} ∈ F}. then

µT (F) ≤ oddG(W ) − |W |, (7)

where oddG(W ) denotes the number of components of G[V −W ] having an odd number
of nodes. Thus 2ν(G) ≥ |V | + |W | − oddG(W ).

Proof. Let F ′ consist of the members of F which are not singletons in W . Then
p(X) = 0 for every X ∈ F ′. We can assume that there is no edge between two
members of F ′, otherwise we can replace them by their union. By this assumption,
the number of sets X ∈ F ′ for which pT (X) = 1 is at most oddG(W ). Thus µT (F) =
∑

Z∈F
pT (Z) − eG′(F) =

∑

v∈W
(dG(v) − 1) +

∑

Z∈F ′ p
T (Z) − eG′(F) ≤ oddG(W ) −

|W |.

It the next paragraphs we describe a few negative results concerning possible gen-
eralizations of Theorem 2.2. First, let us state a corollary which follows easily from
Theorem 2.2.

Corollary 3.2. Let H = (V, E) be a hypergraph, T ⊆ V a fixed set, and p : 2V →
Z+ an intersecting supermodular and non-negative set function for which p(V ) = 0.
Suppose that there exists an orientation of H covering pT (as defined in (3)). Then
there exists a (p, T )-feasible orientation of H.

One may try to extend this corollary to more general set functions. A possibility is
to include upper bounds on the in-degrees of the nodes (which may violate intersecting
supermodularity). However, Frank, Sebő, and Tardos [3] showed that if p consists of
lower and upper bounds on the in-degrees of nodes, then the equivalent of Corollary
3.2 is not necessarily true.

Another problem that is not contained in the intersecting supermodular case is
to find a strongly connected orientation of a graph. In this case p(X) equals 1 for
every ∅ 6= X ( V . In the following we describe an example where the equivalent of
Corollary 3.2 for strongly connected orientations does not hold.

Let G be the graph on the left side of Figure 1, let T be the set of black nodes. Then
G has no (p, T )-feasible orientation (i.e. it has no strongly connected orientation where

EGRES Technical Report No. 2003-11



References 7

X

Y Y

Z

t

s

Figure 1

T is the set of nodes with odd in-degree). To see this, observe that in a (p, T )-feasible
orientation every node of X must have at least 2 in-edges, every node of Z must have
at least 2 out-edges, and every node of Y must either have an in-edge coming from X,
or an out-edge going to Z. Thus the graph must have at least 2|X|+ 2|Z|+ |Y | = 38
edges, but it has only 36.

On the other hand, G has an orientation covering pT , as shown on the right side
of Figure 1. It is easy to check that the orientation is strongly connected, and the
in-degree parity is incorrect only at the nodes of Y . Thus it suffices to show that the
in-degree of every set separating Y is at least 2. This can be seen by checking that
there are 2 edge-disjoint paths from s to any v ∈ Y , there are 2 edge-disjoint paths
from any v ∈ Y to t, and there are 2 edge-disjoint paths from t to s.

References

[1] A. Frank, T. Jordán, Z. Szigeti, An orientation theorem with parity conditions,
Discrete Applied Mathematics 115 (2001), 37–45.
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