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Resumen 

 
 
La vectorización de palabras es un conjunto de técnicas bien          

conocidas y ampliamente usadas en el procesamiento del lenguaje natural          
( PLN ). Esta tesis explora el uso de vectorización de palabras en un nuevo             
escenario. Un modelo de espacio vectorial ( VSM ) para nombres de          
dominios de Internet ( DNS ) es creado tomando ideas fundamentales de          
PLN,  las cuales son aplicadas a consultas reales anonimizadas de logs de            
DNS de un gran proveedor de servicios de Internet ( ISP ). El objetivo            
principal es encontrar dominios relacionados semánticamente solamente       
usando información de consultas  DNS  sin ningún otro conocimiento sobre          
el contenido de esos dominios. 

  
Un conjunto de transformaciones a través de un detallado pipeline          

de preprocesamiento con ocho pasos específicos es definido para llevar el           
problema original a un problema en el campo de  PLN . Una vez aplicado el              
pipeline de preprocesamiento y los logs de  DNS son transformados a un            
corpus de texto estándar, se muestra que es posible utilizar con éxito            
técnicas del estado del arte respecto a vectorización de palabras para           
construir lo que denominamos un  DNS-VSM (un modelo de espacio          
vectorial para nombres de dominio de Internet). 
 

Diferentes técnicas de vectorización de palabras son evaluadas en         
este trabajo:  Word2Vec (con arquitectura  Skip-Gram  y CBOW ),  App2Vec         
(con arquitectura  CBOW y agregando intervalos de tiempo entre consultas          
DNS ), y  FastText  (incluyendo información a nivel de sub-palabra).  
Los resultados obtenidos se comparan usando varias métricas de la teoría           
de Recuperación de Información y la calidad de los vectores aprendidos           
es validada por una fuente externa, un servicio para obtener sitios           
similares ofrecido por  Alexa Internet, Inc  . 1

Debido a características intrínsecas de los nombres de dominio,         
encontramos que  FastText es la mejor opción para construir un modelo de            
espacio vectorial para  DNS . Además, su performance es comparada         
contra dos métodos de línea base:  Random Guessing (devolviendo         
cualquier nombre de dominio del dataset de forma aleatoria) y  Zero Rule            

1 https://www.alexa.com/ 
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(devolviendo siempre los mismos dominios más populares), superando a         
ambos de manera considerable. 
 

Los resultados presentados en este trabajo pueden ser útiles en          
muchas actividades de ingeniería, con aplicación práctica en muchas         
áreas. Algunos ejemplos incluyen recomendaciones de sitios web, análisis         
competitivo, identificación de sitios riesgosos o fraudulentos, sistemas de         
control parental, mejoras de  UX  (basada en recomendaciones, corrección         
ortográfica, etc.), análisis de flujo de clics, representación y clustering de           
perfiles de navegación de usuarios, optimización de sistemas de cache en           
resolutores de  DNS  recursivos (entre otros). 
 

Por último, como contribución a la comunidad académica, un         
conjunto de vectores del  DNS-VSM entrenado sobre un juego de datos           
similar al utilizado en esta tesis es liberado y hecho disponible para            
descarga a través de la página github en  [1] . Con esto esperamos a que              
más trabajos e investigaciones puedan realizarse usando estos vectores. 

 
 

Palabras clave:  DNS , VSM,  Vectorización de palabras, Word2vec,        
FastText, App2vec, Similitud semántica, Procesamiento de Lenguaje       
Natural (PLN). 
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Abstract 

 
 
Word embeddings is a well-known set of techniques widely used in           

natural language processing ( NLP ). This thesis explores the use of word           
embeddings in a new scenario. A vector space model ( VSM ) for Internet            
domain names ( DNS) is created by taking core ideas from  NLP techniques            
and applying them to real anonymized  DNS log queries from a large            
Internet Service Provider ( ISP ). The main goal is to find semantically           
similar domains only using information of  DNS queries without any other           
knowledge about the content of those domains.  

 
A set of transformations through a detailed preprocessing pipeline         

with eight specific steps is defined to move the original problem to a             
problem in the  NLP field. Once the preprocessing pipeline is applied and            
the  DNS log files are transformed to a standard text corpus, we show that              
state-of-the-art techniques for word embeddings can be successfully        
applied in order to build what we called a  DNS-VSM (a vector space model              
for Internet domain names). 
 

Different word embeddings techniques are evaluated in this work:         
Word2Vec (with  Skip-Gram and CBOW architectures),  App2Vec (with a         
CBOW architecture and adding time gaps between  DNS queries), and          
FastText  (which includes sub-word information).  
The obtained results are compared using various metrics from Information          
Retrieval theory and the quality of the learned vectors is validated with a             
third party source, namely, similar sites service offered by  Alexa Internet,           
Inc  .  2

Due to intrinsic characteristics of domain names, we found that  FastText is            
the best option for building a vector space model for  DNS . Furthermore, its             
performance (considering the top 3 most similar learned vectors to each           
domain) is compared against two baseline methods:  Random Guessing         
(returning randomly any domain name from the dataset) and  Zero Rule           
(returning always the same most popular domains), outperforming both of          
them considerably. 

 

2 https://www.alexa.com/ 
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The results presented in this work can be useful in many           
engineering activities, with practical application in many areas. Some         
examples include websites recommendations based on similar sites,        
competitive analysis, identification of fraudulent or risky sites,        
parental-control systems,  UX improvements (based on recommendations,       
spell correction, etc.), click-stream analysis, representation and clustering        
of users navigation profiles, optimization of cache systems in recursive          
DNS  resolvers (among others).  

 
Finally, as a contribution to the research community a set of vectors            

of the  DNS-VSM trained on a similar dataset to the one used in this thesis               
is released and made available for download through the github page in            
[1] . With this we hope that further work and research can be done using              
these vectors. 

 
 

Keywords:  DNS , VSM,  Word embeddings, Word2vec, FastText, App2vec,        
Semantic Similarity, Natural Language Processing (NLP). 
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1. Chapter Ⅰ -  Introduction 
 
 
In this first chapter, an introduction with the motivation, goals and 
contributions of this thesis is presented. Finally, the organization of the 
document is outlined. 
 

1.1. Motivation and goals 
 

The amount of time that people spend online has systematically          
increased in recent years  [2] . To understand the behavior of users in online             
content consumption is the focus of several research. It has large           
implications to network design, online business, and media industry  [3] . 

 
Many studies apply machine learning to historical patterns of         

network resource consumption in order to extract knowledge about online          
customer behavior  [4] ,  [5] . Due to the inaccessibility of the information, few            
of these studies use the traces of  DNS queries for this purpose. The few              
exceptions are  [6] ,  [7] ,  [8] ,  [9] ,  [10] , where none of them has as main              
objective to extract knowledge about the semantic nature of the queried           
domains.  

 
There are several Web tools that try to estimate the semantic           

similarity between sites. For example to provide web site owners the           
possibility to find competitors for the same target audience, and to advice            
end-users on alternative providers for the same content. As we will see in             
Section  2.2.5 , these solutions and strategies have lot of disadvantages. 
 

In this work, a novel approach to address the problem of finding            
similarities between Internet domain names (without suffering from the         
previous mentioned disadvantages) is presented. The main goals are: 
 

I. Define a  similarity measure between domain names only        
using information of  DNS queries (without any other previous         
knowledge about the content of those domains).  
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II. Given any domain name and using the defined similarity         
function, find other semantically and syntactically related       
domain names. 

III. Find a way to identify other complex relationships between         
domain names, for example: complementary domain names,       
domain names that are generally accessed together or        
relative relationships like  domain A is to  domain B in the           
same way that  domain C  is to  domain D .  

 
Many use cases can benefit from a solution that satisfy these goals.            

Besides the common uses cases that we can see nowadays that include            
websites recommendations based on similar sites or competitive analysis,         
many others applications such as identification of fraudulent or risky sites,           
parental-control systems,  UX improvements (based on recommendations,       
spell correction, etc), click-stream analysis, representation and clustering        
of users navigation profiles, optimization of cache systems in recursive          
DNS  resolvers, and more, could leverage the results of this work.  

 

1.2. Contributions 
 

We can summarize the main contributions of this thesis in the           
following points:  

 
● State of the Art 

A complete review of the most common techniques that are used           
for building  vector representation of words is presented. Starting         
from the most basics ones that use sparse representations, to the           
most complex ones that are able to learn dense vectors          
representation using neural networks as part of a statistical         
language modelling . This review shows the natural evolution of         
these techniques and it is by itself a good survey of the bibliography             
about the topic.  

 
● Mapping and transformation of DNS data to a problem in the           

NLP field 
A mapping between concepts that come from the  NLP field to           
concepts in the  DNS system is identified. Additionally, a set of           
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characteristics and limitations about the  DNS data and how the          
DNS system works are highlighted and a set of transformations          
through a detailed preprocessing pipeline with eight specific steps is          
defined to move the original problem to a problem in the  NLP  field. 

 
● Vector Space Model for Domain Names (DNS-VSM) 

This thesis shows that once the preprocessing pipeline is applied          
and the  DNS log files are transformed to a standard text corpus in             
the  NLP field then,  state-of-the art techniques for  word embeddings          
can be successfully applied to the corpus in order to build what we             
called a  DNS-VSM  (a vector space model for domain names).  
In our  DNS-VSM domain names are represented by vectors where          
related domain names are mapped to nearby points in the high           
dimensional space. This  DNS-VSM is built only using information of          
DNS queries without any other previous knowledge about the         
content hosted in each domain. 
 

● Pre-trained vectors for the DNS-VSM  
A set of vectors of the  DNS-VSM (trained on a similar dataset to the              
one used in this thesis) is released and made available for           
download through the github page in  [1] . With this, we hope that            
further work can be done using these vectors. 

 

1.3. Publications and conferences 
 
The following publications were generated during this work: 

 
● W. Lopez, J. Merlino and P. Rodriguez-Bocca, "Vector        

representation of internet domain names using a word embedding         
technique," 2017 XLIII Latin American Computer Conference       
(CLEI), Cordoba, 2017, pp. 1-8. 

 
● W. Lopez, J. Merlino and P. Rodriguez-Bocca, "Extracting semantic         

information from Internet Domain Names using word embeddings",        
submitted to Engineering Applications of Artificial Intelligence       
(ELSEVIER), 2019. 
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1.4. Summary and organization of the document 
 

This thesis is structured in three parts, subdivided in chapters. The           
remainder of this document is organized as follows:  

 
Part I - STATE OF THE ART 
In Chapter  2 the required background about how  DNS systems work is            
presented (Section  2.1 ) as well as the related work regarding current           
solutions for finding semantic similarity for Internet domain names (Section          
2.2 ). In the end of this Chapter a set of disadvantages of the current              
solutions are highlighted, therefore motivating the exploration of the other          
approaches considered in this work. 
Then, Chapter  3 introduces the most common techniques that are used for            
building vector representation of words and documents, starting from the          
most basics ones that use sparse representations, to the most complex           
ones that are able to learn dense vectors representation using neural           
networks as part of a statistical language modelling . In particular, Sections           
3.2.2.3 ,  3.2.2.4 and  3.2.2.5 present all the theory behind  Word2Vec ,          
App2Vec and  FastText respectively, which are used later as a core block            
for the novel approach presented in this work to address the problem of             
finding semantically related domain names.  
 
Part II - DNS VECTOR SPACE MODEL 
In Chapter  4 all the details for building a vector space model for Internet              
domain names ( DNS-VSM ) are presented. Firstly, in Section  4.1 a          
descriptive analysis of the data used to build the different models is shown.             
Then, in Section  4.2 the preprocessing steps for building the dataset is            
described, and in Section  4.3 the evaluation framework to be used is            
presented as well as the baseline models. In Section  4.4 the first model             
based on  Word2Vec is described in details. In Section  4.5 the addition of             
the time factor (the elapsed time gap between two consecutives  DNS           
queries requested by a same user) is studied and a second model based             
on  App2Vec is evaluated. A final improvement by considering sub-word          
information is described in Section  4.6 where the last model based on            
FastText is presented. Finally, a summary analyzing the results and          
discussing possible use cases for the  DNS-VSM is presented in Section           
4.7 . 
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Part III - CONCLUSIONS 
Chapter  5 summarizes the main conclusions of this work and gives some            
ideas about possible directions of future work with the  DNS-VSM . 
  

15 



 

  

16 



 

 
 
 
 
 

 Part Ⅰ 
STATE OF THE ART 

17 



 

  

18 



 

 

 

2. Chapter Ⅱ -  Domain Names on Internet 
 
 

2.1. Basic concepts about DNS 
 

The  Domain Name System (DNS)  [11] ,  [12] is a decentralized          
service for naming computers and other resources in a network. Each of            
these resources is assigned a domain name which is a hierarchical string            
defining a node in a tree structure. The domain name is formed by the              
labels of the nodes in the tree traversed from the leaf node to the root               
node, separated by points, as it is shown in the following example: 

 
 

 
Figure 1   - Reading the fully qualified domain name (FQDN) winnie.corp.hp.com 

from the leaf node to the root node. Source  [13] . 
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As we can see in  Figure 1 , the  FQDN winnie.corp.hp.com  can be            
splitted into different nodes/labels, with the following characteristics: 

 
● A  null label, or “ “ is reserved for the root node. In text, the               

root node is written as a single dot (.)  [13] . 
 

● The “ com”  label represents the first/top-level domain  (TLD) .        
Other commonly used TLDs are the generic TLDs  (gTLDs)         
like  edu, org. mil, int, net or the country code TLDs  (ccTLDs)            
like  us, de, br, uy, etc. (a list of all valid top-level domains is              3

maintained by the IANA  and is updated from time to time ) . 4

 
● The “ hp” label represents the  second-level domain and        

commonly refers to the organization (in this example it would          
be  Hewlett-Packard ) that registered the domain name with a         
domain name registrar. 
 

● The  “corp” label is a subdomain of “ hp.com”  and it could           
represent any relevant concept for the domain (“corp” could         
be used by the organization to identify its corporate         
headquarters, for example).  One domain can contain several        
subdomains, for example,  www.example.com ,    
ftp.example.com and  smtp.example.com all are subdomains      
of  example.com (a web server, a file transfer server and mail           
server respectively) 
 

● “winnie” label is just a simple  hostname , and it is a           
subdomain of  corp.hp.com 
 

The  DNS system has been in use in the Internet since 1985 and is               
one of the most essential services in the network. It is decentralized as the              
responsibility for resolving each component of the domain name is          
delegated to a different name server, thus avoiding a single central           
database and a single point of failure. Also, there could be several domain             
servers to resolve the same domain, providing thus a fault tolerant           
configuration. 

3 http://data.iana.org/TLD/tlds-alpha-by-domain.txt 
 
4 https://www.iana.org/ 
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In the Internet, the most fundamental service provided by  DNS is to            
translate easily memorized domain names (human-readable) to IP        
addresses. Each domain can contain different subdomains with different         
types. The most common types are shown in  Table 1 .  
 
 

Type Description Example 

A IPv4 address translation Host1.example.mydomain.com. 
IN A 127.0.0.1 

AAAA IPv6 address translation ipv6_host1.example.mydomain.com.  
IN AAAA 4321:0:1:2:3:4:567:89ab 

MX SMTP mail exchangers example.mydomain.com.  
MX 10 mailserver1.example.mydomain.com 

NS Other name servers example.mydomain.com.  
IN NS nameserver1.example.mydomain.com 

CNAME Domain name aliases aliasname.example.mydomain.com.  
CNAME truename.example.mydomain.com. 

PTR Reverse DNS queries, for example     
to query the domain name for a       
given IP address 

1.0.0.10.in-addr.arpa.  
PTR host.example.mydomain.com. 

 
Table 1  - Most common DNS record types 

 
 

Each domain has at least one  authoritative name server that          
contains the original information about the domain and its subdomains. An           
authoritative name server only gives answers to DNS queries from data           
that has been configured on that server. Potentially, an authoritative name           
server could delegate a subdomain to other authoritative servers building a           
hierarchical tree of authorities.  

On the top of the hierarchy are the  root DNS servers . There are 13              
logical root name servers , which form a network of hundreds of servers in             
many countries around the world.  Table 2 shows the root servers and its             
operators. 
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HOSTNAME IP ADDRESSES MANAGER 

a.root-servers.net 198.41.0.4, 2001:503:ba3e::2:30 VeriSign, Inc. 

b.root-servers.net 199.9.14.201, 2001:500:200::b University of 
Southern California 
(ISI) 

c.root-servers.net 192.33.4.12,  2001:500:2::c Cogent 
Communications 

d.root-servers.net 199.7.91.13,  2001:500:2d::d University of 
Maryland 

e.root-servers.net 192.203.230.10, 2001:500:a8::e NASA (Ames 
Research Center) 

f.root-servers.net 192.5.5.241,  2001:500:2f::f Internet Systems 
Consortium, Inc. 

g.root-servers.net 192.112.36.4, 2001:500:12::d0d US Department of 
Defense (NIC) 

h.root-servers.net 198.97.190.53, 2001:500:1::53 US Army 
(Research Lab) 

i.root-servers.net 192.36.148.17,  2001:7fe::53 Netnod 

j.root-servers.net 192.58.128.30, 2001:503:c27::2:30 VeriSign, Inc. 

k.root-servers.net 193.0.14.129,  2001:7fd::1 RIPE NCC 

l.root-servers.net 199.7.83.42, 2001:500:9f::42 ICANN 

m.root-servers.net 202.12.27.33, 2001:dc3::35 WIDE Project 

 
Table 2  - List of Root Servers  5

 
 

On the other hand, there are recursive DNS servers (generally          
provided by the  ISP ) which are capable to resolve queries about domain            
names by means of recursive queries to possibly several authoritative          
name servers starting from the root servers. 
In this way, root  DNS servers delegates authoritative subdomains to          
ccTLDs and  gTLDs servers which are responsible to populate country          
domain names and generic domain names respectively. Similarly, these         
top-level domain servers generally delegate subdomains to other        

5 https://www.iana.org/domains/root/servers 
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organizations, which are free to continue delegating. All this chain of           
delegations builds a tree of authoritative name servers, where each record           
has a specific location. Hence, in order to resolve a name, the tree must              
be traversed, from the root to the most specific authoritative server, which            
should have the answer (if it exists).  
 

The client components of the  DNS system are called  DNS          
resolvers . Resolvers usually query recursive servers to find an answer,          
which generally need to perform many iterative queries to other name           
servers until find the answer.  Figure 2  illustrates this resolution process. 
Once the answer for a query is found, the recursive server typically saves             
the response in a local cache in order to increase efficiency, avoiding to             
repeat all the same process for domain names that were previously           
queried. The duration of the cached data depends on the  TTL (time to live)              
configuration of each domain at the authoritative servers. 
 
 

 
Figure 2  - Resolution of girigiri.gbrmpa.gov.au on the Internet. Source  [13] . 
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In summary, the  DNS system is a critical service on the Internet,            

essential for most applications (Web, Mail, etc.) to work. The system is a             
distributed database of records, being the most important those that          
transform names into IP addresses. The database is structured in an           
arborescent manner in authoritative servers, which are administered        
autonomously by various institutions "owners" of a possible portion of          
subdomains.  
Clients, who perform record queries, use a special application, called          
resolver, included in operating systems. However, the resolvers do not          
consult the database directly, but send the query to recursive servers who            
traverse the tree, keep the result for future potential queries, and respond            
to the client. The recursive servers then have a trace of queries for each              
client, and it is the objective of this work to extract knowledge of these              
traces. 
In Chapter  4 we will see how to transform these traces and use them with               
NLP algorithms to extract semantic information about domain names. But          
before that, let’s see what are the current approaches to find semantic            
similarity between domain names and what are the main issues they           
present. 
 

2.2. Semantic similarity for Internet Domain Names 
 

So far, we have defined what  DNS is and how domain names are             
resolved by  DNS servers. We have seen, that  DNS servers can solve a             
DNS query iteratively or recursively, but in none of those cases  DNS            
servers know really what kind of business need or goal a domain name             
has. Domain names are seen by  DNS servers just as strings composed of             
labels with a hierarchical structure, and no relevant or semantic          
information is known a priori from those strings.  
 

Other thing that we have noticed in the previous section is that  DNS             
servers typically cache the results of  DNS queries in order to optimize the             
overall performance of the  DNS server. Probably, if semantic information          
about  DNS was known in advance, more powerful cache strategies could           
be possible to implement, for example by loading similar domains or           
complementary domains that are commonly consumed together. 
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Knowing the semantic of domain names could also allow to          

implement more secure systems, warning about possible fraudulent sites         
for example, or detecting sites that could contain risky contents. Clustering           
of domain names according to the kind of content that they provide, would             
allow to recommend similar contents, identify competitors, block        
inadequate contents in parental control agents (among others). Hence, we          
realize that enriching domain names with semantic information would bring          
lot of possibilities.  

 
The term semantic similarity is usually employed over sets of words           

(texts) to measure the likeness of their meaning. In the context of this work              
we will define the semantic similarity between domain names, as the           
distance between their semantic content. For example, two news providers          
are expected to be semantically similar, as well as two retail stores, and if              
they offer the same category of products should be closer.  

 
In the rest of this section an overview of current mechanisms and            

tools to identify semantic similarity between domain names is presented.          
Later, the necessity of new methods is pointed out by understanding the            
disadvantages of the current strategies, and thus, motivating the main          
work of this thesis that proposes a novel methodology to obtain the            
semantic information associated to domain names using only available         
information in the  DNS  recursive servers. 

 

2.2.1. Alexa 
 

 Alexa Internet, Inc. , founded in 1996 as an independent company          6

and acquired later by  Amazon  in 1999, has been one of the most important              
references in what is related to web analytics. Its  Alexa Rank (a famous             
and widely used metric to measure the popularity of a website) it has             
received historically (and even today), a considerable importance by sites’          
owners and people working on search engine optimization ( SEO ). 
 

In order to get all the data needed for its analytics services,  Alexa             
collects information directly from multiple web browser extensions, toolbars         

6 https://www.alexa.com/ 
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and also from sites that install a script that sends information to  Alexa's             
servers (similar to  Google Analytics  ).  7

Toolbars and extensions are available for  Firefox and  Chrome and they           8 9

are designed in such way that users are motivated to install and use them              
in order to access to features such as: 
 

●   Alexa Traffic Rank  (see how popular a website is) 
● Related Links (find sites that are similar to the site you are            

visiting) 
● Wayback  (see how a site looked in the past) 
● Search Analytics  (find out which queries drive traffic to a site) 

 
With all this information collected and centralized, the analytics tools          

provided by  Alexa , allow enterprise customers to find meaningful         
information about their sites.  
These tools are divided in two main groups:  SEO tools (focused on            10

keyword research and website optimization for Improving search engine         
rankings and results) and  Competitive Analysis Tools (focused on         11

website analysis and market research for understanding the competitive         
landscape, track the performance of other sites and get visibility into           
competitor strategies). 
 

In particular, one of the  Competitive Analysis Tools is the  Audience           
Overlap Tool  . Among other things, it allows to see clusters of related            12

sites as it is shown in  Figure 3 . This is very interesting and related to this                
work, since in some way or another, semantic information start to appear            
when analyzing these clusters. 
And going deeper, this tool offers a self contained service called  Find            
Similar Sites  which allows to query for a specific domain name in order              13

to know possible competitors based on similar sites. In its paid version,            
this service retrieves the top 100 most similar sites for a specific input             
domain name. 

7 https://analytics.google.com/ 
8 https://www.alexa.com/toolbar?browser=firefox 
9 https://www.alexa.com/toolbar?browser=chrome 
10 https://try.alexa.com/marketing-stack/seo-tools/ 
11 https://try.alexa.com/marketing-stack/competitive-analysis-tools 
12 https://try.alexa.com/marketing-stack/audience-overlap-tool 
13 https://www.alexa.com/find-similar-sites 
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Figure 4 shows a web view of the service displaying the top 5 most similar               
sites for  amazon.com . The result list has a default order by the  Overlap             
Score value. The meaning of this value according to  Alexa  is:  “the relative             
level of visitor (audience) overlap between any site and the target site. A             
site with a higher score shows higher audience overlap than a site with a              
lower score” . This order will be important when defining the evaluation           
strategy explained in Section  4.3 . 

 
 

  
Figure 3  - Clusters of related sites  (image credits: Alexa ). 14

 
 

 
Figure 4  - Similar Sites for amazon.com according to Alexa. Retrieval date: Oct, 2018. 

 
 

14 https://try.alexa.com/offer/guided-tour/find-and-reach-your-audience 
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 As explained before, the main objective of this thesis is to build a             
semantic similarity representation between domain names only using        
information of  DNS queries from recursive  DNS servers, without any other           
previous knowledge about the content of those domains. 
In order to do this, some external sources will be used as reference for              
comparison. In particular (as it will be explained in Section  4.3 , when            
describing the evaluation framework to use), the API service for finding           
similar sites provided by  Alexa will be used for measuring the accuracy of             
the solution. 
 

2.2.2. SimilarWeb 
 

SimilarWeb , is an online competitive intelligence tool owned by the          15

Israeli start-up  SimilarGroup . The online tool as well as its browser           
extension (available for  Chrome ,  Firefox ,  Safari and  Opera ) shows many          16

statistics about websites, including traffic sources, organic versus paid         
search, social traffic, related sites (the most related to this work), and            
more.  

As it is shown in  Figure 5 , the main features are divided into nine              
different categories (see  [14]  or  [15]  for a detailed review):  

 
● General Overview (in-depth traffic and engagement stats,       

including monthly visits trend, time on the site, page-views         
and bounce rate) 
 

● Traffic Sources (a chart with the different sources for a site,           
including direct links, search, social, mail, display, etc) 
 

● Geography (which locations the traffic is coming from; shows         
5 leading countries) 
 

● Referring Sites (a list of the top 10 inbound and outbound           
referral sites) 
 

15 http://www.similarsitesearch.com/ 
16 
https://chrome.google.com/webstore/detail/similarweb-traffic-rank-w/hoklmmgfnpapgjgcpechhaami
mifchmp/ 
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● Search Traffic  (organic vs. paid traffic and top 10 keywords) 
● Social (ranks the top 5 social networks according to the          

quantity of traffic they send to the site) 
 

● Display Advertising (top publishers and ad networks, also        
shows ad screenshots) 
 

● Audience (upstream and downstream, other sites that users        
visited online by category, topic and websites) 
 

● Similar sites  (sites with similar content) 
 

● Mobile apps (displays the mobile apps belonging to the         
website) 

 
 

 
Figure 5  - SimilarWeb extension when browsing www.amazon.com 

 
 
According to the official documentation , the data is gathered from: 17

 
● A pool of monitored user devices (hundreds of millions of          

desktop/mobile devices)  
 

17 https://www.similarweb.com/ourdata 
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● Data obtained directly from ISPs 
 

● Web crawlers that scan websites every month  
 

● Direct measurement from websites and mobile apps       
connected to them 

 
The pool of monitored user devices is the main source of            

information and it is achieved thanks to the browser extension. According           
to the extension’s agreement and the privacy policy ,  SimilarWeb claims          18

to collect data regarding browsing usage, specifically the domains that          
users browse. The usage of the extension requires granting it permission           
to capture anonymized  click-stream  data. 

 
Last but not least, the privacy policy also specifies that children           

under 13 are prohibited from using the service. If  SimilarWeb becomes           
aware that a user under the age of 13 has shared any information, the              
information is discarded. As we will point out later, this restriction makes            
difficult to learn good similarities for sites where children are the main            
audience. 

 

2.2.3. Google Similar Pages 
 

Google Similar Pages is an extension specifically designed for the          19

Chrome  browser  by  Google Inc. As it is shown in  Figure 6 , it displays a few                
semantically similar pages to the one that the user is browsing. 

 
To the best of our knowledge,  Google does not provide information           

about the techniques or algorithms that are used in order to decide what             
are the most similar pages to a given site.  
Probably, not only the data that comes from the browser extension           
(tracking user’s navigation habits) is used for gathering the required          
information to learn sites similarities. It is reasonable to believe that           
Google also combines information collected from other sources, like the          

18 https://www.similarsites.com/privacy-policy 
19 
https://chrome.google.com/webstore/detail/google-similar-pages/pjnfggphgdjblhfjaphkjhfpi
iekbbej 
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contents in themselves (the reader should remember that Google’s search          
engine scans websites for indexing the web periodically) and also from           
their own public  DNS , which is a free, global  DNS resolution service that             
users can use as an alternative to their current  DNS provider (this could be              
much closer to our approach). 
Learn semantic information from the contents in themselves is probably          
the obvious and most direct option but as we will point out later, it is very                
difficult to implement in large scale systems like the web. 
 
 

 
Figure 6  - Google Similar Pages extension when browsing www.amazon.com 

 

2.2.4. Others 
 

There are some other available options that can provide a similar           
feature for finding similar sites. A brief (non exhaustive) summary with           
some of these options is presented in the following. 

 
Similarsitesearch  i s a search engine for finding similar, related or          20

alternative sites. At the moment of writing this, the database is quite small,             
containing less than 14k items. They use machine learning algorithms and           
social data to determine the topics of websites which are used to find             

20 https://www.similarsitesearch.com/ 
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similar websites that have the closest matching set of topics. According to            
this service, multiple aspects are analyzed, including popularity, language,         
and country of interests. Users can also suggest similar sites for a given             
domain name (adding a collaborative mechanism for increasing the         
database). Websites’ owners can submit their sites immediately to the          
database by filling a form and by uploading a file  (ssstopics.txt) to a             
webserver in the submitted domain name (for example,        
http://(www.)yourdomain.com/ssstopics.txt) indicating the topics contained     
in the site.  
This is similar to the keywords tag used in HTML to help search engines to               
understand the website’s content. The platform gives a good explanation          
of results, saying why a result is similar to a given site. This is a favor point                 
for this tool, since many times when machine learning algorithms are used,            
the explanations for the results are omitted or they are difficult to interpret. 
 

Moreofit is other search engine for similar sites. Given a website, it            21

suggests alternative highly related and popular websites to explore.         
Although the service does not provide too much details about how does it             
work, the site’s description claims that they combine manual work for           
organizing and describing sites with clustering techniques. The manual         
work clearly is a disadvantage and it is not scalable. This limit the websites              
considered by the service to just the most popular global domains.  
When testing this tool using many of the most popular uruguayan           
websites, the result was a poor message saying that the provided url is not              
popular enough to get result. 
 

A topic based directory where sites are submitted manually by          
users and then grouped under different categories is the approach offered           
by  SitesLike . For linking similar sites together, the service makes use of            22

known and readily available information like global reach, page rank,          
keywords and user input. 

 
Top Similar Sites is other possibility, it’s a website that offers a            23

basic kind of grouping for some general categories (search, news, social,           
video, shopping, etc) and a search engine tool for finding similar sites. It             
also allows to see results order by sites’ popularities and see the most             

21  http://www.moreofit.com/ 
22 https://siteslike.com/ 
23 http://www.topsimilarsites.com/ 
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relevant topics for the site that is being searched. In addition to this, it              
offers an interesting feature that returns the most similar sites but based            
on names’ syntax and structure.  
As we will see later in this work, when proposing a new approach for              
finding similarities between domain names, morphological characteristics       
of domain names is also something very important to be considered, since            
they generally carry strong information about its nature. 

 
Finally, the last option considered in our list is  SimilarSites  that           24

despite being presented like something independent, it is a service          
powered by  SimilarWeb  (see Section  2.2.2 ), and the results obtained when           
looking for similar sites are exactly the same than the results obtained            
when using  SimilarWeb .  
This service can be used from its website itself, or through its chrome             
extension .  25

Probably, presenting this service with a different website than  SimilarWeb          
(removing all the web analytics tools provided by  SimilarWeb ) is a           
business strategy decision with the goal of reaching a different kind of            
public.  SimilarWeb is thought more for the enterprise and websites’ owners           
who want to get all kind of statistics and competitive information about            
websites, and on the other hand,  SimilarSites is thought more for a            
common Internet user that just want to know similar pages to explore and             
discover new content similar or related to its interests (it works like a             
recommender system by recommending similar content to the one that it’s           
being viewed).  
The recommendation approach behind  SimilarSites is  "people who visit         
this site also like to visit these other related sites" (just like with Youtube              
recommendations).  
Installing and using  SimilarSites extension requires granting permissions        
to capture anonymized browsing data. This powers the algorithms that          
generate similar sites to the ones a user visits and allows to understand             
website traffic numbers and flows, which can be used for market research.            
The same privacy policy  than  SimilarWeb  is applied. 26

 

24 http://similarsites.com/ 
25 
https://chrome.google.com/webstore/detail/similar-sites-discover-re/necpbmbhhdiplmfhmjicabdeighk
ndkn 
26    https://www.similarsites.com/privacy-policy 
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2.2.5. Disadvantages of the current approaches: where to        
go next? 
 

In general we can divide all the previous tools that were presented            
in two different categories, either those tools that in some way or another             
require that Internet’s users or websites’ owners install some kind of           
component able to run at the client side (a browser plugin/extension, a            
client side script, etc ) or those tools that create a centralized database of              
similar sites based on sites’ topics (manually or automated indexed). 
One advantage of many of the previously mentioned approaches is that           
they can act to the whole URL level, not just the domain. This could be               
something helpful in different scenarios for example to block only some           
particular pages of a domain or to recommend specific categories in a            
domain with multiple subcategories of different products. But as we will           
see in this section, the current solutions suffer from many disadvantages           
that motivates the exploration of new approaches like the one presented in            
this work. 
 
Using client side components has many disadvantages: 

 
● Firstly, it will collect information only from who installed the plugin.           

This could reduce the public to some specific segment/kind of user,           
and it is not representative of all Internet users (this is the same             
problem than a political poll by telephone could have by collecting           
responses just from people who have telephone, and without         
considering the opinion of a different kind of voter, the one that            
cannot have access to a telephone). 
 

● There are legal prohibitions to collect information for children under          
13 years old. This restricts the audience even more, making difficult           
to collect enough big data for sites where children are the main            
audience. Example of these sites could be educational sites, games          
sites, cartoons channel websites, among others. 
 

● It requires the user to give permissions to allow the execution of a             
browser extension (many users do not like this because of security           
concerns) or allow cross-domain requests from javascript code. 
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● It is intrusive in the user’s navigation and possibly affecting the           

navigation’s performance, and thus, the user experience when        
visiting different websites. 
 

● It does not work well for mobile devices (not all mobile browsers            
support using plugins/extensions). This issue, reduce even more        
the group of users that are tracked. It’s important to note that            
nowadays, mobile access is greater than desktop access  [16] , so          
there is a huge segment of users browsing the web from their            
mobile devices. 
  

● Development, maintenance and updates are difficult. Different       
extensions for different browsers need to be developed. Users with          
more than one browser would require to install a different instance           
of the extension in all browsers. It’s difficult to change the           
centralized service that collect the information once the        
extensions/site scripts are distributed globally, needing to support        
possible many different versions at the same time. 
 

● It’s difficult to distribute the client side component. Common users          
probably won't access to download/install the extension explicitly.        
Important marketing campaigns and ads in popular sites are         
probably needed to reach a big amount of users, making this           
approach to be expensive.  
 

● In case of tracking by using scripts hosted in websites, probably           
only some enterprise sites would use them, and on the other hand,            
it requires to provide a high quality analytic tool able to provide            
helpful information for business decisions, and so, to be a sexy           
option for sites' owners (otherwise, why should they add an script to            
send information to an external site?) 

 
Using a database of similar sites based on sites’ topics presents           
other disadvantages: 
 

● A high quality service requires a curated database and this is not            
generally done by an automated process (it requires many people          
manually checking contents). 

35 



 

● It is based exclusively in the kind of topic a site contains, making             
difficult to understand complex relationships like complementary       
sites. 
 

● It requires a submit process to add less popular sites (sites’ owners            
need to submit their websites to the database for an initial tracking). 
 

● Topics are discovered either manually during a curation process or          
automatically by robots (web crawlers) searching for specific        
metadata (html keywords, specific text files that describe the site’s          
content, etc). In the last case, it requires sites’ owners to add            
metadata to their sites and we need to trust in their descriptions. 
 

● When similarities are based on metadata, language could be a          
problem (for instance, keywords in spanish will not match english          
keywords despite the sites could be very related based on the kind            
of content they provide). 
 

● When similarities are based on metadata, webmasters could        
employ different terms for a same concept. 
 

● No matter if the topics are discovered manually or automatically          
through web crawlers, It does not scale well to all the web. 

 
 
Other approaches 

 

In the particular case of  Google Similar Pages , as it was mentioned            
before,  Google does not provide information about the techniques or          
algorithms they use, but we can think that they probably combine           
information gathered from many sources (not only from the browser          
extension) like the contents in themselves or their own free public  DNS            
resolution service (among others).  
Contents could be accessed by  Google through their search engine, and           
the similarity problem can be addressed as a classic  Information Retrieval           
(IR)  problem by creating a vector representation for each content and then            
just applying some similarity distance between vectors like for example the           
euclidean or cosine distance (in the next chapter, we will see different            
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techniques for creating such vector representations for words and         
documents). But although it sounds great to use the content’s information           
as a basic source of semantic learning, this is not something easy to             
implement in large scale systems like the web, and it presents lot of             
disadvantages as an standard solution, being very time consuming and          
requiring an enormous infrastructure and complex logic to analyze all the           
contents from the entire web. 
On the other hand, if  Google had been using its own  Google Public DNS              
System  as a source of information for understanding navigation patterns in           
the web ,  then  it would be a much closer approach than the one presented              
later in this work. And the same for  SimilarWeb, which also indicates that             
they make use of some kind of information provided by  ISPs but without             
indicating too much details about this data source. 
 

Hence, since this information is not provided by  Google or          
SimilarWeb , then we think that the approach presented in Chapter  4 is a             
novel method for solving this complex task of finding semantic similarities           
between Internet domain names.  
But before moving to the proposed solution, let’s continue presenting the           
theory behind word and document embeddings, that at the end they are            
the core ideas used later in this work.  
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3. Chapter Ⅲ - Vector representation of       
words and documents  
 
 

In order to work with different algorithms, computers need to          
represent words and documents as fixed length vectors that can be used            
as input for training different machine learning models or for searching           
relevant documents using some  Information Retrieval System (IRS) . For         
example, consider the following two sentences (widely used in the          
literature) 

 
A. “Obama speaks to the media in Illinois”  
B. “The president greets the press in Chicago” 

 
Probably, we pretend that if we search the sentence  A in a search engine,              
then document  B is included in the results. In the same way, we would like               
that a machine learning algorithm in the  Natural Language Processing          
( NLP)  field could understand that both sentences have a similar meaning. 
In order achieve these goals, computer algorithms need to understand that           
“Obama” and  “president” have a similar meaning and that they can be            
interchanged in many contexts as the same thing, and the same with the             
words  “press” and  “media”.  Also, intelligent algorithms need to understand          
more complex relationships between words like the one that exists          
between  “Illinois” and  “Chicago” that despite not being the same thing,           
they have a strong relationship since Chicago is a city that belongs to the              
state of Illinois in the United States. 
 

By analyzing big amount of text data (corpora), and how different           
words are used in different contexts and how they appear combined with            
other words, different techniques in the  NLP and  IR  field can be employed             
in order to build a vector space model  (VSM) . As we will see later in this                
chapter, in a  VSM words are represented as fixed length vectors and the             
relationships between words can be expressed as mathematical        
operations between vectors. 
These vector representations, have been used for over 50 years, being the            
most common way to compute semantic similarity between words,         
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sentences or documents, making these methods an important tool in          
practical applications like  question answering ,  summarization , or  automatic        
essay grading   [17] . 
 

A common taxonomy for vector representation of words (a.k.a  word          
embeddings )  organizes the techniques into two main categories:        
count-based (a.k.a matrix-factorization based ) and  prediction-based ( [18] ,       
[19] ,  [20] ). There are many research works like  [18] ,  [21] ,  [22] ,  [23] ,  [24] ,             
[25]  (among others) that describe the main methods commonly used.  
In the rest of this chapter we will present a review of these techniques,              
starting from the most basics ones that use sparse representations, to the            
most complex ones that are able to learn dense vectors representation           
using neural networks as part of a statistical language modelling .          
Statistical models of natural language are a key part of many systems            
today. The most widely known applications are automatic speech         
recognition  (ASR) , machine translation  (MT) and optical character        
recognition  (OCR)  [26] . In  [27] ,  [28] and  [29] a complete review of            
statistical language models based on neural network can be found.  
 

Later, in Chapter  4 this background knowledge (in particular the          
word embeddings techniques based on neural networks) will be used to           
build a vector space model  for Internet  domain names. In this vector space             
model, names of websites ( example1.com, example2.com, etc ) are taken         
from real anonymized  DNS log queries (user’s navigation traces) from a           
large Internet Service Provider  (ISP) . The main goal will be to find            
semantically similar domains only using information of  DNS queries         
without any other previous knowledge about the content of those domains. 

 

3.1. One-Hot encoding 
 

This is probably the most simple technique for word         
representations. Suppose a vocabulary with  n words  V = {w 1 , w 2 , …, w n } ,             
then the idea behind this technique is to represent each word  w i  as a fixed               
length vector of length  n  (where  n  is the number of words in the vocabulary               
V ). Each dimension of the vector  v = (v 1 , …, v n ) will be zero, except the                
element at the i th  position that will be one. 
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As an example, if our vocabulary is defined by the words {dog, cat,             
fish} then, each of these words is represented by a 3 dimensional vector.             
And the particular encoding for each word would be: 100 (dog), 010 (cat)             
and 001 (fish). 
 

It is easy to see the main problem of this technique, the high             
dimensional and sparse representation of the words. This model presents          
a terrible performance when using large vocabularies, being computational         
very expensive and making to fail some matrix operations (like rebuild in            
autoencoders). Furthermore, a representation like this does not include         
any information about semantic relationship between words. 
  

3.2. Vector Space Models (VSMs) 
 

In the previous example, when using  one-hot embedding , we         
pointed out that one of the main issues presented by the method is that the               
representation does not include any semantic about words. 
 

Vector Space Models  (originally introduced in the  SMART        
information retrieval system  [30]  by Gerard Salton  and his colleagues  [31] )           
on the contrary, allow to represent words by using vectors that when are             
embedded in a vector space, words with similar semantic are mapped to            
nearby points in the high dimensional space. From now, and during this            
work, anytime we refer to a word, sentence or document embedding we            
are referring to the vector representation for that word, sentence or           
document in the high dimensional vector space model. 
 

In some way or another, all these vector space models have the            
notion of  context , and they have as fundamental hypothesis that similar           
contexts tend to have similar meanings. The meaning of a word is thus             
related to the distribution of words around it  [17] , (for this reason these             
methods sometimes are called  distributional methods ) and so, words that          
occur in similar contexts tend to have similar meanings  [32] [33] [34] [35] .          
The different approaches that leverage this principle can be divided into           
two categories:  count-based methods  and  predictive methods .  
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Count-based methods generally use a  co-occurrence matrix , an        
structure that allows to define a math model for representing how often            
words co-occur in a large text corpus and then map these count-statistics            
down to a small, dense vector for each word  [36] . As it was pointed out in                
[21] , the different structures of this co-occurrence matrix ( term– document,          
word–context, pair–pattern matrices, etc ) are very important in determining         
the potential applications and can be helpful for organizing the literature on            
VSM s. 

 
Predictive models directly try to predict a word from its neighbors           

[36] (or the neighbors from a word) and the prediction process can be used              
to learn embeddings for each target word by starting with a random vector             
and then iteratively updating the embedding in such way that the           
embedding is more like the embeddings of neighbor words and less like            
the embeddings of words that don’t occur nearby. 

 
Vector or distributional models of meanings , have been used in the           

NLP field for over 50 years, being the most common way to compute             
semantic similarity between words, sentences or documents, making these         
methods an important tool in practical applications like question answering,          
summarization, or automatic essay grading  [17] . 

 
In what follows, the most important  VSM methods that are          

commonly used are presented, starting from the simplest and most          
intuitive  count-based method that leverage the  co-occurrence matrix in its          
raw definition (sparse matrix), then moving on to more sophisticated          
methods that transform the sparse matrix in a dense one, and finally some             
of the latest approaches currently being used for  predictive models based           
on  neural networks architectures. Later, in next sections, we will focus           
specifically on the details for the particular  predictive models that were           
used through this research. 
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3.2.1. Count-based methods 
 

3.2.1.1. Sparse Vector representations 

 

3.2.1.1.1. Term-Document Matrix 
 

The  Term-Document Matrix is probably the simplest and most         
intuitive  count-based method that uses a matrix to represent words and           
documents in a continuous vector space model. In its most basic form, this             
matrix contains a row for each term in the vocabulary (generally tens of             
thousands words) and a column for each document in the collection of all             
possible documents (the collection of documents could be potentially         
enormous, just think in Internet, for instance). Then, each cell in  matrix(i,j)            
represents the number of occurrences that the term  i occurs in the            
document  j .  

 
Although this is a basic and simple structure, it is able to capture             

semantic from terms and documents which is helpful for applying similarity           
measures and computations for finding similar terms and documents. For          
this reason, this approach was initially employed in the Information          
Retrieval (IR) field, like in  [30] . 

 
As an example, consider a vocabulary  V={w 1 , w 2 , w 3 , w 4 , w 5 , w 6 }            

that corresponds to the union of all the words that are present in             
documents  d 1 , d 2 , d 3 . Suppose that the text content (corpus) of these            
documents are:  
 

● d 1  = w 1  w 2  w 1  w 3 

 
● d 2  = w 2  w 3  w 2  w 3  w 4 

 
● d 3  = w 3  w 1  w 5  w 6  w 4  w 5  w 6  w 5  w 4  w 1 
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Then, the  Term-Document Matrix  is: 
 

 d 1 d 2 d 3 

w 1 2 0 2 

w 2 1 2 0 

w 3 1 2 1 

w 4 0 1 2 

w 5 0 0 3 

w 6 0 0 2 

 
Table 3   - Term-Document Matrix example 

 
 
Now, the columns and rows can be used as vectors to represent            

documents and words respectively in the vector space model. The column           
representation for documents, is also known as  bag of words          
representation, since the semantic of the document is defined exclusively          
by the set of words that appear in the document (order doesn't matter).             
For instance,  v d1 =(2,1,1,0,0,0) is the 6 dimensional vector that represent          
the document  d 1 ,  v d2 =(0,2,2,1,0,0) and  v d3 =(2,0,1,2,3,2) are the vectors that          
represent the documents  d 2 and  d 3 respectively. At the row level we have             
the 3 dimensional vectors  v w1 =(2,0,2) ,  v w2 =(1,2,0) ,  v w3 =(1,2,1) ,  v w4 =(0,1,2) ,        
v w5 =(0,0,3) and  v w6 =(0,0,2) that represent the words  w 1 , w 2 , w 3 , w 4 , w 5 ,w 6             
respectively.  

 
It is interesting to note that words and documents live in different            

dimensional spaces. For modeling the documents  d 1 , d 2 and  d 3 , we have a             
6 dimensional space, where each dimension corresponds to the number of           
occurrences of an specific term in the document. For modeling terms  w 1 ,            
w 2 , w 3 , w 4 , w 5 , w 6 we have a 3 dimensional space, where each dimension              
corresponds to the number of occurrences that the term has in an specific             
document. If we generalize this observation, for an  N x M matrix where  N =               
|V| (number of unique words in the vocabulary) and  M = |D| (number of              
documents in the documents collection) the vector space model for the           
terms is a  M dimensional space and the vector space model for modeling             
documents is a  N  dimensional space. 
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Finally, since similar documents use similar terms that define the          

semantic of the document, those documents will have similar values in the            
dimensions that correspond to those terms. Then, after having found a           
vector representation of the documents that keeps some of the hidden           
semantic, we can compute similarity between documents by measuring         
the distance between the vector representations of the documents.  
And the same idea also applies to compute similarity between words.           
Since similar words tends to appears in the same documents, then their            
vector representations tends to have similar values in the dimension that           
corresponds to those documents, and so, the distance between those          
words tends to be small.  
 

One of the most common distance metric widely used is the cosine            
distance. Cosine distance between two vectors is defined in  [21] by           
Equation 1 . 

 

                 ( Eq. 1 )  
 

For this metric, the most important is the angle between the vectors            
and not the length of the vectors. When the two vectors point in opposite              
directions (180 degrees) then the cosine value is -1, when they point in             
same direction (0 degree) the cosine value is 1, and when they are             
orthogonal (90 degrees) the cosine value is 0.  
Having presented the cosine distance formula, we can use it to measure            
how similar two words or two documents are by considering their vector            
representations from the  term-document matrix. For instance, the cosine         
distance between  w 1 and  w 2 is 0.316, between  w 1 and  w 3 is 0.577,             
between  d 1 and  d 2 is 0.544 and between  d 1 and  d 3 is 0.435. By using these                
metrics, we can see easily that  w 1 and  w 3 are more similar than  w 1 and  w 2 ,                
and  d 1  is more similar to  d 2  than  d 3 . 
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One disadvantage is that when using raw frequencies of word          
occurrences in documents, common words that appear in all documents          
and do not add any important semantic (like english stop-words: is, the, a,             
an, it, etc) to the document, can introduce noise in the representation            
when computing similarities.  
As we are about to see, weighting techniques like  PMI (Pointwise Mutual            
Information)  and the tf-idf (term frequency – Inverse document frequency)          
are commonly used to avoid the issue of common terms that are not as              
relevant as others less frequent terms, and can affect the performance of            
the similarity metric.  
 

Finally, it’s important to mention that other two disadvantages of the           
term-document matrix are that rows and columns vectors that represent          
words and documents respectively, generally have a high number of          
dimensions (requiring lot of space for allocating the whole matrix) and they            
are also very sparse (most values in vectors are zero).  
As we are going to see later, dense vector representations of words and             
documents will help to solve these problems.  

 

3.2.1.1.2. Weighted Term-Document Matrix 
 

Using the raw frequency of terms in documents as values for the            
Term-Document matrix could be not the best idea. This is because not all             
words in a document are equally important  [37] . For example, common           
words like “ the”, “and”, “this”, “it” (among others) can appear tons of times             
in each document and also are words that probably occurs in all            
documents, so they do not add any important meaning to the documents            
where they appear.  

 
Common words, can add noise when calculating the similarity         

between documents or words. One option to deal with this problem is to             
remove the more frequents words or words that appear in some           
predefined blacklist or stopwords list. Anyway, and although removing stop          
words can help removing noise for computing similarities, we still can have            
words that are more frequent than others adding less semantic than those            
words that are very specific for particular domains and so carrying lot of             
semantic information in it. 
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In order to deal with this problem, a common approach is to use             
weighted values for term frequencies in documents instead of using just           
raw frequencies. A weighted value can be seen as the output of some             
function of relevance or importance of the term, applied to the raw            
frequency value of that term.  
This approach has demonstrated to work very well and different weighting           
functions have been used. Two of the most well-known are  PMI (pointwise            
mutual information)  and  tf-idf (term frequency – Inverse document         
frequency) 
 

3.2.1.1.2.1. Pointwise Mutual Information (PMI) 

 
For computing word similarity, PMI is one of the most popular 

techniques employed for weighting term frequencies in a  Term-Context 
matrix (as we will see, the Term-Context matrix is a generalization of the 
Term-Document matrix, allowing different kind of contexts and not only 
documents).  

 
After applying PMI to the original matrix, then each cell in the final 

matrix represents the association between the word  w i   and the context  c j  . 
We can think about PMI as a measure of how often two words co-occur in 
the same context, compared with what we would expect if they were 
independent  [17] .  

 
More formally, when computing PMI between two words  x  and  y , 

PMI  “compares the probability of observing x and y together (the joint 
probability) with the probabilities of observing x and y independently 
(chance)”   [38] .  
[38]  also presents  Equation 2  as the formula for estimating PMI as the log 
ratio between x and y’s joint probability and the product of their marginal 
probabilities. 
 
 

                           ( Eq. 2 )  
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where: 
 

● P(x)  is the estimated probability of the word x. In practice, we 
represent this probability as the number of occurrences of  x  in the 
corpus 

● P( y)  is the estimated probability of the word y. In practice, we 
represent this probability as the number of occurrences of y in the 
corpus 

● P(x, y)  is the estimated probability that words x and y occur in the 
same context. In practice, we represent this probability as the 
number of times where the two words co-occur in the same context 

 
Furthermore, a minor variation of PMI called  Positive Pointwise 

Mutual Information (PPMI)  is typically used. As shown in  Equation 3 , PPMI 
simply corrects values lower than zero to zero.  

 

                   ( Eq. 3 ) 
 

In that way, PPMI is never negative and according to  [39]  it reaches 
a better performance than PMI. 

 
Regarding to the disadvantages of PMI, a well-known problem is 

that it is biased towards infrequent events.  [40]  and  [41]  provide some 
approaches to deal with this problem.  

 
As a final note, it is important to highlight that PMI works well with 

both the Term-Context matrix and also with the Term-Document matrix  [40] 
 

3.2.1.1.2.2. Term frequency - Inverse document frequency (TF-IDF) 

 
This technique originally developed in the Information retrieval (IR)         

field is a very popular technique for weighting values in the           
Term-Document matrix. The main idea behind this technique is to consider           
the number of documents where a term appears as a measure of how             
common the term is. Then, if you have two different terms T x and  T y with               
the same number of occurrences in a document  D , the output value given             
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to  T x will be higher than the output value given to  T y if and only if the                 
number of documents containing  T x  is lower than the number of documents            
containing  T y. 

In order to formalize this idea, given a term  t , the  Inverse Document             
Frequency (IDF) definition comes into play, and it is defined by  Equation 4             
as follows: 

 

                                 ( Eq. 4 ) 
 

where  N is the total number of documents and  df t is the number of              
documents where the term  t appears. Finally, as shown in  Equation 5 the             
TF-IDF formula is just the product of the raw  term frequency (TF) of the              
term  t  in the document  d  and its  IDF  weight. 

 

                            ( Eq. 5 ) 
 
Equation 5 contains all the desired characteristics, assigning to term          

t  a weight in document  d  that is  [37] : 
 

1. highest when  t occurs many times within a small number of           
documents (thus lending high discriminating power to those        
documents) 

 
2. lower when the term occurs fewer times in a document, or           

occurs in many documents (thus offering a less pronounced         
relevance signal) 

 
3. lowest when the term occurs in virtually all documents  

 
Tf-idf  thus prefers words that are frequent in the current document  d  but 
rare overall in the collection. The  tf-idf  is by far the dominant way of 
weighting co-occurrence matrices in information retrieval, however, is not 
as common as  PPMI  as a component in measures of word similarity  [17] . 
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3.2.1.1.3. Term-Context Matrix 
 

This is a generalization of the Term-Document Matrix, allowing         
different contexts instead of only documents. Some of the most common           
options are phrases, sentences, paragraphs, chapters, documents, or        
more exotic possibilities, such as sequences of characters or patterns  [21] . 
Sometimes this matrix is also called the  term-term matrix or the  word-word            
matrix because rows and columns contain all the terms (words) of the            
vocabulary and each cell in this  |V| x  |V| matrix allocates the number of              
co-occurrences of the two words in same contexts (number of shared           
contexts between the two words).  
Although many kind of contexts can be used (like the Term-Document           
matrix where the contexts are entire documents) generally, small contexts          
are used, for instance 4 words before and after a central word.  

 
As an illustrative example, using the same words and documents          

than in the previous example, and considering a small window of size 1,             
then the term-term matrix can be expressed as shown in  Table 4 . 

 
When using small window sizes, since the information is coming          

from immediately nearby words, the representations tends to be more          
syntactic. On the contrary, when longer the window, the more semantic the            
relations  [17] . 
 
 

 w1 w2 w3 w4 w5 w6 

w1 1 3 4 2 3 1 

w2 3 1 5 1 0 0 

w3 4 5 1 2 1 0 

w4 2 1 2 0 5 4 

w5 3 0 1 5 1 6 

w6 1 0 0 4 6 0 

 
Table 4  - Term-Term Matrix example 
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As a good example of this kind of approaches we have the            
Hyperspace Analogue to Language  (HAL) [42] , that creates a word-word         
co-occurrence matrix where rows and columns represent words and cells          
contains the number of times a given word (row) occurs in the context of              
another given word (column).  
One of the majors problems with  HAL and related methods is that the most              
frequent words like  the ,  o r or  and (among others) contribute a           
disproportionate amount to the similarity measure, having a large effect on           
their similarity despite conveying relatively little about their semantic         
relatedness  [19] .  
 

Techniques like  COALS  method [43] or the square root type         
transformation in the form of  Hellinger PCA (HPCA) [44] have         
demonstrated to be helpful to address this issue, by initially transform the            
co-occurrence matrix using an entropy or correlation-based normalization        
[19] .  

 
Finally,  it's worth mentioning  that other disadvantage of the         

Term-Context Matrix  is that it suffers the issue of being high dimensional            
and sparse (most of the entries are zero) as we already observed for the              
Term-Document matrix . In particular, this problem is even more visible          
here because the matrix size in this case is  |V| x |V| where  V represents               
the vocabulary set. Lower dimensional and dense vector representations         
will help to solve this problem as we will see in the following sections.  
 

3.2.1.2. Dense Vector representations 
 

When studying the  Term-Context matrix representation for       
embedding words we pointed out that the two main disadvantages were           
that the vectors were very long (each word represented by a vector with             
one dimension for each word in the vocabulary) and also very sparse            
(most of the vector’s entries were zero).  
These two disadvantages are the issues that dense vector representations          
try to address. In other words, the goal of a dense vector representation is              
to represent words by capturing their semantic in a shorter and dense            
vector (generally from 50 to 1000 dimensions of real numbers without           
zeros) 
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In what follow we present some of the most popular count-based           

methods for learning low dimensional and dense representation of words.          
Later we will see that also other techniques based in neural networks and             
predictive models can be used with the same goal.  

 

3.2.1.2.1. Latent Semantic Analysis (LSA) 
 

This technique, sometimes also referred as  Latent Semantic        
Indexing  (LSI) is maybe the most intuitive evolution from the long and            
sparse representation given by the  Term-Document matrix  approach.  
After building the  Term-Document matrix ,  LSA simply apply a dimensional          
reduction approach like the  Singular Value Decomposition  (SVD)        
technique to generate a lower dimensional and dense representation of          
the original  Term-Document matrix . 
 

I t's worth mentioning that a weighting function is applied to the           
Term-Document entries in the matrix, instead of using just the raw           
frequencies.  LSA applies both, a local and global weighting function to           
each nonzero element, in order to increase or decrease the importance of            
types within documents (local) and across the entire document collection          
(global).  
The local and global weighting functions for each element, are usually           
directly related to how frequently a type occurs within a document and            
inversely related to how frequently a type occurs in documents across the            
collection, respectively  [45] .  
In Section  3.2.1.1.2 some of the most common approaches for creating a            
weighted Term-Document Matrix were already introduced. Also the reading         
of  [46] is a good reference for a more detailed explanation about local and              
global weighting functions. 
 

Now, in order to understand how  LSA works, suppose a dataset           
with  c documents and a vocabulary  V . If  X represents the  Term-Document            
matrix , then after applying  SVD we can find a matrix factorization such like             
the one shown in  Equation 6 .  
 

We can think this factorization as a way of adding to the equation             
the  m hidden latent factors that are more important for the specific set of              
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words and documents and then rewrite  X in terms of those  m factors  [47]              
[48] .  

 
 

( Eq. 6 ) 
 
 
After applying this factorization, the  sigma matrix contains values in its           
diagonal that indicate how important each hidden factor is (sigma is a            
diagonal matrix of size  m x m  with singular values in decreasing order).  
 

LSA leverages this information provided by the  sigma matrix , and          
takes the top  k most relevant dimensions ( k is a parameter for the model)              
that capture the most important features with the highest variance in the            
data and then it approximates the original  Term-Term matrix as shown in            
Equation 7 . 

 
Finally, each of the  |V| rows of the  W matrix can be used as a small                

( k is taken much lower than  m , generally near to 300) dense vector             
representation for each word in the vocabulary  V . Similarly, columns of the            
C  matrix can be used as dense representations for documents. 

 
 

( Eq. 7 ) 
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The cost of executing the dimensional reduction process is very          
significant, but generally (not always) the dimensional reduction applied         
by  SVD ends up by generating a model that performs better than the raw              
Term-Document matrix . When this occurs, is typically because removing         
low important dimensions allows to generalize better and avoid the          
overfitting issue  [48]   [49] . 

 

3.2.1.2.2. SVD applied to the Term-Term Matrix 
 

This approach is very similar to  LSA , but in this case,  SVD is             
applied to the  Term-Term matrix  instead of the  Term-Document matrix .  
The typical size of  k used for truncating the matrix  W that composes the              
matrix factorization after applying  SVD is between 500 and 5000, instead           
the 300 dimensions typically used by  LSA . This difference is because of            
the granularity difference between the contexts, while the context         
employed by  LSA are whole documents, the context used in  Term-Term           
matrix  are small windows of neighboring words  [17] . 
 

In regards to the disadvantages, the same issue already explained          
about performance and cost of execution of the dimensional reduction          
process of the  SVD  technique is also valid here.  
 

Next in this work, we will present other kind of dense vector            
representation approach based on the usage of  Neural Networks that will           
address the significant computation cost of the dimensional reduction         
process applied to the  Term-Context matrix when computing dense         
vectors with a count-based method. 

 

3.2.2. Prediction-based Models 
 

In this section, we will focus on a different approach for finding            
vector representation of words. Inspired by probabilistic language models,         
we will introduce some of the most important techniques for learning high            
quality representation of words based on words predictions.  
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Firstly, one of the simplest and powerful approaches for language          
modelling based on probabilities is described: the  N-gram model. Although          
N-grams models are not used directly as a word embedding technique, it            
gives us the basis of a simple predictive model, being important in order to              
understand the evolution of language predictive models. Then, an         
evolution of the  N-gram model is presented by introducing artificial neural           
networks as an artifact for improving the task of predicting the next word             
given a sequence of previous words. In this category,  Neural Network           
Language Models (NNLM) are studied, in particular, the  Recurrent Neural          
Network Language Models (RNNLM) and the feedforward architecture        
proposed in  [50] . This last one ( [50] ), has became a reference work, and it              
has been the inspiration for many other researches and works like the            
Skip-Gram and  CBOW architectures used in  Word2Vec ,  App2Vec and         
FastText , that are also presented later in this section. The study of these             
models has particular interest, since they are used and compared later in            
this work as part of the main research proposed in this thesis.    

 

3.2.2.1. N-gram model 
 

Despite  N-gram  is probably the simplest language model  (LM) that          
we can find, it is also one of the most widely used tool in language               
processing. As any other  LM it assigns probabilities to sequence of words,            
and it allows to estimate the probability of the next word in a phrase given               
the previous words. 
 

Given the history  h=(w 1 , w 2 , …, w n-1 ) of the previous words before            
w n then, the joint probability  P(w 1 , w 2 , …,w n-1 , w n, ) can be calculated using             
the  chain rule of probability   as: 27

 
P(w 1 , w 2 , …,w n-1 ,  w n, ) = P(w n, | w 1 , w 2 , …,w n-1 ) . P(w 1 , w 2 , …,w n-1 ) =  
P(w n, | w 1 , w 2 , …,w n-1 ) . P( w n-1  | w 1 , w 2 , …,) . …. . P(w 1 , w 2 , ….   ) =  
P(w n, | w 1 , w 2 , …,w n-1 ) . P( w n-1  | w 1 , w 2 , …,) . …. . P(w 2 , | w 1 )  . P(w 1 )  
 
which can be reduced to  Equation 8 . 
 

27 
https://www.ibm.com/developerworks/community/blogs/nlp/entry/the_chain_rule_of_proba
bility?lang=en 
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                ( Eq. 8 ) 
 

As we can see,  Equation 8 needs to compute the conditional           
probability of a word given its full previous history. These probabilities are            
based on the number of occurrences of the entire sequence of length  n             
compared to all existing sequences of length  n  (that share the same prefix             
of  n-1  words), and this is impractical in most cases for high values of  n .  
For this reason,  n-grams uses an approximation of this previous formula,           
using just the recent history of previous words instead of the full history.             
Using the recent history of the previous words for modeling language, is            
supported by  Markov chains, when bigrams and trigrams were used in  [51]            
to predict whether an upcoming letter in Pushkin’s  Eugene Onegin would           
be a vowel or a consonant.  
Markov chains assume that we can predict the probability of some future            
unit without looking too far into the past  [17] . This simple yet powerful             
hypothesis, is one of the fundamentals that other evolutions of language           
models will take, like the concept of word’s context used by predictive            
neural network models, as we will see in next sections.  
 

The  n-gram that considers just the most recent previous word is           
called  2-gram (or bigram), the one that considers the last two previous            
words is called  3-gram (or trigram), and so on. Hence, an  m-gram can             
calculate the probability of a word  w n given its previous  m-1 words using             
the approximation shown in  Equation 9 . 

 

      ( Eq. 9 ) 
 
In order to calculate these probabilities different techniques can be          

used. One of the most intuitive ways of calculating them is using what is              
called as  Maximum Likelihood Estimation (MLE),  where conditional        
probabilities at the right side in  Equation 9  can be calculated as: 

 

( Eq. 10 ) 
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where the numerator represents the number of occurrences of the entire           
sequence of  m words (ending with the word  w n ) and the denominator            
represents the number of  all the possibles occurrences of length  m that            
start with the  same prefix ( w n-m+1 , … , w n-1 ) of  m-1 words (the only              
difference between them is the last word). The effect of this denominator is             
the normalization of the sequence of  m words in order to get a probability              
value between 0 and 1.  
Note that if for an specific sequence  S of  m words that ends with the word                
w n all the possible sequences of  m words that share the same prefix of              
m-1 words with  S also end with  w n , then the numerator and denominator in              
this expression are equal, and then, the probability is 1 (meaning that            
given this same prefix of  m-1 words, we are one hundred percent sure that              
the next word is  w n ).  
Also it’s easy to see that if the sequence  S never occurs in the corpus,               
then the conditional probability that the next word is  w n given that the prefix              
is ( w n-m+1 , ... ,  w n-1 ) is zero (we are one hundred percent sure that the next                
word will not be  w n ) 
 

But, in a real world scenario, when using  n-grams for computing           
probabilities for unseen data, the border cases of assigning probabilities          
values of 0 or 1 are problematic. If an  n-gram model is trained on a training                
corpus where an specific sequence of length  n never occurs, we can not             
be sure that in a different corpus (unseen data) this specific sequence  will             
not be present. Similarly, if in a training corpus we see that all occurrences              
of a same prefix is followed by the same word, we can not be sure that in a                  
different corpus there is no other word that could continue the sequence. 

 
Smoothing  algorithms for  n-grams models like  Backoff or        

Interpolation try to minimize this problem by providing a more sophisticated           
way to estimate the probability of  n-grams , shaving off a bit of probability             
mass from some more frequent events and give it to the events we’ve             
never seen. Also, many others smoothing algorithms like  add-1 smoothing ,          
add-k smoothing , stupid backoff , or  Kneser-Ney smoothing exist, in         
particular to avoid the zero probability issue. The modified  Kneser-Ney          
smoothing  (KN) is reported to provide consistently the best results among           
smoothing techniques, at least for word-based language models  [52] . A          
more detailed description of  Smoothing  algorithms can be found in  [17] . 
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But although having many different and complex algorithm is         
important, empirical studies have repeatedly shown that simple algorithms         
can often outperform their more complicated counterparts in wide varieties          
of  NLP applications with large datasets  [53] , and many believe that it is the              
size of data, not the sophistication of the algorithms that ultimately play the             
central role in modern  NLP   [6] .  
For this reason, big companies like  Google or  Microsoft have released           
their own  n-grams datasets. In 2006,  Google released the  1 Tera-word           
Google N-gram  [54] and in 2010,  Microsoft released the  Microsoft web           28

N-gram corpus  [53] . Other big datasets that have been found through this            29

research are the  English Giga-word corpus  [55] and the most recent at            30

the moment of writing this thesis, called  “N-grams data”  . 31

 
As we have seen in this section about  N-grams models, the           

probability computed by this kind of models in order to make predictions is             
highly based on counting of words, sequences of words, and statistics.  
In the next section, we will move to study a different approach, based on              
the usage of neural networks as a different artifact for training a language             
model and using the network’s weights as good embeddings for          
representing words.  
 

3.2.2.2. Neural Network Language Models (NNLM) 
 

In the previous section we presented  N-grams as one simple yet           
powerful language model, that has been widely used in many  NLP related            
tasks, in particular to predict the next word that follows in a sequence             
(generally a short history of the previous words).  

 
The main problem with  N-grams and this kind of standard language           

models is that the number of parameters increases exponentially as the           
n-gram order increases, and  n-grams have no way to generalize well from            
training to test set  [17] (although as we pointed out, some tricks like             
smoothing  exist with the objective of minimizing this problem).  

28 https://catalog.ldc.upenn.edu/products/LDC2006T13 
 
29 https://blogs.msdn.microsoft.com/webngram/ 
30 https://catalog.ldc.upenn.edu/LDC2003T05 
31 https://www.ngrams.info/intro.asp 
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A predictive language model that has been proposed as an          
alternative to  N-grams is based on a different approach: the usage of            
Artificial Neural Networks  (ANN) .  ANN can be used as an artifact to help in              
the prediction task of a language model. Additionally, as we will see in this              
section, it allows learning distributed representations of words        
(embeddings) while adjusting the weights of neurons during the training          
phase (typically applying  backpropagation with  stochastic gradient       
descent ). At the time of this writing,  Neural Network Language Models           
(NNLMs)  are the kind of language models that have the highest accuracy. 

 
Similar to  N-grams models,  NNLMs use the recent previous history          

of a word as input for the training phase, and that is why typically in the                
associated literature we find the concepts of word’s context or          
window-based approach when we study this kind of language models.          
Also, since the prediction task is trained using a word and its context, the              
learned embeddings have the property of being similar for words that           
appear in similar contexts but totally different for words that typically do not             
share similar contexts. As we will see, this property will allow the usage of              
word embeddings for finding semantically related words or analogy         
reasoning.  
Additionally, since these embeddings are vector representations with a         
fixed size (typically between 100 and 300), the learned embeddings solve           
the sparsity issue for word representations when using  count-based         
methods like the ones that we studied in Section  3.2.1.1 . 
 

In what follows, we will present the most common neural network           
architectures for language modelling: the  Feedforward Neural Network        
Language Model  [27]  [28] and the  Recurrent Neural Network Language          
Model   [29] . 

 

3.2.2.2.1. Feedforward Neural Language Model (FFNLM) 
 

Feedforward neural language models were introduced in  [50] . This         
kind of language model is a standard feedforward network (with an input            
layer, one or more hidden layers and an output layer, where the            
connections between network’s neurons go from layer  n to layer  n+1  and            
they are generally fully connected) that takes as input at time  t a             
representation of some number of previous words ( w t−1 ,w t−2 , etc ) and          

59 



 

outputs a probability distribution over possible next words  [17] . These          
previous words ( w t−1 ,w t−2 , etc ) are generally called context  and a common           
used strategy for representing these words is the one-hot encoding          
representation that was described in section  3.1 . 
At this point, the reader probably notices that this trick of using previous             
words is very similar to the approach used by the  N-grams models, where             
the probability of a word  w n given its previous  m-1 words was calculated             
using  Equation 9 . 
In the same way, a  feedforward neural language model  outputs a           
probability distribution over possible next words considering just the         
context words as input. That is, given the set of previous recent words, the              
output contains the probability of each word in the vocabulary to be the             
next word in the sequence, and the sum of all these probabilities is 1. 

 
If we recall, the  one-hot encoding strategy used a vector of size | V |             

(being  V the vocabulary) for representing a word  w i , where all dimensions            
in the vector are 0 except the dimension  i that is 1) . Hence if the context                 
length is  L , the size of the input layer (number of neurons) is  L  x | V |. 

 
In regards to the output layer, there is one neuron per word  w in  V,               

hence the size of the output layer is | V |. Furthermore, the output of each              
neuron  i in the output layer represents the probability of word  w i to be the               
next word that follows in the sequence (after the input context words).            
Notice that the task of predicting the next word that follows in the             
sequence is a classification problem, where there are | V | posibles words           
as candidates ( a.k.a classes). Generally, for multi-class classification        
problems a  softmax function is used as the nonlinear activation function           32

for the output layer. It has the property of generating values between 0 and              
1 (a probability) and also it distributes the probabilities among all the            
classes by applying a normalization, resulting that the sum of all the            
probabilities for all neurons in the output layer sums 1 (the next word will              
be  w 1   or   w 2   or  …  or   w n ). 

 
In the original proposal in  [50] , the  tanh  (hyperbolic tangent)          33

nonlinear activation function was chosen for the hidden layer. Additionally,          
a projection layer was added between the input layer and the hidden layer.             

32 http://www.faqs.org/faqs/ai-faq/neural-nets/part2/section-12.html 
33 
http://functions.wolfram.com/ElementaryFunctions/Tanh/introductions/Tanh/ShowAll.html 
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Since the one-hot vectors that are fed into the input layer have a value of 1                
in just one of the | V | dimensions, then this projection layer acts just a              
look-up table to select the current embeddings associated to the input           
words. The projection layer does not apply any activation function for           
generating the neuron’s output (we may say that it uses an identity or             
linear function as the activation function, but the relevant thing here is that             
the projection layer does not use any nonlinear function), and for that            
reason sometimes in the bibliography it is not considered as part of the             
hidden layers.  

 
Figure 7 summarizes the high level architecture of the feedforward          

neural language model presented in  [50] . 
 
 

 
Figure 7  - High level architecture of the feedforward neural language model. 

Source  [50] 
 
 
In its background, the architecture of this neural network is          

computing the function  f(i,w t−1 ,··· ,w t−n+1 ) = g(i,C(w t−1 ),··· ,C(w t−n+1 ))  where  g          
is the neural network and  C(i) is the  i-th word feature vector  [50] . The              
usage of a linear projection layer and a nonlinear hidden layer in this             
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architecture, allows to learn jointly the word vector representation and a           
statistical language model  [56] (notice that weights in the  C matrix actually            
corresponds to the word embeddings that we are interested in) and it has             
been the inspiration of many others works.  

 
As it is highlighted in  [50] the main problem with this architecture is             

the complexity associated to the nonlinear hidden layer, resulting in a high            
computational cost. Additionally an extra cost is associated to the          
normalization applied by the  softmax  function in the output layer.  

 
Later in this work we will see how simpler approaches like the            

Skip-Gram or  CBOW architectures employed in  word2vec take this base          
architecture and by removing the nonlinearity complexity of the hidden          
layer and using alternatives to the  softmax function for the output layer, are             
able to learn high quality representations (embeddings) of words in a much            
efficient way. 

 
But before moving to that, let’s see other kind of neural network            

architecture that has been widely used for language models and that is            
one of the most powerful nowadays: the  recurrent neural networks          
language models (RNNLM) . 
 

3.2.2.2.2. Recurrent Neural Network Language Model (RNNLM) 
 

So far we have seen how statistical language models like  N-grams           
or those based on neural networks like the  Feed Forward Neural Network            
Language Model  can be employed to solve the problem of predicting           
upcoming words based on some previous words (recent previous history).          
We also have noticed that when using neural network based language           
models, once the network is trained, the weights of neurons can be used             
as a good representation of words, and we have been calling to these             
representations: word embeddings (the main concept behind this work). 

 
Hence, the study of language models is crucial for understanding          

word embeddings and seeing the historical evolution of these models is           
important to understand the issues that new models try to solve. For this             
reason, a new kind of language model is introduced now:  Recurrent Neural            
Network Language Model (RNNLM) . 
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The architecture design behind  Recurrent Neural Networks (RNNs)        
allows to  remember information that has been fed into the network in            
previous iterations during the training phase. In machine learning, and          
more specifically in the neural networks field,  RNNs have been historically           
used to deal with sequence problems. And, since the main goal of            
language models is intrinsically related to a sequence learning problem          
(where we want to predict the next word in a sentence by knowing the              
previous sequence of words that have occurred in the recent past) is            
naturally reasonable to think that  RNNs are good candidates to be used for             
language modelling. 

 
The original  RNNLM is described by  Mikolov et al. in  [57] and it is              

presented as a  “simple”  recurrent neural network (or also called  Elman           
network  [ 58] ) language model.  Figure 8 shows the high level architecture           
of the original  RNNLM : 

 
 

 
Figure 8 - High level architecture of the recurrent neural language model. Source 

[57] 
 

 
As it is shown in the high level architecture definition,  RNNLM does            

not have a projection layer; only input, hidden and output layer and rather             
than use a fixed input context for modelling the previous history (like both,             
N-grams and  FFNLM  which use the previous  m-1 words ), RNNLM uses           
recurrent time delayed connections (outputs from the hidden/context layer         
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at time  t-1  are connected to the input layer at time  t ) and by doing this,                
information can cycle inside these networks for arbitrarily long time (see           
[59] ), allowing the model to learn how to remember from past variable            
length histories. 
As shown in  Equation 11 ,  in order to form the input  x(t)  for the network at                
time t, both the representation of the current word  w(t) and the output from              
the hidden layer  s(t-1)  at time  t-1  are used. 

 

                                     ( Eq. 11 ) 
 

The  plus sign in  Equation 11 denotes the concatenation operation          
between the two vectors  w(t) and  s(t-1),  and the size of  x(t) is the sum of                
the sizes of  w(t) and  s(t-1) . Like in  FFNLM ,  one-hot encoding is used to              
represent  w(t) , then the size of  w(t) is  |V|.  The size of  s(t-1) is equal to the                 
number of neurons in the hidden layer, and this is the only            
hyper-parameter that needs to be tuned when using a  RNNLM (this is            
another advantage over  FFNLM that needs to specify not only the size of             
the hidden layer, also the the size of the projection layer and the context’s              
length). 

 
In regards to the activation functions that are used by the original            

RNNLM , a  sigmoid function ( Equation 12 ) is used for the hidden layer (this             
is also another change compared with  FFNLM  that generally uses a  tangh             
activation function for the non-linear hidden layer) and a  softmax function           
( Equation 13 ) continues being the option for modeling the probability          
distribution for the output layer. 

 

                              ( Eq. 12 )  
 

                               ( Eq. 13 )  
  

The original  RNNLM is trained using standard backpropagation with         
Stochastic Gradient Descent (SGD)  and convergence is usually achieved         
after 10-20 epochs  [57] . And, although it is often claimed that learning            
long-term dependencies by  SGD can be quite difficult  [60] RNNLM  has           
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shown to signicantly outperform many competitive language modeling        
techniques in terms of accuracy  [26]  (and also it requires much less data             
than other models).  

 
In order to improve model’s performance, rare words (words that          

occurs less often than a threshold in the vocabulary) are merged into a             
single token. Hence, since the size of the output layer  y(t) is defined by the               
number of words in the vocabulary, by doing this merge, the size of the              
output layer  y(t) can be reduced significantly and then, the complexity           
associated to computation of the softmax function is reduced too. 

 
Equation 14 summarizes how to compute the probability of the next           

word  w i (t+1) given the current word  w(t) and the representation of previous            
history given by the hidden layer state  s(t-1) . For rare words, the            
probability is distributed uniformly between them, and for not rare words,           
the probability corresponds just to the output value of the neuron  y i (t) in the              
output layer. 

 

    ( Eq. 14 )  
  

In  Equation 14  y rare (t) is the output value of the neuron associated to the              
token that represents rare words in the output layer, and  C rare is the total              
number of rare words. 

 
This trick of merging rare words into a single token has proven to             

improve the model’s performance considerably, but unfortunately this        
improvement is not enough for using  RNNLM in many real world scenarios            
with large scale datasets.  

 
Hence, while this model has shown to significantly outperform many          

competitive language modeling techniques in terms of accuracy, the         
remaining problem is the computational complexity  [26] .  
For this reason  Mikolov et al. presented a second work  [26] where several             
modifications to the original  RNNLM were proposed that lead to more than            
15 times speedup for both training and testing phases. 
In this extension to the original work, the reduction of the amount of             
parameters in the model is addressed. Also, a variant to the standard            
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backpropagation algorithm known as  backpropagation through time       
(BPTT)  is presented, resulting into a  RNN model that can be smaller,            
faster (both during training and testing), and more accurate than the           
original  RNNLM .  

With truncated  BPTT , the error is propagated through recurrent         
connections back in time for a specic number of time steps, allowing the             
network learns to remember information for several time steps in the           
hidden layer (see  [59] ). Better accuracy also is gained by combining  RNN            
models linearly (similar to random forests, that are composed of different           
decision trees) that differ either in random initialization of weights or also in             
the numbers of parameters. Computational and space complexity is         
reduced by using classes, factorization of the output layer and          
compression layers. Experiments showed in  [26] demonstrate that the         
extended model outperforms the original one, presenting signicant        
improvements when comparing the models using two different corpora         
( Penn Corpus and  Switchboard ). Furthermore, empirical results showed        
that 4-5 steps of  BPTT  training was sufcient . 

 
Hence, the techniques employed in the extended work showed that          

RNNLMs can be efciently used in state of the art systems and that the              
additional processing cost by using  RNN models does not need to be            
impractically high by exploiting these techniques. 

 
Next works in the language models domain, focused on trying to           

improve even more the performance of the different models, having always           
a trade-off between speed and accuracy. In particular, when the goal is just             
to learn good representation of words and embeddings are the final goal,            
then some restrictions and architecture designs that were originally         
thought for language models can be slightly modified (remember that          
embeddings are just the weights of neurons in the network after the            
training is completed and they were not the final goal of language models,             
it was the prediction of upcoming words). 
In this research line, the nonlinear hidden layer and the softmax output            
layer have been on the eye of researchers as the bottlenecks for improving             
performance. For that reason, researchers came back to the study of the            
original  FFNLM  and started to experiment with variations of this simple           
model (for example, by adding future words in the timeline as context            
words, by removing the non-linear hidden layer and using just a projection            
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layer, or by removing the restriction of keeping a probability distribution           
summing to 1 in the output layer, among others). 
 

In the next sections, we will focus specifically on these word           
embedding models, that are intrinsically related to the language models          
that have been presented so far, but changing the focus of the final goal.              
While neural network based language models were focused on learning a           
predictive model able to predict upcoming words, the next models that we            
will see use similar neural network architectures but with some          
modifications specifically thought for learning word embeddings.  

 

3.2.2.3. Word2Vec 
 

Word2Vec , is not a method, algorithm or technique by itself.          
Word2Vec is an open-source tool that takes a text corpus as input and its              34

output is a set of features vectors (for the words contained in that corpus)              
with the characteristic that similar and semantically related words are          
projected nearby in the high dimensional vector space as it is shown in             
Figure 9 .  
Word2Vec provides an efficient implementation of the  Skip-Gram and the          
Continuous Bag-of-Words (CBOW) , two popular neural network       
architectures originally proposed by  Mikolov et al.  in  [56] for learning           
high-quality distributed vector representations of words that capture a large          
number of precise syntactic and semantic word relationships  from very          
large data sets  [56] [61] .  
The  Word2Vec tool also include the extensions proposed later in  [61] , in            
order to improve both the quality of the vectors and the training speed by              
using subsampling of the frequent words and the usage of a simple            
alternative to the hierarchical softmax called negative sampling. 
 

The quality of the relationships learned by the  Word2Vec  models          
are measured using a new comprehensive test set specifically designed          
for this evaluation and it is found that these models perform significantly            35

better than  LSA for preserving linear regularities among words. This is a            
very important characteristic that allows algebraic vector operations for         

34 https://code.google.com/archive/p/word2vec/ 
35http://www.fit.vutbr.cz/~imikolov/rnnlm/word-test.v1.txt 
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analogy reasoning like the famous example “ man is to king as woman is to              
queen” , which in other words means that the computation of the queen’s            
vector  can be expressed as: 

  
 .ec(“queen”)  vec(“king”) vec(“man”) vec(“woman”)v ≈  −  +    

 
Also syntactic relationships can be computed in the same way, for           
example: 
 

.ec(“smallest”) vector(”biggest”) − vector(”big”) vector(”small”)v ≈  +    
 
And similarly, it was found that simple vector addition can often produce            
meaningful results, for example: 
 

.ec(“Russia”) vec(“river”) ec(“V olga River”)v +  ≈ v
.ec(“Germany”) vec(“capital”) ec(“Berlin”)v +  ≈ v  

 
These results suggest a complex language understanding through the         
computation of basic mathematical operations on the word vector         
representations  [61] .  
 
 

 
Figure 9  - Examples of syntactic and semantic linear relationships (Image Credits 

Tensorflow ) 36

 

36 https://www.tensorflow.org/tutorials/representation/word2vec1 
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Figure 10  - Examples of some semantic relationships in the evaluation set. 

Source  [56] . 
 

 

 
Figure 11  - Examples of some syntactic relationships in the evaluation set. Source  [56] . 

 
 

The  Word2Vec algorithms are sometimes called deep learning        
methods, and although many numerical computation and deep learning         
frameworks as  TensorFlow or  Deeplearning4j  (among others)  provide        37 38

native implementations for these algorithms, formally talking, the        
Skip-Gram and  CBOW architectures (see  Figure 12 ) implement a shallow          
(two layers) neural network and we can not say that they are deep             
networks. 

 
These models are similar but  CBOW is used to predict target words            

from source context words, while the  Skip-Gram model does the inverse           
and predicts source context words from the target words. Both have shown            
to be useful for extracting similarity of words in a text, but this inversion              
has the effect that  CBOW smoothes over a lot of the distributional            
information (by treating an entire context as one observation). On the other            

37  https://www.tensorflow.org/tutorials/word2vec 
38 https://deeplearning4j.org/word2vec.html 
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hand,  Skip-Gram treats each pair (context-target) as a different         
observation, and this tends to do better for larger datasets  [36] .  
Although these models are very simple model architectures, compared to          
the popular neural network models (both feedforward and recurrent) the          
work presented in  [56] concludes that it is possible to use them to train              
high quality word vectors.  

 
 

 
Figure 12  - Word2Vec’s architectures. Source  [56] . 

 
 
In their research,  Mikolov et al. noted that most of the computational            

complexity in the architectures used in previous related works were          
caused by the usage of a non-linear hidden layer in the model.  
Hence, they decided to explore simpler models (by removing the          
non-linear hidden layer) that might not be able to represent the data as             
precisely as deep neural networks, but can possibly be trained on much            
more data efficiently  [56] and providing additional speedup 1000x  [62] .          
This observation motivated the design and development of the two new           
model architectures, the  Skip-Gram and the  CBOW models, which fall in a            
new category called  Log-linear  models. The main goal of these new           
architectures is try to minimize the computational complexity while at the           
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same time try to maximize accuracy of the vector operations in the            
syntactic and semantic tasks on the evaluation set . 39

 

3.2.2.3.1. The Skip-Gram model 
 

This model is inspired by the  Neural Network Language Models          
(NNLM)  that we described before. Like the  NNLM models,  Skip-Gram          
model tries to predict words that could be nearby (in the context) a given              
current word (the input word, a.k.a  target or  middle word). This prediction            
process can be used to learn embeddings for each target word (the            
intuition is that words with similar meanings often occur near each other in             
texts, and so embeddings that are good at predicting neighboring words           
are also good at representing similarity)  [17] .  

 
In order to achieve this goal, a shallow (two layers) neural network             

with the characteristics shown in  Fig 8 is trained by feeding it word pairs to               
maximize classification of a word based on another word in the same            
sentence  [56] . The neural network therefore learns an embedding by          
starting with a random vector and then iteratively shifting a word’s           
embedding to be more like the embeddings of neighboring words, and less            
like the embeddings of words that don’t occur nearby  [17] . 

To illustrate this idea better, consider the example shown in  Figure           
13 for a training text  “The quick brown fox jumps over the lazy dog” . Then,               
if we use two words as the window size for the context, the training              
examples are taken from the set that results of considering couple of            
words (current word, context word) by moving a sliding window from the            
left to the right over the corpus as it is shown in  Fig 7 (input word appears                 
highlighted in blue).  
 

In the original paper  [56] , it’s explained that the number of samples            
to feed in into the neural network for each input/target word is a random              
number  R that is randomly chosen between 1 and the window size  S .             
Then,  R words from history and  R words from the future of the current              
word are used as correct labels for the classification task (with the current             
word as input, and each of the  R + R words as output). In other words, if                 
the window size is  S  then we could potentially have  2S training examples             

39  http://www.fit.vutbr.cz/~imikolov/rnnlm/word-test.v1.txt 
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(one per each combination of target and context word), but if we have  R <               
S then some of all these possible combinations will be discarded from the             
training set.  
In  [56] also is observed that since the more distant words are usually less              
related to the current word than those close to it, less weight to the distant               
words is given by sampling less from those words in the training examples.             
In the previous example, if  R = 1 then for the third target word  “brown” only                
one of the combinations at the left side  {(brown, the), (brown, quick)}            
needs to be chosen as a new training example for the network. And the              
same procedure needs to be applied with the combinations at the right            
side  {(brown, fox), (brown, jumps)}  for choosing only one example.  
It's worth mentioning  that depending on the implementation used, it could be            
some minor details about how to select  R . For example, in the            
TensorFlow’s implementation not only the window size  S can be           40 41

chosen in advance, also the value of  R (actually not directly  R , but the              
num_skips  parameter that is equals to 2 R ). 

 
 

 
Figure 13  - Training examples to feed in into the Skip-Gram neural network model. Source 

[63] . 
 

40 
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/examples/tutorials/word2vec/word2vec_basic.py 
41 https://github.com/wangz10/tensorflow-playground/blob/master/word2vec.py 
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Figure 14  - Example of shallow neural network for the Skip-Gram model architecture. 

Source:  [63] . 
 

 
As we can see in  Figure 14 , in the  Skip-Gram model, the input is a               

single word that is represented using a one-hot encoding vector of size  |V|             
(number of words in the vocabulary) where all the dimensions are 0 except             
the dimension that corresponds to the input word that is a 1.  

 
Similar to a  Feed Forward Neural Network , the input layer is fully            

connected to a hidden layer (all the neurons in the input layer are             
connected to all the neurons in the hidden layer) but without applying any             
activation function (that is the reason why the hidden layer in this model is              
also called just “projection layer”).  

 
For the output layer, one neuron per word in the vocabulary is used             

with a  Softmax  activation function to output the normalized probability of           
that word to be near the input word (in the context, before or after the input                
word). Hence, the output vector will have size |V| and it will actually be a               
probability distribution where the sum of all these output values will be 1.  
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About the context, it is easy to see that the window size that             
represent the length of the context, is an important hyperparameter to be            
tuned through an hyperparameter optimization phase. The research        
presented in the original paper  [56] highlights that increasing the range           
(window size) improves quality of the resulting word vectors, but it also            
increases the computational complexity.  

 
As we can se in  Figure 15 , there are two matrices with weights to              

be updated during the training process. Being  d the hyperparameter that           
represents the size (dimension) of the word vectors to be learned and | V|             
the size of the vocabulary  V, one matrix  W of size  |V| x d models the                
weights of the neural network for the association between the input layer            
with the hidden layer, and a second matrix  C of size  d x |V| models the                
weights of the neural network between the hidden layer with the output            
layer. Then, as part of the training process the weights of these two             
matrices  W and  C are updated through an efficient optimization phase           
while minimizing the loss function using  Stochastic Gradient Descent         
(SGD)  with a  Backpropagation  approach. 
At the end, for each word  w j in the vocabulary ( 1 <= j <= |V| ), row  j in the                   
matrix  W corresponds to the word embedding learned for w j. . The reader            
should notice that we can simply multiply the one-hot encoded vector (of            
size 1 x |V|) used as input for word w j by the  W matrix (of size  |V| x d ) and                    
the result will be the embedding vector for w j  represented by the row  j (of               
size  1 x d ) of  W . It’s easy to see that by doing this,  W will act as a selector                    
for the embedding of word w j and so,  W can be seen just a lookup table for                 
the word embeddings. 
 

In regards to the output layer, If we consider in details the work             
assigned to each output neuron in this model, we realize that each of them              
receives one dimension value of the embedding associated to the input           
word from each hidden neuron, and then, all this values are multiplied by             
the weight associated to the two neuron's connection and aggregated to           
generate a temporal result that is finally passed to the softmax function. In             
other words, before applying the softmax activation function, each output          
neuron  k is computing the dot product  v j  . c k between a vector v j              
(embedding for w j , output from the projection/hidden layer corresponding         
to row  j in  W ) and a  c k column in  C  (context embeddings that are helpful                
for the fake task of classifying and predicting neighbors words as part of             
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the training processes while learning the really important goal that are the            
weights of W, the word embeddings).  

 
 

 
Figure 15  - W and C matrices with the learned embeddings for the target and 

context words respectively. Source  [17] . 
 
 
It is well known that the higher the dot product between two vectors,             

the more similar they are. Then, based on this simple observation and            
leveraging the maths that is modeled by the smart architecture behind the            
Skip-Gram neural network model, its objective is to maximize the          
probability of finding w k in the context of w j . And since the raw dot product               
between the two vectors is not a probability, a softmax function is applied.             
Also, since we want a probability distribution where the sum of all the             
output neurons is 1, a division by the sum of the results from all the others                
|V|  output neurons is applied. 

 

                        ( Eq. 15 )  
 

It is easy to see that in order to maximize  Equation 15 , the dot              
product in the numerator needs to be as higher as possible and on the              
contrary a small denominator is better. Hence, in each training iteration,           
Skip-Gram will adjust the network weights for  W and  C matrices in order to              
maximize this function as much as possible (making word’s vector close to            
the words that occur near it, that is, in the numerator, and further from              
every other word, that is, in the denominator  [17] ). Once the training phase             
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is completed, matrix  C can be discarded and the learned weights in  W can              
be used as good embeddings for words in vocabulary  V . 

 

3.2.2.3.2. The CBOW model 
 

The  CBOW model is very similar to the previously presented          
Skip-Gram model, except that  CBOW predicts target words from source          
context words, while the  Skip-Gram does the inverse and predicts source           
context-words from the target words  [36] . As an illustrative example,          
considering the example shown in  Fig 7, using a windows size of length 2,              
CBOW predicts target/middle word  “fox” from source context words  “quick          
brown jumps over” . 

The original  CBOW  architecture shown in  Figure 16 is similar to the            
standard bag of words, where order doesn't matter. It tries to predict the             
middle word by averaging the embeddings of the context’s words through           
a projection layer as it is shown in  Figure 17 . Since the context changes              
continuously by moving a fixed length window through the corpus from left            
to right, then the  “C” in  CBOW comes from  “Continuous” distributed           
representation of the context. 

 
 

 
 

Figure 16  - CBOW architecture. Source  [64] . 
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Recently, in  [65] , one of the tricks presented by the  Facebook AI            
Research in order to train high-quality word vector representations         
consists in the usage of a position-dependent weighting  schema. By doing           
this, the behaviour of the standard  CBOW model is slightly modified,           
moving from a non weighted approach (order does not matter for words in             
the context) to a weighted one (the contribution of each word to the             
average is weighted depending on its relative position inside the context).           
Later in this work, as part of the main research presented in this thesis, a               
similar weighting schema based on  [66] is applied to the  CBOW model in             
order to improve its performance. 

 
Other difference between  CBOW and the  Skip-Gram model is the          

number of training samples to feed into the neural network each time the             
context windows moves from the left to the right over the corpus. While             
Skip-Gram generates a training sample for each word in the context (as it             
is shown in  Fig 7 ),  CBOW generates only one sample for the whole             
context since all the context’s words are feeded into the neural network at             
the same time. This difference has the effect that  CBOW smoothes over a             
lot of the distributional information (by treating an entire context as one            
observation). On the other hand, since  Skip-Gram treats each pair          
(context-target) as a different observation, this tends to do better for larger            
datasets  [36] .  

 
Similar to the  Skip-Gram model,  CBOW uses an auxiliary         

classification phase through a shallow (one hidden/projection layer) neural         
network  to update iteratively the neuron’s weights in the hidden layer. The            
training criterion is to correctly classify the current (middle) word  [56] .           
When  CBOW computes the output for the hidden layer, instead of directly            
copying the input vector of the input context word,  CBOW takes the            
average of the vectors of the input context words, and it uses the product              
between this averaged vector and the weight matrix between the input and            
the hidden layer as the output for the hidden layer  [64] .  

 
It's worth mentioning that despite in the original paper the average           

of the context words is always used, there are some implementations like            
the one provided by the  Gensim  package for  Python  (used later in this             
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work) that allows to configure whether the average is used or just the sum              
of the vectors of the context words (boolean ‘cbow_mean’ parameter) .  42

 
Finally, the output layer is computed using the same approach that           

was already explained for the  Skip-Gram model, that is, one output neuron            
per word in the vocabulary, which in this case (for the  CBOW  model), it              
outputs the probability (using a softmax classifier) of that word to be the             
target/middle word for the input context. 

 
  

 
Figure 17  - CBOW model  [56]  predicts “fox” from “quick brown jumps over”  [63] . 

 
 

At the end, after the training phase is completed, the rows in the             
updated weight matrix between the input and the hidden layer is used as             
the learned word vectors.   

 

3.2.2.3.3. Optimizations to the original models 
 

The first version of the  Skip-Gram and  CBOW  models were          
originally presented in  [56] with the characteristics previously described         

42 https://radimrehurek.com/gensim/models/word2vec.html 

78 



 

here. Later, in  [61] authors published a second paper that extends the first             
one with several extensions that improve both the quality of the vectors            
and the training speed  [61] .  

 
The main improvements are related to: 
 

I. adding of common phrases that are repeated in the corpus          
as single tokens to the vocabulary 

 
II. subsampling of frequent words 

 
III. usage of a different loss function called  “Negative Sampling” 

 
 
Common phrases as single tokens 
 

Authors suggested to consider frequent phrases in the corpus as          
single tokens and add them to the vocabulary as single new words. This             
suggestion comes up after observing that there are a lot of cases where a              
the semantic of a phrase is not directly related to the semantic of its              
individual words. Some examples are:  “New York Times” (newspaper),         
“Golden State Warriors”  (NBA team),  “Australian Airlines”  (airline),  “Steve 
Ballmer”  (company executive). 

The method employed for phrase detection works by considering         
bigrams  ( w i ,  w j ) that are consecutive pairs of words. The idea is to count              
the number of occurrences of the bigram and compare it with the number             
of occurrences that it should have if  w i and  w j were not related (their              
occurrences should be independent events). Hence, as shown in  Equation          
16 , a formula based on the unigram and bigram count is used for phrase              
detection. 
 

                  ( Eq. 16 ) 
 

In  Equation 16 ,  δ is used as a discounting coefficient and prevents too             
many phrases consisting of very infrequent words to be formed. 
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Finally, the bigrams with score above a chosen threshold are then           
used as phrases by adding them to the existing vocabulary as a single             
word. The process is repeated (generally between 2 and 4 times) over the             
training data using a decreasing threshold value approach. By doing this,           
in each new iteration new bigrams appear, allowing longer phrases that           
consists of several words to be formed  [61] .  

 
Subsampling of frequent words 

 
The idea behind this optimization is to remove words that can be            

considered as  “noise” because they do not add any relevant information.           
Common words like  “the” ,  “and”, “is”, “this”  (among others)  are examples           
of this kind of frequent words. And this is because  Word2Vec models can             
benefit much better when training the neural network using words that are            
in the same context and share some meaning (like  “France” and  “Paris” )            
than when using words that are in the same context but not share some              
semantic relationship (like  “France”  and  “the” ). 

 
Also, since frequent words appear in most of the contexts, then their            

vector representations are too generic and it was observed that they do            
not change significantly after training on several million examples  [61] . In           
other words, the update process that occurs during the training phase can            
not move the vectors associated to frequent words to any specific direction            
because they are nearby to many different kind of words and they do not              
belong to any specific domain or field. Then, those vector representations           
for frequent words are not relevant for finding similarities or analogical           
reasoning.  
Because of these issues about frequent words mentioned before, authors          
in  [61] presented results showing that by removing frequent words the           
Word2Vec models they were able to improve both, the quality of the            
learned vectors and also the training speed.  
 

Naturally, the subsampling technique used is related to the         
frequency of occurrences of words in the corpus.  Equation 17 shows the            
formula that is formally used to compute the probability of discarding a            
word during the subsampling process. 
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                                ( Eq. 17 ) 
 

In  Equation 17 ,  f(w i ) is the frequency of word  w i and  t is a chosen               
threshold (typically around 10 −5 ). Authors argue to have chosen this          
formula because it aggressively subsamples words whose frequency is         
greater than  t  while preserving the ranking of the frequencies. 
 
Negative sampling 
 

If we observe the  Softmax objective function that the  Word2Vec          
models try to maximize in  Equation 15 , we realize that there is a high              
computational cost in computing this function for each training example,          
mainly because of its denominator that implies to compute a dot product            
for every word in the vocabulary  V (the computational cost increases           
linearly with the numbers of words in the vocabulary). This is impractical,            
particularly when using very large datasets. 

 
Many researchers have studied different approaches for replacing        

the full  Softmax objective function. In  [67] ,  Morin and  Bengio proposed an            
approximation to the  Softmax function called  Hierarchical Softmax .  Hinge         
loss was used by  Collobert and  Weston in  [68] .  Noise Contrastive           
Estimation (NCE) was suggested by  Mnih et al . in  [69] , and based on this              
last one, the  Negative Sampling technique was proposed in  [61] as an            
optimization for the original  Word2Vec  models. 

 
The  Negative Sampling proposal consists on using an alternative         

objective function to improve the cost of computing the original objective           
function for each training example. The idea behind this approach is to            
avoid the update of all words in the vocabulary, and instead, just pick a              
small number  K of  negative samples to update. Values of  k in the range              
5–20 are useful for small training datasets, while for large datasets the  k             
can be as small as 2–5  [61] . 
The concept of  negative  comes from the fact that  K samples to update are              
taken from words which their associated neurons in the output layer are            
expected to be 0. One additional update is reserved for updating the            
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positive word, that is, the word which its neuron in the output layer is              
expected to be 1.  
 

When using the  Negative Sampling approach, the selection of the  K           
words is based on a weighted unigram distribution raised to the 3/4rd            
power, in other words, the probability for selecting a word  w i as a negative              
sample is related to its frequency  f(w i ) , with more frequent words being            
more likely to be selected as negative samples. 

 

                        ( Eq. 18 ) 

 
According to the authors in  [61] the value of 3/4rd power used in             

Equation 18 was the best option obtained empirically after executing          
different experiments and outperformed significantly the unigram and the         
uniform distributions. In the previous equation, the denominator is added          
just to keep a probability value between 0 ( w i is not present in the corpus)               
and 1 ( w i  is the only word present in a size 1 vocabulary). 

 
Although  Negative Sampling is based on  NCE , and  NCE         

approximately maximizes the log probability of the softmax, this property is           
not important for the  Word2Vec models because the main goal for them is             
to learn high-quality vector representations. For that reason authors in  [61]           
simplified  NCE in such way that the simplification does not give           
guarantees of maximize the log probability of the softmax (the resulting dot            
products will not produce optimal predictions of upcoming words  [17] ) but           
the vector representations retain the quality, and that is the most relevant            
contribution. That said, the  Negative Sampling objective function is defined          
as: 

 

 ( Eq. 19 ) 
 

where the  v’ wo corresponds to the word embedding of the context word            
taken from matrix  C  in the output layer ,  v wI  to the word embedding of the               
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input word taken from matrix  W  in the hidden layer, and  v’ wi to the word               
embedding of the negative sample  i (1 <=  i <=  k ) taken from matrix  C  with                
probability  P n (w i ) .  σ represents the sigmoid function defined in  Equation          
12   that is used by the logistic regression to differentiate data from noise.  

 
For the CBOW model, since its architecture can be seen as a mirror             

or inverted version of the  Skip-Gram architecture, then, we can think  v wI  as             
the sum of the word embeddings of the inputs (words in the context) and              
v’ wo  as the word embedding for the target (middle word).  

 
Finally, in order to maximize the  Negative Sampling formula we          

need to maximize the dot product of the word with the actual context             
words, and minimize the dot products of the word with the  k negative             
sampled. By doing this, after the model is trained, the embeddings of            
words that generally share similar contexts tend to be similar (the input            
words needs to have similar weights to allow the neural network to output             
similar contexts in the Skip-Gram model), and on the other hand,           
embeddings of words that rarely shared same context tend to be very            
different (if not, the network would output similar contexts).  

 

3.2.2.4. App2Vec 
 

So far, different techniques for word embedding have been         
presented in this work, and all of them have their basis in the  NLP field,               
strongly motivated by the distributional hypothesis, suggesting that words         
that are used and occur in the same contexts tend to purport similar             
meanings  [33] , a concept popularized by  John R. Firth in  [35] with the             
phrase   “a word is characterized by the company it keeps”. 
 

App2Vec [66] differ from the previous techniques in its conception,         
the application domain and the goal to solve. While the goal of the             
previous techniques presented in this work were to find good vector           
representations (embeddings) of words by studying how they are used in           
different corpus and contexts,  App2Vec has as main goal to model mobile            
applications as vectors based on how users use those apps.  
And although, it seems a totally different domain (mobile applications vs           
NLP )  App2Vec ’s authors realized that many ideas from the  NLP field could            
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be taken in order to model mobile applications as vectors. This           
characteristic makes  App2Vec to be very attractive in the scope of this            
work, since a similar scenario, using word embedding techniques out of           
NLP domain is used later when trying to find the best vector representation             
of Internet Domain Names, one of the main goals of this thesis. 
 

Hence, in order to map the  NLP problem of finding the vector            
representation of words using word embeddings techniques (like the ones          
implemented by  Word2Vec ),  App2Vec applies the following mapping        
between concepts: 

 
● The concept of  word  is mapped to a  mobile app session 
● The concept of  document is mapped to  the sequence (ordered) of           

all mobile app sessions for an specific user 
 

Furthermore, when tracking user activities (like the use of mobile          
applications) there are special properties in the sequences of activities that           
users performs. Two of the most important are: 

 
● The elapsed time gap between consecutive activities can vary and it           

is very important. Two activities executed very close in time          
probably are much more related than two consecutives activities         
that were not executed immediately one after the other 

● The same activity can be executed more than once consecutively.          
For example, considering the apps  {a, b, c} , then the sequence  (a,            
a, a, b, b, c, a)  is totally valid. 

 
From the observations above, before executing the  App2Vec        

vectorization algorithm, a preprocessing phase is needed for a)         
incorporating an elapsed time gap variable and b) the removal of           
duplicates for same consecutive actions. If we consider the same example           
presented above, after adding the time gaps and removing duplicates, the           
final sequence is  (a, g 1 , b, g 2 , c, g 3 , a) , where  a, b, c represent mobile                
apps, and  g i represents the elapsed time gap between two consecutive           
mobile app sessions. In the  Python  implementation of  App2Vec (kindly          
provided by its authors), the new text format needed as input is explained             
through the following  example:  
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bird g:2 elephant g:10 car g:100 snake g:11 chicken g:12 snail           
g:13 sheep g:14  
 

More formally, what  App2Vec  wants to solve is to learn a similarity            
function  sim(ai, aj) for two apps  ai and  aj , given a set of users  U , and the                 
historic app usage sessions  S u  of a user  u ∈ U . Each app session  s i  ∈ S u                 
is represented by  (u i , a j , t s , t e ) , meaning user  u i used app  a j starting at time                 
t s  and ending at time  t e  [66] .  

 
In order to achieve its goal,  App2Vec uses a slight modification of            

the original  CBOW model (already presented in Section  3.2.2.3.2 ) , where          
the main change consists in using the time gaps between app sessions to             
create a weighted schema inside the context window, before averaging          
them in the projection layer. The formula chosen by  App2Vec for weighting            
a word  w i  to the target word  w t  is defined as:  

 
r( w i  , w t  ) = α l   ,                                   ( Eq. 20 ) 

 
where  α  is empirically chosen as 0.8, and  l  is the amount of the gap ( e.g. , 
number of minutes) between app  w i  within the current context and target 
app  w t .  

 
In other words, what  App2Vec is  basically doing is changing the           

standard formula used in the  CBOW model for averaging input vectors           
from this: 

 

                             ( Eq. 21 ) 
 
(where  c  represents the context window size and  v j  the context word 
vectors) to this: 
 

                          ( Eq. 22 ) 
 

85 

https://paperpile.com/c/M9NQEt/K0Kh


 

 

(where  c  represents the context window size,  v j  the context word vector 
and  r(w j , w t )  the weighted value described above to consider the time gap 
between  w j  and  w t   ). 
 

After the modified vector is fed into the projection layer, no other            
changes to the original  CBOW model take place. According to the results            
presented in the  App2Vec ’s paper  [66] , the weighted schema have          
demonstrated to outperform the standard bag-of-words approach,       
achieving an improvement of 37% on the task of capturing semantic           
relationships between apps. 

 
Recently, in  [65] , Facebook AI   Research  suggested the usage of 

weighted schemas as one possible trick for improving the quality of word 
vector representations, validating in this way the approach followed by 
App2Vec . 

 

3.2.2.5. FastText 
 

Like  Word2Vec ,  FastText  is not a method, algorithm or technique by           
itself.  FastText is an open-source, free, lightweight library that allows users           
to learn text representations and text classifiers  [70] . This tool comes in            
two flavors, it can be used either in unsupervised mode to learn word             
embeddings or in a supervised mode using a labeled dataset (one label            
and sentence per line) to train a text classifier. 
Developed at  Facebook Research ,  FastText is an extension of the work           
previously done with  Word2vec by  Mikolov et. al. at Google Research . Its            
fundamentals are explained in the papers  [71] ,  [72] and  [73] . Like           
Word2Vec , the unsupervised mode for learning word embeddings in         
FastText  can be executed with both models:  Skip-Gram  or  CBOW . 

 
The main principle behind fastText is that the morphological         

structure of a word carries important information about the meaning of the            
word, which is not taken into account by traditional word embeddings,           
which train a unique word embedding for every individual word  [74] . And            
that is  the main difference between  FastText and  Word2Vec,  that is,           
FastText  can learn from subwords.  
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In order to do that,  FastText  adds the notion of  bag of characters (a.k.a              
known as  n-grams ), which are defined by using two of the most important             
hyper-parameter that  FastText has,  minn and  maxn . These parameters         
can be configured when running the unsupervised mode of  FastText , and           
they are related to the range of size for the subwords. In other words,              
subwords are all the substrings contained in a word between the minimum            
size ( minn ) and the maximum size ( maxn ). Also, the word itself is            
considered to be in the set of its n-grams  [71] .  If  maxn is set to 0, or                 
lesser than  minn , no character n-grams are used, and the model           
effectively reduces to  Word2Vec  [74] . 
 

In order to understand better the concept of  n-grams , consider the           
word  “where” and minn = maxn = 3 . Then, this word will be represented              
by the character  n-grams :  <wh, whe, her, ere, re> (note the special            
boundary symbols  < and  > at the beginning and end of words), and the              
special sequence  <where>. 

 
Finally, the learning phase for updating a vector representation         

associated to a word is computed by  taking into account the word’s            
morphology, which is modeled  aggregating all the vector representations         
of its  n-grams (and the word itself)  [71] . This, can be expressed more             
formally using  Equation 23 to represent the vector representation of word           
w . 

 

                              ( Eq. 23 ) 
 
In  Equation 23 ,  v w  is the current vector representation of  w ,  N  is the set of 
n-grams taken from  w , and  x n  is the vector representation for the specific 
n-gram  n .  
 

The main advantages of  FastText  compared to  Word2Vec  are: 
 

● Better performance at syntactic tasks. This is due  FastText         
considers a word as the aggregation of different subwords, whereas          
Word2Vec  considers each words as a single and indivisible token. 
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● Support for o ut-of-vocabulary ( OOV ) words . The  OOV scenario        
is not supported when using  Word2Vec , but with  FastText  the only           
requirement is that exist at least one match between any subword           
(of the  OOV word) and any subword used during the training phase            
(by any word in the vocabulary) . As an example, consider the word             
“cartoon” which does not belong to the vocabulary, but  “career”          
does. Then, (supposing  minn=3 ) a vector representation for        
“cartoon” can be computed since there is at least one match for the             
substring  “car”  that is present in both  “career”  and  “cartoon” . 
 

● Good representation for rare words . Despite a word can have          
very few occurrences, probably its subwords can be present in          
many other words of the vocabulary (as substring), then the final           
aggregation of the subwords for the rare word would probably end           
up getting a good vector representation, much better than the one           
given by  Word2Vec .  

 
As disadvantage (compared to  Word2Vec ) it can be said that the           

model’s complexity is increased by adding two new important parameters          
that needs to be tuned very well in order to get good results. The  minn  and                
maxn  parameters that control the  n-grams length can vary depending on           
the domain.  
For instance, for english language the default values of  minn=3 and           
maxn=6  achieve good results in practice when training using large          
corpuses  [75] , but in other scenarios like the research about Internet           
domain names embeddings that is presented in Chapter  4 those values           
are really bad (the performance is worse than  Word2Vec ) and exhaustive           
experimentations needed to be done in order to find good settings for them             
( minn = 11, maxn = 17 ). This example evidences the fact that the             
hyper-parameter tuning phase for finding a good model is more complex           
and time consuming when tuning a  FastText  model than a  Word2Vec           
model.  
And last but not least, it's worth mentioning that  splitting and training with              
subwords increases the training time and the resource usage (ram mainly)           
considerably, also the generated models using  FastText  with  n-grams have          
sizes considerably bigger than models generated by  Word2Vec . 
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3.2.3. GloVe:  Global Vectors for Word Representation 
 

GloVe  is an unsupervised learning algorithm for obtaining vector         
representations for words  [76] . It was created at  Stanford University by  J.            
Pennington, R. Socher, and C. D. Manning in 2014 and presented in the             
paper “ GloVe: Global Vectors for Word Representation”   [19] . 

 
This learning algorithm can be seen as an hybrid approach and it            

can not be assigned exclusively to any of our previous classification of            
count-based or prediction-based models. Since it builds a word-word         
co-occurrence matrix, then we are tempt to categorize it as a count-based            
model, but since it uses Stochastic Gradient Descent (SGD) to minimize a            
cost function and it captures not only words similarities, but also the            
semantic analogies between words (in the same way like the neural           
predictive models work), we are also tempt to classify this technique as a             
prediction-based model approach. Authors argue that  Glove leverages the         
best of the two worlds, that is: it has the advantage of capturing the global               
statistics of word-word co-occurrences like the count-based methods, and         
also the efficiency of the prediction-based models by simultaneously         
capturing the meaningful linear substructures prevalent in recent        
log-bilinear  prediction-based methods like  word2vec   [19] . 
For this reason we have decided to separate this learning algorithm into a              

different categorization, an hybrid approach.  It's worth mentioning that  authors          
arrives to the conclusion that  Glove outperforms other models on word           
analogy, word similarity, and named entity recognition tasks. 
 
How does GloVe work? 
 

The main approach in the design of  Glove is the usage of global             
statistics of word-word co-occurrences, but considering hidden linear        
relationships substructures present in word vectors spaces. 
Pennington et. al noted that clustering structures of similar words are not            
the only important substructures present in the word vector space. Nearest           
neighbors using a single scalar value like the euclidean or cosine distance            
are not good for summarizing very complex linguistic similarities (for          
example, that the relationship between man and woman can represent the           
concept of gender), mainly in a high dimensional vectors scenario. For           
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such high dimensional vectors there is a more natural approach to           
summarize relationships between words: vector difference between two        
words vectors  [77] .  
 

As an example we can consider the vector representations of some            
countries and their capitals.  Figure 18 shows the 2-dimensional PCA          
projection of these word representations. 

 
 

 
Figure 18  - 2 dimensional PCA projection of countries and their capitals. Source 

[78] . 
 
  
By seeing the image above we can realize that not only cities or             

countries form dense clusters, but also that in all cases the difference            
between the vector representation of a country and the vector          
representation of its capital are more or less the same, and it is capturing              
some abstract concept that relates a country with its capital.  
These linear relationships had been previously observed in  [43] and it has            
became one of the most popular benchmarks for word embeddings after           
Mikolov et al. in  [79] showed that proportional analogies ( a is to  b as  c is to                 
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d ) can be solved by finding the vector closest to the hypothetical vector             
calculated as  c - a + b  (e.g.  king - man + woman = queen )  [80] . 

 
Other important observation pointed out in  Glove is that  ratios  of           

co-occurrences can encode important meaning. This, complements the        
previous observation about the linear substructures in the word vector          
space, and both will be important for defining the Glove’s model.  
But, before presenting the model, let’s illustrate the importance of  ratios           
through a simple example with two concepts  i = ice and  j = steam from the                
thermodynamic phase and compute how often they occur with other words           
(contexts)  x = {solid, gas, .. ., water} 
 

 

 x = solid x = gas  x = water x = random 

P ( x  |  ice ) large small large small 

P ( x  |  steam ) small large large small 

P ( x  |  ice ) /  P ( x  |  steam ) large smal l ~1 ~1 

 
Table 5  - Probability of word co-occurrences and its ratios (simplified view of the original 

table in  [19] ) 
 

 
In  Table 5 , the probability  P that measures the probability that word  j             

occurs in the same context than the word  i is denoted by  P ( j  |  i ) and it can                  
be computed over a big corpus by taking the ratio between the number of              
times that  j co-occurs in the context of  i  and the total number (sum) of               
co-occurrences of any word in the context of i  [19] . If we think in the               
word-word co-occurrence matrix  X , then: 

 

                                    ( Eq. 24 ) 
 

where the numerator  X ji corresponds to the number of times that word  j             
co-occurs in the context of word  i and the denominator is just the sum of all                
the cells in the column  i of  X (representing the total number of             
co-occurrences of any word  k  in the context of  i ). 

 

91 



 

By seeing the previous table, we can note that when computing the            
ratio using a word  x that is related to both ice and steam, then the result is                 
close to 1 (because the numerator and denominator tends to be cancelled            
since their values will be high and very similar).  
In a similar way, we can note that when  x is a random word without any                
relationship with ice or steam, then the result is close to 1 too (but now               
because a similar low value is found at the numerator and denominator            
causing them to be cancelled).  
By continue analyzing these ratio results, it’s interesting to see what           
happen when  x is related to just one of the words ice or steam. For               
instance, when x = solid, the ratio  Px i /Px j is large, and when x = gas, the                 
ratio is small. In both cases, they are very far from the cancellation value of               
1. 
With these observations in mind, we can realize that the ratio is better than              
the raw probabilities in the task of distinguish relevant words (solid and            
gas) from irrelevant words (water and fashion). This suggests that the           
appropriate starting point for word vector learning should be with ratios of            
co-occurrence probabilities rather than the probabilities themselves  [19] . 

Hence, based on the previous two important observations about         
linear substructures in the word vector space and that ratios between           
co-occurrence probabilities can encode meaning, authors propose       
Equation 25 as the objective function to be minimized by  Glove during its             
training phase.  
 

               ( Eq. 25 )  
 
In  Equation 25 ,  |V| is the size of the vocabulary and is a weighting           (x )f ij     
function that needs to meet some requirements: should be equal to 0,       (0)f       

should be non-decreasing so that rare co-occurrences are not(x)f          
overweighted and should be relatively small for large values of  x , so  (x)f            
that frequent co-occurrences are not overweighted. An example of this          
function that worked well is: 
 

                 ( Eq. 26 ) 
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where  α = ¾ empirically demonstrated to give the best results. 
 

Since we previously had noted that  P(i | j) = X ij  then in order to               
minimize this objective function  J ,  Glove tries to satisfy the log bilinear            
model as part of the optimization process: 

 

                        ( Eq. 27 ) 
 
where  w i  and  w j  are the vector representations for words  i  and  j 
respectively and  P(i | j)  is the conditional probability of the co-occurrence 
of word  i  in the context of word  j . 
 

Since  w i is a row vector in the matrix, then the transpose of the              
vector is used in the objective function, and also the weighting function  f(x)             
is added so the most frequent terms that do not add too much meaning              
have less impact in the results. 
Hence, by making the dot product between words embedding equal to the            
log probability of their co-occurrence, the following equation is true: 

 

            ( Eq. 28 ) 
 

Then, since the model was trained to satisfy  Equation 27 , we have: 
 

   ( Eq. 29 ) 
 

and this ( Equation 29 ) can be re-written as (because of the difference 
property of logarithms): 

 

            ( Eq. 30 ) 
 

Hence, we arrive to: 
 

                    ( Eq. 31 ) 
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By analyzing  Equation 31 , we figure out that we can take any word             
x from the vocabulary and by doing the dot product with other two word              
vectors  a and  b , the result is a log function of the ratio between the               
co-occurence of this word  x with words  a and  b , which we previously             
observed that carried important information about the meaning and         
relationship between words. 
 

Finally, it is important to highlight that this smart definition of the            
model allows to  Glove to performs fast training, to scale to huge corpora             
and to get good results even with small corpus and small vectors  [77] . 

 

3.2.4. Summary of document and word embeddings       
techniques 
 

This section summarizes the techniques that were presented in this          
chapter for document and word embeddings. It is worth mentioning that in            
this work we will focus on the techniques regarding embeddings to the            
word level, therefore embeddings to the whole document level are not           
studied exhaustively and just some basic techniques are presented         
(mainly those that are related with some of the word embeddings           
algorithms that are studied). The reader can see  Skip-Thought Vectors          
[81] or  Doc2vec  [82] for more sophisticated embeddings techniques for          
whole sentences or documents. 
 

Technique Category Year Papers Observations 

One-Hot encoding Word 
embedding 

- - Traditionally used  
for categorical  
data embedding 

Term-Document 
Matrix 

Word and 
Document 
embedding 
 
 
(count-based 
approach) 

1972 The SMART retrieval system: 
experiments in automatic 
document processing  [30] 

Rows can be   
used as word   
embeddings and  
columns as  
documents 
embeddings 
(a.k.a bag of   
words) 

Pointwise Mutual Word and 1989 Word association norms, Weighted version  
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Information (PMI) Document 
embedding 
 
(count-based 
approach) 

mutual information, and 
lexicography  [38] 

of the original   
Term-Document 
Matrix 

Term frequency - 
Inverse document 
frequency (TF-IDF) 

Word and 
Document 
embedding 
 
(count-based 
approach) 

1957 
1972  

A Statistical Approach to 
Mechanized Encoding and 
Searching of Literary 
Information  [83] 
 
A statistical interpretation of 
term specificity and its 
application in retrieval  [84] 
 
Other important papers: 
 
The Automatic Creation of 
Literature Abstracts  [85] 
 
Relevance weighting of 
search terms  [86] 
 
Precision Weighting—An 
Effective Automatic Indexing 
Method  [87] 
 
Probabilistic models of 
information retrieval based on 
measuring the divergence 
from randomness  [88] 

Weighted version  
of the original   
Term-Document 
Matrix. 
 
The combination  
of two factors: 
 
• Term frequency   
(Luhn 1957):  
frequency of the   
word (can be   
logged) 
 
• Inverse  
document 
frequency (IDF)  
(Sparck Jones  
1972) 

Latent Semantic 
Analysis (LSA) 

Word  and 
Document 
embedding 
 
(count-based 
approach) 

1988 
1990 
1997 

Computer information 
retrieval using latent semantic 
structure  [89] 
 
Indexing by latent semantic 
analysis  [47] 
 
A solution to Plato’s problem: 
The latent semantic analysis 
theory of acquisition, 
induction, and representation 
of knowledge  [48] 

Dimensional 
reduction applied  
to the original   
Term-Document 
matrix M 
 

 V . K . C  M ≃   
 
Rows in the V    
matrix represent  
word embeddings  
and columns in   
the C matrix   
document 
embeddings 

SVD applied to the 
Term-Term Matrix 

Word 
embedding 
 
(count-based 

1992 
1996 
2002 

Dimensions of meaning  [90] 
 
Producing high-dimensional 
semantic spaces from lexical 

Similar to LSA but    
dimensional 
reduction is  
applied to the   
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approach) co-occurrence  [42] 
 
Detecting Patterns in the LSI 
Term-Term Matrix  [91] 

Term-Term matrix. 
 
a.k.a Truncated  
SVD on  
Term-Term matrix 

N-grams Language 
modelling 
 
(probabilistic 
approach 
based on 
statistics of 
bigram, 
trigrams, etc) 

1955
1948 

Example of a Statistical 
Investigation of the Text of 
“Eugene Onegin” Illustrating 
the Dependence Between 
Samples in Chain  [51] 
 
A Mathematical Theory of 
Communication  [92] 

Simplest 
language model.  
Language models  
give the basis of    
current word  
embedding 
techniques. 

Feedforward 
Neural Language 
Model (FFNLM) 

Language 
modelling and 
Word 
embedding 
 
(predictive 
approach) 

2003 A neural probabilistic 
language model  [50] 

Original employed  
for language  
modeling based  
on deep neural   
networks. 
 

Recurrent Neural 
Network Language 
Model (RNNLM) 

Language 
modelling  
 
(predictive 
approach) 

2010 Recurrent Neural Network 
Based Language Model  [57] 

Original employed  
for language  
modeling based  
on neural  
networks 

Word2Vec Word 
embedding 
 
(predictive 
approach) 

2013 Efficient estimation of word 
representations in vector 
space  [56] 
 
Distributed representations of 
words and phrases and their 
compositionality  [61] 

Simplification of 
FFNLM (shallow 
network without 
non-linear 
activations). Two 
architectures: 
CBOW and 
Skip-Gram 

App2Vec Mobile apps 
embedding 
 
(predictive 
approach) 

2016 App2Vec: Vector modeling of 
mobile apps and applications 
[66] 

Weighted version 
(based on time 
gaps) of the 
CBOW 
architecture of 
Word2Vec  

FastText Word 
embedding and 
supervised text 
classification 
 
(predictive 
approach) 

2016 Enriching Word Vectors with 
Subword Information  [71] 
 
Bag of Tricks for Efficient Text 
Classification  [72] 
 

Extension of 
Word2Vec 
considering 
sub-word level 
information (char 
n-grams) 
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FastText.zip: Compressing 
text classification models  [73] 

GloVe Word 
embedding 
 
(hybrid 
approach) 

2014 GloVe: Global Vectors for 
Word Representation  [19] 

Combine the 
best of 
count-based and 
predictive 
approaches 

 
Table 6  - Summary of document and word embeddings techniques 

 
 

During the last five years (from 2013 to 2018)  Word2Vec ,  FastText           
and  GloVe have been the most popular and widely used techniques for            
word embeddings in the NLP field, presenting state-of the-art results in this            
subject. Although not included in  Table 6 or in our analysis, by the end of               
2018, once this work had been completed,  ELMo  [93]  and  BERT  [94] were             
published and presented as new promising techniques for contextual word          
embeddings. We encourage the reader to check them for a full picture of             
the current state-of-the-art techniques regarding word embeddings. 
 

In the next Chapter, a novel approach for building a vector space            
model for Internet domain names will be presented. Looking for          
computational efficient algorithms that can scale to large corpus at the           
internet scale, the techniques highlighted in bold in  Table 6 are evaluated.            
These techniques are based on previous architectures for language         
models, being  Word2Vec an evolution (a smart simplification and         
optimization) of the work described by  Yoshua Bengio et al. in  [50] .            
App2Vec although not being originally designed for word embeddings (it          
was created for mobile apps embeddings) is an extension of the  CBOW            
architecture of  Word2Vec (a weighted version based on time gaps) and it            
has been employed in similar scenarios, therefore it is interesting to see            
how well it can generalize to our specific problem. Finally, the last            
technique that will be evaluated is  FastText  which is also an extension of             
Word2Vec but adding information to the sub-word level (character         
n-grams). As we will see in the next chapter, capturing information to the             
subword level is particularly helpful in our scenario where morphological          
information of Internet domain names gives important insights about their          
semantic.  
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4. Chapter Ⅳ - Building the DNS-VSM 
 
 

In Section  2.2 , the importance of having methods and metrics for           
measuring semantic similarities between domain names was discussed.        
Also, it was noticed that having such kind of metrics is the key issue and               
the most fundamental requirement for creating numerous applications in         
different areas like user experience (recommend similar sites based on          
previously visited sites), security (filter of inadequate or risky content), data           
analysis (clustering, anomaly detection, etc), strategic competitiveness       
(identify competitors), performance optimization (cache, response time,       
etc), among others.  

 
In this chapter, we will present a novel approach for building a            

vector space model for Internet domain names, that we will call  DNS-VSM .            
This new approach has as main goal to solve the problem of finding             
semantic similarities between domain names in an efficient way without          
suffering of all the disadvantages of the current approaches already          
described in Section  2.2.5 . The main advantages of the proposed solution           
are: 

 
● It is not intrusive, and it is totally transparent for Internet users            

(users do not need to install anything). 
 

● It does not require to know anything about the kind of content            
hosted in those domains. 
 

● It does not require to trust in third parties. 
 

● It does not need to offer any service to motivate users to install             
something. 
 

● It works well no matter the user’s device. 
 

● Since it is a centralized approach, it is easy to          
develop/maintain/update. 
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● It is not restricted to any specific Internet user segment. 
 

● Its design and structure are based on a vector space model, which            
allows to: 
 

○ Easily find similar domain names (just by calculating the         
neighbors vectors in the space, using some distance metric         
between vectors). 
 

○ Discover more complex relationships between domain      
names by applying basic math operations (addition and        
subtraction) with the vector representations of the domain        
names. 

 
In order to achieve these goals, different word embedding         

techniques from the ones studied in Chapter  3 are applied to a corpus that              
is built from millions of anonymized  DNS queries . These queries are taken            
from numerous log files saved by  recursive DNS servers (see Section  2.1 )            
that are owned by one of the most important Internet service providers in             
Uruguay. This approach is the first one (at least to the best of our              
knowledge) that presents a publicly available solution that makes use of           
DNS traces for finding semantic similarity between domain names through          
the usage of techniques that are taken from the  NLP  field. 
 

As we will see during this chapter, the DNS-VSM will allow us to find              
semantic and syntactic relationships between domain names only by         
analyzing  DNS traces of users, without requiring any previous knowledge          
about the domain’s content itself and without requiring users to install           
anything. Other interesting aspect about the  DNS-VSM is that its design           
and hidden linear structure will be helpful for building linear combinations           
between vectors, and keeping meaningful information as result. 

 
The rest of this chapter is organized as follows: firstly in Section  4.1             

a descriptive analysis of the raw data used as the initial input for learning              
DNS embeddings is shown. Then, in Section  4.2 the preprocessing steps           
that transform this raw data into the text corpus required by the different             
unsupervised learning techniques that are evaluated is described. The         
evaluation and comparison of these techniques are executed using the          
evaluation framework presented in Section  4.3 where also the baseline          
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models are introduced. In Section  4.4 the first model based on  Word2Vec            
(see Section  3.2.2.3 ) is described in details. It’s worth mentioning that           
most of the experiments and results obtained from this first model were            
summarized in publication  [95] . In Section  4.5 the addition of the time            
factor (the elapsed time gap between two consecutives  DNS queries          
requested by a same user) is studied and a second model based on             
App2Vec (see Section  3.2.2.4 ) is evaluated. A final improvement by          
considering sub-word information is described in Section  4.6 where the          
last model based on  FastText (see Section  3.2.2.5 ) is presented. Finally, a            
summary analyzing the results and discussing possible use cases for the           
DNS-VSM  is presented in Section  4.7 

. 

4.1. Descriptive analysis of the data 
 

For this research, the data was provided by a large Internet Service            
Provider ( ISP ) from Uruguay. This ISP has millions of Internet users, and            
many recursive  DNS servers. Everytime a user’s internet browser needs to           
resolve a domain name a  DNS query is requested to some of these             
servers as we saw in Section  2.1 . The reader should notice that no             
additional software executes at the client side, requests to  DNS servers           
are triggered in background while users browse Internet using any kind of            
device (desktop, mobile, etc). 

 
In particular for this study, anonymized  DNS queries saved in log           

files by the  DNS servers were analyzed. The log files contain information            
from 11 different days in the period December 2012 - March 2013. Each             
line of log data shows the date and time of the  DNS query, the anonymized               
IP address of the client, the domain name that has been requested and the              
type of  DNS query.  Figure 19 shows an example of consecutive  DNS            
queries requested by the same anonymized IP address. In the following,           
the expression “ user trace” will refer to all the consecutive  DNS queries            
requested by the same IP in some period of time (the   time window ) .  
 

 
Figure 19   -  Example of consecutive  DNS  queries  
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As we will see in section  4.2 the first step in the preprocessing             

phase is to filter  DNS log entries based on the record type (only types A               
and AAAA are kept). Hence, once we have the log files filtered by record              
type, we can formally define a  DNS log file as a sequence of  <IP i , d j , t k > ,                  
where the client  IP i  queried the domain  d j  at time  t k .  
In the log there is a set of unique (anonymized) IPs representing each             
client c ∈ C, and for each client we have a DNS trace  t c  ∈  T , that is a                   
sequence  t c =  {< d 1 , t 1 >, <d 2 , t 2 >, . . ., <d n , t n >} . The problem to solve is to                      
learn a similarity function  sim(d i , d j ) between any two domain names  d i             
and  d j  , using only the set of traces  T .  
This problem is very similar to find semantically similar words, where a            
trace of domain names can be mapped to a sequence of words in a              
sentence. Following a similar reasoning (and although it is out of the scope             
for this research) the set of  DNS queries that corresponds to a same IP              
could be mapped to a set of paragraphs in a document, and then a user’s               
navigation profile associated to that set of  DNS queries could be mapped            
to the concept of document, allowing in this way to apply techniques and             
methods for document embeddings (see Chapter  3 ) to get vector          
representations for user profiles. 
 

All these DNS queries are saved in the  DNS servers log files as             
compressed .bz files. The amount of data collected in just one day is             
extremely large, containing more than 3.5 billions of queries, 58 millions of            
unique domain names, and 550 thousands of unique IPs. Data across           
different days are pretty similar, with a little increment with time, as shown             
in  Figure 20 for 3 different days. As we can see, A and AAAA record types                
correspond to more than 90% of the queries in an average day ( Figure             
21 ), and other types are less relevant when studying user’s web navigation            
habits. For this reason, during the preprocessing phase, data is filtered to            
keep only these kind of queries (A and AAAA). For these record types we              
can see a minimum between 5 and 6 a.m. and maximum between 8 and              
10 p.m. approx as it is shown in  Figure 22 and  Figure 23 for the same                
three days. 
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Figure 20  -  Number of DNS queries for main records types on 3 different days 

 
 

 
Figure 21  -  Distribution of DNS queries types on March 20 of 2013 

 
 
 

 
Figure 22   -  Number of type A DNS queries per hour on 3 different days 
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Figure 23  -  Number of type AAAA DNS queries per hour on 3 different days 

 
 

4.2. Preprocessing phase 
 

Raw data obtained from the DNS log files are not exactly in the form              
that we need. For this reason, raw data need to be preprocessed, cleaned             
and transformed before using them as input for training the different           
machine learning models that we will be evaluating.  

 
There are some characteristics and limitations about the data         

collected and how the DNS system works that are important to understand            
before moving to the specific preprocessing data pipeline that was applied.           
The preprocessing steps that will be detailed later, in some way or another,             
attempt to mitigate these issues or to simplify some of these problems.            
The following list summarizes the main issues that we need to face: 

 
A. When studying user’s web navigation habits, A and AAAA record          

types are the most important, but  other types like MX, PTR or            
SRV are also present in the logs and they can be considered as             
noise when trying to understand domain names similarities based         
on click-streams (based on how users browse the web). 
 

B. Since DNS resolvers clients typically cache the requests, we do not           
have information about how often a domain is visited. We only have            
one request after the domain cache times out and then it is cached             
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again. Therefore,  the DNS traces are not a good source to           
measure the period of usage of a domain, just the first access . 
 

C. Also,  NAT enabled gateways hide the activity of many users          
behind a single public IP address . This is very common in           
enterprise and residential connections, but not in mobile services. It          
means that  an IP’s trace can mix multiple clients, in some cases            
thousands of them . Usually the ISP assigns disjoint range of IPs           
to each kind of service, therefore it is possible to separate           
enterprise, residential and mobile traces. 
 

D. It is a good practice of ISPs to assign a dynamic IP address to each               
service, where the client needs to be reconnected after a fixed           
period (for example 12 hours) and a new IP is assigned. Therefore,            
an IP identifies a particular service/client in a period.  The larger the            
period, the more likely that the IP would have been reassigned           
to another client . 
 

E. Internet Content Providers (ICPs) typically use several sub-domains        
in order to provide their content, moreover they usually use external           
services to provide part of their content (for example they use           
content delivery networks to provide static and video content).         
Therefore,  when a client access to a service, it usually adds           
several subdomains and also other domains to the trace . This          
is very consistent between different clients that access to the same           
service, but it is not a simple task to extract the knowledge of the              
service used by the client from this trace. 
 

F. In a similar way,  there are applications in client’s devices          
(mainly in mobile devices) that generates traffic in background         
(and therefore queries in the trace)  without an explicit action of           
the user (for example antivirus, email clients, etc.). These queries          
are mixed in the traces and they can act as fingerprints for            
identifying similar traces from a particular machine but are not really           
helpful when trying to understand relationships between domain        
names by analyzing how users browse the web. 
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Hence, in order to mitigate the impact of these limitations in our            
procedure, we propose several preprocessing steps (filters) that are         
executed sequentially in a preprocessing execution pipeline.  
The input to this pipeline is a set of DNS servers log files and the output is                 
a single big text file that we will refer as “ the corpus” in the rest of this                 
document. This corpus is the unstructured data that we will be used as             
input for the different models under evaluation.  
It’s worth mentioning that a second version of the corpus adding time gaps             
between domain names was also generated specifically for evaluating the          
App2Vec-like model. Details about this second version of the corpus is           
given in Section  4.5 when describing the  App2Vec-like model applied to           
the  DNS  corpus. 

 
The preprocessing pipeline: 
 

1. DNS record type filter 
As it is shown in  Figure 21 the A and AAAA record types             
correspond to more than 90% of the queries in an average day.            
During the preprocessing phase, data is filtered to keep only these           
kind of queries (A and AAAA). By doing this we focus exclusively in             
that kind of record types that are generally used by  DNS resolvers            
when asking for internet domain names resolution during user’s         
web navigation sessions, thereby minimizing the effect of issue A.          
The reader should notice that the amount of data removed by           
discarding other kind of  DNS record types does not affect          
substantially the remaining dataset. 
 

2. Service type filter 
A subset of the data is used, considering queries that are requested            
by IPs that belong to some known ranges corresponding to          
residential or mobile services and discarding enterprise services        
that are used by companies with many employees browsing the          
web behind the same IP. Although residencial connections        
potentially could allow more than one device connected at the same           
time, we decided to include them knowing that in some cases these            
residential IPs could contain data from more than one device or           
user, but we hope that our solution can deal with this noise by using              
a big amount of data. 
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The reader should notice that this is a simplification in order to            
minimize the amount of devices connected with the same IP,          
thereby reducing the possibility of having traces that merge queries          
from the same IP but from different devices or users (issue C).  
In Section  2.2.5 we pointed out that one disadvantage of the current            
approaches that make use of client side components (add-ons,         
toolbars, etc) is that they do not work well on mobile devices'            
browsers. Hence, by including mobile IP ranges in our traces we           
are solving both, the problem that current approaches suffer         
regarding mobile devices as well as the problem of possible multiple           
devices/users behind a same IP (issue C). 
 
 

3. Simplification of subdomain component 
This is a simplification aiming to help in solving issue E regarding            
subdomains. Generally websites include several subdomains in       
order to improve load time by loading in parallel content from many            
sources (static content like javascript/css files, or multimedia assets,         
webservices endpoints, mirror backend servers, etc). This step in         
the pipeline truncates the last labels of a domain name in the            
following way: if the top label is a country code ( ccTLD ) then the             43

domain is truncated to the first 3 levels, else ( gTLD ) the domain            44

name is truncated to the first 2 levels. Please see Section  2.1 for a              
deeper explanation about the hierarchy structure of domain names. 

 
4. Removal of top queried domains and well-known applications        

domain names 
Top domains like  google, facebook, youtube, root-servers  (among        
others) that are queried all the time in any context do not give us              
any relevant value.  
Hence, as part of the preprocessing pipeline these domain names          
are included in a fixed black-list, and excluded from the corpus. The            
idea behind this is similar to the one used when processing natural            
language data in text, where a set of words (called common or stop             
words like  the, is, at, which , etc) are filtered before processing the            
text because they are not really important (they do not add any            

43 https://icannwiki.org/Country_code_top-level_domain 
44 https://icannwiki.org/Generic_top-level_domain 
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meaningful information). This workaround also helps in solving        
issue F. The following list of domain names was excluded during           
this filter:  

 
ZXV10\\032H108, avast, facebook, fbcdn, youtube, flickr, avira, twitter, ytimg, akamaihd,          
akamai, akamaiedge, microsoft, msftncsi, anteldata, bing, eset, avg, avira-update, yahoo,          
mozilla, doubleclick, google, gstatic, google-analytics, googleusercontent, googleapis,       
googlesyndication, googleadservices, dyndns, antel.net, root-servers, windowsupdate,      
no-ip, changeip, whatsapp, kaspersky, live, msn, scorecardresearch, skype, verisign,         
nod32. 
 

5. IP grouping 
It is important for our algorithms that consecutive DNS queries in           
the corpus file are part of the same user’s web browsing session.            
But DNS servers receive tons of DNS queries from multiples users           
at the same time and thus, DNS queries appear merged all together            
in the log files making difficult to visualize activity by IP. For this             
reason, DNS queries are re-arranged sequentially in time grouped         
by IP.  

 
For example the following input: 
 
21-Mar-2013 06:06:47.2 client <anonymized ip1>: query: domain1.com IN A  
21-Mar-2013 06:06:48.1 client <anonymized ip2>: query: domain2.com IN A  
21-Mar-2013 06:06:53.2 client <anonymized ip3>: query: domain3.com IN A  
21-Mar-2013 06:08:10.7 client <anonymized ip2>: query: domain4.com IN A  
21-Mar-2013 06:08:11.2 client <anonymized ip3>: query: domain5.com IN A  
21-Mar-2013 06:08:11.5 client <anonymized ip1>: query: domain6.com IN A  
 
Is re-organized in this way: 

 
21-Mar-2013 06:06:47.2 client <anonymized ip1>: query: domain1.com IN A  
21-Mar-2013 06:08:11.5 client <anonymized ip1>: query: domain6.com IN A  
21-Mar-2013 06:06:48.1 client <anonymized ip2>: query: domain2.com IN A  
21-Mar-2013 06:08:10.7 client <anonymized ip2>: query: domain4.com IN A  
21-Mar-2013 06:06:53.2 client <anonymized ip3>: query: domain3.com IN A  
21-Mar-2013 06:08:11.2 client <anonymized ip3>: query: domain5.com IN A  
 
And the final corpus considering just sequences of domain names          

will be: 
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domain1 domain6. 
domain2 domain4. 
domain3 domain5. 

 
The reader should notice that IP’s values are not included in the            
final corpus, but after the preprocessing pipeline is completed, we          
are guaranteed that domain names that appear in the same          
sentence (a sentence is a sequence of domain names separated by           
white space and a final dot marking the end of the sentence)            
correspond to DNS queries (A or AAAA) requested by the same IP            
(residential or mobile IP). 
 

6. Removal of automatic requests (that are not click-streams) 
Other problem that we can see in issue  E is related to those             
contents that are loaded automatically from the same or other          
domain name as well as automatic redirections (among others).         
Since we want to study relationships between domain names         
according to how they are consumed by users, we want to eliminate            
any request that is not explicitly executed as response for an           
Internet user’s action (for example the list of resources         
automatically loaded after accessing a web page).  
Redirections and references to content hosted in external sites         
could be detected easily in html pages, but it can be very expensive             
and time consuming in a big dataset. Hence in our case, we will get              
that information based on data evidence. In order to identify these           
domains we apply the following empirical rule: domain names with          
at least 100 occurrences, and that 90% of the time (or more) are             
queried immediately after a previous domain (3 seconds window)         
are added to a blacklist (csv file) and excluded from the final corpus.             
After applying this filter, 5345 domain names were added to the           
blacklist, therefore removed from our dataset. 
 

7. Simplification in the navigation path 
In text documents the same word does not appear repeated many           
consecutive times. Also, when studying DNS similarities based on         
navigation contexts, that a domain is similar to itself does not add            
any relevant information. For this reason, we simplify the navigation          
path by removing consecutives occurrences of the same domain         
name and leaving just one of them. For example, a sequence like            
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d 1 ->d 2 ->d 2 ->d 2 ->d 3 ->d 3 ->d 4 is simplified to  d 1 ->d 2 ->d 3 ->d 4 . This      
simplification will help also in reducing the corpus size.  

 
8. Split of long traces (using time window) 

As we saw in Section  3.2.2.3 , an important hyper-parameter in          
Word2vec  is the size of the context window, and this parameter is            
also used in  App2Vec  (see Section  3.2.2.4 )  and  FastText  (see          
Section  3.2.2.5 )  as well. Thus, since the word embedding         
techniques that we will be evaluating consider that two consecutives          
words are always part of the same context, we want to preprocess            
the traces in same way that we can ensure that two consecutives            
domains in the output corpus are effectively part of the same user’s            
web navigation context.  
In order to meet this requirement, we map the concept of context            
window to time window and we break long traces for a same IP into              
many shorter traces (5 minutes) that form sentences in the corpus.           
Each sentence is composed by a set of domain names requested           
inside a same time window (same navigation context) by the same           
IP.  
It’s worth mentioning that this step in the preprocessing pipeline is           
not applied when building the corpus version for evaluating the          
App2Vec-like model. In the particular case of  App2Vec , traces are          
splitted only if they are longer than 12 hours because of the            
dynamic IP characteristic of  DNS providers for residential IPs. For          
traces lower than 12 hours we do not apply any break and we leave              
the time factor added by  App2Vec to deal with this problem, hoping            
that two consecutives domain names that are far in time are           
weighted lowly and thus adding an insignificant component to the          
similarity.  

 
Table 7 summarizes the main challenges that we faced during the           

preprocessing phase and the workarounds applied in order to solve them. 
 

After preprocessing the data, the final input is a sequence of 53            
millions of domains, where the unique domains are 1.4 million. As           
expected, there is a large variation of popularity between domains.  Figure           
24 and  Figure 25 show the cumulative percentages of requests per           
domain, where domains are represented by popularity position (from left to           
right) on the x-axis. We can see that top 5 thousand domains accumulate             
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75% of the total queries, top 798 domains accumulate the 60% and top 10              
domains accumulate the 10%. Due to the logarithmic characteristic of the           
function, working with a reduced vocabulary but very representative of the           
total traffic was seen as a good alternative in order to optimize the             
execution time for our experiments.  

 
 

Problem Solution 

A (not all  DNS record     
types are important   
when studying web   
navigation habits) 

1 ( DNS  record type filter) 

B ( DNS  caching) The time gap between two consecutive domains after applying solution          
6 ( removal of automatic requests that are not click-streams ) and 7           
( simplification in the navigation path ) can be used as an approximation           
to the period of usage of a domain. 
 
When evaluating the  App2Vec-like model in our  DNS corpus, this time           
gap will be used as distance to weight how near in the web session two               
domains are, knowing that it could be not totally exactly (because of the             
DNS caching that we cannot bypass). This, probably could be one of the             
reasons why the results for the  App2Vec-like model will not be as good             
as we can expect in advance. 

C (multiple users using    
the same IP) 

2 (service type filter) 

D (dynamic IPs) 8 (split of long traces using time window) 

E 1 (subdomains typically   
do not add to much     
value) 

3 (simplification of subdomain component) 

E 2 (domains that are    
automatically requested  
without any user’s   
action) 

6 (removal of automatic requests that are not click-streams). Also, 4           
(removal of top queried domains and well-known applications domain         
names) helps by removing requests that are triggered automatically by          
antivirus software or similar software in user’s devices. 

 
Table 7  - Main problems faced during the preprocessing phase and the proposed 

solutions 
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Figure 24  - 60% cumulative percentage of requests per domain. 

 
 

 
Figure 25  - 100% cumulative percentage of requests per domain. 

 
 
When we studied the optimization tricks proposed in order to scale           

Word2vec (see Section  3.2.2.3 ) one of them consisted in reducing the           
number of neurons in the output layer. The size of the output layer impacts              
considerably in the algorithm performance due to the computation of the           
final softmax classification layer.  
For this reason, the trick proposes to remove all rare words from the             
vocabulary (words with a number of occurrences lower than a threshold)           
and then add a new single token to the vocabulary as a representative             
class for rare words. By doing this, the output layer can reduce its size              
considerably, getting an important performance enhancement.  
Motivated by this trick, and since the number of neurons for the output             
layer in our work is mapped directly to the number of domain names, we              
decided to work with a vocabulary built from the top 40 thousand most             
popular domains. It’s worth mentioning that we do not remove any domain            
name from the dataset explicitly, but we leverage the  Python’ s interfaces           
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for the word embeddings algorithms (in both  Tensorflow and  Gensim  ) to           45 46

specify the number of words that we want to keep in the vocabulary.  
These top 40k domains represent 88% approximately of the total requests           
under study. Furthermore, an  unknown token  (the  UNK token) for rare           
domains was added to the vocabulary. By pruning the input to the top 40k              
domains, we can work effectively with a very good representative          
subsample of the dataset and allowing the execution of the different           
algorithms efficiently. 
By the end of the preprocessing phase, a depurated and reduced set of             
DNS traces is generated and it is ready to be used as input for training our                
word embedding models. In the end, these models will give us the vector             
representation of domain names and thus, our  DNS  vector space model.  
But before moving to the details regarding the word embedding models,           
the evaluation framework that will be used for comparing the results of the             
different models is presented in the next section. 
 

4.3. Evaluation framework 
 

One of the main challenges that we need to address is to evaluate             
the quality of the semantic relationships between domain names that are           
discovered by our unsupervised process.  
When working with supervised learning either on a regression or          
classification problem, the true labels (responses) are well known in          
advance and they can be used to compare against the predicted values to             
measure how good a model is. But in our case, there are not true labels,               
hence it is very difficult to know whether our models are learning good             
representation for domain names or not. 
In order to solve this problem, and motivated by our previous research            
about similar works, in this research we use the service called  similar sites            

(a feature offered by  Alexa in its  Audience Overlap Tool  ) as reference             47 48 49

for comparison and, as a trusted source (ground truth) for evaluating the            
quality of our results.  

45 https://www.tensorflow.org/ 
46 https://radimrehurek.com/gensim/ 
47 https://www.alexa.com/find-similar-sites 
48 https://www.alexa.com/ 
49 https://try.alexa.com/marketing-stack/audience-overlap-tool 

115 



 

This service allows to query for a specific domain name in order to know              
possible competitors based on considering similar sites. In its paid version,           
this service retrieves the top 100 most similar sites for a specific input             
domain name (more details about  Alexa  and its tools can be found in             
Section  2.2.1 ). 
 

As part of this work, we built a tool that given the list of the top used                 
domains in our vocabulary, it retrieves the similar sites from  Alexa . More            
precisely, we queried for 15000 top domains in our vocabulary, for which            
we were able to find a matching in  Alexa for 14490 domains (96.6%). The              
reason why not all of our domains were found in  Alexa could be one of               
many causes, for instance because not all of them are Internet web sites             
or because our dataset contains domains that do not exist any more,            
among others reasons. Also, of those 14490 domains, a total of 11426            
have at least one similar that also belongs to our dataset, therefore they             
are the ones that are taken to form our evaluation set.  
 

The result list that we get from the  Alexa ’s service has a default             
order by an  Overlap Score value . The meaning of this value according to             
Alexa is the relative level of visitor (audience) overlap between any site            
and the target site. A site with a higher score shows higher audience             
overlap than a site with a lower score. This order will be important when              
comparing the results from our models versus the most similar sites           
retrieved from  Alexa .  

 
It is not trivial to compare results from different models that learn            

similarities between domain names, because it implies to have a metric           
that compares two ordered list of similar domains for each domain           
considered in the vocabulary. The simplest metric would be to compare           
just the most similar domain, considering a success only when it is the             
same than the most similar site (top 1) in  Alexa ’s response, and averaging             
the results between all the domains in the vocabulary. As we will see, this              
is a particular case of the  Mean Average Precision (MAP) metric  [96] ,            
which can also compare the first  k  similar domains (not just the first one). 
MAP metric is the mean of the  Average Precision (AP)  computed for each             
element  (in our case, for each domain). Some of the characteristics that            
we were looking and the  AP  metric has are: 
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● It assigns values between 0 and 1. 
 

● If both lists of similarities are identical, then its result is 1. 
 

● If both lists of similarities are disjoint, that is, if none of the domains              
in our predicted similarity list are present in  Alexa ’s list, then its            
result is 0. 
 

● Order in predicted list matters. Suppose that for a given domain           
name, a first model computed the list of its  k most similar domains,             
and the top half of this list also appears in the similar sites retrieved              
from  Alexa . Now, suppose that we have a second model that           
computes a second similarity list where the matching with  Alexa          
appears only in the last half of the list. Despite for both lists we have               
matched  k  / 2 domains with  Alexa , we want that the metric, when             
evaluating the first list to be higher than for the second list. That is              
because the  k / 2 matched domains for the first list are located             
above in the ordered list, which indicates that similarities for those           
domains are more accurate than the similarities for the  k / 2            
matches in the second list. 

 
The  AP@k  (the average precision considering the top  k elements)          

and the MAP@k (the mean of  AP@k computed for all items) are metrics              
that have been widely used in the information retrieval field, as well as in              
the recommender systems domain. Before moving to the formulas, let’s          
illustrate its behaviour through an easy example.  
 

Suppose user  U likes two movies  M a and  M b , then if recommender            
R1 recommends movies  [M c , M a ] (ordered list), this is not as good as the              
recommendations given by a second recommender  R2 that recommends         
movies  [M a , M c ] (ordered list). If we compute the  AP@2 metric ( AP metric             
considering the top two items) for user  U , despite both recommender           
systems recommend the same set of items, since the order in the            
recommendation list is relevant and it is taken in consideration by the  AP             
metric, then we will get that: 
 

,                     ( Eq. 32 )P@2(up, recs1) AP@2(up, recs2) A  <    
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where  up = {M a , M b } (set of preferences of user  U ),  recs1 = [M c , M a ]               
(ordered list of recommendations given by recommender  R1) ,  recs2 = [M a ,           
M c ] (ordered list of recommendations given by recommender  R2 ).         
Therefore, from this user's point of view, recommender  R2 is better than            
recommender  R1 . We can repeat the same reasoning for every user in the             
system and then aggregate the results by taking the mean of all  AP@2 in              
order to get a global performance score, and that is what  MAP@2  is .  
 

If we map this example in the recommender systems domain to our            
escenario, then we can think in the following associations: 
 

● The most similar sites retrieved from  Alexa ’s similarity service for a           
given domain  d , corresponds to the set of preferences of user  U            
(the ground truth) 

 
● The most similar sites to  d (ordered list) found by  Model1 (first word             

embedding model under evaluation) corresponds to the ordered list         
of recommendations given by recommender  R1  for user  U 
 

● The most similar sites to  d (ordered list) found by  Model2 (a second             
word embedding model) corresponds to the ordered list of         
recommendations given by recommender  R2  for user  U 

 
Hence, if we compute  AP@k considering the top  k similar sites to  d             

found by the two models  Model1 and  Model2 using  Alexa ’s response as            
the ground truth, then we can get a good criteria for comparing both             
models, being  Model1 better than  Model2 (computing similarities to  d ) if           
and only if: 
 

 .                  ( Eq. 33 )P@k(model1, d) AP@k(model2, d)A  >    
 

And then,  MAP@k metric can be computed by averaging  AP@k ,          
considering every domain names in our evaluation set (not only  d ). By            
doing this, we can get a global performance score for our models, being             
Model1  better than  Model2  if and only if: 

 
.                  ( Eq. 34 )MAP@k(model1) MAP@k(model2)   >   
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A visual inspection of the results that come from  Alexa clearly           
shows that only the first domains are relevant followed by popular or            
generic domains. Therefore, we define a new variable in our evaluation           
framework that we call  k actual and we consider only the first  k actual  domains in              
the  Alexa ’s response that are also present in our data. We ignore others             
domains in  Alexa ’s response since they will never show up in our            
predictions.  
This new variable, will help us to mitigate the lack of the  MAP metric              
related to the order in the  actual list (order in the similar sites retrieved              
from  Alexa , does not matter). The metric uses the  Alexa ’s list as a set              
without any particular order, where it is the same to have a coincidence             
with the first or the last domain in the set. We will mitigate this problem               
varying the  k actual  value,  and evaluating the impact into the  MAP@k  value. 
 

That said, now we present the formulas for the  AP@k and  MAP@k            
metric. We have a set of domains in our vocabulary, , for which we           ε Dd     
know the  actual ordered list of top  k actual similar domains from  Alexa , and             
an ordered list of predicted top  k similar domains in our vector space             
model. In order to compare these two lists of ( actual and  predicted ) similar             
domains for a specific domain  d , we use the  Average Precision (AP)  over             
all possible  recall  values: 

 

                          ( Eq. 35 ) 
 

where  n is a position in the predicted list of similar domains to  d ,  k is the                 
size of the predicted list,  is the precision considering only the first  n     (n)P          
domains in the list, and is the change in  recall from domains  n - 1 to     r(n)Δ             
n .  Precision and  Recall metrics come from information retrieval theory, see           
their definition in  [96] .  
 

With the  Mean Average Precision (MAP) , we summarize the         
comparison of  actual and  predicted lists for all available domains. Given a            
set  D of domain names, the  MAP@k metric is computed as the mean of              
the average precision scores: 
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                          ( Eq. 36 ) 
 

where is a domain for which we know the top  k actual   actual  similar ε Dd  
domains from  Alexa , and an ordered list of predicted top  k  similar domains 
in our vector space model. The reader can refer to  [96]  to see a detailed 
explanation about  mean average precision  and the formula above.  
 

Besides the  MAP@k metric, the  precision and  recall metrics used          
for evaluating classification models in the machine learning field have been           
used, as well as the  f1-score  which is the harmonic mean between them.  
In order to use these metrics, we consider each domain name as a             
different  class (a.k.a  tag or  label ) and our model as a  multi-label            
classification  [97]  model (the output of the model is a set of labels that              
correspond to the similar domain names computed by the model for a            
given input).  
Hence, given a domain name  d , if we denote  P d = {p 1 , p 2 , …., p n } as the                   
set of predicted most similar domain names to  d ,  T d = {t 1 , t 2 , …., t kactual } as                
the ground truth (the set of domain names retrieved from the  Alexa ’s            
service considered as the true/correct most similar domain names to  d ),           
then  Equation 37 ,  Equation 38 and  Equation 39 describe how the           
precision ,  recall  and  f1-score  are computed respectively. 

 

                            ( Eq. 37 ) 
  

                             ( Eq. 38 ) 
 

                                 ( Eq. 39 ) 
 

Finally, as shown in  Equation 40 ,  Equation 41 and  Equation 42 , for            
each model  m that we want to evaluate, we can measure its performance             
by computing the average metrics considering each domain name  d in our            
vocabulary  D  and the most similar domain names to  d  given by  m . 
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                       ( Eq. 40 ) 
 

                            ( Eq. 41 ) 
 

                                         ( Eq. 42 ) 
 

4.3.1. Baseline models 
 

Two baseline models were implemented in order to have a baseline           
to compare the performance of the new models that will be evaluated.  
Firstly, a  random guessing baseline model was implemented. This first          
model returns  k random domains as the most similar domains to a given             
domain name.  
Next, an extension of the  majority class baseline model was implemented           
based on popularity and returning always the top  k most popular domains            
as the most similar domains to any other domain.  
Finally, an hybrid approach using a weighted schema by returning random           
domains with probability weighted by popularity was implemented but         
since it did not perform better than just the plain popularity based model, it              
was not considered here as a different case.  
 

The MAP metric (using  k = 3,  k actual = 3) computed for our baseline              
models obtained a result of 0.00005 and 0.016246 for the  random           
guessing  and the  popularity based  models respectively. 

  

4.4. Creating DNS embeddings using Word2Vec 
 

When studying the theory of  Word2Vec in Section  3.2.2.3 , it was           
pointed out that  Word2Vec is a family of algorithms for word embeddings            
generation that supports two main configurations of the underlying neural          
network structure: the  CBOW and the  Skip-Gram architectures. In this          
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section, the main details about the creation of our first  DNS embedding            
model based on the  Skip-Gram architecture of  Word2Vec is presented.          
Latter in Section  4.5 an  App2Vec-like model (see Section  3.2.2.4 ) based           
on the  CBOW  architecture is also evaluated. 
 

As any other word embedding algorithm, we can think  Word2Vec as           
a black box that receives a text as input and it generates a vector              
representation for each word in the text (a.k.a  embeddings ) as output. In            
Section  3.2.2.3 some of the main characteristics of the generated          
embeddings were discussed, in particular it was shown that the vector           
representation of semantically related words (that generally share similar         
contexts) are located nearby in the high dimensional vector space.          
Thereby, our first approach took advantage of that characteristic. After          
having applied all the pre-processing steps (see Section  4.2 ), the final           
corpus is used as the input text for the  Word2Vec algorithm, which was             
implemented (in our first approach) using the  Tensorflow  library for          50

Python. Finally, in order to get the most similar domain names to any other              
domain name, the  cosine similarity between vectors is computed to get the            
nearest neighbors vectors. The more similar their vector representations,         
more semantically related the domain names are. 

 
When working with  Tensorflow , a computational graph is firstly         

defined and then, an execution session is run using an instance of that             
graph. We based our implementation in  [36] , where a  Tensorflow graph is            
used to model the  Skip-Gram neural network architecture. As we saw in            
Section  3.2.2.3.1 , the  Skip-Gram model tries to predict context words from           
a target middle word. Hence, there are two input nodes in the graph, one              
for the target word and another one for the context word. During the             
training phase, many combinations of couples in the form  <target, context>           
words are randomly subsampled and its integer representations are fed          
into the input nodes of the graph. The integer index for each word is              
assigned once before starting the training phase, while loading the          
vocabulary. In that moment, an integer value in the range  [0..n-1] (where  n             
is the vocabulary size) is assigned to each word and this value is used              
later as an alias when the word is fed into the network. The reader              
probably have noticed that we are not using the  one-hot encoding           
representation of the words as inputs to the network (as it’s supposed            

50 https://www.tensorflow.org/ 
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according to the original  Skip-Gram network architecture). This is because          
after adding the embedding layer to the graph (a uniform randomly           
initialized matrix to store the weights values associated to the connections           
between the input and the hidden projection layer that compose the           
shallow network architecture of the  Skip-Gram model) we can leverage the           
embedding_lookup operation provided natively by  Tensorflow which is        51

specifically designed and optimized for an in parallel look up execution,           
achieving the same goal than the original  one-hot encoding         
representation: to efficiently select the corresponding row for the input          
word from the embedding matrix. As optimizer for minimizing the loss           
function, the  Stochastic Gradient Descent (SGD)  technique was used.  

 
As part of the implementation, two variations of the suggested          

improvements to the original model presented in  [61] were implemented: i)           
the subsampling of frequent words and ii) the usage of a lightweight            
objective function rather the classic softmax.  
The removal of stop (common or frequent) words is used to remove noise             
from the data, that is, to remove words (domain names in our case) that do               
not add any relevant information. In our specific scenario, these domain           
names correspond to those domains that are requested all the time,           
therefore being present in most of the contexts with many different kind of             
other domains (they do not belong to any specific field) and then, getting             
vector representations that are not relevant for finding similarities or          
analogical reasoning. In Section  4.2 we can see that this is what one of the               
preprocessing steps exactly does during the preprocessing pipeline. In that          
step, a set of commonly requested domain names like  Google  or           
Facebook  (among others) are filtered and removed from the final corpus. 
In regards to the usage of a lightweight objective function as improvement,            
we did not use exactly the  Negative Sampling loss function suggested as            
improvement and instead, we used the very similar  Noise Contrastive          
Estimation (NCE) suggested by  Mnih et al . in  [69] for which  TensorFlow            
has a handy helper function  nce_loss  . 52

 
As an additional performance improvement, when loading the        

vocabulary from the corpus, we decided to limit the vocabulary size to the             
top 40k domain names with the highest frequencies (88% approximately of           

51 https://www.tensorflow.org/api_docs/python/tf/nn/embedding_lookup 
52 https://www.tensorflow.org/api_docs/python/tf/nn/nce_loss 
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the total requests, see  Figure 25 ) and to include an  unknown token  (the             
UNK token) for rare domains. By doing this, since the size of the output              
layer depends on the number of words in the vocabulary, we can reduce             
significantly the number of neurons in the output layer, and thus, train the             
model efficiently with a very good representative subsample of the dataset. 
 

Finally, some minor modifications to the original  Tensorflow  code         
were added mostly for saving partial checkpoints and summary data for           
evaluating the loss value (a measure of the network’s error) during the            
training phase with  Tensorboard  .  53

For visualizing the generated vectors, the  t-Distributed Stochastic        
Neighbor Embedding (t-SNE)  [98]  dimensionality reduction technique was        
applied. This technique is widely used for visualization of high dimensional           
datasets in two or three dimensions, while retaining the local structure of            
the data  [98] .  Figure 26 shows the projection in two dimensions of some             
vectors (a subset of the full dataset) taken from a partial checkpoint during             
the training phase. 
 

 
Figure 26   - Projection of domain names embeddings in 2 dimensions using t-SNE 

53 https://www.tensorflow.org/guide/summaries_and_tensorboard 
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Hyperparameter tuning 
 

As most of the machine learning algorithms, the configuration of          
Word2Vec  has a set of parameters that are not trainable and need to be              
configured in advance before running the training phase. This set of initial            
configurations to the model are called hyperparameters, and finding the          
optimal configuration is usually known as hyperparameter tuning, which is          
an important but time consuming phase of any machine learning project.  
In particular, for the implementation of the  Skip-Gram architecture in          
Tensorflow , the more important parameters that need to be configured are:           
the size of the vocabulary and the embeddings, the size of the skip window              
and batches, as well as the value of the learning rate.  
 

The  embedding size corresponds to the number of neurons in the           
hidden projection/embedding layer in the  Skip-Gram architecture, and        
since the weights associated to the neurons in this layer are finally used as              
the values to represent the vectors for each word, this size implicitly define             
the number of dimensions that will be used to represent our domain names             
as vectors in the multi-dimensional DNS vector space. It is supposed that            
higher values of this hyperparameter would allow to discover more hidden           
or latent features by our learning algorithm. But a too high value of this              
hyperparameter could end up being expensive in resource usage,         
decreasing considerably the solution’s performance and increasing the        
overall time for the learning process.  
The  learning rate is a well known hyperparameter used in neural networks            
to regulate the speed of the optimization process (when minimizing the           
cost/error function), generally done by the gradient descent technique. A          
low value of this hyperparameter can turn the learning process very slow.            
On the other hand, a high value of this hyperparameter could reduce the             
time for the learning phase (convergence time) but could also face the            
problem of not decreasing on every iteration (jumping over the minimum           
once and again repeatedly), having a solution that cannot converge. More           
details about learning optimization can be found at chapters 4, 5 and 8 in              
[26] . 
The  skip window  hyperparameter (a.k.a  “the context” ) is one of the most            
important variables in  Word2Vec . It represents the size of the sliding           
window over the corpus and it indicates the number of domain names that             
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need to be considered at the left and right of a target domain when training               
the network.  
Finally the batch size hyperparameter indicates the number of examples          
(domain names) that will form a new input set to present to the network for               
training.  
 

Typically, in practice it’s impossible to test all possible combinations          
of hyperparameters (we may have infinite options for some parameters).          
For this reason, we reduce the universe of possibilities to a subset of them,              
choosing a set of possible values taking suggestions from the          
corresponding documentation or in some cases just by intuition. Once all           
the possible values for each hyperparameter are specified, a  grid search           
method considering all the possible combinations of these values is          
executed to find the best configuration for our  Skip-Gram model. The           
different hyperparameter options that were tested are: 

 
● Embedding size (dimension of the embedding vector): {8, 16, 32,          

64, 128} 
● Skip Window size: {1, 3, 5, 7, 10} 
● Batch size: (170, 510, 1190, 1700) 
● Initial Learning rate: {0.3, 0.5, 0.8} 
● Vocabulary size: {40000} 

 
As explained before, limiting the size of the vocabulary helps to           

improve the execution time and after studying the characteristic of our data            
we decided to use the top 40k domain names with the highest frequencies.             
Hence, during the hyperparameter tuning we used the fixed value of 40000            
for the vocabulary size setting. 
 

In order to compare the different settings for the hyperparameters, a           
new instance of the model is created for each configuration and then, the             
MAP@k metric (see Section  4.3 ) is evaluated for the particular case when            
k = 1 and  k actual = 1 (comparing just the most similar domain name returned               
by the model vs the most similar domain name retrieved from the  Alexa ’s             
service). 
The best result was obtained using an embedding size of 128, learning            
rate of 0.5, window size of 3 and a batch size of 510. Nevertheless, as it is                 
shown in  Figure 27 (each bar color represents a embedding size and            
learning rate combination) we also found very good results using an           
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embedding size of 64, learning rate 0.3 and same window size and batch             
size (3, 510).  
When using an embedding size of 64 and 32, the results were within             
99.9% and 99.5% (respectively) of the results obtained with the bigger           
embedding but the memory requirements are notably lower. This is the           
reason why in the end of this tuning phase we decided to use an              
embedding size of 64 dimensions. That said, in next sections if nothing            
different is indicated then we will assume that we are using embeddings            
with 64 dimensions.  
 
 

 
Figure 27   - Comparison of results for different model configurations. 

 
 

 
Table 8  - Training time per embedding size. 
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Regarding the execution time, as it is shown in  Table 8 , the total             
time required for training the model using an embedding size of 32 is 9%              
less than the time it takes to train the embedding of size 128. The cited               
table shows that using values lower than 32 for the embedding size, allows             
to improve performance by reducing the training time a bit more, but as we              
can see in  Figure 27 the quality of the results is not good enough.              
Discovering a good balance between quality and performance can be          
advantageous in order to process bigger datasets.  
Considering an embedding size of 128, the training phase takes about 15            
hours, which can be reduced in 21 minutes approximately If we train the             
model using an embedding of size 64. The server used for training is an              
Intel(R) Xeon(R) 4860@2.27GHz with 32 cores and 40 GiB RAM (without           
GPU). It’s worth mentioning that the code used for training was not            
optimized for GPU usage. Using an optimized code with GPU support           
probably can reduce these times significantly, although is something that          
was not explicitly tested. 
 

The output of the procedure is a vector representation of the top            
40000 domains. Then, the cosine distance between these vectors is          
computed to get the nearest domain names for each one.  
In what follows, the first results that were obtained by our first candidate             
model are presented.  
 
 
Visual Inspection: semantic similarity 
 

Before moving to a more formal analysis and comparison of this           
model against others, let’s see some examples about semantic similarity          
by visual inspection to have a sense of whether the learned vectors are             
able to capture meaningful semantic information or not. In order to do this,             
we present the results obtained when asking the model for the nearest            
vectors to a given domain name, that is, the most similar sites to the given               
domain name. 
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Most similar domain names to  subrayado.com.uy  (tv news): 
 
 

Domain name Type Cosine 
distance 

Observations 

subrayado.com Non existent domain 0.839 Same domain, but without country 
code ‘uy’ 

tutv.com.uy press, tv 0.831 Domain does not exist anymore 
(Jan-2019) 

lr21.com.uy press, newspaper 0.786  

eldiario.com.uy press, newspaper 0.771  

diariolarepublica.net press, newspaper 0.770 Alias for republica.com.uy 

telenocheonline.com press, tv news 0.767 Alias for telenoche.com.uy 

informarte.com.uy press, radio 0.765  

teledoce.com press, tv news 0.756  

laprensa.com.uy press, newspaper 0.736  

uruguayaldia.com.uy news 0.733 Domain does not exist anymore 
(Jan-2019) 

unoticias.com.uy news 0.732 Domain does not exist anymore 
(Jan-2019) 

uypress.net press, newspaper 0.728  

diarioelpueblo.com.uy press, newspaper 0.714  

 
Table 9  - Most similar domain names to subrayado.com.uy. 

 
 
 
 
 
 
 
 
 
Most similar domain names to  autoblog.com.uy  (cars blog, cars reviews) 

129 



 

 

Domain name Type Cosine 
distance 

Observations 

area75.com.ar Cars design 0.896 Argentine site 

gonzalorodriguez.org road safety, road 
traffic crashes 

0.895 Nonprofit uruguayan 
organization 

suzuki.com.uy car brand in 
Uruguay 

0.894 Suzuki brand in Uruguay 

mundoautomotor.com.ar cars blog, cars   
reviews 

0.871 Argentine site 

autos-chinos.com cars blog, cars   
reviews 

0.870  

peugeot.com.uy car brand in 
Uruguay 

0.856 Peugeot brand in Uruguay 

fiat.com.uy car brand in 
Uruguay 

0.853 Fiat brand in Uruguay 

autoanuario.com.uy cars blog, cars   
reviews 

0.832  

citroen.com.uy car brand in 
Uruguay 

0.829 Citroen brand in Uruguay 

autoschinos.com.uy cars blog, cars   
reviews 

0.825  

cosasdeautos.com.ar cars blog, cars   
reviews 

0.816 Argentine site 

masautos.com.uy cars 0.811 Domain does not exist anymore 
(Jan-2019) 

cochesyconcesionarios.com Cars prices, price 
comparisons 

0.811  

volkswagen.com.uy car brand in 
Uruguay 

0.80 Volkswagen brand in uruguay 

cars-magazine.com.ar cars blog, cars   
reviews 

0.80 Argentine site 

 
Table 10  - Most similar domain names to autoblog.com.uy. 

130 



 

 Table 9 and  Table 10 give strong evidence about the model’s           
capability for capturing semantic information about domain names. In the          
first one, when looking for similar sites to  subrayado.com.uy (the website           
of a tv news from Uruguay) we can see that all similar domain names              
belong to websites related to press and news, from different types, written            
press, tv channel and even radio. An interesting observation here is that            
the procedure was able to learn embeddings for domain names that           
formally do not exist, like the case of  subrayado.com suggesting that many            
queries to the DNS system were asking for the domain name without the             
country suffix. In some way, this is a common error, and it gives some              
insights about how people browse the web. Other interesting thing that is            
observed is that all the most similar sites to  subrayado.com.uy are sites            
from Uruguay. Probably, we can think that when people want to check for             
news, it is very dependent on the location where people live. This is not as               
strict in the second example about cars where information about cars is            
more general and it is not as dependent to the location as in the news               
case.  
The second example shows similar sites to  autoblog.com.uy (a blog with           
news about cars and users reviews). We can see that all the similar             
domain names found by the model are very related, going from cars news,             
cars brands, cars design, even a site for road safety. As it was pointed out               
above, in this case, blogs and forums from the region are found by the              
model (not only from Uruguay), which make sense since general          
information about cars is the same. Anyway, we see again the same            
location dependent pattern when users look for brands and prices, in this            
case we can see that all the related sites are from Uruguay. This also              
make sense, since the source domain name ( autoblog.com.uy ) is an          
uruguayan website and most of its audience comes from uruguay,          
therefore after people check for user reviews about cars they move to            
some of the car brands in the Uruguayan market, probably to check about             
availability, prices, etc. 
 
Visual Inspection: analogies through vector operations 
 

In the original  Word2Vec paper  [56] , it was mentioned that the linear            
structure of the  Skip-Gram model allows analogical reasoning using simple          
vector operations. For example, the addition of vectors works as an  AND            
logical function: the words near to the addition of two vectors will be words              
that are close to both original words. In our case, domains close to the              
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addition of the vectors that represent two particular domains will be the            
ones that are commonly accessed in conjunction with the added domains.           
Table 11  shows some simple addition analogies between domains names. 
Also, in  [56] it was shown that the hidden linear structure of the resulting              
vector space allows other more sophisticated operations, for example         
vec( king) + vec(man) − vec(woman) vec(queen) . This is particularly      ≃      
interesting for what is known as analogical reasoning.  Table 12 shows           
some more complex analogies using addition and subtraction.  
In both tables, we show one of the 10 domains nearest to the resulting              
vector. Visual inspection verifies that our model can embed semantic          
relationship between domains and it allows applying analogical reasoning         
for understanding complex relationships . 
 

 
Table 11  - Logical analogies using addition. 

 

 
Table 12  - Logical analogies using addition and subtraction. 

 
Performance metrics and the quality of the results obtained by this           

first model will be discussed deeper in Section  4.7 when the analysis and             
comparison of the differents approaches and generated models are         
analyzed. As a natural evolution of this model, following our intuition and            
also supported by some of the improvements presented in  [65] , we think            
that weighting words inside the context can help to improve the quality of             
the learned vectors. For this reason, in the next section we will explore a              
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variation of  Word2Vec , using an approach similar to  App2Vec [66] and          
giving higher weights to domain names that belong to the same context            
but were requested closer in time. 

  

4.5. Adding time factor with App2Vec 
 

In the previous section, a first model based on  Word2Vec  was           
shown as a good option for getting vectors representations that are able to             
capture meaningful semantic information about Internet domain names as         
well as perform analogical reasoning by applying simple vectors         
operations with the resulting embeddings. 
In this section, a variation of  Word2Vec  applied to the DNS traces is             
presented. We call this variation an  App2Vec-like model since it’s inspired           
by the previous work in  [66] which its authors called  App2Vec . The core             
idea behind this is simple an intuitive, and it’s based on applying different             
weights to domain names inside the context window of the  Word2Vec ’s           
CBOW architecture depending on how far they are from the middle domain            
name (the target domain name to be predicted when training the network).  
 

If we recall from Section  3.2.2.3.2 , in its standard behaviour, the           
CBOW architecture is similar to the standard bag of words, where order            
doesn't matter. It tries to predict the middle word in a sliding window by              
averaging the embeddings of the remaining words in the window, and all            
the words contribute equally to compute the final average. The          
improvement proposed in  App2Vec  suggests using a weighting factor that          
is applied to each word vector in the context window before the final             
average. By doing this, words in the context that appear close to the             
middle word receive a higher weight than those that are farther away,            
therefore contributing more to the resulting average vector. Later in  [65] ,           
Facebook AI’s researchers use a similar idea based on a position           
dependent weighting  schema as one of their tricks to train high-quality           
word vector representations. 
 

But although the core idea of weighting words in the context seems            
to be simple, the concepts of  far and  close is not trivial in our scenario. If                
we were using a standard text corpus for learning word embeddings as a             
classic  NLP problem, then given any word in the context, we could use the              

133 



 

number of words that exist between this word and the target/middle word            
as a distance metric for calculating the weighting value.  
But in the problem that we want to solve, it could be dangerous to apply               
the same concept of distance. In order to understand why, let’s illustrate an             
example. Suppose we are using a context window of size 1 and we have              

 as the sequence (ordered) of domain names that representsd1, d2, d3)(            
the current sliding window during the  CBOW  model training. If we use the             
number of domain names after/before the target/middle word as metric for           
weighting context words then, domain names and will be weighted      1d   3d     
equally. But, what if domain name was requested 3 minutes before      1d       2d  
and was requested 3 hours later? Knowing this new information, would 3d            
you weight and equally? Which sites do you think are more related,  1d  3d          

and or and ?. These are some of the the questions that we1d   2d   2d   3d           
asked ourselves when thinking about how to leverage the time information           
that we have available in the raw DNS queries and we did not use for our                
first model based on  Word2Vec .  
 

The reader probably noticed that in Section  4.2 we had defined a            
preprocessing step which its objective was to break long traces (with long            
time duration) into shorter ones (no more than 5 minutes). This trick, in             
some way was addressing the issue of long time intervals in the same             
context window. The usage of an arbitrary 5 minutes long window was a             
naive, yet effective strategy, that allowed us to train our first candidate            
model. Now, in this section our goal is to explore the usage of an              
App2Vec-like model that can deal with long time gaps between domain           
names in a same context window natively, and thus, removing the           
previously mentioned preprocessing step. 
In order to do this, we need to include the time information regarding when              
each domain name was requested. More precisely, in order to train the            
App2Vec-like model, we rebuilt the corpus changing domain names traces          
from  (d 1 d 2 … d n ) to  (d 1 g:x 1 d 2 g:x 2 … d n g:x n d n+1 ) where  d i are valid                  
domain names in the vocabulary and  g:x i is used to indicate that the time              
gap between  d i and  d i+1 is  x i . Time gaps  x i are float values that represent               
the difference in minutes between the DNS queries received in the DNS            
server for domain names  d i and  d i+1 respectively. After doing this, we            
removed the preprocessing step that was breaking the user’s trace into           
many sentences, and thus, sentences now are not limited to a maximum of             
5 minutes duration. As we will see later in this section, we were able to               
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confirm that changing the maximum time difference allowed between         
domain names in a sentence does not affect the final results. 
 
Running the experiments 
 

A set of experiments were conducted to evaluate how a weighting           
schema based on time gaps could affect the quality of the learned vectors             
in our scenario. After contacting with the  App2Vec ’s authors we got access            
to the implementation they used in  [66] where a slight modification to the             
original  CBOW  architecture is implemented to support a weighting schema          
based on time gaps. A detail here is that the core library used for the               
App2Vec implementation was the well known  Gensim package for  Python          
(widely used in  NLP  projects), hence we decided to move from  Tensorflow            
to  Gensim  as the underlying technology for running the new experiments           
and for comparing the models’ results. It’s worth mentioning that the           
Gensim package provides a high level interface for the  Word2Vec          
algorithms for both the  Skip-Gram and the  CBOW architectures, being          
great for easy and quick prototyping and experimentation.  Gensim has          
been used in over a thousand research paper and student theses           
according to  Google Scholar . Furthermore, it uses  NumPy  ,  SciPy and          54 55 56

Cython for high performance execution, being specifically designed to         57

handle large text collections, using data streaming and efficient         
incremental algorithms.  [99] describes the initial design decisions behind         
Gensim and the Ph.d. thesis in  [25] shows details about the algorithmic            
scalability of distributional semantics that are implemented in this  Python          
package. 

 
In regards to the evaluation method, we continue using the  MAP@K           

metric defined in Section  4.3 , giving importance to the order in the            
predictions. More precisely, models were evaluated using the following         
( k actual  , k ) pairs:  (1, 1), (5, 5), (10, 3), (10, 5) and  (10, 10) . Having said that,                  
in what follow, the  MAP@K metrics obtained using different configurations          
of the  App2Vec-like model are presented. We experiment using different          
time factors for the weighting schema, different sizes for sentences and           
context window. We also evaluate the convergence time by measuring the           

54 https://scholar.google.com/ 
55 http://www.numpy.org/ 
56 https://www.scipy.org/ 
57 https://cython.org/ 
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performance of the model during the training phase for different number of            
epochs .  58

 
Experiment 1: evaluating time factor (default configuration) 
 

Since the  App2Vec-like model applies a weighting schema to the          
CBOW architecture of  Word2Vec , in the first round of experiments we           
decided to compare the  App2Vec-like model vs the standard  CBOW          
architecture. By doing this, we can effectively measure the change in           
performance that is explained exclusively by the weighting schema based          
on time gaps. Later, in Section  4.7 , the performance of this  App2Vec-like            
model is analyzed and compared considering the other candidates models          
that were evaluated in this research (the  Skip-Gram architecture of          
Word2Vec used by our first candidate model and a  FastText based model            
that will be presented in Section  4.6 ). 
For the time factor value required by the  App2Vec-like model, the default            
value of  0.8 is used (the same value suggested in  [66] ). In regards to the               
window size parameter (context length), it is not specified in the  App2Vec ’s            
paper, but we found that  5 is the value used in the source code of the                
App2Vec ’s implementation, hence it is the value that we use for our initial             
experiments. Other parameters are kept with the same configuration used          
by our first candidate model (see Section  4.4 ), and although the           
App2Vec-like model should work well without any restriction about the size           
of the sentences, for the initial experiments we decided to keep using the             
same restriction regarding the maximum difference in time allowed         
between domain names in a same sentence (5 minutes maximum). Later,           
other experiments will show that this restriction does not affect the results            
of the  App2Vec-like  model and it can be safely removed. 
 

 Figure 28 shows the  MAP@k metrics that we obtained for both           
models ( App2Vec-like model using weighted version of the CBOW         
architecture based on time gaps vs the standard CBOW architecture of           
Word2Vec ) for different values of  k actual  and k . Training ran for 21 epochs,             
saving partial results every 3 epochs. As we can see in  Figure 29 , the              
stabilization points (for both models) were found around the 6 th and 9 th            
epoch. From the 9 th to the 21 st epoch, the metrics reported by both models              
were practically identical, only some insignificant difference was noticed         

58 One epoch means one pass of the full training set through the neural network 

136 



 

probably due to the random behaviour associated with the negative          
sampling method.  
 
 

  Figure 28  - App2Vec-like model (weighted cbow) vs Word2Vec (standard cbow). 
 
 
 

 

 
  Figure 29  - Evolution of MAP@k during the training phase. 

 
 

As we can see in  Figure 30 the best results (for both models, in all               
epochs) are obtained with  k actual =10 and  k=3 , that is, when looking for the             
top 3 predictions of ours models into the results we get from the  Alexa ’s              
service for similar sites (taking in consideration the order in our models’            
predictions). 
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But unfortunately, from these results we cannot say that the weighted           
schema used by the  App2Vec-like model performed better than the          
standard  CBOW architecture of  Word2Vec as we expected. The         
App2Vec-like model only outperformed the standard  CBOW during the         
firsts few epochs (until the 9 th epoch), but without being a significant            
difference. This could give some evidence that the  App2Vec-like model is           
able to learn the embeddings a bit faster than the standard  CBOW , but             
when working with a very big dataset like in our case, once both models              
arrive to the stabilization point, they achieve similar results. 
 
 

 

 
Figure 30  - MAP@k metrics for different configurations of k actual   and k measured at 

different epochs. 
 

 
In the next experiments we will try to figure out if we can find a               

better configuration of hyperparameters for the  App2Vec-like  model that         
can get better results than the ones obtained during the first round of             
experiments just presented. 
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Experiment 2: tuning the time factor value 
 

The second round of experiments have as main objective to find the            
best value used by the  App2Vec-like model to weight domain names           
inside the context window based on time gaps. 
In the initial experiments the default value of 0.8 (original value suggested            
in  [66] ) had been used. Now, we repeat the experiments varying the value             
of the time factor, taking a value from the set:  {0.1, 0.2, 0.3, 0.4, 0.5, 0.6,                
0.7, 0.8, 0.9} in each experiment. Value of  0 is not considered because the              
final average would be always zero, and similarly, value of  1 is excluded             
because it corresponds to the special case of the standard  CBOW where            
all words in the context contribute equally to the average embedding. 
 
 

 
Figure 31  - MAP@k metrics for different values of the App2Vec’s time factor. 

 
 

Figure 31 shows the different  MAP@k metrics that were obtained          
when changing the time factor value of the  App2Vec-like model. These           
metrics were obtained evaluating each model configuration immediately        
after having completed the third epoch of training. As we can see, the             
default value of  0.8  (the same value that we used during the initial             
experiments) was the one that achieved the best results if we take in             
consideration the different values of  k actual and k . For this reason, for the             
final experiments we will continue using the default value of  0.8 for the             
time factor value configuration. 
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Experiment 3: evaluating sentence length (based on traces duration) 
 

In the previous experiments we were still using the restriction of a            
limited sentence size based on the maximum difference in time allowed for            
domain names in the sentence (5 minutes maximum). Now, in the next            
experiments we want to validate our hypothesis about the expected          
behaviour of the  App2Vec-like model and we want to confirm that the            
sentence size configuration does not affect the results since the important           
dependencies between domain names are now defined by the time factor           
and the weighting schema. 
We evaluate the  App2Vec-like model repeating the experiments by training          
the models during 6 epochs and evaluating the  MAP@k metric for different            
values of  k actual  and  k  for different sentence sizes: 5, 10 and 30 minutes.  
 
 

 
Figure 32  - MAP@k metrics for different sentence sizes. 

 

As we can see in  Figure 32 , after completing the 6 th epoch the             
results are practically identical. We do not observe any significant          
difference in the  MAP@k metrics, and thus, validating the idea that this            
value is not relevant any more when using a weighting schema. For this             
reason for the final round of experiments we remove any restriction related            
to the sentence size. 
 
Experiment 4: evaluating window size 
 

The final experiments try to measure the effect of the window size.            
We repeat the experiments for different window sizes:  3 (same value used            
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by our first candidate model),  5 (same value used in the original  App2Vec’s             
implementation) and 10 (a new value that duplicates the default window           
size used in  App2Vec ).  
Figure 33 shows the results that we got for these experiments. We can see              
that values of  5 and  10 for the window size get almost identical results (the               
only case that shows a difference in favor of a window size of 5 is when                
k actual =1  and  K=1 ). 
 
 

 
Figure 33  - MAP@k metrics for different window sizes. 

 
 

The very pretty similar results for window sizes of  5 and  10 was             
something that we expected in some way, because similarly to what           
happened with the sentence length, the distance between domain names          
are now better governed by the time gaps between domain names instead            
of a fixed count of instances that occur right after or before a target domain               
name.  
According to these results, a window size of  3 seems to be a bit restrictive               
for our particular scenario and data, leaving domain names out of the            
context that could affect favorably if they were included. A window size of  5              
(or greater) give the optimal vectors. Once results are the same (like when             
using a window size of  5 or  10 ) greater values for this hyperparameter do              
not have any different effect because the new domain names that are            
included in the window are too much distant in time to the target domain              
name, therefore their weighted value affect the average embedding         
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insignificantly. For this reason, we conclude that a size of  5 for the context              
window (the same default value that we have been using from the initial             
experiments with the  App2Vec-like  model) is the best option to use.  
Having said that, we can take the comparisons presented in the first round             
of experiments as a good reference to compare the  App2Vec-like model vs            
the standard  CBOW architecture of  Word2Vec . This comparison had         
already shown that in our scenario and with our specific data, the            
difference between these two approaches is not so big, and results are            
pretty similar (only an insignificant difference in favor of the weighted           
schema is observed in general). In Section  4.7 more details about this            
App2Vec-like model and a general comparison with the other candidate          
models are presented. But before that, let’s see by visual inspection some            
of the similarities that are found by this second candidate model. 

 
Visual Inspection 
 

Before ending this section, and similarly to what we did with our first             
candidate model some results obtained by this new model are shown. By            
doing this, we can get some sense of the model’s quality directly from             
observation rather than trying to understand whether the evaluation         
metrics are good or not.  
The hyperparameter configuration of the final  App2Vec-like model use the          
best configuration found after running the set of experiments already          
explained before, that is: 
 

● Architecture: weighted  CBOW 
● Distance factor (for the weighting schema based on time gaps): 0.8 
● Window Size: 5 
● Sentence length: unlimited 
● Vector size: 64 
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Most similar domain names to  subrayado.com.uy  (tv news): 
 
 

Domain name Type Cosine 
distance 

Observations 

tutv.com.uy press, tv 0.771 
 

Domain does not exist 
anymore (Jan-2019) 

teledoce.com press, tv news 0.763  

subrayado.com Non existent domain 0.752 Same domain, but without 
country code ‘uy’ 

diariolarepublica.net press, newspaper 0.694 Alias for republica.com.uy 

lr21.com.uy press, newspaper 0.688  

eldiario.com.uy press, newspaper 0.683  

cienporcientopapal.com 
 

Uruguayan soccer 
club news  

0.647 Domain does not exist 
anymore (Jan-2019) 

diariouruguay 
.com.uy 

press, newspaper 0.638  

vamosuruguay.com.uy Politics 0.635  

uypress.net press, newspaper 0.634  

www.elnaveghable.cl press, newspaper 0.629 Chilean site 

elbocon.com.uy press, newspaper 0.621  

 
Table 13  - Most similar domain names to subrayado.com.uy (using App2Vec-like model). 
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Most similar domain names to  autoblog.com.uy  (cars blog, cars reviews) 
 
 

Domain name Type Cosine 
distance 

Observations 

gonzalorodriguez.org road safety, road 
traffic crashes 

0.809 Nonprofit uruguayan 
organization 

area75.com.ar cars design 0.805 Argentine site 

suzuki.com.uy car brand in 
Uruguay 

0.797 Suzuki brand in Uruguay 

autos-chinos.com cars blog, cars   
reviews 

0.785  

ayaxonline.com 
 

car dealership 0.773  

autoanuario.com.uy cars blog, cars   
reviews 

0.766  

cochesyconcesionarios.com cars prices, price 
comparisons 

0.734  

greatwall.com.uy car brand in 
Uruguay 

0.729 Greatwall brand in Uruguay 

vladimir.com.uy 
 

car dealership 0.725  

imgci.com - 0.718 Domain does not exist anymore 
(Jan-2019) 

fiat.com.uy car brand in 
Uruguay 

0.717 Fiat brand in Uruguay 

www.autosonline.cl cars blog, cars   
reviews 

0.710 Chilean site 

 
Table 14  - Most similar domain names to autoblog.com.uy (using App2Vec-like model). 

 
 

 Table 13 and  Table 14 give strong evidence about the model’s           
capability for capturing semantic information about domain names. Visual         
inspection of these results also confirms that the performance of this           
App2Vec-like model is comparable with our first candidate model. We can           
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see that the results for the most similar sites to  subrayado.com.uy and            
autoblog.com.uy are pretty much the same than the results we got with our             
first candidate model using  Word2Vec . Only some changes in the order of            
the results, and some new sites are added or removed from the list of              
similars, but keeping in general the same semantic meaning for the similar            
sites in both cases. 
 

4.6. Considering sub-word level with FastText 
 

A common property shared by both of our previous candidate          
models (as well as by all classic word embedding techniques) is that words             
are treated as indivisible tokens, as single units. But in our scenario, words             
correspond to domain names, and the composition and the morphological          
structure of domain names carry important information about the meaning          
of the domain. For example, if we have a website called  futbol.com and             
another website called  futbolparatodos.com then it’s high probable that         
these two websites have some kind of content related to the subject of             
futbol, therefore being semantically related. The reader should notice, that          
we are saying  “high probable” , and that’s because we are formulating an            
hypothesis based just on the semantic information provided in the string           
that represents the site’s name but we do not have access to the content              
hosted in each site to validate that hypothesis. 
 

Hence, the morphological information about domain names could        
be crucial information that we have available but we have not used yet in              
our problem. 
For this reason, in this section a set of experiments that take into account              
the morphological structure of domain names are carried out with the           
objective of enhancing our algorithms and models for finding the best           
vector representation of Internet domain names. 
In order to do this, we experiment with  FastText which extends the            59

functionality of  Word2Vec to work with sub-words and thus, adding          
important information to the embeddings that is related to the          
morphological composition of the words. 
 

59 https://fasttext.cc/ 
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As it was explained in Section  3.2.2.5 , formally talking,  FastText is           
not a method, algorithm or technique by itself.  FastText is an open-source,            
free, lightweight library that allows users to learn text representations and           
text classifiers  [70] . It can be used either in unsupervised mode to learn             
word embeddings  [71] or in a supervised mode using a labeled dataset            
(one label and sentence per line) to train a text classifier  [72] . For a              
practical use case of  FastText in supervised mode, the reader can see the             
github page that we have created in  [100] where  FastText is used for             
training a text classifier. For the experiments presented in this section, the            
unsupervised mode of  FastText  has been used to learn vector          
representations of domain names by learning character  n-grams        
embeddings and aggregating them to compute the final words         
embeddings.  

 
We used the  FastText  Python  wrapper (included in the  Gensim          60

package) that provides direct access to the original and optimized          
implementation of  FastText  in  C . This is noticeably faster than the pure            
Python  implementation available in  Gensim . 
Since  FastText is an extension of  Word2Vec , it can be configured to work             
with the same two architectures supported by  Word2Vec : the  Skip-Gram          
and the  CBOW  architectures. When using the  CBOW architecture, the          
current word in the context window is predicted from its context words. On             
the other hand, when using the  Skip-Gram architecture the context words           
are predicted from the current word. Once the training is completed, the            
final weights associated to the hidden layer are used as the embeddings            
for the words. In this work we used the  Skip-Gram architecture since it has              
proven to perform better with large datasets  [36] . The reader can see            
Section  3.2.2.3.1 and  3.2.2.3.2 to review the details about these two           
architectures originally proposed in the first  Word2Vec ’s paper in  [56] . 
 

The most critical hyper-parameters that we needed to tune are:          
minn (minimum  n-gram size) and  maxn (maximum  n-gram size).         
Sub-words are all the substrings contained in a word with size between            
minn and  maxn . Also, the word itself is considered to be in the set of its                
n-grams  [71] . If  maxn is set to 0, or lesser than  minn , no character  n-grams               
are used, and the model is effectively reduced to  Word2Vec  [74] .  Figure 34             
shows the results that we obtained when computing the  MAP@k metric           

60 https://radimrehurek.com/gensim/models/wrappers/fasttext.html 
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( k actual  = 3 and  k = 1 ) for different combinations of  minn and  maxn (for this                
experiments we continue using an embedding size of 64 dimensions). 

 
 

 
Figure 34  - Comparison of n-gram size (for k = 1 and k actual  = 3). 

 
 

The experiments were repeated for different combinations of  (k,         
k actual ) pairs and  n-gram lengths between  (0, 0) and  (20, 20) . For each             
experiment 6 epochs of training were executed and then (once the training            
was stable) the  MAP@k metric was evaluated for each configuration of           
k actual  and  k . The special case of  minn = 0 and  maxn = 0 corresponds to the                 
test case when no  n-gams are used. For that special test case we were              
able to confirm that the results are exactly the same as the results that we               
got when using the  Word2Vec  version with  Skip-Gram . 
In order to find the best configuration for the  minn and  maxn            
hyperparameters, we used two different evaluation criterias that are         
described below. 
 
Evaluation criteria 1: 
 

The first evaluation criteria consisted in counting the number of          
times that each n-gram range (an  n-gram range is defined by a pairs of              
minn  and  maxn  values) performed   the best.  
Hence, given all the  25 possible combinations of  K and  k actual from the set              
{1, 2, 3, 5, 10} we measure the MAP@k for each combination and we add               
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1 for the  n-gram range that achieves the best performance (the  n-gram            
range that achieves the highest  MAP@k) .  Table 15 shows a summary with            
the number of times that each  n-gram range performed the best.  N-gram            
ranges that never achieved the highest  MAP@k are not included in this            
table. 
 

 

minn maxn Best (number of times) 

11 17 5 

10 15 4 

12 17 3 

14 15 3 

15 15 3 

13 15 2 

14 17 2 

15 17 2 

11 20 1 

 
Table 15  - Number of times that each n-gram range performed the best. 

 
 
Evaluation criteria 2: 
 

In the first evaluation we used a hard criteria where in each of the              
25 evaluations of the MAP@k metric each n-gram range either added 1 or             
0 depending whether the n-gram range achieved the best result or not. 
For the second evaluation criteria, we followed a similar approach but           
using a softer criteria. Instead of adding a value of 1 or 0, for each n-gram                
range we sum the results of the MAP@k metric for each of the 25              
combinations of kactual and k values. In the end, the n-gram range that             
accumulates the highest value is the best option.  Table 16 shows the top             
20 n-gram ranges order by the accumulated MAP@k value (descending).  
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minn maxn sum of MAP@k 

11 17 3.787 

10 15 3.782 

15 15 3.781 

14 15 3.779 

12 17 3.774 

11 18 3.770 

11 20 3.766 

13 17 3.765 

14 17 3.757 

11 15 3.755 

12 15 3.742 

13 15 3.742 

14 20 3.739 

14 18 3.734 

9 20 3.734 

10 20 3.733 

15 17 3.732 

12 18 3.731 

16 17 3.730 

13 18 3.725 

 
Table 16  - Top 20 n-gram ranges ordered by sum of MAP@k 

 
 

Supported by these two evaluation criterias we found that the          
optimal configuration is using  minn = 11 and  maxn = 17,  therefore it is the               
configuration that we will use for our  FastText based model. Other           
configurations like  minn = 10 and  maxn = 15 seems to be good too.              
Furthermore, we can see in  Figure 34 that using  n-grams with a number of              
characters greater than  10 outperforms the results achieved by the          
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Word2Vec with  Skip-Gram model (configuration with  minn = 0 ,  maxn = 0 ).            
But since we need to choose one,  n-gram range between  11 and  17 is the               
winner. 
 

It is important to note that usually when working with standard text            
corpus the best results are obtained with much shorter  n-grams of about 3             
to 6 characters. In our case this very short  n-grams are not very useful              
because they encompass words like  .www ,  .com or .com.uy (among          
others) that do not help to determine the compatibility between different           
domains. By using longer  n-grams we are able to include longer substrings            
of the domain names that are more adequate to determine whether two            
domains are similars or not. 

 
Visual Inspection 

Before ending this section, and similarly to what we did with our            
previous candidate models, some results obtained by this new model          
( FastText using the  Skip-Gram architecture with an embedding size of 64           
dimensions and  n-grams length between 11 and 17) are shown. By doing            
this, we can get some sense of the model’s quality directly from            
observation rather than trying to understand whether the evaluation         
metrics are good or not.  
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Most similar domain names to  subrayado.com.uy  (tv news): 
 
 

Domain name Type Cosine 
distance 

Observations 

subrayado.com Non existent domain 0.916 Same domain, but without 
country code ‘uy’ 

diariolarepublica.net press, newspaper 0.836 Alias for republica.com.uy 

eldiario.com.uy press, newspaper 0.807  

lr21.com.uy press, newspaper 0.799  

teledoce.com press, tv news 0.792  

elecodigital.com.uy press, newspaper 0.774  

causaabierta.com.uy - 0.77 Domain does not exist 
anymore (Jan-2019) 

unoticias.com.uy press, newspaper 0.766  

radiouruguay.com.uy press, radio, 
newspaper 

0.766  

uypress.net press, newspaper 0.742  

sangregoriodepolancodigital.co
m.uy 
 

press, newspaper 0.73 Domain does not exist 
anymore (Jan-2019) 

vivomontevideo.com - 0.71 Domain does not exist 
anymore (Jan-2019) 

 
Table 17  - Most similar domain names to subrayado.com.uy (using FastText model). 
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Most similar domain names to  autoblog.com.uy  (cars blog, cars reviews) 
 
 

Domain name Type Cosine 
distance 

Observations 

gonzalorodriguez.org road safety, road 
traffic crashes 

0.854 Nonprofit uruguayan 
organization 

autoanuario.com.uy cars blog, cars   
reviews 

0.845  

mundoautomotor.com.ar cars blog, cars   
reviews 

0.822 Argentine site 

cochesyconcesionarios.com cars prices, price 
comparisons 

0.819  

area75.com.ar cars design 0.806 Argentine site 

autos-chinos.com cars blog, cars   
reviews 

0.803  

suzuki.com.uy car brand in 
Uruguay 

0.781 Suzuki brand in Uruguay 

peugeot.com.uy car brand in 
Uruguay 

0.778 Peugeot brand in Uruguay 

gonzaloruiz.com.uy car dealership 0.774  

masautos.com.uy cars 0.774 Domain does not exist anymore 
(Jan-2019) 

autosenuruguay.com cars 0.768 Domain does not exist anymore 
(Jan-2019) 

mundoautomotor.com cars blog, cars   
reviews 

0.767  

rcristofano.com car dealership 0.759  

autoschinos.com.uy cars blog, cars   
reviews 

0.753  

chana.com.uy car brand in 
Uruguay 

0.753 Chana brand in Uruguay 

 
Table 18  - Most similar domain names to autoblog.com.uy (using FastText model). 
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Once again, we can confirm through visual inspection (from  Table          
17 and  Table 18 ), that the similar sites found by this new candidate model               
keep important semantic relationships among domain names. But since all          
our candidate models have shown good results through visual inspection          
and it’s difficult to choose the best model just by a subjective feeling about              
which domains are more related, we need to compare them more formally. 
For that reason, in the next section more details about this  FastText model             
and a general comparison with the other candidate models are presented.           
We will see that this  FastText  model  allows to perform vector operations            
like addition and subtraction for logical analogies and that it outperforms           
considerably the results obtained by the other candidate models (not only           
considering the  MAP@k metric, also with other metrics like  recall ,          
precision and  F1-score ), hence being our best model for building the DNS            
vector space model. Furthermore, we will highlight an interesting property          
of this model that allows us to find vector representations for words that             
were not originally part of the training (a.k.a  out-of-vocabulary or by its            
acronym  OOV ) which could be helpful in many applications. 
 

4.7. Analyzing the results 
 

In previous sections we have shown how to get vector          
representations of domain names (DNS embeddings) through the usage of          
different word embeddings techniques. In particular we showed that         
predictive models for learning word embeddings such as  Word2Vec ,         
App2Vec or  FastText are suitable for the task of computing DNS           
embeddings by working directly with the DNS traces that result from a set             
of steps that preprocess the raw DNS log files (see Section  4.2 for a              
review of the preprocessing phase).  
We have seen (through visual inspection) that the best configuration that           
we found for each candidate model is able to capture meaningful semantic            
information about domain names, and the operation of finding the most           
similar sites to a given domain name (by computing the cosine similarity            
between domain names vectors) gives effectively very good results         
(domain names in the results are sites in the same business activity or             
category). 
Now, in this section we will present a more formal comparison of our             
candidates models by evaluating different metrics such as  MAP@k ,  recall ,          
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precision and  F1-score (see Section  4.3 ) for a review of the evaluation            
framework) and analyzing their characteristics. 
 

As explained in Section  4.3 , we use the service called  find similar            
sites offered by  Alexa in order to retrieve the ordered top 100 most             61 62

similar sites for a specific input domain name. We have this information for             
14490 domains of our vocabulary (of 40000 domains).  
During the training phase, our evaluation procedure uses this external, but           
well trusted information from  Alexa , to give some measure of quality. To be             
more accurate, for every epoch of optimization and for all the 14490            
domains that we were able to get information from the  Alexa ’s service, we             
compare the similarities between the actual  Alexa ’s response and the          
predicted similarities found by each of our candidate models. We          
evaluated the performance of each candidate model varying the number of           
predictions that are taken in consideration from our model (specified by the            
k value) as well as from the  Alexa ’s service (specified by the  k actual  value).              
In each case we calculated the average  precision ,  recall and  F1-score           
over the prediction of all the 14490 domains under evaluation. In regards            
to the  MAP@k metric, it was calculated using the named values for  k and              
k actual . 
 

Given the 21 training epochs that were executed and the 25           
possible combinations of  k actual and  k values taken from the set  {1, 2, 3, 5,               
10} that were evaluated in each epoch, we have a total of  21 x 25 = 525                 
evaluation instances.  Table 19 shows a matrix  where  represents       M (i, )  M j   
the number of times that model  i outperformed model  j using the  MAP@k             
metric. 
Table 19 shows clearly that most of the time  FastText performed better            
than the other candidate models. Also, it’s interesting to see that in 15             
evaluation instances  App2Vec outperformed  FastText , this really took our         
attention and looking closer in those cases we were able to identify that             
those evaluation instances were all in the first epoch. Similarly, we had            
already noticed in Section  4.5 that the  App2Vec-like  model had achieved           
better results than the standard  CBOW architecture of  Word2Vec during          
the first epochs of training. This last observation is confirmed in  Figure 35             
where we can see that  App2Vec (red serie) outperforms  Word2Vec with           

61 https://www.alexa.com/find-similar-sites 
62 https://www.alexa.com/ 
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CBOW (blue serie) until the  16 th epoch. We notice that subsequents           
results are pretty similar for  App2Vec  and  Word2Vec  with  CBOW . 
Figure 35 is very representative of the comparison between candidate          
models for different values of  k actual and  k  during training. In order to make              
the analysis more reader-friendly we do not include all the charts           
comparing the different models for every value of  k actual and  k in this             
section, but the reader can see them in Appendix  B .  
  

 

i \ j App2Vec Word2Vec 
(cbow) 

Word2Vec 
(skip-gram) 

FastText 

App2Vec 0 347 129 15 

Word2Vec 
(cbow) 

176 0 79 18 

Word2Vec 
(skip-gram) 

396 446 0 16 

FastText 510 507 509 0 

 
Table 19  - Number of times a model performed better than other. 

 
 

 
Figure 35  - MAP@k evolution for the different candidate models. 

 
 

155 



 

Other observations that we can highlight from  Figure 35 is that the            
Word2Vec with  Skip-Gram version of our first candidate model that uses           
sentences with 5 minutes length (maximum) performs better than the          
Word2Vec version with  CBOW and also than the  App2Vec-like model, but           
without being as good as the  FastText model. As we will see during this              
section, this pattern is a common factor in all the evaluations and            
comparisons that we executed.  
For example, the order of models according to how well they perform            
regarding to the  MAP@k metric is even more evident in  Table 20 that             
shows a matrix  where  represents the number of times that model   M (i, )  M j         
i outperformed model  j after the full training is completed. Once again, we             
can see that  FastText is the best, followed by  Word2Vec with  Skip-Gram            
and we notice a slight superiority of  App2Vec  over  Word2Vec  with  CBOW . 
 
 

i \ j App2Vec Word2Vec 
(cbow) 

Word2Vec 
(skip-gram) 

FastText 

App2Vec 0 16 0 0 

Word2Vec (cbow) 9 0 0 0 

Word2Vec 
(skip-gram) 

25 25 0 0 

FastText 25 25 25 0 

 
Table 20  - Number of times a model performed better than other after training is 

completed. 
 
 

The  MAP@k metric has been also calculated for our baseline          
algorithms. The results are about  0.00005 for the  random guessing          
algorithm and  0.016246 for the  popularity based algorithm (see section          
4.3.1 for details). All our candidate models and in particular the  FastText            
based model outperforms considerably the results obtained by the         
baseline models. 

 
After repeating the evaluation of the  MAP@k  metric for different 

values of  k actual  and  k  we noticed that the  FastText  model obtained the best 
results in every tested scenario (for every combination of  k  and  k actual ). The 
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highest  MAP@k  value obtained was 0.238 (with  k  = 1 and  kactual  = 10). 
After averaging the results, we conclude  that the  FastText  based model is 
10.5%, 17.8%, 17.8% and 435.5% superior than  Word2Vec  with 
Skip-Gram ,  App2Vec,   Word2Vec  with  CBOW  and the best baseline model 
( popularity based ) respectively.  
 

Now, in order to evaluate how well our candidate models perform           
using other evaluation metric, in  Figure 36 we show the results that we             
obtained using the  F1-metric . The highest  F1-score was 0.144 (with  k = 10             
and  k actual = 10). As explained in Section  4.3 the  F1-score computes the             
harmonic mean between  precision and  recall , therefore when evaluating         
F1-score in some way we are evaluating both  precision and  recall  at the             
same time, being the  F1-score better when  precision and  recall are higher.            
Since most of the times we can increase recall by decreasing precision            
(and vice versa),  F1-score is a common way for finding a good balance             
between both metrics. The reader can see Appendix  A for an individual            
comparison of the precision and recall metrics as well as the results            
obtained using other configurations of the  k actual  and  k  values. 
 
 

 
Figure 36  - F1-score evolution for the different candidate models. 

 
As we can see, the trends shown in  Figure 35 and  Figure 36 are              

pretty much the same. Getting similar results for the relative comparison of            
the candidate models for different metrics gives strong evidence about the           
quality of the models.  
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A last comparison in  Figure 37 summarizes the different metrics that were            
evaluated once the training phase was completed. This last comparison is           
specific for  k = 5 and  k actual = 5 but the relative difference between models               
for the different metrics are very similar for other values of  k actual and  k and               
they can be seen in Appendix  A .  
 
 

 
Figure 37  - Final metrics after training is completed. 

 
 
Supported by these evaluations and comparisons, in this point we          

are confident about having found a good model based on  FastText (with            
Skip-Gram architecture and  n-gram range between 11 and 17 for          
sub-words) for finding semantically related domain names. But how good          
is this model regarding logical analogies? Unfortunately, we left out of the            
scope from this research the generation of an evaluation set for this task (it              
would be something interesting to address as future work). Anyway,          
similarly to what we did with our first candidate model based on  Word2Vec             
with  Skip-Gram, we show now ( Table 21 ) some examples that give           
evidence that linear relationships between vectors can be leveraged by our           
FastText  based model to perform analogical reasoning. 
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1v  2v  3v  1 v2 v3  v +  −   

atlantida.com.uy 
 

(site related to Atlantida, 
the main resort in 
Canelones city ) 

maldonado.gub.uy 
 

 
(site for the Maldonado 

city government) 

canelones.gub.uy 
 

 
(site for the Canelones city 

government) 

puntaweb.com 
 

puntadeleste.com 
 
(sites related to Punta del Este, the 

main resort in Maldonado city) 

puntashopping.com.uy 
 
(site for a shopping center 

in Maldonado city) 

montevideo.gub.uy 
 
(site for the Montevideo 

city government) 

maldonado.gub.uy 
 

(site for the Maldonado city 
government) 

tiendasmontevideo.com 
 

montevideoshopping.com.uy 
 

(sites for shopping centers in 
Montevideo city) 

 
Table 21  - Analogical reasoning using our FastText based model 

 
 
Both examples presented in  Table 21 show 2 of the 3 domain            

names nearest to the resulting vector . Visual inspection     1 2 3v + v − v    
suggests that our model could be used for analogical reasoning and thus            
being helpful for understanding complex relationships between domain        
names. Anyway, and although this examples look promising, more work          
needs to be done in this direction to validate through a more formal             
evaluation that our model is effectively good enough for the task of            
analogical reasoning. 
 

Another interesting property of this  FastText based model is         
regarding to domain names that do not exist or were not part of the training               
set (a.k.a  out-of-vocabulary or by its acronym  OOV ). For those cases, the            
other candidate models cannot give any results because they have a           
strong requisite that requires the trained model to be used with domain            
names that were originally part of the training set. If a domain name does              
not exist or was not part of the training set then the model does not know                
any vector representation for that domain name, therefore it cannot find           
any nearest vectors. 
But as explained in Section  3.2.2.5 , the only requirement that  FastText           
needs to meet in order to find a vector representation for an arbitrary             
domain name is that at least one match exists between any subword of the              
OOV word and any subword used during the training phase (by any word             
in the vocabulary).  Table 22 shows the results that were obtained by our             
best model based on  FastText when retrieving the most similar sites to            
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samtanderuniversidades.con.uy (a domain that does not exist, and it was          
not part of the training set). 
 
Most similar domain names to  samtanderuniversidades.con.uy  (banking) 
 
 

Domain name Type Cosine 
distance 

Observations 

santanderuniversidades.com.uy banking 0.995 This is the real site 

bancamovilsantander.com.uy banking 0.953  

santander.com.uy banking 0.918  

multidiscount.net banking 0.811  

bcu.gub.uy banking 0.808  

discbank.com.uy banking 0.750  

browserforthebetter.com - 0.785 Domain does not exist 
anymore (Feb-2019) 

brou.com.uy banking 0.751  

nbc.com.uy banking 0.749 Domain does not exist 
anymore (Feb-2019) 

  
Table 22  - most similar sites found by our FastText based model for an oov 

domain name. 
 
 
As we can see in  Table 22 our  FastText based model is able to find               

similar sites for a domain name that does not really exist (and was not part               
of the training). Although a formal study of the threshold value would be             
required, it looks like a carefully selected threshold could be helpful for            
identifying domain names that for some reason are incorrect, and also to            
find the correct match for it. A domain name could be bad formed because              
of many reasons, for example because it was typed incorrectly with a typo             
or because a harmful software shows a bad formed url intentionally (for            
example  typosquatted domains or  IDN homograph attacks ) trying to         63 64

63 https://en.wikipedia.org/wiki/Typosquatting 
64 https://en.wikipedia.org/wiki/IDN_homograph_attack 

160 



 

deceive a user to redirect him/her to a website that looks identically to the              
original one but generally designed to steal user credentials, banking and           
credit card details (a.k.a  phishing ). At the moment of writing this, the            
Google Chrome browser is experimenting with a new feature ( Figure 38 )           
that tries to identify these kind of risky urls and generate suggestions about             
possible desired sites. This evidences that having reliable methods for          
identifying fraudulent sites is a hot-topic right now. 

 
 

 
Figure 38  - Experimental feature in Google Chrome that warns about suspicious 

urls  
(image credits: ZDNet ). 65

 
 

Hence, one possible application of our DNS vector space model          
( DNS-VSM ) is related to security as well as user experience by suggesting            
potential matches for sites that look like other well known domain names.            
We think that our model could be combined with some string distance            
metric (for example the  Levenshtein  distance  ) to improve the detection of           66

fraudulent sites. 
We also see a potential application of our model in a  parental-control            
system, filtering (automatically) risky content or adult specific content. For          
example, one could save a short list of domain names to be blocked (even              
one or two sites would be enough) and then, the system could find the              
most similar domain names to those sites and automatically add them to            
the blacklist (for those results with a high confidence). By doing this the             

65 https://www.zdnet.com/article/google-chrome-to-get-warnings-for-lookalike-urls/ 
66 https://en.wikipedia.org/wiki/Levenshtein_distance 
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system would increase and handle the blacklist automatically. As an          
example, in  Table 23 we can see the results that are obtained when asking              
to our  FastText based model for the most similar sites to  pornhub.com .            
After studying a good threshold the system could add some of these            
results to the blacklist and repeat the process finding more sites to block             
until no more sites are found upper the threshold.  
Other natural application of our  DNS-VSM is in the recommender systems           
area, by providing a core block for finding similar sites to the sites that are               
generally navigated by the user. In the recommender systems area this           
kind of recommender falls in the category of  content-based         
recommenders. The approach behind this kind of recommender systems is          
to represent system items (products, movies, books, etc) by their main           
properties (title, price, category, etc) and then, similar items to those that            
the user liked in the past (for example those items that were bought,             
visited, or rated positive by the user) are recommended. The reader can            
see  [101] for a good summary about this and other recommender systems            
techniques. 
 
 

Domain name Type Cosine 
distance 

youporn.com adult website  0.879 

phncdn.com adult website 0.84 

tube8.com adult website 0.795 

youporn.com.es adult website 0.758 

videospornhub.com adult website 0.708 

xxxcupid.com adult website 0.696 

german-youporn.com adult website 0.696 

pornhubpremium.com adult website 0.693 

genericlink.com - 0.687 

youporngay.com adult website 0.68 

  
Table 23  - most similar sites to pornhub.com (an adult specific content site). 
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Besides the potential use cases just mentioned, we can think many           

other applications that could benefit from the usage of our  DNS-VSM .           
Clickstream analysis, representation and clustering of users navigation        
profiles, competitive analysis, optimization of cache systems in recursive         
DNS resolvers, and the list grows up.  
For this reason, as a contribution to the research community we are            
releasing a set of vectors of the  DNS-VSM (trained on a similar dataset to              
the one used in this thesis), which we made available for download            
through the github page in  [1] . With this, we hope that further work can be               
done using these vectors, for example evaluating the  DNS-VSM in the task            
of analogical reasoning (using a specific evaluation set created for this           
task), how relationships between domain names in Internet have evolved          
through time (our vectors gives a picture at 2013 and since then many             
domains have disappeared and many others have been created), or          
creating new applications on top of them. 
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5. Chapter Ⅴ - Conclusions and future       
work 
 
 

Knowing semantic information about Internet domain names is        
something crucial for many engineering activities, with practical application         
in many areas. 
Common uses cases that we can see nowadays include websites          
recommendations based on similar sites or competitive analysis (for         
example  Alexa , SImilarWeb or Google Similar Pages  ), but many         67 68 69

others applications have been identified and proposed in this work such as            
identification of fraudulent or risky sites, parental-control system,  UX         
improvements (based on recommendations, spell correction, etc),       
click-stream analysis, representation and clustering of users navigation        
profiles, competitive analysis, optimization of cache systems in recursive         
DNS resolvers, and more. 
 

Current solutions and strategies to identify similarities between        
Internet domain names fall mainly in two categories:  client-side component          
based , or  content-indexing based . Both kind of solutions have lot of           
disadvantages. Solutions that use client-side components (generally a        
browser plugin) require execution permissions that not all users are willing           
to give, they are intrusive and comprise user confidentially. They are           
difficult to deliver (users need to be motivated and convinced in order to             
install the extension) and they are not representative of a global audience.            
Furthermore, browser plugins do not work well in all mobile devices. On            
the other hand, solutions that use a content-indexing strategy need to scan            
and classify the content in predefined set of topics (generally topics are not             
learned automatically), requiring the content to use good metadata for          
topic discovery (note that contents and its metadata are not owned by the             
similarity system), being difficult, expensive, and time consuming to be          
implemented at a web scale. 

67 https://www.alexa.com/ 
68 https://www.similarweb.com/ 
69 
https://chrome.google.com/webstore/detail/google-similar-pages/pjnfggphgdjblhfjaphkjhfpi
iekbbej 
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In this work, a novel approach to address the problem of finding            

similarities between Internet domain names (without suffering from the         
previous mentioned disadvantages) is presented. The solution analyzes        
real anonymized  DNS log queries from a big amount of  DNS log files             
which come from recursive  DNS servers from a large Internet Service           
Provider ( ISP ) in Uruguay.  
The fundamentals ingredients behind the solution take many ideas from          
linguistics and the  NLP field. In particular, the proposed solution is strongly            
motivated by the  distributional hypothesis from linguistics, which suggests         
that words that are used and occur in the same contexts tend to purport              
similar meanings  [33] . 
 

A simple yet effective trick that gives the foundations of this work            
consists of mapping the concept of  words and  contexts to the  DNS            
scenario in this way: a single word in a text document corresponds to a              
domain name in a  DNS log file, and the context (neighbors) words            
corresponds to the domain names that were queried close (for example in            
a fixed length time window or in a same web user session). 
While working on this mapping, a set of characteristics and limitations           
about the  DNS data and how the  DNS system works are identified (noise             
in  DNS traces associated to record types that are not web navigation            
related,  TTL in  DNS resolvers, many users behind  NAT enabled gateways,           
dynamic IP addresses, background traffic not triggered by users, among          
others) and addressed before applying any  NLP  algorithm to our problem.  
 

Hence, a main contribution of this work is presented in Section  4.2            
where a detailed preprocessing pipeline with specific steps ( DNS record          
type filter, service type filter, simplification of subdomain, removal of top           
queried domains and well-known applications domain names, IP grouping,         
removal of automatic requests, simplification in the navigation path, split of           
long traces based on time window) is defined to move the original problem             
to a problem in the  NLP  field. 
 

As a second contribution, Sections  4.4 ,  4.5 and  4.6 show that once            
the preprocessing pipeline is applied and the  DNS log files are           
transformed to a standard text corpus in the  NLP field then,  state-of-the art             
techniques for  word embeddings such as  Word2Vec  (with  Skip-Gram and          
CBOW architectures),  App2Vec  (adding a weighting factor based on time          

168 



 

gaps between domain names) and  FastText (adding sub-word level         
information) can be successfully applied to the corpus in order to build            
what we called a  DNS-VSM (a vector space model for domain names). In             
our  DNS-VSM domain names are represented by vectors (a.k.a         
embeddings ) with 64 dimensions with the main characteristic that         
semantically related domain names are mapped to nearby points in the           
high dimensional space. This  DNS-VSM is built only using information of           
DNS queries without any other previous knowledge about the content of           
those domains.  
 

Through visual inspection we are able to confirm that all these           
candidates models show good results in the task of finding semantically           
related domain names. In order to choose the best model, in Section  4.7 a              
formal comparison of these candidate models is carried out, showing that           
the  FastText  based model (with  Skip-Gram architecture and  n-grams         
range between 11 and 17) outperforms considerably the other candidate          
models as well as the baseline models ( random guessing and  popularity           
based , see Section  4.3.1 ).  
In particular, the evaluation of the  MAP@k metric (see Section  4.3 ) shows            
that the  FastText based model is 10.5%, 17.8%, 17.8% and 435.5%           
superior than  Word2Vec with  Skip-Gram ,  App2Vec,  Word2Vec with CBOW         
and the best baseline model ( popularity based ) respectively. 
 
As part of the comparison, the  recall ,  precision and  f1-score metrics           
presented in Section  4.3 are evaluated. In all the experiments similar           
results are obtained, being  FastText the best, followed by  Word2Vec with           
Skip-Gram which is also better than  App2Vec and  Word2Vec with CBOW.           
Regarding these last two models and according to our experiments, there           
is no strong evidence to ensure that  App2Vec is better than  Word2Vec            
with  CBOW in our specific scenario. Nevertheless, an advantage that was           
observed of using  App2Vec over  Word2Vec with  CBOW is related to the            
training time, being  App2Vec faster to get good results during the first            
epochs.  
 

In regards to the best candidate model based on  FastText , different           
n-gram ranges are evaluated using different evaluation criterias. The         
optimal configuration is found using  min-ngram = 11 and  max-ngram = 17.            
For this configuration, the highest  MAP@k value obtained is 0.238 (with  k            
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= 1 and  k actual = 10) and the highest  F1-score is 0.144 (with  k = 10 and                 
k actual  = 10). 
It is important to note that usually when working with standard text corpus             
the best results are obtained with much shorter  n-grams of about 3 to 6              
characters. In our case this very short  n-grams are not very useful            
because they encompass words like  .www ,  .com or .com.uy (among          
others) that do not help to determine the compatibility between different           
domains. By using longer  n-grams we are able to include longer substrings            
of the domain names that are more adequate to determine whether two            
domains are similars or not. 

 
The last contribution of this work is a set of vectors of the  DNS-VSM              

(trained on a similar dataset to the one used in this thesis), which we made               
available for download through the github page in  [1] . With this, we hope             
that further work can be done using these vectors. 
 

For example, some possible directions of future work with the          
DNS-VSM could be related to the creation of an evaluation set for the task              
of analogical reasoning, the analysis of how relationships between domain          
names in Internet have evolved through time (our vectors give a picture at             
2013 and since then many domains have disappeared and many others           
have been created), or the development of new applications on top of the             
DNS  embeddings. 
Additionally, an interesting extension of this work could evaluate other          
word embeddings techniques such as  GloVe (see Section  3.2.3 ),  Swivel          
[102]  or the recently published (at the moment of writing this) contextual            
word embedding techniques  ELMo  [93]   and  BERT  [94] . 
Although in this work we focus in embeddings to the word level, in Chapter              
3 some basic techniques for document embeddings are presented. But          
other more sophisticated for different document sizes exist, for example          
Skip-Thought Vectors  [81] , or  Doc2vec  [82] . Good opportunities of future          
research exist regarding the usage of these techniques in order to analyze            
user’s traces as sentences or paragraphs (composed of domain names          
instead of words). Then, those sentences and paragraph could be          
aggregated in some way to build a document to represent the user’s            
navigation profile. Clustering of users based on their navigation profiles is           
a high valuable information for any telecom company. 
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7. Appendix A: Final metrics 
 
 

Table 24 shows the final  MAP@k metric for the different candidate           
models and combinations of  k (number of ordered similar sites considered           
by the model) and  k actual (number of similar sites retrieved from the  Alexa ’s             
service) 
 
 

MAP@k \ Model 
Word2Vec 

(cbow) 
Word2Vec 

(skip-gram) App2Vec FastText 

k=1, kactual=1 0.074 0.076 0.073 0.087 

k=1, kactual=2 0.106 0.111 0.106 0.126 

k=1, kactual=3 0.129 0.137 0.129 0.152 

k=1, kactual=5 0.162 0.174 0.159 0.188 

k=1, kactual=10 0.21 0.223 0.203 0.238 

k=2, kactual=1 0.096 0.099 0.097 0.111 

k=2, kactual=2 0.073 0.076 0.074 0.087 

k=2, kactual=3 0.093 0.099 0.094 0.11 

k=2, kactual=5 0.121 0.13 0.12 0.144 

k=2, kactual=10 0.162 0.176 0.158 0.19 

k=3, kactual=1 0.107 0.109 0.108 0.123 

k=3, kactual=2 0.084 0.088 0.085 0.099 

k=3, kactual=3 0.073 0.077 0.074 0.087 

k=3, kactual=5 0.097 0.105 0.097 0.117 

k=3, kactual=10 0.134 0.147 0.132 0.159 

k=5, kactual=1 0.117 0.119 0.118 0.133 

k=5, kactual=2 0.096 0.1 0.097 0.113 

k=5, kactual=3 0.086 0.09 0.086 0.102 

k=5, kactual=5 0.071 0.077 0.071 0.086 

k=5, kactual=10 0.103 0.112 0.102 0.123 

k=10, kactual=1 0.126 0.129 0.127 0.144 

k=10, kactual=2 0.108 0.113 0.109 0.127 
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k=10, kactual=3 0.099 0.106 0.1 0.118 

k=10, kactual=5 0.087 0.094 0.087 0.105 

k=10, kactual=10 0.067 0.075 0.067 0.082 

 
Table 24  -  Final MAP@k metric 

 
 
Final average  MAP@k  for Word2Vec (with cbow):  0.107 
Final average  MAP@k  for Word2Vec (with skip-gram):  0.114  
Final average  MAP@k  for App2Vec:  0.107 
Final average  MAP@k  for fastText: 0.126 
 

Table 25 shows the final  F1-score metric (harmonic mean between          
precision and  recall , being the  F1-score better when  precision and  recall           
are higher) for the different candidate models and combinations of  k           
(number of ordered similar sites considered by the model) and  k actual           
(number of similar sites retrieved from the  Alexa ’s service) 

 
 

F1 \ Model 
Word2Vec 

(cbow) 
Word2Vec 

(skip-gram) App2Vec FastText 

k=1, kactual=1 0.074 0.076 0.073 0.087 

k=1, kactual=2 0.071 0.074 0.071 0.084 

k=1, kactual=3 0.065 0.069 0.065 0.076 

k=1, kactual=5 0.054 0.058 0.053 0.063 

k=1, kactual=10 0.038 0.041 0.037 0.043 

k=2, kactual=1 0.079 0.081 0.08 0.09 

k=2, kactual=2 0.088 0.092 0.089 0.104 

k=2, kactual=3 0.088 0.094 0.089 0.104 

k=2, kactual=5 0.0813 0.087 0.08 0.096 

k=2, kactual=10 0.063 0.068 0.061 0.073 

k=3, kactual=1 0.075 0.076 0.077 0.085 

k=3, kactual=2 0.092 0.096 0.094 0.107 

k=3, kactual=3 0.098 0.104 0.099 0.114 

k=3, kactual=5 0.096 0.104 0.097 0.113 
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k=3, kactual=10 0.0798 0.087 0.079 0.093 

k=5, kactual=1 0.065 0.066 0.066 0.072 

k=5, kactual=2 0.09 0.092 0.09 0.103 

k=5, kactual=3 0.103 0.107 0.103 0.119 

k=5, kactual=5 0.11 0.117 0.11 0.129 

k=5, kactual=10 0.102 0.11 0.102 0.118 

k=10, kactual=1 0.048 0.049 0.048 0.054 

k=10, kactual=2 0.075 0.079 0.075 0.085 

k=10, kactual=3 0.093 0.099 0.094 0.107 

k=10, kactual=5 0.112 0.121 0.113 0.131 

k=10, kactual=10 0.123 0.135 0.125 0.144 
 

Table 25  -  Final F1-score 
 
 
Final average  F1-score  for Word2Vec (with cbow):  0.083 
Final average  F1-score  for Word2Vec (with skip-gram):  0.087  
Final average  F1-score  for App2Vec:  0.083 
Final average  F1-score  for FastText: 0.096 
 

Table 26 shows the final  recall  metric for the different candidate           
models and combinations of  k (number of ordered similar sites considered           
by the model) and  k actual (number of similar sites retrieved from the  Alexa ’s             
service) 
 
 

Recall \ Model 
Word2Vec 

(cbow) 
Word2Vec 

(skip-gram) App2Vec FastText 

k=1, kactual=1 0.074 0.076 0.073 0.087 

k=1, kactual=2 0.053 0.055 0.053 0.063 

k=1, kactual=3 0.043 0.046 0.043 0.051 

k=1, kactual=5 0.032 0.035 0.032 0.038 

k=1, kactual=10 0.021 0.022 0.02 0.024 
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k=2, kactual=1 0.118 0.121 0.121 0.135 

k=2, kactual=2 0.088 0.092 0.089 0.104 

k=2, kactual=3 0.073 0.078 0.074 0.087 

k=2, kactual=5 0.057 0.061 0.056 0.067 

k=2, kactual=10 0.038 0.041 0.037 0.044 

k=3, kactual=1 0.151 0.153 0.154 0.171 

k=3, kactual=2 0.115 0.12 0.117 0.134 

k=3, kactual=3 0.098 0.104 0.099 0.114 

k=3, kactual=5 0.076 0.083 0.078 0.091 

k=3, kactual=10 0.052 0.057 0.051 0.06 

k=5, kactual=1 0.196 0.197 0.197 0.217 

k=5, kactual=2 0.157 0.161 0.158 0.18 

k=5, kactual=3 0.137 0.142 0.137 0.159 

k=5, kactual=5 0.11 0.117 0.11 0.129 

k=5, kactual=10 0.076 0.083 0.076 0.088 

k=10, kactual=1 0.262 0.271 0.266 0.298 

k=10, kactual=2 0.224 0.236 0.226 0.256 

k=10, kactual=3 0.202 0.214 0.203 0.233 

k=10, kactual=5 0.168 0.181 0.169 0.197 

k=10, kactual=10 0.123 0.135 0.125 0.144 

 
Table 26  -  Final recall metric 

 
Final average  Recall  for Word2Vec (with cbow):  0.11 
Final average  Recall  for Word2Vec (with skip-gram):  0.115  
Final average  Recall  for App2Vec:  0.111 
Final average  Recall  for FastText: 0.127 
 
 

Table 27 shows the final  precision  metric for the different candidate           
models and combinations of  k (number of ordered similar sites considered           
by the model) and  k actual (number of similar sites retrieved from the  Alexa ’s             
service) 
 

Precision \ 
Model Word2Vec (cbow) 

Word2Vec 
(skip-gram) App2Vec FastText 
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k=1, kactual=1 0.074 0.076 0.073 0.087 

k=1, kactual=2 0.106 0.111 0.106 0.126 

k=1, kactual=3 0.129 0.137 0.129 0.152 

k=1, kactual=5 0.162 0.174 0.159 0.188 

k=1, kactual=10 0.21 0.223 0.203 0.238 

k=2, kactual=1 0.059 0.061 0.06 0.068 

k=2, kactual=2 0.088 0.092 0.089 0.104 

k=2, kactual=3 0.11 0.118 0.111 0.13 

k=2, kactual=5 0.142 0.153 0.141 0.168 

k=2, kactual=10 0.189 0.205 0.184 0.218 

k=3, kactual=1 0.05 0.051 0.051 0.057 

k=3, kactual=2 0.077 0.08 0.078 0.089 

k=3, kactual=3 0.073 0.077 0.074 0.087 

k=3, kactual=5 0.127 0.139 0.129 0.151 

k=3, kactual=10 0.173 0.051 0.171 0.201 

k=5, kactual=1 0.039 0.039 0.039 0.043 

k=5, kactual=2 0.063 0.065 0.063 0.072 

k=5, kactual=3 0.082 0.085 0.082 0.095 

k=5, kactual=5 0.11 0.117 0.11 0.129 

k=5, kactual=10 0.153 0.165 0.153 0.177 

k=10, kactual=1 0.026 0.027 0.027 0.03 

k=10, kactual=2 0.045 0.047 0.045 0.051 

k=10, kactual=3 0.06 0.064 0.061 0.07 

k=10, kactual=5 0.084 0.09 0.085 0.099 

k=10, kactual=10 0.123 0.135 0.125 0.144 

 
Table 27  -  Final precision metric 

 
Final average  Precision  for Word2Vec (with cbow):  0.102 
Final average  Precision  for Word2Vec (with skip-gram):  0.103 
Final average  Precision  for App2Vec:  0.102 
Final average  Precision  for FastText: 0.119  
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The following charts summarize the values from the previous tables          
and are helpful for a relative comparison through visual inspection for the            
quality of the different candidate models. 
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8. Appendix B: Evolution of metrics      
during training 
 
 

The following charts show the evolution of the  MAP@k  metric          
during the training phase for the different candidate models and          
combinations of  k (number of ordered similar sites considered by the           
model) and  k actual (number of similar sites retrieved from the  Alexa ’s           
service) 
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The following charts show the evolution of the  F1-score  metric          
during the training phase for the different candidate models and          
combinations of  k (number of ordered similar sites considered by the           
model) and  k actual (number of similar sites retrieved from the  Alexa ’s           
service) 
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