

UNIVERSIDAD DE LA REPÚBLICA
FACULTAD DE INGENIERÍA

Tesis para optar al Título de
MAGISTER EN INFORMÁTICA

PEDECIBA

VECTOR REPRESENTATION OF INTERNET DOMAIN NAMES USING

WORD EMBEDDING TECHNIQUES

Author: Waldemar Joel López Anzolabehere
Advisor: Dr. Pablo Rodríguez-Bocca

Montevideo, Uruguay
2019

PÁGINA DE APROBACIÓN

UNIVERSIDAD DE LA REPÚBLICA
FACULTAD DE INGENIERÍA

El tribunal docente integrado por los abajo firmantes aprueba la Tesis de
Investigación : “Vector representation of Internet domain names using word
embedding techniques”.

Autor: Ing. Waldemar Joel López Anzolabehere
Tutor: Dr. Pablo Rodríguez-Bocca
Carrera: Maestría en Informática (PEDECIBA)

Puntaje: ...

Tribunal

Profesor ... (Nombre y firma)

Profesor ... (Nombre y firma)

Profesor ... (Nombre y firma)

Fecha:

2

AGRADECIMIENTOS

Quiero agradecer al PEDECIBA y a la Facultad de Ingeniería de la

UDELAR por permitirme realizar este trabajo, apoyándome para lograr los
resultados y poder publicar los avances realizados.

Un especial agradecimiento a mi tutor Pablo Rodríguez quién en
todo momento supo guiarme y marcar el norte, principalmente en aquellos
momentos donde el camino se hacía cuesta arriba. Su disponibilidad y
buena predisposición fueron fundamentales para que este trabajo llegara
a buen puerto.

También agradecer a Jorge Merlino por los intercambios de ideas y
discusiones en torno a este trabajo. Espero que los humildes resultados
logrados en esta tesis puedan ser tomados y extendidos como parte de su
doctorado.

 Quiero dar las gracias a los autores de App2Vec , en particular a
Qiann Ma por ceder muy gentilmente el código con la adaptación que
realizaron al método CBOW de Word2Vec , el cual fue parte de los
métodos de word embedding evaluados en este trabajo.

Agradezco también a los doctores Laura Alonso i Alemany, Aiala

Rosá Furman y Claudio Risso que me brindan el honor de juzgar este
trabajo.

No puedo dejar de agradecer a la educación pública de mi país por

haberme formado desde la primaria. A todas mis maestras, profesores,
profesoras y docentes que con un granito de arena contribuyeron a mi
curiosidad y amor por las ciencias. A ellos un enorme gracias.

Mi mayor reconocimiento a mis padres, quienes me educaron y

transmitieron los valores de los cuales me siento orgullo. Ellos me
enseñaron que no hay tesoro mas preciado que el conocimiento y la
educación. Predicando con el ejemplo me mostraron que con honestidad,
trabajo, esfuerzo y constancia es posible hacer frente a cualquier
adversidad y lograr cualquier objetivo.

3

Por último, agradezco infinitamente el amor incondicional de mi
esposa e hijos, por su apoyo continuo, por su generosidad
comprendiéndome y regalándome mucho de su tiempo, por haber sido mi
compañía imprescindible para terminar este viaje.

4

Resumen

La vectorización de palabras es un conjunto de técnicas bien

conocidas y ampliamente usadas en el procesamiento del lenguaje natural
(PLN). Esta tesis explora el uso de vectorización de palabras en un nuevo
escenario. Un modelo de espacio vectorial (VSM) para nombres de
dominios de Internet (DNS) es creado tomando ideas fundamentales de
PLN, las cuales son aplicadas a consultas reales anonimizadas de logs de
DNS de un gran proveedor de servicios de Internet (ISP). El objetivo
principal es encontrar dominios relacionados semánticamente solamente
usando información de consultas DNS sin ningún otro conocimiento sobre
el contenido de esos dominios.

Un conjunto de transformaciones a través de un detallado pipeline

de preprocesamiento con ocho pasos específicos es definido para llevar el
problema original a un problema en el campo de PLN . Una vez aplicado el
pipeline de preprocesamiento y los logs de DNS son transformados a un
corpus de texto estándar, se muestra que es posible utilizar con éxito
técnicas del estado del arte respecto a vectorización de palabras para
construir lo que denominamos un DNS-VSM (un modelo de espacio
vectorial para nombres de dominio de Internet).

Diferentes técnicas de vectorización de palabras son evaluadas en
este trabajo: Word2Vec (con arquitectura Skip-Gram y CBOW), App2Vec
(con arquitectura CBOW y agregando intervalos de tiempo entre consultas
DNS), y FastText (incluyendo información a nivel de sub-palabra).
Los resultados obtenidos se comparan usando varias métricas de la teoría
de Recuperación de Información y la calidad de los vectores aprendidos
es validada por una fuente externa, un servicio para obtener sitios
similares ofrecido por Alexa Internet, Inc . 1

Debido a características intrínsecas de los nombres de dominio,
encontramos que FastText es la mejor opción para construir un modelo de
espacio vectorial para DNS . Además, su performance es comparada
contra dos métodos de línea base: Random Guessing (devolviendo
cualquier nombre de dominio del dataset de forma aleatoria) y Zero Rule

1 https://www.alexa.com/

5

(devolviendo siempre los mismos dominios más populares), superando a
ambos de manera considerable.

Los resultados presentados en este trabajo pueden ser útiles en
muchas actividades de ingeniería, con aplicación práctica en muchas
áreas. Algunos ejemplos incluyen recomendaciones de sitios web, análisis
competitivo, identificación de sitios riesgosos o fraudulentos, sistemas de
control parental, mejoras de UX (basada en recomendaciones, corrección
ortográfica, etc.), análisis de flujo de clics, representación y clustering de
perfiles de navegación de usuarios, optimización de sistemas de cache en
resolutores de DNS recursivos (entre otros).

Por último, como contribución a la comunidad académica, un
conjunto de vectores del DNS-VSM entrenado sobre un juego de datos
similar al utilizado en esta tesis es liberado y hecho disponible para
descarga a través de la página github en [1] . Con esto esperamos a que
más trabajos e investigaciones puedan realizarse usando estos vectores.

Palabras clave: DNS , VSM, Vectorización de palabras, Word2vec,
FastText, App2vec, Similitud semántica, Procesamiento de Lenguaje
Natural (PLN).

6

Abstract

Word embeddings is a well-known set of techniques widely used in

natural language processing (NLP). This thesis explores the use of word
embeddings in a new scenario. A vector space model (VSM) for Internet
domain names (DNS) is created by taking core ideas from NLP techniques
and applying them to real anonymized DNS log queries from a large
Internet Service Provider (ISP). The main goal is to find semantically
similar domains only using information of DNS queries without any other
knowledge about the content of those domains.

A set of transformations through a detailed preprocessing pipeline

with eight specific steps is defined to move the original problem to a
problem in the NLP field. Once the preprocessing pipeline is applied and
the DNS log files are transformed to a standard text corpus, we show that
state-of-the-art techniques for word embeddings can be successfully
applied in order to build what we called a DNS-VSM (a vector space model
for Internet domain names).

Different word embeddings techniques are evaluated in this work:
Word2Vec (with Skip-Gram and CBOW architectures), App2Vec (with a
CBOW architecture and adding time gaps between DNS queries), and
FastText (which includes sub-word information).
The obtained results are compared using various metrics from Information
Retrieval theory and the quality of the learned vectors is validated with a
third party source, namely, similar sites service offered by Alexa Internet,
Inc . 2

Due to intrinsic characteristics of domain names, we found that FastText is
the best option for building a vector space model for DNS . Furthermore, its
performance (considering the top 3 most similar learned vectors to each
domain) is compared against two baseline methods: Random Guessing
(returning randomly any domain name from the dataset) and Zero Rule
(returning always the same most popular domains), outperforming both of
them considerably.

2 https://www.alexa.com/

7

The results presented in this work can be useful in many
engineering activities, with practical application in many areas. Some
examples include websites recommendations based on similar sites,
competitive analysis, identification of fraudulent or risky sites,
parental-control systems, UX improvements (based on recommendations,
spell correction, etc.), click-stream analysis, representation and clustering
of users navigation profiles, optimization of cache systems in recursive
DNS resolvers (among others).

Finally, as a contribution to the research community a set of vectors

of the DNS-VSM trained on a similar dataset to the one used in this thesis
is released and made available for download through the github page in
[1] . With this we hope that further work and research can be done using
these vectors.

Keywords: DNS , VSM, Word embeddings, Word2vec, FastText, App2vec,
Semantic Similarity, Natural Language Processing (NLP).

8

Contents

1. Chapter Ⅰ - Introduction 11

1.1. Motivation and goals 11
1.2. Contributions 12
1.3. Publications and conferences 13
1.4. Summary and organization of the document 14

2. Chapter Ⅱ - Domain Names on Internet 19
2.1. Basic concepts about DNS 19
2.2. Semantic similarity for Internet Domain Names 24

2.2.1. Alexa 25
2.2.2. SimilarWeb 28
2.2.3. Google Similar Pages 30
2.2.4. Others 31
2.2.5. Disadvantages of the current approaches: where to go next? 34

3. Chapter Ⅲ - Vector representation of words and documents 39
3.1. One-Hot encoding 40
3.2. Vector Space Models (VSMs) 41

3.2.1. Count-based methods 43
3.2.1.1. Sparse Vector representations 43

3.2.1.1.1. Term-Document Matrix 43
3.2.1.1.2. Weighted Term-Document Matrix 46

3.2.1.1.2.1. Pointwise Mutual Information (PMI) 47
3.2.1.1.2.2. Term frequency - Inverse document frequency
(TF-IDF) 48

3.2.1.1.3. Term-Context Matrix 50
3.2.1.2. Dense Vector representations 51

3.2.1.2.1. Latent Semantic Analysis (LSA) 52
3.2.1.2.2. SVD applied to the Term-Term Matrix 54

3.2.2. Prediction-based Models 54
3.2.2.1. N-gram model 55
3.2.2.2. Neural Network Language Models (NNLM) 58

3.2.2.2.1. Feedforward Neural Language Model (FFNLM) 59
3.2.2.2.2. Recurrent Neural Network Language Model (RNNLM) 62

3.2.2.3. Word2Vec 67
3.2.2.3.1. The Skip-Gram model 71

9

3.2.2.3.2. The CBOW model 76
3.2.2.3.3. Optimizations to the original models 78

3.2.2.4. App2Vec 83
3.2.2.5. FastText 86

3.2.3. GloVe: Global Vectors for Word Representation 89
3.2.4. Summary of document and word embeddings techniques 94

4. Chapter Ⅳ - Building the DNS-VSM 101
4.1. Descriptive analysis of the data 103
4.2. Preprocessing phase 106
4.3. Evaluation framework 115

4.3.1. Baseline models 121
4.4. Creating DNS embeddings using Word2Vec 121
4.5. Adding time factor with App2Vec 133
4.6. Considering sub-word level with FastText 145
4.7. Analyzing the results 153

5. Chapter Ⅴ - Conclusions and future work 167

6. Bibliography 171

7. Appendix A: Final metrics 177

8. Appendix B: Evolution of metrics during training 185

10

1. Chapter Ⅰ - Introduction

In this first chapter, an introduction with the motivation, goals and
contributions of this thesis is presented. Finally, the organization of the
document is outlined.

1.1. Motivation and goals

The amount of time that people spend online has systematically
increased in recent years [2] . To understand the behavior of users in online
content consumption is the focus of several research. It has large
implications to network design, online business, and media industry [3] .

Many studies apply machine learning to historical patterns of

network resource consumption in order to extract knowledge about online
customer behavior [4] , [5] . Due to the inaccessibility of the information, few
of these studies use the traces of DNS queries for this purpose. The few
exceptions are [6] , [7] , [8] , [9] , [10] , where none of them has as main
objective to extract knowledge about the semantic nature of the queried
domains.

There are several Web tools that try to estimate the semantic

similarity between sites. For example to provide web site owners the
possibility to find competitors for the same target audience, and to advice
end-users on alternative providers for the same content. As we will see in
Section 2.2.5 , these solutions and strategies have lot of disadvantages.

In this work, a novel approach to address the problem of finding
similarities between Internet domain names (without suffering from the
previous mentioned disadvantages) is presented. The main goals are:

I. Define a similarity measure between domain names only
using information of DNS queries (without any other previous
knowledge about the content of those domains).

11

II. Given any domain name and using the defined similarity
function, find other semantically and syntactically related
domain names.

III. Find a way to identify other complex relationships between
domain names, for example: complementary domain names,
domain names that are generally accessed together or
relative relationships like domain A is to domain B in the
same way that domain C is to domain D .

Many use cases can benefit from a solution that satisfy these goals.

Besides the common uses cases that we can see nowadays that include
websites recommendations based on similar sites or competitive analysis,
many others applications such as identification of fraudulent or risky sites,
parental-control systems, UX improvements (based on recommendations,
spell correction, etc), click-stream analysis, representation and clustering
of users navigation profiles, optimization of cache systems in recursive
DNS resolvers, and more, could leverage the results of this work.

1.2. Contributions

We can summarize the main contributions of this thesis in the
following points:

● State of the Art

A complete review of the most common techniques that are used
for building vector representation of words is presented. Starting
from the most basics ones that use sparse representations, to the
most complex ones that are able to learn dense vectors
representation using neural networks as part of a statistical
language modelling . This review shows the natural evolution of
these techniques and it is by itself a good survey of the bibliography
about the topic.

● Mapping and transformation of DNS data to a problem in the

NLP field
A mapping between concepts that come from the NLP field to
concepts in the DNS system is identified. Additionally, a set of

12

characteristics and limitations about the DNS data and how the
DNS system works are highlighted and a set of transformations
through a detailed preprocessing pipeline with eight specific steps is
defined to move the original problem to a problem in the NLP field.

● Vector Space Model for Domain Names (DNS-VSM)

This thesis shows that once the preprocessing pipeline is applied
and the DNS log files are transformed to a standard text corpus in
the NLP field then, state-of-the art techniques for word embeddings
can be successfully applied to the corpus in order to build what we
called a DNS-VSM (a vector space model for domain names).
In our DNS-VSM domain names are represented by vectors where
related domain names are mapped to nearby points in the high
dimensional space. This DNS-VSM is built only using information of
DNS queries without any other previous knowledge about the
content hosted in each domain.

● Pre-trained vectors for the DNS-VSM
A set of vectors of the DNS-VSM (trained on a similar dataset to the
one used in this thesis) is released and made available for
download through the github page in [1] . With this, we hope that
further work can be done using these vectors.

1.3. Publications and conferences

The following publications were generated during this work:

● W. Lopez, J. Merlino and P. Rodriguez-Bocca, "Vector

representation of internet domain names using a word embedding
technique," 2017 XLIII Latin American Computer Conference
(CLEI), Cordoba, 2017, pp. 1-8.

● W. Lopez, J. Merlino and P. Rodriguez-Bocca, "Extracting semantic

information from Internet Domain Names using word embeddings",
submitted to Engineering Applications of Artificial Intelligence
(ELSEVIER), 2019.

13

1.4. Summary and organization of the document

This thesis is structured in three parts, subdivided in chapters. The
remainder of this document is organized as follows:

Part I - STATE OF THE ART
In Chapter 2 the required background about how DNS systems work is
presented (Section 2.1) as well as the related work regarding current
solutions for finding semantic similarity for Internet domain names (Section
2.2). In the end of this Chapter a set of disadvantages of the current
solutions are highlighted, therefore motivating the exploration of the other
approaches considered in this work.
Then, Chapter 3 introduces the most common techniques that are used for
building vector representation of words and documents, starting from the
most basics ones that use sparse representations, to the most complex
ones that are able to learn dense vectors representation using neural
networks as part of a statistical language modelling . In particular, Sections
3.2.2.3 , 3.2.2.4 and 3.2.2.5 present all the theory behind Word2Vec ,
App2Vec and FastText respectively, which are used later as a core block
for the novel approach presented in this work to address the problem of
finding semantically related domain names.

Part II - DNS VECTOR SPACE MODEL
In Chapter 4 all the details for building a vector space model for Internet
domain names (DNS-VSM) are presented. Firstly, in Section 4.1 a
descriptive analysis of the data used to build the different models is shown.
Then, in Section 4.2 the preprocessing steps for building the dataset is
described, and in Section 4.3 the evaluation framework to be used is
presented as well as the baseline models. In Section 4.4 the first model
based on Word2Vec is described in details. In Section 4.5 the addition of
the time factor (the elapsed time gap between two consecutives DNS
queries requested by a same user) is studied and a second model based
on App2Vec is evaluated. A final improvement by considering sub-word
information is described in Section 4.6 where the last model based on
FastText is presented. Finally, a summary analyzing the results and
discussing possible use cases for the DNS-VSM is presented in Section
4.7 .

14

Part III - CONCLUSIONS
Chapter 5 summarizes the main conclusions of this work and gives some
ideas about possible directions of future work with the DNS-VSM .

15

16

 Part Ⅰ
STATE OF THE ART

17

18

2. Chapter Ⅱ - Domain Names on Internet

2.1. Basic concepts about DNS

The Domain Name System (DNS) [11] , [12] is a decentralized
service for naming computers and other resources in a network. Each of
these resources is assigned a domain name which is a hierarchical string
defining a node in a tree structure. The domain name is formed by the
labels of the nodes in the tree traversed from the leaf node to the root
node, separated by points, as it is shown in the following example:

Figure 1 - Reading the fully qualified domain name (FQDN) winnie.corp.hp.com

from the leaf node to the root node. Source [13] .

19

As we can see in Figure 1 , the FQDN winnie.corp.hp.com can be
splitted into different nodes/labels, with the following characteristics:

● A null label, or “ “ is reserved for the root node. In text, the

root node is written as a single dot (.) [13] .

● The “ com” label represents the first/top-level domain (TLD) .
Other commonly used TLDs are the generic TLDs (gTLDs)
like edu, org. mil, int, net or the country code TLDs (ccTLDs)
like us, de, br, uy, etc. (a list of all valid top-level domains is 3

maintained by the IANA and is updated from time to time) . 4

● The “ hp” label represents the second-level domain and

commonly refers to the organization (in this example it would
be Hewlett-Packard) that registered the domain name with a
domain name registrar.

● The “corp” label is a subdomain of “ hp.com” and it could
represent any relevant concept for the domain (“corp” could
be used by the organization to identify its corporate
headquarters, for example). One domain can contain several
subdomains, for example, www.example.com ,
ftp.example.com and smtp.example.com all are subdomains
of example.com (a web server, a file transfer server and mail
server respectively)

● “winnie” label is just a simple hostname , and it is a
subdomain of corp.hp.com

The DNS system has been in use in the Internet since 1985 and is
one of the most essential services in the network. It is decentralized as the
responsibility for resolving each component of the domain name is
delegated to a different name server, thus avoiding a single central
database and a single point of failure. Also, there could be several domain
servers to resolve the same domain, providing thus a fault tolerant
configuration.

3 http://data.iana.org/TLD/tlds-alpha-by-domain.txt

4 https://www.iana.org/

20

In the Internet, the most fundamental service provided by DNS is to
translate easily memorized domain names (human-readable) to IP
addresses. Each domain can contain different subdomains with different
types. The most common types are shown in Table 1 .

Type Description Example

A IPv4 address translation Host1.example.mydomain.com.
IN A 127.0.0.1

AAAA IPv6 address translation ipv6_host1.example.mydomain.com.
IN AAAA 4321:0:1:2:3:4:567:89ab

MX SMTP mail exchangers example.mydomain.com.
MX 10 mailserver1.example.mydomain.com

NS Other name servers example.mydomain.com.
IN NS nameserver1.example.mydomain.com

CNAME Domain name aliases aliasname.example.mydomain.com.
CNAME truename.example.mydomain.com.

PTR Reverse DNS queries, for example
to query the domain name for a
given IP address

1.0.0.10.in-addr.arpa.
PTR host.example.mydomain.com.

Table 1 - Most common DNS record types

Each domain has at least one authoritative name server that
contains the original information about the domain and its subdomains. An
authoritative name server only gives answers to DNS queries from data
that has been configured on that server. Potentially, an authoritative name
server could delegate a subdomain to other authoritative servers building a
hierarchical tree of authorities.

On the top of the hierarchy are the root DNS servers . There are 13
logical root name servers , which form a network of hundreds of servers in
many countries around the world. Table 2 shows the root servers and its
operators.

21

HOSTNAME IP ADDRESSES MANAGER

a.root-servers.net 198.41.0.4, 2001:503:ba3e::2:30 VeriSign, Inc.

b.root-servers.net 199.9.14.201, 2001:500:200::b University of
Southern California
(ISI)

c.root-servers.net 192.33.4.12, 2001:500:2::c Cogent
Communications

d.root-servers.net 199.7.91.13, 2001:500:2d::d University of
Maryland

e.root-servers.net 192.203.230.10, 2001:500:a8::e NASA (Ames
Research Center)

f.root-servers.net 192.5.5.241, 2001:500:2f::f Internet Systems
Consortium, Inc.

g.root-servers.net 192.112.36.4, 2001:500:12::d0d US Department of
Defense (NIC)

h.root-servers.net 198.97.190.53, 2001:500:1::53 US Army
(Research Lab)

i.root-servers.net 192.36.148.17, 2001:7fe::53 Netnod

j.root-servers.net 192.58.128.30, 2001:503:c27::2:30 VeriSign, Inc.

k.root-servers.net 193.0.14.129, 2001:7fd::1 RIPE NCC

l.root-servers.net 199.7.83.42, 2001:500:9f::42 ICANN

m.root-servers.net 202.12.27.33, 2001:dc3::35 WIDE Project

Table 2 - List of Root Servers 5

On the other hand, there are recursive DNS servers (generally
provided by the ISP) which are capable to resolve queries about domain
names by means of recursive queries to possibly several authoritative
name servers starting from the root servers.
In this way, root DNS servers delegates authoritative subdomains to
ccTLDs and gTLDs servers which are responsible to populate country
domain names and generic domain names respectively. Similarly, these
top-level domain servers generally delegate subdomains to other

5 https://www.iana.org/domains/root/servers

22

organizations, which are free to continue delegating. All this chain of
delegations builds a tree of authoritative name servers, where each record
has a specific location. Hence, in order to resolve a name, the tree must
be traversed, from the root to the most specific authoritative server, which
should have the answer (if it exists).

The client components of the DNS system are called DNS
resolvers . Resolvers usually query recursive servers to find an answer,
which generally need to perform many iterative queries to other name
servers until find the answer. Figure 2 illustrates this resolution process.
Once the answer for a query is found, the recursive server typically saves
the response in a local cache in order to increase efficiency, avoiding to
repeat all the same process for domain names that were previously
queried. The duration of the cached data depends on the TTL (time to live)
configuration of each domain at the authoritative servers.

Figure 2 - Resolution of girigiri.gbrmpa.gov.au on the Internet. Source [13] .

23

In summary, the DNS system is a critical service on the Internet,

essential for most applications (Web, Mail, etc.) to work. The system is a
distributed database of records, being the most important those that
transform names into IP addresses. The database is structured in an
arborescent manner in authoritative servers, which are administered
autonomously by various institutions "owners" of a possible portion of
subdomains.
Clients, who perform record queries, use a special application, called
resolver, included in operating systems. However, the resolvers do not
consult the database directly, but send the query to recursive servers who
traverse the tree, keep the result for future potential queries, and respond
to the client. The recursive servers then have a trace of queries for each
client, and it is the objective of this work to extract knowledge of these
traces.
In Chapter 4 we will see how to transform these traces and use them with
NLP algorithms to extract semantic information about domain names. But
before that, let’s see what are the current approaches to find semantic
similarity between domain names and what are the main issues they
present.

2.2. Semantic similarity for Internet Domain Names

So far, we have defined what DNS is and how domain names are
resolved by DNS servers. We have seen, that DNS servers can solve a
DNS query iteratively or recursively, but in none of those cases DNS
servers know really what kind of business need or goal a domain name
has. Domain names are seen by DNS servers just as strings composed of
labels with a hierarchical structure, and no relevant or semantic
information is known a priori from those strings.

Other thing that we have noticed in the previous section is that DNS
servers typically cache the results of DNS queries in order to optimize the
overall performance of the DNS server. Probably, if semantic information
about DNS was known in advance, more powerful cache strategies could
be possible to implement, for example by loading similar domains or
complementary domains that are commonly consumed together.

24

Knowing the semantic of domain names could also allow to

implement more secure systems, warning about possible fraudulent sites
for example, or detecting sites that could contain risky contents. Clustering
of domain names according to the kind of content that they provide, would
allow to recommend similar contents, identify competitors, block
inadequate contents in parental control agents (among others). Hence, we
realize that enriching domain names with semantic information would bring
lot of possibilities.

The term semantic similarity is usually employed over sets of words

(texts) to measure the likeness of their meaning. In the context of this work
we will define the semantic similarity between domain names, as the
distance between their semantic content. For example, two news providers
are expected to be semantically similar, as well as two retail stores, and if
they offer the same category of products should be closer.

In the rest of this section an overview of current mechanisms and

tools to identify semantic similarity between domain names is presented.
Later, the necessity of new methods is pointed out by understanding the
disadvantages of the current strategies, and thus, motivating the main
work of this thesis that proposes a novel methodology to obtain the
semantic information associated to domain names using only available
information in the DNS recursive servers.

2.2.1. Alexa

 Alexa Internet, Inc. , founded in 1996 as an independent company 6

and acquired later by Amazon in 1999, has been one of the most important
references in what is related to web analytics. Its Alexa Rank (a famous
and widely used metric to measure the popularity of a website) it has
received historically (and even today), a considerable importance by sites’
owners and people working on search engine optimization (SEO).

In order to get all the data needed for its analytics services, Alexa
collects information directly from multiple web browser extensions, toolbars

6 https://www.alexa.com/

25

and also from sites that install a script that sends information to Alexa's
servers (similar to Google Analytics). 7

Toolbars and extensions are available for Firefox and Chrome and they 8 9

are designed in such way that users are motivated to install and use them
in order to access to features such as:

● Alexa Traffic Rank (see how popular a website is)
● Related Links (find sites that are similar to the site you are

visiting)
● Wayback (see how a site looked in the past)
● Search Analytics (find out which queries drive traffic to a site)

With all this information collected and centralized, the analytics tools

provided by Alexa , allow enterprise customers to find meaningful
information about their sites.
These tools are divided in two main groups: SEO tools (focused on 10

keyword research and website optimization for Improving search engine
rankings and results) and Competitive Analysis Tools (focused on 11

website analysis and market research for understanding the competitive
landscape, track the performance of other sites and get visibility into
competitor strategies).

In particular, one of the Competitive Analysis Tools is the Audience
Overlap Tool . Among other things, it allows to see clusters of related 12

sites as it is shown in Figure 3 . This is very interesting and related to this
work, since in some way or another, semantic information start to appear
when analyzing these clusters.
And going deeper, this tool offers a self contained service called Find
Similar Sites which allows to query for a specific domain name in order 13

to know possible competitors based on similar sites. In its paid version,
this service retrieves the top 100 most similar sites for a specific input
domain name.

7 https://analytics.google.com/
8 https://www.alexa.com/toolbar?browser=firefox
9 https://www.alexa.com/toolbar?browser=chrome
10 https://try.alexa.com/marketing-stack/seo-tools/
11 https://try.alexa.com/marketing-stack/competitive-analysis-tools
12 https://try.alexa.com/marketing-stack/audience-overlap-tool
13 https://www.alexa.com/find-similar-sites

26

Figure 4 shows a web view of the service displaying the top 5 most similar
sites for amazon.com . The result list has a default order by the Overlap
Score value. The meaning of this value according to Alexa is: “the relative
level of visitor (audience) overlap between any site and the target site. A
site with a higher score shows higher audience overlap than a site with a
lower score” . This order will be important when defining the evaluation
strategy explained in Section 4.3 .

Figure 3 - Clusters of related sites (image credits: Alexa). 14

Figure 4 - Similar Sites for amazon.com according to Alexa. Retrieval date: Oct, 2018.

14 https://try.alexa.com/offer/guided-tour/find-and-reach-your-audience

27

 As explained before, the main objective of this thesis is to build a
semantic similarity representation between domain names only using
information of DNS queries from recursive DNS servers, without any other
previous knowledge about the content of those domains.
In order to do this, some external sources will be used as reference for
comparison. In particular (as it will be explained in Section 4.3 , when
describing the evaluation framework to use), the API service for finding
similar sites provided by Alexa will be used for measuring the accuracy of
the solution.

2.2.2. SimilarWeb

SimilarWeb , is an online competitive intelligence tool owned by the 15

Israeli start-up SimilarGroup . The online tool as well as its browser
extension (available for Chrome , Firefox , Safari and Opera) shows many 16

statistics about websites, including traffic sources, organic versus paid
search, social traffic, related sites (the most related to this work), and
more.

As it is shown in Figure 5 , the main features are divided into nine
different categories (see [14] or [15] for a detailed review):

● General Overview (in-depth traffic and engagement stats,

including monthly visits trend, time on the site, page-views
and bounce rate)

● Traffic Sources (a chart with the different sources for a site,
including direct links, search, social, mail, display, etc)

● Geography (which locations the traffic is coming from; shows
5 leading countries)

● Referring Sites (a list of the top 10 inbound and outbound
referral sites)

15 http://www.similarsitesearch.com/
16
https://chrome.google.com/webstore/detail/similarweb-traffic-rank-w/hoklmmgfnpapgjgcpechhaami
mifchmp/

28

● Search Traffic (organic vs. paid traffic and top 10 keywords)
● Social (ranks the top 5 social networks according to the

quantity of traffic they send to the site)

● Display Advertising (top publishers and ad networks, also
shows ad screenshots)

● Audience (upstream and downstream, other sites that users
visited online by category, topic and websites)

● Similar sites (sites with similar content)

● Mobile apps (displays the mobile apps belonging to the
website)

Figure 5 - SimilarWeb extension when browsing www.amazon.com

According to the official documentation , the data is gathered from: 17

● A pool of monitored user devices (hundreds of millions of

desktop/mobile devices)

17 https://www.similarweb.com/ourdata

29

● Data obtained directly from ISPs

● Web crawlers that scan websites every month

● Direct measurement from websites and mobile apps
connected to them

The pool of monitored user devices is the main source of

information and it is achieved thanks to the browser extension. According
to the extension’s agreement and the privacy policy , SimilarWeb claims 18

to collect data regarding browsing usage, specifically the domains that
users browse. The usage of the extension requires granting it permission
to capture anonymized click-stream data.

Last but not least, the privacy policy also specifies that children

under 13 are prohibited from using the service. If SimilarWeb becomes
aware that a user under the age of 13 has shared any information, the
information is discarded. As we will point out later, this restriction makes
difficult to learn good similarities for sites where children are the main
audience.

2.2.3. Google Similar Pages

Google Similar Pages is an extension specifically designed for the 19

Chrome browser by Google Inc. As it is shown in Figure 6 , it displays a few
semantically similar pages to the one that the user is browsing.

To the best of our knowledge, Google does not provide information

about the techniques or algorithms that are used in order to decide what
are the most similar pages to a given site.
Probably, not only the data that comes from the browser extension
(tracking user’s navigation habits) is used for gathering the required
information to learn sites similarities. It is reasonable to believe that
Google also combines information collected from other sources, like the

18 https://www.similarsites.com/privacy-policy
19
https://chrome.google.com/webstore/detail/google-similar-pages/pjnfggphgdjblhfjaphkjhfpi
iekbbej

30

contents in themselves (the reader should remember that Google’s search
engine scans websites for indexing the web periodically) and also from
their own public DNS , which is a free, global DNS resolution service that
users can use as an alternative to their current DNS provider (this could be
much closer to our approach).
Learn semantic information from the contents in themselves is probably
the obvious and most direct option but as we will point out later, it is very
difficult to implement in large scale systems like the web.

Figure 6 - Google Similar Pages extension when browsing www.amazon.com

2.2.4. Others

There are some other available options that can provide a similar
feature for finding similar sites. A brief (non exhaustive) summary with
some of these options is presented in the following.

Similarsitesearch i s a search engine for finding similar, related or 20

alternative sites. At the moment of writing this, the database is quite small,
containing less than 14k items. They use machine learning algorithms and
social data to determine the topics of websites which are used to find

20 https://www.similarsitesearch.com/

31

similar websites that have the closest matching set of topics. According to
this service, multiple aspects are analyzed, including popularity, language,
and country of interests. Users can also suggest similar sites for a given
domain name (adding a collaborative mechanism for increasing the
database). Websites’ owners can submit their sites immediately to the
database by filling a form and by uploading a file (ssstopics.txt) to a
webserver in the submitted domain name (for example,
http://(www.)yourdomain.com/ssstopics.txt) indicating the topics contained
in the site.
This is similar to the keywords tag used in HTML to help search engines to
understand the website’s content. The platform gives a good explanation
of results, saying why a result is similar to a given site. This is a favor point
for this tool, since many times when machine learning algorithms are used,
the explanations for the results are omitted or they are difficult to interpret.

Moreofit is other search engine for similar sites. Given a website, it 21

suggests alternative highly related and popular websites to explore.
Although the service does not provide too much details about how does it
work, the site’s description claims that they combine manual work for
organizing and describing sites with clustering techniques. The manual
work clearly is a disadvantage and it is not scalable. This limit the websites
considered by the service to just the most popular global domains.
When testing this tool using many of the most popular uruguayan
websites, the result was a poor message saying that the provided url is not
popular enough to get result.

A topic based directory where sites are submitted manually by
users and then grouped under different categories is the approach offered
by SitesLike . For linking similar sites together, the service makes use of 22

known and readily available information like global reach, page rank,
keywords and user input.

Top Similar Sites is other possibility, it’s a website that offers a 23

basic kind of grouping for some general categories (search, news, social,
video, shopping, etc) and a search engine tool for finding similar sites. It
also allows to see results order by sites’ popularities and see the most

21 http://www.moreofit.com/
22 https://siteslike.com/
23 http://www.topsimilarsites.com/

32

http://www.moreofit.com/

relevant topics for the site that is being searched. In addition to this, it
offers an interesting feature that returns the most similar sites but based
on names’ syntax and structure.
As we will see later in this work, when proposing a new approach for
finding similarities between domain names, morphological characteristics
of domain names is also something very important to be considered, since
they generally carry strong information about its nature.

Finally, the last option considered in our list is SimilarSites that 24

despite being presented like something independent, it is a service
powered by SimilarWeb (see Section 2.2.2), and the results obtained when
looking for similar sites are exactly the same than the results obtained
when using SimilarWeb .
This service can be used from its website itself, or through its chrome
extension . 25

Probably, presenting this service with a different website than SimilarWeb
(removing all the web analytics tools provided by SimilarWeb) is a
business strategy decision with the goal of reaching a different kind of
public. SimilarWeb is thought more for the enterprise and websites’ owners
who want to get all kind of statistics and competitive information about
websites, and on the other hand, SimilarSites is thought more for a
common Internet user that just want to know similar pages to explore and
discover new content similar or related to its interests (it works like a
recommender system by recommending similar content to the one that it’s
being viewed).
The recommendation approach behind SimilarSites is "people who visit
this site also like to visit these other related sites" (just like with Youtube
recommendations).
Installing and using SimilarSites extension requires granting permissions
to capture anonymized browsing data. This powers the algorithms that
generate similar sites to the ones a user visits and allows to understand
website traffic numbers and flows, which can be used for market research.
The same privacy policy than SimilarWeb is applied. 26

24 http://similarsites.com/
25
https://chrome.google.com/webstore/detail/similar-sites-discover-re/necpbmbhhdiplmfhmjicabdeighk
ndkn
26 https://www.similarsites.com/privacy-policy

33

2.2.5. Disadvantages of the current approaches: where to
go next?

In general we can divide all the previous tools that were presented
in two different categories, either those tools that in some way or another
require that Internet’s users or websites’ owners install some kind of
component able to run at the client side (a browser plugin/extension, a
client side script, etc) or those tools that create a centralized database of
similar sites based on sites’ topics (manually or automated indexed).
One advantage of many of the previously mentioned approaches is that
they can act to the whole URL level, not just the domain. This could be
something helpful in different scenarios for example to block only some
particular pages of a domain or to recommend specific categories in a
domain with multiple subcategories of different products. But as we will
see in this section, the current solutions suffer from many disadvantages
that motivates the exploration of new approaches like the one presented in
this work.

Using client side components has many disadvantages:

● Firstly, it will collect information only from who installed the plugin.

This could reduce the public to some specific segment/kind of user,
and it is not representative of all Internet users (this is the same
problem than a political poll by telephone could have by collecting
responses just from people who have telephone, and without
considering the opinion of a different kind of voter, the one that
cannot have access to a telephone).

● There are legal prohibitions to collect information for children under
13 years old. This restricts the audience even more, making difficult
to collect enough big data for sites where children are the main
audience. Example of these sites could be educational sites, games
sites, cartoons channel websites, among others.

● It requires the user to give permissions to allow the execution of a
browser extension (many users do not like this because of security
concerns) or allow cross-domain requests from javascript code.

34

● It is intrusive in the user’s navigation and possibly affecting the

navigation’s performance, and thus, the user experience when
visiting different websites.

● It does not work well for mobile devices (not all mobile browsers
support using plugins/extensions). This issue, reduce even more
the group of users that are tracked. It’s important to note that
nowadays, mobile access is greater than desktop access [16] , so
there is a huge segment of users browsing the web from their
mobile devices.

● Development, maintenance and updates are difficult. Different
extensions for different browsers need to be developed. Users with
more than one browser would require to install a different instance
of the extension in all browsers. It’s difficult to change the
centralized service that collect the information once the
extensions/site scripts are distributed globally, needing to support
possible many different versions at the same time.

● It’s difficult to distribute the client side component. Common users
probably won't access to download/install the extension explicitly.
Important marketing campaigns and ads in popular sites are
probably needed to reach a big amount of users, making this
approach to be expensive.

● In case of tracking by using scripts hosted in websites, probably
only some enterprise sites would use them, and on the other hand,
it requires to provide a high quality analytic tool able to provide
helpful information for business decisions, and so, to be a sexy
option for sites' owners (otherwise, why should they add an script to
send information to an external site?)

Using a database of similar sites based on sites’ topics presents
other disadvantages:

● A high quality service requires a curated database and this is not
generally done by an automated process (it requires many people
manually checking contents).

35

● It is based exclusively in the kind of topic a site contains, making
difficult to understand complex relationships like complementary
sites.

● It requires a submit process to add less popular sites (sites’ owners
need to submit their websites to the database for an initial tracking).

● Topics are discovered either manually during a curation process or
automatically by robots (web crawlers) searching for specific
metadata (html keywords, specific text files that describe the site’s
content, etc). In the last case, it requires sites’ owners to add
metadata to their sites and we need to trust in their descriptions.

● When similarities are based on metadata, language could be a
problem (for instance, keywords in spanish will not match english
keywords despite the sites could be very related based on the kind
of content they provide).

● When similarities are based on metadata, webmasters could
employ different terms for a same concept.

● No matter if the topics are discovered manually or automatically
through web crawlers, It does not scale well to all the web.

Other approaches

In the particular case of Google Similar Pages , as it was mentioned
before, Google does not provide information about the techniques or
algorithms they use, but we can think that they probably combine
information gathered from many sources (not only from the browser
extension) like the contents in themselves or their own free public DNS
resolution service (among others).
Contents could be accessed by Google through their search engine, and
the similarity problem can be addressed as a classic Information Retrieval
(IR) problem by creating a vector representation for each content and then
just applying some similarity distance between vectors like for example the
euclidean or cosine distance (in the next chapter, we will see different

36

techniques for creating such vector representations for words and
documents). But although it sounds great to use the content’s information
as a basic source of semantic learning, this is not something easy to
implement in large scale systems like the web, and it presents lot of
disadvantages as an standard solution, being very time consuming and
requiring an enormous infrastructure and complex logic to analyze all the
contents from the entire web.
On the other hand, if Google had been using its own Google Public DNS
System as a source of information for understanding navigation patterns in
the web , then it would be a much closer approach than the one presented
later in this work. And the same for SimilarWeb, which also indicates that
they make use of some kind of information provided by ISPs but without
indicating too much details about this data source.

Hence, since this information is not provided by Google or
SimilarWeb , then we think that the approach presented in Chapter 4 is a
novel method for solving this complex task of finding semantic similarities
between Internet domain names.
But before moving to the proposed solution, let’s continue presenting the
theory behind word and document embeddings, that at the end they are
the core ideas used later in this work.

37

38

3. Chapter Ⅲ - Vector representation of
words and documents

In order to work with different algorithms, computers need to
represent words and documents as fixed length vectors that can be used
as input for training different machine learning models or for searching
relevant documents using some Information Retrieval System (IRS) . For
example, consider the following two sentences (widely used in the
literature)

A. “Obama speaks to the media in Illinois”
B. “The president greets the press in Chicago”

Probably, we pretend that if we search the sentence A in a search engine,
then document B is included in the results. In the same way, we would like
that a machine learning algorithm in the Natural Language Processing
(NLP) field could understand that both sentences have a similar meaning.
In order achieve these goals, computer algorithms need to understand that
“Obama” and “president” have a similar meaning and that they can be
interchanged in many contexts as the same thing, and the same with the
words “press” and “media”. Also, intelligent algorithms need to understand
more complex relationships between words like the one that exists
between “Illinois” and “Chicago” that despite not being the same thing,
they have a strong relationship since Chicago is a city that belongs to the
state of Illinois in the United States.

By analyzing big amount of text data (corpora), and how different
words are used in different contexts and how they appear combined with
other words, different techniques in the NLP and IR field can be employed
in order to build a vector space model (VSM) . As we will see later in this
chapter, in a VSM words are represented as fixed length vectors and the
relationships between words can be expressed as mathematical
operations between vectors.
These vector representations, have been used for over 50 years, being the
most common way to compute semantic similarity between words,

39

sentences or documents, making these methods an important tool in
practical applications like question answering , summarization , or automatic
essay grading [17] .

A common taxonomy for vector representation of words (a.k.a word
embeddings) organizes the techniques into two main categories:
count-based (a.k.a matrix-factorization based) and prediction-based ([18] ,
[19] , [20]). There are many research works like [18] , [21] , [22] , [23] , [24] ,
[25] (among others) that describe the main methods commonly used.
In the rest of this chapter we will present a review of these techniques,
starting from the most basics ones that use sparse representations, to the
most complex ones that are able to learn dense vectors representation
using neural networks as part of a statistical language modelling .
Statistical models of natural language are a key part of many systems
today. The most widely known applications are automatic speech
recognition (ASR) , machine translation (MT) and optical character
recognition (OCR) [26] . In [27] , [28] and [29] a complete review of
statistical language models based on neural network can be found.

Later, in Chapter 4 this background knowledge (in particular the
word embeddings techniques based on neural networks) will be used to
build a vector space model for Internet domain names. In this vector space
model, names of websites (example1.com, example2.com, etc) are taken
from real anonymized DNS log queries (user’s navigation traces) from a
large Internet Service Provider (ISP) . The main goal will be to find
semantically similar domains only using information of DNS queries
without any other previous knowledge about the content of those domains.

3.1. One-Hot encoding

This is probably the most simple technique for word
representations. Suppose a vocabulary with n words V = {w 1 , w 2 , …, w n } ,
then the idea behind this technique is to represent each word w i as a fixed
length vector of length n (where n is the number of words in the vocabulary
V). Each dimension of the vector v = (v 1 , …, v n) will be zero, except the
element at the i th position that will be one.

40

As an example, if our vocabulary is defined by the words {dog, cat,
fish} then, each of these words is represented by a 3 dimensional vector.
And the particular encoding for each word would be: 100 (dog), 010 (cat)
and 001 (fish).

It is easy to see the main problem of this technique, the high
dimensional and sparse representation of the words. This model presents
a terrible performance when using large vocabularies, being computational
very expensive and making to fail some matrix operations (like rebuild in
autoencoders). Furthermore, a representation like this does not include
any information about semantic relationship between words.

3.2. Vector Space Models (VSMs)

In the previous example, when using one-hot embedding , we
pointed out that one of the main issues presented by the method is that the
representation does not include any semantic about words.

Vector Space Models (originally introduced in the SMART
information retrieval system [30] by Gerard Salton and his colleagues [31])
on the contrary, allow to represent words by using vectors that when are
embedded in a vector space, words with similar semantic are mapped to
nearby points in the high dimensional space. From now, and during this
work, anytime we refer to a word, sentence or document embedding we
are referring to the vector representation for that word, sentence or
document in the high dimensional vector space model.

In some way or another, all these vector space models have the
notion of context , and they have as fundamental hypothesis that similar
contexts tend to have similar meanings. The meaning of a word is thus
related to the distribution of words around it [17] , (for this reason these
methods sometimes are called distributional methods) and so, words that
occur in similar contexts tend to have similar meanings [32] [33] [34] [35] .
The different approaches that leverage this principle can be divided into
two categories: count-based methods and predictive methods .

41

Count-based methods generally use a co-occurrence matrix , an
structure that allows to define a math model for representing how often
words co-occur in a large text corpus and then map these count-statistics
down to a small, dense vector for each word [36] . As it was pointed out in
[21] , the different structures of this co-occurrence matrix (term– document,
word–context, pair–pattern matrices, etc) are very important in determining
the potential applications and can be helpful for organizing the literature on
VSM s.

Predictive models directly try to predict a word from its neighbors

[36] (or the neighbors from a word) and the prediction process can be used
to learn embeddings for each target word by starting with a random vector
and then iteratively updating the embedding in such way that the
embedding is more like the embeddings of neighbor words and less like
the embeddings of words that don’t occur nearby.

Vector or distributional models of meanings , have been used in the

NLP field for over 50 years, being the most common way to compute
semantic similarity between words, sentences or documents, making these
methods an important tool in practical applications like question answering,
summarization, or automatic essay grading [17] .

In what follows, the most important VSM methods that are

commonly used are presented, starting from the simplest and most
intuitive count-based method that leverage the co-occurrence matrix in its
raw definition (sparse matrix), then moving on to more sophisticated
methods that transform the sparse matrix in a dense one, and finally some
of the latest approaches currently being used for predictive models based
on neural networks architectures. Later, in next sections, we will focus
specifically on the details for the particular predictive models that were
used through this research.

42

3.2.1. Count-based methods

3.2.1.1. Sparse Vector representations

3.2.1.1.1. Term-Document Matrix

The Term-Document Matrix is probably the simplest and most
intuitive count-based method that uses a matrix to represent words and
documents in a continuous vector space model. In its most basic form, this
matrix contains a row for each term in the vocabulary (generally tens of
thousands words) and a column for each document in the collection of all
possible documents (the collection of documents could be potentially
enormous, just think in Internet, for instance). Then, each cell in matrix(i,j)
represents the number of occurrences that the term i occurs in the
document j .

Although this is a basic and simple structure, it is able to capture

semantic from terms and documents which is helpful for applying similarity
measures and computations for finding similar terms and documents. For
this reason, this approach was initially employed in the Information
Retrieval (IR) field, like in [30] .

As an example, consider a vocabulary V={w 1 , w 2 , w 3 , w 4 , w 5 , w 6 }

that corresponds to the union of all the words that are present in
documents d 1 , d 2 , d 3 . Suppose that the text content (corpus) of these
documents are:

● d 1 = w 1 w 2 w 1 w 3

● d 2 = w 2 w 3 w 2 w 3 w 4

● d 3 = w 3 w 1 w 5 w 6 w 4 w 5 w 6 w 5 w 4 w 1

43

Then, the Term-Document Matrix is:

 d 1 d 2 d 3

w 1 2 0 2

w 2 1 2 0

w 3 1 2 1

w 4 0 1 2

w 5 0 0 3

w 6 0 0 2

Table 3 - Term-Document Matrix example

Now, the columns and rows can be used as vectors to represent

documents and words respectively in the vector space model. The column
representation for documents, is also known as bag of words
representation, since the semantic of the document is defined exclusively
by the set of words that appear in the document (order doesn't matter).
For instance, v d1 =(2,1,1,0,0,0) is the 6 dimensional vector that represent
the document d 1 , v d2 =(0,2,2,1,0,0) and v d3 =(2,0,1,2,3,2) are the vectors that
represent the documents d 2 and d 3 respectively. At the row level we have
the 3 dimensional vectors v w1 =(2,0,2) , v w2 =(1,2,0) , v w3 =(1,2,1) , v w4 =(0,1,2) ,
v w5 =(0,0,3) and v w6 =(0,0,2) that represent the words w 1 , w 2 , w 3 , w 4 , w 5 ,w 6
respectively.

It is interesting to note that words and documents live in different

dimensional spaces. For modeling the documents d 1 , d 2 and d 3 , we have a
6 dimensional space, where each dimension corresponds to the number of
occurrences of an specific term in the document. For modeling terms w 1 ,
w 2 , w 3 , w 4 , w 5 , w 6 we have a 3 dimensional space, where each dimension
corresponds to the number of occurrences that the term has in an specific
document. If we generalize this observation, for an N x M matrix where N =
|V| (number of unique words in the vocabulary) and M = |D| (number of
documents in the documents collection) the vector space model for the
terms is a M dimensional space and the vector space model for modeling
documents is a N dimensional space.

44

Finally, since similar documents use similar terms that define the

semantic of the document, those documents will have similar values in the
dimensions that correspond to those terms. Then, after having found a
vector representation of the documents that keeps some of the hidden
semantic, we can compute similarity between documents by measuring
the distance between the vector representations of the documents.
And the same idea also applies to compute similarity between words.
Since similar words tends to appears in the same documents, then their
vector representations tends to have similar values in the dimension that
corresponds to those documents, and so, the distance between those
words tends to be small.

One of the most common distance metric widely used is the cosine
distance. Cosine distance between two vectors is defined in [21] by
Equation 1 .

 (Eq. 1)

For this metric, the most important is the angle between the vectors
and not the length of the vectors. When the two vectors point in opposite
directions (180 degrees) then the cosine value is -1, when they point in
same direction (0 degree) the cosine value is 1, and when they are
orthogonal (90 degrees) the cosine value is 0.
Having presented the cosine distance formula, we can use it to measure
how similar two words or two documents are by considering their vector
representations from the term-document matrix. For instance, the cosine
distance between w 1 and w 2 is 0.316, between w 1 and w 3 is 0.577,
between d 1 and d 2 is 0.544 and between d 1 and d 3 is 0.435. By using these
metrics, we can see easily that w 1 and w 3 are more similar than w 1 and w 2 ,
and d 1 is more similar to d 2 than d 3 .

45

One disadvantage is that when using raw frequencies of word
occurrences in documents, common words that appear in all documents
and do not add any important semantic (like english stop-words: is, the, a,
an, it, etc) to the document, can introduce noise in the representation
when computing similarities.
As we are about to see, weighting techniques like PMI (Pointwise Mutual
Information) and the tf-idf (term frequency – Inverse document frequency)
are commonly used to avoid the issue of common terms that are not as
relevant as others less frequent terms, and can affect the performance of
the similarity metric.

Finally, it’s important to mention that other two disadvantages of the
term-document matrix are that rows and columns vectors that represent
words and documents respectively, generally have a high number of
dimensions (requiring lot of space for allocating the whole matrix) and they
are also very sparse (most values in vectors are zero).
As we are going to see later, dense vector representations of words and
documents will help to solve these problems.

3.2.1.1.2. Weighted Term-Document Matrix

Using the raw frequency of terms in documents as values for the
Term-Document matrix could be not the best idea. This is because not all
words in a document are equally important [37] . For example, common
words like “ the”, “and”, “this”, “it” (among others) can appear tons of times
in each document and also are words that probably occurs in all
documents, so they do not add any important meaning to the documents
where they appear.

Common words, can add noise when calculating the similarity

between documents or words. One option to deal with this problem is to
remove the more frequents words or words that appear in some
predefined blacklist or stopwords list. Anyway, and although removing stop
words can help removing noise for computing similarities, we still can have
words that are more frequent than others adding less semantic than those
words that are very specific for particular domains and so carrying lot of
semantic information in it.

46

In order to deal with this problem, a common approach is to use
weighted values for term frequencies in documents instead of using just
raw frequencies. A weighted value can be seen as the output of some
function of relevance or importance of the term, applied to the raw
frequency value of that term.
This approach has demonstrated to work very well and different weighting
functions have been used. Two of the most well-known are PMI (pointwise
mutual information) and tf-idf (term frequency – Inverse document
frequency)

3.2.1.1.2.1. Pointwise Mutual Information (PMI)

For computing word similarity, PMI is one of the most popular

techniques employed for weighting term frequencies in a Term-Context
matrix (as we will see, the Term-Context matrix is a generalization of the
Term-Document matrix, allowing different kind of contexts and not only
documents).

After applying PMI to the original matrix, then each cell in the final

matrix represents the association between the word w i and the context c j .
We can think about PMI as a measure of how often two words co-occur in
the same context, compared with what we would expect if they were
independent [17] .

More formally, when computing PMI between two words x and y ,

PMI “compares the probability of observing x and y together (the joint
probability) with the probabilities of observing x and y independently
(chance)” [38] .
[38] also presents Equation 2 as the formula for estimating PMI as the log
ratio between x and y’s joint probability and the product of their marginal
probabilities.

 (Eq. 2)

47

where:

● P(x) is the estimated probability of the word x. In practice, we
represent this probability as the number of occurrences of x in the
corpus

● P(y) is the estimated probability of the word y. In practice, we
represent this probability as the number of occurrences of y in the
corpus

● P(x, y) is the estimated probability that words x and y occur in the
same context. In practice, we represent this probability as the
number of times where the two words co-occur in the same context

Furthermore, a minor variation of PMI called Positive Pointwise

Mutual Information (PPMI) is typically used. As shown in Equation 3 , PPMI
simply corrects values lower than zero to zero.

 (Eq. 3)

In that way, PPMI is never negative and according to [39] it reaches
a better performance than PMI.

Regarding to the disadvantages of PMI, a well-known problem is

that it is biased towards infrequent events. [40] and [41] provide some
approaches to deal with this problem.

As a final note, it is important to highlight that PMI works well with

both the Term-Context matrix and also with the Term-Document matrix [40]

3.2.1.1.2.2. Term frequency - Inverse document frequency (TF-IDF)

This technique originally developed in the Information retrieval (IR)

field is a very popular technique for weighting values in the
Term-Document matrix. The main idea behind this technique is to consider
the number of documents where a term appears as a measure of how
common the term is. Then, if you have two different terms T x and T y with
the same number of occurrences in a document D , the output value given

48

to T x will be higher than the output value given to T y if and only if the
number of documents containing T x is lower than the number of documents
containing T y.

In order to formalize this idea, given a term t , the Inverse Document
Frequency (IDF) definition comes into play, and it is defined by Equation 4
as follows:

 (Eq. 4)

where N is the total number of documents and df t is the number of
documents where the term t appears. Finally, as shown in Equation 5 the
TF-IDF formula is just the product of the raw term frequency (TF) of the
term t in the document d and its IDF weight.

 (Eq. 5)

Equation 5 contains all the desired characteristics, assigning to term

t a weight in document d that is [37] :

1. highest when t occurs many times within a small number of
documents (thus lending high discriminating power to those
documents)

2. lower when the term occurs fewer times in a document, or

occurs in many documents (thus offering a less pronounced
relevance signal)

3. lowest when the term occurs in virtually all documents

Tf-idf thus prefers words that are frequent in the current document d but
rare overall in the collection. The tf-idf is by far the dominant way of
weighting co-occurrence matrices in information retrieval, however, is not
as common as PPMI as a component in measures of word similarity [17] .

49

3.2.1.1.3. Term-Context Matrix

This is a generalization of the Term-Document Matrix, allowing
different contexts instead of only documents. Some of the most common
options are phrases, sentences, paragraphs, chapters, documents, or
more exotic possibilities, such as sequences of characters or patterns [21] .
Sometimes this matrix is also called the term-term matrix or the word-word
matrix because rows and columns contain all the terms (words) of the
vocabulary and each cell in this |V| x |V| matrix allocates the number of
co-occurrences of the two words in same contexts (number of shared
contexts between the two words).
Although many kind of contexts can be used (like the Term-Document
matrix where the contexts are entire documents) generally, small contexts
are used, for instance 4 words before and after a central word.

As an illustrative example, using the same words and documents

than in the previous example, and considering a small window of size 1,
then the term-term matrix can be expressed as shown in Table 4 .

When using small window sizes, since the information is coming

from immediately nearby words, the representations tends to be more
syntactic. On the contrary, when longer the window, the more semantic the
relations [17] .

 w1 w2 w3 w4 w5 w6

w1 1 3 4 2 3 1

w2 3 1 5 1 0 0

w3 4 5 1 2 1 0

w4 2 1 2 0 5 4

w5 3 0 1 5 1 6

w6 1 0 0 4 6 0

Table 4 - Term-Term Matrix example

50

As a good example of this kind of approaches we have the
Hyperspace Analogue to Language (HAL) [42] , that creates a word-word
co-occurrence matrix where rows and columns represent words and cells
contains the number of times a given word (row) occurs in the context of
another given word (column).
One of the majors problems with HAL and related methods is that the most
frequent words like the , o r or and (among others) contribute a
disproportionate amount to the similarity measure, having a large effect on
their similarity despite conveying relatively little about their semantic
relatedness [19] .

Techniques like COALS method [43] or the square root type
transformation in the form of Hellinger PCA (HPCA) [44] have
demonstrated to be helpful to address this issue, by initially transform the
co-occurrence matrix using an entropy or correlation-based normalization
[19] .

Finally, it's worth mentioning that other disadvantage of the

Term-Context Matrix is that it suffers the issue of being high dimensional
and sparse (most of the entries are zero) as we already observed for the
Term-Document matrix . In particular, this problem is even more visible
here because the matrix size in this case is |V| x |V| where V represents
the vocabulary set. Lower dimensional and dense vector representations
will help to solve this problem as we will see in the following sections.

3.2.1.2. Dense Vector representations

When studying the Term-Context matrix representation for
embedding words we pointed out that the two main disadvantages were
that the vectors were very long (each word represented by a vector with
one dimension for each word in the vocabulary) and also very sparse
(most of the vector’s entries were zero).
These two disadvantages are the issues that dense vector representations
try to address. In other words, the goal of a dense vector representation is
to represent words by capturing their semantic in a shorter and dense
vector (generally from 50 to 1000 dimensions of real numbers without
zeros)

51

In what follow we present some of the most popular count-based

methods for learning low dimensional and dense representation of words.
Later we will see that also other techniques based in neural networks and
predictive models can be used with the same goal.

3.2.1.2.1. Latent Semantic Analysis (LSA)

This technique, sometimes also referred as Latent Semantic
Indexing (LSI) is maybe the most intuitive evolution from the long and
sparse representation given by the Term-Document matrix approach.
After building the Term-Document matrix , LSA simply apply a dimensional
reduction approach like the Singular Value Decomposition (SVD)
technique to generate a lower dimensional and dense representation of
the original Term-Document matrix .

I t's worth mentioning that a weighting function is applied to the
Term-Document entries in the matrix, instead of using just the raw
frequencies. LSA applies both, a local and global weighting function to
each nonzero element, in order to increase or decrease the importance of
types within documents (local) and across the entire document collection
(global).
The local and global weighting functions for each element, are usually
directly related to how frequently a type occurs within a document and
inversely related to how frequently a type occurs in documents across the
collection, respectively [45] .
In Section 3.2.1.1.2 some of the most common approaches for creating a
weighted Term-Document Matrix were already introduced. Also the reading
of [46] is a good reference for a more detailed explanation about local and
global weighting functions.

Now, in order to understand how LSA works, suppose a dataset
with c documents and a vocabulary V . If X represents the Term-Document
matrix , then after applying SVD we can find a matrix factorization such like
the one shown in Equation 6 .

We can think this factorization as a way of adding to the equation
the m hidden latent factors that are more important for the specific set of

52

words and documents and then rewrite X in terms of those m factors [47]
[48] .

(Eq. 6)

After applying this factorization, the sigma matrix contains values in its
diagonal that indicate how important each hidden factor is (sigma is a
diagonal matrix of size m x m with singular values in decreasing order).

LSA leverages this information provided by the sigma matrix , and
takes the top k most relevant dimensions (k is a parameter for the model)
that capture the most important features with the highest variance in the
data and then it approximates the original Term-Term matrix as shown in
Equation 7 .

Finally, each of the |V| rows of the W matrix can be used as a small

(k is taken much lower than m , generally near to 300) dense vector
representation for each word in the vocabulary V . Similarly, columns of the
C matrix can be used as dense representations for documents.

(Eq. 7)

53

The cost of executing the dimensional reduction process is very
significant, but generally (not always) the dimensional reduction applied
by SVD ends up by generating a model that performs better than the raw
Term-Document matrix . When this occurs, is typically because removing
low important dimensions allows to generalize better and avoid the
overfitting issue [48] [49] .

3.2.1.2.2. SVD applied to the Term-Term Matrix

This approach is very similar to LSA , but in this case, SVD is
applied to the Term-Term matrix instead of the Term-Document matrix .
The typical size of k used for truncating the matrix W that composes the
matrix factorization after applying SVD is between 500 and 5000, instead
the 300 dimensions typically used by LSA . This difference is because of
the granularity difference between the contexts, while the context
employed by LSA are whole documents, the context used in Term-Term
matrix are small windows of neighboring words [17] .

In regards to the disadvantages, the same issue already explained
about performance and cost of execution of the dimensional reduction
process of the SVD technique is also valid here.

Next in this work, we will present other kind of dense vector
representation approach based on the usage of Neural Networks that will
address the significant computation cost of the dimensional reduction
process applied to the Term-Context matrix when computing dense
vectors with a count-based method.

3.2.2. Prediction-based Models

In this section, we will focus on a different approach for finding
vector representation of words. Inspired by probabilistic language models,
we will introduce some of the most important techniques for learning high
quality representation of words based on words predictions.

54

Firstly, one of the simplest and powerful approaches for language
modelling based on probabilities is described: the N-gram model. Although
N-grams models are not used directly as a word embedding technique, it
gives us the basis of a simple predictive model, being important in order to
understand the evolution of language predictive models. Then, an
evolution of the N-gram model is presented by introducing artificial neural
networks as an artifact for improving the task of predicting the next word
given a sequence of previous words. In this category, Neural Network
Language Models (NNLM) are studied, in particular, the Recurrent Neural
Network Language Models (RNNLM) and the feedforward architecture
proposed in [50] . This last one ([50]), has became a reference work, and it
has been the inspiration for many other researches and works like the
Skip-Gram and CBOW architectures used in Word2Vec , App2Vec and
FastText , that are also presented later in this section. The study of these
models has particular interest, since they are used and compared later in
this work as part of the main research proposed in this thesis.

3.2.2.1. N-gram model

Despite N-gram is probably the simplest language model (LM) that
we can find, it is also one of the most widely used tool in language
processing. As any other LM it assigns probabilities to sequence of words,
and it allows to estimate the probability of the next word in a phrase given
the previous words.

Given the history h=(w 1 , w 2 , …, w n-1) of the previous words before
w n then, the joint probability P(w 1 , w 2 , …,w n-1 , w n,) can be calculated using
the chain rule of probability as: 27

P(w 1 , w 2 , …,w n-1 , w n,) = P(w n, | w 1 , w 2 , …,w n-1) . P(w 1 , w 2 , …,w n-1) =
P(w n, | w 1 , w 2 , …,w n-1) . P(w n-1 | w 1 , w 2 , …,) . …. . P(w 1 , w 2 , ….) =
P(w n, | w 1 , w 2 , …,w n-1) . P(w n-1 | w 1 , w 2 , …,) . …. . P(w 2 , | w 1) . P(w 1)

which can be reduced to Equation 8 .

27
https://www.ibm.com/developerworks/community/blogs/nlp/entry/the_chain_rule_of_proba
bility?lang=en

55

 (Eq. 8)

As we can see, Equation 8 needs to compute the conditional
probability of a word given its full previous history. These probabilities are
based on the number of occurrences of the entire sequence of length n
compared to all existing sequences of length n (that share the same prefix
of n-1 words), and this is impractical in most cases for high values of n .
For this reason, n-grams uses an approximation of this previous formula,
using just the recent history of previous words instead of the full history.
Using the recent history of the previous words for modeling language, is
supported by Markov chains, when bigrams and trigrams were used in [51]
to predict whether an upcoming letter in Pushkin’s Eugene Onegin would
be a vowel or a consonant.
Markov chains assume that we can predict the probability of some future
unit without looking too far into the past [17] . This simple yet powerful
hypothesis, is one of the fundamentals that other evolutions of language
models will take, like the concept of word’s context used by predictive
neural network models, as we will see in next sections.

The n-gram that considers just the most recent previous word is
called 2-gram (or bigram), the one that considers the last two previous
words is called 3-gram (or trigram), and so on. Hence, an m-gram can
calculate the probability of a word w n given its previous m-1 words using
the approximation shown in Equation 9 .

 (Eq. 9)

In order to calculate these probabilities different techniques can be

used. One of the most intuitive ways of calculating them is using what is
called as Maximum Likelihood Estimation (MLE), where conditional
probabilities at the right side in Equation 9 can be calculated as:

(Eq. 10)

56

where the numerator represents the number of occurrences of the entire
sequence of m words (ending with the word w n) and the denominator
represents the number of all the possibles occurrences of length m that
start with the same prefix (w n-m+1 , … , w n-1) of m-1 words (the only
difference between them is the last word). The effect of this denominator is
the normalization of the sequence of m words in order to get a probability
value between 0 and 1.
Note that if for an specific sequence S of m words that ends with the word
w n all the possible sequences of m words that share the same prefix of
m-1 words with S also end with w n , then the numerator and denominator in
this expression are equal, and then, the probability is 1 (meaning that
given this same prefix of m-1 words, we are one hundred percent sure that
the next word is w n).
Also it’s easy to see that if the sequence S never occurs in the corpus,
then the conditional probability that the next word is w n given that the prefix
is (w n-m+1 , ... , w n-1) is zero (we are one hundred percent sure that the next
word will not be w n)

But, in a real world scenario, when using n-grams for computing
probabilities for unseen data, the border cases of assigning probabilities
values of 0 or 1 are problematic. If an n-gram model is trained on a training
corpus where an specific sequence of length n never occurs, we can not
be sure that in a different corpus (unseen data) this specific sequence will
not be present. Similarly, if in a training corpus we see that all occurrences
of a same prefix is followed by the same word, we can not be sure that in a
different corpus there is no other word that could continue the sequence.

Smoothing algorithms for n-grams models like Backoff or

Interpolation try to minimize this problem by providing a more sophisticated
way to estimate the probability of n-grams , shaving off a bit of probability
mass from some more frequent events and give it to the events we’ve
never seen. Also, many others smoothing algorithms like add-1 smoothing ,
add-k smoothing , stupid backoff , or Kneser-Ney smoothing exist, in
particular to avoid the zero probability issue. The modified Kneser-Ney
smoothing (KN) is reported to provide consistently the best results among
smoothing techniques, at least for word-based language models [52] . A
more detailed description of Smoothing algorithms can be found in [17] .

57

But although having many different and complex algorithm is
important, empirical studies have repeatedly shown that simple algorithms
can often outperform their more complicated counterparts in wide varieties
of NLP applications with large datasets [53] , and many believe that it is the
size of data, not the sophistication of the algorithms that ultimately play the
central role in modern NLP [6] .
For this reason, big companies like Google or Microsoft have released
their own n-grams datasets. In 2006, Google released the 1 Tera-word
Google N-gram [54] and in 2010, Microsoft released the Microsoft web 28

N-gram corpus [53] . Other big datasets that have been found through this 29

research are the English Giga-word corpus [55] and the most recent at 30

the moment of writing this thesis, called “N-grams data” . 31

As we have seen in this section about N-grams models, the

probability computed by this kind of models in order to make predictions is
highly based on counting of words, sequences of words, and statistics.
In the next section, we will move to study a different approach, based on
the usage of neural networks as a different artifact for training a language
model and using the network’s weights as good embeddings for
representing words.

3.2.2.2. Neural Network Language Models (NNLM)

In the previous section we presented N-grams as one simple yet
powerful language model, that has been widely used in many NLP related
tasks, in particular to predict the next word that follows in a sequence
(generally a short history of the previous words).

The main problem with N-grams and this kind of standard language

models is that the number of parameters increases exponentially as the
n-gram order increases, and n-grams have no way to generalize well from
training to test set [17] (although as we pointed out, some tricks like
smoothing exist with the objective of minimizing this problem).

28 https://catalog.ldc.upenn.edu/products/LDC2006T13

29 https://blogs.msdn.microsoft.com/webngram/
30 https://catalog.ldc.upenn.edu/LDC2003T05
31 https://www.ngrams.info/intro.asp

58

A predictive language model that has been proposed as an
alternative to N-grams is based on a different approach: the usage of
Artificial Neural Networks (ANN) . ANN can be used as an artifact to help in
the prediction task of a language model. Additionally, as we will see in this
section, it allows learning distributed representations of words
(embeddings) while adjusting the weights of neurons during the training
phase (typically applying backpropagation with stochastic gradient
descent). At the time of this writing, Neural Network Language Models
(NNLMs) are the kind of language models that have the highest accuracy.

Similar to N-grams models, NNLMs use the recent previous history

of a word as input for the training phase, and that is why typically in the
associated literature we find the concepts of word’s context or
window-based approach when we study this kind of language models.
Also, since the prediction task is trained using a word and its context, the
learned embeddings have the property of being similar for words that
appear in similar contexts but totally different for words that typically do not
share similar contexts. As we will see, this property will allow the usage of
word embeddings for finding semantically related words or analogy
reasoning.
Additionally, since these embeddings are vector representations with a
fixed size (typically between 100 and 300), the learned embeddings solve
the sparsity issue for word representations when using count-based
methods like the ones that we studied in Section 3.2.1.1 .

In what follows, we will present the most common neural network
architectures for language modelling: the Feedforward Neural Network
Language Model [27] [28] and the Recurrent Neural Network Language
Model [29] .

3.2.2.2.1. Feedforward Neural Language Model (FFNLM)

Feedforward neural language models were introduced in [50] . This
kind of language model is a standard feedforward network (with an input
layer, one or more hidden layers and an output layer, where the
connections between network’s neurons go from layer n to layer n+1 and
they are generally fully connected) that takes as input at time t a
representation of some number of previous words (w t−1 ,w t−2 , etc) and

59

outputs a probability distribution over possible next words [17] . These
previous words (w t−1 ,w t−2 , etc) are generally called context and a common
used strategy for representing these words is the one-hot encoding
representation that was described in section 3.1 .
At this point, the reader probably notices that this trick of using previous
words is very similar to the approach used by the N-grams models, where
the probability of a word w n given its previous m-1 words was calculated
using Equation 9 .
In the same way, a feedforward neural language model outputs a
probability distribution over possible next words considering just the
context words as input. That is, given the set of previous recent words, the
output contains the probability of each word in the vocabulary to be the
next word in the sequence, and the sum of all these probabilities is 1.

If we recall, the one-hot encoding strategy used a vector of size | V |

(being V the vocabulary) for representing a word w i , where all dimensions
in the vector are 0 except the dimension i that is 1) . Hence if the context
length is L , the size of the input layer (number of neurons) is L x | V |.

In regards to the output layer, there is one neuron per word w in V,

hence the size of the output layer is | V |. Furthermore, the output of each
neuron i in the output layer represents the probability of word w i to be the
next word that follows in the sequence (after the input context words).
Notice that the task of predicting the next word that follows in the
sequence is a classification problem, where there are | V | posibles words
as candidates (a.k.a classes). Generally, for multi-class classification
problems a softmax function is used as the nonlinear activation function 32

for the output layer. It has the property of generating values between 0 and
1 (a probability) and also it distributes the probabilities among all the
classes by applying a normalization, resulting that the sum of all the
probabilities for all neurons in the output layer sums 1 (the next word will
be w 1 or w 2 or … or w n).

In the original proposal in [50] , the tanh (hyperbolic tangent) 33

nonlinear activation function was chosen for the hidden layer. Additionally,
a projection layer was added between the input layer and the hidden layer.

32 http://www.faqs.org/faqs/ai-faq/neural-nets/part2/section-12.html
33
http://functions.wolfram.com/ElementaryFunctions/Tanh/introductions/Tanh/ShowAll.html

60

Since the one-hot vectors that are fed into the input layer have a value of 1
in just one of the | V | dimensions, then this projection layer acts just a
look-up table to select the current embeddings associated to the input
words. The projection layer does not apply any activation function for
generating the neuron’s output (we may say that it uses an identity or
linear function as the activation function, but the relevant thing here is that
the projection layer does not use any nonlinear function), and for that
reason sometimes in the bibliography it is not considered as part of the
hidden layers.

Figure 7 summarizes the high level architecture of the feedforward

neural language model presented in [50] .

Figure 7 - High level architecture of the feedforward neural language model.

Source [50]

In its background, the architecture of this neural network is

computing the function f(i,w t−1 ,··· ,w t−n+1) = g(i,C(w t−1),··· ,C(w t−n+1)) where g
is the neural network and C(i) is the i-th word feature vector [50] . The
usage of a linear projection layer and a nonlinear hidden layer in this

61

architecture, allows to learn jointly the word vector representation and a
statistical language model [56] (notice that weights in the C matrix actually
corresponds to the word embeddings that we are interested in) and it has
been the inspiration of many others works.

As it is highlighted in [50] the main problem with this architecture is

the complexity associated to the nonlinear hidden layer, resulting in a high
computational cost. Additionally an extra cost is associated to the
normalization applied by the softmax function in the output layer.

Later in this work we will see how simpler approaches like the

Skip-Gram or CBOW architectures employed in word2vec take this base
architecture and by removing the nonlinearity complexity of the hidden
layer and using alternatives to the softmax function for the output layer, are
able to learn high quality representations (embeddings) of words in a much
efficient way.

But before moving to that, let’s see other kind of neural network

architecture that has been widely used for language models and that is
one of the most powerful nowadays: the recurrent neural networks
language models (RNNLM) .

3.2.2.2.2. Recurrent Neural Network Language Model (RNNLM)

So far we have seen how statistical language models like N-grams
or those based on neural networks like the Feed Forward Neural Network
Language Model can be employed to solve the problem of predicting
upcoming words based on some previous words (recent previous history).
We also have noticed that when using neural network based language
models, once the network is trained, the weights of neurons can be used
as a good representation of words, and we have been calling to these
representations: word embeddings (the main concept behind this work).

Hence, the study of language models is crucial for understanding

word embeddings and seeing the historical evolution of these models is
important to understand the issues that new models try to solve. For this
reason, a new kind of language model is introduced now: Recurrent Neural
Network Language Model (RNNLM) .

62

The architecture design behind Recurrent Neural Networks (RNNs)
allows to remember information that has been fed into the network in
previous iterations during the training phase. In machine learning, and
more specifically in the neural networks field, RNNs have been historically
used to deal with sequence problems. And, since the main goal of
language models is intrinsically related to a sequence learning problem
(where we want to predict the next word in a sentence by knowing the
previous sequence of words that have occurred in the recent past) is
naturally reasonable to think that RNNs are good candidates to be used for
language modelling.

The original RNNLM is described by Mikolov et al. in [57] and it is

presented as a “simple” recurrent neural network (or also called Elman
network [58]) language model. Figure 8 shows the high level architecture
of the original RNNLM :

Figure 8 - High level architecture of the recurrent neural language model. Source

[57]

As it is shown in the high level architecture definition, RNNLM does

not have a projection layer; only input, hidden and output layer and rather
than use a fixed input context for modelling the previous history (like both,
N-grams and FFNLM which use the previous m-1 words), RNNLM uses
recurrent time delayed connections (outputs from the hidden/context layer

63

at time t-1 are connected to the input layer at time t) and by doing this,
information can cycle inside these networks for arbitrarily long time (see
[59]), allowing the model to learn how to remember from past variable
length histories.
As shown in Equation 11 , in order to form the input x(t) for the network at
time t, both the representation of the current word w(t) and the output from
the hidden layer s(t-1) at time t-1 are used.

 (Eq. 11)

The plus sign in Equation 11 denotes the concatenation operation
between the two vectors w(t) and s(t-1), and the size of x(t) is the sum of
the sizes of w(t) and s(t-1) . Like in FFNLM , one-hot encoding is used to
represent w(t) , then the size of w(t) is |V|. The size of s(t-1) is equal to the
number of neurons in the hidden layer, and this is the only
hyper-parameter that needs to be tuned when using a RNNLM (this is
another advantage over FFNLM that needs to specify not only the size of
the hidden layer, also the the size of the projection layer and the context’s
length).

In regards to the activation functions that are used by the original

RNNLM , a sigmoid function (Equation 12) is used for the hidden layer (this
is also another change compared with FFNLM that generally uses a tangh
activation function for the non-linear hidden layer) and a softmax function
(Equation 13) continues being the option for modeling the probability
distribution for the output layer.

 (Eq. 12)

 (Eq. 13)

The original RNNLM is trained using standard backpropagation with
Stochastic Gradient Descent (SGD) and convergence is usually achieved
after 10-20 epochs [57] . And, although it is often claimed that learning
long-term dependencies by SGD can be quite difficult [60] RNNLM has

64

shown to signicantly outperform many competitive language modeling
techniques in terms of accuracy [26] (and also it requires much less data
than other models).

In order to improve model’s performance, rare words (words that

occurs less often than a threshold in the vocabulary) are merged into a
single token. Hence, since the size of the output layer y(t) is defined by the
number of words in the vocabulary, by doing this merge, the size of the
output layer y(t) can be reduced significantly and then, the complexity
associated to computation of the softmax function is reduced too.

Equation 14 summarizes how to compute the probability of the next

word w i (t+1) given the current word w(t) and the representation of previous
history given by the hidden layer state s(t-1) . For rare words, the
probability is distributed uniformly between them, and for not rare words,
the probability corresponds just to the output value of the neuron y i (t) in the
output layer.

 (Eq. 14)

In Equation 14 y rare (t) is the output value of the neuron associated to the
token that represents rare words in the output layer, and C rare is the total
number of rare words.

This trick of merging rare words into a single token has proven to

improve the model’s performance considerably, but unfortunately this
improvement is not enough for using RNNLM in many real world scenarios
with large scale datasets.

Hence, while this model has shown to significantly outperform many

competitive language modeling techniques in terms of accuracy, the
remaining problem is the computational complexity [26] .
For this reason Mikolov et al. presented a second work [26] where several
modifications to the original RNNLM were proposed that lead to more than
15 times speedup for both training and testing phases.
In this extension to the original work, the reduction of the amount of
parameters in the model is addressed. Also, a variant to the standard

65

backpropagation algorithm known as backpropagation through time
(BPTT) is presented, resulting into a RNN model that can be smaller,
faster (both during training and testing), and more accurate than the
original RNNLM .

With truncated BPTT , the error is propagated through recurrent
connections back in time for a specic number of time steps, allowing the
network learns to remember information for several time steps in the
hidden layer (see [59]). Better accuracy also is gained by combining RNN
models linearly (similar to random forests, that are composed of different
decision trees) that differ either in random initialization of weights or also in
the numbers of parameters. Computational and space complexity is
reduced by using classes, factorization of the output layer and
compression layers. Experiments showed in [26] demonstrate that the
extended model outperforms the original one, presenting signicant
improvements when comparing the models using two different corpora
(Penn Corpus and Switchboard). Furthermore, empirical results showed
that 4-5 steps of BPTT training was sufcient .

Hence, the techniques employed in the extended work showed that

RNNLMs can be efciently used in state of the art systems and that the
additional processing cost by using RNN models does not need to be
impractically high by exploiting these techniques.

Next works in the language models domain, focused on trying to

improve even more the performance of the different models, having always
a trade-off between speed and accuracy. In particular, when the goal is just
to learn good representation of words and embeddings are the final goal,
then some restrictions and architecture designs that were originally
thought for language models can be slightly modified (remember that
embeddings are just the weights of neurons in the network after the
training is completed and they were not the final goal of language models,
it was the prediction of upcoming words).
In this research line, the nonlinear hidden layer and the softmax output
layer have been on the eye of researchers as the bottlenecks for improving
performance. For that reason, researchers came back to the study of the
original FFNLM and started to experiment with variations of this simple
model (for example, by adding future words in the timeline as context
words, by removing the non-linear hidden layer and using just a projection

66

layer, or by removing the restriction of keeping a probability distribution
summing to 1 in the output layer, among others).

In the next sections, we will focus specifically on these word
embedding models, that are intrinsically related to the language models
that have been presented so far, but changing the focus of the final goal.
While neural network based language models were focused on learning a
predictive model able to predict upcoming words, the next models that we
will see use similar neural network architectures but with some
modifications specifically thought for learning word embeddings.

3.2.2.3. Word2Vec

Word2Vec , is not a method, algorithm or technique by itself.
Word2Vec is an open-source tool that takes a text corpus as input and its 34

output is a set of features vectors (for the words contained in that corpus)
with the characteristic that similar and semantically related words are
projected nearby in the high dimensional vector space as it is shown in
Figure 9 .
Word2Vec provides an efficient implementation of the Skip-Gram and the
Continuous Bag-of-Words (CBOW) , two popular neural network
architectures originally proposed by Mikolov et al. in [56] for learning
high-quality distributed vector representations of words that capture a large
number of precise syntactic and semantic word relationships from very
large data sets [56] [61] .
The Word2Vec tool also include the extensions proposed later in [61] , in
order to improve both the quality of the vectors and the training speed by
using subsampling of the frequent words and the usage of a simple
alternative to the hierarchical softmax called negative sampling.

The quality of the relationships learned by the Word2Vec models
are measured using a new comprehensive test set specifically designed
for this evaluation and it is found that these models perform significantly 35

better than LSA for preserving linear regularities among words. This is a
very important characteristic that allows algebraic vector operations for

34 https://code.google.com/archive/p/word2vec/
35http://www.fit.vutbr.cz/~imikolov/rnnlm/word-test.v1.txt

67

http://www.fit.vutbr.cz/~imikolov/rnnlm/word-test.v1.txt

analogy reasoning like the famous example “ man is to king as woman is to
queen” , which in other words means that the computation of the queen’s
vector can be expressed as:

 .ec(“queen”) vec(“king”) vec(“man”) vec(“woman”)v ≈ − +

Also syntactic relationships can be computed in the same way, for
example:

.ec(“smallest”) vector(”biggest”) − vector(”big”) vector(”small”)v ≈ +

And similarly, it was found that simple vector addition can often produce
meaningful results, for example:

.ec(“Russia”) vec(“river”) ec(“V olga River”)v + ≈ v
.ec(“Germany”) vec(“capital”) ec(“Berlin”)v + ≈ v

These results suggest a complex language understanding through the
computation of basic mathematical operations on the word vector
representations [61] .

Figure 9 - Examples of syntactic and semantic linear relationships (Image Credits

Tensorflow) 36

36 https://www.tensorflow.org/tutorials/representation/word2vec1

68

Figure 10 - Examples of some semantic relationships in the evaluation set.

Source [56] .

Figure 11 - Examples of some syntactic relationships in the evaluation set. Source [56] .

The Word2Vec algorithms are sometimes called deep learning
methods, and although many numerical computation and deep learning
frameworks as TensorFlow or Deeplearning4j (among others) provide 37 38

native implementations for these algorithms, formally talking, the
Skip-Gram and CBOW architectures (see Figure 12) implement a shallow
(two layers) neural network and we can not say that they are deep
networks.

These models are similar but CBOW is used to predict target words

from source context words, while the Skip-Gram model does the inverse
and predicts source context words from the target words. Both have shown
to be useful for extracting similarity of words in a text, but this inversion
has the effect that CBOW smoothes over a lot of the distributional
information (by treating an entire context as one observation). On the other

37 https://www.tensorflow.org/tutorials/word2vec
38 https://deeplearning4j.org/word2vec.html

69

https://www.tensorflow.org/tutorials/word2vec

hand, Skip-Gram treats each pair (context-target) as a different
observation, and this tends to do better for larger datasets [36] .
Although these models are very simple model architectures, compared to
the popular neural network models (both feedforward and recurrent) the
work presented in [56] concludes that it is possible to use them to train
high quality word vectors.

Figure 12 - Word2Vec’s architectures. Source [56] .

In their research, Mikolov et al. noted that most of the computational

complexity in the architectures used in previous related works were
caused by the usage of a non-linear hidden layer in the model.
Hence, they decided to explore simpler models (by removing the
non-linear hidden layer) that might not be able to represent the data as
precisely as deep neural networks, but can possibly be trained on much
more data efficiently [56] and providing additional speedup 1000x [62] .
This observation motivated the design and development of the two new
model architectures, the Skip-Gram and the CBOW models, which fall in a
new category called Log-linear models. The main goal of these new
architectures is try to minimize the computational complexity while at the

70

same time try to maximize accuracy of the vector operations in the
syntactic and semantic tasks on the evaluation set . 39

3.2.2.3.1. The Skip-Gram model

This model is inspired by the Neural Network Language Models
(NNLM) that we described before. Like the NNLM models, Skip-Gram
model tries to predict words that could be nearby (in the context) a given
current word (the input word, a.k.a target or middle word). This prediction
process can be used to learn embeddings for each target word (the
intuition is that words with similar meanings often occur near each other in
texts, and so embeddings that are good at predicting neighboring words
are also good at representing similarity) [17] .

In order to achieve this goal, a shallow (two layers) neural network

with the characteristics shown in Fig 8 is trained by feeding it word pairs to
maximize classification of a word based on another word in the same
sentence [56] . The neural network therefore learns an embedding by
starting with a random vector and then iteratively shifting a word’s
embedding to be more like the embeddings of neighboring words, and less
like the embeddings of words that don’t occur nearby [17] .

To illustrate this idea better, consider the example shown in Figure
13 for a training text “The quick brown fox jumps over the lazy dog” . Then,
if we use two words as the window size for the context, the training
examples are taken from the set that results of considering couple of
words (current word, context word) by moving a sliding window from the
left to the right over the corpus as it is shown in Fig 7 (input word appears
highlighted in blue).

In the original paper [56] , it’s explained that the number of samples
to feed in into the neural network for each input/target word is a random
number R that is randomly chosen between 1 and the window size S .
Then, R words from history and R words from the future of the current
word are used as correct labels for the classification task (with the current
word as input, and each of the R + R words as output). In other words, if
the window size is S then we could potentially have 2S training examples

39 http://www.fit.vutbr.cz/~imikolov/rnnlm/word-test.v1.txt

71

http://www.fit.vutbr.cz/~imikolov/rnnlm/word-test.v1.txt

(one per each combination of target and context word), but if we have R <
S then some of all these possible combinations will be discarded from the
training set.
In [56] also is observed that since the more distant words are usually less
related to the current word than those close to it, less weight to the distant
words is given by sampling less from those words in the training examples.
In the previous example, if R = 1 then for the third target word “brown” only
one of the combinations at the left side {(brown, the), (brown, quick)}
needs to be chosen as a new training example for the network. And the
same procedure needs to be applied with the combinations at the right
side {(brown, fox), (brown, jumps)} for choosing only one example.
It's worth mentioning that depending on the implementation used, it could be
some minor details about how to select R . For example, in the
TensorFlow’s implementation not only the window size S can be 40 41

chosen in advance, also the value of R (actually not directly R , but the
num_skips parameter that is equals to 2 R).

Figure 13 - Training examples to feed in into the Skip-Gram neural network model. Source

[63] .

40
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/examples/tutorials/word2vec/word2vec_basic.py
41 https://github.com/wangz10/tensorflow-playground/blob/master/word2vec.py

72

Figure 14 - Example of shallow neural network for the Skip-Gram model architecture.

Source: [63] .

As we can see in Figure 14 , in the Skip-Gram model, the input is a

single word that is represented using a one-hot encoding vector of size |V|
(number of words in the vocabulary) where all the dimensions are 0 except
the dimension that corresponds to the input word that is a 1.

Similar to a Feed Forward Neural Network , the input layer is fully

connected to a hidden layer (all the neurons in the input layer are
connected to all the neurons in the hidden layer) but without applying any
activation function (that is the reason why the hidden layer in this model is
also called just “projection layer”).

For the output layer, one neuron per word in the vocabulary is used

with a Softmax activation function to output the normalized probability of
that word to be near the input word (in the context, before or after the input
word). Hence, the output vector will have size |V| and it will actually be a
probability distribution where the sum of all these output values will be 1.

73

About the context, it is easy to see that the window size that
represent the length of the context, is an important hyperparameter to be
tuned through an hyperparameter optimization phase. The research
presented in the original paper [56] highlights that increasing the range
(window size) improves quality of the resulting word vectors, but it also
increases the computational complexity.

As we can se in Figure 15 , there are two matrices with weights to

be updated during the training process. Being d the hyperparameter that
represents the size (dimension) of the word vectors to be learned and | V|
the size of the vocabulary V, one matrix W of size |V| x d models the
weights of the neural network for the association between the input layer
with the hidden layer, and a second matrix C of size d x |V| models the
weights of the neural network between the hidden layer with the output
layer. Then, as part of the training process the weights of these two
matrices W and C are updated through an efficient optimization phase
while minimizing the loss function using Stochastic Gradient Descent
(SGD) with a Backpropagation approach.
At the end, for each word w j in the vocabulary (1 <= j <= |V|), row j in the
matrix W corresponds to the word embedding learned for w j. . The reader
should notice that we can simply multiply the one-hot encoded vector (of
size 1 x |V|) used as input for word w j by the W matrix (of size |V| x d) and
the result will be the embedding vector for w j represented by the row j (of
size 1 x d) of W . It’s easy to see that by doing this, W will act as a selector
for the embedding of word w j and so, W can be seen just a lookup table for
the word embeddings.

In regards to the output layer, If we consider in details the work
assigned to each output neuron in this model, we realize that each of them
receives one dimension value of the embedding associated to the input
word from each hidden neuron, and then, all this values are multiplied by
the weight associated to the two neuron's connection and aggregated to
generate a temporal result that is finally passed to the softmax function. In
other words, before applying the softmax activation function, each output
neuron k is computing the dot product v j . c k between a vector v j
(embedding for w j , output from the projection/hidden layer corresponding
to row j in W) and a c k column in C (context embeddings that are helpful
for the fake task of classifying and predicting neighbors words as part of

74

the training processes while learning the really important goal that are the
weights of W, the word embeddings).

Figure 15 - W and C matrices with the learned embeddings for the target and

context words respectively. Source [17] .

It is well known that the higher the dot product between two vectors,

the more similar they are. Then, based on this simple observation and
leveraging the maths that is modeled by the smart architecture behind the
Skip-Gram neural network model, its objective is to maximize the
probability of finding w k in the context of w j . And since the raw dot product
between the two vectors is not a probability, a softmax function is applied.
Also, since we want a probability distribution where the sum of all the
output neurons is 1, a division by the sum of the results from all the others
|V| output neurons is applied.

 (Eq. 15)

It is easy to see that in order to maximize Equation 15 , the dot
product in the numerator needs to be as higher as possible and on the
contrary a small denominator is better. Hence, in each training iteration,
Skip-Gram will adjust the network weights for W and C matrices in order to
maximize this function as much as possible (making word’s vector close to
the words that occur near it, that is, in the numerator, and further from
every other word, that is, in the denominator [17]). Once the training phase

75

is completed, matrix C can be discarded and the learned weights in W can
be used as good embeddings for words in vocabulary V .

3.2.2.3.2. The CBOW model

The CBOW model is very similar to the previously presented
Skip-Gram model, except that CBOW predicts target words from source
context words, while the Skip-Gram does the inverse and predicts source
context-words from the target words [36] . As an illustrative example,
considering the example shown in Fig 7, using a windows size of length 2,
CBOW predicts target/middle word “fox” from source context words “quick
brown jumps over” .

The original CBOW architecture shown in Figure 16 is similar to the
standard bag of words, where order doesn't matter. It tries to predict the
middle word by averaging the embeddings of the context’s words through
a projection layer as it is shown in Figure 17 . Since the context changes
continuously by moving a fixed length window through the corpus from left
to right, then the “C” in CBOW comes from “Continuous” distributed
representation of the context.

Figure 16 - CBOW architecture. Source [64] .

76

Recently, in [65] , one of the tricks presented by the Facebook AI
Research in order to train high-quality word vector representations
consists in the usage of a position-dependent weighting schema. By doing
this, the behaviour of the standard CBOW model is slightly modified,
moving from a non weighted approach (order does not matter for words in
the context) to a weighted one (the contribution of each word to the
average is weighted depending on its relative position inside the context).
Later in this work, as part of the main research presented in this thesis, a
similar weighting schema based on [66] is applied to the CBOW model in
order to improve its performance.

Other difference between CBOW and the Skip-Gram model is the

number of training samples to feed into the neural network each time the
context windows moves from the left to the right over the corpus. While
Skip-Gram generates a training sample for each word in the context (as it
is shown in Fig 7), CBOW generates only one sample for the whole
context since all the context’s words are feeded into the neural network at
the same time. This difference has the effect that CBOW smoothes over a
lot of the distributional information (by treating an entire context as one
observation). On the other hand, since Skip-Gram treats each pair
(context-target) as a different observation, this tends to do better for larger
datasets [36] .

Similar to the Skip-Gram model, CBOW uses an auxiliary

classification phase through a shallow (one hidden/projection layer) neural
network to update iteratively the neuron’s weights in the hidden layer. The
training criterion is to correctly classify the current (middle) word [56] .
When CBOW computes the output for the hidden layer, instead of directly
copying the input vector of the input context word, CBOW takes the
average of the vectors of the input context words, and it uses the product
between this averaged vector and the weight matrix between the input and
the hidden layer as the output for the hidden layer [64] .

It's worth mentioning that despite in the original paper the average

of the context words is always used, there are some implementations like
the one provided by the Gensim package for Python (used later in this

77

work) that allows to configure whether the average is used or just the sum
of the vectors of the context words (boolean ‘cbow_mean’ parameter) . 42

Finally, the output layer is computed using the same approach that

was already explained for the Skip-Gram model, that is, one output neuron
per word in the vocabulary, which in this case (for the CBOW model), it
outputs the probability (using a softmax classifier) of that word to be the
target/middle word for the input context.

Figure 17 - CBOW model [56] predicts “fox” from “quick brown jumps over” [63] .

At the end, after the training phase is completed, the rows in the
updated weight matrix between the input and the hidden layer is used as
the learned word vectors.

3.2.2.3.3. Optimizations to the original models

The first version of the Skip-Gram and CBOW models were
originally presented in [56] with the characteristics previously described

42 https://radimrehurek.com/gensim/models/word2vec.html

78

here. Later, in [61] authors published a second paper that extends the first
one with several extensions that improve both the quality of the vectors
and the training speed [61] .

The main improvements are related to:

I. adding of common phrases that are repeated in the corpus
as single tokens to the vocabulary

II. subsampling of frequent words

III. usage of a different loss function called “Negative Sampling”

Common phrases as single tokens

Authors suggested to consider frequent phrases in the corpus as
single tokens and add them to the vocabulary as single new words. This
suggestion comes up after observing that there are a lot of cases where a
the semantic of a phrase is not directly related to the semantic of its
individual words. Some examples are: “New York Times” (newspaper),
“Golden State Warriors” (NBA team), “Australian Airlines” (airline), “Steve
Ballmer” (company executive).

The method employed for phrase detection works by considering
bigrams (w i , w j) that are consecutive pairs of words. The idea is to count
the number of occurrences of the bigram and compare it with the number
of occurrences that it should have if w i and w j were not related (their
occurrences should be independent events). Hence, as shown in Equation
16 , a formula based on the unigram and bigram count is used for phrase
detection.

 (Eq. 16)

In Equation 16 , δ is used as a discounting coefficient and prevents too
many phrases consisting of very infrequent words to be formed.

79

Finally, the bigrams with score above a chosen threshold are then
used as phrases by adding them to the existing vocabulary as a single
word. The process is repeated (generally between 2 and 4 times) over the
training data using a decreasing threshold value approach. By doing this,
in each new iteration new bigrams appear, allowing longer phrases that
consists of several words to be formed [61] .

Subsampling of frequent words

The idea behind this optimization is to remove words that can be

considered as “noise” because they do not add any relevant information.
Common words like “the” , “and”, “is”, “this” (among others) are examples
of this kind of frequent words. And this is because Word2Vec models can
benefit much better when training the neural network using words that are
in the same context and share some meaning (like “France” and “Paris”)
than when using words that are in the same context but not share some
semantic relationship (like “France” and “the”).

Also, since frequent words appear in most of the contexts, then their

vector representations are too generic and it was observed that they do
not change significantly after training on several million examples [61] . In
other words, the update process that occurs during the training phase can
not move the vectors associated to frequent words to any specific direction
because they are nearby to many different kind of words and they do not
belong to any specific domain or field. Then, those vector representations
for frequent words are not relevant for finding similarities or analogical
reasoning.
Because of these issues about frequent words mentioned before, authors
in [61] presented results showing that by removing frequent words the
Word2Vec models they were able to improve both, the quality of the
learned vectors and also the training speed.

Naturally, the subsampling technique used is related to the
frequency of occurrences of words in the corpus. Equation 17 shows the
formula that is formally used to compute the probability of discarding a
word during the subsampling process.

80

 (Eq. 17)

In Equation 17 , f(w i) is the frequency of word w i and t is a chosen
threshold (typically around 10 −5). Authors argue to have chosen this
formula because it aggressively subsamples words whose frequency is
greater than t while preserving the ranking of the frequencies.

Negative sampling

If we observe the Softmax objective function that the Word2Vec
models try to maximize in Equation 15 , we realize that there is a high
computational cost in computing this function for each training example,
mainly because of its denominator that implies to compute a dot product
for every word in the vocabulary V (the computational cost increases
linearly with the numbers of words in the vocabulary). This is impractical,
particularly when using very large datasets.

Many researchers have studied different approaches for replacing

the full Softmax objective function. In [67] , Morin and Bengio proposed an
approximation to the Softmax function called Hierarchical Softmax . Hinge
loss was used by Collobert and Weston in [68] . Noise Contrastive
Estimation (NCE) was suggested by Mnih et al . in [69] , and based on this
last one, the Negative Sampling technique was proposed in [61] as an
optimization for the original Word2Vec models.

The Negative Sampling proposal consists on using an alternative

objective function to improve the cost of computing the original objective
function for each training example. The idea behind this approach is to
avoid the update of all words in the vocabulary, and instead, just pick a
small number K of negative samples to update. Values of k in the range
5–20 are useful for small training datasets, while for large datasets the k
can be as small as 2–5 [61] .
The concept of negative comes from the fact that K samples to update are
taken from words which their associated neurons in the output layer are
expected to be 0. One additional update is reserved for updating the

81

positive word, that is, the word which its neuron in the output layer is
expected to be 1.

When using the Negative Sampling approach, the selection of the K
words is based on a weighted unigram distribution raised to the 3/4rd
power, in other words, the probability for selecting a word w i as a negative
sample is related to its frequency f(w i) , with more frequent words being
more likely to be selected as negative samples.

 (Eq. 18)

According to the authors in [61] the value of 3/4rd power used in

Equation 18 was the best option obtained empirically after executing
different experiments and outperformed significantly the unigram and the
uniform distributions. In the previous equation, the denominator is added
just to keep a probability value between 0 (w i is not present in the corpus)
and 1 (w i is the only word present in a size 1 vocabulary).

Although Negative Sampling is based on NCE , and NCE

approximately maximizes the log probability of the softmax, this property is
not important for the Word2Vec models because the main goal for them is
to learn high-quality vector representations. For that reason authors in [61]
simplified NCE in such way that the simplification does not give
guarantees of maximize the log probability of the softmax (the resulting dot
products will not produce optimal predictions of upcoming words [17]) but
the vector representations retain the quality, and that is the most relevant
contribution. That said, the Negative Sampling objective function is defined
as:

 (Eq. 19)

where the v’ wo corresponds to the word embedding of the context word
taken from matrix C in the output layer , v wI to the word embedding of the

82

input word taken from matrix W in the hidden layer, and v’ wi to the word
embedding of the negative sample i (1 <= i <= k) taken from matrix C with
probability P n (w i) . σ represents the sigmoid function defined in Equation
12 that is used by the logistic regression to differentiate data from noise.

For the CBOW model, since its architecture can be seen as a mirror

or inverted version of the Skip-Gram architecture, then, we can think v wI as
the sum of the word embeddings of the inputs (words in the context) and
v’ wo as the word embedding for the target (middle word).

Finally, in order to maximize the Negative Sampling formula we

need to maximize the dot product of the word with the actual context
words, and minimize the dot products of the word with the k negative
sampled. By doing this, after the model is trained, the embeddings of
words that generally share similar contexts tend to be similar (the input
words needs to have similar weights to allow the neural network to output
similar contexts in the Skip-Gram model), and on the other hand,
embeddings of words that rarely shared same context tend to be very
different (if not, the network would output similar contexts).

3.2.2.4. App2Vec

So far, different techniques for word embedding have been
presented in this work, and all of them have their basis in the NLP field,
strongly motivated by the distributional hypothesis, suggesting that words
that are used and occur in the same contexts tend to purport similar
meanings [33] , a concept popularized by John R. Firth in [35] with the
phrase “a word is characterized by the company it keeps”.

App2Vec [66] differ from the previous techniques in its conception,
the application domain and the goal to solve. While the goal of the
previous techniques presented in this work were to find good vector
representations (embeddings) of words by studying how they are used in
different corpus and contexts, App2Vec has as main goal to model mobile
applications as vectors based on how users use those apps.
And although, it seems a totally different domain (mobile applications vs
NLP) App2Vec ’s authors realized that many ideas from the NLP field could

83

be taken in order to model mobile applications as vectors. This
characteristic makes App2Vec to be very attractive in the scope of this
work, since a similar scenario, using word embedding techniques out of
NLP domain is used later when trying to find the best vector representation
of Internet Domain Names, one of the main goals of this thesis.

Hence, in order to map the NLP problem of finding the vector
representation of words using word embeddings techniques (like the ones
implemented by Word2Vec), App2Vec applies the following mapping
between concepts:

● The concept of word is mapped to a mobile app session
● The concept of document is mapped to the sequence (ordered) of

all mobile app sessions for an specific user

Furthermore, when tracking user activities (like the use of mobile
applications) there are special properties in the sequences of activities that
users performs. Two of the most important are:

● The elapsed time gap between consecutive activities can vary and it

is very important. Two activities executed very close in time
probably are much more related than two consecutives activities
that were not executed immediately one after the other

● The same activity can be executed more than once consecutively.
For example, considering the apps {a, b, c} , then the sequence (a,
a, a, b, b, c, a) is totally valid.

From the observations above, before executing the App2Vec

vectorization algorithm, a preprocessing phase is needed for a)
incorporating an elapsed time gap variable and b) the removal of
duplicates for same consecutive actions. If we consider the same example
presented above, after adding the time gaps and removing duplicates, the
final sequence is (a, g 1 , b, g 2 , c, g 3 , a) , where a, b, c represent mobile
apps, and g i represents the elapsed time gap between two consecutive
mobile app sessions. In the Python implementation of App2Vec (kindly
provided by its authors), the new text format needed as input is explained
through the following example:

84

bird g:2 elephant g:10 car g:100 snake g:11 chicken g:12 snail
g:13 sheep g:14

More formally, what App2Vec wants to solve is to learn a similarity
function sim(ai, aj) for two apps ai and aj , given a set of users U , and the
historic app usage sessions S u of a user u ∈ U . Each app session s i ∈ S u
is represented by (u i , a j , t s , t e) , meaning user u i used app a j starting at time
t s and ending at time t e [66] .

In order to achieve its goal, App2Vec uses a slight modification of

the original CBOW model (already presented in Section 3.2.2.3.2) , where
the main change consists in using the time gaps between app sessions to
create a weighted schema inside the context window, before averaging
them in the projection layer. The formula chosen by App2Vec for weighting
a word w i to the target word w t is defined as:

r(w i , w t) = α l , (Eq. 20)

where α is empirically chosen as 0.8, and l is the amount of the gap (e.g. ,
number of minutes) between app w i within the current context and target
app w t .

In other words, what App2Vec is basically doing is changing the

standard formula used in the CBOW model for averaging input vectors
from this:

 (Eq. 21)

(where c represents the context window size and v j the context word
vectors) to this:

 (Eq. 22)

85

https://paperpile.com/c/M9NQEt/K0Kh

(where c represents the context window size, v j the context word vector
and r(w j , w t) the weighted value described above to consider the time gap
between w j and w t).

After the modified vector is fed into the projection layer, no other
changes to the original CBOW model take place. According to the results
presented in the App2Vec ’s paper [66] , the weighted schema have
demonstrated to outperform the standard bag-of-words approach,
achieving an improvement of 37% on the task of capturing semantic
relationships between apps.

Recently, in [65] , Facebook AI Research suggested the usage of

weighted schemas as one possible trick for improving the quality of word
vector representations, validating in this way the approach followed by
App2Vec .

3.2.2.5. FastText

Like Word2Vec , FastText is not a method, algorithm or technique by
itself. FastText is an open-source, free, lightweight library that allows users
to learn text representations and text classifiers [70] . This tool comes in
two flavors, it can be used either in unsupervised mode to learn word
embeddings or in a supervised mode using a labeled dataset (one label
and sentence per line) to train a text classifier.
Developed at Facebook Research , FastText is an extension of the work
previously done with Word2vec by Mikolov et. al. at Google Research . Its
fundamentals are explained in the papers [71] , [72] and [73] . Like
Word2Vec , the unsupervised mode for learning word embeddings in
FastText can be executed with both models: Skip-Gram or CBOW .

The main principle behind fastText is that the morphological

structure of a word carries important information about the meaning of the
word, which is not taken into account by traditional word embeddings,
which train a unique word embedding for every individual word [74] . And
that is the main difference between FastText and Word2Vec, that is,
FastText can learn from subwords.

86

In order to do that, FastText adds the notion of bag of characters (a.k.a
known as n-grams), which are defined by using two of the most important
hyper-parameter that FastText has, minn and maxn . These parameters
can be configured when running the unsupervised mode of FastText , and
they are related to the range of size for the subwords. In other words,
subwords are all the substrings contained in a word between the minimum
size (minn) and the maximum size (maxn). Also, the word itself is
considered to be in the set of its n-grams [71] . If maxn is set to 0, or
lesser than minn , no character n-grams are used, and the model
effectively reduces to Word2Vec [74] .

In order to understand better the concept of n-grams , consider the
word “where” and minn = maxn = 3 . Then, this word will be represented
by the character n-grams : <wh, whe, her, ere, re> (note the special
boundary symbols < and > at the beginning and end of words), and the
special sequence <where>.

Finally, the learning phase for updating a vector representation

associated to a word is computed by taking into account the word’s
morphology, which is modeled aggregating all the vector representations
of its n-grams (and the word itself) [71] . This, can be expressed more
formally using Equation 23 to represent the vector representation of word
w .

 (Eq. 23)

In Equation 23 , v w is the current vector representation of w , N is the set of
n-grams taken from w , and x n is the vector representation for the specific
n-gram n .

The main advantages of FastText compared to Word2Vec are:

● Better performance at syntactic tasks. This is due FastText
considers a word as the aggregation of different subwords, whereas
Word2Vec considers each words as a single and indivisible token.

87

● Support for o ut-of-vocabulary (OOV) words . The OOV scenario
is not supported when using Word2Vec , but with FastText the only
requirement is that exist at least one match between any subword
(of the OOV word) and any subword used during the training phase
(by any word in the vocabulary) . As an example, consider the word
“cartoon” which does not belong to the vocabulary, but “career”
does. Then, (supposing minn=3) a vector representation for
“cartoon” can be computed since there is at least one match for the
substring “car” that is present in both “career” and “cartoon” .

● Good representation for rare words . Despite a word can have
very few occurrences, probably its subwords can be present in
many other words of the vocabulary (as substring), then the final
aggregation of the subwords for the rare word would probably end
up getting a good vector representation, much better than the one
given by Word2Vec .

As disadvantage (compared to Word2Vec) it can be said that the

model’s complexity is increased by adding two new important parameters
that needs to be tuned very well in order to get good results. The minn and
maxn parameters that control the n-grams length can vary depending on
the domain.
For instance, for english language the default values of minn=3 and
maxn=6 achieve good results in practice when training using large
corpuses [75] , but in other scenarios like the research about Internet
domain names embeddings that is presented in Chapter 4 those values
are really bad (the performance is worse than Word2Vec) and exhaustive
experimentations needed to be done in order to find good settings for them
(minn = 11, maxn = 17). This example evidences the fact that the
hyper-parameter tuning phase for finding a good model is more complex
and time consuming when tuning a FastText model than a Word2Vec
model.
And last but not least, it's worth mentioning that splitting and training with
subwords increases the training time and the resource usage (ram mainly)
considerably, also the generated models using FastText with n-grams have
sizes considerably bigger than models generated by Word2Vec .

88

3.2.3. GloVe: Global Vectors for Word Representation

GloVe is an unsupervised learning algorithm for obtaining vector
representations for words [76] . It was created at Stanford University by J.
Pennington, R. Socher, and C. D. Manning in 2014 and presented in the
paper “ GloVe: Global Vectors for Word Representation” [19] .

This learning algorithm can be seen as an hybrid approach and it

can not be assigned exclusively to any of our previous classification of
count-based or prediction-based models. Since it builds a word-word
co-occurrence matrix, then we are tempt to categorize it as a count-based
model, but since it uses Stochastic Gradient Descent (SGD) to minimize a
cost function and it captures not only words similarities, but also the
semantic analogies between words (in the same way like the neural
predictive models work), we are also tempt to classify this technique as a
prediction-based model approach. Authors argue that Glove leverages the
best of the two worlds, that is: it has the advantage of capturing the global
statistics of word-word co-occurrences like the count-based methods, and
also the efficiency of the prediction-based models by simultaneously
capturing the meaningful linear substructures prevalent in recent
log-bilinear prediction-based methods like word2vec [19] .
For this reason we have decided to separate this learning algorithm into a

different categorization, an hybrid approach. It's worth mentioning that authors
arrives to the conclusion that Glove outperforms other models on word
analogy, word similarity, and named entity recognition tasks.

How does GloVe work?

The main approach in the design of Glove is the usage of global
statistics of word-word co-occurrences, but considering hidden linear
relationships substructures present in word vectors spaces.
Pennington et. al noted that clustering structures of similar words are not
the only important substructures present in the word vector space. Nearest
neighbors using a single scalar value like the euclidean or cosine distance
are not good for summarizing very complex linguistic similarities (for
example, that the relationship between man and woman can represent the
concept of gender), mainly in a high dimensional vectors scenario. For

89

such high dimensional vectors there is a more natural approach to
summarize relationships between words: vector difference between two
words vectors [77] .

As an example we can consider the vector representations of some
countries and their capitals. Figure 18 shows the 2-dimensional PCA
projection of these word representations.

Figure 18 - 2 dimensional PCA projection of countries and their capitals. Source

[78] .

By seeing the image above we can realize that not only cities or

countries form dense clusters, but also that in all cases the difference
between the vector representation of a country and the vector
representation of its capital are more or less the same, and it is capturing
some abstract concept that relates a country with its capital.
These linear relationships had been previously observed in [43] and it has
became one of the most popular benchmarks for word embeddings after
Mikolov et al. in [79] showed that proportional analogies (a is to b as c is to

90

d) can be solved by finding the vector closest to the hypothetical vector
calculated as c - a + b (e.g. king - man + woman = queen) [80] .

Other important observation pointed out in Glove is that ratios of

co-occurrences can encode important meaning. This, complements the
previous observation about the linear substructures in the word vector
space, and both will be important for defining the Glove’s model.
But, before presenting the model, let’s illustrate the importance of ratios
through a simple example with two concepts i = ice and j = steam from the
thermodynamic phase and compute how often they occur with other words
(contexts) x = {solid, gas, .. ., water}

 x = solid x = gas x = water x = random

P (x | ice) large small large small

P (x | steam) small large large small

P (x | ice) / P (x | steam) large smal l ~1 ~1

Table 5 - Probability of word co-occurrences and its ratios (simplified view of the original

table in [19])

In Table 5 , the probability P that measures the probability that word j

occurs in the same context than the word i is denoted by P (j | i) and it can
be computed over a big corpus by taking the ratio between the number of
times that j co-occurs in the context of i and the total number (sum) of
co-occurrences of any word in the context of i [19] . If we think in the
word-word co-occurrence matrix X , then:

 (Eq. 24)

where the numerator X ji corresponds to the number of times that word j
co-occurs in the context of word i and the denominator is just the sum of all
the cells in the column i of X (representing the total number of
co-occurrences of any word k in the context of i).

91

By seeing the previous table, we can note that when computing the
ratio using a word x that is related to both ice and steam, then the result is
close to 1 (because the numerator and denominator tends to be cancelled
since their values will be high and very similar).
In a similar way, we can note that when x is a random word without any
relationship with ice or steam, then the result is close to 1 too (but now
because a similar low value is found at the numerator and denominator
causing them to be cancelled).
By continue analyzing these ratio results, it’s interesting to see what
happen when x is related to just one of the words ice or steam. For
instance, when x = solid, the ratio Px i /Px j is large, and when x = gas, the
ratio is small. In both cases, they are very far from the cancellation value of
1.
With these observations in mind, we can realize that the ratio is better than
the raw probabilities in the task of distinguish relevant words (solid and
gas) from irrelevant words (water and fashion). This suggests that the
appropriate starting point for word vector learning should be with ratios of
co-occurrence probabilities rather than the probabilities themselves [19] .

Hence, based on the previous two important observations about
linear substructures in the word vector space and that ratios between
co-occurrence probabilities can encode meaning, authors propose
Equation 25 as the objective function to be minimized by Glove during its
training phase.

 (Eq. 25)

In Equation 25 , |V| is the size of the vocabulary and is a weighting (x)f ij
function that needs to meet some requirements: should be equal to 0, (0)f

should be non-decreasing so that rare co-occurrences are not(x)f
overweighted and should be relatively small for large values of x , so (x)f
that frequent co-occurrences are not overweighted. An example of this
function that worked well is:

 (Eq. 26)

92

where α = ¾ empirically demonstrated to give the best results.

Since we previously had noted that P(i | j) = X ij then in order to
minimize this objective function J , Glove tries to satisfy the log bilinear
model as part of the optimization process:

 (Eq. 27)

where w i and w j are the vector representations for words i and j
respectively and P(i | j) is the conditional probability of the co-occurrence
of word i in the context of word j .

Since w i is a row vector in the matrix, then the transpose of the
vector is used in the objective function, and also the weighting function f(x)
is added so the most frequent terms that do not add too much meaning
have less impact in the results.
Hence, by making the dot product between words embedding equal to the
log probability of their co-occurrence, the following equation is true:

 (Eq. 28)

Then, since the model was trained to satisfy Equation 27 , we have:

 (Eq. 29)

and this (Equation 29) can be re-written as (because of the difference
property of logarithms):

 (Eq. 30)

Hence, we arrive to:

 (Eq. 31)

93

By analyzing Equation 31 , we figure out that we can take any word
x from the vocabulary and by doing the dot product with other two word
vectors a and b , the result is a log function of the ratio between the
co-occurence of this word x with words a and b , which we previously
observed that carried important information about the meaning and
relationship between words.

Finally, it is important to highlight that this smart definition of the
model allows to Glove to performs fast training, to scale to huge corpora
and to get good results even with small corpus and small vectors [77] .

3.2.4. Summary of document and word embeddings
techniques

This section summarizes the techniques that were presented in this
chapter for document and word embeddings. It is worth mentioning that in
this work we will focus on the techniques regarding embeddings to the
word level, therefore embeddings to the whole document level are not
studied exhaustively and just some basic techniques are presented
(mainly those that are related with some of the word embeddings
algorithms that are studied). The reader can see Skip-Thought Vectors
[81] or Doc2vec [82] for more sophisticated embeddings techniques for
whole sentences or documents.

Technique Category Year Papers Observations

One-Hot encoding Word
embedding

- - Traditionally used
for categorical
data embedding

Term-Document
Matrix

Word and
Document
embedding

(count-based
approach)

1972 The SMART retrieval system:
experiments in automatic
document processing [30]

Rows can be
used as word
embeddings and
columns as
documents
embeddings
(a.k.a bag of
words)

Pointwise Mutual Word and 1989 Word association norms, Weighted version

94

Information (PMI) Document
embedding

(count-based
approach)

mutual information, and
lexicography [38]

of the original
Term-Document
Matrix

Term frequency -
Inverse document
frequency (TF-IDF)

Word and
Document
embedding

(count-based
approach)

1957
1972

A Statistical Approach to
Mechanized Encoding and
Searching of Literary
Information [83]

A statistical interpretation of
term specificity and its
application in retrieval [84]

Other important papers:

The Automatic Creation of
Literature Abstracts [85]

Relevance weighting of
search terms [86]

Precision Weighting—An
Effective Automatic Indexing
Method [87]

Probabilistic models of
information retrieval based on
measuring the divergence
from randomness [88]

Weighted version
of the original
Term-Document
Matrix.

The combination
of two factors:

• Term frequency
(Luhn 1957):
frequency of the
word (can be
logged)

• Inverse
document
frequency (IDF)
(Sparck Jones
1972)

Latent Semantic
Analysis (LSA)

Word and
Document
embedding

(count-based
approach)

1988
1990
1997

Computer information
retrieval using latent semantic
structure [89]

Indexing by latent semantic
analysis [47]

A solution to Plato’s problem:
The latent semantic analysis
theory of acquisition,
induction, and representation
of knowledge [48]

Dimensional
reduction applied
to the original
Term-Document
matrix M

 V . K . C M ≃

Rows in the V
matrix represent
word embeddings
and columns in
the C matrix
document
embeddings

SVD applied to the
Term-Term Matrix

Word
embedding

(count-based

1992
1996
2002

Dimensions of meaning [90]

Producing high-dimensional
semantic spaces from lexical

Similar to LSA but
dimensional
reduction is
applied to the

95

approach) co-occurrence [42]

Detecting Patterns in the LSI
Term-Term Matrix [91]

Term-Term matrix.

a.k.a Truncated
SVD on
Term-Term matrix

N-grams Language
modelling

(probabilistic
approach
based on
statistics of
bigram,
trigrams, etc)

1955
1948

Example of a Statistical
Investigation of the Text of
“Eugene Onegin” Illustrating
the Dependence Between
Samples in Chain [51]

A Mathematical Theory of
Communication [92]

Simplest
language model.
Language models
give the basis of
current word
embedding
techniques.

Feedforward
Neural Language
Model (FFNLM)

Language
modelling and
Word
embedding

(predictive
approach)

2003 A neural probabilistic
language model [50]

Original employed
for language
modeling based
on deep neural
networks.

Recurrent Neural
Network Language
Model (RNNLM)

Language
modelling

(predictive
approach)

2010 Recurrent Neural Network
Based Language Model [57]

Original employed
for language
modeling based
on neural
networks

Word2Vec Word
embedding

(predictive
approach)

2013 Efficient estimation of word
representations in vector
space [56]

Distributed representations of
words and phrases and their
compositionality [61]

Simplification of
FFNLM (shallow
network without
non-linear
activations). Two
architectures:
CBOW and
Skip-Gram

App2Vec Mobile apps
embedding

(predictive
approach)

2016 App2Vec: Vector modeling of
mobile apps and applications
[66]

Weighted version
(based on time
gaps) of the
CBOW
architecture of
Word2Vec

FastText Word
embedding and
supervised text
classification

(predictive
approach)

2016 Enriching Word Vectors with
Subword Information [71]

Bag of Tricks for Efficient Text
Classification [72]

Extension of
Word2Vec
considering
sub-word level
information (char
n-grams)

96

FastText.zip: Compressing
text classification models [73]

GloVe Word
embedding

(hybrid
approach)

2014 GloVe: Global Vectors for
Word Representation [19]

Combine the
best of
count-based and
predictive
approaches

Table 6 - Summary of document and word embeddings techniques

During the last five years (from 2013 to 2018) Word2Vec , FastText
and GloVe have been the most popular and widely used techniques for
word embeddings in the NLP field, presenting state-of the-art results in this
subject. Although not included in Table 6 or in our analysis, by the end of
2018, once this work had been completed, ELMo [93] and BERT [94] were
published and presented as new promising techniques for contextual word
embeddings. We encourage the reader to check them for a full picture of
the current state-of-the-art techniques regarding word embeddings.

In the next Chapter, a novel approach for building a vector space
model for Internet domain names will be presented. Looking for
computational efficient algorithms that can scale to large corpus at the
internet scale, the techniques highlighted in bold in Table 6 are evaluated.
These techniques are based on previous architectures for language
models, being Word2Vec an evolution (a smart simplification and
optimization) of the work described by Yoshua Bengio et al. in [50] .
App2Vec although not being originally designed for word embeddings (it
was created for mobile apps embeddings) is an extension of the CBOW
architecture of Word2Vec (a weighted version based on time gaps) and it
has been employed in similar scenarios, therefore it is interesting to see
how well it can generalize to our specific problem. Finally, the last
technique that will be evaluated is FastText which is also an extension of
Word2Vec but adding information to the sub-word level (character
n-grams). As we will see in the next chapter, capturing information to the
subword level is particularly helpful in our scenario where morphological
information of Internet domain names gives important insights about their
semantic.

97

98

Part Ⅱ
DNS Vector Space Model

99

100

4. Chapter Ⅳ - Building the DNS-VSM

In Section 2.2 , the importance of having methods and metrics for
measuring semantic similarities between domain names was discussed.
Also, it was noticed that having such kind of metrics is the key issue and
the most fundamental requirement for creating numerous applications in
different areas like user experience (recommend similar sites based on
previously visited sites), security (filter of inadequate or risky content), data
analysis (clustering, anomaly detection, etc), strategic competitiveness
(identify competitors), performance optimization (cache, response time,
etc), among others.

In this chapter, we will present a novel approach for building a

vector space model for Internet domain names, that we will call DNS-VSM .
This new approach has as main goal to solve the problem of finding
semantic similarities between domain names in an efficient way without
suffering of all the disadvantages of the current approaches already
described in Section 2.2.5 . The main advantages of the proposed solution
are:

● It is not intrusive, and it is totally transparent for Internet users

(users do not need to install anything).

● It does not require to know anything about the kind of content
hosted in those domains.

● It does not require to trust in third parties.

● It does not need to offer any service to motivate users to install
something.

● It works well no matter the user’s device.

● Since it is a centralized approach, it is easy to
develop/maintain/update.

101

● It is not restricted to any specific Internet user segment.

● Its design and structure are based on a vector space model, which
allows to:

○ Easily find similar domain names (just by calculating the
neighbors vectors in the space, using some distance metric
between vectors).

○ Discover more complex relationships between domain
names by applying basic math operations (addition and
subtraction) with the vector representations of the domain
names.

In order to achieve these goals, different word embedding

techniques from the ones studied in Chapter 3 are applied to a corpus that
is built from millions of anonymized DNS queries . These queries are taken
from numerous log files saved by recursive DNS servers (see Section 2.1)
that are owned by one of the most important Internet service providers in
Uruguay. This approach is the first one (at least to the best of our
knowledge) that presents a publicly available solution that makes use of
DNS traces for finding semantic similarity between domain names through
the usage of techniques that are taken from the NLP field.

As we will see during this chapter, the DNS-VSM will allow us to find
semantic and syntactic relationships between domain names only by
analyzing DNS traces of users, without requiring any previous knowledge
about the domain’s content itself and without requiring users to install
anything. Other interesting aspect about the DNS-VSM is that its design
and hidden linear structure will be helpful for building linear combinations
between vectors, and keeping meaningful information as result.

The rest of this chapter is organized as follows: firstly in Section 4.1

a descriptive analysis of the raw data used as the initial input for learning
DNS embeddings is shown. Then, in Section 4.2 the preprocessing steps
that transform this raw data into the text corpus required by the different
unsupervised learning techniques that are evaluated is described. The
evaluation and comparison of these techniques are executed using the
evaluation framework presented in Section 4.3 where also the baseline

102

models are introduced. In Section 4.4 the first model based on Word2Vec
(see Section 3.2.2.3) is described in details. It’s worth mentioning that
most of the experiments and results obtained from this first model were
summarized in publication [95] . In Section 4.5 the addition of the time
factor (the elapsed time gap between two consecutives DNS queries
requested by a same user) is studied and a second model based on
App2Vec (see Section 3.2.2.4) is evaluated. A final improvement by
considering sub-word information is described in Section 4.6 where the
last model based on FastText (see Section 3.2.2.5) is presented. Finally, a
summary analyzing the results and discussing possible use cases for the
DNS-VSM is presented in Section 4.7

.

4.1. Descriptive analysis of the data

For this research, the data was provided by a large Internet Service
Provider (ISP) from Uruguay. This ISP has millions of Internet users, and
many recursive DNS servers. Everytime a user’s internet browser needs to
resolve a domain name a DNS query is requested to some of these
servers as we saw in Section 2.1 . The reader should notice that no
additional software executes at the client side, requests to DNS servers
are triggered in background while users browse Internet using any kind of
device (desktop, mobile, etc).

In particular for this study, anonymized DNS queries saved in log

files by the DNS servers were analyzed. The log files contain information
from 11 different days in the period December 2012 - March 2013. Each
line of log data shows the date and time of the DNS query, the anonymized
IP address of the client, the domain name that has been requested and the
type of DNS query. Figure 19 shows an example of consecutive DNS
queries requested by the same anonymized IP address. In the following,
the expression “ user trace” will refer to all the consecutive DNS queries
requested by the same IP in some period of time (the time window) .

Figure 19 - Example of consecutive DNS queries

103

As we will see in section 4.2 the first step in the preprocessing

phase is to filter DNS log entries based on the record type (only types A
and AAAA are kept). Hence, once we have the log files filtered by record
type, we can formally define a DNS log file as a sequence of <IP i , d j , t k > ,
where the client IP i queried the domain d j at time t k .
In the log there is a set of unique (anonymized) IPs representing each
client c ∈ C, and for each client we have a DNS trace t c ∈ T , that is a
sequence t c = {< d 1 , t 1 >, <d 2 , t 2 >, . . ., <d n , t n >} . The problem to solve is to
learn a similarity function sim(d i , d j) between any two domain names d i
and d j , using only the set of traces T .
This problem is very similar to find semantically similar words, where a
trace of domain names can be mapped to a sequence of words in a
sentence. Following a similar reasoning (and although it is out of the scope
for this research) the set of DNS queries that corresponds to a same IP
could be mapped to a set of paragraphs in a document, and then a user’s
navigation profile associated to that set of DNS queries could be mapped
to the concept of document, allowing in this way to apply techniques and
methods for document embeddings (see Chapter 3) to get vector
representations for user profiles.

All these DNS queries are saved in the DNS servers log files as
compressed .bz files. The amount of data collected in just one day is
extremely large, containing more than 3.5 billions of queries, 58 millions of
unique domain names, and 550 thousands of unique IPs. Data across
different days are pretty similar, with a little increment with time, as shown
in Figure 20 for 3 different days. As we can see, A and AAAA record types
correspond to more than 90% of the queries in an average day (Figure
21), and other types are less relevant when studying user’s web navigation
habits. For this reason, during the preprocessing phase, data is filtered to
keep only these kind of queries (A and AAAA). For these record types we
can see a minimum between 5 and 6 a.m. and maximum between 8 and
10 p.m. approx as it is shown in Figure 22 and Figure 23 for the same
three days.

104

Figure 20 - Number of DNS queries for main records types on 3 different days

Figure 21 - Distribution of DNS queries types on March 20 of 2013

Figure 22 - Number of type A DNS queries per hour on 3 different days

105

Figure 23 - Number of type AAAA DNS queries per hour on 3 different days

4.2. Preprocessing phase

Raw data obtained from the DNS log files are not exactly in the form
that we need. For this reason, raw data need to be preprocessed, cleaned
and transformed before using them as input for training the different
machine learning models that we will be evaluating.

There are some characteristics and limitations about the data

collected and how the DNS system works that are important to understand
before moving to the specific preprocessing data pipeline that was applied.
The preprocessing steps that will be detailed later, in some way or another,
attempt to mitigate these issues or to simplify some of these problems.
The following list summarizes the main issues that we need to face:

A. When studying user’s web navigation habits, A and AAAA record

types are the most important, but other types like MX, PTR or
SRV are also present in the logs and they can be considered as
noise when trying to understand domain names similarities based
on click-streams (based on how users browse the web).

B. Since DNS resolvers clients typically cache the requests, we do not
have information about how often a domain is visited. We only have
one request after the domain cache times out and then it is cached

106

again. Therefore, the DNS traces are not a good source to
measure the period of usage of a domain, just the first access .

C. Also, NAT enabled gateways hide the activity of many users
behind a single public IP address . This is very common in
enterprise and residential connections, but not in mobile services. It
means that an IP’s trace can mix multiple clients, in some cases
thousands of them . Usually the ISP assigns disjoint range of IPs
to each kind of service, therefore it is possible to separate
enterprise, residential and mobile traces.

D. It is a good practice of ISPs to assign a dynamic IP address to each
service, where the client needs to be reconnected after a fixed
period (for example 12 hours) and a new IP is assigned. Therefore,
an IP identifies a particular service/client in a period. The larger the
period, the more likely that the IP would have been reassigned
to another client .

E. Internet Content Providers (ICPs) typically use several sub-domains
in order to provide their content, moreover they usually use external
services to provide part of their content (for example they use
content delivery networks to provide static and video content).
Therefore, when a client access to a service, it usually adds
several subdomains and also other domains to the trace . This
is very consistent between different clients that access to the same
service, but it is not a simple task to extract the knowledge of the
service used by the client from this trace.

F. In a similar way, there are applications in client’s devices
(mainly in mobile devices) that generates traffic in background
(and therefore queries in the trace) without an explicit action of
the user (for example antivirus, email clients, etc.). These queries
are mixed in the traces and they can act as fingerprints for
identifying similar traces from a particular machine but are not really
helpful when trying to understand relationships between domain
names by analyzing how users browse the web.

107

Hence, in order to mitigate the impact of these limitations in our
procedure, we propose several preprocessing steps (filters) that are
executed sequentially in a preprocessing execution pipeline.
The input to this pipeline is a set of DNS servers log files and the output is
a single big text file that we will refer as “ the corpus” in the rest of this
document. This corpus is the unstructured data that we will be used as
input for the different models under evaluation.
It’s worth mentioning that a second version of the corpus adding time gaps
between domain names was also generated specifically for evaluating the
App2Vec-like model. Details about this second version of the corpus is
given in Section 4.5 when describing the App2Vec-like model applied to
the DNS corpus.

The preprocessing pipeline:

1. DNS record type filter
As it is shown in Figure 21 the A and AAAA record types
correspond to more than 90% of the queries in an average day.
During the preprocessing phase, data is filtered to keep only these
kind of queries (A and AAAA). By doing this we focus exclusively in
that kind of record types that are generally used by DNS resolvers
when asking for internet domain names resolution during user’s
web navigation sessions, thereby minimizing the effect of issue A.
The reader should notice that the amount of data removed by
discarding other kind of DNS record types does not affect
substantially the remaining dataset.

2. Service type filter
A subset of the data is used, considering queries that are requested
by IPs that belong to some known ranges corresponding to
residential or mobile services and discarding enterprise services
that are used by companies with many employees browsing the
web behind the same IP. Although residencial connections
potentially could allow more than one device connected at the same
time, we decided to include them knowing that in some cases these
residential IPs could contain data from more than one device or
user, but we hope that our solution can deal with this noise by using
a big amount of data.

108

The reader should notice that this is a simplification in order to
minimize the amount of devices connected with the same IP,
thereby reducing the possibility of having traces that merge queries
from the same IP but from different devices or users (issue C).
In Section 2.2.5 we pointed out that one disadvantage of the current
approaches that make use of client side components (add-ons,
toolbars, etc) is that they do not work well on mobile devices'
browsers. Hence, by including mobile IP ranges in our traces we
are solving both, the problem that current approaches suffer
regarding mobile devices as well as the problem of possible multiple
devices/users behind a same IP (issue C).

3. Simplification of subdomain component
This is a simplification aiming to help in solving issue E regarding
subdomains. Generally websites include several subdomains in
order to improve load time by loading in parallel content from many
sources (static content like javascript/css files, or multimedia assets,
webservices endpoints, mirror backend servers, etc). This step in
the pipeline truncates the last labels of a domain name in the
following way: if the top label is a country code (ccTLD) then the 43

domain is truncated to the first 3 levels, else (gTLD) the domain 44

name is truncated to the first 2 levels. Please see Section 2.1 for a
deeper explanation about the hierarchy structure of domain names.

4. Removal of top queried domains and well-known applications

domain names
Top domains like google, facebook, youtube, root-servers (among
others) that are queried all the time in any context do not give us
any relevant value.
Hence, as part of the preprocessing pipeline these domain names
are included in a fixed black-list, and excluded from the corpus. The
idea behind this is similar to the one used when processing natural
language data in text, where a set of words (called common or stop
words like the, is, at, which , etc) are filtered before processing the
text because they are not really important (they do not add any

43 https://icannwiki.org/Country_code_top-level_domain
44 https://icannwiki.org/Generic_top-level_domain

109

meaningful information). This workaround also helps in solving
issue F. The following list of domain names was excluded during
this filter:

ZXV10\\032H108, avast, facebook, fbcdn, youtube, flickr, avira, twitter, ytimg, akamaihd,
akamai, akamaiedge, microsoft, msftncsi, anteldata, bing, eset, avg, avira-update, yahoo,
mozilla, doubleclick, google, gstatic, google-analytics, googleusercontent, googleapis,
googlesyndication, googleadservices, dyndns, antel.net, root-servers, windowsupdate,
no-ip, changeip, whatsapp, kaspersky, live, msn, scorecardresearch, skype, verisign,
nod32.

5. IP grouping
It is important for our algorithms that consecutive DNS queries in
the corpus file are part of the same user’s web browsing session.
But DNS servers receive tons of DNS queries from multiples users
at the same time and thus, DNS queries appear merged all together
in the log files making difficult to visualize activity by IP. For this
reason, DNS queries are re-arranged sequentially in time grouped
by IP.

For example the following input:

21-Mar-2013 06:06:47.2 client <anonymized ip1>: query: domain1.com IN A
21-Mar-2013 06:06:48.1 client <anonymized ip2>: query: domain2.com IN A
21-Mar-2013 06:06:53.2 client <anonymized ip3>: query: domain3.com IN A
21-Mar-2013 06:08:10.7 client <anonymized ip2>: query: domain4.com IN A
21-Mar-2013 06:08:11.2 client <anonymized ip3>: query: domain5.com IN A
21-Mar-2013 06:08:11.5 client <anonymized ip1>: query: domain6.com IN A

Is re-organized in this way:

21-Mar-2013 06:06:47.2 client <anonymized ip1>: query: domain1.com IN A
21-Mar-2013 06:08:11.5 client <anonymized ip1>: query: domain6.com IN A
21-Mar-2013 06:06:48.1 client <anonymized ip2>: query: domain2.com IN A
21-Mar-2013 06:08:10.7 client <anonymized ip2>: query: domain4.com IN A
21-Mar-2013 06:06:53.2 client <anonymized ip3>: query: domain3.com IN A
21-Mar-2013 06:08:11.2 client <anonymized ip3>: query: domain5.com IN A

And the final corpus considering just sequences of domain names

will be:

110

domain1 domain6.
domain2 domain4.
domain3 domain5.

The reader should notice that IP’s values are not included in the
final corpus, but after the preprocessing pipeline is completed, we
are guaranteed that domain names that appear in the same
sentence (a sentence is a sequence of domain names separated by
white space and a final dot marking the end of the sentence)
correspond to DNS queries (A or AAAA) requested by the same IP
(residential or mobile IP).

6. Removal of automatic requests (that are not click-streams)
Other problem that we can see in issue E is related to those
contents that are loaded automatically from the same or other
domain name as well as automatic redirections (among others).
Since we want to study relationships between domain names
according to how they are consumed by users, we want to eliminate
any request that is not explicitly executed as response for an
Internet user’s action (for example the list of resources
automatically loaded after accessing a web page).
Redirections and references to content hosted in external sites
could be detected easily in html pages, but it can be very expensive
and time consuming in a big dataset. Hence in our case, we will get
that information based on data evidence. In order to identify these
domains we apply the following empirical rule: domain names with
at least 100 occurrences, and that 90% of the time (or more) are
queried immediately after a previous domain (3 seconds window)
are added to a blacklist (csv file) and excluded from the final corpus.
After applying this filter, 5345 domain names were added to the
blacklist, therefore removed from our dataset.

7. Simplification in the navigation path
In text documents the same word does not appear repeated many
consecutive times. Also, when studying DNS similarities based on
navigation contexts, that a domain is similar to itself does not add
any relevant information. For this reason, we simplify the navigation
path by removing consecutives occurrences of the same domain
name and leaving just one of them. For example, a sequence like

111

d 1 ->d 2 ->d 2 ->d 2 ->d 3 ->d 3 ->d 4 is simplified to d 1 ->d 2 ->d 3 ->d 4 . This
simplification will help also in reducing the corpus size.

8. Split of long traces (using time window)

As we saw in Section 3.2.2.3 , an important hyper-parameter in
Word2vec is the size of the context window, and this parameter is
also used in App2Vec (see Section 3.2.2.4) and FastText (see
Section 3.2.2.5) as well. Thus, since the word embedding
techniques that we will be evaluating consider that two consecutives
words are always part of the same context, we want to preprocess
the traces in same way that we can ensure that two consecutives
domains in the output corpus are effectively part of the same user’s
web navigation context.
In order to meet this requirement, we map the concept of context
window to time window and we break long traces for a same IP into
many shorter traces (5 minutes) that form sentences in the corpus.
Each sentence is composed by a set of domain names requested
inside a same time window (same navigation context) by the same
IP.
It’s worth mentioning that this step in the preprocessing pipeline is
not applied when building the corpus version for evaluating the
App2Vec-like model. In the particular case of App2Vec , traces are
splitted only if they are longer than 12 hours because of the
dynamic IP characteristic of DNS providers for residential IPs. For
traces lower than 12 hours we do not apply any break and we leave
the time factor added by App2Vec to deal with this problem, hoping
that two consecutives domain names that are far in time are
weighted lowly and thus adding an insignificant component to the
similarity.

Table 7 summarizes the main challenges that we faced during the

preprocessing phase and the workarounds applied in order to solve them.

After preprocessing the data, the final input is a sequence of 53
millions of domains, where the unique domains are 1.4 million. As
expected, there is a large variation of popularity between domains. Figure
24 and Figure 25 show the cumulative percentages of requests per
domain, where domains are represented by popularity position (from left to
right) on the x-axis. We can see that top 5 thousand domains accumulate

112

75% of the total queries, top 798 domains accumulate the 60% and top 10
domains accumulate the 10%. Due to the logarithmic characteristic of the
function, working with a reduced vocabulary but very representative of the
total traffic was seen as a good alternative in order to optimize the
execution time for our experiments.

Problem Solution

A (not all DNS record
types are important
when studying web
navigation habits)

1 (DNS record type filter)

B (DNS caching) The time gap between two consecutive domains after applying solution
6 (removal of automatic requests that are not click-streams) and 7
(simplification in the navigation path) can be used as an approximation
to the period of usage of a domain.

When evaluating the App2Vec-like model in our DNS corpus, this time
gap will be used as distance to weight how near in the web session two
domains are, knowing that it could be not totally exactly (because of the
DNS caching that we cannot bypass). This, probably could be one of the
reasons why the results for the App2Vec-like model will not be as good
as we can expect in advance.

C (multiple users using
the same IP)

2 (service type filter)

D (dynamic IPs) 8 (split of long traces using time window)

E 1 (subdomains typically
do not add to much
value)

3 (simplification of subdomain component)

E 2 (domains that are
automatically requested
without any user’s
action)

6 (removal of automatic requests that are not click-streams). Also, 4
(removal of top queried domains and well-known applications domain
names) helps by removing requests that are triggered automatically by
antivirus software or similar software in user’s devices.

Table 7 - Main problems faced during the preprocessing phase and the proposed

solutions

113

Figure 24 - 60% cumulative percentage of requests per domain.

Figure 25 - 100% cumulative percentage of requests per domain.

When we studied the optimization tricks proposed in order to scale

Word2vec (see Section 3.2.2.3) one of them consisted in reducing the
number of neurons in the output layer. The size of the output layer impacts
considerably in the algorithm performance due to the computation of the
final softmax classification layer.
For this reason, the trick proposes to remove all rare words from the
vocabulary (words with a number of occurrences lower than a threshold)
and then add a new single token to the vocabulary as a representative
class for rare words. By doing this, the output layer can reduce its size
considerably, getting an important performance enhancement.
Motivated by this trick, and since the number of neurons for the output
layer in our work is mapped directly to the number of domain names, we
decided to work with a vocabulary built from the top 40 thousand most
popular domains. It’s worth mentioning that we do not remove any domain
name from the dataset explicitly, but we leverage the Python’ s interfaces

114

for the word embeddings algorithms (in both Tensorflow and Gensim) to 45 46

specify the number of words that we want to keep in the vocabulary.
These top 40k domains represent 88% approximately of the total requests
under study. Furthermore, an unknown token (the UNK token) for rare
domains was added to the vocabulary. By pruning the input to the top 40k
domains, we can work effectively with a very good representative
subsample of the dataset and allowing the execution of the different
algorithms efficiently.
By the end of the preprocessing phase, a depurated and reduced set of
DNS traces is generated and it is ready to be used as input for training our
word embedding models. In the end, these models will give us the vector
representation of domain names and thus, our DNS vector space model.
But before moving to the details regarding the word embedding models,
the evaluation framework that will be used for comparing the results of the
different models is presented in the next section.

4.3. Evaluation framework

One of the main challenges that we need to address is to evaluate
the quality of the semantic relationships between domain names that are
discovered by our unsupervised process.
When working with supervised learning either on a regression or
classification problem, the true labels (responses) are well known in
advance and they can be used to compare against the predicted values to
measure how good a model is. But in our case, there are not true labels,
hence it is very difficult to know whether our models are learning good
representation for domain names or not.
In order to solve this problem, and motivated by our previous research
about similar works, in this research we use the service called similar sites

(a feature offered by Alexa in its Audience Overlap Tool) as reference 47 48 49

for comparison and, as a trusted source (ground truth) for evaluating the
quality of our results.

45 https://www.tensorflow.org/
46 https://radimrehurek.com/gensim/
47 https://www.alexa.com/find-similar-sites
48 https://www.alexa.com/
49 https://try.alexa.com/marketing-stack/audience-overlap-tool

115

This service allows to query for a specific domain name in order to know
possible competitors based on considering similar sites. In its paid version,
this service retrieves the top 100 most similar sites for a specific input
domain name (more details about Alexa and its tools can be found in
Section 2.2.1).

As part of this work, we built a tool that given the list of the top used
domains in our vocabulary, it retrieves the similar sites from Alexa . More
precisely, we queried for 15000 top domains in our vocabulary, for which
we were able to find a matching in Alexa for 14490 domains (96.6%). The
reason why not all of our domains were found in Alexa could be one of
many causes, for instance because not all of them are Internet web sites
or because our dataset contains domains that do not exist any more,
among others reasons. Also, of those 14490 domains, a total of 11426
have at least one similar that also belongs to our dataset, therefore they
are the ones that are taken to form our evaluation set.

The result list that we get from the Alexa ’s service has a default
order by an Overlap Score value . The meaning of this value according to
Alexa is the relative level of visitor (audience) overlap between any site
and the target site. A site with a higher score shows higher audience
overlap than a site with a lower score. This order will be important when
comparing the results from our models versus the most similar sites
retrieved from Alexa .

It is not trivial to compare results from different models that learn

similarities between domain names, because it implies to have a metric
that compares two ordered list of similar domains for each domain
considered in the vocabulary. The simplest metric would be to compare
just the most similar domain, considering a success only when it is the
same than the most similar site (top 1) in Alexa ’s response, and averaging
the results between all the domains in the vocabulary. As we will see, this
is a particular case of the Mean Average Precision (MAP) metric [96] ,
which can also compare the first k similar domains (not just the first one).
MAP metric is the mean of the Average Precision (AP) computed for each
element (in our case, for each domain). Some of the characteristics that
we were looking and the AP metric has are:

116

● It assigns values between 0 and 1.

● If both lists of similarities are identical, then its result is 1.

● If both lists of similarities are disjoint, that is, if none of the domains
in our predicted similarity list are present in Alexa ’s list, then its
result is 0.

● Order in predicted list matters. Suppose that for a given domain
name, a first model computed the list of its k most similar domains,
and the top half of this list also appears in the similar sites retrieved
from Alexa . Now, suppose that we have a second model that
computes a second similarity list where the matching with Alexa
appears only in the last half of the list. Despite for both lists we have
matched k / 2 domains with Alexa , we want that the metric, when
evaluating the first list to be higher than for the second list. That is
because the k / 2 matched domains for the first list are located
above in the ordered list, which indicates that similarities for those
domains are more accurate than the similarities for the k / 2
matches in the second list.

The AP@k (the average precision considering the top k elements)

and the MAP@k (the mean of AP@k computed for all items) are metrics
that have been widely used in the information retrieval field, as well as in
the recommender systems domain. Before moving to the formulas, let’s
illustrate its behaviour through an easy example.

Suppose user U likes two movies M a and M b , then if recommender
R1 recommends movies [M c , M a] (ordered list), this is not as good as the
recommendations given by a second recommender R2 that recommends
movies [M a , M c] (ordered list). If we compute the AP@2 metric (AP metric
considering the top two items) for user U , despite both recommender
systems recommend the same set of items, since the order in the
recommendation list is relevant and it is taken in consideration by the AP
metric, then we will get that:

, (Eq. 32)P@2(up, recs1) AP@2(up, recs2) A <

117

where up = {M a , M b } (set of preferences of user U), recs1 = [M c , M a]
(ordered list of recommendations given by recommender R1) , recs2 = [M a ,
M c] (ordered list of recommendations given by recommender R2).
Therefore, from this user's point of view, recommender R2 is better than
recommender R1 . We can repeat the same reasoning for every user in the
system and then aggregate the results by taking the mean of all AP@2 in
order to get a global performance score, and that is what MAP@2 is .

If we map this example in the recommender systems domain to our
escenario, then we can think in the following associations:

● The most similar sites retrieved from Alexa ’s similarity service for a
given domain d , corresponds to the set of preferences of user U
(the ground truth)

● The most similar sites to d (ordered list) found by Model1 (first word

embedding model under evaluation) corresponds to the ordered list
of recommendations given by recommender R1 for user U

● The most similar sites to d (ordered list) found by Model2 (a second
word embedding model) corresponds to the ordered list of
recommendations given by recommender R2 for user U

Hence, if we compute AP@k considering the top k similar sites to d

found by the two models Model1 and Model2 using Alexa ’s response as
the ground truth, then we can get a good criteria for comparing both
models, being Model1 better than Model2 (computing similarities to d) if
and only if:

 . (Eq. 33)P@k(model1, d) AP@k(model2, d)A >

And then, MAP@k metric can be computed by averaging AP@k ,
considering every domain names in our evaluation set (not only d). By
doing this, we can get a global performance score for our models, being
Model1 better than Model2 if and only if:

. (Eq. 34)MAP@k(model1) MAP@k(model2) >

118

A visual inspection of the results that come from Alexa clearly
shows that only the first domains are relevant followed by popular or
generic domains. Therefore, we define a new variable in our evaluation
framework that we call k actual and we consider only the first k actual domains in
the Alexa ’s response that are also present in our data. We ignore others
domains in Alexa ’s response since they will never show up in our
predictions.
This new variable, will help us to mitigate the lack of the MAP metric
related to the order in the actual list (order in the similar sites retrieved
from Alexa , does not matter). The metric uses the Alexa ’s list as a set
without any particular order, where it is the same to have a coincidence
with the first or the last domain in the set. We will mitigate this problem
varying the k actual value, and evaluating the impact into the MAP@k value.

That said, now we present the formulas for the AP@k and MAP@k
metric. We have a set of domains in our vocabulary, , for which we ε Dd
know the actual ordered list of top k actual similar domains from Alexa , and
an ordered list of predicted top k similar domains in our vector space
model. In order to compare these two lists of (actual and predicted) similar
domains for a specific domain d , we use the Average Precision (AP) over
all possible recall values:

 (Eq. 35)

where n is a position in the predicted list of similar domains to d , k is the
size of the predicted list, is the precision considering only the first n (n)P
domains in the list, and is the change in recall from domains n - 1 to r(n)Δ
n . Precision and Recall metrics come from information retrieval theory, see
their definition in [96] .

With the Mean Average Precision (MAP) , we summarize the
comparison of actual and predicted lists for all available domains. Given a
set D of domain names, the MAP@k metric is computed as the mean of
the average precision scores:

119

 (Eq. 36)

where is a domain for which we know the top k actual actual similar ε Dd
domains from Alexa , and an ordered list of predicted top k similar domains
in our vector space model. The reader can refer to [96] to see a detailed
explanation about mean average precision and the formula above.

Besides the MAP@k metric, the precision and recall metrics used
for evaluating classification models in the machine learning field have been
used, as well as the f1-score which is the harmonic mean between them.
In order to use these metrics, we consider each domain name as a
different class (a.k.a tag or label) and our model as a multi-label
classification [97] model (the output of the model is a set of labels that
correspond to the similar domain names computed by the model for a
given input).
Hence, given a domain name d , if we denote P d = {p 1 , p 2 , …., p n } as the
set of predicted most similar domain names to d , T d = {t 1 , t 2 , …., t kactual } as
the ground truth (the set of domain names retrieved from the Alexa ’s
service considered as the true/correct most similar domain names to d),
then Equation 37 , Equation 38 and Equation 39 describe how the
precision , recall and f1-score are computed respectively.

 (Eq. 37)

 (Eq. 38)

 (Eq. 39)

Finally, as shown in Equation 40 , Equation 41 and Equation 42 , for
each model m that we want to evaluate, we can measure its performance
by computing the average metrics considering each domain name d in our
vocabulary D and the most similar domain names to d given by m .

120

 (Eq. 40)

 (Eq. 41)

 (Eq. 42)

4.3.1. Baseline models

Two baseline models were implemented in order to have a baseline
to compare the performance of the new models that will be evaluated.
Firstly, a random guessing baseline model was implemented. This first
model returns k random domains as the most similar domains to a given
domain name.
Next, an extension of the majority class baseline model was implemented
based on popularity and returning always the top k most popular domains
as the most similar domains to any other domain.
Finally, an hybrid approach using a weighted schema by returning random
domains with probability weighted by popularity was implemented but
since it did not perform better than just the plain popularity based model, it
was not considered here as a different case.

The MAP metric (using k = 3, k actual = 3) computed for our baseline
models obtained a result of 0.00005 and 0.016246 for the random
guessing and the popularity based models respectively.

4.4. Creating DNS embeddings using Word2Vec

When studying the theory of Word2Vec in Section 3.2.2.3 , it was
pointed out that Word2Vec is a family of algorithms for word embeddings
generation that supports two main configurations of the underlying neural
network structure: the CBOW and the Skip-Gram architectures. In this

121

section, the main details about the creation of our first DNS embedding
model based on the Skip-Gram architecture of Word2Vec is presented.
Latter in Section 4.5 an App2Vec-like model (see Section 3.2.2.4) based
on the CBOW architecture is also evaluated.

As any other word embedding algorithm, we can think Word2Vec as
a black box that receives a text as input and it generates a vector
representation for each word in the text (a.k.a embeddings) as output. In
Section 3.2.2.3 some of the main characteristics of the generated
embeddings were discussed, in particular it was shown that the vector
representation of semantically related words (that generally share similar
contexts) are located nearby in the high dimensional vector space.
Thereby, our first approach took advantage of that characteristic. After
having applied all the pre-processing steps (see Section 4.2), the final
corpus is used as the input text for the Word2Vec algorithm, which was
implemented (in our first approach) using the Tensorflow library for 50

Python. Finally, in order to get the most similar domain names to any other
domain name, the cosine similarity between vectors is computed to get the
nearest neighbors vectors. The more similar their vector representations,
more semantically related the domain names are.

When working with Tensorflow , a computational graph is firstly

defined and then, an execution session is run using an instance of that
graph. We based our implementation in [36] , where a Tensorflow graph is
used to model the Skip-Gram neural network architecture. As we saw in
Section 3.2.2.3.1 , the Skip-Gram model tries to predict context words from
a target middle word. Hence, there are two input nodes in the graph, one
for the target word and another one for the context word. During the
training phase, many combinations of couples in the form <target, context>
words are randomly subsampled and its integer representations are fed
into the input nodes of the graph. The integer index for each word is
assigned once before starting the training phase, while loading the
vocabulary. In that moment, an integer value in the range [0..n-1] (where n
is the vocabulary size) is assigned to each word and this value is used
later as an alias when the word is fed into the network. The reader
probably have noticed that we are not using the one-hot encoding
representation of the words as inputs to the network (as it’s supposed

50 https://www.tensorflow.org/

122

according to the original Skip-Gram network architecture). This is because
after adding the embedding layer to the graph (a uniform randomly
initialized matrix to store the weights values associated to the connections
between the input and the hidden projection layer that compose the
shallow network architecture of the Skip-Gram model) we can leverage the
embedding_lookup operation provided natively by Tensorflow which is 51

specifically designed and optimized for an in parallel look up execution,
achieving the same goal than the original one-hot encoding
representation: to efficiently select the corresponding row for the input
word from the embedding matrix. As optimizer for minimizing the loss
function, the Stochastic Gradient Descent (SGD) technique was used.

As part of the implementation, two variations of the suggested

improvements to the original model presented in [61] were implemented: i)
the subsampling of frequent words and ii) the usage of a lightweight
objective function rather the classic softmax.
The removal of stop (common or frequent) words is used to remove noise
from the data, that is, to remove words (domain names in our case) that do
not add any relevant information. In our specific scenario, these domain
names correspond to those domains that are requested all the time,
therefore being present in most of the contexts with many different kind of
other domains (they do not belong to any specific field) and then, getting
vector representations that are not relevant for finding similarities or
analogical reasoning. In Section 4.2 we can see that this is what one of the
preprocessing steps exactly does during the preprocessing pipeline. In that
step, a set of commonly requested domain names like Google or
Facebook (among others) are filtered and removed from the final corpus.
In regards to the usage of a lightweight objective function as improvement,
we did not use exactly the Negative Sampling loss function suggested as
improvement and instead, we used the very similar Noise Contrastive
Estimation (NCE) suggested by Mnih et al . in [69] for which TensorFlow
has a handy helper function nce_loss . 52

As an additional performance improvement, when loading the

vocabulary from the corpus, we decided to limit the vocabulary size to the
top 40k domain names with the highest frequencies (88% approximately of

51 https://www.tensorflow.org/api_docs/python/tf/nn/embedding_lookup
52 https://www.tensorflow.org/api_docs/python/tf/nn/nce_loss

123

the total requests, see Figure 25) and to include an unknown token (the
UNK token) for rare domains. By doing this, since the size of the output
layer depends on the number of words in the vocabulary, we can reduce
significantly the number of neurons in the output layer, and thus, train the
model efficiently with a very good representative subsample of the dataset.

Finally, some minor modifications to the original Tensorflow code
were added mostly for saving partial checkpoints and summary data for
evaluating the loss value (a measure of the network’s error) during the
training phase with Tensorboard . 53

For visualizing the generated vectors, the t-Distributed Stochastic
Neighbor Embedding (t-SNE) [98] dimensionality reduction technique was
applied. This technique is widely used for visualization of high dimensional
datasets in two or three dimensions, while retaining the local structure of
the data [98] . Figure 26 shows the projection in two dimensions of some
vectors (a subset of the full dataset) taken from a partial checkpoint during
the training phase.

Figure 26 - Projection of domain names embeddings in 2 dimensions using t-SNE

53 https://www.tensorflow.org/guide/summaries_and_tensorboard

124

Hyperparameter tuning

As most of the machine learning algorithms, the configuration of
Word2Vec has a set of parameters that are not trainable and need to be
configured in advance before running the training phase. This set of initial
configurations to the model are called hyperparameters, and finding the
optimal configuration is usually known as hyperparameter tuning, which is
an important but time consuming phase of any machine learning project.
In particular, for the implementation of the Skip-Gram architecture in
Tensorflow , the more important parameters that need to be configured are:
the size of the vocabulary and the embeddings, the size of the skip window
and batches, as well as the value of the learning rate.

The embedding size corresponds to the number of neurons in the
hidden projection/embedding layer in the Skip-Gram architecture, and
since the weights associated to the neurons in this layer are finally used as
the values to represent the vectors for each word, this size implicitly define
the number of dimensions that will be used to represent our domain names
as vectors in the multi-dimensional DNS vector space. It is supposed that
higher values of this hyperparameter would allow to discover more hidden
or latent features by our learning algorithm. But a too high value of this
hyperparameter could end up being expensive in resource usage,
decreasing considerably the solution’s performance and increasing the
overall time for the learning process.
The learning rate is a well known hyperparameter used in neural networks
to regulate the speed of the optimization process (when minimizing the
cost/error function), generally done by the gradient descent technique. A
low value of this hyperparameter can turn the learning process very slow.
On the other hand, a high value of this hyperparameter could reduce the
time for the learning phase (convergence time) but could also face the
problem of not decreasing on every iteration (jumping over the minimum
once and again repeatedly), having a solution that cannot converge. More
details about learning optimization can be found at chapters 4, 5 and 8 in
[26] .
The skip window hyperparameter (a.k.a “the context”) is one of the most
important variables in Word2Vec . It represents the size of the sliding
window over the corpus and it indicates the number of domain names that

125

need to be considered at the left and right of a target domain when training
the network.
Finally the batch size hyperparameter indicates the number of examples
(domain names) that will form a new input set to present to the network for
training.

Typically, in practice it’s impossible to test all possible combinations
of hyperparameters (we may have infinite options for some parameters).
For this reason, we reduce the universe of possibilities to a subset of them,
choosing a set of possible values taking suggestions from the
corresponding documentation or in some cases just by intuition. Once all
the possible values for each hyperparameter are specified, a grid search
method considering all the possible combinations of these values is
executed to find the best configuration for our Skip-Gram model. The
different hyperparameter options that were tested are:

● Embedding size (dimension of the embedding vector): {8, 16, 32,

64, 128}
● Skip Window size: {1, 3, 5, 7, 10}
● Batch size: (170, 510, 1190, 1700)
● Initial Learning rate: {0.3, 0.5, 0.8}
● Vocabulary size: {40000}

As explained before, limiting the size of the vocabulary helps to

improve the execution time and after studying the characteristic of our data
we decided to use the top 40k domain names with the highest frequencies.
Hence, during the hyperparameter tuning we used the fixed value of 40000
for the vocabulary size setting.

In order to compare the different settings for the hyperparameters, a
new instance of the model is created for each configuration and then, the
MAP@k metric (see Section 4.3) is evaluated for the particular case when
k = 1 and k actual = 1 (comparing just the most similar domain name returned
by the model vs the most similar domain name retrieved from the Alexa ’s
service).
The best result was obtained using an embedding size of 128, learning
rate of 0.5, window size of 3 and a batch size of 510. Nevertheless, as it is
shown in Figure 27 (each bar color represents a embedding size and
learning rate combination) we also found very good results using an

126

embedding size of 64, learning rate 0.3 and same window size and batch
size (3, 510).
When using an embedding size of 64 and 32, the results were within
99.9% and 99.5% (respectively) of the results obtained with the bigger
embedding but the memory requirements are notably lower. This is the
reason why in the end of this tuning phase we decided to use an
embedding size of 64 dimensions. That said, in next sections if nothing
different is indicated then we will assume that we are using embeddings
with 64 dimensions.

Figure 27 - Comparison of results for different model configurations.

Table 8 - Training time per embedding size.

127

Regarding the execution time, as it is shown in Table 8 , the total
time required for training the model using an embedding size of 32 is 9%
less than the time it takes to train the embedding of size 128. The cited
table shows that using values lower than 32 for the embedding size, allows
to improve performance by reducing the training time a bit more, but as we
can see in Figure 27 the quality of the results is not good enough.
Discovering a good balance between quality and performance can be
advantageous in order to process bigger datasets.
Considering an embedding size of 128, the training phase takes about 15
hours, which can be reduced in 21 minutes approximately If we train the
model using an embedding of size 64. The server used for training is an
Intel(R) Xeon(R) 4860@2.27GHz with 32 cores and 40 GiB RAM (without
GPU). It’s worth mentioning that the code used for training was not
optimized for GPU usage. Using an optimized code with GPU support
probably can reduce these times significantly, although is something that
was not explicitly tested.

The output of the procedure is a vector representation of the top
40000 domains. Then, the cosine distance between these vectors is
computed to get the nearest domain names for each one.
In what follows, the first results that were obtained by our first candidate
model are presented.

Visual Inspection: semantic similarity

Before moving to a more formal analysis and comparison of this
model against others, let’s see some examples about semantic similarity
by visual inspection to have a sense of whether the learned vectors are
able to capture meaningful semantic information or not. In order to do this,
we present the results obtained when asking the model for the nearest
vectors to a given domain name, that is, the most similar sites to the given
domain name.

128

Most similar domain names to subrayado.com.uy (tv news):

Domain name Type Cosine
distance

Observations

subrayado.com Non existent domain 0.839 Same domain, but without country
code ‘uy’

tutv.com.uy press, tv 0.831 Domain does not exist anymore
(Jan-2019)

lr21.com.uy press, newspaper 0.786

eldiario.com.uy press, newspaper 0.771

diariolarepublica.net press, newspaper 0.770 Alias for republica.com.uy

telenocheonline.com press, tv news 0.767 Alias for telenoche.com.uy

informarte.com.uy press, radio 0.765

teledoce.com press, tv news 0.756

laprensa.com.uy press, newspaper 0.736

uruguayaldia.com.uy news 0.733 Domain does not exist anymore
(Jan-2019)

unoticias.com.uy news 0.732 Domain does not exist anymore
(Jan-2019)

uypress.net press, newspaper 0.728

diarioelpueblo.com.uy press, newspaper 0.714

Table 9 - Most similar domain names to subrayado.com.uy.

Most similar domain names to autoblog.com.uy (cars blog, cars reviews)

129

Domain name Type Cosine
distance

Observations

area75.com.ar Cars design 0.896 Argentine site

gonzalorodriguez.org road safety, road
traffic crashes

0.895 Nonprofit uruguayan
organization

suzuki.com.uy car brand in
Uruguay

0.894 Suzuki brand in Uruguay

mundoautomotor.com.ar cars blog, cars
reviews

0.871 Argentine site

autos-chinos.com cars blog, cars
reviews

0.870

peugeot.com.uy car brand in
Uruguay

0.856 Peugeot brand in Uruguay

fiat.com.uy car brand in
Uruguay

0.853 Fiat brand in Uruguay

autoanuario.com.uy cars blog, cars
reviews

0.832

citroen.com.uy car brand in
Uruguay

0.829 Citroen brand in Uruguay

autoschinos.com.uy cars blog, cars
reviews

0.825

cosasdeautos.com.ar cars blog, cars
reviews

0.816 Argentine site

masautos.com.uy cars 0.811 Domain does not exist anymore
(Jan-2019)

cochesyconcesionarios.com Cars prices, price
comparisons

0.811

volkswagen.com.uy car brand in
Uruguay

0.80 Volkswagen brand in uruguay

cars-magazine.com.ar cars blog, cars
reviews

0.80 Argentine site

Table 10 - Most similar domain names to autoblog.com.uy.

130

 Table 9 and Table 10 give strong evidence about the model’s
capability for capturing semantic information about domain names. In the
first one, when looking for similar sites to subrayado.com.uy (the website
of a tv news from Uruguay) we can see that all similar domain names
belong to websites related to press and news, from different types, written
press, tv channel and even radio. An interesting observation here is that
the procedure was able to learn embeddings for domain names that
formally do not exist, like the case of subrayado.com suggesting that many
queries to the DNS system were asking for the domain name without the
country suffix. In some way, this is a common error, and it gives some
insights about how people browse the web. Other interesting thing that is
observed is that all the most similar sites to subrayado.com.uy are sites
from Uruguay. Probably, we can think that when people want to check for
news, it is very dependent on the location where people live. This is not as
strict in the second example about cars where information about cars is
more general and it is not as dependent to the location as in the news
case.
The second example shows similar sites to autoblog.com.uy (a blog with
news about cars and users reviews). We can see that all the similar
domain names found by the model are very related, going from cars news,
cars brands, cars design, even a site for road safety. As it was pointed out
above, in this case, blogs and forums from the region are found by the
model (not only from Uruguay), which make sense since general
information about cars is the same. Anyway, we see again the same
location dependent pattern when users look for brands and prices, in this
case we can see that all the related sites are from Uruguay. This also
make sense, since the source domain name (autoblog.com.uy) is an
uruguayan website and most of its audience comes from uruguay,
therefore after people check for user reviews about cars they move to
some of the car brands in the Uruguayan market, probably to check about
availability, prices, etc.

Visual Inspection: analogies through vector operations

In the original Word2Vec paper [56] , it was mentioned that the linear
structure of the Skip-Gram model allows analogical reasoning using simple
vector operations. For example, the addition of vectors works as an AND
logical function: the words near to the addition of two vectors will be words
that are close to both original words. In our case, domains close to the

131

addition of the vectors that represent two particular domains will be the
ones that are commonly accessed in conjunction with the added domains.
Table 11 shows some simple addition analogies between domains names.
Also, in [56] it was shown that the hidden linear structure of the resulting
vector space allows other more sophisticated operations, for example
vec(king) + vec(man) − vec(woman) vec(queen) . This is particularly ≃
interesting for what is known as analogical reasoning. Table 12 shows
some more complex analogies using addition and subtraction.
In both tables, we show one of the 10 domains nearest to the resulting
vector. Visual inspection verifies that our model can embed semantic
relationship between domains and it allows applying analogical reasoning
for understanding complex relationships .

Table 11 - Logical analogies using addition.

Table 12 - Logical analogies using addition and subtraction.

Performance metrics and the quality of the results obtained by this

first model will be discussed deeper in Section 4.7 when the analysis and
comparison of the differents approaches and generated models are
analyzed. As a natural evolution of this model, following our intuition and
also supported by some of the improvements presented in [65] , we think
that weighting words inside the context can help to improve the quality of
the learned vectors. For this reason, in the next section we will explore a

132

variation of Word2Vec , using an approach similar to App2Vec [66] and
giving higher weights to domain names that belong to the same context
but were requested closer in time.

4.5. Adding time factor with App2Vec

In the previous section, a first model based on Word2Vec was
shown as a good option for getting vectors representations that are able to
capture meaningful semantic information about Internet domain names as
well as perform analogical reasoning by applying simple vectors
operations with the resulting embeddings.
In this section, a variation of Word2Vec applied to the DNS traces is
presented. We call this variation an App2Vec-like model since it’s inspired
by the previous work in [66] which its authors called App2Vec . The core
idea behind this is simple an intuitive, and it’s based on applying different
weights to domain names inside the context window of the Word2Vec ’s
CBOW architecture depending on how far they are from the middle domain
name (the target domain name to be predicted when training the network).

If we recall from Section 3.2.2.3.2 , in its standard behaviour, the
CBOW architecture is similar to the standard bag of words, where order
doesn't matter. It tries to predict the middle word in a sliding window by
averaging the embeddings of the remaining words in the window, and all
the words contribute equally to compute the final average. The
improvement proposed in App2Vec suggests using a weighting factor that
is applied to each word vector in the context window before the final
average. By doing this, words in the context that appear close to the
middle word receive a higher weight than those that are farther away,
therefore contributing more to the resulting average vector. Later in [65] ,
Facebook AI’s researchers use a similar idea based on a position
dependent weighting schema as one of their tricks to train high-quality
word vector representations.

But although the core idea of weighting words in the context seems
to be simple, the concepts of far and close is not trivial in our scenario. If
we were using a standard text corpus for learning word embeddings as a
classic NLP problem, then given any word in the context, we could use the

133

number of words that exist between this word and the target/middle word
as a distance metric for calculating the weighting value.
But in the problem that we want to solve, it could be dangerous to apply
the same concept of distance. In order to understand why, let’s illustrate an
example. Suppose we are using a context window of size 1 and we have

 as the sequence (ordered) of domain names that representsd1, d2, d3)(
the current sliding window during the CBOW model training. If we use the
number of domain names after/before the target/middle word as metric for
weighting context words then, domain names and will be weighted 1d 3d
equally. But, what if domain name was requested 3 minutes before 1d 2d
and was requested 3 hours later? Knowing this new information, would 3d
you weight and equally? Which sites do you think are more related, 1d 3d

and or and ?. These are some of the the questions that we1d 2d 2d 3d
asked ourselves when thinking about how to leverage the time information
that we have available in the raw DNS queries and we did not use for our
first model based on Word2Vec .

The reader probably noticed that in Section 4.2 we had defined a
preprocessing step which its objective was to break long traces (with long
time duration) into shorter ones (no more than 5 minutes). This trick, in
some way was addressing the issue of long time intervals in the same
context window. The usage of an arbitrary 5 minutes long window was a
naive, yet effective strategy, that allowed us to train our first candidate
model. Now, in this section our goal is to explore the usage of an
App2Vec-like model that can deal with long time gaps between domain
names in a same context window natively, and thus, removing the
previously mentioned preprocessing step.
In order to do this, we need to include the time information regarding when
each domain name was requested. More precisely, in order to train the
App2Vec-like model, we rebuilt the corpus changing domain names traces
from (d 1 d 2 … d n) to (d 1 g:x 1 d 2 g:x 2 … d n g:x n d n+1) where d i are valid
domain names in the vocabulary and g:x i is used to indicate that the time
gap between d i and d i+1 is x i . Time gaps x i are float values that represent
the difference in minutes between the DNS queries received in the DNS
server for domain names d i and d i+1 respectively. After doing this, we
removed the preprocessing step that was breaking the user’s trace into
many sentences, and thus, sentences now are not limited to a maximum of
5 minutes duration. As we will see later in this section, we were able to

134

confirm that changing the maximum time difference allowed between
domain names in a sentence does not affect the final results.

Running the experiments

A set of experiments were conducted to evaluate how a weighting
schema based on time gaps could affect the quality of the learned vectors
in our scenario. After contacting with the App2Vec ’s authors we got access
to the implementation they used in [66] where a slight modification to the
original CBOW architecture is implemented to support a weighting schema
based on time gaps. A detail here is that the core library used for the
App2Vec implementation was the well known Gensim package for Python
(widely used in NLP projects), hence we decided to move from Tensorflow
to Gensim as the underlying technology for running the new experiments
and for comparing the models’ results. It’s worth mentioning that the
Gensim package provides a high level interface for the Word2Vec
algorithms for both the Skip-Gram and the CBOW architectures, being
great for easy and quick prototyping and experimentation. Gensim has
been used in over a thousand research paper and student theses
according to Google Scholar . Furthermore, it uses NumPy , SciPy and 54 55 56

Cython for high performance execution, being specifically designed to 57

handle large text collections, using data streaming and efficient
incremental algorithms. [99] describes the initial design decisions behind
Gensim and the Ph.d. thesis in [25] shows details about the algorithmic
scalability of distributional semantics that are implemented in this Python
package.

In regards to the evaluation method, we continue using the MAP@K

metric defined in Section 4.3 , giving importance to the order in the
predictions. More precisely, models were evaluated using the following
(k actual , k) pairs: (1, 1), (5, 5), (10, 3), (10, 5) and (10, 10) . Having said that,
in what follow, the MAP@K metrics obtained using different configurations
of the App2Vec-like model are presented. We experiment using different
time factors for the weighting schema, different sizes for sentences and
context window. We also evaluate the convergence time by measuring the

54 https://scholar.google.com/
55 http://www.numpy.org/
56 https://www.scipy.org/
57 https://cython.org/

135

performance of the model during the training phase for different number of
epochs . 58

Experiment 1: evaluating time factor (default configuration)

Since the App2Vec-like model applies a weighting schema to the
CBOW architecture of Word2Vec , in the first round of experiments we
decided to compare the App2Vec-like model vs the standard CBOW
architecture. By doing this, we can effectively measure the change in
performance that is explained exclusively by the weighting schema based
on time gaps. Later, in Section 4.7 , the performance of this App2Vec-like
model is analyzed and compared considering the other candidates models
that were evaluated in this research (the Skip-Gram architecture of
Word2Vec used by our first candidate model and a FastText based model
that will be presented in Section 4.6).
For the time factor value required by the App2Vec-like model, the default
value of 0.8 is used (the same value suggested in [66]). In regards to the
window size parameter (context length), it is not specified in the App2Vec ’s
paper, but we found that 5 is the value used in the source code of the
App2Vec ’s implementation, hence it is the value that we use for our initial
experiments. Other parameters are kept with the same configuration used
by our first candidate model (see Section 4.4), and although the
App2Vec-like model should work well without any restriction about the size
of the sentences, for the initial experiments we decided to keep using the
same restriction regarding the maximum difference in time allowed
between domain names in a same sentence (5 minutes maximum). Later,
other experiments will show that this restriction does not affect the results
of the App2Vec-like model and it can be safely removed.

 Figure 28 shows the MAP@k metrics that we obtained for both
models (App2Vec-like model using weighted version of the CBOW
architecture based on time gaps vs the standard CBOW architecture of
Word2Vec) for different values of k actual and k . Training ran for 21 epochs,
saving partial results every 3 epochs. As we can see in Figure 29 , the
stabilization points (for both models) were found around the 6 th and 9 th
epoch. From the 9 th to the 21 st epoch, the metrics reported by both models
were practically identical, only some insignificant difference was noticed

58 One epoch means one pass of the full training set through the neural network

136

probably due to the random behaviour associated with the negative
sampling method.

 Figure 28 - App2Vec-like model (weighted cbow) vs Word2Vec (standard cbow).

 Figure 29 - Evolution of MAP@k during the training phase.

As we can see in Figure 30 the best results (for both models, in all
epochs) are obtained with k actual =10 and k=3 , that is, when looking for the
top 3 predictions of ours models into the results we get from the Alexa ’s
service for similar sites (taking in consideration the order in our models’
predictions).

137

But unfortunately, from these results we cannot say that the weighted
schema used by the App2Vec-like model performed better than the
standard CBOW architecture of Word2Vec as we expected. The
App2Vec-like model only outperformed the standard CBOW during the
firsts few epochs (until the 9 th epoch), but without being a significant
difference. This could give some evidence that the App2Vec-like model is
able to learn the embeddings a bit faster than the standard CBOW , but
when working with a very big dataset like in our case, once both models
arrive to the stabilization point, they achieve similar results.

Figure 30 - MAP@k metrics for different configurations of k actual and k measured at

different epochs.

In the next experiments we will try to figure out if we can find a

better configuration of hyperparameters for the App2Vec-like model that
can get better results than the ones obtained during the first round of
experiments just presented.

138

Experiment 2: tuning the time factor value

The second round of experiments have as main objective to find the
best value used by the App2Vec-like model to weight domain names
inside the context window based on time gaps.
In the initial experiments the default value of 0.8 (original value suggested
in [66]) had been used. Now, we repeat the experiments varying the value
of the time factor, taking a value from the set: {0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8, 0.9} in each experiment. Value of 0 is not considered because the
final average would be always zero, and similarly, value of 1 is excluded
because it corresponds to the special case of the standard CBOW where
all words in the context contribute equally to the average embedding.

Figure 31 - MAP@k metrics for different values of the App2Vec’s time factor.

Figure 31 shows the different MAP@k metrics that were obtained
when changing the time factor value of the App2Vec-like model. These
metrics were obtained evaluating each model configuration immediately
after having completed the third epoch of training. As we can see, the
default value of 0.8 (the same value that we used during the initial
experiments) was the one that achieved the best results if we take in
consideration the different values of k actual and k . For this reason, for the
final experiments we will continue using the default value of 0.8 for the
time factor value configuration.

139

Experiment 3: evaluating sentence length (based on traces duration)

In the previous experiments we were still using the restriction of a
limited sentence size based on the maximum difference in time allowed for
domain names in the sentence (5 minutes maximum). Now, in the next
experiments we want to validate our hypothesis about the expected
behaviour of the App2Vec-like model and we want to confirm that the
sentence size configuration does not affect the results since the important
dependencies between domain names are now defined by the time factor
and the weighting schema.
We evaluate the App2Vec-like model repeating the experiments by training
the models during 6 epochs and evaluating the MAP@k metric for different
values of k actual and k for different sentence sizes: 5, 10 and 30 minutes.

Figure 32 - MAP@k metrics for different sentence sizes.

As we can see in Figure 32 , after completing the 6 th epoch the
results are practically identical. We do not observe any significant
difference in the MAP@k metrics, and thus, validating the idea that this
value is not relevant any more when using a weighting schema. For this
reason for the final round of experiments we remove any restriction related
to the sentence size.

Experiment 4: evaluating window size

The final experiments try to measure the effect of the window size.
We repeat the experiments for different window sizes: 3 (same value used

140

by our first candidate model), 5 (same value used in the original App2Vec’s
implementation) and 10 (a new value that duplicates the default window
size used in App2Vec).
Figure 33 shows the results that we got for these experiments. We can see
that values of 5 and 10 for the window size get almost identical results (the
only case that shows a difference in favor of a window size of 5 is when
k actual =1 and K=1).

Figure 33 - MAP@k metrics for different window sizes.

The very pretty similar results for window sizes of 5 and 10 was
something that we expected in some way, because similarly to what
happened with the sentence length, the distance between domain names
are now better governed by the time gaps between domain names instead
of a fixed count of instances that occur right after or before a target domain
name.
According to these results, a window size of 3 seems to be a bit restrictive
for our particular scenario and data, leaving domain names out of the
context that could affect favorably if they were included. A window size of 5
(or greater) give the optimal vectors. Once results are the same (like when
using a window size of 5 or 10) greater values for this hyperparameter do
not have any different effect because the new domain names that are
included in the window are too much distant in time to the target domain
name, therefore their weighted value affect the average embedding

141

insignificantly. For this reason, we conclude that a size of 5 for the context
window (the same default value that we have been using from the initial
experiments with the App2Vec-like model) is the best option to use.
Having said that, we can take the comparisons presented in the first round
of experiments as a good reference to compare the App2Vec-like model vs
the standard CBOW architecture of Word2Vec . This comparison had
already shown that in our scenario and with our specific data, the
difference between these two approaches is not so big, and results are
pretty similar (only an insignificant difference in favor of the weighted
schema is observed in general). In Section 4.7 more details about this
App2Vec-like model and a general comparison with the other candidate
models are presented. But before that, let’s see by visual inspection some
of the similarities that are found by this second candidate model.

Visual Inspection

Before ending this section, and similarly to what we did with our first
candidate model some results obtained by this new model are shown. By
doing this, we can get some sense of the model’s quality directly from
observation rather than trying to understand whether the evaluation
metrics are good or not.
The hyperparameter configuration of the final App2Vec-like model use the
best configuration found after running the set of experiments already
explained before, that is:

● Architecture: weighted CBOW
● Distance factor (for the weighting schema based on time gaps): 0.8
● Window Size: 5
● Sentence length: unlimited
● Vector size: 64

142

Most similar domain names to subrayado.com.uy (tv news):

Domain name Type Cosine
distance

Observations

tutv.com.uy press, tv 0.771

Domain does not exist
anymore (Jan-2019)

teledoce.com press, tv news 0.763

subrayado.com Non existent domain 0.752 Same domain, but without
country code ‘uy’

diariolarepublica.net press, newspaper 0.694 Alias for republica.com.uy

lr21.com.uy press, newspaper 0.688

eldiario.com.uy press, newspaper 0.683

cienporcientopapal.com

Uruguayan soccer
club news

0.647 Domain does not exist
anymore (Jan-2019)

diariouruguay
.com.uy

press, newspaper 0.638

vamosuruguay.com.uy Politics 0.635

uypress.net press, newspaper 0.634

www.elnaveghable.cl press, newspaper 0.629 Chilean site

elbocon.com.uy press, newspaper 0.621

Table 13 - Most similar domain names to subrayado.com.uy (using App2Vec-like model).

143

Most similar domain names to autoblog.com.uy (cars blog, cars reviews)

Domain name Type Cosine
distance

Observations

gonzalorodriguez.org road safety, road
traffic crashes

0.809 Nonprofit uruguayan
organization

area75.com.ar cars design 0.805 Argentine site

suzuki.com.uy car brand in
Uruguay

0.797 Suzuki brand in Uruguay

autos-chinos.com cars blog, cars
reviews

0.785

ayaxonline.com

car dealership 0.773

autoanuario.com.uy cars blog, cars
reviews

0.766

cochesyconcesionarios.com cars prices, price
comparisons

0.734

greatwall.com.uy car brand in
Uruguay

0.729 Greatwall brand in Uruguay

vladimir.com.uy

car dealership 0.725

imgci.com - 0.718 Domain does not exist anymore
(Jan-2019)

fiat.com.uy car brand in
Uruguay

0.717 Fiat brand in Uruguay

www.autosonline.cl cars blog, cars
reviews

0.710 Chilean site

Table 14 - Most similar domain names to autoblog.com.uy (using App2Vec-like model).

 Table 13 and Table 14 give strong evidence about the model’s
capability for capturing semantic information about domain names. Visual
inspection of these results also confirms that the performance of this
App2Vec-like model is comparable with our first candidate model. We can

144

see that the results for the most similar sites to subrayado.com.uy and
autoblog.com.uy are pretty much the same than the results we got with our
first candidate model using Word2Vec . Only some changes in the order of
the results, and some new sites are added or removed from the list of
similars, but keeping in general the same semantic meaning for the similar
sites in both cases.

4.6. Considering sub-word level with FastText

A common property shared by both of our previous candidate
models (as well as by all classic word embedding techniques) is that words
are treated as indivisible tokens, as single units. But in our scenario, words
correspond to domain names, and the composition and the morphological
structure of domain names carry important information about the meaning
of the domain. For example, if we have a website called futbol.com and
another website called futbolparatodos.com then it’s high probable that
these two websites have some kind of content related to the subject of
futbol, therefore being semantically related. The reader should notice, that
we are saying “high probable” , and that’s because we are formulating an
hypothesis based just on the semantic information provided in the string
that represents the site’s name but we do not have access to the content
hosted in each site to validate that hypothesis.

Hence, the morphological information about domain names could
be crucial information that we have available but we have not used yet in
our problem.
For this reason, in this section a set of experiments that take into account
the morphological structure of domain names are carried out with the
objective of enhancing our algorithms and models for finding the best
vector representation of Internet domain names.
In order to do this, we experiment with FastText which extends the 59

functionality of Word2Vec to work with sub-words and thus, adding
important information to the embeddings that is related to the
morphological composition of the words.

59 https://fasttext.cc/

145

As it was explained in Section 3.2.2.5 , formally talking, FastText is
not a method, algorithm or technique by itself. FastText is an open-source,
free, lightweight library that allows users to learn text representations and
text classifiers [70] . It can be used either in unsupervised mode to learn
word embeddings [71] or in a supervised mode using a labeled dataset
(one label and sentence per line) to train a text classifier [72] . For a
practical use case of FastText in supervised mode, the reader can see the
github page that we have created in [100] where FastText is used for
training a text classifier. For the experiments presented in this section, the
unsupervised mode of FastText has been used to learn vector
representations of domain names by learning character n-grams
embeddings and aggregating them to compute the final words
embeddings.

We used the FastText Python wrapper (included in the Gensim 60

package) that provides direct access to the original and optimized
implementation of FastText in C . This is noticeably faster than the pure
Python implementation available in Gensim .
Since FastText is an extension of Word2Vec , it can be configured to work
with the same two architectures supported by Word2Vec : the Skip-Gram
and the CBOW architectures. When using the CBOW architecture, the
current word in the context window is predicted from its context words. On
the other hand, when using the Skip-Gram architecture the context words
are predicted from the current word. Once the training is completed, the
final weights associated to the hidden layer are used as the embeddings
for the words. In this work we used the Skip-Gram architecture since it has
proven to perform better with large datasets [36] . The reader can see
Section 3.2.2.3.1 and 3.2.2.3.2 to review the details about these two
architectures originally proposed in the first Word2Vec ’s paper in [56] .

The most critical hyper-parameters that we needed to tune are:
minn (minimum n-gram size) and maxn (maximum n-gram size).
Sub-words are all the substrings contained in a word with size between
minn and maxn . Also, the word itself is considered to be in the set of its
n-grams [71] . If maxn is set to 0, or lesser than minn , no character n-grams
are used, and the model is effectively reduced to Word2Vec [74] . Figure 34
shows the results that we obtained when computing the MAP@k metric

60 https://radimrehurek.com/gensim/models/wrappers/fasttext.html

146

(k actual = 3 and k = 1) for different combinations of minn and maxn (for this
experiments we continue using an embedding size of 64 dimensions).

Figure 34 - Comparison of n-gram size (for k = 1 and k actual = 3).

The experiments were repeated for different combinations of (k,
k actual) pairs and n-gram lengths between (0, 0) and (20, 20) . For each
experiment 6 epochs of training were executed and then (once the training
was stable) the MAP@k metric was evaluated for each configuration of
k actual and k . The special case of minn = 0 and maxn = 0 corresponds to the
test case when no n-gams are used. For that special test case we were
able to confirm that the results are exactly the same as the results that we
got when using the Word2Vec version with Skip-Gram .
In order to find the best configuration for the minn and maxn
hyperparameters, we used two different evaluation criterias that are
described below.

Evaluation criteria 1:

The first evaluation criteria consisted in counting the number of
times that each n-gram range (an n-gram range is defined by a pairs of
minn and maxn values) performed the best.
Hence, given all the 25 possible combinations of K and k actual from the set
{1, 2, 3, 5, 10} we measure the MAP@k for each combination and we add

147

1 for the n-gram range that achieves the best performance (the n-gram
range that achieves the highest MAP@k) . Table 15 shows a summary with
the number of times that each n-gram range performed the best. N-gram
ranges that never achieved the highest MAP@k are not included in this
table.

minn maxn Best (number of times)

11 17 5

10 15 4

12 17 3

14 15 3

15 15 3

13 15 2

14 17 2

15 17 2

11 20 1

Table 15 - Number of times that each n-gram range performed the best.

Evaluation criteria 2:

In the first evaluation we used a hard criteria where in each of the
25 evaluations of the MAP@k metric each n-gram range either added 1 or
0 depending whether the n-gram range achieved the best result or not.
For the second evaluation criteria, we followed a similar approach but
using a softer criteria. Instead of adding a value of 1 or 0, for each n-gram
range we sum the results of the MAP@k metric for each of the 25
combinations of kactual and k values. In the end, the n-gram range that
accumulates the highest value is the best option. Table 16 shows the top
20 n-gram ranges order by the accumulated MAP@k value (descending).

148

minn maxn sum of MAP@k

11 17 3.787

10 15 3.782

15 15 3.781

14 15 3.779

12 17 3.774

11 18 3.770

11 20 3.766

13 17 3.765

14 17 3.757

11 15 3.755

12 15 3.742

13 15 3.742

14 20 3.739

14 18 3.734

9 20 3.734

10 20 3.733

15 17 3.732

12 18 3.731

16 17 3.730

13 18 3.725

Table 16 - Top 20 n-gram ranges ordered by sum of MAP@k

Supported by these two evaluation criterias we found that the
optimal configuration is using minn = 11 and maxn = 17, therefore it is the
configuration that we will use for our FastText based model. Other
configurations like minn = 10 and maxn = 15 seems to be good too.
Furthermore, we can see in Figure 34 that using n-grams with a number of
characters greater than 10 outperforms the results achieved by the

149

Word2Vec with Skip-Gram model (configuration with minn = 0 , maxn = 0).
But since we need to choose one, n-gram range between 11 and 17 is the
winner.

It is important to note that usually when working with standard text
corpus the best results are obtained with much shorter n-grams of about 3
to 6 characters. In our case this very short n-grams are not very useful
because they encompass words like .www , .com or .com.uy (among
others) that do not help to determine the compatibility between different
domains. By using longer n-grams we are able to include longer substrings
of the domain names that are more adequate to determine whether two
domains are similars or not.

Visual Inspection

Before ending this section, and similarly to what we did with our
previous candidate models, some results obtained by this new model
(FastText using the Skip-Gram architecture with an embedding size of 64
dimensions and n-grams length between 11 and 17) are shown. By doing
this, we can get some sense of the model’s quality directly from
observation rather than trying to understand whether the evaluation
metrics are good or not.

150

Most similar domain names to subrayado.com.uy (tv news):

Domain name Type Cosine
distance

Observations

subrayado.com Non existent domain 0.916 Same domain, but without
country code ‘uy’

diariolarepublica.net press, newspaper 0.836 Alias for republica.com.uy

eldiario.com.uy press, newspaper 0.807

lr21.com.uy press, newspaper 0.799

teledoce.com press, tv news 0.792

elecodigital.com.uy press, newspaper 0.774

causaabierta.com.uy - 0.77 Domain does not exist
anymore (Jan-2019)

unoticias.com.uy press, newspaper 0.766

radiouruguay.com.uy press, radio,
newspaper

0.766

uypress.net press, newspaper 0.742

sangregoriodepolancodigital.co
m.uy

press, newspaper 0.73 Domain does not exist
anymore (Jan-2019)

vivomontevideo.com - 0.71 Domain does not exist
anymore (Jan-2019)

Table 17 - Most similar domain names to subrayado.com.uy (using FastText model).

151

Most similar domain names to autoblog.com.uy (cars blog, cars reviews)

Domain name Type Cosine
distance

Observations

gonzalorodriguez.org road safety, road
traffic crashes

0.854 Nonprofit uruguayan
organization

autoanuario.com.uy cars blog, cars
reviews

0.845

mundoautomotor.com.ar cars blog, cars
reviews

0.822 Argentine site

cochesyconcesionarios.com cars prices, price
comparisons

0.819

area75.com.ar cars design 0.806 Argentine site

autos-chinos.com cars blog, cars
reviews

0.803

suzuki.com.uy car brand in
Uruguay

0.781 Suzuki brand in Uruguay

peugeot.com.uy car brand in
Uruguay

0.778 Peugeot brand in Uruguay

gonzaloruiz.com.uy car dealership 0.774

masautos.com.uy cars 0.774 Domain does not exist anymore
(Jan-2019)

autosenuruguay.com cars 0.768 Domain does not exist anymore
(Jan-2019)

mundoautomotor.com cars blog, cars
reviews

0.767

rcristofano.com car dealership 0.759

autoschinos.com.uy cars blog, cars
reviews

0.753

chana.com.uy car brand in
Uruguay

0.753 Chana brand in Uruguay

Table 18 - Most similar domain names to autoblog.com.uy (using FastText model).

152

Once again, we can confirm through visual inspection (from Table
17 and Table 18), that the similar sites found by this new candidate model
keep important semantic relationships among domain names. But since all
our candidate models have shown good results through visual inspection
and it’s difficult to choose the best model just by a subjective feeling about
which domains are more related, we need to compare them more formally.
For that reason, in the next section more details about this FastText model
and a general comparison with the other candidate models are presented.
We will see that this FastText model allows to perform vector operations
like addition and subtraction for logical analogies and that it outperforms
considerably the results obtained by the other candidate models (not only
considering the MAP@k metric, also with other metrics like recall ,
precision and F1-score), hence being our best model for building the DNS
vector space model. Furthermore, we will highlight an interesting property
of this model that allows us to find vector representations for words that
were not originally part of the training (a.k.a out-of-vocabulary or by its
acronym OOV) which could be helpful in many applications.

4.7. Analyzing the results

In previous sections we have shown how to get vector
representations of domain names (DNS embeddings) through the usage of
different word embeddings techniques. In particular we showed that
predictive models for learning word embeddings such as Word2Vec ,
App2Vec or FastText are suitable for the task of computing DNS
embeddings by working directly with the DNS traces that result from a set
of steps that preprocess the raw DNS log files (see Section 4.2 for a
review of the preprocessing phase).
We have seen (through visual inspection) that the best configuration that
we found for each candidate model is able to capture meaningful semantic
information about domain names, and the operation of finding the most
similar sites to a given domain name (by computing the cosine similarity
between domain names vectors) gives effectively very good results
(domain names in the results are sites in the same business activity or
category).
Now, in this section we will present a more formal comparison of our
candidates models by evaluating different metrics such as MAP@k , recall ,

153

precision and F1-score (see Section 4.3) for a review of the evaluation
framework) and analyzing their characteristics.

As explained in Section 4.3 , we use the service called find similar
sites offered by Alexa in order to retrieve the ordered top 100 most 61 62

similar sites for a specific input domain name. We have this information for
14490 domains of our vocabulary (of 40000 domains).
During the training phase, our evaluation procedure uses this external, but
well trusted information from Alexa , to give some measure of quality. To be
more accurate, for every epoch of optimization and for all the 14490
domains that we were able to get information from the Alexa ’s service, we
compare the similarities between the actual Alexa ’s response and the
predicted similarities found by each of our candidate models. We
evaluated the performance of each candidate model varying the number of
predictions that are taken in consideration from our model (specified by the
k value) as well as from the Alexa ’s service (specified by the k actual value).
In each case we calculated the average precision , recall and F1-score
over the prediction of all the 14490 domains under evaluation. In regards
to the MAP@k metric, it was calculated using the named values for k and
k actual .

Given the 21 training epochs that were executed and the 25
possible combinations of k actual and k values taken from the set {1, 2, 3, 5,
10} that were evaluated in each epoch, we have a total of 21 x 25 = 525
evaluation instances. Table 19 shows a matrix where represents M (i,) M j
the number of times that model i outperformed model j using the MAP@k
metric.
Table 19 shows clearly that most of the time FastText performed better
than the other candidate models. Also, it’s interesting to see that in 15
evaluation instances App2Vec outperformed FastText , this really took our
attention and looking closer in those cases we were able to identify that
those evaluation instances were all in the first epoch. Similarly, we had
already noticed in Section 4.5 that the App2Vec-like model had achieved
better results than the standard CBOW architecture of Word2Vec during
the first epochs of training. This last observation is confirmed in Figure 35
where we can see that App2Vec (red serie) outperforms Word2Vec with

61 https://www.alexa.com/find-similar-sites
62 https://www.alexa.com/

154

CBOW (blue serie) until the 16 th epoch. We notice that subsequents
results are pretty similar for App2Vec and Word2Vec with CBOW .
Figure 35 is very representative of the comparison between candidate
models for different values of k actual and k during training. In order to make
the analysis more reader-friendly we do not include all the charts
comparing the different models for every value of k actual and k in this
section, but the reader can see them in Appendix B .

i \ j App2Vec Word2Vec
(cbow)

Word2Vec
(skip-gram)

FastText

App2Vec 0 347 129 15

Word2Vec
(cbow)

176 0 79 18

Word2Vec
(skip-gram)

396 446 0 16

FastText 510 507 509 0

Table 19 - Number of times a model performed better than other.

Figure 35 - MAP@k evolution for the different candidate models.

155

Other observations that we can highlight from Figure 35 is that the
Word2Vec with Skip-Gram version of our first candidate model that uses
sentences with 5 minutes length (maximum) performs better than the
Word2Vec version with CBOW and also than the App2Vec-like model, but
without being as good as the FastText model. As we will see during this
section, this pattern is a common factor in all the evaluations and
comparisons that we executed.
For example, the order of models according to how well they perform
regarding to the MAP@k metric is even more evident in Table 20 that
shows a matrix where represents the number of times that model M (i,) M j
i outperformed model j after the full training is completed. Once again, we
can see that FastText is the best, followed by Word2Vec with Skip-Gram
and we notice a slight superiority of App2Vec over Word2Vec with CBOW .

i \ j App2Vec Word2Vec
(cbow)

Word2Vec
(skip-gram)

FastText

App2Vec 0 16 0 0

Word2Vec (cbow) 9 0 0 0

Word2Vec
(skip-gram)

25 25 0 0

FastText 25 25 25 0

Table 20 - Number of times a model performed better than other after training is

completed.

The MAP@k metric has been also calculated for our baseline
algorithms. The results are about 0.00005 for the random guessing
algorithm and 0.016246 for the popularity based algorithm (see section
4.3.1 for details). All our candidate models and in particular the FastText
based model outperforms considerably the results obtained by the
baseline models.

After repeating the evaluation of the MAP@k metric for different

values of k actual and k we noticed that the FastText model obtained the best
results in every tested scenario (for every combination of k and k actual). The

156

highest MAP@k value obtained was 0.238 (with k = 1 and kactual = 10).
After averaging the results, we conclude that the FastText based model is
10.5%, 17.8%, 17.8% and 435.5% superior than Word2Vec with
Skip-Gram , App2Vec, Word2Vec with CBOW and the best baseline model
(popularity based) respectively.

Now, in order to evaluate how well our candidate models perform
using other evaluation metric, in Figure 36 we show the results that we
obtained using the F1-metric . The highest F1-score was 0.144 (with k = 10
and k actual = 10). As explained in Section 4.3 the F1-score computes the
harmonic mean between precision and recall , therefore when evaluating
F1-score in some way we are evaluating both precision and recall at the
same time, being the F1-score better when precision and recall are higher.
Since most of the times we can increase recall by decreasing precision
(and vice versa), F1-score is a common way for finding a good balance
between both metrics. The reader can see Appendix A for an individual
comparison of the precision and recall metrics as well as the results
obtained using other configurations of the k actual and k values.

Figure 36 - F1-score evolution for the different candidate models.

As we can see, the trends shown in Figure 35 and Figure 36 are

pretty much the same. Getting similar results for the relative comparison of
the candidate models for different metrics gives strong evidence about the
quality of the models.

157

A last comparison in Figure 37 summarizes the different metrics that were
evaluated once the training phase was completed. This last comparison is
specific for k = 5 and k actual = 5 but the relative difference between models
for the different metrics are very similar for other values of k actual and k and
they can be seen in Appendix A .

Figure 37 - Final metrics after training is completed.

Supported by these evaluations and comparisons, in this point we

are confident about having found a good model based on FastText (with
Skip-Gram architecture and n-gram range between 11 and 17 for
sub-words) for finding semantically related domain names. But how good
is this model regarding logical analogies? Unfortunately, we left out of the
scope from this research the generation of an evaluation set for this task (it
would be something interesting to address as future work). Anyway,
similarly to what we did with our first candidate model based on Word2Vec
with Skip-Gram, we show now (Table 21) some examples that give
evidence that linear relationships between vectors can be leveraged by our
FastText based model to perform analogical reasoning.

158

1v 2v 3v 1 v2 v3 v + −

atlantida.com.uy

(site related to Atlantida,
the main resort in
Canelones city)

maldonado.gub.uy

(site for the Maldonado

city government)

canelones.gub.uy

(site for the Canelones city

government)

puntaweb.com

puntadeleste.com

(sites related to Punta del Este, the

main resort in Maldonado city)

puntashopping.com.uy

(site for a shopping center

in Maldonado city)

montevideo.gub.uy

(site for the Montevideo

city government)

maldonado.gub.uy

(site for the Maldonado city
government)

tiendasmontevideo.com

montevideoshopping.com.uy

(sites for shopping centers in
Montevideo city)

Table 21 - Analogical reasoning using our FastText based model

Both examples presented in Table 21 show 2 of the 3 domain

names nearest to the resulting vector . Visual inspection 1 2 3v + v − v
suggests that our model could be used for analogical reasoning and thus
being helpful for understanding complex relationships between domain
names. Anyway, and although this examples look promising, more work
needs to be done in this direction to validate through a more formal
evaluation that our model is effectively good enough for the task of
analogical reasoning.

Another interesting property of this FastText based model is
regarding to domain names that do not exist or were not part of the training
set (a.k.a out-of-vocabulary or by its acronym OOV). For those cases, the
other candidate models cannot give any results because they have a
strong requisite that requires the trained model to be used with domain
names that were originally part of the training set. If a domain name does
not exist or was not part of the training set then the model does not know
any vector representation for that domain name, therefore it cannot find
any nearest vectors.
But as explained in Section 3.2.2.5 , the only requirement that FastText
needs to meet in order to find a vector representation for an arbitrary
domain name is that at least one match exists between any subword of the
OOV word and any subword used during the training phase (by any word
in the vocabulary). Table 22 shows the results that were obtained by our
best model based on FastText when retrieving the most similar sites to

159

samtanderuniversidades.con.uy (a domain that does not exist, and it was
not part of the training set).

Most similar domain names to samtanderuniversidades.con.uy (banking)

Domain name Type Cosine
distance

Observations

santanderuniversidades.com.uy banking 0.995 This is the real site

bancamovilsantander.com.uy banking 0.953

santander.com.uy banking 0.918

multidiscount.net banking 0.811

bcu.gub.uy banking 0.808

discbank.com.uy banking 0.750

browserforthebetter.com - 0.785 Domain does not exist
anymore (Feb-2019)

brou.com.uy banking 0.751

nbc.com.uy banking 0.749 Domain does not exist
anymore (Feb-2019)

Table 22 - most similar sites found by our FastText based model for an oov

domain name.

As we can see in Table 22 our FastText based model is able to find

similar sites for a domain name that does not really exist (and was not part
of the training). Although a formal study of the threshold value would be
required, it looks like a carefully selected threshold could be helpful for
identifying domain names that for some reason are incorrect, and also to
find the correct match for it. A domain name could be bad formed because
of many reasons, for example because it was typed incorrectly with a typo
or because a harmful software shows a bad formed url intentionally (for
example typosquatted domains or IDN homograph attacks) trying to 63 64

63 https://en.wikipedia.org/wiki/Typosquatting
64 https://en.wikipedia.org/wiki/IDN_homograph_attack

160

deceive a user to redirect him/her to a website that looks identically to the
original one but generally designed to steal user credentials, banking and
credit card details (a.k.a phishing). At the moment of writing this, the
Google Chrome browser is experimenting with a new feature (Figure 38)
that tries to identify these kind of risky urls and generate suggestions about
possible desired sites. This evidences that having reliable methods for
identifying fraudulent sites is a hot-topic right now.

Figure 38 - Experimental feature in Google Chrome that warns about suspicious

urls
(image credits: ZDNet). 65

Hence, one possible application of our DNS vector space model
(DNS-VSM) is related to security as well as user experience by suggesting
potential matches for sites that look like other well known domain names.
We think that our model could be combined with some string distance
metric (for example the Levenshtein distance) to improve the detection of 66

fraudulent sites.
We also see a potential application of our model in a parental-control
system, filtering (automatically) risky content or adult specific content. For
example, one could save a short list of domain names to be blocked (even
one or two sites would be enough) and then, the system could find the
most similar domain names to those sites and automatically add them to
the blacklist (for those results with a high confidence). By doing this the

65 https://www.zdnet.com/article/google-chrome-to-get-warnings-for-lookalike-urls/
66 https://en.wikipedia.org/wiki/Levenshtein_distance

161

system would increase and handle the blacklist automatically. As an
example, in Table 23 we can see the results that are obtained when asking
to our FastText based model for the most similar sites to pornhub.com .
After studying a good threshold the system could add some of these
results to the blacklist and repeat the process finding more sites to block
until no more sites are found upper the threshold.
Other natural application of our DNS-VSM is in the recommender systems
area, by providing a core block for finding similar sites to the sites that are
generally navigated by the user. In the recommender systems area this
kind of recommender falls in the category of content-based
recommenders. The approach behind this kind of recommender systems is
to represent system items (products, movies, books, etc) by their main
properties (title, price, category, etc) and then, similar items to those that
the user liked in the past (for example those items that were bought,
visited, or rated positive by the user) are recommended. The reader can
see [101] for a good summary about this and other recommender systems
techniques.

Domain name Type Cosine
distance

youporn.com adult website 0.879

phncdn.com adult website 0.84

tube8.com adult website 0.795

youporn.com.es adult website 0.758

videospornhub.com adult website 0.708

xxxcupid.com adult website 0.696

german-youporn.com adult website 0.696

pornhubpremium.com adult website 0.693

genericlink.com - 0.687

youporngay.com adult website 0.68

Table 23 - most similar sites to pornhub.com (an adult specific content site).

162

Besides the potential use cases just mentioned, we can think many

other applications that could benefit from the usage of our DNS-VSM .
Clickstream analysis, representation and clustering of users navigation
profiles, competitive analysis, optimization of cache systems in recursive
DNS resolvers, and the list grows up.
For this reason, as a contribution to the research community we are
releasing a set of vectors of the DNS-VSM (trained on a similar dataset to
the one used in this thesis), which we made available for download
through the github page in [1] . With this, we hope that further work can be
done using these vectors, for example evaluating the DNS-VSM in the task
of analogical reasoning (using a specific evaluation set created for this
task), how relationships between domain names in Internet have evolved
through time (our vectors gives a picture at 2013 and since then many
domains have disappeared and many others have been created), or
creating new applications on top of them.

163

164

Part Ⅲ
CONCLUSIONS

165

166

5. Chapter Ⅴ - Conclusions and future
work

Knowing semantic information about Internet domain names is
something crucial for many engineering activities, with practical application
in many areas.
Common uses cases that we can see nowadays include websites
recommendations based on similar sites or competitive analysis (for
example Alexa , SImilarWeb or Google Similar Pages), but many 67 68 69

others applications have been identified and proposed in this work such as
identification of fraudulent or risky sites, parental-control system, UX
improvements (based on recommendations, spell correction, etc),
click-stream analysis, representation and clustering of users navigation
profiles, competitive analysis, optimization of cache systems in recursive
DNS resolvers, and more.

Current solutions and strategies to identify similarities between
Internet domain names fall mainly in two categories: client-side component
based , or content-indexing based . Both kind of solutions have lot of
disadvantages. Solutions that use client-side components (generally a
browser plugin) require execution permissions that not all users are willing
to give, they are intrusive and comprise user confidentially. They are
difficult to deliver (users need to be motivated and convinced in order to
install the extension) and they are not representative of a global audience.
Furthermore, browser plugins do not work well in all mobile devices. On
the other hand, solutions that use a content-indexing strategy need to scan
and classify the content in predefined set of topics (generally topics are not
learned automatically), requiring the content to use good metadata for
topic discovery (note that contents and its metadata are not owned by the
similarity system), being difficult, expensive, and time consuming to be
implemented at a web scale.

67 https://www.alexa.com/
68 https://www.similarweb.com/
69
https://chrome.google.com/webstore/detail/google-similar-pages/pjnfggphgdjblhfjaphkjhfpi
iekbbej

167

In this work, a novel approach to address the problem of finding

similarities between Internet domain names (without suffering from the
previous mentioned disadvantages) is presented. The solution analyzes
real anonymized DNS log queries from a big amount of DNS log files
which come from recursive DNS servers from a large Internet Service
Provider (ISP) in Uruguay.
The fundamentals ingredients behind the solution take many ideas from
linguistics and the NLP field. In particular, the proposed solution is strongly
motivated by the distributional hypothesis from linguistics, which suggests
that words that are used and occur in the same contexts tend to purport
similar meanings [33] .

A simple yet effective trick that gives the foundations of this work
consists of mapping the concept of words and contexts to the DNS
scenario in this way: a single word in a text document corresponds to a
domain name in a DNS log file, and the context (neighbors) words
corresponds to the domain names that were queried close (for example in
a fixed length time window or in a same web user session).
While working on this mapping, a set of characteristics and limitations
about the DNS data and how the DNS system works are identified (noise
in DNS traces associated to record types that are not web navigation
related, TTL in DNS resolvers, many users behind NAT enabled gateways,
dynamic IP addresses, background traffic not triggered by users, among
others) and addressed before applying any NLP algorithm to our problem.

Hence, a main contribution of this work is presented in Section 4.2
where a detailed preprocessing pipeline with specific steps (DNS record
type filter, service type filter, simplification of subdomain, removal of top
queried domains and well-known applications domain names, IP grouping,
removal of automatic requests, simplification in the navigation path, split of
long traces based on time window) is defined to move the original problem
to a problem in the NLP field.

As a second contribution, Sections 4.4 , 4.5 and 4.6 show that once
the preprocessing pipeline is applied and the DNS log files are
transformed to a standard text corpus in the NLP field then, state-of-the art
techniques for word embeddings such as Word2Vec (with Skip-Gram and
CBOW architectures), App2Vec (adding a weighting factor based on time

168

gaps between domain names) and FastText (adding sub-word level
information) can be successfully applied to the corpus in order to build
what we called a DNS-VSM (a vector space model for domain names). In
our DNS-VSM domain names are represented by vectors (a.k.a
embeddings) with 64 dimensions with the main characteristic that
semantically related domain names are mapped to nearby points in the
high dimensional space. This DNS-VSM is built only using information of
DNS queries without any other previous knowledge about the content of
those domains.

Through visual inspection we are able to confirm that all these
candidates models show good results in the task of finding semantically
related domain names. In order to choose the best model, in Section 4.7 a
formal comparison of these candidate models is carried out, showing that
the FastText based model (with Skip-Gram architecture and n-grams
range between 11 and 17) outperforms considerably the other candidate
models as well as the baseline models (random guessing and popularity
based , see Section 4.3.1).
In particular, the evaluation of the MAP@k metric (see Section 4.3) shows
that the FastText based model is 10.5%, 17.8%, 17.8% and 435.5%
superior than Word2Vec with Skip-Gram , App2Vec, Word2Vec with CBOW
and the best baseline model (popularity based) respectively.

As part of the comparison, the recall , precision and f1-score metrics
presented in Section 4.3 are evaluated. In all the experiments similar
results are obtained, being FastText the best, followed by Word2Vec with
Skip-Gram which is also better than App2Vec and Word2Vec with CBOW.
Regarding these last two models and according to our experiments, there
is no strong evidence to ensure that App2Vec is better than Word2Vec
with CBOW in our specific scenario. Nevertheless, an advantage that was
observed of using App2Vec over Word2Vec with CBOW is related to the
training time, being App2Vec faster to get good results during the first
epochs.

In regards to the best candidate model based on FastText , different
n-gram ranges are evaluated using different evaluation criterias. The
optimal configuration is found using min-ngram = 11 and max-ngram = 17.
For this configuration, the highest MAP@k value obtained is 0.238 (with k

169

= 1 and k actual = 10) and the highest F1-score is 0.144 (with k = 10 and
k actual = 10).
It is important to note that usually when working with standard text corpus
the best results are obtained with much shorter n-grams of about 3 to 6
characters. In our case this very short n-grams are not very useful
because they encompass words like .www , .com or .com.uy (among
others) that do not help to determine the compatibility between different
domains. By using longer n-grams we are able to include longer substrings
of the domain names that are more adequate to determine whether two
domains are similars or not.

The last contribution of this work is a set of vectors of the DNS-VSM

(trained on a similar dataset to the one used in this thesis), which we made
available for download through the github page in [1] . With this, we hope
that further work can be done using these vectors.

For example, some possible directions of future work with the
DNS-VSM could be related to the creation of an evaluation set for the task
of analogical reasoning, the analysis of how relationships between domain
names in Internet have evolved through time (our vectors give a picture at
2013 and since then many domains have disappeared and many others
have been created), or the development of new applications on top of the
DNS embeddings.
Additionally, an interesting extension of this work could evaluate other
word embeddings techniques such as GloVe (see Section 3.2.3), Swivel
[102] or the recently published (at the moment of writing this) contextual
word embedding techniques ELMo [93] and BERT [94] .
Although in this work we focus in embeddings to the word level, in Chapter
3 some basic techniques for document embeddings are presented. But
other more sophisticated for different document sizes exist, for example
Skip-Thought Vectors [81] , or Doc2vec [82] . Good opportunities of future
research exist regarding the usage of these techniques in order to analyze
user’s traces as sentences or paragraphs (composed of domain names
instead of words). Then, those sentences and paragraph could be
aggregated in some way to build a document to represent the user’s
navigation profile. Clustering of users based on their navigation profiles is
a high valuable information for any telecom company.

170

6. Bibliography
[1] W. Lopez, “Vector Space Model for DNS,” DNS-VSM, Mar-2019. [Online].

Available: https://github.com/dns-vsm/embeddings.
[2] Ofcom, “Adults’ media use and attitudes. report 2016,” Apr-2016. [Online].

Available:
https://www.ofcom.org.uk/__data/assets/pdf_file/0026/80828/2016-adults-me
dia-use-and-attitudes.pdf.

[3] J. Yan, N. Liu, G. Wang, W. Zhang, Y. Jiang, and Z. Chen, “How much can
behavioral targeting help online advertising?,” in Proceedings of the 18th
international conference on World wide web - WWW ’09, 2009, pp. 261–270.

[4] A. Ahmed, Y. Low, M. Aly, V. Josifovski, and A. J. Smola, “Scalable
distributed inference of dynamic user interests for behavioral targeting,” in
Proceedings of the 17th ACM SIGKDD international conference on
Knowledge discovery and data mining - KDD ’11, 2011, pp. 114–122.

[5] H. B. McMahan et al., “Ad click prediction,” in Proceedings of the 19th ACM
SIGKDD international conference on Knowledge discovery and data mining -
KDD ’13, 2013, pp. 1222–1230.

[6] P. Norvig, “Statistical learning as the ultimate agile development tool,” in
ACM 17th Conference on Information and Knowledge Management Industry
Event (CIKM-2008), 2008.

[7] H. Cui, J. Yang, Y. Liu, Z. Zheng, and K. Wu, “Data Mining-based DNS Log
Analysis,” Annals of Data Science, vol. 1, no. 3–4, pp. 311–323, 2014.

[8] W. Ruan, Y. Liu, and R. Zhao, “Pattern Discovery in DNS Query Traffic,”
Procedia Comput. Sci., vol. 17, pp. 80–87, 2013.

[9] Q. Lai, C. Zhou, H. Ma, Z. Wu, and S. Chen, “Visualizing and characterizing
DNS lookup behaviors via log-mining,” Neurocomputing, vol. 169, pp.
100–109, 2015.

[10] M. E. Snyder, R. Sundaram, and M. Thakur, “Preprocessing DNS Log Data
for Effective Data Mining,” in 2009 IEEE International Conference on
Communications, 2009, pp. 1366–1370.

[11] Network Working Group, “Internet Domain Name System Standard: Domain
names - concepts and facilities (RFC 1034),” RFC 1034 - Domain names -
concepts and facilities, Nov-1987. [Online]. Available:
https://www.ietf.org/rfc/rfc1034.txt.

[12] Network Working Group, “Internet Domain Name System Standard: Domain
names - implementation and specification (RFC 1035),” DOMAIN NAMES -
IMPLEMENTATION AND SPECIFICATION, 1987. [Online]. Available:
https://www.ietf.org/rfc/rfc1035.txt.

[13] P. Albitz and C. Liu, DNS and BIND. “O’Reilly Media, Inc.,” 2001.
[14] “SimilarWeb Review,” Seperia. [Online]. Available:

https://www.seperia.com/blog/competitive-intelligence-tool-reviews/similarwe
b/.

[15] “SimilarWeb vs Alexa – Competing on Competitive Intelligence,” Seperia.
[Online]. Available:

171

https://www.seperia.com/blog/competitive-intelligence-tool-reviews/similarwe
b-vs-alexa/.

[16] “Mobile and tablet internet usage exceeds desktop for first time worldwide,”
Statcounter. [Online]. Available:
http://gs.statcounter.com/press/mobile-and-tablet-internet-usage-exceeds-de
sktop-for-first-time-worldwide.

[17] D. Jurafsky and J. H. Martin, Speech and Language Processing. An
Introduction to Natural Language Processing, Computational Linguistics, and
Speech Recognition. Third Edition draft. .

[18] M. Baroni, G. Dinu, and G. Kruszewski, “Don’t count, predict! A systematic
comparison of context-counting vs. context-predicting semantic vectors,”
Proceedings of the 52nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers). 2014.

[19] J. Pennington, R. Socher, and C. Manning, “Glove: Global Vectors for Word
Representation,” in Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP), 2014.

[20] S. Li, J. Zhu, and C. Miao, “A Generative Word Embedding Model and its
Low Rank Positive Semidefinite Solution,” Proceedings of the 2015
Conference on Empirical Methods in Natural Language Processing. 2015.

[21] P. D. Turney and P. Pantel, “From Frequency to Meaning: Vector Space
Models of Semantics,” 1, vol. 37, pp. 141–188, Feb. 2010.

[22] F. Almeida and G. Xexéo, “Word Embeddings: A Survey,” CoRR, vol.
abs/1901.09069, 2019.

[23] D. Bollegala, K. Hayashi, and K.-I. Kawarabayashi, “Learning linear
transformations between counting-based and prediction-based word
embeddings,” PLoS One, vol. 12, no. 9, p. e0184544, Sep. 2017.

[24] J. E. Alvarez, “A review of word embedding and document similarity
algorithms applied to academic text,” BSc, University of Freiburg, 2017.

[25] R. Rehurek, “Scalability of semantic analysis in natural language
processing,” 2011.

[26] T. Mikolov, S. Kombrink, L. Burget, J. Cernocky, and S. Khudanpur,
“Extensions of recurrent neural network language model,” in 2011 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2011.

[27] Y. Bengio, H. Schwenk, J.-S. Senécal, F. Morin, and J.-L. Gauvain, “Neural
Probabilistic Language Models,” in Studies in Fuzziness and Soft Computing,
pp. 137–186.

[28] H. Schwenk, “Continuous space language models,” Comput. Speech Lang.,
vol. 21, no. 3, pp. 492–518, 2007.

[29] T. Mikolov, “Statistical language models based on neural networks,” Brno
University of Technology, 2012.

[30] G. Salton, The SMART retrieval system: experiments in automatic document
processing. Prentice Hall, 1971.

[31] G. Salton, A. Wong, and C. S. Yang, “A vector space model for automatic
indexing,” Commun. ACM, vol. 18, no. 11, pp. 613–620, 1975.

[32] L. Wittgenstein, Philosophical Investigations. Blackwell, 1953.
[33] Z. S. Harris, “Distributional Structure,” Word World, vol. 10, no. 2–3, pp.

172

146–162, 1954.
[34] W. N. Locke and A. D. Booth, Machine translation of languages: fourteen

essays. 1955.
[35] J. R. Firth, A Synopsis of Linguistic Theory, 1930-1955. 1957.
[36] “Vector Representations of Words | TensorFlow,” TensorFlow. [Online].

Available: https://www.tensorflow.org/tutorials/word2vec. [Accessed:
29-May-2018].

[37] C. D. Manning, P. Raghavan, and H. Schutze, Introduction to Information
Retrieval. 2008.

[38] K. W. Church and P. Hanks, “Word association norms, mutual information,
and lexicography,” in Proceedings of the 27th annual meeting on Association
for Computational Linguistics -, 1989.

[39] J. A. Bullinaria and J. P. Levy, “Extracting semantic representations from
word co-occurrence statistics: a computational study,” Behav. Res. Methods,
vol. 39, no. 3, pp. 510–526, Aug. 2007.

[40] P. Pantel and D. Lin, “Discovering word senses from text,” in Proceedings of
the eighth ACM SIGKDD international conference on Knowledge discovery
and data mining - KDD ’02, 2002.

[41] P. D. Turney and M. L. Littman, “Measuring praise and criticism: Inference of
semantic orientation from association,” ACM Transactions on Information
Systems, vol. 21, no. 4, pp. 315–346, 2003.

[42] K. Lund and C. Burgess, “Producing high-dimensional semantic spaces from
lexical co-occurrence,” Behav. Res. Methods Instrum. Comput., vol. 28, no.
2, pp. 203–208, 1996.

[43] Douglas L. T. Rohde and Laura M. Gonnerman and David C. Plaut, “An
improved model of semantic similarity based on lexical co-occurence,”
COMMUNICATIONS OF THE ACM, vol. 8, pp. 627–633, 2006.

[44] R. Lebret and R. Collobert, “Word Embeddings through Hellinger PCA,” in
Proceedings of the 14th Conference of the European Chapter of the
Association for Computational Linguistics, 2014.

[45] D. I. Martin and M. W. Berry, “Mathematical Foundations Behind Latent
Semantic Analysis,” in Handbook of Latent Semantic Analysis, .

[46] M. W. Berry and M. Browne, Understanding Search Engines: Mathematical
Modeling and Text Retrieval. SIAM, 2005.

[47] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R.
Harshman, “Indexing by latent semantic analysis,” Journal of the American
Society for Information Science, vol. 41, no. 6, pp. 391–407, 1990.

[48] T. K. Landauer and S. T. Dumais, “A solution to Plato’s problem: The latent
semantic analysis theory of acquisition, induction, and representation of
knowledge,” Psychol. Rev., vol. 104, no. 2, pp. 211–240, 1997.

[49] R. Rapp, “Word Sense Discovery Based on Sense Descriptor Dissimilarity,”
Proceedings of the Ninth Machine Translation Summit, pp. 315–322, 2003.

[50] Y. Bengio, R´. Ducharme, P. Vincent, and C. Janvin, “A neural probabilistic
language model,” The Journal of Machine Learning Research, vol. 3, pp.
1137–1155, 2003.

[51] A. A. Markov, Example of a Statistical Investigation of the Text of “Eugene
Onegin” Illustrating the Dependence Between Samples in Chain. 1955.

173

[52] J. T. Goodman, “A bit of progress in language modeling, extended version.
Technical report MSR-TR-2001-72,” 2001.

[53] K. Wang, C. Thrasher, E. V. Viegas, X. Li, and B.-J. (paul) Hsu, “An overview
of Microsoft web N-gram corpus and applications,” in Proceedings of the
NAACL HLT 2010 Demonstration Session, 2010, pp. 45–48.

[54] T. Brants and A. Franz, “All our n-gram are belong to you,” Google AI blog,
2006. [Online]. Available:
https://ai.googleblog.com/2006/08/all-our-n-gram-are-belong-to-you.html.

[55] D. Graff and C. Cieri, English Gigaword. Linguistic Data Consortium, 2003.
[56] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean, “Efficient

estimation of word representations in vector space,” vol. abs/1301.3781,
2013.

[57] T. Mikolov, M. Karafiát, L. Burget, J. Cernocky, and S. Khudanpur, “Recurrent
Neural Network Based Language Model,” in INTERSPEECH, 2010.

[58] J. L. Elman, “Finding Structure in Time,” Cogn. Sci., vol. 14, no. 2, pp.
179–211, 1990.

[59] M. Bodén, “A Guide to Recurrent Neural Networks and Backpropagation,” IN
THE DALLAS PROJECT, SICS TECHNICAL REPORT T2002:03, SICS,
2002.

[60] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies
with gradient descent is difficult,” IEEE Trans. Neural Netw., vol. 5, no. 2, pp.
157–166, 1994.

[61] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean,
“Distributed representations of words and phrases and their
compositionality,” CoRR, vol. abs/1310.4546, 2013.

[62] T. Mikolov, “Learning Representations of Text using Neural Networks,”
presented at the NIPS Deep Learning Workshop 2013, Harrah’s Sand
Harbor II room, Lake Tahoe, USA, 09-Dec-2013.

[63] C. McCormick, “Word2Vec Tutorial - The Skip-Gram Model,” Apr-2016.
[Online]. Available:
http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/.

[64] X. Rong, “word2vec Parameter Learning Explained,” CoRR, vol.
abs/1411.2738, 2014.

[65] Tomas Mikolov, Edouard Grave, Piotr Bojanowski, Christian Puhrsch,
Armand Joulin, “Advances in Pre-Training Distributed Word
Representations,” 2017.

[66] Q. Ma, S. Muthukrishnan, and W. Simpson, “App2Vec: Vector modeling of
mobile apps and applications,” in 2016 IEEE/ACM International Conference
on Advances in Social Networks Analysis and Mining (ASONAM), 2016.

[67] M. Frederic and B. Yoshua, “Hierarchical probabilistic neural network
language model,” in AISTATS, 2005, pp. 246–252.

[68] J. Weston, F. Ratle, and R. Collobert, “Deep learning via semi-supervised
embedding,” in Proceedings of the 25th international conference on Machine
learning - ICML ’08, 2008.

[69] Y. W. T. Andriy Mnih, “A Fast and Simple Algorithm for Training Neural
Probabilistic Language Models,” 29th International Conference on Machine
Learning, pp. 1751–1758, 2012.

174

[70] “fastText.” [Online]. Available: https://fasttext.cc/index.html. [Accessed:
05-Jun-2018].

[71] Piotr Bojanowski and Edouard Grave and Armand Joulin and Tomas Mikolov,
“Enriching Word Vectors with Subword Information,” CoRR, vol.
abs/1607.04606, 2016.

[72] A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov, “Bag of Tricks for Efficient
Text Classification,” in Proceedings of the 15th Conference of the European
Chapter of the Association for Computational Linguistics: Volume 2, Short
Papers, 2017.

[73] A. Joulin, E. Grave, P. Bojanowski, M. Douze, H. Jegou, T. Mikolov,
“FastText.zip: Compressing text classification models,” CoRR, vol.
abs/1612.03651, 2016.

[74] RaRe-Technologies, “RaRe-Technologies/gensim,” GitHub. [Online].
Available: https://github.com/RaRe-Technologies/gensim. [Accessed:
06-Jun-2018].

[75] “Word representations · fastText.” [Online]. Available:
https://fasttext.cc/index.html. [Accessed: 06-Jun-2018].

[76] J. Pennington, “GloVe: Global Vectors for Word Representation.” [Online].
Available: https://nlp.stanford.edu/projects/glove/. [Accessed: 03-Jun-2018].

[77] J. Pennington, R. Socher, and C. Manning, “Glove: Global Vectors for Word
Representation (Conference Video on Empirical Methods in Natural
Language Processing (EMNLP2014)),” 23-Nov-2014. [Online]. Available:
https://www.youtube.com/watch?v=RyTpzZQrHCs. [Accessed: 03-Jun-2018].

[78] “Learning the meaning behind words,” Google Open Source Blog. [Online].
Available:
https://opensource.googleblog.com/2013/08/learning-meaning-behind-words.
html. [Accessed: 03-Jun-2018].

[79] Mikolov, T and Yih, W.-T and Zweig, G, “Linguistic Regularities in Continuous
Space Word Representations,” in Proceedings of NAACL-HLT, 2013, pp.
746–751.

[80] Aleksandr Drozd and Anna Gladkova and Satoshi Matsuoka, “Word
Embeddings, Analogies, and Machine Learning: Beyond King - M an + W
oman = Queen,” in COLING, 2016.

[81] R. Kiros et al., “Skip-Thought Vectors,” NIPS, 2015.
[82] Q. V. Le and T. Mikolov, “Distributed Representations of Sentences and

Documents,” ICML’14 Proceedings of the 31st International Conference on
International Conference on Machine Learning, vol. 32, pp. II–1188–II–1196,
2014.

[83] H. P. Luhn, “A Statistical Approach to Mechanized Encoding and Searching
of Literary Information,” IBM Journal of Research and Development, vol. 1,
no. 4. pp. 309–317, 1957.

[84] K. S. Jones, “A STATISTICAL INTERPRETATION OF TERM SPECIFICITY
AND ITS APPLICATION IN RETRIEVAL,” Journal of Documentation, vol. 28,
no. 1. pp. 11–21, 1972.

[85] H. P. Luhn, “The Automatic Creation of Literature Abstracts,” IBM Journal of
Research and Development, vol. 2, no. 2. pp. 159–165, 1958.

[86] S. E. Robertson and K. Sparck Jones, “Relevance weighting of search

175

terms,” Journal of the American Society for Information Science, vol. 27, no.
3. pp. 129–146, 1976.

[87] C. T. Yu and G. Salton, “Precision Weighting---An Effective Automatic
Indexing Method,” Journal of the ACM, vol. 23, no. 1. pp. 76–88, 1976.

[88] G. Amati and C. J. Van Rijsbergen, “Probabilistic models of information
retrieval based on measuring the divergence from randomness,” ACM
Transactions on Information Systems, vol. 20, no. 4. pp. 357–389, 2002.

[89] S. C. Deerwester et al., “Computer information retrieval using latent semantic
structure,” 1988.

[90] H. Schutze, “Dimensions of meaning,” Proceedings Supercomputing ’92. .
[91] W. Pottenger and A. Kontostathis, “Detecting Patterns in the LSI Term-Term

Matrix,” 2002.
[92] C. E. Shannon, “A Mathematical Theory of Communication,” Bell System

Technical Journal, vol. 27, pp. 379–423, 1948.
[93] M. Peters et al., “Deep Contextualized Word Representations,” in

Proceedings of the 2018 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long Papers), 2018.

[94] J. Devlin, M.-W. Chang, and L. K. T. Kristina, “BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding,” CoRR, 2018.

[95] W. Lopez, J. Merlino, and P. Rodriguez-Bocca, “Vector representation of
internet domain names using a word embedding technique,” 2017 XLIII Latin
American Computer Conference (CLEI). 2017.

[96] S. Robertson, “A new interpretation of average precision,” in Proceedings of
the 31st annual international ACM SIGIR conference on Research and
development in information retrieval - SIGIR ’08, 2008.

[97] G. Tsoumakas and I. Katakis, “Multi-Label Classification,” in Database
Technologies, pp. 309–319.

[98] L. J. P. V. D. Maaten and G. E. Hinton, “Visualizing data using t-SNE,”
Journal of Machine Learning Research, vol. 9, pp. 2579–2605, 2008.

[99] R. Rehurek and P. Sojka, “Software Framework for Topic Modelling with
Large Corpora,” in LREC 2010 Workshop on New Challenges for NLP
Frameworks, Malta, 2010.

[100] W. Lopez, “How complex is a given software development task?,”
Predictions with story points, 2018. [Online]. Available:
https://waljoel.github.io/story-points-prediction/Story_Points_Prediction_Dem
o_v0.9.html.

[101] F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor, Recommender Systems
Handbook. Springer Science & Business Media, 2010.

[102] N. Shazeer, R. Doherty, C. Evans, and C. Waterson, “Swivel: Improving
Embeddings by Noticing What’s Missing,” CoRR, 2016.

176

7. Appendix A: Final metrics

Table 24 shows the final MAP@k metric for the different candidate
models and combinations of k (number of ordered similar sites considered
by the model) and k actual (number of similar sites retrieved from the Alexa ’s
service)

MAP@k \ Model
Word2Vec

(cbow)
Word2Vec

(skip-gram) App2Vec FastText

k=1, kactual=1 0.074 0.076 0.073 0.087

k=1, kactual=2 0.106 0.111 0.106 0.126

k=1, kactual=3 0.129 0.137 0.129 0.152

k=1, kactual=5 0.162 0.174 0.159 0.188

k=1, kactual=10 0.21 0.223 0.203 0.238

k=2, kactual=1 0.096 0.099 0.097 0.111

k=2, kactual=2 0.073 0.076 0.074 0.087

k=2, kactual=3 0.093 0.099 0.094 0.11

k=2, kactual=5 0.121 0.13 0.12 0.144

k=2, kactual=10 0.162 0.176 0.158 0.19

k=3, kactual=1 0.107 0.109 0.108 0.123

k=3, kactual=2 0.084 0.088 0.085 0.099

k=3, kactual=3 0.073 0.077 0.074 0.087

k=3, kactual=5 0.097 0.105 0.097 0.117

k=3, kactual=10 0.134 0.147 0.132 0.159

k=5, kactual=1 0.117 0.119 0.118 0.133

k=5, kactual=2 0.096 0.1 0.097 0.113

k=5, kactual=3 0.086 0.09 0.086 0.102

k=5, kactual=5 0.071 0.077 0.071 0.086

k=5, kactual=10 0.103 0.112 0.102 0.123

k=10, kactual=1 0.126 0.129 0.127 0.144

k=10, kactual=2 0.108 0.113 0.109 0.127

177

k=10, kactual=3 0.099 0.106 0.1 0.118

k=10, kactual=5 0.087 0.094 0.087 0.105

k=10, kactual=10 0.067 0.075 0.067 0.082

Table 24 - Final MAP@k metric

Final average MAP@k for Word2Vec (with cbow): 0.107
Final average MAP@k for Word2Vec (with skip-gram): 0.114
Final average MAP@k for App2Vec: 0.107
Final average MAP@k for fastText: 0.126

Table 25 shows the final F1-score metric (harmonic mean between
precision and recall , being the F1-score better when precision and recall
are higher) for the different candidate models and combinations of k
(number of ordered similar sites considered by the model) and k actual
(number of similar sites retrieved from the Alexa ’s service)

F1 \ Model
Word2Vec

(cbow)
Word2Vec

(skip-gram) App2Vec FastText

k=1, kactual=1 0.074 0.076 0.073 0.087

k=1, kactual=2 0.071 0.074 0.071 0.084

k=1, kactual=3 0.065 0.069 0.065 0.076

k=1, kactual=5 0.054 0.058 0.053 0.063

k=1, kactual=10 0.038 0.041 0.037 0.043

k=2, kactual=1 0.079 0.081 0.08 0.09

k=2, kactual=2 0.088 0.092 0.089 0.104

k=2, kactual=3 0.088 0.094 0.089 0.104

k=2, kactual=5 0.0813 0.087 0.08 0.096

k=2, kactual=10 0.063 0.068 0.061 0.073

k=3, kactual=1 0.075 0.076 0.077 0.085

k=3, kactual=2 0.092 0.096 0.094 0.107

k=3, kactual=3 0.098 0.104 0.099 0.114

k=3, kactual=5 0.096 0.104 0.097 0.113

178

k=3, kactual=10 0.0798 0.087 0.079 0.093

k=5, kactual=1 0.065 0.066 0.066 0.072

k=5, kactual=2 0.09 0.092 0.09 0.103

k=5, kactual=3 0.103 0.107 0.103 0.119

k=5, kactual=5 0.11 0.117 0.11 0.129

k=5, kactual=10 0.102 0.11 0.102 0.118

k=10, kactual=1 0.048 0.049 0.048 0.054

k=10, kactual=2 0.075 0.079 0.075 0.085

k=10, kactual=3 0.093 0.099 0.094 0.107

k=10, kactual=5 0.112 0.121 0.113 0.131

k=10, kactual=10 0.123 0.135 0.125 0.144

Table 25 - Final F1-score

Final average F1-score for Word2Vec (with cbow): 0.083
Final average F1-score for Word2Vec (with skip-gram): 0.087
Final average F1-score for App2Vec: 0.083
Final average F1-score for FastText: 0.096

Table 26 shows the final recall metric for the different candidate
models and combinations of k (number of ordered similar sites considered
by the model) and k actual (number of similar sites retrieved from the Alexa ’s
service)

Recall \ Model
Word2Vec

(cbow)
Word2Vec

(skip-gram) App2Vec FastText

k=1, kactual=1 0.074 0.076 0.073 0.087

k=1, kactual=2 0.053 0.055 0.053 0.063

k=1, kactual=3 0.043 0.046 0.043 0.051

k=1, kactual=5 0.032 0.035 0.032 0.038

k=1, kactual=10 0.021 0.022 0.02 0.024

179

k=2, kactual=1 0.118 0.121 0.121 0.135

k=2, kactual=2 0.088 0.092 0.089 0.104

k=2, kactual=3 0.073 0.078 0.074 0.087

k=2, kactual=5 0.057 0.061 0.056 0.067

k=2, kactual=10 0.038 0.041 0.037 0.044

k=3, kactual=1 0.151 0.153 0.154 0.171

k=3, kactual=2 0.115 0.12 0.117 0.134

k=3, kactual=3 0.098 0.104 0.099 0.114

k=3, kactual=5 0.076 0.083 0.078 0.091

k=3, kactual=10 0.052 0.057 0.051 0.06

k=5, kactual=1 0.196 0.197 0.197 0.217

k=5, kactual=2 0.157 0.161 0.158 0.18

k=5, kactual=3 0.137 0.142 0.137 0.159

k=5, kactual=5 0.11 0.117 0.11 0.129

k=5, kactual=10 0.076 0.083 0.076 0.088

k=10, kactual=1 0.262 0.271 0.266 0.298

k=10, kactual=2 0.224 0.236 0.226 0.256

k=10, kactual=3 0.202 0.214 0.203 0.233

k=10, kactual=5 0.168 0.181 0.169 0.197

k=10, kactual=10 0.123 0.135 0.125 0.144

Table 26 - Final recall metric

Final average Recall for Word2Vec (with cbow): 0.11
Final average Recall for Word2Vec (with skip-gram): 0.115
Final average Recall for App2Vec: 0.111
Final average Recall for FastText: 0.127

Table 27 shows the final precision metric for the different candidate
models and combinations of k (number of ordered similar sites considered
by the model) and k actual (number of similar sites retrieved from the Alexa ’s
service)

Precision \
Model Word2Vec (cbow)

Word2Vec
(skip-gram) App2Vec FastText

180

k=1, kactual=1 0.074 0.076 0.073 0.087

k=1, kactual=2 0.106 0.111 0.106 0.126

k=1, kactual=3 0.129 0.137 0.129 0.152

k=1, kactual=5 0.162 0.174 0.159 0.188

k=1, kactual=10 0.21 0.223 0.203 0.238

k=2, kactual=1 0.059 0.061 0.06 0.068

k=2, kactual=2 0.088 0.092 0.089 0.104

k=2, kactual=3 0.11 0.118 0.111 0.13

k=2, kactual=5 0.142 0.153 0.141 0.168

k=2, kactual=10 0.189 0.205 0.184 0.218

k=3, kactual=1 0.05 0.051 0.051 0.057

k=3, kactual=2 0.077 0.08 0.078 0.089

k=3, kactual=3 0.073 0.077 0.074 0.087

k=3, kactual=5 0.127 0.139 0.129 0.151

k=3, kactual=10 0.173 0.051 0.171 0.201

k=5, kactual=1 0.039 0.039 0.039 0.043

k=5, kactual=2 0.063 0.065 0.063 0.072

k=5, kactual=3 0.082 0.085 0.082 0.095

k=5, kactual=5 0.11 0.117 0.11 0.129

k=5, kactual=10 0.153 0.165 0.153 0.177

k=10, kactual=1 0.026 0.027 0.027 0.03

k=10, kactual=2 0.045 0.047 0.045 0.051

k=10, kactual=3 0.06 0.064 0.061 0.07

k=10, kactual=5 0.084 0.09 0.085 0.099

k=10, kactual=10 0.123 0.135 0.125 0.144

Table 27 - Final precision metric

Final average Precision for Word2Vec (with cbow): 0.102
Final average Precision for Word2Vec (with skip-gram): 0.103
Final average Precision for App2Vec: 0.102
Final average Precision for FastText: 0.119

181

The following charts summarize the values from the previous tables
and are helpful for a relative comparison through visual inspection for the
quality of the different candidate models.

182

183

184

8. Appendix B: Evolution of metrics
during training

The following charts show the evolution of the MAP@k metric
during the training phase for the different candidate models and
combinations of k (number of ordered similar sites considered by the
model) and k actual (number of similar sites retrieved from the Alexa ’s
service)

185

186

187

The following charts show the evolution of the F1-score metric
during the training phase for the different candidate models and
combinations of k (number of ordered similar sites considered by the
model) and k actual (number of similar sites retrieved from the Alexa ’s
service)

188

189

190

