Egerváry Research Group on Combinatorial Optimization

TECHNICAL REPORTS

TR-2003-11. Published by the Egrerváry Research Group, Pázmány P. sétány 1/C, H-1117, Budapest, Hungary. Web site: www.cs.elte.hu/egres. ISSN 1587-4451.

A note on parity constrained orientations

Tamás Király and Jácint Szabó

December 2003

A note on parity constrained orientations

Tamás Király* and Jácint Szabó**

Abstract

This note extends the results of Frank, Jordán, and Szigeti [1] on parity constrained orientations with connectivity requirements. Given a hypergraph H, a non-negative intersecting supermodular set function p, and a preferred in-degree parity for every node, a formula is given on the minimum number of nodes with wrong in-degree parity in an orientation of H covering p. It is shown that the minimum number of nodes with wrong in-degree parity in a strongly connected orientation cannot be characterized by a similar formula.

1 Introduction

In [1], Frank, Jordán, and Szigeti proved that the existence of a parity-constrained k-rooted-connected orientation of a graph can be characterized by a partition-type condition. In this note it is shown that the requirement of k-rooted-connectivity can be replaced by any requirement given by a non-negative intersecting supermodular set function. We also extend the characterization to hypergraphs, and show a min-max formula on the minimal number of nodes violating the parity condition. The proof is based on the ideas in [1]. In the last chapter we show that it is not possible to give a similar characterization for parity-constrained strongly connected orientations.

For a hypergraph $H = (V, \mathcal{E})$ and a set $X \subseteq V$, $i_H(X)$ denotes the number of hyperedges of H spanned by X. For a partition \mathcal{F} , $e_H(\mathcal{F})$ denotes the number of cross-hyperedges of H; in other words,

$$e_H(\mathcal{F}) = |\mathcal{E}| - \sum_{X \in \mathcal{F}} i_H(X).$$
(1)

A directed hypergraph consists of hyperarcs: hyperedges that have one node designated as head node. An orientation of a hypergraph H is a directed hypergraph obtained by selecting a node from each hyperedge of H as head node. For a directed

^{*}MTA-ELTE Egerváry Research Group, Department of Operations Research, Eötvös University, Pázmány Péter sétány 1/C, Budapest, Hungary, H-1117. e-mail: tkiraly@cs.elte.hu. Supported by the Hungarian National Foundation for Scientific Research, OTKA T037547 and OTKA N034040.

^{**}Department of Operations Research, Eötvös University, Pázmány Péter sétány 1/C, Budapest, Hungary, H-1117. e-mail: jacint@cs.elte.hu . The author is a member of the MTA-ELTE Egerváry Research Group (EGRES). Supported by the Hungarian National Foundation for Scientific Research, OTKA T037547 and OTKA N034040.

hypergraph $D = (V, \mathcal{A})$ and a set $X \subseteq V$, $\rho_D(X)$ denotes the number of hyperarcs in D which have their head node inside X and have at least one node outside of X.

A set function $p: 2^V \to \mathbb{Z}$ is called *intersecting supermodular* if

$$p(X) + p(Y) \le p(X \cap Y) + p(X \cup Y)$$

holds whenever $X \cap Y \neq \emptyset$. A set function $p : 2^V \to \mathbb{Z}$ is monotone decreasing if $p(X) \ge p(Y)$ whenever $\emptyset \neq X \subseteq Y$. We always assume that $p(\emptyset) = 0$. Clearly, if p(V) = 0 and p is monotone decreasing, then p is non-negative. For intersecting supermodular functions the converse is also true:

Claim 1.1. If p is intersecting supermodular, non-negative, and p(V) = 0, then p is monotone decreasing.

Proof. Let $\emptyset \neq X \subsetneq Y \subseteq V$, and let $Z := (V - Y) \cup X$. By the intersecting supermodularity and non-negativity of $p, p(Y) \leq p(Y) + p(Z) \leq p(Y \cap Z) + p(Y \cup Z) = p(X) + p(V) = p(X)$.

An orientation $D = (V, \mathcal{A})$ of a hypergraph $H = (V, \mathcal{E})$ covers a set function p if $\rho_D(X) \ge p(X)$ for every $X \subseteq V$. If the in-degrees of the orientation are specified, then the following is true (see e.g. [2]):

Lemma 1.2. Let $H = (V, \mathcal{E})$ be a hypergraph, $p : 2^V \to \mathbb{Z}_+$ a non-negative set function, and $m : V \to \mathbb{Z}_+$ an in-degree specification such that $m(V) = |\mathcal{E}|$. Then H has an orientation covering p such that the in-degree of each node $v \in V$ is m(v) if and only if

$$m(X) \ge i_H(X) + p(X)$$
 for every $X \subseteq V$.

For non-negative intersecting supermodular set functions, the following can be proved using basic properties of polymatroids:

Theorem 1.3. Let $H = (V, \mathcal{E})$ be a hypergraph, and $p : 2^V \to \mathbb{Z}_+$ an intersecting supermodular and non-negative set function. Then H has an orientation covering p if and only if

$$e_H(\mathcal{F}) \ge \sum_{X \in \mathcal{F}} p(X) \quad \text{for every partition } \mathcal{F}.$$
 (2)

2 Main result

Let $H = (V, \mathcal{E})$ be a hypergraph, $T \subseteq V$ a fixed set, and $p : 2^V \to \mathbb{Z}$ a set function such that p(V) = 0. An orientation of H is called (p, T)-feasible if it covers p and the in-degree of $v \in V$ is odd if and only if $v \in T$. A set $X \subseteq V$ is called *even* if $|X \cap T| + i_H(X) + p(X)$ is even; X is called *odd* if $|X \cap T| + i_H(X) + p(X)$ is odd (the notion of odd and even sets will be used with respect to different H, T, and p values, but the actual meaning will always be clear from the context). Clearly, $\varrho_D(X) \ge p(X) + 1$ must hold for an odd set X in a (p, T)-feasible orientation of H. We define the following set function:

$$p^{T}(X) := \begin{cases} p(X) & \text{if } X \text{ is even,} \\ p(X) + 1 & \text{if } X \text{ is odd.} \end{cases}$$
(3)

Note that p^T depends on H too. The definition implies that

$$p^{T}(X) \equiv |X \cap T| + i(X) \mod 2 \tag{4}$$

for every $X \subseteq V$. Given a partition \mathcal{F} , the value

$$\mu_T(\mathcal{F}) := \sum_{Z \in \mathcal{F}} p^T(Z) - e_H(\mathcal{F})$$

is called the *deficiency* of \mathcal{F} , which depends also on H and p.

Claim 2.1. For given H, T, and p, the deficiency of every partition has the same parity.

Proof. According to (1), the deficiency of a partition \mathcal{F} has the same parity as $|\mathcal{E}| + \sum_{Z \in \mathcal{F}} i_H(Z) + \sum_{Z \in \mathcal{F}} p^T(Z)$, which by (4) has the same parity as $|\mathcal{E}| + |T|$.

It is easy to see that if an orientation D of H is (p, U)-feasible for some $U \subseteq V$, then $|T\Delta U| \ge \max\{\mu_T(\mathcal{F}) : \mathcal{F} \text{ is a partition}\}$. The main result of this note is that if p is non-negative, intersecting supermodular, and there exists an orientation covering p, then equality can be attained.

Theorem 2.2. Let $H = (V, \mathcal{E})$ be a hypergraph, $T \subseteq V$ a fixed set, and $p : 2^V \to \mathbb{Z}_+$ an intersecting supermodular and non-negative set function for which p(V) = 0. Suppose that H has an orientation covering p, i.e. (2) holds. Then there exists a set $U \subseteq V$ such that

$$|T\Delta U| = \max\{\mu_T(\mathcal{F}): \ \mathcal{F} \ is \ a \ partition\}$$
(5)

and H has a (p, U)-feasible orientation.

Proof. Indirectly, let us consider a counterexample where $|V| + |\mathcal{E}|$ is minimal. A partition \mathcal{F} is called *non-trivial* if $\mathcal{F} \neq \{V\}$. Let $\mu := \max\{\mu_T(\mathcal{F}) : \mathcal{F} \text{ is a non-trivial partition}\}$. If μ is negative and odd, then the deficiency of the trivial partition is 1. Let us delete an arbitrary hyperedge from H. By induction, the remaining hypergraph has a (p, T)-feasible orientation. By adding the deleted hyperedge oriented arbitrarily, we get an orientation satisfying (5).

If μ is negative and even, then we delete an arbitrary hyperedge e from H, and let $T' := T\Delta\{v\}$ for some $v \in e$. By induction, this hypergraph has a (p, T')-feasible orientation. By adding the hyperarc e with head v, we get a (p, T)-feasible orientation.

In the following we assume that μ is non-negative. Let $\mathcal{F}^* = \{V_1, \ldots, V_t\}$ be a non-trivial partition of maximal cardinality for which $\mu_T(\mathcal{F}^*) = \mu$ holds. Let $H_* = (V_*, \mathcal{E}_*)$

denote the hypergraph obtained by contracting each partition member V_i to a node v_i , let p_* denote the contracted set function, and let $T_* \subseteq V_*$ consist of the nodes v_i for which $|V_i \cap T| + i_H(V_i)$ is odd (thus $p_*^{T_*}(v_i) = p^T(V_i)$ for every i). It follows from the choice of \mathcal{F}^* that $\sum_{v \in X} p_*^{T_*}(v) - p_*^{T_*}(X) - i_{H_*}(X)$ is non-negative and even for every $X \subseteq V_*$.

First we transform T into a set U such that $|T\Delta U| = \mu$, $\sum_{i=1}^{t} p_{*}^{U_{*}}(v_{i}) = |\mathcal{E}_{*}|$, and $\sum_{v \in X} p_{*}^{U_{*}}(v) - p_{*}^{U_{*}}(X) - i_{H_{*}}(X) \geq 0$ for every $X \subseteq V_{*}$. If $\mu = 0$ then U := Tis appropriate, so suppose that $\mu > 0$. An even set $X \subseteq V_{*}$ is called *critical* if $\sum_{v \in X} p_{*}^{T_{*}}(v) - p_{*}^{T_{*}}(X) - i_{H_{*}}(X) = 0$; thus every even singleton is critical. By the intersecting supermodularity of p, the intersection and union of intersecting critical sets are critical. If every node of V_{*} is covered by a critical even set, then there is a partition of V_{*} consisting of critical even sets, which induces a partition on V that violates (2). Thus there is an odd singleton $v_{i} \in V_{*}$ that is not covered by a critical even set. Let $T' := T\Delta\{v\}$ for an arbitrary $v \in V_{i}$. Then $\sum_{i=1}^{t} p_{*}^{T'_{*}}(v_{i}) = |\mathcal{E}_{*}| + \mu - 1$, and $\sum_{v \in X} p_{*}^{T'_{*}}(v) - p_{*}^{T'_{*}}(X) - i_{H_{*}}(X) \geq 0$ holds for every $X \subseteq V_{*}$. If we repeat the above procedure μ times, we obtain the required U.

Claim 2.3. There exists a (p_*, U_*) -feasible orientation D_* of H_* for which the indegree of v_i is $p_*^{U_*}(v_i)$ (i = 1, ..., t).

Proof. We know that $\sum_{i=1}^{t} p_*^{U_*}(v_i) = |\mathcal{E}_*|$. Lemma 1.2 implies that a good orientation exists if and only if $\sum_{v \in X} p_*^{U_*}(v) \ge p_*^{U_*}(X) + i_{H_*}(X)$ for every $X \subseteq V_*$. This is satisfied due to the way U was constructed.

Let D_* be a fixed (p_*, U_*) -feasible orientation of H_* , and let D_0 denote the directed hypergraph on V corresponding to the hyperarcs of D_* . From now on, the parity of sets is determined with respect to U or U_* . The next step is to show that it is possible to obtain a directed hypergraph D'_* by deleting exactly one hyperarc entering each odd singleton $\{v_i\}$, such that $\varrho_{D'_*}(X) \ge p_*(X)$ still holds for every $X \subseteq V_*$. Let $\{v_i\}$ be an odd singleton. If a hyperarc a with head v_i cannot be deleted, then there exists an even set $X_a \subseteq V_*$ such that a enters X_a and $\varrho_{D_*}(X_a) = p_*(X_a)$. We call such a set *tight* – notice that every tight set is even. Since D_* is a feasible orientation and p_* is intersecting supermodular, the intersection and union of intersecting tight sets are also tight sets. Thus if no hyperarc with head v_i can be deleted, then there exists a tight set $X \subseteq V_*$ such that every hyperarc of D_* with head v_i enters X. But this is impossible, since $\varrho_{D_*}(X) = p_*(X) \le p(V_i) < p^U(V_i) = \varrho_{D_*}(v_i)$ by the monotone decreasing property of p and the fact that V_i is an odd set. Therefore we can delete a hyperarc a with head v_i , and change U_* by adding/deleting v_i , so that $\{v_i\}$ becomes an even set.

By repeating the above operation for every odd singleton $\{v_i\}$ (always considering the updated parameters when deciding the parity of sets), we get a directed hypergraph D'_* . Let D'_0 denote the directed hypergraph on V corresponding to the hyperarcs of D'_* , let H' denote the hypergraph obtained from H by deleting the hyperedges corresponding to hyperarcs in $D_0 - D'_0$, and let U' be the new parity requirement set, i.e. $U' := U\Delta\{v : \varrho_{D_0-D'_0}(v) = 1\}$. It is easy to see that $\varrho_{D'_0}(X) \ge p(X)$ holds if X is the union of some members of \mathcal{F}^* , and $\varrho_{D'_0}(V_i) = p(V_i) = p^{U'}(V_i)$ for every i. Furthermore, if D'_0 can be extended to a (p, U')-feasible orientation of H', then D_0 can be extended similarly to a (p, U)-feasible orientation of H.

In the following we construct an orientation of $H[V_i]$ for every *i*, which together with D'_0 will give a (p, U')-feasible orientation of H'. Let $p_i : 2^{V_i} \to \mathbb{Z}$ be defined as

$$p_i(X) := p(X) - \varrho_{D'_0}(X) \quad (X \subseteq V_i).$$

Then p_i is intersecting supermodular, monotone decreasing, and $p_i(V_i) = 0$ since $\rho_{D'_0}(V_i) = p(V_i)$. We define $U_i \subseteq V_i$ by

$$U_i := (U' \cap V_i) \Delta \{ v \in V_i : \varrho_{D'_0}(v) \equiv 1 \mod 2 \}.$$

Let $p_i^{U_i}: 2^{V_i} \to \mathbb{Z}$ be the set function defined similarly to (3) but with respect to $H[V_i], p_i$, and U_i .

Claim 2.4. The following holds for each V_i and for every partition \mathcal{F} of V_i :

$$e_{H[V_i]}(\mathcal{F}) \ge \sum_{Z \in \mathcal{F}} p_i^{U_i}(Z).$$
(6)

Proof. Suppose that there is a partition \mathcal{F} for which the inequality does not hold. Then $e_{H[V_i]}(\mathcal{F}) \leq \sum_{Z \in \mathcal{F}} p_i^{U_i}(Z) - 2$ by Claim 2.1. We define the following partition of $V: \mathcal{F}^i := \mathcal{F} \cup \mathcal{F}^* - \{V_i\}$. We consider the original deficiency of $\mathcal{F}^i: \mu_T(\mathcal{F}^i) = \mu_T(\mathcal{F}^*) - p^T(V_i) + \sum_{Z \in \mathcal{F}} p^T(Z) - e_{H[V_i]}(\mathcal{F}) \geq \mu_T(\mathcal{F}^*) + \sum_{Z \in \mathcal{F}} p_i^{U_i}(Z) - e_{H[V_i]}(\mathcal{F}) - 2 \geq \mu_T(\mathcal{F}^*) = \mu$, since $\sum_{Z \in \mathcal{F}} p_i^{U_i}(Z) \leq \sum_{Z \in \mathcal{F}} p^T(Z) - \varrho_{D'_0}(V_i) + 1 \leq \sum_{Z \in \mathcal{F}} p^T(Z) - p^T(V_i) + 2$. Thus \mathcal{F}^i would be a partition of deficiency μ with more elements than \mathcal{F}^* , in contradiction with the way \mathcal{F}^* was chosen.

By induction, Theorem 2.2 is true for $H[V_i]$, p_i , and U_i . Thus Claim 2.4 implies that there is an orientation D_i of $H[V_i]$ such that $\rho_{D_i}(X) \ge p_i(X)$ for every $X \subseteq V_i$, and $\rho_{D_i}(v)$ is odd if and only if $v \in U_i$.

Let D' be the directed hypergraph obtained as the union of D'_0 and D_1, \ldots, D_t . The above property means that $\varrho_{D'}(X) \ge p(X)$ if $X \subseteq V_i$ for some i, and $\varrho_{D'}(v)$ is odd if and only if $v \in U'$. The construction method of D'_0 implies that $\varrho_{D'}(X) \ge p(X)$ also holds if X is the union of some members of \mathcal{F}^* .

Suppose that there are sets for which $\rho_{D'}(X) < p(X)$; let X be such a set, with the property that $X \subseteq V_i$ or $V_i \subseteq X$ or $X \cap V_i = \emptyset$ holds for a maximum number of members of \mathcal{F}^* . There must be a member V_i of \mathcal{F}^* for which none of those relations are true, since X is neither a subset of a member of \mathcal{F}^* , nor the union of some members of \mathcal{F}^* . Since $\rho_{D'}(V_i) = p(V_i)$, the intersecting supermodularity of p implies that either $\rho_{D'}(X \cap V_i) < p(X \cap V_i)$ or $\rho_{D'}(X \cup V_i) < p(X \cup V_i)$. But both cases are impossible due to the way X was chosen.

We obtained that D' is a (p, U')-feasible orientation of H'. This means that if D is the directed hypergraph obtained as the union of D_0 and D_1, \ldots, D_t , then D is a (p, U)-feasible orientation of H. This completes the proof of Theorem 2.2

3 Remarks

The Berge-Tutte formula on the size of a maximum matching in a graph G = (V, E)easily follows from Theorem 2.2. To see this, we define the graph G' = (V', E') by adding one node v_e to V for every $e \in E$, and by replacing every edge e = uv in Eby edges uv_e and vv_e . For $v \in V$, let $p(\{v\}) := d_G(v) - 1$, and let p(X) := 0 on every other set. Let T consist of the nodes in V for which $d_G(v) - 1$ is odd. It is easy to see that every orientation of G' covering p determines a matching of G (an edge e = uv is in the matching if the orientation contains the directed edges uv_e and vv_e), and the number of nodes not covered by the matching equals the number of nodes that do not match the parity-specification T. Therefore Theorem 2.2 implies that if \mathcal{F} is a partition of V' for which $\mu_T(\mathcal{F}) := \sum_{Z \in \mathcal{F}} p^T(Z) - e_{G'}(\mathcal{F})$ is maximal, then $2\nu(G) \geq |V| - \mu_T(\mathcal{F})$. The following Claim proves the Berge-Tutte formula.

Claim 3.1. Let $W := \{v \in V : \{v\} \in \mathcal{F}\}$. then

$$\mu_T(\mathcal{F}) \le odd_G(W) - |W|,\tag{7}$$

where $odd_G(W)$ denotes the number of components of G[V-W] having an odd number of nodes. Thus $2\nu(G) \ge |V| + |W| - odd_G(W)$.

Proof. Let \mathcal{F}' consist of the members of \mathcal{F} which are not singletons in W. Then p(X) = 0 for every $X \in \mathcal{F}'$. We can assume that there is no edge between two members of \mathcal{F}' , otherwise we can replace them by their union. By this assumption, the number of sets $X \in \mathcal{F}'$ for which $p^T(X) = 1$ is at most $\operatorname{odd}_G(W)$. Thus $\mu_T(\mathcal{F}) = \sum_{Z \in \mathcal{F}} p^T(Z) - e_{G'}(\mathcal{F}) = \sum_{v \in W} (d_G(v) - 1) + \sum_{Z \in \mathcal{F}'} p^T(Z) - e_{G'}(\mathcal{F}) \leq \operatorname{odd}_G(W) - |W|$.

It the next paragraphs we describe a few negative results concerning possible generalizations of Theorem 2.2. First, let us state a corollary which follows easily from Theorem 2.2.

Corollary 3.2. Let $H = (V, \mathcal{E})$ be a hypergraph, $T \subseteq V$ a fixed set, and $p : 2^V \to \mathbb{Z}_+$ an intersecting supermodular and non-negative set function for which p(V) = 0. Suppose that there exists an orientation of H covering p^T (as defined in (3)). Then there exists a (p, T)-feasible orientation of H.

One may try to extend this corollary to more general set functions. A possibility is to include upper bounds on the in-degrees of the nodes (which may violate intersecting supermodularity). However, Frank, Sebő, and Tardos [3] showed that if p consists of lower and upper bounds on the in-degrees of nodes, then the equivalent of Corollary 3.2 is not necessarily true.

Another problem that is not contained in the intersecting supermodular case is to find a strongly connected orientation of a graph. In this case p(X) equals 1 for every $\emptyset \neq X \subsetneq V$. In the following we describe an example where the equivalent of Corollary 3.2 for strongly connected orientations does not hold.

Let G be the graph on the left side of Figure 1, let T be the set of black nodes. Then G has no (p, T)-feasible orientation (i.e. it has no strongly connected orientation where

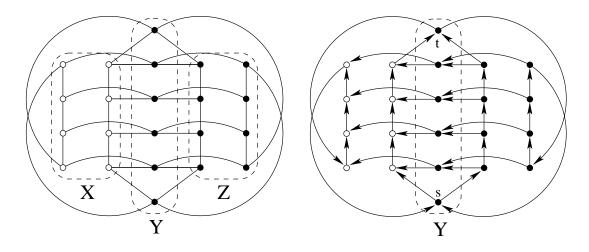


Figure 1

T is the set of nodes with odd in-degree). To see this, observe that in a (p, T)-feasible orientation every node of X must have at least 2 in-edges, every node of Z must have at least 2 out-edges, and every node of Y must either have an in-edge coming from X, or an out-edge going to Z. Thus the graph must have at least 2|X| + 2|Z| + |Y| = 38 edges, but it has only 36.

On the other hand, G has an orientation covering p^T , as shown on the right side of Figure 1. It is easy to check that the orientation is strongly connected, and the in-degree parity is incorrect only at the nodes of Y. Thus it suffices to show that the in-degree of every set separating Y is at least 2. This can be seen by checking that there are 2 edge-disjoint paths from s to any $v \in Y$, there are 2 edge-disjoint paths from any $v \in Y$ to t, and there are 2 edge-disjoint paths from t to s.

References

- A. Frank, T. Jordán, Z. Szigeti, An orientation theorem with parity conditions, Discrete Applied Mathematics 115 (2001), 37–45.
- [2] A. Frank, T. Király, Z. Király, On the orientation of graphs and hypergraphs, Discrete Applied Mathemathics 131 No. 2 (2003), 385–400.
- [3] A. Frank, A. Sebő, É. Tardos, Covering directed and odd cuts, Mathematical Programming Study 22 (1984), 99–112. 385–400.