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Abstract—The RISC-V architecture is a very attractive option
for developing application specific systems needing an affordable
yet efficient central processing unit. Post-silicon validation on
RISC-V applications has been done in industry for a while,
however documentation is scarce. This paper proposes a practical
low-cost post-silicon testing framework applied to a RISC-V
RV32I based microcontroller. The framework uses FPGA-based
emulation as a cornerstone to test the microcontroller before
and after its fabrication. The platform only requires a handful
of elements like the FPGA, a PC, the fabricated chip and some
discrete components, without losing the capacity to functionally
validate the design under test and save development testing time
by using a re-utilize philosophy.

Index Terms—Post-silicon validation, testing, FPGA, RISC-
V, microcontroller, EDA tools, architecture, test generation, I/O
protocols, testing-platforms, SPI.

I. INTRODUCTION AND RELATED WORK

The RISC-V architecture has become quite popular due to
its open-source nature and high configurability, which allows
it to meet the specifications of a wide range of applications.
Such features are particularly appealing to a growing number
of small design groups using the RISC-V architecture as a
stepping stone for their particular ventures. However, devel-
oping a RISC-V core can still be challenging when trying to
assure proper testing and validation on a budget.

It is well known that the increasing complexity of digital
systems and their tight development schedules place strict
demands on proper design validation. Moreover, simulating
extracted post-place-and-route models can not always detect
timing related structural errors. Industry’s post-silicon valida-
tion environments are often custom-based to the characteristics
of their already closed design-under-test (DUT), and most of
them are very expensive to replicate. FPGA verification of
RTL designs provides a faster avenue for the debugging of
architectural problems, particularly in microprocessor-based
designs, when thorough testing implies the execution of soft-
ware tests on them as well. Short on financial and human

resources, we decided to focus the post-silicon validation
efforts of our RISC-V core employing FPGA as the testing
platform. Additionally, we decided to re-utilize what we could
of the functional verification environments’ elements used on
previous steps of the design flow to save time and resources.

There are several publications related to the design and use
of a RISC-V based processors for specific applications. For
instance, [1], [2], [3], [4], [5] and [6], describe their designs
or how they used their respective RISC-V-based processors or
microcontrollers to address a particular problem. Information
about pre-silicon functional verification also exists, yet it is
scarcer. Publications like [7], [8], [9] and [10] share some of
their functional verification flows and techniques applied to
RISC-V based processors. Finding publications about specific
post-silicon testing strategies of any RISC-V based microcon-
troller was more difficult. For instance, authors of [11], focus
their paper on the integration and evaluation of DFT modules
on a RISC-V SOC, but without addressing the general post-
silicon testing framework.

Regarding FPGA for emulation and post-silicon validation,
there is plenty of literature about alternative approaches, such
as [12], where a test generator for a microcontroller on-
silicon validation was proposed. In [13], a post-silicon method
to validate memory consistency in multiprocessor systems
was presented. Authors of [14] implemented an interesting
framework on a FPGA that tried to reach functional ver-
ification levels of observability by adding some scan cells
to a specific design. Other works, like [15], [16] and [17],
emulated different types of hardware pieces on FPGAs for
testing purposes too, while [18] and [19] proposed using a
FPGA as a low-cost ATE tool. In [20], a FPGA was used as
a mean to capture data from a DUT, and at [21] an automated
test methodology to test a FPGA was proposed.

But none of the former publications directly address the
particularities of RISC-V post-silicon validation, this may
be because of the still ongoing maturation process of the
RISC-V toolchains and the standard itself. On the RISC-V978-1-6654-1510-1/21/$31.00 ©2021 IEEE
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community websites you can find some information for pre-
silicon verification, however, RISC-V post-silicon validation
documentation is rare. The objective of this paper is to propose
a post-silicon validation framework amenable to other small
design groups with limited resources, using a RISC-V core as a
case study. A secondary objective, maybe not so technical but
still critical for the authors, is to promote a larger discussion on
the issue of post-silicon validation in the RISC-V community.
Especially as more and more RISC-V designs by small and
not so small teams move into the commercial arena, with
the consequential need for stronger, standardized post-silicon
validation flows.

II. THE RISC-V CORE INTERFACES OVERVIEW

Figure 1 describes the interfaces of the RISC-V based
microcontroller that is to be tested.

Figure 1. Chip-level description of the RISC-V microcontroller’s interfaces.

As illustrated, the microcontroller has three main interfaces:
a Serial Peripheral Interface (SPI) port [22], a Universal Asyn-
chronous Receiver-Transmitter (UART) port and a General
Purpose Input/Output (GPIO) port. The design intent is to
connect the microcontroller to a flash memory through the
SPI port.

From those three, the SPI port is in charge of handling an
external flash memory, where the microcontroller’s bootstrap
routine is stored. After bootloading, the flash memory serves
as a secondary data memory. The UART interface is a simple
port that uses a standard 19200 baud rate, with 8 data bits, 1
start bit, 1 stop bit and even parity. The main purpose of the
UART is to be able to communicate with the processor from
a PC. The GPIO ports are used to control displays connected
to the processor or to receive data from sensors.

III. FPGA EMULATION PHASE: THE BOOTLOADING
ARCHITECTURE

The testing process of the microcontroller was divided into
phases. Each phase represents a specific moment inside the
project development schedule. Figure 2 depicts the order in
which the proposed phases were executed.

The ”Functional/Formal Verification” and the ”Post-Layout
Validation” phases are considered pre-silicon testing, and as
such, they will not be covered in this article.

Now, because testing time is one of the bottlenecks inside
the VLSI design flow, we strove to re-utilize code and imple-
mentations as much as possible between steps, while trying to
debug one feature at a time to try to isolate hidden bugs.

Figure 2. Testing methodology used to test the RISC-V microcontroller.

The first step on our post-silicon testing was to define ”how”
were we going to test the microcontroller. The following
phases can vary depending on the needs of the project. For
our case, we decided to emulate the microcontroller and the
flash memory on a FPGA, using it as support to test the final
chip that was going to be integrated along with some displays
over a PCB.

The FPGA emulation not only is useful to design the post-
silicon tests for when the resulting fabricated chip comes back
from the foundry, but it also helps as a complemented to the
functional verification phase. As a matter of fact, this was
particularly helpful to identify structural bugs that have been
overlooked in previous phases of our project and they were
spotted when implementing the design on the FPGA.

Our goal with FPGA emulation was to try to replicate the
whole testing environment as if the chip has been already
fabricated and was ready for testing. In consequence, it was
necessary to emulate the flash memory and find a way to
ensure that tests were working as intended. However, ob-
servability during post-silicon phases is minimal, even more
so when no DFT modules are included inside the design.
Hence, the only way to see whats happening inside was
using peripherals connected to the UART and GPIO ports as
indicators. Figure 3 shows the general idea of this strategy.

Figure 3. Testing concept for the developed RISC-V microcontroller synthe-
sized inside a Nexys 4.

As depicted, a standard PC was enough for the testing
platform. The idea was to employ the PC as a USB/COM port
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receptor for the UART after implementing to design inside the
FPGA.

The microcontroller was an independent, easy to find, mod-
ule inside the top level of the testing architecture. This way,
the FPGA can easily be incorporated as a support driver/re-
ceiver into the final testing framework by removing only the
microcontroller module from the FPGA implementation, and
setting the SPI Port as an FPGA I/O connected to the real
fabricated chip, thus, saving testing development time.

To emulate the flash memory, two major RTL blocks were
proposed to implement its functionality as shown in figure 4.
The described boot loader module must emulate the flash
memory, generate the microcontroller’s clock and control the
bootstrap routine of the processor by clearing its reset input
signal.

Figure 4. Block-level micro-architecture of the boot loader module.

The test programs used on post-silicon phases were pre-
viously validated, compiled and linked in the needed HEX
format on the microcontroller’s functional verification envi-
ronment, saving more development time. This programs were
loaded into the instantiated flash memory emulator during the
FPGA synthesis stage.

The SPI interface controller is a synchronous block that
acts as ”slave” and receives commands from its ”master”, the
microcontroller. After that, it performs an action according
to the code received. This communication must match, the
functionality of the selected commercial flash memory. The
commands we needed were those related to read and write
operations, which can be found here [23]. Figure 5 illustrates
a command sent by the RISC-V microcontroller as it starts
booting.

Figure 5. Timing diagram of a command sent by the microcontroller through
the SPI port.

The SPI interface module had to capture this information. If
a read command came in, it should prepare the corresponding
data to be sent to the core, as depicted in Fig. 6.

To achieve the SPI functionality, a finite state machine was
implemented. This FSM was created under the intention that

Figure 6. Timing diagram of the boot loader response to a read command.

the SPI interface module could have two purposes: to monitor
and decode received comands through the MOSI input, and
to execute the captured command using the MISO output.
Figure 7 shows the state diagram of this FSM. Inside the
MOSI Mode state, the SPI controller waits for the microcon-
troller’s command. Otherwise, inside the MISO Mode state,
the SPI controller should resolve the command previously
received.

Figure 7. SPI Controller FSM. State change evaluation is triggered with
SCLK positive and negative edges.

Auxiliary counters and shift registers to capture the com-
mand, a combinational module to decode the command, a
counter to update the internal memory address, a clock gener-
ator using the FPGA 100 MHz clock as source, etc; were
ther digital blocks needed to achieve the emulation. Other
important note, is that The SPI Controller’s frequency was
set at 100 MHz, while the microcontroller’s frequency was
set at 20 MHz by our specification. As a result, the FSM and
counters are triggered with the slower SCLK line generated
by the microcontroller. Because of this, both positive and
negative edges were needed inside the FSM functionality to
avoid metastability. Figure 8 depicts the way both edges of the
SCLK were interpreted. During the positive edges, the master
reads the current data on the MISO line and, at same time,
the following data bit was requested to the internal memory.
On negative edges, the requested bit is set on the MISO line,
ready for the next positive edge. Edge detectors where needed
to identify the corresponding edge.

Figure 8. FSM SPI Controller functionality triggered by positive and negative
edges.
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IV. POST-SILICON TEST ELABORATION AND CHIP
TESTING PHASES

The most fundamental features we considered to be tested
were: the characteristics related with the compliance of the
microcontroller with the chosen RISC-V instruction subset
(RISC-V RV32I), that interruptions behaved as intended by
our specification, that all the I/O ports worked as expected
by their respective protocols, that data could be stored and
loaded from the internal memory and registers, and to ascertain
how much power consumption did the chip need. Most of the
required assembly code for this tests were already available
from functional verification.

Because of observability, the first thing that had to be tested
were the needed I/O ports working as specification checkers.
For instance, developing programs that, turn on and off LEDs
and may use the internal timer to toggle, and ”Hello World”
programs that sent a message through the UART port to the
PC. For UART monitoring we used RealTerm or LabVIEW
on the PC.

Once the I/O ports were tested to some degree, we were
ready to validate features that without DFT were difficult to
test, like, register bank checking, memory checking, interrup-
tions checking, etc. We also converted some of the pre-silicon
tests into post-silicon self-checking tests. This way, the same
test program checks its internal results and uses a LED or a
generated message as indicators to the user that the test has
passed or not. This way, we tested that that the microcontroller
could run the complete RISC-V RV32I instruction subset and
other internal features already mentioned.

Once the chip was fabricated, it was integrated into a PCB
subsystem with LEDs, an OLED display, an oscillator, the
flash memory and circuitry for voltage supply. Separate supply
rails allowed for the independent power measurement of
each voltage domain inside the microcontroller: the processor
core (1.8 V), memory (1.8 V) and pads (3.3 and 1.8 V).
Multiplexers were added to allow the use of reset, clock and
bootstrap signals either from the FPGA or from the discrete
components in the PCB.

The microcontroller was successfully tested on the PCB
re-using the post-silicon tests developed so far on the FPGA
emulation, with little adjustments on the testing environment
(just removing the DUT from the FPGA implementation).
Nonetheless, two more types of tests were developed for this
paper: a test for the emulation of a I2C interface via the GPIO
ports, and a bank of continuous tests to measure the micro-
controller’s power consumption. For the I2C test, a ”Hello
World” assembly program writes on the OLED display. The
program emulates the signaling required to handle the OLED’s
I2C protocol, using around 4 KB of the internal memory (our
internal memory size was 8 KB). Internal interrupts and timers
were used to generate the I2C clock, and its functionality
was emulated with an algorithm following a designed state
diagram. Figure 9 shows the microcontroller writing on the
OLED display.

The last group of tests were designed to loop the microcon-

Figure 9. ”Hello World” program on a OLED display, emulating the required
I2C protocol via software routines and the GPIO ports.

troller, while performing specific operations to measure the
average consumed current. Estimates of power consumption
per instruction or per type of instruction were generated,
as a result, we obtained an average power consumption of
1,67 mW. Idle current consumption was also obtained by
measuring current while maintaining the boot signal high,
so that the microcontroller could not boot up, on this state
it consumed 1,3 mW. Finally, static power consumption was
estimated measuring the current when the microcontroller was
powered on, without an active clock, resulting in 36 nW power
consumption. From simulations we have identified unexpected
power consumption on certain modules inside the microcon-
troller, said that, we strive to reduce significantly the power
consumption when computing on subsequent versions of the
microcontroller.

Summarizing the resources used in this framework, the only
physical components needed to replicate it are a FPGA, a PC
for monitoring, the fabricated chip (and PCB if wanted) and
some lesser display/support components. On the software side,
most of the employed software is free. Also, tests development
time can be greatly reduced if a recycling code approach like
the one used in this article is used. All, without losing the
capacity to test exhaustively the RISC-V microcontroller.

V. CONCLUSIONS

This paper proposed a low-cost post-silicon validation
framework to test a RISC-V RV32I microcontroller using
a FPGA for emulation and support as a study case. This
framework shows that is possible for small design teams in the
RISC-V community to take advantage of modern, standardized
verification and post-silicon techniques at a low cost. The pa-
per has included a detailed description of the employed testing
methodology, some architectural information about design and
implementation of the testing framework and integration of
all the components along with experimental results, using the
process of testing this DUT as a concept example to validate
the methodology. Our roadmap for future works includes:
adaptation of pre-silicon and post-silicon testing environments
to newer versions of the microcontroller, to develop software
applications to command on-the-fly the microcontroller from
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a PC and polishing the current framework to improve delivery
times.
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[10] A. Oleksiak, S. Cieślak, K. Marcinek, and W. A. Pleskacz, “Design and
verification environment for risc-v processor cores,” in 2019 MIXDES
- 26th International Conference ”Mixed Design of Integrated Circuits
and Systems”, 2019, pp. 206–209.

[11] W. Ramirez, M. Sarmiento, and E. Roa, “A flexible debugger for a
risc-v based 32-bit system-on-chip,” in 2020 IEEE 11th Latin American
Symposium on Circuits Systems (LASCAS), 2020, pp. 1–4.

[12] P. Moharikar and J. Guddeti, “Automated test generation for post silicon
microcontroller validation,” in 2017 IEEE International High Level
Design Validation and Test Workshop (HLDVT), 2017, pp. 45–52.

[13] B. W. Mammo, V. Bertacco, A. DeOrio, and I. Wagner, “Post-silicon
validation of multiprocessor memory consistency,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 34,
no. 6, pp. 1027–1037, 2015.

[14] F. Moraes, M. Moreira, C. Lucas, D. Corrêa, D. Cardoso, M. Mag-
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