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Abstract
Facultad de Ingeniería

Instituto de Computación

Magister en Informática

Enhancing web application attack detection using machine learning

by Rodrigo MARTÍNEZ

Despite all effort of the security community, for example initiatives as the OWASP

Top 10, it is a known fact that web applications are permanently being exposed to
attacks that exploit their vulnerabilities. Some web applications vulnerabilities can
only be discovered as a result of a process of trial and error performed by an at-
tacker. The identification and determination of a user’s behavior using attack detec-
tion techniques become crucial, these techniques assist in aspects such as preventing
attackers to identify/verify successfully the existence of vulnerabilities in applica-
tions and to minimize the number of false positives (non-malicious activity identi-
fied as such). A technological alternative for performing real-time attack analysis is
the use of a Web Application Firewall (WAF), systems that intercepts and inspects all
traffic between the web server and its clients, searching for attacks in the communi-
cation’s content. Most WAF works by using a set of statics rules defined to identify
attacks.

In this thesis, we analyze the use of machine learning techniques to enhance web
applications attack detection in MODSECURITY, an open source WAF that has became
a de facto standard implementation.

We first propose a characterization of the problem by defining different scenarios
depending on whether we have application’ specific or generic data, as well as, valid
and/or attack traffic available for training. We also analyze existing dataset to use in
this context and we have created our own dataset by capturing real traffic to a real
life application.

We finally present two supervised machine learning solutions. The first is a clas-
sic discrimination approach between two classes (valid traffic and attacks) [18]. The
second is a one-class classification solution for a more realistic scenario when only
valid data is available. In the one-class classification approach it is assumed that one
of the classes can be properly modeled using data from the training set (in our case
the valid traffic) while the other class (in our problem attacks) can not be modeled
by total or partial lack of training samples [33]. We present results using both ap-
proaches and compare them with MODSECURITY configured with the OWASP Core
Rule Set out of the box, which is the most widely deployed set of rules.
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Resumen
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Enhancing web application attack detection using machine learning

por Rodrigo MARTÍNEZ

A pesar de todos los esfuerzos de la comunidad de seguridad, por ejemplo, ini-
ciativas como el OWASP Top 10, es un hecho conocido que las aplicaciones web están
permanentemente expuestas a ataques que explotan sus vulnerabilidades. Algunas
de estas vulnerabilidades solo se pueden descubrir como resultado de un proceso de
ensayo y error realizado por un atacante. La identificación y determinación del com-
portamiento de un usuario utilizando técnicas de detección de ataques se vuelven
cruciales. Estas técnicas ayudan en aspectos tales como evitar que los atacantes iden-
tifiquen/verifiquen con éxito la existencia de vulnerabilidades en las aplicaciones,
así como minimizar el número de falsos positivos (actividad no maliciosa identi-
ficada como tal). Una alternativa tecnológica para realizar análisis de ataques en
tiempo real es el uso de un firewall de aplicaciones web (WAF por su siglas en in-
glés). Estos sistemas interceptan e inspeccionan el tráfico entre el servidor web y
sus clientes, buscando ataques en el contenido de la comunicación. La mayoría de
los WAF funcionan mediante el uso de un conjunto de reglas estáticas definidas para
identificar ataques.

En esta tesis, analizamos el uso de técnicas de aprendizaje automático para mejo-
rar la detección de ataques de aplicaciones web en MODSECURITY, un WAF de código
abierto que se ha convertido en un estándar de facto.

Primero, proponemos una caracterización del problema definiendo diferentes
escenarios dependiendo de si contamos para el entrenamiento con datos específicos
o genéricos de la aplicación, así como también tráfico válido o ataques. También
analizamos los conjuntos de datos públicos existentes para usar en este contexto y
hemos creado nuestro propio conjunto de datos capturando tráfico real sobre una
aplicación en producción.

Finalmente, presentamos dos soluciones de aprendizaje automático supervisado.
La primera es un enfoque clásico de discriminación entre dos clases (tráfico válido
y ataques) [18]. La segunda es una solución de clasificación de una clase (one-class)
para un escenario más factible cuando solo hay datos válidos disponibles. En la
clasificación de una clase se asume que una de las clases puede ser correctamente
modelada a partir de datos del conjunto de entrenamiento (en nuestro caso el trá-
fico válido) mientras que la otra clase (en nuestro problema los ataques) no puede
ser modelada por falta total o parcial de muestras de entrenamiento [33]. Presen-
tamos los resultados utilizando ambos enfoques y los comparamos con MODSECU-
RITY configurado con el OWASP Core Rule Set por defecto, que es el conjunto de
reglas más ampliamente utilizado.
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Chapter 1

Introduction

Out of the box software often does not easily adapt to the requirements posed by
the users, what makes it necessary the development of custom solutions that pro-
vide support for specific business processes. The potential of web applications in
this regard has allowed its use to spread significantly, the possibility of remote man-
agement and transparency from the technological platform has strongly encouraged
the development and use of them. It is a known fact though that web applications
are permanently being exposed to attacks that exploit their vulnerabilities.

Initiatives like the OWASP Top 10 [42] have greatly contributed to rise aware-
ness concerning the security of web applications but have not prevented the ever
increasing amount of web application (successful) attacks. For specific web applica-
tions it is the case that software vulnerabilities can only be discovered as a result of
a process of trial and error performed by an attacker. In this context, attack detec-
tion techniques become necessary. These techniques involve procedures that help
distinguishing between the behavior of a valid system user and a malicious agent.
The identification and determination of a user’s behavior should consider whether
each detected event is simply suspicious or actually it is an event that is part of an
attack. Attack detection techniques become crucial when determining appropriate
thresholds for response actions. These types of techniques assist in aspects such as
preventing attackers to identify/verify successfully the existence of vulnerabilities
in applications and to minimize the number of false positives (non-malicious activity
identified as such).

A technological alternative for performing attack detection is the use of a Web
Application Firewall (WAF). A WAF is a piece of software that intercepts and inspects
all the traffic between the web server and its clients, searching for attacks inside the
HTTP packet contents (a description of the protocol is presented in Section 2.1.1).
Once recognized, the suspicious packets may be processed in a different, secure way,
for instance being logged, suppressed or derived to a honeypot application.

An implementation of an open source WAF that has become a de facto standard is
MODSECURITY [58], which allows the analysis of the users requests and the applica-
tion responses by enabling real-time web application monitoring, logging and access
control. The actions MODSECURITY undertakes are driven by rules that specify, by
means of regular expressions, the contents of the HTTP packets to be spotted.

Different vendors provides rule sets for MODSECURITY (see Section 2.3), the most
widely deploy rule set is known as the OWASP Core Rule Set (OWASP CRS) [43], for
handling the most usual vulnerabilities included in [44]. However, an approach
only based on rules also has some drawbacks: rules are static and rigid by nature,
so the OWASP CRS usually produces a rather high rate of false positives, which in
some cases may be close to 40% [22]. Rule tuning is a time consuming and error
prone task that has to be manually performed for each specific web application. In
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traditional networks firewalls and IDS, the approach based on rules has been suc-
cessfully complemented with other machine learning-based tools, anomaly detec-
tion and other statistical approaches which provide higher levels of flexibility and
adaptability. Those approaches take advantage of sample data, from which the nor-
mal behavior of the web application can be learned, in order to spot suspicious sit-
uations which fall out of this nominal use (anomalies), and which could correspond
to on-going attacks.

1.1 Problem statement

The main objective of this thesis is to improve web application attack detection by
using machine learning techniques. More specifically, this dissertation addresses
two main problems, summarized as follows:

• In order to protect web applications by using machine learning techniques,
data is needed to train the models. In classic supervised classification tech-
niques this data has to be labeled in order to be used for training. Different
approaches could be used depending on the data at hand. We will propose
different scenarios to classify the approaches with the pros a cons to its use in
practical cases.

• As already mentioned, MODSECURITY combined with the OWASP CRS requires
rule tuning tasks before being able to protect web applications. We will pro-
pose machine learning models to complement the rule based approach in order
to:

– improve the OWASP CRS attack detection and
– diminish the false positive generated by the OWASP CRS to reduce the

initial time consuming tuning task.

1.2 Contributions and Publications

There are almost no solutions based on machine learning techniques to protect web
applications using WAF. Our contributions addressed this issue by validating the
use of classic machine learning techniques for this specific application. We also val-
idated, in the professional community1, the need to apply these type of techniques
to improve the difficulties they are having with the use of rules.

We propose a characterization of the problem by defining different scenarios de-
pending if we have valid and/or attack data available for training. These scenar-
ios allow to have different methods to deploy the models, varying from the more
complicated one where data with valid and attack requests of the application to be
protected is needed to generic methods where only one of attack or valid data is
required.

We then put forward the implementation of two approaches: first a two-class
approach for the scenario when valid and attack data is available; and second a one-
class solution when only valid data is at hand. The experimental results of both
approaches are presented and discussed showing that it is feasible to apply these
techniques in this context.

1After having private communications with one of the project leaders of the OWASP CRS, we were
invited to present our results at the OWASP CRS Summit held in London during the 2018 OWASP AppSec
Europe Conference
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All these contributions were published in the following articles:

• Betarte, G., Giménez, E., Martínez, R., & Pardo, Á. (2018). Machine learning-
assisted virtual patching of web applications. arXiv preprint arXiv:1803.05529.

• Martinez, R. (2018, October). Enhancing web application attack detection us-
ing machine learning. In 2018 8th Latin-American Symposium on Dependable
Computing, Student forum.

• Betarte, G., Pardo, Á., & Martínez, R. (2018, December). Web Application At-
tacks Detection Using Machine Learning Techniques. In 2018 17th IEEE In-
ternational Conference on Machine Learning and Applications (ICMLA) (pp.
1065-1072). IEEE.

• Betarte, G., Gimenez, E., Martinez, R., & Pardo, A. (2018, December). Improv-
ing Web Application Firewalls through Anomaly Detection. In 2018 17th IEEE
International Conference on Machine Learning and Applications (ICMLA)
(pp. 779-784). IEEE.

As we have already mentioned, the profesional community identifies the
need for this type of research, so we were invited to present our work in the
first OWASP CRS Summit held in London during the 2018 OWASP AppSec Europe
Conference [46]. At that conference, we presented the results of this thesis and our
proposal of alternative mechanisms to integrate MODSECURITY and the OWASP CRS

.

1.3 Outline

The structure of the rest of the thesis is as follows: Chapter 2 provides a primer on
web application, web application security and protection mechanisms. It also dis-
cusses the learning techniques we have applied. Related work is discussed in Chap-
ter 3. In Chapter 4 we present the analysis and design of the learning framework we
have used to carry out the experiments. Chapter 5 presents the implementation of
the framework. The experimental results are described and discussed in Chapter 6.
Further work and conclusions are presented in Chapter 7.
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Chapter 2

Background

This section provides a concise primer on web application, including the HTTP pro-
tocol, security issues and protecting mechanisms and briefly discusses the machine
learning techniques that have been used in this work.

2.1 Web applications and the HTTP protocol

A web application is a client-server software where the application itself is hosted
in a web server and the client is, usually, a web browser. Web applications are build
to provide functionalities to the client. This means that a key characteristic of web
applications is the interaction with the client. Typically, it is expected that web appli-
cation receive input from the client, processed by the server, and then returned the
results back to the client. A feature that every web application must comply with is
that the client-server communication is over the HTTP protocol.

Web applications are designed using a n-tier software architecture. The most
classic architecture is the 3-tiered application with: i) a presentation tier responsible
of the interaction with the user, which usually runs in the web browser; ii) a business
tier that implements the business logic and runs in the web server and iii) a storage
tier that is usually a database. As web application have evolved and they brought
complex functions to the clients, architectures had to evolved too, usually splitting
the business or storage tier in different tiers or components with more specific func-
tionalities. For example, some data could be stored in a SQL database, but docu-
ments are stored in a file system or a NoSQL database and the users are persisted in
a directory service using the Lightweight Directory Access Protocol (LDAP).

Other important change in the architecture is due to the need of interconnect dif-
ferent system with each other, not only within the organization itself, but also with
third party providers or partners. Most of these interconnections promote the use
of technologies such as SOAP web services [15] or REST API [53]. The web services
run as web applications, where the client is other business tier and they exchange
information using XML content over the HTTP protocol. On the other hand, REST
API behaves like web services, but the main difference is that the information is ex-
change using JSON [9]. This interconnections added new impacts from a security
perspective, since organizations not only have to take care of the potential attacks to
their own infrastructure, but it could also may have a security breach throughout a
problem of one of this third party interconnected organizations.

As most of these tiers execute on different platforms, idifferent programming
languages are used for each tier. For example, the presentation tier could use HTML

and Javascript whereas the storage tier could use SQL. Typically, the business logic
is implemented using programming language such as PHP or Java which executes
in the web server, and dynamically generates code for each of the other tiers. For
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instance, if a client ask the server to return his profile, the application logic will
generate an SQL query to get the profile info, then with the results the application
logic will generate a response coded in HTML and Javascript which will be executed
by the web browser.

2.1.1 HTTP protocol

As we mentioned before, client-server communications in web applications are per-
formed using the Hypertext Transfer Protocol (HTTP). HTTP is a request-response
message protocol, the widely use version is 1.1 [25]. The new version HTTP/2 from
2015 focus on improving the use of network resources. HTTP is a semi-structured
text protocol that function as requests-response protocol. Each communication is
started by the client by sending an HTTP request. The request is processed by the
server which returns a HTTP response to the client.

1 POST /user/login?destination=search %2 Fnode %2 Flimite %20de%20 cursadas
HTTP /1.1

2 Host: www.fing.edu.uy
3 Connection: keep -alive
4 Content -Length: 200
5 Cache -Control: max -age=0
6 Origin: https://www.fing.edu.uy
7 Upgrade -Insecure -Requests: 1
8 User -Agent: Mozilla /5.0 (Windows NT 10.0; WOW64) AppleWebKit /537.36

(KHTML , like Gecko) Chrome /56.0.2924.87 Safari /537.36
9 Content -Type: application/x-www -form -urlencoded

10 Accept: text/html ,application/xhtml+xml ,application/xml;q=0.9, image/
webp ,*/*;q=0.8

11 Referer: https :// www.fing.edu.uy/user/login?destination=search %2
Fnode%2 Flimite+de+cursadas

12 Accept -Encoding: gzip , deflate , br
13 Accept -Language: es -ES ,es;q=0.8,en;q=0.6
14 Cookie: SESS77d4c056e4744b899299483351de0e63 =2

pp35g1jp42mjm9216g04m1bm2; _pk_ref .1. af1c =%5B%22%22%2C%22%22%2
C1489595176 %2C%22 https %3A%2F%2Fwww.google.com.uy%2F%22%5D;
has_js =1; _pk_id .1. af1c=9 bd9ba450973189b
.1487191441.5.1489595186.1489595176.; _pk_ses .1. af1c=*

15

16 name=jose.perez&pass =**********& form_build_id=form -
Kh0_uekNLVtroZXTLGt -71 ZmRx3TJEwP7jz3K2DWQI0&form_id=user_login&
securelogin_original_baseurl=https%3A%2F%2Fwww.fing.edu.uy&op=
Iniciar+sesi%C3%B3n

LISTING 2.1: HTTP Request

The Listing 2.1 presents an HTTP Request. Line 1 is called the request line and
it is composed of three fields: the requests method, the request URI and the HTTP

version. The request method corresponds to the action that the server has to execute
(in this example the POST represents the push of information). The URI identifies
the resource being executed. Finally the field HTTP version indicates the version of
the protocol used by the client.

Lines 2 to 14 are the HTTP Headers, each header line starts with the header name,
followed by a colon (:) and finally the value. Each header may have more than one
value, each value is separated by a comma or semicolon. They are mostly used to
exchange information between the client (usually the browser) and the server. In
Line 14 there is a special header that is called the Cookie. The HTTP is a stateless
protocol and cookies was an addition to the protocol introduced in the RFC 6265 [4]
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in order to exchange a token between the client and the server to implement the
session. The empty line after the headers (line 15) represents the end of the headers
section.

Finally, line 16 contains the request body. This is an optional part of the re-
quests and its formats depends on the HTTP method and the Content-Type header.
The Content-Type indicates the nature of the date included in the body, by specifying
the type and subtype of data. Most common content types used in the HTTP requests
by the browsers are: application/x-www-form-urlencoded, multipart/form-data, text/xml
and text/json.

2.2 Web application vulnerabilities

There are many types of vulnerabilities, for example Common Weakness Enumer-
ation (CWE) [12] is a list of software weaknesses developed by MITRE with the
support of the community. Its main objective is to provide a common language
to describe software security weakness. In this work we are going to focus on those
vulnerabilities related to input validation. When the software does not properly val-
idate inputs, an attacker is able to send crafted payloads that are unexpected for
the application that may affect the application control flow or data flow. The two
most important vulnerabilities related to improper input validation are Injection and
Cross Site Scripting (XSS).

The most critical web application security risk defined by the OWASP Top 10
2017 [44] is Injection. Injection occurs when data sent by the user to the application
is used, without proper validation, to construct an instruction that an interpreter
executes in the backend producing unexpected (by the designer of the application)
results. There are different types of injections depending on the interpreter being
exploited: SQL, LDAP, XPath, NoSQL queries, OS commands, XML parsers, SMTP
headers, among others. A SQL Injection takes place when an attacker sends SQL
code as input to the application and it results in a query that returns, in unauthorized
manner, sensitive data.

In the case of a XSS, the application receives malicious code (usually JavaScript
or HTML) from an attacker and sends it to other users (victims) without proper
validations. The attacker’s input executes scripts in a victim browser to, for example,
redirect users to malicious web sites or hijack user sessions.

Injection and XSS have always been include in the OWASP Top 10 since the first
publication in 2007. Nevertheless applications still suffer from these type of vulner-
abilities. Thus, input validation is critical for software security. One such validation
consist of verifying and filtering all data that flow to the system before they are ef-
fectively used. These procedures usually are not introduced at the design stage of
applications leaving then unattended vulnerabilities that might be critical, specially
to web applications. When data is processed without proper validation an attacker
could lead the system to unpredictable states and exploit this for his own benefit.
This data may also produce unexpected results that could be analyzed by the at-
tacker to infer further information to proceed with his activity.

2.3 Protecting web application

The principle of in-depth security means that security mechanisms are layered around
the system being protected so if an attack bypass one mechanism there exist other
mechanisms to provide the needed security. When concerned with the security



8 Chapter 2. Background

of a web application, the outer layer to be protected is the organization’s network
perimeter. Typically, network firewalls are deployed to protect in/out traffic. As to
the network itself, it is common practice to use an Intrusion Prevention System (IPS),
for instance, to analyze network traffic in order to detect potential threats. Addition-
ally, it has become a good security practice to deploy a Web Application Firewall
(WAF) to analyze the request/response flow through the communication channel to
identify attacks that exploit vulnerabilities proper of web applications. In the gen-
eral case, both traditional firewalls and IPS inspect traffic at the network layer. In
contrast to traditional network firewalls, WAF are designed to perform packet in-
spection at the application layer of the OSI Model [65] to prevent web application
attacks. Secure communications using SSL and TLS are done by the WAF so our work
focus on the HTTP protocol analysis.

A WAF often supports different security model configurations: normally it makes
it possible to enforce both positive and negative security models. A positive security
model only allows to pass known good traffic, all other traffic is blocked. A negative
one allows to pass all traffic except what is known to be malicious. ModSecurity is
a de facto standard WAF in the open community, it is open source, flexible and ex-
tensible. Large organizations like Verizon [59] are currently using this technology
to protect large amount of applications. It can be used to control, monitor and log
web traffic from and to web applications and has two working modes: detection and
prevention. In the first mode, logs are generated for every detected potential attack
and it is used to monitor specific rules. Normally this mode is used, when adding
new rules and monitoring for false positives. The second mode is when the WAF is
really useful: by correctly configuring rules and directives it is capable of blocking
potential malicious web traffic to and from applications. The core of MODSECURITY

implements a flexible rule engine [55]: variables, operations and actions can be de-
fined using the MODSECURITY Rule Language. These rules can be applied in every
application transaction. The rule engine could be configure to load a set of rules that
it will apply in the defined order for every application transaction. Each rule in the
rule set could inspect for a specific problem on the transaction and also specified a
specific action in case that it match. Different vendors provides their own rule set or
the MODSECURITY administrator could implement its own.

To detect and prevent the exploitation of well-known and common vulnerabilites
the Open Web Application Security Project [42] (OWASP) has defined a generic rule
set that is known as the OWASP Core Rule Set [43] (OWASP CRS). The OWASP CRS

is widely deployed in large organizations as Akamai, Azure, CloudFare, Fastly and
Verizon. The goal of the OWASP CRS is to provide a set of generic attack detection
rules that when fed to MODSECURITY provide a base level of protection for any
web application. The OWASP CRS implements a negative model, where the rules are
designed to detect known attacks patterns.

The last Gartner’s Magic Quadrant for Web Application Firewalls [49], reviews
and ranks several proprietary WAF, among others Akamai, F5 and Imperva. In that
report it is remarked the rare and still unproven use of machine learning techniques
to leverage the detection capabilities of those technologies.

2.4 Machine learning techniques

We have experimented with different machine learning techniques in this work, but
all of them could be classified as what is known as statistical pattern recognition
system. The objective of a statistical pattern recognition system is to classify data
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FIGURE 2.1: Statistical pattern recognition architecture [30]

automatically. To achieve this objective, instances of the observed data are used to
train a model which later (in the classification mode) will classify new instances.
Depending on the data used during training and if the data is labeled or not, the
system can be categorized in different ways. In section 2.4.2 we present some of
these categorization approaches.

In [30], Jain et all presented a review on statistical pattern recognition and define
a general architecture of a pattern recognition system. As shown in Figure 2.1, the
system is operated in one of two modes: training mode (where training instances
are used to adjusts the models parameters) and a classification mode (where new
instances are classified by the system).

The preprocessing module is the first module of the pipeline and is responsi-
ble for cleaning the raw data to remove noise. Then the feature extraction/selection
module transformed the resulting data into a vector where each position correspond
to the value of an attribute or feature that is extracted from the input. This module
is also responsible of doing normalization of the data. Finally the learning mod-
ule train a classification model using the extracted features. The training process
consists in adjusting the parameters of the model in a way that better partition the
feature space.

After training the learning model, the system can be used to classify new in-
stances using the classification mode. Once again, the first module of the classifica-
tion mode is the same used in the training mode. The second module is responsible
of transforming the new instance into a vector of numbers. In the case where nor-
malization was done during the training mode, this module has to apply the same
normalization methods and parameters. Finally, the classifier will classify the in-
stance using the parameters adjusted in the training mode.

In what follows we describe some transformation techniques and classification
approaches that were used in our work.

2.4.1 Transformation techniques

As stated before, one of the major steps in a pattern recognition system is the feature
extraction/selection to transform the raw data into a set of numbers. There exists dif-
ferent techniques, in our work we had applied classic text classification techniques.
In what follows, we will introduce the transformation techniques used during this
work.
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Bag of words

A classic feature extraction technique used in information retrieval system is the
Bag of Words model. In this model, a text document is transformed into a vector of
numbers, where each position of the vector corresponds to a word. The value of the
position corresponds to the times the corresponding word appears in the text.

One important concept of this model is how to split the text documents into
tokens that represents the words of the model. Most of the bag of words algorithms
use a tokenizer to implement the way to split the text. Two classic implementations
are the ngram and word tokenizer. The first one splits the text into tokens of a fixed
length ngrams. For example, ngrams of size 1 represents each letter of the text. On
the other side, the word tokenizer uses a set of characters known as the delimiters
and spit the text each time one of this characters appears. For example to split an
English document into its words, usually the space and punctuation signs are used
as the delimiter characters.

The set of words (a.k.a. features or attributes) used in the bag of words model is
called the vocabulary and it can be fixed o learned during the training phase. In a
fixed vocabulary approach, usually an expert uses its knowledge to define the set
of features that better characterize the problem. Using this set of features, the bag of
words model captures from the input text the values of the features defined by the
expert. The second approach corresponds to the case where the algorithm defines
the vocabulary by it self. In this case, it uses the training set to learn the features to be
used. This usually results into too many words, generating sparse vectors. In order
to better process this vector, after the feature extraction, usually a feature selection
algorithm is used to reduce the size of these sparse vectors.

Term Frequency times Inverse Document Frequency

Information retrieval systems are usually used to classify documents depending on
its topic [36]. In order to do so, is necessary to find the special words that better char-
acterize the topic. However, until we have made the classification, it is not possible
to find these words.

It is common to imagine that the most common words in the document set are
representative. This is usually not true, as normally the most common words such
as "the" or "and" does not carry any significance themselves. In fact, indicators of the
topics are usually relatively rare words. For example in order to classify documents
about soccer, words like "goalkeeper", "offside" or "penalty" are good indicators, but
extremely rare words as "notwithstanding" or "albeit" do not tell anything useful.
The challenge is to discriminate between rare words that carry any significance from
those that does not.

One approach for this challenge is the use of the Term Frequency time Inverse Doc-
ument Frequency (TF-IDF) measure. If we have a collection of N documents, lets
defined fij to be the frequency of the word i in the document j. Then the term fre-
quency (TFij) is defined in Eq 2.1.

TFij =
fij

maxk fkj
(2.1)

In other words, TFij is 1 for the most common word in document i, and is a
fraction of 1 for the rest of the words, depending of their frequency in the document.

If the word i appears in ni of the N documents of the collection, the IDFi is de-
fined in Eq 2.2.
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IDFi = log2
N
ni

(2.2)

Then the TF-IDF score of the word i in the document j is calculated as: TFij ∗
IDFi. The words with highest TF-IDF score are usually the words that better char-
acterize the documents. We shall came back on how to combine TF-IDF and the Bag
of Words model in section 4.3.2.

Information gain

Usually in pattern recognition systems, a set of features is generated as a result of ap-
plying the feature extraction techniques. But not all features are relevant to making
predictions, in fact, some of them could add noise to the classification algorithms.
The process for selecting the features that better characterize the documents is the
feature selection phase.

One common approach for feature selection is the information gain algo-
rithm [41]. The objective is to evaluate how the entropy of the class changes if the
feature is selected. Lets say that the class A has an entropy H(A) and the feature
selected is f , the information gain score is defined as Eq 2.3.

In f oGain(A, f ) = H(A)− H(A| f ) (2.3)

H(A| f ) is the conditional entropy of class A given the feature f . The information
gain score varies from 0 (no information) to 1 (maximum information). The features
with major score will be kept and the ones with lower score could be removed.

2.4.2 Classification approaches

There are many different ways to categorize machine learning classification ap-
proaches depending on the objective. This section introduce two categorization
mechanisms: one based on the type of labeled data needed during training (super-
vised vs unsupervised) and the other one depending on the number of classes used
during training (multi-class vs one-class).

In this work we experiment with two supervised approaches: multi-class ap-
proach and one-class classification.

Supervised vs unsupervised

During training, classification algorithm use data to generate the model. The learn-
ing method depends on the data that we have at hand and how it is labeled.

In supervised learning algorithms [34] the training data has to be encoded as
pairs of instance-output, where the instance is an example of data and the output
corresponds to the label of the class that the instance belongs to. The objective of
this learning method is to estimate the parameters of a function, which objective is
to classify an instance into its corresponding class.

In unsupervised learning algorithms, training data is not associated to an out-
put. The objective of these algorithms is to discover the structure, relationships and
groups between the training instances in order to generate classes. Finally during
classification, the algorithm classify new instances depending on the closest class
that were defined during training.

In this work we used the supervised learning method, where all training in-
stances were labeled with its corresponding class.
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Multi-class vs one-class

Another way to categorize classification algorithms depends on the number of
classes that we have during the training phase. In particular, we will focus on two
classic classification approaches that were used during this work: multi-class and
one-class classification.

Multi-class classification [34] uses a dataset that contains instances of all possible
classes that the algorithm could predict. For example, in this work will be used a
dataset where one-class defines the normal traffic and one or more classes define
what is understood as attacks. Several algorithms implement this approach, in what
follows we will present three algorithms: Support Vector Machine (SVM), RANDOM

FOREST and K-near neighbor (KNN).
On the other hand, one-class classification also known as Anomaly detection

method [33], has been used to address the problem of having instances of only one
of the classes. In this approach, instead of modeling all classes, the algorithm focus
on modeling one of the classes (the one that the instances belongs to) and labeling
as anomalies those instances that move away from the model. The main challenge
with this approach is the definition of the threshold from which an instance is con-
sidered anomalous. The definition of this threshold is critical in order to have good
performance indicators, in particular to prevent the generation of false positives.

Support Vector Machine The objective of the SVM algorithm [11] is to find the best
hyperplane that separates two data classes. For example, in the linear case where we
have two features, the objective of SVM is to find the straight line in the plane that
better separates the instances of each class. If we increase the number of features,
we move from the plane into the hyperspace, and in this general case, SVM tries to
find the best hyperplane that separate both classes. In general, the training exam-
ples that are closest to the hyperplane are called support vectors. Support vectors
are the training instances that lay on the margin on both sides of the hyperplane.
The notion behind SVM is to maximize the margin between the instances of each
class to the hyperplane. The margin is calculated as the minimum distance to the
hyperplane for the positive instances plus the minimum distance to the hyperplane
for the negative instances. In the case where the instances could not be completely
separable, the algorithm generalizes, by allowing to have a number (define by the
specialist) of false positives. In the case, where we want to use SVM to classify with
more than two classes, we have to complement the algorithm with a combination
strategy that could be: one vs all and one vs one. In the one vs all strategy, we gen-
erate one model for each class where we train this model using the instances of the
class and the rest of the instances as the second class. The one vs one strategy gen-
erates models for each pair of classes, in the case of n classes, this models generates
n ∗ (n− 1)/2 models.

RANDOM FOREST A RANDOM FOREST is a meta classifier that fits a number of
decision tree classifiers on various sub-samples of the training dataset and uses av-
eraging to improve the predictive accuracy and control over-fitting. A decision tree
is a tree that classify instances by sorting them based on feature values. Each node
in a decision tree represents a feature in an instance to be classified, and each branch
represents a value that the node can assume. The leaves of the tree represents the
output class. One interesting characteristic of decision trees is that can be easily
translated into rules, as they combine the values of the features to calculate the cor-
responding classification class.
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K-nearest neighbor The KNN algorithm is an instance-based learning algorithm.
These algorithms are lazy learning meaning that they delay the model construction
until classification is performed. The KNN algorithm is based on the principle that
instances of the same class will be closed to each other. So classification is perform
by measuring the distance of the new instance to the k nearest instances from the
training dataset and calculate the output class by evaluating the class of these in-
stances.
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Chapter 3

Related work

There exist in the literature several works related to the application of machine learn-
ing techniques to detect information systems attacks. As we have already men-
tioned, our objective is to improve the capabilities to detect web application attacks
on web applications. In section 2.3, we presented several ways to protect applica-
tions focus on different layers based on the defense in depth principle, we are going to
focus on the application layer protection mechanism.

In what follows, we present different approaches to web application protection
at the application layer as well as the machine learning techniques used.

3.1 Application layer protection

In this context, we refer to application layer protection to techniques which analyze
the communications at layer 7 (from the OSI Model) in order to protect a web ap-
plication. In general, web applications are designed using three major tiers: a thin
client (web browser), the business logic and a datastore. Application layer protec-
tion may be applied to the communications between any of those tiers. The type of
application layer protection mechanisms can be classified depending on the commu-
nication being analyzed. In the case that we analyze the communications between
the business logic and the datastore, we usually analyze SQL sentences, in the other
hand, if we analyze the communication between the client and the business logic,
the protocol to be analyze is the HTTP.

These application layer mechanisms are also known as Virtual Patching. Virtual
Patching [barnett2009waf] is not a specific web application term and it may be ap-
plied to any application layer protocol however currently it is associated to WAF. It
is defined as: "A policy for an intermediary device that is able to identify and block at-
tempts to exploit a specific application vulnerability." Virtual Patching implementation
could be done using a positive or negative security model. Usually positive security
models are implemented using rules, but, as we have already mentioned in section
2.3, implement negative models using rules may generate high amount of false pos-
itives. There exists several proprietary implementations of WAF technology. They
have been reviewed and ranked in a recent report of the Garner Magic Quadrant
[49], where, in particular, one can find the following statement concerning the re-
viewed technology: "Use of machine learning is rare and often still unproven". The lack
of application of these techniques in WAF were a strong motivation for this work.

In what follows we will present application layer protection mechanisms using
machine learning techniques organized depending on the protocol being analyzed.
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3.1.1 SQL communications analysis

In recent years work has been reported [8, 31, 32] concerning the use of database fire-
walls (DBF) as remediation tools. In all of these works anomaly detection techniques
have been applied to analyze the flow of SQL sentences from the business logic tier
of the application to the database with the objective of detecting (only) SQL injection
attacks. As a DBF can only inspect the traffic between the business logic and the
database server it is not capable of detecting attacks that are not directed to the data
layer of the application. In our work, we focus on detect attacks generated by mali-
cious input to the web application. For this reason we are going to work analyzing
the communications between the client and the business logic.

3.1.2 HTTP communications analysis

One of the seminal works in anomaly detection techniques was developed by Wang
and Stolfo [61], where they introduced PAYL, a payload-based anomaly detector for
intrusion detection. Their approach consists in comparing the byte frequency distri-
bution in network packets using (a simplified) Mahalanobis distance. Accordingly
with the current attack vectors of that time, their objective was focused on protect-
ing an internal network from packets carrying worms or other forms of malware.
Consistently, their model works on TCP packets, that is, on the network OSI layer.
As the byte distribution heavily depends on the application protocol, they divide
the stream into smaller groups of packets, grouping them by destination port and
by payload length. They applied PAYL to the traffic to port 80 (HTTP) of the 1991
DARPA IDS dataset, obtaining excellent detection results. However, their results re-
late to the attack vectors of 1999. Indeed, Ingham and Inoue report in [29] that the
DARPA IDS 99 dataset only contain four web attacks. Moreover, it does not contain
any of the OWASP TOP 10 attacks [40]1. As a consequence, while [61] reports on a
100% detection rate for traffic on port 80 of the DARPA IDS dataset based on byte
frequency distribution of the unparsed TCP payloads, performing the same analysis
on the CISC2010 dataset yielded a detection rate of only 40% of the true anomalous
cases. This low performance has been also independently reported by Ingham and
Inoue in [29]. The reason is that token distribution varies from one HTTP field or web
application parameter to another, which are spread along several TCP packets. Pro-
tecting web applications requires shifting the analysis to the application OSI layer,
focusing on HTTP requests.

3.2 Machine learning techniques

Several design decisions have to be taken when implementing a machine learning
system. In what follows we present previous works that discuss the main decisions
related to our problem.

3.2.1 Analyzing the whole HTTP request

In [35], Kruegel and Vigna propose an anomaly detection approach where the at-
tributes of the model capture information about the parameters of the URI. They
focus on characteristics like the parameter length, the order in which they appear

1This is not surprising, as web applications arose during the 2000, and SQL injection was first re-
ported in December 1998 [50]
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and even generate a probabilistic grammar for each parameter. In both of our ap-
proaches we analyze the hole request information and not only the URI parameters.
We think this provides further guarantees because all fields are subject to malformed
input attacks, as illustrated in the PKDD2007 dataset [47].

3.2.2 Fine granularity in the analysis

Among the works focusing on the application layer, a few of them consider each
HTTP request as a single unstructured document to be analyzed and classified [2, 24].
This approach is prevalent when focusing on the current state of the art in attacks.
Other works perform some partial parsing of the HTTP structure, for example in [19,
35]. However, in this latter works, the parsing is reduced to the structure of the URI,
splitting the URI into the URL and the web application parameters. In our work,
we use the whole HTTP as a text document, after analyzing its structure. We parse
the HTTP message analyzing the symbols that are part of the protocol in order to
separate these symbols from attacks symbols.

3.2.3 Token abstraction

The contents of each request field is a string, so most of the anomaly detection ap-
proaches make use of document classification, NLP and information retrieval tech-
niques. As content languages may significantly vary from one application to another
(and even from one HTTP field to another), in most of the previous work tokens are
just n-grams [3, 13, 35, 57, 60, 61, 63]. An n-gram is usually a sequence of consecu-
tive characters, even though [3] shows that using n characters which are m positions
away one from the other may also be an alternative. Several authors do not di-
rectly work on the tokens themselves, but rather on some simplification of them. In
[13], Corona et al. abstract away numbers and alphanumeric sequences, represent-
ing each category with a single symbol. Torrano, Perez and Marañón [57] present an
anomaly detection technique where instead of using the tokens themselves, they use
a simplification that only considers the frequencies of three sets of symbols: charac-
ters, numbers and special symbol, as well as the list of special symbols used in each
field. In general, what is counted is the number of symbols after applying some
forget function on the set of tokens, which abstracts away irrelevant differences. Re-
moving information simplifies and speeds up the analysis by reducing the combina-
tory of possible tokens. It also reduces the risk of overfitting. However, if too much
information is removed from the tokens some attacks may become indistinguishable
from correct behavior, so an adequate compromise shall be found.

In our experiments, we work in two approaches: a classic information retrieval
approach and an expert assisted. The first approach uses the bag of words model
to split the information contained in the HTTP requests. This process is executed
after the parsing which differentiates symbols from the HTTP protocol with attacks
payloads. In the expert assisted approach we use the knowledge of a security expert
in order to identify tokens that are usually part of attacks payloads. In this case, the
bag of words model uses these tokens as the dictionary.

3.2.4 Type of traffic used during training

The pattern recognition systems could be classified depending on the type of traf-
fic that it is required for training the model. Two major approaches in supervised
systems are: multi-class or one-class (also known as anomaly detection). The first
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approach requires traffic labeled with all the classification classes during training.
On the other hand, the one-class approach models the normal behavior of the ap-
plication by learning patterns from positive instances. When a new instance arrives,
this instance is classified by the model resulting in a score. This score, that is not nec-
essary a probabilistic one, is compared to a threshold to determine whether this new
request belongs to the model. This approach, which could also be called Anomaly,
Outlier and Normality detection, as far as we know has never been applied to web
application protection before.

In the PKDD2007 challenge [2], the objective was to classify web application re-
quests using a multi-class approach, in which the training dataset contains labeled
HTTP requests which were classified into normal ones and attacks. Several solutions
were presented [20, 24, 47]. In particular, Gallagher et al [24] presented a solution
that used classical techniques of information retrieval. Even if their solution per-
forms quite well it is restricted to detect only known attacks and relies on a labeled
dataset which contains dozens of thousands of requests. In our case, we present two
solutions: the two-class approach and a one-class approach.

The two-class approach is an extension on the multi-class approach presented
by Gallagher et al, where we include a pre-processing phase where we used the
knowledge of the HTTP protocol in order to parse the requests before applying the
bag of words model.

The one-class approach only requires a training dataset that contains normal traf-
fic. In addition to this, we have shown that the one-class approach works quite well
even in the absence of a dataset proper of the application being protected. The sce-
nario in which the WAF is trained with a dataset containing requests from appli-
cations other than the one being protected our results outperform MODSECURITY

with the OWASP CRS out of the box. In [51], Raïssi et al conclude, based on the re-
sults of the PKDD2007 challenge and a feedback survey written by the challengers,
that using machine learning techniques to detect web application attacks requires to
involve the security experts earlier in the knowledge discovery process. In the one-
class approach we have pursued, the feature selection phase uses the knowledge of
the security expert to identify the tokens to be considered in the model construction.
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MODSECURITY is usually configured to work using a negative model because defin-
ing the rules that describe normal behavior of the application in real life is an almost
impossible task. The problem with this operational mode of the WAF is the high
number of false positives that are usually generated and therefore the amount of
tuning needed during the learning phase. One of the main objectives of the research
reported here is to make MODSECURITY behavior more flexible when used in a neg-
ative model by using machine learning techniques to adapt its (defensive) behavior
to that of the application that is protecting. Additionally, depending on the oper-
ational context of the application to protect one may consider alternative learning
scenarios. The ideal situation of having available a labeled dataset of application re-
quests that represent valid and attack behavior of a specific application is not always
possible so we have investigated different scenarios that now we proceed to discuss.

4.1 Learning scenarios

Table 4.1 presents the different scenarios that have been considered. The scenario
sc1 corresponds to the idealized situation where real application traffic is available
which has been tagged discriminating normal (valid) requests from attacks. In what
follows we are going to present two different approaches of supervised two-class
classification techniques and the results obtained on this scenario.

The scenario sc2 represents the case where real valid traffic (obtained from valid
requests to the application) is available and the requests labeled as attacks have been
collected from generic attacks. In this context, a dataset composed of generic attacks
refers to attack requests to other applications and not to the application being pro-
tected. In other words, we can construct a generic attack dataset by capturing attacks
to different applications and it could be improved when new attacks are identified.
The objective of this scenario is to be able to protect an application having, on the
one hand, valid traffic of the application (which could be generated as part of an ac-
ceptance test), and on the other hand a generic attack dataset. This scenario allows to
apply the two-class approach requiring only valid data of the protected application.
In Section 6.4 we present the results obtained on this scenario.

In the next scenario, sc3, both valid and attack traffic is collected from differ-
ent sources of examples of valid and attack requests. Since tagged valid and attack
requests are available in the three cases it is possible to apply classic supervised two-
class techniques to classify the requests. Due to the particularity of the datasets we
had available we were not able to carry out experiments on a sc3-like scenario.

In the scenario sc4 only valid requests are known, no requests tagged as attacks
are available. We believe that this is a quite realistic approach, where valid traffic
could be collected, for instance, from the result of performing functional testing of
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Scenario Valid Requests Attack Requests Scenario Type
sc1 Real Traffic Real Attacks Two-class supervised
sc2 Real Traffic Generic Attacks Two-class supervised
sc3 Generic Traffic Generic Attacks Two-class supervised
sc4 Real Traffic No Attacks OneClassClassification
sc5 Generic Traffic No Attacks OneClassClassification
sc6 No Traffic Artificial Attacks OneClassClassification

TABLE 4.1: Learning scenarios

the application. This scenario is similar to sc2, but it does not need to construct a
generic dataset of attacks.

Scenario sc5 generalizes scenario sc4 where only valid data is at hand, but in this
case, the valid data corresponds to requests of other application, not the application
being protected. This scenario allows to have a trained model for fast deployment
without having to even do a functional testing on the application being protected.
We have pursued a supervised one-class classification approach to handle both sce-
narios, the results obtained are described in Section 6.5.

The last scenario, sc6, the only information at hand are examples of attack re-
quests. This case can be grasped as conceptually equivalent to working with the
OWASP CRS, where the rules capture the behavior of different types of attacks. We
did not elaborate on this scenario, but we plan to study this approach.

4.2 Datasets

One of the major challenges when working with machine learning techniques is to
have the right dataset when performing the experiments. Since our main objective is
to improve MODSECURITY, the first requirement to the dataset is that each instance
corresponds to a complete HTTP request including both its header and its body. In
addition, as we are working with supervised classification approaches, all of the
instances must be tagged or labeled at least in these two classes: Valid and Attack.

As far as we know, there exists only three public datasets that comply to
these requirements: 1998 DARPA Intrusion Detection Evaluation Data Set [14],
the 2007 ECML and PKDD Challenge (PKDD2007) [2] and the 2010 CSIC dataset
(CSIC2010) [28].

The 1998 DARPA Intrusion Detection Evaluation Data Set was discarded for the
following reasons: first of all it was generated recording network traffic (not only
web application traffic); it was recorded more than two decades ago and the HTTP

traffic changed significantly and there where very few web application attacks (In-
deed, Ingham and Inoue report in [29] that only contain four attacks).

Even thought the other two datasets meet both requirements and the data is
exclusively about HTTP requests, they have two disadvantages: they are quite old
(given the evolution of web applications in the last decade) and have been artifi-
cially crafted. In order to validate our approach with recent and real life requests we
have generated a dataset, called here DRUPAL, based on the real traffic to the public
Website of Facultad de Ingeniería - Universidad de la República del Uruguay.

So, classification experiments have been performed on three different datasets
that are briefly described in what follows.
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4.2.1 PKDD2007

In 2007 the 18th European Conference on Machine Learning (ECML) and the
11th European Conference on Principles and Practice of Knowledge Discovery
in Databases (PKDD), put forward a challenge on Analyzing Web Traffic. The
challenge goal was to construct an algorithm based on machine learning techniques
to perform multi-class and contextual classification and isolation of the attack
patterns. In our case, as we are working on a two-class classification problem, we
are going to merge all instances classified as different attacks to one class called
Attack. As part of the challenge it was provided a dataset which contained full
requests that where labeled in valid traffic and seven different types of attacks. The
dataset contains 35.006 requests classified as valid and 15.110 requests classified as
attacks.

The PKDD2007 dataset was generated by recording real traffic which was then
processed to sanitize the information. This masking process consisted in renaming
every URL, parameter names and values with randomly generated strings. During
this process no consideration were taken when masking the same information. In
other words, two requests with the same URL and parameter names where transform
in two different requests. This masking process had a negative impact on the results
that will be explain in Section 6.5.

4.2.2 CSIC2010

This dataset was developed at the “Information Security Institute” of the Spanish
Research National Council (CSIC) in 2010 to test web application attack protection
systems. This dataset also contains full requests and the instances are labeled Nor-
mal Traffic and Anomalous Traffic. It was automatically developed based on real
request to an e-commerce application. The dataset contains 36000 valid requests
for training, other valid 36000 request for testing and 25000 requests of anomalous
traffic.

In order to generate the anomalous traffic there were used tools such as Paros
(which later became OWASP Zed Attack Proxy (ZAP) [45]) and w3af [52]. In ad-
dition to that, some valid requests were modified with typos errors in parameter
names. Using this tagging mechanism, the anomalous traffic does not necessary
corresponds to web application attacks, but it could also be requests generated by
the crawler used by the different tools or typos errors in the parameter names. Un-
fortunately, we do not know how real attacks and anomalous traffic distribute in this
dataset. However, this dataset seems to be a reference in the MODSECURITY com-
munity, as may be understood from a note written by Christian Folini1 who is the
project leader of the OWASP CRS project.

4.2.3 DRUPAL

In order to experiment with a real life application, based on real requests and real
attacks, we crafted a dataset by capturing incoming traffic to the public Website of
Facultad de Ingeniería - Universidad de la República del Uruguay 2 which is based
on the Drupal portal [17].

This dataset was developed using an instance of MODSECURITY which recorded
the incoming traffic for a period of six days to the website. We specially marked the

1https://github.com/SpiderLabs/owasp-modsecurity-crs/issues/1016#issuecomment-366602493
2This dataset is not public, but it is available on demand to other researchers by writing to the

authors
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FIGURE 4.1: Learning architecture

requests that were generated to the Drupal portal, discarding all other requests , e.g.
access to static resources as images, PDF among others.

The instances of this dataset where labeled as Valid and Attacks. As the web site
is protected by an instance of MODSECURITY featuring the OWASP CRS, which has
been tuned for several years by a team of security and infrastructure experts. We
therefore used this instance of MODSECURITY as the labeling tool: those requests
that were accepted by MODSECURITY were considered as valid traffic, while those
requests that MODSECURITY rejected were tagged as attacks.

After the tagging process, the only post-processing of this dataset consisted in
blurring password values in the request.

Since the requests are from real life traffic, this dataset is less balanced, we di-
vided the incoming request in two set, the first three days of traffic that were used to
construct the training and testing datasets and the last three days of traffic that were
used to create a validation dataset. The train and testing datasets contains: 65582
valid request and 1287 real attacks. The validation dataset contains: 41518 valid re-
quest and 2226 real attacks. One observation is that the validation dataset contains
almost double of attacks and less valid request. We presume that this attack behavior
change corresponds to the days of week, as the first dataset was created using the
traffic from Wednesday to Friday and the validation dataset using the traffic from
Saturday to Monday.

4.3 The learning architecture

In this section we review the main components of the learning architecture we have
conceived to perform the reported experiments. They are depicted in Figure 4.1.

The input to our system are the raw HTTP requests as they are received by any
web application server. The parser is the responsible of normalize and parse this
request (based on the HTTP protocol structure) before sending to the tokenizer. After
pre-procesing, the tokenizer transform the text into a vector of numbers. During the
experiments we worked on two different approaches for this component, one based
on the Bag of Words model and generating features base on the words frequency
(using the TF-IDF measure). The other one is based on the knowledge of a security
expert to identify the tokens used as the vocabulary to build the Bag of Words model.
Finally, depending on the classification approach, we experiment with muti-class
and one-class classifiers. In what follow we describe in most detail each of these
components.
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4.3.1 Parser

In this specific problem the samples are instances of the semi-structured text proto-
col HTTP Request. This protocol is used to exchange information between the client
and the server. To take advantage of the protocol structure, the parser has three main
objectives: information decoding, headers filtering and special characters preserva-
tion.

Information decoding

The HTTP protocol is text-based so when non-ASCII information has to be exchanged
some encoding has to be employed [56]. Many different encoding mechanisms could
be used such as URL encoding [27], Unicode Encoding, Hex Encoding and Base64
Encoding. The main encoding mechanism used in the Web is defined in the RFC
3986 [5], where it defines a method of encoding for non-ASCII characters transfor-
mation in the URL known as the URL encoding format. Encoding has been used by
many different web application attacks exploits to bypass or evade security controls
by mixing different types of encoding and even use double encoding. For example
the following classic XSS injection payload injected in the parameter named param:

param = javascript : alert(document.cookie)

could be encoded using base64 as follows:

param =data : text/html; base64,
PHNjcmlwdD5hbGVydCgnWFNTJyk8L3NjcmlwdD4 =

MODSECURITY includes several functions to decode the information as a con-
figurable pipeline; where the administrator defines which functions to use and in
what order. In this work we focus on URL encoding format as is the major encod-
ing format used in the Web, extensions on this aspect can be implemented re-using
MODSECURITY features. The first action of the parser is to decode all the URL en-
coded information so the learning algorithm can work with the real information.
The URL encoding format could be used not only in the URI, but also for the query
string and the parameters sent in the body. This encoding mechanism substitutes
specials character by three characters: the special character % and two hexadecimal
numbers corresponding to the US-ASCII value of the character. For example, the
following encoded URI:

/user/login?destination = search%2Fnode%2Flimite%20de%20cursadas

will be decoded as:

/user/login?destination = search/node/limitedecursadas

Headers filtering

Additionally, information contained in headers that are specific to the training re-
quest, and therefore should not be considered to infer application behavior, is fil-
tered. The objective of this task is to eliminate information in the requests that are
specific to the training environment that could lead to the machine learning algo-
rithm to learn this particularities in order to classify new requests. Examples of
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host x-forwarded-for via client-ip referer
if-none-match set-cookie last-modified if-modified-since —-
proxy-authorization if-range if-match from upgrade
authorization max-forwards ua-cpu ua-disp ua-os
cookie etag accept-charset accept-encoding if-unmodified-since
ua-color ua-pixels x-serial-number pragma range
cache-control accept-language trailer expect

TABLE 4.2: Headers filtered during the parsing process

these cases are the value of a cookie or the timestamp of the last time the web page
was modified. The whole headers filtered during the pre-process are presented in
Table 4.2.

Special characters preservation

Several attacks make use of specially crafted input to make the server to execute
a not expected functionality. Most of these inputs use as part of the payload spe-
cial characters, for instance . , ; < > = /, which are normally used in information
retrieval to split the documents. In order to preserve those characters, in the to-
kenization phase, the parser uses the knowledge of the HTTP protocol in order to
preprocess the request. During this phase, the parser analyzes the parameters from
the query string, the body and headers and split them in name and parameter value
as a different text string using the space character as separator. For example, the
destination parameter that we saw earlier would be transform as:

destinationsearch/node/limitedecursadas

In this way, the / character in the parameter value would be kept in the text during
the tokenization process. Another example could be the XSS payload on the param
parameter, in this case, after parsing it would be transformed as:

paramjavascript : alert(document.cookie)

in this case, we change the = sign (that is part of the protocol) in order to keep both
the name of the parameter and the value as two different text strings.

Parsing result

In Section 2.1.1 listing 2.1 we present one of the request of the DRUPAL dataset. This
requests is compose of a Request Line that contains the URI and the query string, the
requests headers and a requests body on line 16.

After processing this request with our parser, the result of the transformation is
presented in Listing 4.1. As shown, we could see that the original 16 lines of the
request gets transformed in one line of words separated by the space character.
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1 POST HTTP /1.1 destination search/node/limite de cursadas connection
: keep -alive content -length: 200 origin: https://www.fing.edu.uy
upgrade -insecure -requests: 1 user -agent: mozilla /5.0 (windows

nt 10.0; wow64) applewebkit /537.36 (khtml , like gecko) chrome
/56.0.2924.87 safari /537.36 content -type: application/x-www -form
-urlencoded accept: text/html ,application/xhtml+xml ,application/
xml;q=0.9, image/webp ,*/*;q=0.8 name jose.perez pass **********
form_build_id form -Kh0_uekNLVtroZXTLGt -71 ZmRx3TJEwP7jz3K2DWQI0
form_id user_login securelogin_original_baseurl https :// www.fing
.edu.uy op Iniciar sesi\’on

LISTING 4.1: Parsed HTTP Request

4.3.2 Tokenizer

The tokenization process adopted was highly dependent of the learning scenario.
We use a classic information retrieval approach by applying a bag of words model
with the TF-IDF scheme and an expert assisted approach in which an expert selected
the features to use. Both models were applied after the parsing process.

In sc1 we apply both tokenization methods, since we are using real data to the
application both models could be applied.

In the scenarios sc2, sc4 and sc5, the use of features blindly generated from the
bag of words model, did not work. The main problem was the large amount and
sparsity of the extracted features, because few of them were active in each instance.
In this feature space it was difficult to distinguish attacks from valid requests. To
address this difficulty we incorporated to the analysis the experience of a security
expert to identify the features manually.

Classic information retrieval approach

In order to apply the bag of words model, first of all the vocabulary to be used has
to be defined. In this case, the vocabulary is defined by tokens obtained from the
requests in the training datasets. In this process, the tokenizer performs the splitting
using only spaces preserving special characters that may be included in parameters
values or headers.

After tokenization, using the bag of words tokenizer, each request is transformed
into a vector applying the classic Term Frequency Inverse Document Frequency (TF-
IDF) [54] scheme in order to calculate the corresponding weights of each of the token
in the request.

The tokenization process generates too many features for the machine learning
algorithm. Features corresponding to terms in our vocabulary, which are gener-
ated as a result of the tokenizer. To reduce the set of features, feature selection is
performed using the information gain algorithm [64], keeping the features that best
help to distinguish between the classes.

Expert assisted approach

In what is cal expert-assisted approach, a set of features that better characterize dif-
ferent web application attacks are defined by the expert. Validation of the proposed
features has been performed applying an information gain [62] algorithm on the
three datasets. The results showed that all features have a positive information gain
in at least one of the datasets. The CSIC2010, PKDD2007 and DRUPAL dataset have
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< ../ alert exec password
<> ’ alter from path/child
<!– “ and href script
= ( bash_history #include select
> ) between insert shell
| $ /c into table
|| * cmd javascript: union
- */ cn= mail= upper
–> & commit objectclass url=
; + count onmouseover User-Agent:
: %00 -craw or where
/ %0a document.cookie order winnt
/* Accept: etc/passwd passwd

TABLE 4.3: Selected features by the security specialist

43, 38 and 59 (respectively) features out of 64 with a positive information gain. Table
4.3 lists the defined features.

In this approach, instead of splitting the string, its simply counts for each re-
quest the number of appearances of the substring defined by the feature in the re-
quest. It is not necessary that the feature appears as a word after tokenization, but
as a substring inside the request. For example, the parameter value javascript :
alert(document.cookie) will add one for each of the following features: javascript :,
:, alert, (, document.cookie and ). Is important to notice that the character : is itself a
feature and also occurs in the feature javascript :.

4.3.3 Classification

The last component of the learning architecture is the classifier its self. We have
worked with two different approaches: a supervised two-class and a supervised
one-class classification.

The supervised two-class approach requires working with a labeled set with two
classes of requests, in our case: valid and attack. This approach was applied to sc1
and sc2.

The one-class classification approach (as the name says) uses one-class for model-
ing the behavior during training phase. During classification this approach indicates
if the new instance behaves as the modeled class or if it differs. This approach was
applied to sc4 and sc5 where we have valid request during training (so we model the
normal behavior of the application) and during classification, the one-class indicates
how close or not a new request is to this normal behavior.

Two-class

We have carried out two variants of supervised two-class classification: the first one
follows a classical information retrieval approach and has been applied to sc1. The
second variant uses the expert assistance tokenization process and was applied to
both scenario sc1 and sc2.

In this approach we have trained different classifiers using WEKA: Support Vec-
tor Machine [48](SVM), K-nearest neighbours [1] (KNN) and RANDOM FOREST [10].
A brief description of this algorithms has been presented in Section 2.4.2. The deci-
sion of using each of this algorithms come for the following reasons:
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• the SVM algorithm was selected as it was used in a previous work by Gal-
lagher et all [24] in order to reproduce and compare the results

• the KNN algorithm was selected to measure the complexity of this particular
problem to machine learning techniques, as this is one of the simplest algo-
rithm to apply

• finally the RANDOM FOREST was selected in order to validate the existing ap-
proach taken by the MODSECURITY and the OWASP CRS of using rules to detect
attacks. It is also an algorithm used in the literature to detect fraud, which is a
similar scenario

One-class

Scenarios sc4, sc5 and sc6 have requests that belong to one of the classes, valid or
attack, which we called the target class. For this reason we have investigated a one-
class classification approach [33] where there are available instances of one-class and
none or very few samples of the other one. In this work we have addressed scenarios
sc4 and sc5. Scenario sc6 requires dataset containing large amounts of attacks, so we
will studied in a future work.

The proposed anomaly detection classifier organizes samples of the target class
into clusters and then uses the distance to these clusters as a measure of anomaly;
samples away from the clusters are classified as anomalies.

Using the Expectation Maximization (EM) algorithm [16] we cluster the training
set containing only target samples. The EM algorithm was used to estimate the
parameters of a Gaussian Mixture Model (GMM) [18] and the number of clusters
(components in the GMM). In our case, each component of the GMM constitutes a
cluster that captures the distribution of the target class. To capture the intra-cluster
variability we use the distance between samples in the cluster and its centroid. Each
sample is represented using the vector ~x, which is generated as a result of applying
the expert assisted tokenizer. The distance between a given ~x and the cluster C is
computed using the Mahalanobis distance [37]:

dist(~x, C) =
√
(~x−~µ)Σ−1(~x−~µ) (4.1)

where Σ represents the full covariance matrix and ~µ the centroid of the cluster calcu-
lated during the training phase. If one of the features is not seen during the training
phase, the corresponding dimension will have a standard deviation of 0, and the Ma-
halanobis distance cannot be calculated. For this reason, we adjust the covariance
matrix by adding a regularization term to it ε ∗ Id, where ε is the smallest standard
deviation in diag(Σ) different from 0 and Id is the identity matrix.

If the distance of a sample to a given component is within the observed intra-
cluster variability during training, the sample will be labeled as valid. To apply
this idea we need a distance threshold for each cluster. Therefore, for each cluster,
we obtain the corresponding mean distance (µd) and the standard deviation of the
distances (σd) of the samples assigned to it. On this basis, the threshold is defined as
shown in Eq 4.2.

t = λ[µd + 10 ∗ σd], λ ∈ (0, 1] (4.2)

The parameter λ allows us to change the size of the cluster from 0 (where only
instances that correspond to the centroid of the cluster are classified) to 1 where al-
most all requests are classified as the target class (as the threshold for the cluster is 10
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times the σd). The constant 10 was calculated during the experiments by increasing
the size of the cluster to include 99% of the instances.

During classification we calculate the Mahalanobis distance of the requests to the
clusters: if the distance is equal or less than the threshold the request is assigned to
the cluster. Requests that are not assigned to any cluster are classified as attacks.
The threshold of each cluster then might be defined by setting the number of false
positives that we are willing to accept. This can be done observing the distribution
of intra-cluster distances. All samples with distances above the threshold will con-
stitute false positives. In future work we plan to model this distribution in order to
obtain an estimation of the false positive rate given the selected threshold.

4.4 Limitations

In this subsection we present design decisions that were taken during this work in
order to restrict the scope.

4.4.1 The parser and encoding mechanisms

As described in Section 4.3.1, when inspecting HTTP traffic many encoding methods
could be used in order to transmit the information. Depending on the web server,
it could be also possible to use multiple encoding methods one after other (a.k.a:
double encoding). This characteristic is often used by attackers in order to bypass
control mechanisms (e.g. WAF) that process the user input.

Different approaches to protect against this type of attacks could be imple-
mented, but they are highly dependent on the protected application. For example,
the OWASP CRS rules use a specific rule to detect double encoding. If the request
uses more than one encoding then it is rejected. These rules usually work fine as
most of the protected application do not use multiple encoding mechanism. In the
case where the protected application uses many encoding for some specific requests,
the parser has to be tuned to decode all encoding used.

In our work, we only decode the URL encoding mechanism as is the classic mech-
anism used in the major of the web application. Other types of encoding are not
supported in this version of the parser.

4.4.2 HTTP headers and cookies attacks

There exists many attacks that aim at the HTTP protocol (such as HTTP splitting, HTTP

header injection) or at the session management (such as Session Fixation, Session
Hijacking). Generally this type of attacks abuses of user information provided in
some HTTP headers or the way that is processed by the web server.

As we mentioned in Section 4.3.1 some HTTP headers filtering is done during
parsing. The objective of this filtering is to eliminate from the request information
that could be specific of the training dataset so the machine learning algorithm do
not use this information to learn user behavior.

One example of this filtering is the cookie session. The reason is that if in the
training dataset have few session of valid users, the machine learning algorithm
could use the value of the application cookie (the classic approach to keep session
in the HTTP) in order to classify valid versus attack requests. Even this could be a
good feature in the training set to discriminate attacks from valid requests, it will
not work when new valid users sessions are presented.
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By applying this filtering, some types of attacks that are dependent on user in-
puts could not be detected by our approach.

4.4.3 Request body content type

HTTP defines several content types to be send by the client to the server. Depending
on the content type that the client wants to send defines how the web server will
process the request body. Some of the classic content types used by web applica-
tions are: application/x-www-form-urlencoded, multipart/form-data, text/xml and text/j-
son. Each content type defines the way that body has to be processed.

In our work, we focus on the application/x-www-form-urlencoded, since most of
the requests in the datasets that we have used only contains requests with this par-
ticular content type. Specifically the PKDD2007 and CSIC2010 datasets only contain
requests with this content type. In the DRUPAL dataset there were 2012 requests with
the text/xml (but all with almost the same value) and the rest with the application/x-
www-form-urlencoded content type.

In order to be able to process requests with other content types, the parser has
to be extended in order to apply different parsing mechanisms depending on the
request body content type. MODSECURITY has implemented support for the four
classic content types. As our objective is to improve MODSECURITY with machine
learning approaches, further work will be focused on this integration.
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Chapter 5

Implementation

Most of the work presented in this document is done applying classic machine learn-
ing techniques to a new application area (Web Application Attacks). To apply these
techniques we worked using WEKA [26], a classic Data Mining tool. We have also
implemented a specific algorithm in order to tackle the one-class approach.

In what follows we present the integration with the WEKA tool and our specific
implementation

5.1 The WEKA tool

WEKA is a workbench where several standard machine learning techniques used for
the different phases of the classic statistical pattern recognition system are included.
For example, there are many algorithms for: pre-processing the data (feature extrac-
tion and feature selection), clustering and classification.

WEKA provides different ways to use it, as a standalone tool, where the expert
could use the Explorer or KnowledgeFlow or as a system library to be used from your
own source code. During this work, we used both of these approaches.

For the classic information retrieval two-class approach, we used the Explorer
and the KnowledgeFlow in order to implement, process and test the algorithm used.

5.2 Dataset loader and parser

In this section we present the implementation related to the loading and parsing of
the dataset. Our first task was to load the datasets in different formats. We started by
implementing a loader which is responsible of understanding the different dataset
formats and translated them into a single format. After the information was loaded,
the next step is to apply the parsing decisions presented in Section 4.3.1.

Figure 5.1, presents an UML component diagram which describes the involved
sub-systems and their relationship. The main subsystem is the Generator, which acts
as a coordinator between all subsystem and it is responsible of the dataset genera-
tion. The Generator uses the interfaces presented by the Loader and Transformer. The
Loader subsystem and its extensions parse the datasets from their original format
and standardize them into the format needed by the Generator. The Transformer sub-
system, transforms a sample from our format to the WEKA expected format. Finally
the PreproccessCommon defines the main interfaces shared between all subsystems.
What follows describes each sub-system in detail.
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FIGURE 5.1: Dataset Loader and Parser - Component Diagram

5.2.1 PreprocessCommon subsystem

This is a helper subsystem which defines the standardized structure of the infor-
mation to be retrieve by the different Loaders. It is also responsible of defining the
interfaces to be used by the communications between the different subsystems.

Figure 5.2, presents the main interfaces defined in the PreprocesssCommon sub-
system as a class diagram.

The main interface defined is the Sample interface, that defines the behavior of
each sample. In our case, a sample is compose of a:

• Request, which represents an HTTP Request

• Class, that defines the class of the sample, in general, the values are Valid or
Attack. In the case of the PKDD2007 dataset, it could also have the attack class
divided into the seven attack classes that are define in the dataset

• Context, which is a mapping of the form attribute and value, that depends on
contextual information about the requests

• Id, is a String that uniquely identifies that instance

The Request interface represent the main information of the HTTP request. The
WekaTransformer and the DataSetReader interfaces correspond to the interfaces used
by the Generator to communicate with the Transformer and Loader subsystem re-
spectively.

Finally, the DataSetFileReader is a class that implements the DataSetReader to cen-
tralize de implementation of accessing a file as all readers in a way or another access
information from disk.

5.2.2 Loader subsystems

Each dataset has its own format, so the objective of this subsystem is to standard-
ize an unified the dataset in order to work as an input to the algorithms. All of the
subsystems that conforms the Loader, uses the interfaces defined in the Preprocess-
Common and implements what is necessary to transform from the specific input to
this format.
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<<Interface>> 
Request

 

+ getMethod(): String 
+ getProtocol(): String
+ getUri9): String
+ getQuery(): String
+ getHeaders(): String
+ getBody(): String
+ getClient(): String

<<Interface>> 
Sample

 

+ getRequest(): Request
+ getClazz(): String
+ getConext(): Context
+ getId(): String

<<Interface>> 
Context

 

+ getInfo(): Map<String, String>

<<Interface>> 
DataSetReader

 

+ initialize(): boolean 
+ getSamples(): List<Sample>

DataSetFileReader

- file: File

+ DataSetFileReader(String): Void 
+ initialize(): boolean

<<Interface>> 
WekaTransformer

 

+ getAttributes(): FastVector 
+ tranformSampleInstance(Instances, Sample): Instance

FIGURE 5.2: PreprocessCommon subsystem - Class Diagram

PKDD2007 loader

The PKDD2007 dataset has a proprietary XML format that is described in [2]. One
XML file contains the whole dataset. Each entry of the XML corresponds to an
instance of the dataset and includes the following information:

• id, an incremental integer

• reqContext, where there is additional contextual information such as: Opera-
tive System and web server

• the class of the requests, that could be valid, XSS, SQLInjection, LdapInjection,
XPathInjection, PathTrasversal, OsCommanding and SSI

• and the request itself

The JavaTM Architecture for XML Binding (JAXB) [21] was used in order to map
the XML documents into Java objects. This framework provides a set of tools that
were used to create java objects from an XSD and an API to manipulated them.

CSIC2010 loader

The CSIC2010 dataset is presented as a plain text, where all the requests are layout
one after another with two empty lines separating them. There exists three plain
text:

• normalTrafficTraining, which contains all the requests that corresponds to the
Valid class and are used for training

• normalTrafficTest, similar to the previous but for testing
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• anomalousTrafficTest, all the requests in this file we call them attacks. It is
important to be notice that not only attacks, but also simple anomalous traffic
for this application are in this file, but we do not have a way to split them

In this case, the parsing was implemented by reading line by line of the input
file and parsing manually each of the line in order to obtain the information needed
by the system. Depending on the file being read, is the class of the sample. Finally,
no contextual information is available, so this information is not loaded and the id
corresponds to the position of the requests in the file.

DRUPAL loader

As we mentioned before, the DRUPAL dataset was generated by using an instance
of MODSECURITY recording traffic to a website. For this reason, even though this
subsystem is call DRUPAL Loader, it actually loads requests saved using the MODSE-
CURITY logging format [23].

MODSECURITY has several formats to log requests, in this work we work with
the Concurrent format. In this format one plain text file is written for each request to
be logged. This plain text files are identified by the time of the request concatenated
with a unique token generated by the Apache’s mod_unique module. Inside the file,
we find the request, its body and the response of the server.

We have evaluated several existing libraries to parse MODSECURITY logs. All
of them require the main indexer file generated by MODSECURITY’s audit engine.
Since we did not have this file we could not use these libraries and therefore we
implemented our own parser, called DRUPAL Loader.

The DRUPAL Loader receives as input the folder where each of the individual
MODSECURITY logs are in. It reads each folder recursively and generates a sample
for each file found. Then each sample is responsible for parsing its file to obtain the
information needed. The plain file is divided into sections. In [23] Folini et al define
the log format and the information contained in each section, the DRUPAL Loader
uses sections A, B, C and H.

From section A it gets the information about the client and the unique id of the
requests (that is used as the sample id). The section B contains the request header
(requests line and the headers). In section C, if exists corresponds to the request
body.

Finally the class of the requests is calculated depending on the response of this
high tuned MODSECURITY. If it responses with an "Access denied with code 403"
then the requests is mark as an attack, otherwise is a valid requests. There are two
exceptions to this behavior and corresponds to requests that after the dataset being
manually analyzed where identified as false positives of MODSECURITY. The first
case corresponds to a false positive related to the rule with id 981260 of the OWASP

CRS version 2 referring to "SQL Hex Encoding Identified" and the second case is a false
positive generated by the rule with id 981320 related to the text "msdb" found in a
cookie.

5.2.3 Transformer subsystem

The transformer subsystem has two major objectives: the first objective is apply-
ing the parsing characteristics described in Section 4.3.1 and also is the responsible
of transforming an instance in the Sample format defined above into an instance in
WEKA format.
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In order to fulfilled with the first objective, during transformation the following
actions takes place:

• all information contained in the request is URL decoded

• the query string of the request is parsed, changing the special characters that
defined by the protocol (such as: "&" and "=") with the space character

• the requests headers are filtered (using the criteria presented in Section 4.3.1)
and concatenated in a single line separated by the space character

• if the body of the request exists, it is parsed in the same manner as the query
string

We have implemented two variants of the process that transform the sample for-
mat into the WEKA format: the multiple attributes and the single one. The first
version, generates a WEKA attribute for each part of the requests. This allows the
expert to apply different types of techniques to each part of the request. This mul-
tiple attribute version was implemented, but it was not used during in the results
presented in this work. The single attribute version, generates an instance with two
attributes: the text (that corresponds to the whole requests after parsing) and the
class attribute. This version was used to generate the results presented in this work.

5.2.4 Generator subsystem

This subsystem is the coordinator that uses the previous subsystem in order to gen-
erate the dataset to be used. Listing 5.1, presents the options that receives the Gen-
erator in order to execute.

1 Usage: java Generator <input type > <path to input file > <output type
> <path to output file > <transformer > [-toMallet <
path_mallet_file >]

2 input type: xml , modSecurity and csic
3 path to input file/directory: path to xml to load or to directory

with ModSecurity logs
4 output type: csv , arff
5 path to output directory
6 transformer indicates the class used to build the WEKA instances
7 toMallet indicates to save to mallet format
8 path mallet file: path to file to save in mallet format

LISTING 5.1: Generator: command line options

The last two options correspond to transform the output generated for WEKA to
other tool called Mallet. This options are optional and not used during this work.

5.3 Tokenizer

As we mentioned earlier, the result after executing the Generator is a training and
testing dataset with two attributes: text (corresponding to the requests preprocessed)
and the corresponding class. In order to use this dataset in machine learning algo-
rithms is necessary to transform the text attribute into a vector of numbers. To im-
plement this transformation, we use the following approach (as presented in Section
4.3.2): classic information retrieval and expert assisted.
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5.3.1 Classic information retrieval tokenizer

To implement this approach, we used the StringToWordVector function of WEKA. The
StringToWordVector algorithm uses a tokenizer in order to split the documents (in our
case correspond to the text attribute of the dataset) and creates the features based
on the tokens generated. In Listing 5.2 we present the WEKA command and the
arguments used.

1 java weka.filters.unsupervised.attribute.StringToWordVector
2 -R first
3 -W 4000
4 -prune -rate -1.0
5 -C
6 -T
7 -I
8 -N 0
9 -L

10 -stemmer weka.core.stemmers.NullStemmer
11 -M 1
12 -tokenizer "weka.core.tokenizers.WordTokenizer -delimiters \" \\r \\

t\""
13 -b
14 -i input.arff
15 -o output.arff

LISTING 5.2: WEKA command to execute the classic information
retrieval tokenizer

The −T and −I indicates to use the TF-IDF measure. −C outputs word counts in
order to be used by the TF-IDF measure and the −L specify to be case insensitive.
To preserve the special characters used in attacks, the WordTokenizer uses the follow-
ing character to split the request: ␣\r \t. Another problem of this approach is the
amount of attributes generated, for example the DRUPAL dataset generates over one
million attributes.

To reduce the amount of attributes to work with we have limited the token gen-
eration by using the parameter −W to keep at most 4000 tokens of each class. This
means that as a result of the tokenization process the attributes generated could
range from 4000 to 8000 as it could exists repeated tokens in documents of both
classes.

This amount of attributes is still too large for the machine learning algorithm. To
reduce the amount of features, feature selection is performed using a combination of
two functions of WEKA: the information gain algorithm and the ranker. The fist one
calculates how much information could be gain by an attribute to respect of a class,
this generates a measure of how worth is this attribute. The ranker is responsible
of ranking the attributes based the results of the information gain result and keep
the first 1000 with a positive information gain. Listing 5.3 present the commands
corresponding to this feature selection process.

1 Evaluator: weka.attributeSelection.InfoGainAttributeEval
2 Search: weka.attributeSelection.Ranker -T 0.0 -N 1000

LISTING 5.3: Feature selection using WEKA
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5.3.2 Expert assisted tokenizer

As described in Section 4.3.2, the features of this approach are defined by a secu-
rity expert instead of being blindly generated as in the classic information retrieval
approach.

WEKA provides a FixedDictionaryStringToWordVector, but it works similar to the
StringToWordVector, as it first split the text documents using a tokenizer and then
count the generated tokens and keeps only the ones defined in the given dictionary.
In our approach, the requirement is to find the number of appearances of a specific
sequence of characters in the document. So we implement a different way of count-
ing the tokens, where we use the whole input document as a text string, and we
count, for each token of the giving dictionary, the number of appearances of the fea-
ture as substring of the document. The reason of implementing this approach is that
our dictionary is compose of tokens that usually appears as part of the payload of
an attack. The important concept here is that are part of the payload, not the whole
payload (as it can change in every attack) so is not feasible to implement a tokenzier
that could separate the tokens in a way that could be useful for the WEKA algorithm.

Our implementation of the tokenizer, called FixedDicNoTokenizeStringToWordVec-
tor, was done as an extension of the WEKA SimpleStreamFilter so it could be inte-
grated into WEKA’s set of algorithms.

5.4 Two-class classifier

For the two-class approach we used the WEKA’s implementation of the algorithms.
We use the Explorer interface of WEKA to load the different datasets and classifying
them using the algorithms presented in Section 4.3.3.

After executing the algorithm proving different parameters and their values, de-
spite of the fact that for some specific dataset some parameters work better than
others, in general, we have experimentally proved that the default parameters per-
form well in all datasets. Listing 5.4 present the WEKA command corresponding to
the different algorithm used for multi-class classification.

1 weka.classifiers.functions.SMO -C 1.0 -L 0.001 -P 1.0E-12 -N 1 -V -1
-W 1 -K "weka.classifiers.functions.supportVector.RBFKernel -G

0.01 -C 250007" -calibrator "weka.classifiers.functions.Logistic
-R 1.0E-8 -M -1 -num -decimal -places 4"

2

3 weka.classifiers.lazy.IBk -K 3 -W 0 -X -A "weka.core.neighboursearch
.LinearNNSearch -A \"weka.core.EuclideanDistance -R first -last\"
"

4

5 weka.classifiers.trees.RandomForest -P 100 -I 10 -num -slots 1 -K 0 -
M 1.0 -V 0.001 -S 1

LISTING 5.4: Two-class classification using WEKA

The SMO algorithm correspond to WEKA’s implementation of Platt [48] sequential
minimal optimization algorithm for training a support vector classifier. We used
most of the standard parameters for this experiments (we did not do an exhaustive
search), the following parameters were changed:

• −N1, this parameter indicates weather to normalize or to standardized the
training data before executing the algorithm, in our case we standardized the
values. This means that before training, the values are re-scaling so that they
have a mean value of 0 and a standard deviation of 1
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• −K”, this parameter defines the kernel to be used, in our case the best results
correspond to the RBFKernel

Line 3, shows the execution line corresponding to the KNN algorithm. For this
algorithm the only parameter that we changed is the number of neighbors to use,
in our case −K3. Line 5 is the corresponding to the RANDOM FOREST algorithm.
In this case, we only changed the max number of iterations to be performed by the
algorithm: −I10.

5.5 One-class classifier

The one-class classification approach (presented in [6] and [7]) as described in Sec-
tion 4.3.3, is based in a classical approach of clustering with some specific modifi-
cation introduced during this work. In Listing 5.5 we present a pseudocode of the
algorithm implemented which calculates the one-class classification approach for
500 different lambda values. This algorithm uses WEKA as a library.

1 oneClassClassifier ( trainPath , testPath : filePath) : double [][]
2 Instances train = getDataset(trainPath)
3 Instances test = getDataset(testPath)
4

5 EM em = new EM(maxIter :100, minStdDev :0.000001 ,
MinLogLikelihoodImprovementIterating: 1e-2)

6 em.buildClusterer(train)
7

8 centroids = getCentroids(em)
9

10 train = addClusterAssigned(train , em)
11

12 Instances distance = calculateMahalanobisDistance(train ,
centroids)

13

14 for each cluster c
15 Instances clusterInstances = getInstanceInCluster(c,

distance)
16 mean[c] = clusterInstances.getMean(c)
17 devStd[c] = clusterInstances.getDevStd(c)
18 maxRadius[c] = 10 * devStd[c] + mean[c]
19

20 for each lambda l in 1..500
21 threshold = maxRadius * l/500
22 for each instance inst in test
23 isClassifiedAsValid = false
24 for each cluster c
25 if (! isClassifiedAsValid && (distance(inst , c) <

threshold[c] ))
26 isClassifiedAsValid = true;
27

28 result[l][inst] = isClassifiedAsValid
29

30 return result

LISTING 5.5: One-class classification algorithm: pseudocode

The algorithm receives two datasets: a training and a testing dataset. In case
that only one is provided, it is splitted in a 70/30 proportion for training and testing
respectively.

The first step is to calculate the Expectation Maximization (EM) using as an input
the training dataset. This is done using the implementation of the EM algorithm
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provided by WEKA. The EM algorithm calculates the number of clusters, calculates
the centroid of each cluster (as shown in line 6) and assigns each instance to a cluster
(line 10).

After having the centroids of each cluster, we calculate the distance of each in-
stance of the training dataset to each centroid. This could be done specifically for the
corresponding centroid (depending on the cluster assign), but was done in this way
since all distances were needed during different phases of the work.

The next step is to calculate the maximum threshold for each cluster. In this task
is important to notice that we do not used the mean and standard deviation calcu-
lated by EM. We use the mean and standard deviation of the mahalanobis distances.
This distances are calculated for each instance assign to the cluster to the centroid of
the cluster (this is shown in lines 14-18).

Finally we have to estimate the lambda. In order to do that, we set the threshold
in line 21 as maxRadius times a lambda value that range between 0 and 1. With the
threshold defined, we calculate the mahalanobis distance for each instance to each
cluster. If any of this distances is less than the corresponding threshold, then the
instance is classified as valid, otherwise is classified as an attack.

5.5.1 Mahalanobis distance

The implementation of the one-class classifier requires to calculate the mahalanobis
distance. As we already presented in Section 4.3.3, the mahalanobis distance used
in this algorithm uses the full covariance matrix. We have implemented the Ma-
halanobisDistance as an extension of WEKA’s NormalizableDistance, so it could be in-
cluded in WEKA.

We include The Apache Commons Mathematics Library [39] to delegate all the oper-
ations on matrix and vector composed of real numbers.

Listing 5.6 presents a pseudocode of the MahalanobisDistance initialization pro-
cess.

1 initialize(train : Instances , divideEpsilon : double) : RealMatrix
2 Covariance cov = new CovarianceMatrix(train)
3

4 epsilon = MAX_VALUE
5

6 for each d in diag(cov)
7 if d <> 0 and d < epsilon
8 epsilon = d
9

10 epsilon = epsilon / divideEpsilon
11

12 DiagonalMatrix diag = new DiagonalMatrix(epsilon)
13

14 cov = cov.addMatrix(diag)
15

16 return LUDecomposition(cov).getInverse ();

LISTING 5.6: Mahalanobis distance initialization: pseudocode

The initialization process receives as an input the training instances (assign to the
cluster) and a double value used to parametrically change the value of epsilon. The
first step is to create the covariance matrix from the input training set. Then epsilon
is calculated as the minor positive value in the diagonal of the covariance matrix,
namely, the smaller positive variance. After finding the smaller variance, this is
divided by the input divideEpsilon. When larger is dividedEpsilon, smaller is the
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epsilon to be added to the covariance matrix. We empirically found that a good
value for divideEpsilon is 100. Finally we use the lower–upper (LU) decomposition
in order to invert the covariance matrix.

After the initialization process, we need to calculate the distance of an instance to
the centroid of the cluster. To do this we just apply the equation 4.1. Where Σ is the
resulting matrix of the initialization process, x is the instance and µ is the centroid
calculated with the EM algorithm for the corresponding cluster.

5.5.2 One-class evaluator

In a first attempt to integrate the one-class classifier with MODSECURITY, we have
implemented an evaluator. The evaluator is only responsible of evaluate new re-
quest, using a model previously calculated with the One-class classifier.

The one-class evaluator can be executed as a Java client application (executable
jar) 1. During execution the Java client application requires to be set the app.home
variable in the environment. This variable contains the path to the folder where
the model information and the dictionary with the tokens defined by the expert are
specified.

The model is composed of one plain text file per cluster, where each file contains
the following information:

• threshold, a double value that corresponds to the threshold defined for this
cluster. It is important to notice that in this point it is assumed that λ is already
defined and the threshold is a specific value

• centroid, an array of double with the value of the centroid of the cluster

• inv-cov, the matrix with the inverse of Σ. The evaluator receives the inverse
already calculated for each cluster

The dictionary is also a plain text with one feature per line.
For the classification of a new request the evaluator must be provided as input

a JSON file and it will produce a JSON with the corresponding output. Listing 5.7
presents an example of the input file format.

1 {
2 "uniqueId": "152597966420.886223",
3 "method": "POST",
4 "protocol": "HTTP \/1.1",
5 "uri": "\/index.html?arg1 =1& argn=n",
6 "body": "argPost1=post 1& argPostn=post n",
7 "argsGet": {
8 "arg1": "1",
9 "argn": "n"

10 },
11 "headers": {
12 "User -Agent": "Mozilla \/5.0 (X11; U; Linux x86_64; en

-US; dfdfd) Gecko Firefox",
13 "Accept": "*\/*",
14 "Accept -Encoding": "gzip",
15 "Host": "localhost",
16 "Connection": "Keep -Alive",
17 "Content -Type": "application \/x-www -form -urlencoded",
18 "Content -Length": "31"
19 },
20 "argsPost": {

1This project is publicly available at https://gitlab.fing.edu.uy/gsi/waf-ml-oneclass
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21 "argPost1": "post 1"
22 "argPostn": "post n"
23 }
24 }

LISTING 5.7: One-class evaluator: input format example

As it can be noticed, this JSON format include all the information of the request
parsed in different fields. Is also important to notice that in some cases the informa-
tion is repeated, for example, the body of the requests could be found in raw format
in the body tag and it could also be found with the arguments parsed in the argPost
collection. This corresponds to the fact that this information is already parsed by
MODSECURITY, and we want to take advantage of this parsing implementation in
the machine learning algorithms.

1 {
2 "results": [
3 {
4 "clazz": "Valid",
5 "clazzDescription": "Class that represent valid request",
6 "probability": 1.0,
7 "crsClazz": "N/A"
8 },
9 {

10 "clazz": "Attack",
11 "clazzDescription": "Class representing an attack request",
12 "probability": 0.0,
13 "crsClazz": "Inbound Score"
14 }
15 ]
16 }

LISTING 5.8: One-class evaluator: output format example

Listing 5.8 is an example of the output file generated by the One-class evaluator.
The output includes the information for each class: name, description, probability
and map to the OWASP CRS.

5.6 MODSECURITY requests generator

To compare our results with the baseline, we have to evaluate each dataset against
an installation of MODSECURITY configured with the OWASP CRS. As we have men-
tioned earlier, each dataset has its own format. To generate our baseline, we imple-
mented a component that we call the MODSECURITY request generator. This genera-
tor is capable of:

• handling the different formats for each dataset

• inferring the evaluation result

• obtaining for each request the information of the MODSECURITY evaluation

The generator embodies two major sub-components: the MODSECURITY evalu-
ator and the request generator.
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5.6.1 MODSECURITY evaluator

To make more flexible the installation of MODSECURITY, this sub-component runs in
a separate context (such as a virtual machine or a Docker instance) where it has to be
installed a web server with the MODSECURITY module and the rules to be evaluated
(in our case the OWASP CRS version 2 and 3).

There are two specific configuration for the web server installation: the first one
correspond to the ability of the web server of receive any request independently of
it Host header. The second configuration is that if MODSECURITY detects the request
as an attack, the web server has to return a 403 Forbidden error, otherwise it has to
respond with a 200 Ok.

5.6.2 Request generator

The request generator sub-component is responsible of loading a dataset and then
sending the requests to an instance of MODSECURITY. All the logic needed to load
the dataset is delegated to the Loader subsystem presented in Section 5.2.2.

After the requests are loaded, the generator opens a TCP/IP connection to MOD-
SECURITY and sends the request information as it is defined in the dataset. The only
processing performed during this task is the addition of a custom header (called In-
stance) with a number, which indicates the requests number executed for this dataset.
This information could be obtained from the MODSECURITY logs in order to under-
stand how MODSECURITY evaluated the requests.

Finally, the classification depends on the web server response, if it is a 403 For-
bidden the requests is classified by MODSECURITY as an attack, otherwise is a valid
request.
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Chapter 6

Experimental results

This section is devoted to present and discuss the outcomes of the experiments that
have been carried out. The results will be presented in terms of Precision, Recall,
True Positive Rate (TPR) and False Positive Rate (FPR). In our case, the positives
cases are the attacks, so the TPR and FPR indicate the ratio of requests correctly and
incorrectly classified as attacks, respectively.

6.1 Datasets

In supervised machine learning approaches one of the major challenges is to have
enough data labeled in a way to be useful for training and testing the algorithm. As
we presented in Section 4.2, as far as we know, three dataset are publicly available
and only two of them meet our requirements (PKDD2007 and CSIC2010). In order
to complement these results we created our own dataset (DRUPAL) to compare our
results against a currently running web application.

In order to compare the results in the different scenarios defined and to take care
of using part of the dataset for training and the other part for testing, we applied
different splitting criteria depending on the dataset. Table 6.1 presents the total re-
quests labeled as Valid and Attack per dataset for training, testing and total.

In the case of the DRUPAL and PKDD2007 we use the classical criteria of splitting
70% for training and 30% for testing, after applying a shuffle function to the requests.
In the case of CSIC2010, the dataset already came divided into training and testing,
but since this dataset was created for anomaly detection approach, it only includes
valid requests for training. So this division did not work for us, for this reason we
mix all normal traffic (training and testing) and apply the same criteria as the other
two.

Additionally for the case of the DRUPAL dataset, we have a second dataset
(DRUPAL Validation). DRUPAL Validation was generated using the next three days
period of the captured requests (see 4.2.3). This dataset was kept separately in order
to use it strictly as a validation dataset.

Train Test Total
Dataset Valid Attack Valid Attack Valid Attack
DRUPAL 45903 905 19679 382 65582 1287
DRUPAL Validation N/A N/A 41518 2226 41518 2226
PKDD2007 24482 10599 10524 4511 35006 15110
CSIC2010 50346 17599 21654 7466 72000 25065

TABLE 6.1: Requests per dataset and the distribution for training and
testing



44 Chapter 6. Experimental results

Dataset MODSECURITY with OWASP CRS Precision Recall TPR FPR

DRUPAL

OWASP CRS v2 0.03 0.75 75.00% 39.68%
OWASP CRS v3 – PL 1 0.04 0.30 29.55% 15.57%
OWASP CRS v3 – PL 2 0.03 0.78 77.89% 49.93%
OWASP CRS v3 – PL 3 0.03 0.78 78.42% 56.82%
OWASP CRS v3 – PL 4 0.02 0.80 80.00% 61.92%

DRUPAL Validation

OWASP CRS v2 0.05 0.28 27.77% 30.30%
OWASP CRS v3 – PL 1 0.10 0.12 11.50% 5.49%
OWASP CRS v3 – PL 2 0.04 0.28 28.07% 35.38%
OWASP CRS v3 – PL 3 0.04 0.31 31.11% 42.48%
OWASP CRS v3 – PL 4 0.05 0.46 46.39% 50.28%

PKDD2007

OWASP CRS v2 0.56 0.86 86.17% 28.76%
OWASP CRS v3 – PL 1 0.64 0.79 79.43% 27.53%
OWASP CRS v3 – PL 2 0.57 0.89 89.09% 41.25%
OWASP CRS v3 – PL 3 0.53 0.95 95.04% 51.49%
OWASP CRS v3 – PL 4 0.29 1.00 99.88% 99.99%

CSIC2010

OWASP CRS v2 0.50 0.34 34.32% 23.93%
OWASP CRS v3 – PL 1 1.00 0.27 26.62% 0.00%
OWASP CRS v3 – PL 2 1.00 0.29 29.48% 0.00%
OWASP CRS v3 – PL 3 0.56 0.53 52.61% 13.95%
OWASP CRS v3 – PL 4 0.45 0.76 75.86% 31.44%

TABLE 6.2: Summarized results of the MODSECURITY baseline

6.2 Baseline

As we mentioned before, one of the main objectives of this work is to decrease the
number of false positives of MODSECURITY. In Table 6.2, we present the results of
MODSECURITY configured with the OWASP CRS out of the box for each dataset. This
baseline was generated using the MODSECURITY requests generator. The MODSECU-
RITY evaluator was configured using a virtual machine with CentOS 7, an Apache
HTTP Server 2.4, configured with MODSECURITY 2.7. We use two different version
of the OWASP CRS.

The first results were obtained using the OWASP CRS version 2, more specifically
version 2.2.9 configured in collaborative detection mode with the standard configu-
ration. The collaborative detection mode (a.k.a. anomaly scoring mode) is a special
mode of detection defined by the OWASP CRS with the objective of decrease the false
positives generation by combining the results of the execution of all the rules and
blocking a request only if a threshold is exceeded.

At the same time as we develop our experiments a new version of the OWASP

CRS was developed (OWASP CRS version 3) with focus on diminishing the amount of
false positive generated. In order to do that, they defined the notion of Paranoia levels
(PL). The PL is a configuration value that indicates how paranoid the WAF should be
from a security perspective. This value ranges from 1 to 4 and it is defined as:

• PL 1: is the default paranoia level and is advised for beginners as it should face
rarely FP. This setup is for applications with standard security requirements

• PL 2: is advised for moderated to experienced administrators and installations
of elevated security requirements. This level comes with FP to be handle by
the administrator

• PL 3: is aimed at administrators with experience at the handling of FP and at
installations with a high security requirement
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Tokenization Dataset Algorithm Precision Recall TPR FPR

Classic Information
retrieval

DRUPAL

KNN-3 0.97 0.91 91.36% 0.05%
RANDOM FOREST 0.97 0.94 93.98% 0.05%
SVM 0.98 0.92 91.88% 0.04%

PKDD2007
KNN-3 0.97 0.72 71.78% 0.98%
RANDOM FOREST 0.96 0.89 88.65% 1.76%
SVM 0.96 0.87 86.79% 1.44%

CSIC2010
KNN-3 0.99 0.57 57.30% 0.17%
RANDOM FOREST 0.98 0.68 67.76% 0.36%
SVM 0.99 0.68 67.87% 0.34%

Expert assisted

DRUPAL

KNN-3 0.95 0.88 88.48% 0.08%
RANDOM FOREST 0.96 0.92 91.88% 0.07%
SVM 0.91 0.66 66.49% 0.13%

PKDD2007
KNN-3 0.95 0.73 72.73% 1.54%
RANDOM FOREST 0.96 0.82 82.49% 1.59%
SVM 0.94 0.72 71.58% 1.84%

CSIC2010
KNN-3 0.94 0.39 38.67% 0.80%
RANDOM FOREST 0.94 0.39 39.45% 0.83%
SVM 0.84 0.35 35.17% 2.24%

TABLE 6.3: Summarized results of both tokenization approaches on
sc1

• PL 4: is the highest level and is advised for experience administrators protect-
ing installations with very high security requirements

The PL allows to change the behavior of MODSECURITY depending on the main
objective, have less FP or detect most attacks. By analyzing the TPR and FPR values
we observe that in general PL 3 and PL 4 have a minor increment in TPR by produc-
ing high amount of FP. For these reason and the expertise required for tuning a WAF

with high PL, in what follows we are going to compare our results with PL 1 and PL
2.

6.3 Scenario 1

We recall that in this scenario we have trained different two-class classifiers after
tokenization of the requests using both the classical information retrieval and the
expert assisted approach. To evaluate the algorithms, we use the training and test-
ing datasets described in Section 6.1. We applied the KNN (with K=3), RANDOM

FOREST and SVM algorithms using WEKA as described in Section 5.4. The results
are summarized in Table 6.3 where the tokenization column indicates the approach
applied.

In the classic information retrieval approach it can be noticed that in all datasets
the results show good performance in terms of precision, recall, TPR and FPR for
all the evaluated classifiers. In particular, we can say that in an overall analysis, the
RANDOM FOREST classifier has better performance. This behavior is also observed in
literature about fraud detection. For the DRUPAL dataset, we observe that the results
of the RANDOM FOREST improve MODSECURITY with both version of OWASP CRS.
In the case of the PKDD2007, RANDOM FOREST has better or equal results in terms of
TPR and the FPR is less than 2%. Finally the CSIC2010 dataset, is a particular case,
where both MODSECURITY and the Classic Information Retrieval approach obtain
good results in terms of FPR, very close to 0%. In terms of TPR, RANDOM FOREST

improves the OWASP CRS in both versions and PL.
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Trainng Dataset Testing Dataset Algorithm Precision Recall TPR FPR

CSIC2010
PKDD2007 RANDOM FOREST 0.49 0.50 50.25% 22.26%
DRUPAL RANDOM FOREST 0.12 0.42 42.15% 5.91%

DRUPAL
CSIC2010 RANDOM FOREST Error Error Error Error
PKDD2007 RANDOM FOREST Error Error Error Error

PKDD2007
CSIC2010 RANDOM FOREST Error 1.00 100.00% 100.00%
DRUPAL RANDOM FOREST Error 1.00 100.00% 100.00%

TABLE 6.4: Summarized results of generalization of the classic infor-
mation retrieval approach on sc1

One major limitation on the classic information retrieval approach corresponds
to the fact that labeled data from both classes is needed. Based on the good results
obtained and with the objective of minimize this limitation, we studied on the gen-
eralization capacity of this approach. In Table 6.4 we present the results of building
the model with the training data from one of the dataset and testing the results with
data from the other two. In this Table, we only present the results from the RANDOM

FOREST algorithm as it has the best results from the three tested. The only model
that has generalized from the three tested is the CSIC2010 model. In this model, we
could observed that the results are worse than the ones from the classic information
retrieval approach. We also observed that for the other two datasets, the generated
model could not be used to classify instances (the case of the DRUPAL dataset) or the
resulting model classifies all instances as attacks (the case of the PKDD2007 dataset).
We recall that in this scenario we use a classic information retrieval tokenizer where
the dictionary is created based on the generated tokens during training. We believe
that this behavior occurs because tokens generated during training (using one of the
dataset) are not present in new instances to be evaluated from other datasets. In
other words, tokens generated during training are strongly related to the dataset.

The main conclusion from these results is that the application of the two-class ap-
proach in this case is feasible and in most of the cases has good performance scores.
However, this approach has two important limitations. On the one hand, labeled
data from both classes is needed in order to train the classifiers (see discussion in
Section 4.1). On the other hand, the classifier designed for one dataset cannot be
used in the other ones. Even using the same features we could not obtain good per-
formance scores when applying, for instance, the model trained for PKDD2007 and
then tested using DRUPAL. In other words, the models do not seem to generalize
from one web application to another one.

Analyzing the results, we found that the features that were blindly generated
using the classic Bag of words model captured specific information about the dataset
and for this reason the generated models did not generalize. In order to have more
generic models, we changed the tokenization method to the Expert assisted approach
(described in Section 4.3.2). In Table 6.3, in the section Expert assisted are presented
the results of this approach. As in the case of the classic information retrieval, in an
overall analysis we can say that RANDOM FOREST performs better. If we compare
the results of these two approaches, we can observe that the results of the Expert
assisted approach has a minor decrement in terms of TPR, but maintains the value of
the FPR. We also notice that in general we have better results that the baseline (see
Table 6.2). Another appreciation of these results is the case of the CSIC2010 dataset,
that had high reduction of the TPR. This can be explained like in the expert assisted
approach: we measure the occurrence of tokens that are normally found in attacks
payloads, but in this dataset the attacks are not only real attacks but also anomaly
traffic (e.g. requests with typo errors). This behavior could also be directly compared
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Dataset Algorithm Precision Recall TPR FPR

DRUPAL
RANDOM FOREST 0.95 0.48 47.57% 0.05%

KNN-3 0.90 0.07 6.99% 0.01%

PKDD2007
RANDOM FOREST 0.96 0.23 22.56% 0.45%

KNN-3 1.00 0.12 11.70% 0.02%

CSIC2010
RANDOM FOREST 0.91 0.32 32.06% 2.27%

KNN-3 0.66 0.50 50.43% 17.85%

TABLE 6.5: Summarized results for sc2

with MODSECURITY and the OWASP CRS results as they also spot attacks payloads.
The TPR for OWASP CRS version 2 is 34.32% and for version 3 is 26.62% and 29.48%
for PL 1 and PL 2 respectively. The three cases are below the 39.45% obtained with
the RANDOM FOREST algorithm. In conclusion, we believe that even if the Expert
assisted approach is less performant than the Classic information retrieval approach, it
learns to distinguish valid requests from attacks, using tokens that normally occur
in classic attacks payloads.

6.4 Scenario 2

In sc2 we assume to have real valid requests and generic attacks. As we have already
mentioned in section 4.1, the generic attacks dataset is composed of attack requests
that are not targeted to the application, instead they are targeted to other applica-
tions. In other words, to generate the training datasets, we use the valid requests
from the application we are going to test and the attacks requests from the other two
applications (taken as generic attacks). As we previously mentioned, attacks con-
tained in the CSIC2010 dataset not only include attacks but also valid requests with
typos. For this reason, we did not use attack requests from the CSIC2010 dataset
in the experiments of this scenario. In other words, in the case of the DRUPAL and
PKDD2007 dataset we only used each other attacks to simulate the generic attacks.

After generating the datasets, we have applied the expert-assisted two-class ap-
proach. We proceeded to experiment with the KNN (with K = 3) and RANDOM

FOREST classifiers using the training and testing datasets generated in the previous
step.

In Table 6.5, we present the results of applying this technique on the three
datasets. As can be noticed, the performance in terms of TPR decreased comparing
to the results of sc1. In the case we compare the results with our baseline, we can
notice in general a major decrements in the number of attacks detected (decrements
of the TPR), with a great improvement in terms of the FPR. We also validated that
in the case that more generic attacks are added to the training datasets the attack
detection increased without increasing the false positives. As already mentioned in
Section 4.1 in order to improve the results is required that the set of generic requests
(in this scenario the attack requests) characterize as much as possible the universe
they represent. Once again, we can say that the RANDOM FOREST is the classifier
with better performance analyzing the overall results.

This approach has a major advantage as only needs valid requests of the pro-
tected application and the attacks examples can be obtained from different applica-
tions or be artificially crafted. The results are promising, but a more complete dataset
(from an attack point of view) is needed to improve the attack detection capabilities.
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FIGURE 6.1: sc4: ROC curve generated by moving the threshold
of the one-class approach using DRUPAL and DRUPAL validation

datasets

6.5 Scenarios 4 and 5

In this section we present the evaluation of the one-class approach (described in
Section 5.5) on both sc4 and sc5. We recall that sc4 corresponds to the case where we
have a training dataset containing valid requests of the protected application and
sc5 is the scenario where we only have valid requests, but they do not correspond to
the application being protected (generic valid traffic).

The experiments have been carried out by varying the threshold to obtain 500
different operation points. In the one-class approach the threshold is governed by λ
(the only free variable in Equation 4.2). During these experiments we varied λ from
0 to 1 (increasing by 1/500) and calculated for each λ the different performance met-
rics (Precision, Recall, TPR and FPR). As we have 500 different operational points,
we present for each dataset a figure with the results in terms of a ROC curve where
the x-axis corresponds to the True Negative Rate (calculated as 1− FPR) and in the
y-axis the TPR. In order to apply these results to protect a real application, it is re-
quired to define the value of λ. One approach to define this parameter was presented
in Section 4.3.3. In each figure, the blue straight line corresponds to the results of the
sc4, the dashed orange line corresponds to the sc5 and the MODSECURITY with the
OWASP CRS version 2 is represented by the orange square. Finally, the different PL
of the OWASP CRS version 3 are represented by triangles facing right for PL1 and left
for PL2.

In Figure 6.1 we present the results for scenario sc4 using DRUPAL and DRUPAL

Validation datasets. The blue straight line corresponds to the case of building the
model and testing using the DRUPAL dataset. We can identify several operational
points where the one-class approach improves MODSECURITY baseline in both TPR
and FPR. For instance, if we select the operational point with the same number of
TPR than MODSECURITY with the OWASP CRS version 2, we have less than 2% of
FPR. For this dataset, as we did in earlier explanations, we present the results using
the validation dataset as a yellow dotted line. In this case, we used the same model



6.5. Scenarios 4 and 5 49

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

sc4 – split train/test dataset
sc5 – train w/generic data
Baseline: ModSecurity + OWASP CRSv2
Baseline: ModSecurity + OWASP CRSv3 PL1
Baseline: ModSecurity + OWASP CRSv3 PL2

True Negative Rate

Tr
u

e
 P

o
si

ti
v
e
 R

a
te

FIGURE 6.2: sc5: ROC curve generated by moving the threshold of
the one-class approach for DRUPAL dataset

generated using the training set from the DRUPAL dataset, but testing was performed
using the DRUPAL validation dataset, which corresponds to traffic logged in a sub-
sequent interval of time. We also include the MODSECURITY baseline for valida-
tion dataset. As in the train/test case, we could identify several operational points
where the one-class approach improves MODSECURITY baseline. If we select an op-
erational point with the same TPR than MODSECURITY with the OWASP CRS version
2 (blue square), once again, the FPR is less than 2%. Is important to notice that even
if the validation curve is least performant compared with the train/test case, we can
also notice that the MODSECURITY results also decrease. This could be an effect of
the traffic proportions of both datasets, as they come from different periods of time.
In particular, the validation dataset corresponds to a weekend: we have 2/3 of the
normal traffic and almost twice of attacks.

Figure 6.2 shows the comparison for the scenarios sc4 and sc5 with the DRUPAL

dataset. The blue line corresponds to the scenario sc4 with the DRUPAL dataset.
The dashed orange line corresponds to the results for sc5 using the same dataset.
In this scenario we used valid data from the PKDD2007 and CSIC2010 dataset to
train the model to be tested using the DRUPAL test set. In this case we observe a
reduction compared with sc4, but we could still spot several operational points that
improves MODSECURITY baseline. This is a promising approach in order to have
a trained model that could be used to protect applications out of the box without
configuration needed. These results were obtained with datasets of applications that
are not related. We believe that if we use data from similar applications (for example
other portals based on DRUPAL) these results can be significantly improved.

The results for the PKDD2007 dataset are presented in Figure 6.3. For the scenario
sc4, we observe that there exist several points where the one-class behaves better
than MODSECURITY with OWASP CRS 3 in PL 1. On the other hand the one-class
approach does not improve any of the other baseline cases. For the sc5, the one-
class could not capture the normal behavior of the PKDD2007 dataset, when we train
using DRUPAL and CSIC2010 datasets.
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FIGURE 6.3: sc4 and sc5: ROC curve generated by moving the thresh-
old of the one-class approach for PKDD2007 dataset

It is important to notice that the PKDD2007 dataset was subject to an anonymiza-
tion process where all valid requests had the URL, parameters and values replaced
with random data without any relationship. We believe that the anonymised dataset
losses important characteristics that represent valid traffic of the application. We face
the same problem when investigating an alternative approach [6], where we com-
pared the one-class approach with an anomaly detection approach using n-grams.
As this n-gram approach generates one model for each parameter of the application,
it turned out useless when applied to the anonymized dataset. As our approach try
to learn from valid data, this process generates noise which makes it harder for our
algorithm to learn. On the other hand, MODSECURITY uses its rules to spot attacks.
As the attack requests were not modified, we can observe high number of TPR in all
of the MODSECURITY baseline metrics.

Finally Figure 6.4 presents the results for sc4 and sc5 using the CSIC2010 dataset.
In both scenarios the one-class approach improves MODSECURITY with OWASP CRS

version 2. Comparing the results with the OWASP CRS version 3 we could find oper-
ational points that improve the TPR or the FPR, but not both metrics simultaneously.
This dataset has a special characteristic: its attacks requests are not only attacks but
also anomalous traffic. Notice that MODSECURITY with the OWASP CRS, which is
prepared to detect attacks, has also a low TPR. The low TPR observed in the case of
the one-class is because the features selected by the expert also try to identify classic
attacks payloads. In other words, the selected features did not capture this dataset
anomalous traffic essence. A clear indicator of this could be observed in Table 6.3
where we have a high decrement in the TPR for the RANDOM FOREST algorithm
when using the Classic Information retrieval compared to the Expert assisted approach.
This shows that the blindly selected features from the dataset could easily separate
valid and attack requests, but when we use features that try to identify attacks pay-
loads the requests get mixed.
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FIGURE 6.4: sc4 and sc5: ROC curve generated by moving the thresh-
old of the one-class approach for CSIC2010 dataset

Scenario Algorithm Precision Recall TPR FPR

Baseline MODSECURITY

OWASP CRS version 2 0.56 0.86 86.17% 28.76%
OWASP CRS version 3 PL1 0.64 0.79 79.43% 27.53%
OWASP CRS version 3 PL2 0.57 0.89 89.09% 41.25%

sc1: Classic information retrieval
KNN-3 0.97 0.72 71.78% 0.98%
RANDOM FOREST 0.96 0.89 88.65% 1.76%
SVM 0.96 0.87 86.79% 1.44%

sc1: Expert assisted
KNN-3 0.95 0.73 72.73% 1.54%
RANDOM FOREST 0.96 0.82 82.49% 1.59%
SVM 0.94 0.72 71.58% 1.84%

sc2: Expert assisted
RANDOM FOREST 0.96 0.23 22.56% 0.45%
KNN-3 1.00 0.12 11.70% 0.02%

sc4 One-class w/λ=0.246 0.57 0.81 80.96% 26.58%
sc5 One-class N/A N/A N/A N/A

TABLE 6.6: Summarized results for the PKDD2007 dataset

6.6 Discussion

We recall once more an important premise of our work: false positives of MODSE-
CURITY configured with OWASP CRS out of the box often lead to a denial of service
to valid users. We have presented four approaches for addressing the problem of
attack detection in web applications. We validated our approaches using two public
datasets and one built during this work. In what follows we will discuss the results
for each dataset.

As we have already mentioned, the PKDD2007 dataset was built to be used in
a machine learning challenge in 2007. Given the way this dataset was created two
particularities that could affect the results arise: the anonymization process of valid
traffic and how attacks were generated. Valid traffic was logged from an applica-
tion and it was artificially sanitized throughout a process of random transformation
of the data. On the other hand, the attacks contained in this dataset were artifi-
cially created. Table 6.6 presents the summarized results for the baseline and our
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Scenario Algorithm Precision Recall TPR FPR

Baseline MODSECURITY

OWASP CRS version 2 0.50 0.34 34.32% 23.93%
OWASP CRS version 3 PL1 1.00 0.27 26.62% 0.00%
OWASP CRS version 3 PL2 1.00 0.29 29.48% 0.00%

sc1: Classic information retrieval
KNN-3 0.99 0.57 57.30% 0.17%
RANDOM FOREST 0.98 0.68 67.76% 0.36%
SVM 0.99 0.68 67.87% 0.34%

sc1: Expert assisted
KNN-3 0.94 0.39 38.67% 0.80%
RANDOM FOREST 0.94 0.39 39.45% 0.83%
SVM 0.84 0.35 35.17% 2.24%

sc2: Expert assisted
RANDOM FOREST 0.91 0.32 32.06% 2.27%
KNN-3 0.66 0.50 50.43% 17.85%

sc4 One-class w/λ=0.08 0.72 0.40 39.63% 5.37%
sc5 One-class w/λ=0.128 0.79 0.29 29.02% 2.64%

TABLE 6.7: Summarized results for the CSIC2010 dataset

four approaches. For the scenario sc1, in both cases (Classic information retrieval and
the Expert assisted), the three algorithm used show good performance scores. In all
cases, we could observe values of TPR similar to the baseline, at the same time,
the FPR has major improvement decreasing from 28%-41% to 1%-2% comparing the
baseline and our results respectively. The results corresponding to the scenario sc2
show good performance scores in terms of FPR, but the TPR (detection of attacks)
scores are bad. In this scenario we trained the model using a generic attack dataset.
The generic attack dataset used was composed only by the DRUPAL attack training
instances (only 905 instances). We believe that the few instances and attack type ex-
amples contained in this generic attack dataset do not allow algorithms to find the
optimal limit to distinguish valid requests from attacks. Finally Figure 6.3 shows all
operational points for the one-class approach (sc4 and sc5) using this dataset, in Ta-
ble 6.6 we present for sc4 the operational point with λ = 0.246 which corresponds to
the case where the FPR is similar to the baseline. We observed that the OWASP CRS

approach has a high number of TPR (over 80%). For this particular dataset, even
if the one-class approach produced good performance scores, they are lower than
MODSECURITY with the OWASP CRS. This result is due to the fact that the attacks
contained in this dataset are easy to detect by MODSECURITY and the sanitized valid
traffic prevented the one-class approach to model normal behavior. The results for
sc5 are not good, since the model generated using traffic of other applications does
not allow the one-class approach to characterize the behavior of randomly generated
data. In sum, in most of the scenarios proposed showed good performance result on
the PKDD2007 dataset. The poor results correspond to the scenario where no com-
prehensive data for training (sc2) were available or due to the process of random
anonymization of the dataset (sc5).

The second dataset used during our experiments is the CSIC2010 dataset. This
dataset was also artificially created as a benchmark to test web application protection
mechanisms. In Table 6.7 we present the results corresponding to the baseline and
our approaches on this dataset. A relevant property of this dataset is that the labels
used are anomalous and normal traffic. Anomalous traffic is compose not only of
attacks, but also unintentional illegal requests that do not have malicious intention
(for example valid requests with typos). Once again the Classic information retrieval
approach in sc1 showed good performance results where almost no FP where found
and the attack detection double the baseline (from 60% to 30%). Both Expert assisted
approaches (sc1 and sc2) showed a significant reduction of the TPR in almost a half,
from 68% to 39%. This last value is very close to the baseline (OWASP CRS version
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Scenario Algorithm Precision Recall TPR FPR

Baseline MODSECURITY

OWASP CRS version 2 0.03 0.75 75.00% 39.68%
OWASP CRS version 3 PL1 0.04 0.30 29.55% 15.57%
OWASP CRS version 3 PL2 0.03 0.78 77.89% 49.93%

sc1: Classic information retrieval
KNN-3 0.97 0.91 91.36% 0.05%
RANDOM FOREST 0.97 0.94 93.98% 0.05%
SVM 0.98 0.92 91.88% 0.04%

sc1: Expert assisted
KNN-3 0.95 0.88 88.48% 0.08%
RANDOM FOREST 0.96 0.92 91.88% 0.07%
SVM 0.91 0.66 66.49% 0.13%

sc2: Expert assisted
RANDOM FOREST 0.95 0.48 47.57% 0.05%
KNN-3 0.90 0.07 6.99% 0.01%

sc4 One-class w/λ=0.176 0.25 0.94 94.43% 6.00%
sc5 One-class w/λ=0.38 0.06 0.74 73.85% 23.85%

TABLE 6.8: Summarized results for the DRUPAL dataset

2 and OWASP CRS version 3 with PL 1 and PL 2). We believe that this behavior is
due to the fact that we used the anomalous label as attack traffic. Is important to
consider that both approaches, the Expert assisted and the OWASP CRS, focus on at-
tacks payload detection. For this reason, when we compare the features of a valid
request with an anomalous request (created by introducing a typo error into a valid
request) we can not differentiate among them. In Figure 6.4 we present the results
for scenarios sc4 and sc5, where there are several operational points with good per-
formance scores. Once again the definition of anomalous traffic leads to a strange
behavior in both scenarios. We are convinced that makes the one-class approach to
confuse valid requests with anomalous ones. It can be noticed that a small change
in the threshold produces a great fall in the attack detection and a at the same time a
great decrement of the FPR.

Both public datasets used during these experiments share two disadvantages:
they are created artificially and are quite old. We have already mentioned different
difficulties generated because of the artificial nature of theses datasets. But it is also
important to note that web applications and attacks on them have evolved a lot in
the last 10 years. For these reasons we have decided to create our own dataset,
where we recorded traffic to a production site. Both valid and attack requests are
real attacks to this production web application. Table 6.8 presents the results for this
dataset. The Classic information retrieval and Expert assisted approaches in scenario sc1
showed great results with high TPR and low FPR compared to the baseline. Scenario
sc2 shows good results in terms of FPR, but a reduction on the attacks detection
(reduction of the TPR). Once again, we are convinced that this behavior relates to
the way we construct the generic attack dataset by using only attacks samples from
the datasets that we had at hand. In this particular case, the attack dataset it is
only compose of instances from the training set of the PKDD2007 dataset. Finally
in Figure 6.2 we present the results for scenarios sc4 and sc5. For this dataset, we
found several operational points that outperform the MODSECURITY baseline. In
Table 6.8 we present the operational point that maximizes the TPR and at the same
time minimizes the FPR. In sc4 with λ = 0.176 the TPR improves in almost 20% the
baseline and the FPR decrements from around 40% to 6%. Finally, for sc5 we select
λ = 0.38, where the TPR is similar to the baseline, but we observed a reduction of
the FPR to almost half from 40% to 24%. In sum, this dataset created with real traffic
to a modern web application presents good performance results for the one-class
approach, not only using data from the application, but also training with traffic
from others applications. We believe that these results can be drastically improved if
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the data used for training, even if it is from other applications, it is from applications
with similar characteristics (e.g. in this case using data from other Drupal portals).
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Chapter 7

Conclusion and further work

7.1 Further work

The major objective of this work was to validate the use of machine learning tech-
niques to protect web applications. During the work some design decisions were
taken in order to narrow the scope. In Section 4.4 we presented some limitations. In
what follows we will outline how these limitations can be addressed.

Many web application attacks bypass controls by using different encoding mech-
anisms simultaneously (as presented in Section 4.4). In our parser we only decode
URL encoding strings, other encoding mechanisms are not supported. This behavior
may allow an attacker to bypass our machine learning model. Special care has to be
taken during the parsing phase. One solution could be simply to reject requests that
have multiple encoding. It is also possible to use a series of transformations in order
to decode different formats, before parsing the requests.

Some other attacks aim to the HTTP protocol by manipulating the header. In our
work, some headers are filtered before doing training/classification. This decision
was taken so data in these headers will not generate an overfitting of the algorithms
to the training dataset. Further analysis on how this information could be included
in the models is required.

The datasets we have at hand when developing our work have classic web ap-
plication requests, where the bodies only include application/x-www-form-urlencoded
content types. Other type of body content types where not tested during this work.
MODSECURITY implements different body parsers depending on the content-type.
We plan to work on an integration method, where we could use the body parsers
included in MODSECURITY before invoking our models. In this way, we would use
the MODSECURITY parsers enhancing performance since the body is parsed only
once.

One of the biggest challenges we had to face when conducting this work is the
lack of publicly available datasets with complete HTTP requests and classified at least
as valid or attacks. We were able to find only three datasets, two of them were used
to experiment (see Section 4.2) and the third one (1998 DARPA Intrusion Detection
Evaluation Data Set) was discarded since it was constructed based on network traf-
fic, not only web application traffic. Additionally, these datasets are at least 10 years
old. Given the advance in the last years of the web application technologies the traf-
fic has dramatically evolved, both in number and kind. We think those datasets no
longer represent the current state of the technologies. We plan to continue working
on the construction of new datasets in order to produce new examples of attacks and
valid application traffic that represents nowadays applications. Along with these
new datasets, we plan to experiment with scenario sc3 as well as repeat the results
of sc2 and sc5 that we believe could be improved by using more complete and newer
requests, as discussed in Section 6.6.
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From the obtained results we identify that a greater understanding of the mask-
ing mechanism applied to the PKDD2007 dataset is required since it can have an
impact on the applied techniques. This confirms the need to have new datasets.

It has been shown that in order to apply the mechanisms implemented in scenar-
ios sc4 and sc5 to protect an application it is necessary to define the threshold. The
threshold is governed by the λ variable (which is the only free variable in Equation
4.2). In Section 4.3.3 we proposed to define λ by fixing the number of False Posi-
tives that we are willing to accept. We plan to continue studying the distributions
of the intra-cluster distances to estimate the threshold by understanding its distribu-
tion. As we are grouping valid requests with several instances of Gaussian Mixture
Model and the distances are measured using the Mahalanobis distance, we believe
that the distribution of the distances should approximate into a chi-square distribu-
tion. We are convinced that a deeper understanding of that distribution would allow
us to find a method to define λ in a theoretically grounded way.

A first proof-of-concept (PoC) was developed that integrates the one-class ap-
proach with MODSECURITY (see Section 5.6.1), but this integration could be im-
proved by taking into account performance and interoperability requirements. This
PoC shows that the integration is feasible, but several performance issues were
found. We also identifyed some interoperability requirements, for example, have
a plug-able method where several machine learning models could be use simultane-
ously in one MODSECURITY instance. Some combination method is needed in order
to combine the results of the rules with the different machine learning modes. In [38]
we propose an integration architecture which takes into account the requirements
presented.

Another line of work is to study the special case of scenario sc6, where only
attacks requests are available. This scenario has the special characteristic that is like
the OWASP CRS approach, where the rules try to identify attack patterns. In order to
work in this scenario datasets with more attack requests are needed.

7.2 Conclusions

We are interested in applying machine learning and pattern recognition techniques
to improve the detection capabilities of the WAF MODSECURITY giving particular
importance to the task of diminishing the false positives generated by this tool when
is set out to protect a web application. We provide a characterization of the problem
by identifying different scenarios depending on the availability of data to train the
learning models. The scenarios vary from the rare, but best case, where we have
a dataset with real application traffic to more practical scenarios where we have
only valid request to an application that could be collected, for instance, during the
functional testing phase. We also studied the more flexible scenario where a model
could be generated using generic valid requests, allowing to protect applications
with a generic out of the box model.

We have presented four different approaches for addressing the problem of at-
tack detection in web applications, depending on the scenario analyzed.

The first approach, in which the two-class paradigm is used, resulted in very
good performance scores (see Section 6.3). The fact that KNN provided good results,
very close to the ones of RANDOM FOREST and SVM, indicates that if real samples
of valid requests and attacks are available, the classification problem is not very
complex. That is, the Bayes error (the theoretical lowest error attainable knowing the
class distributions) is not large. However, this approach has two limitations: labeled
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data from both classes are needed in order to train the classifiers and a classifier
designed for one dataset can not be used with another one.

The second approach is also based on a two-class paradigm, but in this scenario
the attack traffic came from a generic dataset constructed from attacks to other ap-
plications. This approach has the advantage that only real valid traffic from the web
application is needed for training. In addition, a low rate of false positive was ob-
tained, but the performance on attack detection decreased (see Section 6.4). This
indicates that the generic attack dataset that we have built does not include enough
attacks examples and therefore the classification boundaries do not capture the op-
timal solution as can be done in sc1. We are convinced that this behavior relates
to the way we construct the generic attack dataset by using only attacks samples
from the datasets that we had at hand. In other words, for this approach to work
we need to build a generic attack training dataset by adding more attacks examples.
It is not possible to know in advance how many attacks samples have to be added
or which type of attacks are needed in order to improve this approach. However,
given the good TPR rates obtained in sc1 we believe that if we manage to construct
appropriate datasets good results might be achieved.

In both approaches (sc1 and sc2), we identify that the RANDOM FOREST classifier
has better performance. For this reason, we plan to continue working in an integra-
tion approach where the RANDOM FOREST classifier is used to generate specific rules
for the trained application.

The third, more realistic approach, uses only valid requests to construct a detec-
tion model. In this case, the outcome is quite promising, the results outperform the
ones obtained with the classic rule based MODSECURITY solution with OWASP CRS

version 2 and in some of the cases it also improves OWASP CRS version 3. As we
have seen in Section 6.5 this one-class approach reduced the number of false pos-
itives while not greatly increasing the false negatives. Furthermore, this approach
has a threshold that can be tuned depending on the number of false positives that
we are willing to accept (see Figures 6.1, 6.3 and 6.4). We plan to experiment with
one-class algorithms like SVM, instead of using classic distances.

Finally, we extend the one-class approach by using generic data to train the clas-
sifier. The preliminary results are promising as we improve MODSECURITY with
OWASP CRS version 2 in two of the three datasets. This approach has a major advan-
tage because we can use models already trained in order to protect new applications
out of the box. We believe that these preliminary results can be drastically improved
if the data used for training, even if it is from other applications, it is from appli-
cations with similar characteristics. For example, training the model using traffic
from different web portals based on DRUPAL technology could be used to protect
a new instance of this technology. It is important to note that in these experiments
the datasets used correspond to applications of very different nature, both in their
functionalities and in their age. We plan to improve this scenario by training generic
models for different types of applications. For example, create a generic model for
Drupal-like sites.
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