
Parallel multithreading algorithms for
self-gravity computation in

ESyS-Particle

Nestor Pablo Rocchetti Martínez

Programa de Posgrado en Computación
Facultad de Ingeniería

Universidad de la República

Montevideo – Uruguay
Diciembre de 2020

Parallel multithreading algorithms for
self-gravity computation in

ESyS-Particle

Nestor Pablo Rocchetti Martínez

Tesis de Maestría presentada al Programa de
Posgrado en Computación, Facultad de Ingeniería de
la Universidad de la República, como parte de los
requisitos necesarios para la obtención del título de
Magíster en Computación.

Director:
D.Sc. Prof. Sergio Nesmachnow

Director académico:
D.Sc. Prof. Gonzalo Tancredi

Montevideo – Uruguay
Diciembre de 2020

Rocchetti Martínez, Nestor Pablo
Parallel multithreading algorithms for self-gravity

computation in ESyS-Particle / Nestor Pablo Rocchetti
Martínez. - Montevideo: Universidad de la República,
Facultad de Ingeniería, 2020.

XV, 91 p. 29, 7cm.
Director:
Sergio Nesmachnow
Director académico:
Gonzalo Tancredi
Tesis de Maestría – Universidad de la República,

Programa en Computación, 2020.
Referencias bibliográficas: p. 89 – 91.
I. Nesmachnow, Sergio, . II. Universidad de

la República, Programa de Posgrado en Computación.
III. Título.

INTEGRANTES DEL TRIBUNAL DE DEFENSA DE TESIS

Ph.D. Prof. Rafael Mayo

D.Sc. Prof. Tabaré Gallardo

D.Sc. Prof. Pedro Piñeyro

Montevideo – Uruguay
Diciembre de 2020

vii

viii

Acknowledgements

I would like to thank Dr. Dion Weatherly and Dr. Steffen Abe for their support
in implementing the changes in ESyS-Particle. Dr. Derek Richardson and Dr.
Steven Schwartz helped us in the comparison with other DEM packages, and
in particular Derek kindly welcomed Dr. Tancredi and me in our visit to the
University of Maryland. Also, I would like to thank Daniel Frascarelli for
helping me understand the self-gravity module of ESyS-Particle. Finally, I
would like to thank ANII for the financial support to carry out the thesis.

ix

x

ABSTRACT

This thesis describes the design, implementation, and evaluation of efficient
algorithms for self-gravity simulations in astronomical agglomerates. Due to
the intrinsic complexity of modeling interactions between particles, agglom-
erates are studied using computational simulations. Self-gravity affects every
particle in agglomerates, which can be composed of millions of particles. So,
to perform a realistic simulation is computationally expensive. This thesis
presents three parallel multithreading algorithms for self-gravity calculation,
including a method that updates the occupied cells on an underlying grid
and a variation of the Barnes & Hut method that partitions and arranges the
simulation space in both an octal and a binary tree to speed up long range
forces calculation. The goal of the algorithms is to make efficient use of the
underlying grid that maps the simulated environment. The three methods
were evaluated and compared over two scenarios: two agglomerates orbiting
each other and a collapsing cube. The experimental evaluation comprises the
performance analysis of the two scenarios using the two methods, including a
comparison of the results obtained and the analysis of the numerical accuracy
by the study of the conservation of the center of mass and angular momentum.
Both scenarios were evaluated scaling the number of computational resources
to simulate instances with different number of particles. Results show that the
proposed octal tree Barnes & Hut method allows improving the performance
of the self-gravity calculation up to 100× with respect to the occupied cell
method. This way, efficient simulations are performed for the largest problem
instance including 2,097,152 particles. The proposed algorithms are efficient
and accurate methods for self-gravity simulations in astronomical agglomer-
ates.

Keywords:
Simulation, high-performance computing, self-gravity, astronomical
agglomerates.

xi

xii

Contents

1 Introduction 1

2 Self-gravity calculation and related work 5
2.1 Calculating the self-gravity . 5
2.2 The Discrete Element Method 6
2.3 Related work on domain decomposition techniques 8

3 Improvements of a parallel self-gravity algorithm 15
3.1 A parallel algorithm for self-gravity calculation 15
3.2 Implementation of the Self-gravity algorithm on ESyS-Particle . 18
3.3 Reducing the execution time of the self-gravity computation . . 21
3.4 Profiling the self-gravity calculation 23
3.5 Implementation on ESyS-Particle and the self-gravity module . 25

4 Adapted Barnes-Hut method for self-gravity calculation 27
4.1 Octal tree structure . 27
4.2 Process of creation of the octal tree 28
4.3 Implementation of the Barnes and Hut method on ESyS-Particle 35
4.4 The binary tree . 36
4.5 Increasing the numerical accuracy of the octal tree algorithm . . 38

5 Description of the experimental setup 39
5.1 Two agglomerates scenario . 39
5.2 Free falling symmetric cube . 41
5.3 Hardware platform . 43
5.4 Profiling the optimized version of self-gravity calculation 45

6 Experimental evaluation: occupied cells versus octal tree 49
6.1 Results for the two agglomerates scenario 49

xiii

6.1.1 Small size instance . 49
6.1.2 Medium size instance . 51
6.1.3 Large size instance . 52
6.1.4 Overall discussion for the two-agglomerate scenario . . . 53

6.2 Collapsing cube scenario . 54
6.2.1 Small instance . 54
6.2.2 Medium instance . 56
6.2.3 Large instance . 57
6.2.4 Overall discussion for the collapsing cube scenario 57

6.3 Numerical accuracy: analysis of the position of the center of mass 58
6.3.1 Description of the studies 59
6.3.2 Results for the two agglomerate scenario 59
6.3.3 Results for the collapsing cube scenario 61

6.4 Numerical accuracy: analysis of the angular momentum 63
6.4.1 Angular momentum and its relevance 63
6.4.2 Results for the two agglomerates scenario 65
6.4.3 Results for the collapsing cube scenario 67

7 Experimental evaluation: binary tree algorithm and upper
tree level mass center calculation 73
7.1 Performance results of the binary tree algorithm 73
7.2 Numerical accuracy of the binary tree algorithm: analysis of the

center of mass . 75
7.3 Numerical accuracy of the binary tree algorithm: analysis of the

angular momentum . 79
7.4 Analysis of the upper level direct calculation of the center of mass 81

8 Conclusions and future work 85

Bibliography 89

xiv

Chapter 1

Introduction

Some astronomical objects, like asteroids and comets, are agglomerates of
smaller particles called grains, which are kept together by their mutual grav-
itational force. Grains are affected by short range interactions (e.g., contact
forces) and long range interactions. Long range interactions are a combination
of the effect of the influence of the gravity of other objects and the effect of the
influence of the other grains that conform the agglomerate itself. The latter is
called self-gravity of the agglomerate (Harris et al., 2009; Fujiwara et al., 2006).
Gravitational potential can cause attraction between astronomical objects and
also deformations. This way, self-gravity gives shape to asteroids and comets
composed of agglomerates of particles (Rozitis et al., 2014).

Due to the intrinsic complexity of modeling interactions between particles,
agglomerates are studied using computational simulations. A straightforward
approach to compute the long range interactions between every pair of parti-
cles in an agglomerate with N particles has a computational cost of O(N2) in
each step of the simulation. Thus, performing simulations of millions of parti-
cles, as usual to model medium-size astronomical objects, is computationally
expensive.

The High Performance Computing (HPC) paradigm helps researchers to
solve complex problems and perform simulations on big domains. HPC allows
dealing with complex problems that demand high computer power in rea-
sonable execution times. Instead of using a single computing resource, HPC
proposes using multiple resources in parallel, applying a coordinated approach.
This way, a cooperation strategy is implemented, allowing the workload to be
divided between the computational units available to solve a complex problem

1

in reasonable execution times.

ESyS-Particle (Abe et al., 2009) is a software library for simulation of geo-
logical phenomena using the Discrete Element Method (DEM). ESyS-Particle
includes features for execution in parallel and distributed environments.

The first applications of ESyS-Particle in planetary sciences were presented
by our research group (Tancredi et al., 2012), including simulations in low-
gravity environments (asteroids and comets) and new models to simulate con-
tact forces. A specific shortcoming of ESyS-Particle (and other DEM software)
is the lack of models to simulate long-range forces. Our previous work (Fras-
carelli et al., 2014) proposed a self-gravity module applying HPC techniques
to allow performing simulations of thousands of particles efficiently by exploit-
ing multiple computing resources. Strategies to efficiently compute long-range
forces were introduced, implemented, and evaluated over realistic scenarios.

In this line of work, this thesis presents parallel multithreading algorithms
for self-gravity calculation, including a method that updates the occupied cells
on an underlying grid and a variation of the Barnes & Hut method that par-
titions and arranges the simulation space in both an octal and a binary tree
to speed up long range forces calculation. Both methods and its variants are
evaluated and compared over two scenarios: two agglomerates orbiting each
other and a collapsing cube. The experimental evaluation comprises the per-
formance analysis of the two scenarios using the two methods, including a
comparison of the results obtained and the analysis of the numerical accuracy.
Both scenarios were evaluated scaling the number of computational resources
to simulate instances with different number of particles. Results show that the
proposed octal tree Barnes & Hut method (Barnes and Hut, 1986) allows im-
proving the performance of the self-gravity calculation up to 100× with respect
to the occupied cell method. This way, efficient simulations are performed for
the largest problem instance including 2,097,152 particles.

Three conference papers and a journal article were written, which include
the partial results obtained during the development of this thesis. In chronolog-
ical order, the first work is the conference paper: "Performance improvements
of a parallel multithreading self-gravity algorithm" (Rocchetti et al., 2017).
After that is the conference paper: "Comparison of Tree Based Strategies for
Parallel Simulation of Self-gravity in Agglomerates" (Rocchetti et al., 2018).
Then is the conference paper "Large-Scale Multithreading Self-Gravity Simu-
lations for Astronomical Agglomerates" (Nesmachnow et al., 2019). The last

2

is the journal article "High performance computing simulations of self-gravity
in astronomical agglomerates" that is under revision at the moment of writing
this thesis.

The main contributions of this thesis are: i) the presentation and the exper-
imental evaluation of an upper tree level mass center calculation implemented
as an extension of the mass center calculation algorithm included in the Barnes
& Hut octal tree construction algorithm, ii) the experimental analysis of the
Barnes & Hut octal tree algorithm with a collapsing cube scenario, and iii) the
study of the conservation of the center of mass and the angular momentum for
the scenarios and the algorithms presented in this article.

The thesis is organized as follows. Next chapter introduces the self-gravity
calculation problem and reviews related works on domain decomposition for
particle simulators. After that, a parallel self-gravity calculation algorithm is
presented which is the base of our work. Then, the adapted Barnes & Hut
method for self-gravity calculation is described. Next, the test scenarios and
instances used to perform the evaluation are described. Then, the experimental
evaluation of the octal tree is presented, followed in the next chapter by the
experimental evaluation of the binary tree algorithm and the upper tree level
mass center calculation. Finally, the conclusions and main lines for future work
are formulated.

3

4

Chapter 2

Self-gravity calculation and
related work

This chapter starts by the introduction of the problem of self-gravity calcu-
lation. Then, follows the explaination of the Discrete Element Method. Af-
ter that, the chapter continues with a review of previuos works about static,
dynamic and combined spatial domain decomposition techniques, used to
speed up the calculations of interaction between particles. Finally the chapter
presents a parallel algorithm for self-gravity calculation and an implemen-
tation of a self-gravity algorithm on a particle interaction simulator called
ESyS-Particle.

2.1 Calculating the self-gravity

The self-gravity calculation problem consists of calculating the self-gravity of
assemblies of N particles. In this problem, every particle present in the as-
sembly interacts (and therefore is affected by) all the other particles. The
mathematical model for computing the gravitational potential resulting of the
gravitational interaction with the rest of the particles in the studied system
is expressed in Eq. 2.1, where G is the gravitational constant, ‖−→r ‖ is the
norm of the distance vector −→r , Mi is the mass of the particle, and Vj is the
gravitational potential of particle.

Vj =
∑
i 6=j

GMi

‖ −→rj −−→ri ‖
(2.1)

5

A straightforward implementation of the gravitational potential calculation
according to Eq. 2.1 results in a computational cost of O(N2) when calculating
the potential for each particle in each time step. This approach turns to be
inefficient when the simulation scenario scales to hundreds of thousands of
particles.

Many techniques have been developed in order to overcome the computa-
tional inefficiency problem when considering simulations with many particles.
The objective of the methods proposed is to develop strategies to efficiently
calculate the long range forces based on algorithms that form groups of parti-
cles.

2.2 The Discrete Element Method

The Discrete Element Method was first denominated Distinct Element Method
and was presented by Cundall and Strack (1979). In this work both methods
are adressed with the initials DEM.

DEM consists of calculating the interaction between individual particles,
and after that, achieving the representation of the behavior of assemblies by
the propagation of the interactions. The simulations are performed in two
dimensional spaces and the agglomerates of particles are dry. So, the particles
represented are (solid) discs, which can have any size or density. A character-
istic of DEM is that contact forces are calculated over time steps of constant
length. The velocities and accelerations between time step intervals are consid-
ered invariant. According to Cundall and Strack (1979), the time step length
has to be chosen small enough that during a single time step the disturbances
cannot propagate from any disc further than to the discs that are in contact
with it. This way, the net force over a disc is determined only by the inter-
action with other discs in contact with it. This property of DEM makes it
possible to perform simulations without consuming excessive memory.

The net forces for each particle are calculated for each of the time steps of
a simulation. The cycle of calculation consists of computing the displacement
forces (normal and tangential forces) using a force-displacement law, and then
the total force is computed using the second law of Newton. Finally, the
displacement vector of a discs is calculated from the total force.

According to Cundall and Strack (1979) the deformation of the assemblies
is a consequence of the movement of the particles rather than its deformations.

6

So, the authors stated that a precise model of the deformation of the particles
is not needed. This way, the deformation of two particles is modeled as the
overlapping of one another at contact points. A larger overlap implies a larger
force that the particles exert to each other due to the deformation. The overlap
is small compared to the sizes of the particles. Also, the overlapping is directly
related to the time step and the displacement speed of the particles.

The second law of Newton is used for each particle after the forces that are
exerted over each of the particles are calculated. The second law is used to
calculate the acceleration of a particle for the next time step. The acceleration
is calculated from the vectorial sum of the forces of the particles that are in
direct contact with it.

The experimental evaluation of the DEM implemented by Cundall and
Strack (1979) was performed as a two dimensional execution. The test scenario
was composed of 197 discs of different sizes surrounded by four walls that form
a square. The experiment consisted of compressing the discs by moving the
walls causing the discs to collide and overlap. The purpose of the experiment
was to evaluate the resultant forces and the acceleration. The results obtained
were compared against a physical experimental setup which was the same as
the scenario used for the computational simulation. Cundall and Strack (1979)
concluded that the experimental results are subjecive. Nonetheless, the results
obtained were sufficient to conclude that DEM is a valid method to perform
granular assemblies simulations.

DEM is used to accurately and efficiently perform the calculations of the
contact forces over the particles for each time step of a simulation. When per-
forming simulation of astrophysical models, two types of forces are taken into
account: short range forces and long range forces. The short range forces are
the forces that result from the contact between particles, which are calculated
using DEM. The long range forces are the self-gravitational forces and cannot
be calculated using DEM as presented by Cundall and Strack (1979). The fol-
lowing section presents and analyzes the problem of calculating the self-gravity
of assemblies of particles.

7

2.3 Related work on domain decomposition

techniques

This section reviews the different domain decomposition techniques developed
to speed up the self-gravity calculation when performing astrophysical parti-
cle simulations. The techniques presented are classified as static or dynamic
domain decomposition techniques.

Static hierarchical domain decomposition

Static techniques for particle interaction are based on a domain decomposition
that stays invariable during a simulation. According to Hockney and Eastwood
(1988), static techniques are divided in three models: Particle-Particle (PP)
methods, Particle-Mesh (PM) methods, and Particle-Particle Particle-Mesh
(P3M) methods. PP are the simplest methods and consist of computing the
forces directly between all the particles in the system. Despite being the most
accurate, the PP model lacks the ability to scale in the number of particles due
to its O(N2) execution time. PM methods consist of using a mesh over the
simulated space and calculating the potential for each particle that belongs to
the mesh. After that, the speed for the particles is calculated via an interpola-
tion. According to Hockney and Eastwood (1988), although PM methods are
less accurate than PP methods when computing the forces, PM methods are
in general significantly faster than PP methods. However, in many practical
applications, PM may need a mesh resolution that should result to be slower
than a PP method; thus the PM model is not usually used to calculate contact
forces. Finally, P3M methods combine the PP and the PM models. The P3M
model divides the forces applied to a particle into short range and long range
forces. The short range forces are calculated using a PP method and the long
range forces are calculated using a PM method. The combination results in
a fast and accurate method to simulate particle interaction. Many implemen-
tations and variations of the aforementioned three models are present in the
literature. Some of the more relevant implementations are reviewed next.

Couchman (1991) proposed a variation of the P3M algorithm, that applies
a selective refinement of the grid depending on the particle density of a cell.
The refinement is performed recursively while a density threshold is exceeded.

8

Given that the refinement is performed recursively, the particle mesh is an
spatial division without overlapping zones to be calculated. This way, assign-
ing a similar number of particles to each processing unit, a load balancing
scheme is implemented. The results obtained after the refinements are then
passed over to the father cell to be integrated via direct summation. There is
a correlation between the level of refinement of the grid and the time spent to
integrate the results calculated for the individual cells. The refinement level
has to be calibrated for this method to be efficient. The method presented
by Couchman has the constraint that the domain of the simulation must be
cubic and also the space must be divided into an integer number of cells of the
same size. Couchman stated that, in this method "The gain is in simplicity"
(p. 24). Results presented by Couchman indicate that the algorithm is up to
20 times faster than a P3M algorithm and also requires less memory.

Kravtsov et al. (1997) presented an N-body solver called Adaptive Refine-
ment Tree based on the particle-mesh method over a multilevel grid to perform
the calculations of the forces on the system. The mesh is created over a cubic
space that is divided by regular cells with cubic shape and a predefined size. A
multilevel mesh is defined by dividing large cells into eight parts that have the
same size depending on the particle density. The multilevel mesh is created
at the beginning of the simulation and then it is partially updated when the
forces need to be recalculated. The smallest size of an element of the grid
is the resolution of the mesh (i.e., a cell). The implementation presented by
Kravstov et al. was partially parallel. The section of the application that was
parallelized is the one in which the forces are updated for the particles (i.e.,
the force interpolation). Kravstov et al. stated that the solution is half as fast
as the Fourier transform solver with the same number of cells. The method
proposed by Kravstov et al. is similar to the method presented in this thesis, in
the sense that it spawn an octal tree in which the maximum resolution is a cell
in the mesh. On the other hand, in the method that Kravstov et al. proposed,
the finer meshes are built when a predefined size threshold is exceeded, but in
the method introduced in this thesis, a finer mesh is created when there are
particles present in the cell.

An implementation of a DEM simulator using the PM method was pre-
sented by Sánchez and Scheeres (2012). The same static domain decomposition

9

technique is used to calculate short range interactions as well as long range in-
teractions. The space of the simulation scenario is divided in cubical cells that
are many times bigger than the particles radius of the scenario. Then instead
of considering individual particles to calculate the gravitational potential, the
whole cell is considered as a particle. The calculations for N particles are
still O(N2), but the authors claimed that the amount of calculations required
decreased in one order of magnitude. The short range and the long range in-
teractions are computed concurrently. However, the authors did not propose
a parallel implementation. Thus, the method was able to compute efficiently
simulations of systems with up to 8, 000 particles. The results presented by the
authors show that the algorithm implemented is not suitable to perform large
scale simulations that comprise hundreds of thousands of particles. In order
to do so, a parallel or distributed implementation of the algorithm is needed.

Dynamic hierarchical domain decomposition

Dynamic techniques for particle interaction calculation use structures that are
adapted or reconstructed from scratch during the simulation. A classic tech-
nique in this field is the method proposed by Barnes and Hut (1986). In this
method, the simulated domain is divided in a hierarchical octal tree to acceler-
ate the calculation of the gravitational potential in a N -body simulation. The
tree is composed of nodes that represent a portion of the space of the simula-
tion. The root node of the tree represents the complete space of the simulation.
If a node (i.e., the space it represents) contains more than one particle, the
space is divided into smaller pieces. In a two-dimension simulation, the space
is divided in four smaller pieces. However, in a three-dimension simulation,
the space is divided into eight pieces. Applying this domain decomposition
Barnes and Hut affirmed that the long-range interactions are calculated in
O(N logN), being N the number of particles in the domain. According to the
authors, experimental results indicate that the error increases as the simula-
tion runs. As one of the improvements for the algorithm presented, Barnes
and Hut suggest implementing individual time steps for each particle, with
the idea of updating more frequently those particles that move faster.

Greengard and Rokhlin (1987) presented the Fast Multipole Method. The
method consists of performing a multipole expansion of the space of the sim-

10

ulation to be performed. The expansion is organized as a hierarchy of meshes
rather than a tree. However, the elements of meshes with higher resolution
that are an expansion of an element of a lower resolution mesh are considered
its sons. According to the Greengard and Rohklin, clusters of particles can
interact with one another as long as they are "well separated". The range of
separation is defined as a configuration parameter before starting a simulation.
The expansion is pure spatial. The spatial center of a father mesh box is one
expansion center of the next level. The expansion is performed whether there
are particles in the box or not. After creating the meshes, the potential is cal-
culated for each center of all the meshes. Then, the potential for each particle
is calculated as an extrapolation of the nearest neighbor boxes at the finest
mesh level. Greengard and Rohklin implemented the algorithm and performed
a comparison with a direct computation in single precision. The experimen-
tal evaluation was performed on a VAX-8600. The results on the comparison
presented by Greengard and Rokhlin indicate that in an instance consisting
of 12,800 particles the execution time of the method presented is 300× lower
than the direct method. In addition, Greengard and Rohklin stated that the
execution time grows linearly with the number of particles.

Combined techniques

Xu (1994) presented a variation of the P3M method called Tree Particle Mesh
(TPM). The difference with P3M lies in that short-range interactions are calcu-
lated using the algorithm presented by Barnes and Hut. However, long-range
interactions are calculated using a PM method. The TPM method consists of
using the tree code only on the parts of the field that have a density over a cer-
tain threshold. Each of the trees created has a different time step. The regions
that have low particle density are managed only by the PM method. Using
the tree code on high density zones allows the PM method to have a lower
resolution (i.e., less cells are created), hence the simulations run faster. The
TPM method proposed by Xu was parallelized using a Multiple Instruction
Multiple Data model. To provide load balance, the tree code was parallelized
in two levels. In the first level, the trees are assigned to the available proces-
sors. The second level of the parallelism balances the load when the number
of processors is higher than the number of trees. In the second level of par-
allelism, many processors work on a single tree. After a tree construction is

11

finished, the structure of the tree is broadcasted to a group of processors that
are going to perform the tree walk and force summation. Xu explained that
the construction of the trees was not parallelized due to the fact that only 2.5%
of the time is spent on that activity. The algorithm showed a speedup of 26
when running on 32 processors. The author also performed a comparison with
the PM and the tree method. Results indicated that the pure tree method
is 12× slower than the TPM code presented by Xu. Also, the PM method
turned to be 1.2× faster when the PM box size (i.e., the resolution) is set to
0.010 and the TPM box size is set to 0.003.

Bode et al. (2000) presented an algorithm as an improvement of the TPM
originally presented by Xu (1994). In the algorithm presented by Bode et al.
(2000), the forces are calculated as a combination of the PM and a tree algo-
rithm. This algorithm is used to calculate and evolve the short range interac-
tions. On the one hand, the forces internal to the tree are calculated by a tree
algorithm. On the other hand, the long range interactions are managed by a
PM algorithm. At the beginning of a simulation the time step is the same for
PM and the tree algorithm. The tree algorithm can use a smaller time step if
needed. According to Bode et al., the algorithm divides the space into regions
based on particle density, called clusters. Before creating the clusters, cells of
the grid that have a density that is above a defined threshold are assigned a
key that identifies them. Then, for each of the cells with a density above the
threshold, the surrounding cells that also have a density above the threshold
are given the same key and becoming a cluster. The density threshold is de-
fined as a function of the mean density of the cells and its standard deviation.
Whereas the focus of the implementation are simulations of clusters of par-
ticles, the algorithm can be used to simulate other scenarios. A comparison
with the P3M algorithm was performed. Experimental results showed that
the TPM algorithm speeds up the simulations "by a factor of 3-4" (Bode et
al. 1994 p.566) when the trees have individual time steps. The experimental
evaluation was performed on a cluster of computers composed of SGI Origin
2000. Results of a study of computational efficiency showed that the algorithm
scales from 4 to 16 processors, then efficiency drops to 70% at 32 nodes.

Bagla (2002) presented a method for performing simulations of large parti-
cle agglomerates simulations, called TreePM. The method combines the Barnes

12

and Hut tree code and the PM method. The method presented is similar to
the TPM method proposed by Bode et al. (2000). The forces are divided into
long range and short range forces. The long range forces are calculated us-
ing the PM method, whereas the short range forces are calculated using the
Barnes and Hut algorithm. For the short range forces, the criteria is to cal-
culate the contribution from particles or from grid cells. A cell is considered
when a distance threshold is exceeded, instead if the threshold is not exceeded,
the subcells or particles should be considered. According to Bagla, there are
two differences between the TreePM method and the TPM method. One dif-
ference is that, while TPM uses the PM method to compute the long range
forces, TreePM uses an explicit and experimentally defined distance to decide
which method is used to compute the forces in a particular region. The other
difference is that in TPM the forces are computed for each individual parti-
cle only for the particles that belong to high density regions, but in TreePM
the forces are computed individually for all the particles. According to Bagla,
experimental results indicated that TreePM is about 4.5x faster than a tree
algorithm. Also, results show that the simulations scale in O(N log N), being
N the number of particles.

Khandai and Bagla (2009) presented a modification of the TreePM algo-
rithm. Khandai and Bagla adapted the suggestion by Barnes and Hut (1986)
in the context of the TreePM algorithm previously presented by Bagla (2002).
The tree part of the algorithm is used to calculate the short range forces. In
the optimization suggested by Barnes, the force is computed in only one tree
walk. In addition, the particles are divided into groups, but instead of group-
ing them by their densities as suggested by Bode et al. (2000), the groups are
created according to the particles number and volume. The authors performed
experiments with scenarios with between 323 to 2563 particles. Results indi-
cated that a TreePM algorithm with group scheme and individual time steps
for each group had a speed up of 12.72 compared to an unoptimized TreePM
algorithm.

Ishiyama et al. (2012) presented a variation of the TreePM method ap-
plied to a N-body simulation of one trillion particles which was executed using
the full capacity (663552-cores) of the K Computer of the RIKEN institute
(https://www.top500.org/system/177232). The results obtained were pre-

13

https://www.top500.org/system/177232

sented as an entry for the Gordon-Bell performance prize. For the short-range
forces, the Barnes & Hut algorithm was modified to create trees for groups of
particles. Also, Ishiyama et al. performed modifications to implement a list of
tree nodes and particles that is shared by a group of particles. By using this
method, Ishiyama et al. stated that the algorithm "can reduce the computa-
tional cost of tree traversal by a factor ofNi" (p.3) beingNi the average number
of particles of the groups. To measure the space of the simulation, Ishiyama et
al. used the sampling method to perform a 3D multi-section decomposition.
In addition, Ishiyama et al. implemented load balancing by adjusting the size
of the cells according to the cost of calculating the potential for the cells. As
a complement, the interactions were calculated using the Single Instruction
Multiple Data paradigm, combined with loop unrolling. Regarding the PM
method, Ishiyama et al. implemented a distributed Fast Fourier Transform
(Cochran et al. (1967)). Reported results indicated that the algorithm pro-
posed has good scalability in terms of the number of nodes used, which means
that there is not a significative overhead in the communications. Using 82,944
computing nodes, Ishiyama et al. stated that the algorithm achieved a per-
formance of 4.45 Pflops and an efficiency of 43%. The algorithm presented is
1.44x faster compared to the Gordon-Bell winner of the previous year.

14

Chapter 3

Improvements of a parallel
self-gravity algorithm

This chapter describes performance improvements of the self-gravity calcula-
tion algorithm previously implemented in ESyS-Particle. The improvements
establish a new baseline implementation for the self-gravity algorithm to be
compared with. Section 3.1 describes a parallel algorithm to calculate self-
gravity. Then, section 3.2 explains the implementation of the algorithm in
ESyS-Particle including its characteristics. Section 3.3 explains the improve-
ments to reduce the self-gravity calculation time of the self-gravity module
of ESyS-Particle. Section 3.4 reports the profiling results and the analysis
of the self-gravity calculation before implementing the occupied cells method.
Finally, section 3.5 explains the occupied cells method.

3.1 A parallel algorithm for self-gravity calcu-

lation

Frascarelli et al. (2014) presented an algorithm based on DEM to perform self-
gravity calculations and contact forces calculations for the simulation of small
solar system bodies. Frascarelli et al. presented details on the implementation,
the test scenarios, and the experimental results.

The algorithm developed by Frascarelli et al. (2014) makes use of parallel
programming techniques based on multithreading in order to accelerate the
calculation of long-range forces and also short-range contact forces. In partic-
ular, for the long-range forces computation, a domain decomposition technique

15

was implemented following the master-worker model for parallelization. The
advantage of using threads lies in the efficiency of the data communication and
synchronization via shared memory. A pool of threads was used to avoid the
intensive creation and destruction of threads. The algorithm for self-gravity re-
calculation consists of five stages: initialization, threads creation, self-gravity
calculation, interpolation, and output. The initialization phase consists of
initializing the shared memory and loading the information of the particles.
Then, in the threads creation phase, the self-gravity calculation is divided into
smaller tasks to be assigned to the pool of threads. Afterwards, in the self-
gravity calculation phase, the tasks are assigned in turn to an idle thread of
the pool created in the previous phase. Then, the pool of spawned threads is
used to perform an interpolation for each of the particles in the system with
respect to the eight surrounding nodes in order to calculate the self-gravity of
each particle.

To increase the performance of the algorithm, the acceleration is calculated
for a virtual point located at the center of each cell that composes the grid.
Thus, a cell of the grid is the minimum processing unit. A hierarchical grouping
approximation method (Mass Approximation Distance Algorithm, MADA) was
introduced. The main goal of MADA is to accelerate the calculation of the
gravitational potential of a particle in a given time step, by considering a group
of distant particles as a single particle located in the center of mass of the group.
The proposed parallel algorithm calculates the self-gravity using MADA and
a pool of worker threads that execute the most computing-intensive tasks in
parallel sections, following a P3M approach. The principle of MADA is that,
when calculating the self-gravity for a given cell, a more refined grid is used
for the cells that are near the cell to update. This way, the self-gravity is
calculated more accurately. The particles are used individually for the cells
that are next to the cell to update.

The experimental evaluation was performed to determine the efficiency
and accuracy of the proposed strategies. The infrastructure used to perform
the evaluation was a 24-core, 2.1-GHz AMD Opteron 6172 processor with 24
Gbytes of RAM available at Cluster FING (www.fing.edu.uy/cluster). To
test the numerical accuracy, an scenario containing an espherical agglomerate
of 1,022,208 particles with a radius of 20m was used. The numerical accuracy
was determined by calculating the distance of the experimental center of mass
versus the theoretical center of mass. Results presented by Frascarelli et al.

16

www.fing.edu.uy/cluster

showed an error less than 0.1%. The results of the computational efficiency
study showed a near linear speed up when using approximately 100,000 par-
ticles. Nevertheless, the computational efficiency decreases as the number of
particles increases.

Nesmachnow et al. (2015) presented several computation and data-
assignment patterns to determine the best efficiency and scalability proper-
ties of the resulting self-gravity computation method. Four strategies were
proposed to dynamically balance the workload assigned to the threads when
calculating the self-gravity. The first strategy is interlocking linear strategy, in
which each worker thread linearly takes a cell to process. The first thread takes
the first cell to process, the second thread takes the second, and so on until all
the threads have been assigned a cell to process. Then, the first thread that
finishes working takes the next available cell to process. The second strategy is
circular concentric strategy. In this strategy the threads are divided into two
groups. One group starts processing the cells from the center of the grid and
the other from the border with the main goal of reusing the already calculated
centers of mass. The third strategy is basic isolated linear strategy, which con-
sists of assigning clusters of cells of equal size to each thread of the pool. The
fourth strategy presented is the advanced isolated linear strategy. This strategy
consists of dividing the workload evenly between the threads spawned. Then,
after a thread finishes processing its workload, it starts processing the nearest
unprocessed cell. The process ends when there are no cells left to process.
Experimental results demonstrated that the best implementation of the algo-
rithm among the presented was the advanced isolated linear strategy. This
strategy was able to scale up linearly with the number of particles in the sys-
tem, and it scaled with an inverse power law (exponent 0.87) with the number
of threads used in the computation. The observed speed up was close to linear
for systems containing up to 2×105 particles.

The self-gravity algorithm presented in the works of this section was not
included in a tool that integrated the self-gravity calculations. In order to
perform realistic simulations of particle interactions in low gravity environ-
ments the work presented in the following section shows how the self-gravity
algorithm was included in a particle interaction simulator called ESyS-Particle.

17

3.2 Implementation of the Self-gravity algo-

rithm on ESyS-Particle

This section describes the main features of a self-gravity algorithm imple-
mented in ESyS-Particle. The work presented in this section is the base for
the work presented in this thesis.

Abe et al. (2009) presented ESyS-Particle, a particle interaction simulator
that implements the DEM. ESyS-Particle was developed to simulate geophys-
ical phenomena, so the particle interacions that were included only comprised
the contact forces. ESyS-Particle is fully parallelized and can run in parallel
or distributed environments such as multi-core computers or clusters. It is im-
plemented in C++ and is parallelized using Message Passing Interface (MPI)
(Walker and Dongarra (1996)).

Weatherley et al. (2010) presented a benchmarking of ESyS-Particle to an-
alyze the scalability and the accuracy of the calculations of contact forces algo-
rithm. According to Weatherley et al., in order to replicate some geophysical
processes using thousands of particles is not enough to perform realistic simu-
lations. Those scenarios need millions of particles. Depending on the number
of particles simulated, every time the total forces of the particles are updated,
the self-gravity computation process can last from seconds to hours. The num-
ber of calculations to update the self-gravity for N particles and M nodes in
the grid is of the order of O(N ×M) for the self-gravity computation method
in ESyS-Particle. To deal with that efficiency problem, HPC techniques were
applied to speed up the calculations. ESyS-Particle implements spatial do-
main decomposition using a master-worker model implemented on MPI. The
domain decomposition is static and it is defined as a configuration before the
simulation starts. The configuration consists of numerical parameters , one for
each axis, and is defined to indicate how many times each dimension must be
divided. For example, the partition vector (1,2,2) means that, at the beginning
of the simulation, the x dimension will not be divided, while dimensions y and
z will be divided into two sections. This way, the space is divided into four sub-
domains. Each of the subdomains is assigned to a process, therefore dividing
the total calculations by a factor of four, ideally. An experimental evaluation
of the scalability of ESyS-Particle was performed by Weaterley et al. The sce-
nario defined was a cube packed with particles with radii of between 0.2mm
and 1.0mm. The initial length of the side of the cube was 15 mm. Then, the

18

length of the side of the cube was increased for larger number of subdomains
and particles. Each subdomain had approximately 9,000 particles. The small-
est test had one subdomain and 8,647 particles, while the largest subdomain
had 1,000 workers and 8,700,121 particles. For every simulation performed,
one processor was assigned for each subdomain. Also, all the simulations were
executed for 10,000 time steps. Experimental results indicate that when the
number of workers increased from 1 to 27, there was a significant performance
degradation. According to Weatherlet et al., from 27 workers to 1,000 workers
the total execution time was constant. The real execution time for the scenario
with 27 subdomains (241,540 particles) is 1104.5 s, while for the the scenario
with 1,000 subdomains (8,700,121 particles) was 1617.1 s.
The use of ESyS-Particle was to perform geophysical simualtions. So, only the
simulation of short range interaction forces was implemented. The idea for
including the self-gravity calculation module in ESyS-Particle was to extend
the functionality of ESyS-Particle by enabling the simulation of long-range in-
teractions. The computation scheme in the self-gravity module implemented
into ESyS-Particle applies four steps:

1. Compute the gravity acceleration field in a grid of nodes enclosing the
limits of the space of the simulation;

2. For every particle at each time step, compute the contact forces over
the particle and interpolate the value of the acceleration for the location
of the particle using the values of the acceleration on the surrounding
nodes;

3. Apply the forces and advance the system;

4. If a large displacement of the particles is found, the gravity field is up-
dated; if not, the previous gravity field is used for the next time step and
step 2 is executed again.

The variation of the gravity forces applied to a particle is affected by the
velocity of the particles in the system. During the simulation, self-gravity
forces are updated after the particles in the system move a distance that is
larger than a certain threshold. When particles move faster in a simulation,
self-gravity needs to be updated more frequently in comparison to the same
system if the particles moved slowly. However, the frequency of update of the
contact forces is of the order of the duration of the contact. In low speed
simulations, the number of updates of contact forces can be many orders of

19

magnitude more than the number of updates of long range forces.

The implementation of the self-gravity algorithm presented was based on
a master-worker model, but including a two-level parallelization scheme that
is implemented using multithreading programming techniques. The master-
worker model is the one used by ESyS-Particle to calculate and update the
forces that affect the particles and it is implemented using a distributed mem-
ory approach. The master process is in charge of calling the self-gravity mod-
ule, which calculates and updates the gravity forces that affect the particles.
The calculation of self-gravity forces is implemented using shared memory and
multithreading programming techinques. Thus, two different implementations
(distributed memory and shared memory) are included.

Before starting a simulation, the self-gravity module builds and overlays
a grid to divide the spatial domain of the simulation. The grid is composed
of boxes, whose vertexes are called nodes. The number of nodes and their
location are defined depending on the spatial domain and the size of the boxes.
The acceleration along the x-axis (ax) on a node located at position (x, y, z)

due to an ensemble of N particles of individual mass mj, distance rj, and
positions (xj, yj, zj) is given by Eq. 3.1. Similar equations are formulated for
the acceleration along the y-axis in Eq. 3.2 and the z-axis in Eq. 3.3.

ax =
∑
j=1,N

Gmj
xj − x

r3j
(3.1)

ay =
∑
j=1,N

Gmj
yj − y

r3j
(3.2)

az =
∑
j=1,N

Gmj
zj − z

r3j
(3.3)

Figure 3.1 shows a particle inside its box and its eight surrounding nodes in
a step of a simulation. The nodes are numbered from one to eight. The accel-
eration is updated for the nodes rather than for the particles. To calculate the
acceleration of a particle at a given time step of a simulation, an interpolation
is applied using the values of the acceleration calculated for the eight nodes
that surround the particle.

20

Figure 3.1: Box of the self-gravity grid with eight nodes numbered.

3.3 Reducing the execution time of the self-

gravity computation

In the implementation presented by Frascarelli et al. (2014), the self-gravity
potential on ESyS-Particle was updated on every node of the overlay grid
used to calculate the self-gravity field. However, calculating the values of the
acceleration of only the occupied nodes is enough to update the acceleration
of all the particles in the system.

In order to accelerate the self-gravity computation, a new strategy was
proposed and implemented as part of the work presented in this thesis. In the
new strategy, only the occupied cells are updated. This strategy improved the
utilization of the computational resources available by sparing the update of
the acceleration of the unoccupied cells.

In the new strategy, self-gravity is updated when the difference of the po-
sition of at least one particle at a given time step, compared to the previous
time step, is larger than a predefined distance threshold. In the context of a
simulation, a particle that belongs to a box at the start of a simulation can
migrate to different boxes during the simulation. However, that migration may
not trigger the self-gravity update if the particle just moves a distance that is
not larger than the predefined distance threshold. In this situation, and given
that the acceleration is only updated on the occupied nodes, some of the eight

21

surrounding nodes needed for the interpolation may be outdated. The use of
old self-gravity values may introduce error in the calculations during a simu-
lation. To prevent this situation, the self-gravity is updated for an expanded
box that comprises the 64 nodes that surround a particle. Fig. 3.2 shows the
64-node surrounding box for a particle. Usually, the instances of a simulation
are composed of agglomerates of particles, for this reason the computational
cost of updating the 64 nodes is not significant compared to updating the eight
surrounding nodes.

Figure 3.2: The expanded 64 surrounding nodes of a particle.

Before updating the self-gravity, the list of nodes to be updated is deter-
mined. This list is built based on the list of currently occupied nodes that is
retrieved from the ESyS-Particle context. Using this list as base, the 64-node
expansion of the occupied nodes is performed as shown in Fig. 3.2. Performing
the expansion results in the determination of the expanded occupied nodes list,
which is used when the acceleration is updated. Using the expanded list of
occupied nodes results in a reduction in the computational cost of a simulation
compared to updating the acceleration on every node of the self-gravity grid.

The nodes that belong to the list of nodes to be updated are assigned using
a first-come first-serve policy to the available self-gravity threads. Load bal-
ancing is implicitly implemented by assigning the nodes of the list on demand,
each time that there are computational resources available. This way, the

22

implementation accounts for the different execution times of each calculation.
The values of the acceleration are stored in memory to be used later, when the
force on the particles is calculated.

3.4 Profiling the self-gravity calculation

After performing the implementation of the occupied cells algorithm, a pro-
filing was performed using the VTune Amplifier tool by Intel (2017). The
purpose of the profiling was to identify bottlenecks on the implementation, to
be mitigated before the performance study.

The graphic in Figure 3.3 reports the results of the profiling for the nine
most time consuming operations before implementing the improvements. The
profiling was performed using the VTune amplifier tool by Intel and using the
small instance of a two agglomerates scenario that is presented and described in
chapter 5. The profiling test was executed for 10, 000 time steps. In Figure 3.3,
routines are represented on the y-axis and the time consumed by the routines
(in seconds) is shown on the x-axis. The time consumed by the operations is
expressed in seconds. The total time consumed by a routine is represented by
a column with two components: the time that the routine is idle waiting for
results (grey bar) and the time that the routine is effectively processing (green
bar). The grey bar represents when the CPU is assigned to the operation, but
no instructions are executed. In turn, the green part reports when the CPU
resources reserved for the execution are in use.

According to the profiling results reported in Figure 3.3, the most time
consuming routine is BoxCoords::getZ, the routine that retrieves the z axis
of the position for each particle. This routine is time consuming because it is
called in every update of the acceleration for each node. In addition, the rou-
tine is also affected by an idle CPU utilization of 335 seconds. The idle CPU
utilization could be associated to memory management issues such as memory
transfer operations. The cause of this memory issues could be associated to
the number of particles involved in a simulation. The large number of particles
that is usually used in a simulation may need more memory to be maintained
than the cache memory available in a processor. The time required to move
the data through all the memory levels could produce the idle CPU time.
BoxCoords::getZ is the first routine executed (in the self-gravity context)
when accessing a node to process. Thus, the time required to transfer data

23

−500 0 500 1,000 1,500 2,000 2,500

SharedMemoryManager::getBox

Calculus::calcDeltaForceVectorUsingDifEc

Particle::getCenter

Box::getParticlesCount

OccCellsProcStgy::getNextOrigin

Point::getX

BoxCoords::compare

SharedMemory::getBox

BoxCoords::getZ

450

508

569

647

703

875

1,550

1,668

2,268

63

69

79

88

105

118

230

227

335

idle ideal

Figure 3.3: Profile report of the self-gravity code before implementing the occupied
cells method.

from the main memory increases the total time spent by the routine. A sim-
ilar behavior is detected for routines Point::getX, SharedMemory::getBox,
BoxCoords::compare, Box::getParticleCount, and Particle::getCenter.
The same arguments hold in these cases. A complete analysis on memory
issues is beyond the scope of this thesis and is proposed as a line for future
work.

The routine OnlyOccupiedCellsProcessingStrategy::getNextOrigin

occupied the fifth place in terms of time consumption for the profiling per-
formed. This routine is in charge of finding the coordinates of a new node
to be updated when all the nodes assigned to a processor have been pro-
cessed. The routine is time consuming because the next node to be updated is
searched through the list of all the nodes. Another time consuming operation
is calculateDeltaForceVectorUsingDifEcuations, whereas this operation
was not selected as a routine to improve. The reason is that the routine imple-
ments simple mathematical equations, so the optimizations would have little
effect compared to the optimizations implemented on the rest of the aforemen-
tioned routines.

According to the aforementioned comments, the perfor-

24

mance optimizations were focused on the improve of the routine
OnlyOccupiedCellsProcessingStrategy::getNextOrigin. This rou-
tine performs a search over all the nodes of the grid to find a node to update.
The improvement consists on iterating only over the list of occupied nodes
that is created every time self-gravity needs to be updated. It is usual that in
the scenarios used to perform simulations, the majority of the space is empty.
So, the list of occupied cells is significantly shorter than the list of nodes. This
way, the routine OnlyOccupiedCellsProcessingStrategy::getNextOrigin

is called less times using the occupied cells strategy compared to the
version before the improvements. The described improvement also affects
the overall performance of the routines BoxCoords::getZ, Point::getX,
SharedMemory::getBox, BoxCoords::compare, Box::getParticleCount.

3.5 Implementation on ESyS-Particle and the

self-gravity module

This section describes the adaptations performed on ESyS-Particle to imple-
ment the occupied cells method. The adaptations include changes on ESyS-
Particle and also on the self-gravity module. Algorithm 1 shows a summary
of the occupied cells algorithm.

Algorithm 1 Occupied cells algorithm
1: procedure Recalculate self-gravity
2: occupied cells list← getOccupiedCells()
3: expanded occupied cells← getBoxRecalculateMethod(occupied cells list)
4: for each occupied cell in expanded occupied cells do
5: updated value← updateSelfGravity(occupied cell, occupied cells list)
6: add(updated cell list, updated cell)
7: communicateNewValues(updated cell list)

The process of adapting ESyS-Particle included to request the developers
for the implementation of a new functionality which consists of a function
that retrieves the list of occupied cells of the ESyS-Particle overlapping grid
in a given moment. The request for the new functionality was included as
an issue in a new iteration of the development of ESyS-Particle and was in
time available to be used by the self-gravity module. The function name is
getOccupiedCells() and was included as a method that belongs to the class

25

MPSelfGravityMaster in the module Model of the simulator. Line 2 of algo-
rithm 1 corresponds to the call to the getOccupiedCells() method.

Along with getOccupiedCells(), getBoxRecalculateMethod() was im-
plemented. The method is called on line 3 of Algorithm 1. This method takes
as input the vector containing the occupied cells that is obtained as output
after the execution of the getOccupiedCells() method. The output of the
getBoxRecalculateMethod() method is the vector of boxes to recalculate,
that is the 64-node expansion of the occupied nodes vector. The expansion
is performed individually for each node. Then, an iteration is performed over
the nodes of the individual expansion, and only the nodes that are not present
in the general expansion are added to it. After the general extended vector
is created it is used as input to perform the update of the gravitational po-
tential of the nodes. The term general refers to the date structure where the
information of the system is located.

The self-gravity is updated for each of the cells that belong to the occupied
cells list. This process is summarized from lines 4 to 6 of Algorithm 1. The
self-gravity of a cell is calculated using the occupied cells list rather than
the expanded occupied cells list, because the latter may contain empty cells.
Before implementing the occupied cells method, the self-gravity was updated
for the full set of boxes that compose the space of a simulation. In the previous
implementation, processing the set of boxes consisted of a triple iteration, one
for each dimension of the three-dimensional space. After the self-gravity is
updated for a cell, the calculated value is added to the updated cells list.

When the algorithm finishes recalculating the self-gravity for all the cells
of the expanded cells list, the updated values are communicated to the main
module of ESyS-Particle. The procedure recalculate self-gravity of Al-
gorithm 1 is called each time that the self-gravity needs to be updated during
a simulation.

26

Chapter 4

Adapted Barnes-Hut method
for self-gravity calculation

This chapter describes the characteristics and properties of the Barnes & Hut
octal tree used for the self-gravity calculation in ESyS-Particle. In addition,
the process of creation of the tree and self-gravity calculation is described. A
binary implementation of the tree is presented, alongside a comparison to the
octal tree implementation.

4.1 Octal tree structure

The Barnes & Hut tree is implemented as an octal tree in which the root
represents the complete space used for the simulation. Leaf nodes of the tree
are the boxes of the self-gravity grid. Every non-leaf node has eight sons that
have the same size. This way, the space represented by the tree is of cubical
shape. Each node also has the following information: the position of the center
of mass, the total mass, the spatial coordinates, the coordinates in the self-
gravity grid, the level number, the number of particles in it, and an integer that
identifies the node in the level it belongs. All nodes of a level are numbered
from 0 to n − 1 being n the number of nodes of the level. The identifiers
(id) are assigned to the nodes so that the id of the father of a node satisfies
that idf = ids/(108 × (levels/levelf), where idx is the identifier of the node,
levelx is the level of the node, the underscore f denotes a father node and the
underscore s denotes a son node. The underscore ‘8’ denotes that the number
is in octal base. This way, the procedure applied to know if a node is son of

27

another is a constant time operation performed in O(1). Dividing by 108, the
identifier of a node is equivalent to performing a shift operation of three bits to
the right. Figure 4.1 shows a sample two-dimensional tree partition created for
an agglomerate of particles and an illustration example of the partitioning of
the space created with the Barnes-Hut method adaptation that is proposed in
this thesis. The grid over the agglomerates represents the quadrupole (octapole
in three dimensions) tree that is the result of the application of the method of
creation of the self-gravity tree. The resolution of the partition is not increased
on the nodes that have no particles, by stating that the tree node created is
empty after its creation.

Figure 4.1: Example of tree partition for an agglomerate of particles (a two di-
mensions projection is shown for better representing the division method).

4.2 Process of creation of the octal tree

The Barnes-Hut method is based in the use of octal trees to divide the space of
a scenario of a simulation. The implementation of the Barnes-Hut algorithm
presented in this thesis consists of instantiating one octal tree for the complete

28

space of an scenario of a simulation. The octal tree is created and disposed
every time the gravitational potential is updated.

The self-gravity update process consists of four steps: i) creating the Barnes
& Hut tree applied for the computation (the self-gravity tree); ii) building a list
of tree nodes for each of the boxes that contain particles (i.e.: occupied nodes);
this is the list of Barnes & Hut tree nodes that affect the potential of the box
to be updated; iii) effectively computing the self-gravity of the occupied nodes
using as input the list of tree nodes created in the previous step; iv) finally,
deleting the octal tree after updating the potential of the nodes. These steps
are explained next.

Algorithm 2 describes the process of calculating the self-gravity potential
using the proposed Barnes & Hut algorithm.

Algorithm 2 General octal tree algorithm
1: procedure Recalculate self-gravity
2: occupied cells list← getOccupiedCells()
3: expanded occupied cells← getBoxRecalculateMethod(occupied cells list)
4: octal tree← createOctalTree()
5: calculateCentersOfMass(octal tree)
6: for each occupied cell in expanded occupied cells do
7: list of tree nodes← createListOfNodes(occupied cell, octal tree)
8: add(list of list of tree node, list of tree node)
9: for each occupied cell in expanded occupied cells do
10: updated value← updateSelfGravity(occupied cell, list of list of tree nodes)
11: add(updated cell list, updated cell)
12: communicateNewValues(updated cell list)

In Algorithm 2, lines 2-3 correspond to the process of creation of the algo-
rithm, which is the creation of the expanded occupied cells list. The creation
of the list comprises two activities: obtaining the occupied cells list, and creat-
ing the expanded occupied cells list from the occupied cells list. The creation
of the expanded list consists of performing the 64-node expansion of each of
the occupied nodes, but only adding those nodes that belong to the expansion
that were not already added to the expanded list. Afterwards, the first step
in the calculation of the self-gravity is executed: the octal tree is created and
the center of mass of each node of the tree is calculated. The first step is
represented in lines 4-5 of Algorithm 2. The second step, the creation of the
tree node list of each of the expanded occupied cells, comprises the for loop

29

in line 6 of the algorithm. Then, the third step, which is to actually calculate
the potential of the nodes, is performed in the for loop in line 9 of Algorithm
2. The output of step 3 is the new potential of the expanded occupied cells
list. That list is communicated to the worker nodes to calculate the potential
of the particles.

Creation of the self-gravity tree.

The process of creating a Barnes-Hut tree starts with the instantiation of a root
node. The root node represents the complete space defined for the simulation.
Due to the nature of the octal tree structure proposed by Barnes and Hut, the
space to perform the simulation is cubic shaped. As a consequence, the root
node also has cubic shape. After the root node is instantiated, the tree levels
are created sequentially. Each new level is created by performing a spatial
partition of each of the nodes that belong to the immediate upper level. An
expansion of a node is created if that node has at least one particle in it.
The new nodes are the child nodes of the node from which they were created
by performing the spatial partition. The spatial partition consists of creating
eight child nodes by partitioning the space of the father node in eight equal
cubic parts. The process of spatial partitioning ends when the node to expand
has the same size of a box of the grid used for self-gravity computation, or if
the node to expand has no particles.

A node of the Barnes-Hut tree represents a (cubical shaped) part of the
space of its father node. For that reason, a node of the tree is represented as
a structure which stores the coordinates and also the edge size of the node. In
addition, the structure of a node holds the following data: an identifier, the
number of particles in the node, the total mass, and the position of the center
of mass of all the particles contained inside the node. The identifier is assigned
during the creation of the node and is composed by two numbers: the level of
the tree where the node belongs, and the number of the node, which is unique
in the context of the level. The root node is identified with the number 0 and
belongs to the level 0. The identifier is used to establish the location of a node
in a given level of a tree. In this way, the identifier is reseted to 0 in every level
of the tree. With this identification system, having the level of a node and
its identifier as input data, the procedure to know if a node is son of another
constitutes an operation of O(1) execution time. This property of the Barnes-

30

Hut tree implemented improves the time of the calculation of the self-gravity
potential at the nodes. After the creation of the tree, the centers of mass of
the nodes are calculated. The process of calculation of the centers of mass is
bottom up, from the leaves up to the root node. The centers of mass for the
leaf nodes are calculated directly from the particles, whereas for the nodes of
the upper levels the centers of mass are calculated from their respective son
nodes. The center of mass is calculated only for the nodes that have particles.
Figure 4.2 shows a sample octal tree created using the described algorithm for
a cube composed of 64 boxes. As an example, the center of mass for the node
located in the upper left part of the Figure 4.2 is not calculated because it has
no particles.

08

08

08 · · · 78

· · · 78

708 · · · 778 → level 2

→ level 1

→ level 0

· · ·

Figure 4.2: Sample of octal tree created using the described algorithm for a self-
gravity grid composed of 64 boxes.

Algorithm 4 summarizes the process of creation of the octal tree that was
described in the previous paragraphs.

In Algorithm 4, the height of the tree is calculated in line 2 before its
creation. The octal tree is created by level, so the height calculated is then
used in line 3 to create a queue of node levels that is used as an auxiliary
structure in the process of creation of the tree. Then, the creation of the tree
starts with the instantiation of the root node in line 4. After that, in line 5 the
root node is added to the level queue position that corresponds to the level 0
of the tree. The rest of the algorithm consists of using the created auxiliary
structure to create the tree nodes and organize them.

Lines 7-12 of algorithm 4 correspond to the core process of the creation of
the octal tree. The process consists of two loops: the outer loop performs an
iteration over the level of the tree from the root to the box nodes, whereas the
inner loop iterates over all the nodes of a level. In the outer loop, the only
operation performed is the change of level. In the inner loop, for each node,
the list of sons that correspond to that node is created (line 10). Then, the

31

Algorithm 3 Octal tree creation algorithm
1: procedure Create octal tree()
2: tree height← calculateTreeHeight(dimension, box length)
3: node level queue← createQueueOfLevels(tree height)
4: root node← createNode()
5: node level queue.at(0).push(root node)
6: # Create octal tree
7: for tree level = 0 to tree height - 1 do
8: lower level queue ← node level queue.at(tree level + 1)
9: for each node in upper level queue do
10: lower level node sons← createSonsList(node queue)
11: lower level queue← add(lower level node sons)
12: node queue← lower level queue
13: root node← getFront(node queue)
14: # Calculate particle count and center of mass for the tree nodes
15: for tree level = tree height - 2 to 0 do
16: level node queue← node level queue.pop()
17: for each node in level node queue do
18: calculateParticleCount(node)
19: mass center← calculateMassCenterOfNode(node)
20: return root node

list is associated to the father node (line 11). The inner loop finishes adding
the son nodes recently created to the lower level queue.

Lines 15-19 of algorithm 4 correspond to the process of counting the par-
ticles and also calculating the center of mass of the nodes. The previously
created octal tree is covered by level from the nodes of the lowest level (i.e.,
the nodes that match with the boxes) up to the root node. The results of
particle count and mass center of the lower level nodes are used to calculate
the values for the upper levels.

Finally, in line 20 of algorithm 4 the root node is returned as the represen-
tant of the complete octal tree. The tree is returned in this format because
in all cases where the octal tree needs to be covered, the process always starts
from the root node to the box nodes.

Algorithm 5 summarizes the process of creation of the eight sons of a not
leaf node of an octal tree. The process start by creating the list of sons to
be returned at the end of the procedure. The id of the first son is calculated
by performing a shift of 3 places to the father id. The numeration strategy
was previously explained in this chapter. The size of all the nodes is the same

32

Algorithm 4 Octal tree creation algorithm
1: procedure Create octal tree()
2: tree height← calculateTreeHeight(dimension, box length)
3: node level queue← createQueueOfLevels(tree height)
4: root node← createNode()
5: node level queue.at(0).push(root node)
6: # Create octal tree
7: for tree level = 0 to tree height - 1 do
8: lower level queue ← node level queue.at(tree level + 1)
9: for each node in upper level queue do
10: lower level node sons← createSonsList(node queue)
11: lower level queue← add(lower level node sons)
12: node queue← lower level queue
13: root node← getFront(node queue)
14: # Calculate particle count and center of mass for the tree nodes
15: for tree level = tree height - 2 to 0 do
16: level node queue← node level queue.pop()
17: for each node in level node queue do
18: calculateParticleCount(node)
19: mass center← calculateMassCenterOfNode(node)
20: return root node

and is half the size of the father node. Finally, for each of the eight sons, the
position of the node is calculated, then the node is created and added to the
sons list.

Algorithm 5 Create list of sons
1: procedure Create sons list(node)
2: sons list← new List()
3: first son id← node.id < < 3
4: son node dimension← node.size/ 2
5: for i = first son id to first son id + 8 do
6: calculate son node position (x, y, z, son node dimension)
7: node ← create node (x, y, z, i)
8: sons list.add(node)
9: return sons list

Creation of the list of tree nodes.

After creating the expansion tree, the second step in the simulation is to create
a list of tree nodes for each of the occupied nodes of the grid, called objective

33

nodes. To help achieving that purpose, the concept of neighborhood of a node is
introduced. A neighborhood of a specific node is conformed by its surrounding
nodes that do not exceed a certain distance threshold. The distance threshold
that delimits the neighborhood is modeled as a parameter that is user defined.
Each list of tree nodes is composed of the highest level nodes that are not
father of any node that belongs to the neighborhood. For each objective node,
the algorithm that creates each tree node list starts with the root node. A
node is added to the tree node list if it is not father of any member of the
neighborhood. Otherwise, if the node is father of at least one member of the
neighborhood, then the sons of the node are added to a queue to be evaluated
later as candidates to the tree node list. The list of tree nodes is used as input
for the third step, that is the update of the potential of a node.

Algorithm 6 presents a summary of the getProcessableNodes routine.
This procedure implements the process of creation of the list of processable
nodes for the neighborhood of an objective node. The procedure starts by cre-
ating a list of neighboring nodes from the objective node and the neighborhood
radius, that is user defined before starting a simulation. Then, the octal tree is
covered, starting from the root node, with the objective of creating the list of
processable nodes (lines 6-14). The covering consists of obtaining a node from
the queue of nodes to process and then checking if the node is father of any
node in the neighborhood of the objective node. If the node being processed
is not a father of any node in the neighborhood, then the node is pushed to
the list of processable nodes, else the sons of the node are added to the queue
of nodes to process.

Self-gravity calculation.

The final step is to calculate the total self-gravity force vector for every node of
the occupied nodes list. The total self-gravity force is calculated based on the
lists built in step two, instead of using the occupied cells that are used on the
baseline implementation. After updating the potential for each objective node,
the new vector values are transferred to the main force calculation module to
be integrated with the contact forces. Algorithm 7 presents the self-gravity
calculation process of an occupied node. The process is called after the creation
of the octal tree, and after the list of processable nodes for the occupied node
neighborhood has been created. In the algorithm, for each of the processable

34

Algorithm 6 Get processable nodes
1: procedure Get processable nodes(objective node, octal tree, neigh-

borhood radius)
2: neighbor nodes← get neighbor cells(objective node , neighborhood radius)
3: processable nodes← create queue()
4: node queue← create queue()
5: node queue.push(octal tree)
6: while !node queue.isEmpty() do
7: node← node queue.pop()
8: if is father of neighborhood member(node, neighbor nodes) then
9: if !node.is box() then
10: node queue.push(node.get sons queue())
11: else
12: processable nodes.push(node)
13: else
14: processable nodes.push(node)
15: return processable nodes

nodes, the force vector with respect to the occupied node is calculated and
added to the total force vector. The total force vector is then returned to be
broadcasted to all the MPI worker processes of ESyS-Particle.

Algorithm 7 Self-gravity calculation of a node
1: procedure Update self-gravity(occupied node, octal tree, processable

nodes)
2: total force vector← createEmptyForceVector()
3: for each processable node in processable nodes do
4: force vector← processBarnesHutNode(occupied node, processable node)
5: sumForceVector(total force vector, force vector)
6: return total force vector

4.3 Implementation of the Barnes and Hut

method on ESyS-Particle

The self-gravity module on ESyS-Particle was extended to implement the
Barnes & Hut method. The extension process added two new classes: the
Barnes_And_Hut_Node class, and the Barnes_And_Hut_Manager class. The
Barnes_And_Hut_Node class implements the basic functionalities of the node.

35

This class is responsible for the creation of a new node. It holds the getters and
setters of the attributes of the class, and the dispose functions. The Barnes_-
And_Hut_Manager class hosts the core functions of the Barnes & Hut method.
This class is responsible of the algorithm that creates and disposes of the octal
tree in each update of the self-gravity. It implements the algorithm that cre-
ates the list of tree nodes, and the algorithm that retrieves the list of neighbors
of an objective node. The self-gravity calculation code in ESyS-Particle was
adapted to use the list of nodes retrieved from the Barnes_And_Hut_Manager
instead of using the list of occupied nodes that is used by the occupied cells
method in the standard self-gravity module.

4.4 The binary tree

This section presents the binary tree. The changes introduced in the octal tree
algorithm to implement the binary tree and the main differences between both
implementations are described.

Structure and process of creation of the binary tree

Figure 4.3 shows a sample binary tree for a self-gravity grid composed of 64
boxes. The generated tree has seven levels, including the root level. Each node
has a unique number that identifies it in the corresponding level, which is an
integer in binary code. A node is the father of another node of the binary tree
if it satisfies the condition that idf = ids/(102 × (levels/levelf), where idx is
the identifier of the node and levelx is the level of the node. The underscore 2
denotes that the number is in binary base. This way, the procedure to know
if a node is son of another is an operation of O(1). This condition is analog to
the condition used in the octal tree to check if a node is father of another node.
Instead of dividing by 108, the division is performed by 102 which comprises a
shift operation to the right.

To build the tree, the space represented by a node is divided in two by its
largest axis. So, the partitions are not necessarily cubic. This way, the binary
tree has the advantage that the space represented does not need to be cubic.
Performing the partitions over the largest axis guarantees that the leaf nodes
are of the same size and position of the self-gravity grid boxes.

36

02

02

02

02

· · ·

02 12

12

12

12

108 118

1102 1112

· · ·

1111102 1111112 → level 6

· · ·

→ level 3

→ level 2

→ level 1

→ level 0

· · ·

· · ·

· · ·

Figure 4.3: Example of enumeration for a binary tree with seven levels for a self-
gravity grid composed of 64 boxes.

Comparison of the binary tree and the octal tree

Node 778 of Figure 4.2 is taken as an example to perform the comparison of
the trees. This node corresponds to 1111112 in the binary tree. Assuming that
all the boxes are occupied and the neighborhood size is zero, in the binary tree
in Figure 4.3 the list of tree nodes is comprised of node 02 (level 1), node 102

(level 2), node 1102 (level 3), node 11102 (level 4), and node 111102 (level 5).
In this example, the list of tree nodes has five elements. On the other hand,
the list of tree nodes of the octal tree has 13 elements. Despite having more
levels, the list of tree nodes for the binary tree has fewer elements then the
octal tree and the resolution of the partition for the binary tree grows slower
when moving closer to the objective node.

Regarding the implementation of the algorithm in ESyS-Particle, instead
of performing a shift of tree bits, the shift is performed in one bit to multiply
the nodes identifiers by 2. Another difference in the implementation of the
binary tree with respect to the octal tree implementation is the tree height
calculation process. The calculation process involves the three axis instead of
only considering the x axis as in the octal tree. The largest of the three axis
is divided by two up to the stage where the three axis have the same size of a
box. Each time that the division is performed, the level count is incremented

37

by one.
Except for the aforementioned differences, the structure is the same as the

octal tree. The algorithm to update self-gravity in the binary tree is the same
as the octal tree. After creating the lists of nodes for the occupied nodes, the
gravitational potential is calculated and delivered to the ESyS-particle module.

4.5 Increasing the numerical accuracy of the

octal tree algorithm

This section describes a different approach to increase the numerical accuracy
of the simulations using the octal tree strategy. This approach aims to diminish
the error in the calculation of the potential at the nodes by increasing the
precision of the calculation of the center of mass of the tree nodes. The increase
in the precision of the center of mass is intended to be achieved by calculating
the center of mass in higher levels of the tree using the particles, rather than
using the potential of the lower levels.

Each node of the octal tree is modeled as a point like particle. For the
particular case of nodes that belong to the lower level of the tree, the center
of the node is located at the center of mass of the particles that belong to the
space delimited by the node. Then, the total mass of a node is the sum of all
the nodes of the particle. The center of mass and the total mass of the nodes
that belong to the higher levels of the tree are calculated using the values
obtained for the son nodes of the immediate lower level. This characteristic
means that the center of mass of the higher level is calculated based on a
previous calculation of a center of mass. A consequence of using this approach
is a loss of precision of the calculation of the potential.

The octal tree algorithm was modified in order to prove that the precision
of the algorithm increases by calculating the center of mass in higher levels of
the tree. The modification of the algorithm consisted of calculating the center
of mass using the particles for up to the level n − 1 of the tree, which is the
first level of nodes that have son nodes.

38

Chapter 5

Description of the experimental
setup

This chapter describes the test scenarios and the instances used in the ex-
perimental evaluation of the parallel self-gravity calculation implemented in
ESyS particle. Also, the hardware platform used to perform the tests is pre-
sented. Then, the profiling results of the optimized version are presented and
discussed.

5.1 Two agglomerates scenario

The first test scenario is composed of two agglomerates of particles. Both
agglomerates have the property that each particle of one agglomerate has an
identical copy of it on the other agglomerate (but the position of both parti-
cles is central mirrored). The agglomerates of particles are symmetrical with
respect to the origin of the coordinates system (point (0,0,0)). This way, the
center of mass is located in the point (0,0,0) as well, and it is halfway the
center of mass of each agglomerate.

The creation of the test scenario starts by the generation of one agglom-
erate with the tool GenGeo that is included in ESyS-Particle. After that, a
central symmetry is performed so that the agglomerates are separated by five
kilometers. This way, the center of mass of the two agglomerates together is lo-
cated halfway to the center of mass of the agglomerates taken separately. The
collisions between the particles are configured to be pure elastic. The initial
speed of the particles is set to be 5m/s. The velocity has opposite direction

39

for each agglomerate. The velocity direction is also tangential to the Z axis
and is perpendicular to the line that passes through the center of mass of each
agglomerate. The density of the individual particles is 3000 g/cm3.

Table 5.1 presents details about the instances generated based in the two
agglomerates scenario. Three instances of the two agglomerates scenario were
created to perform the study of the computational efficiency of the self-gravity
implementations presented in this article. The first instance defined is a small
instance, composed of 3, 866 particles, each one having a radius from 50m to
100m. The second instance is a medium size instance with 11, 100 particles
with a radii from 35m to 70m. Finally, the large instance is composed of
38, 358 particles with a radii from 20m to 60m. The mass of the instances is not
the same for all the instances and oscillates from 1.2×1012 kg to 1.7×1012 kg.
However, the masses of the instances are of the same order of magnitude.
Figure 5.1 shows a representation of the large instance of the two agglomerate
scenario. The space was configured to be of cubic form and measuring 4096m
in each axis direction. For the small instance, the box length is 256m long,
and for the medium and large instances the box length is 128m long.

Figure 5.1: The two agglomerate scenario

Table 5.1: Instances generated based on the two agglomerates scenario.

instance name # particles particle radius (m) # octal tree levels # binary tree levels

small instance 3,866 50-100 6 16
medium instance 11,100 35-70 7 19
large instance 38,358 20-60 7 19

All instances were simulated for 100, 000 time steps of 0.01 seconds long.
The simulations were executed using a varying number of computational re-
sources to evaluate the speedup and scalability of the proposed implementa-

40

tion. In all simulations, the self-gravity is updated after at least one particle
has moved more than a certain distance threshold that was configured to be
two times the radius of the biggest particle. So, the execution of the scenar-
ios using small particles will have more updates of the self-gravity than the
instances with large particles.

The size of the grid box in ESyS-Particle must satisfy boxl ≥ 2 × rmax,
where boxl is the box length and rmax is the maximum radius of a particle.
Using a bigger box implies lower accuracy of the calculations. So, the value of
boxl has to be as close as possible to 2× rmax and also be a power of two. This
way, the box size for the small instance is 256m, and for both medium and
large instances is 128m. The total number of boxes for the small instance is
32,768, while for medium and large instances the number of boxes is 262,144.

For the small instance, the octal tree has six levels and 37,449 nodes. On
the other hand, the binary tree for the small instance has 16 levels and 65,535
nodes. For the medium and large instances the octal tree has seven levels
and 299,593 nodes, while the binary has 19 levels and 524,287 nodes. So, for
all instances executed in this work, the memory used by the binary tree is
roughly twice the memory used by the octal tree. This feature shows that the
octal tree can scale to a larger number of boxes compared to the binary tree.
Simulations were executed for 10,000 time steps of 0.01 seconds each (a total
time of 100 seconds). The neighborhood was configured to be of length five.
This way, when creating the list of nodes that correspond to an objective node,
the defined neighborhood is a cube of 11 boxes long centered in the objective
node.

5.2 Free falling symmetric cube

The second scenario consists of a cube of 1 km on each side, filled with spherical
particles that have the same radius and density. The particles that conform
the cube are separated from one another at least a distance that is equivalent
to 1/6 of a particle radius. In addition, the particles are located in a cubical
box. The dimension of the cubical box is determined beforehand. Also, the
particle radius is bounded by the dimension of a box. The particle radius is
1/2 of a box edge. The particles are located in a way that the resultant cube
is symmetric respect to its center. As a consequence, the center of mass of the
cube matches the geometrical center of the cube.

41

The cube is generated in two stages: i) a small cube is filled with particles
at random locations bounded to the constraints previously detailed in the
paragraph, ii) then, the cube is copied eight times to create a bigger cube.
The copies are arranged in a way that satisfies that the center of mass of the
bigger cube is located at the position (0,0,0) of the space. The particles are
given an initial speed of 0m/s and a density of 3000 g/cm3. In this scenario,
the cube should collapse in the direction of its center of mass.

Table 5.2 presents the details about the instances generated based in the
free falling symmetric cube scenario. The table reports the instance name, the
total number of particles, the particle radius, and the free-fall time for each
instance.

Table 5.2: Instances generated based on the free falling symmetric cube scenario.

instance name # particles particle radius (m) free fall time (s)

small cube instance 32,768 10.42 3079
medium cube instance 262,144 5.21 3079
large cube instance 2,097,152 2.60 3088

The free-fall equation of a sphere is defined by Binney and Tremaine (2011),
and it is used to calculate the time needed for an spherical agglomerate of
particles to collapse under its own gravity. This equation is valid under the
supposition that the agglomerate is only affected by its own gravity (i.e., the
gravity generated by its own particles).

Three scenarios were generated with different number of particles, classified
in small, medium, and large. The cube for all the instances created has 1 km
long on each side, so the particles radii are smaller as the particle number
increases. The small scenario has 32,768 particles, the medium scenario has
262,144 particles, and the large scenario has 2,097,152 particles. Figure 5.2
shows an example representation for the small instance of the cube scenario.In
the case of the executions using the Barnes & Hut method for self-gravity
calculation, the neighborhood is composed of the nodes that are at least at
3× the size of a box.

The box size for the small instance is 256 m, and for both medium and
large instances is 128 m. The total number of boxes for the small instance is
32,768, while for medium and large instances the number of boxes is 262,144.

For the small instance, the octal tree has six levels and 37,449 nodes. On

42

Figure 5.2: Example of tree partition for the cube scenario. The example corre-
sponds to the initial state of the small instance of 32,768 particles.

the other hand, the binary tree for the small instance has 16 levels and 65,535
nodes. For the medium and large instances the octal tree has seven levels
and 299,593 nodes, while the binary has 19 levels and 524,287 nodes. So, for
all instances executed in this thesis, the memory used by the binary tree is
appoximately twice the memory used by the octal tree. This feature shows
that the octal tree can scale to a larger number of boxes compared to the
binary tree. Simulations were executed for 10,000 time steps of 0.01 seconds
each (a total time of 100 seconds). The neighborhood was configured to be of
length five. This way, when creating the list of nodes that correspond to an
objective node, the defined neighborhood is a cube of 11 boxes long, centered
in the objective node.

5.3 Hardware platform

ESyS-Particle allows the execution of realistic scenarios and instances that can
scale up to millions of particles. The execution of large size scenarios requires

43

a large number of calculations that translate into many hours of CPU use.
This makes a cluster of high-performance computers a neccesary environment
to run realistic simulations in a reasonable amount of time.

In addition, both ESyS-Particle and the self-gravity module are imple-
mented to take advantage of both parallel and distributed computing environ-
ments. This is because in ESyS-Particle a two-level parallelism is implemented.
On the one hand, the main module of ESyS-Particle, in which the contact forces
are calculated, uses a distributed algorithm to improve the performance of the
simulations. In the distributed algorithm, a spatial partitioning of the simula-
tion domain is performed. This partitioning is static and is performed at the
beginning of the simulation. After this, the partitions communicate only with
those that are adjacent to share information on particle migration. In this
way, it is guaranteed that communication is carried out efficiently, consuming
the least amount of time possible. Efficient communication allows most of the
time to be used for effective calculations.

On the other hand, the self-gravity calculation module uses a parallel al-
gorithm to achieve the high performance necessary to perform simulations in
a reasonable execution time. The parallel programming techniques used in
the self-gravity calculation module include the partitioning of the workload to
be performed and the assignment of that workload to a pool of threads. The
threads are assigned a part of the total workload, when they finish the execu-
tion of a part they are assigned another part that has not yet been processed.
This process is repeated until the entire workload is completed. The workload
to be partitioned is the calculation of the potential on the particles at the time
of updating the self-gravity values. Unlike the static spatial partition used by
the main module (where the contact forces are calculated), the workload in the
self-gravity module is dynamically distributed among the available threads.

The experimental evaluation was performed on a AMD Opteron Magny
Cours Processor 6272 @ 2.09GHz, with 64 cores and 48GB of RAM. The
server is part of Cluster FING, the High Performance Computing facility from
Universidad de la Republica, Uruguay, Nesmachnow (2010).

44

5.4 Profiling the optimized version of self-

gravity calculation

After performing the implementation of the occupied cells algorithm, a pro-
filing was performed using the VTune Amplifier tool by Intel (2018). The
purpose of the profiling was to identify bottlenecks on the implementation,
to be mitigated before the performance study. The profiling was performed
using the small instance of the two agglomerates scenario and was executed
for 10, 000 time steps.

Figure 5.3 graphically summarizes the results of the profile performed to
the self-gravity calculation after implementing the occupied cells method. In
the figure, the X axis represents the time spent by each routine in the imple-
mented method (in seconds). In addition, the Y axis reports the eight most
time consuming routines during a simulation. The time spent by each routine
is represented by a column which in turn is composed by two subcolumns.
These subcolumns represent different utilization level of the CPU. The yellow
subcolumn, which was named as ok CPU usage by Intel (2018) and represents
an utilization level of the CPU between 51% to 85%. Whereas, the green
subcolumn (the ideal CPU usage as defined by Intel (2018)) represents an
utilization level of the CPU from 85% to 100%.

45

0 20 40 60 80 100

SharedMemoryManager::getBox

Point::getZ

StaticConfig::getInstance

Point::getY

Calculus::getDistance

Particle::getCenter

Calculus::calcDeltaForceVectorUsingDifEc

Point::getX

8

9

11

16

32

78

90

108

1

1

2

2

5

12

13

17

ok ideal

Figure 5.3: Profile report using the occupied cells method.

To highlight the performance improvements, Table 5.3 reports the exe-
cution time of the eight most time consuming routines identified before the
implementation of the occupied cells method and a comparison of the time
consumed by those routines after the implementation of the occupied cells
method.

Results in Table 5.3 show that the method BoxCoords::getZ, which
consumed 2269 seconds in the non-optimized version, has a negligible
contribution to the execution time in the occupied cells implementation.
A similar behavior is identified for routines SharedMemory::getBox,
BoxCoords::compare, SharedMemoryManager::getBox, and
Box::get- ParticlesCount. The modifications in routine
OnlyOccupiedCellsProcessingStrategy::getNextOrigin, that searches
for the next node to process, improve the execution time from consuming
704 seconds to consume a negligible time compared to the other routines.
Finally, improvements on routine Point::getX allow the routine to execute
8 times faster (from 876 seconds to 109 seconds). These results account for
notably performance improvements when using the new proposed schema
for computing self-gravity. The new implementation allows scaling up to

46

Table 5.3: Comparison of the most time consuming routines before and after
implementing the performance improvements.

routine execution time (s)

before after

BoxCoords::getZ 2269 negligible
SharedMemory::getBox 1669 negligible
BoxCoords::compare 1551 negligible
Point::getX 876 109
:: getNextOrigin 704 negligible
Box::getParticlesCount 649 negligible
Particle::getCenter 570 80
::calculateDeltaForceVectorUsingDifEcuations 509 91
SharedMemoryManager::getBox 451 9
std::vector<>::size 370 negligible

perform larger simulation, i.e., involving millions of particles, in reasonable
execution times. Next section reports the full experimental evaluation of the
implemented methods.

47

48

Chapter 6

Experimental evaluation:
occupied cells versus octal tree

This chapter describes the performance and numerical analysis of the occupied
cells and the octal tree self-gravity calculation methods implemented in ESyS-
Particle. The experimental evaluation was performed for the two agglomerate
scenario and the collapsing cube scenario described in Chapter 5. Section 6.1
reports and discusses the performance results obtained for the simulation of
different instances of the two agglomerates scenario, and Section 6.2 reports
and discusses the performance results obtained for the simulation of different
instances of the collapsing cube scenario. Finally, both Section 6.3 and Sec-
tion 6.4 analyze the numerical accuracy of the results by studying the position
of the center of mass and the conservation of the angular momentum for the
two studied scenarios and the two methods evaluated.

6.1 Results for the two agglomerates scenario

This section reports the performance evaluation results for the two agglomer-
ates scenario. The evaluation was performed for the small, medium, and large
instances of the aforementioned scenario.

6.1.1 Small size instance

Table 6.1 reports the performance results for the small instance in simula-
tions using the occupied cells method. The table reports the configuration
of processes and threads used for execution, the execution time in seconds,

49

Table 6.1: Performance results for the two agglomerate scenario with 3,866 particles
(small instance) using the occupied cells method.

#particle #gravity execution time computing # self-gravity avg. self-gravity
processes threads time(s) self-gravity updates time(s)

1 (1,1,1) 1 1.06×104 86% 1131 8.15
1 (1,1,1) 2 7.17×103 81% 1131 5.14
2 (1,1,2) 1 1.18×104 87% 1131 9.06
2 (1,1,2) 2 7.79×103 78% 1131 5.39

the percentage of the overall execution time spent on self-gravity calculation,
the number of self-gravity updates performed, and the average time spent in
self-gravity calculations.

Using the occupied cells method, the lowest execution time for the small
instance was 7.17×103 s, using one process for ESyS-Particle and two threads
for self-gravity calculation. The execution using two processes and two threads
took 7.79×103 s to finish. When executing in the distributed mode of ESyS-
Particle, a rule of thumb recommends assigning at least 5, 000 particles to each
process. The rationale behind this rule is that the time spent on processes
communications via MPI is high compared to the time needed to calculate
the forces and particle displacements. In the small scenario, only one process
is recommended according to the rule of thumb. As a consequence, using
two processes is a less efficient configuration. The lowest percentage of time
computing self-gravity was 78%, when using a configuration with two processes
and two threads. These values indicate that the opportunities for improving
the performance must be focused on the self-gravity module rather than in the
ESyS-Particle core. The lowest average self-gravity time obtained was 5.14 s,
using one process and two threads.

Table 6.2 reports the results of the Barnes & Hut method. The lowest
execution time was 3.79×103 s, using a configuration of one process and two
threads. Using more processes resulted in longer execution times. The afore-
mentioned argument about the rule of thumb to define the number of processes
also holds in this case.

Regarding the average self-gravity calculation time, Barnes & Hut has a
lowest value of 2.30 s, which is 2.24× faster than the occupied cells method. In
addition, using Barnes & Hut, the lower percentage of time computing the self-
gravity was 68%, 13% lower than the occupied cells method. Comparing the

50

Table 6.2: Performance results for the two agglomerate scenario with 3,866 particles
(small instance) using the Barnes & Hut method.

#particle #gravity execution time computing # self-gravity avg. self-gravity
processes threads time(s) self-gravity updates time(s)

1 (1,1,1) 1 4.09×103 74% 1167 2.60
1 (1,1,1) 2 3.79×103 72% 1167 2.32
2 (1,1,2) 1 4.55×103 73% 1167 2.84
2 (1,1,2) 2 3.95×103 68% 1167 2.30

overall execution time of the small instance, the best result using the Barnes
& Hut method was 1.89× faster than the best time using the occupied cells
method.

6.1.2 Medium size instance

Table 6.3 reports the performance results for the medium instance using the
occupied cells method. The configuration with one process and four threads
allowed obtaining the lowest execution time (1.31×105 s). The lower percentage
of time spent on self-gravity calculation was 96%. The number of gravitational
force interactions grow in a super-linear manner compared to the linear growth
of the contact forces, which caused the increase in the self-gravity computation
time. The best average self-gravity calculation time was 73.25 s using the
configuration with one process and four threads.

Table 6.4 reports the performance results of the Barnes & Hut method. The
lowest execution time was 1.31×105 s, using one process and four threads, and
using two process and four threads. The lowest percentage of time calculating
self-gravity was 74%, using one process and two threads. The lowest average
time calculating self-gravity was 8.80 s, using two processes and four threads.
The best average self-gravity calculation time using Barnes & Hut was 10.11×
lower than using the occupied cells method.

Comparing the results of the medium and small instances using the Barnes
& Hut method, the average self-gravity calculation time grew slower than when
using the occupied cells method. These results show that the Barnes & Hut
method implemented as part of this thesis is faster and more scalable than the
occupied cells method. The efficiency of the Barnes & Huy implementation
opens the opportunity to perform simulations with larger particle amounts. In

51

Table 6.3: Performance results for the two agglomerate scenario with 11,100 par-
ticles (medium instance) using the occupied cells method.

#particle #gravity execution time computing # self-gravity avg. self-gravity
processes threads time(s) self-gravity updates time(s)

1 (1,1,1) 1 3.13×105 98% 1733 177.90
1 (1,1,1) 2 1.76×105 97% 1733 99.18
1 (1,1,1) 4 1.31×105 96% 1733 73.25
2 (1,1,2) 1 3.12×105 98% 1755 175.49
2 (1,1,2) 2 2.12×105 98% 1755 118.47
2 (1,1,2) 4 1.61×105 97% 1755 88.99

Table 6.4: Performance results for the two agglomerate scenario with 11,100 par-
ticles (medium instance) using the Barnes & Hut method.

#particle #gravity execution time computing # self-gravity avg. self-gravity
processes threads time(s) self-gravity updates time(s)

1 (1,1,1) 1 2.80×104 79% 1828 12.18
1 (1,1,1) 2 2.53×104 74% 1828 10.27
1 (1,1,1) 4 2.14×104 79% 1828 9.27
2 (1,1,2) 1 2.43×104 81% 1866 10.50
2 (1,1,2) 2 2.33×104 81% 1866 10.06
2 (1,1,2) 4 2.14×104 77% 1866 8.80

addition, the execution time of the medium instance using the occupied cells
method was one order of magnitude higher than when using Barnes & Hut.

6.1.3 Large size instance

Table 6.5 reports the performance results for the large instance using the im-
plemented Barnes & Hut method. Executions using the occupied cells method
were not performed for this instance due to the large execution times required.
The lowest execution time was 4.96×104 s, using the configuration with four
processes and four threads. The percentage of time spent on gravity calcula-
tions varied from 68% (using (1,1,1) configuration and 16 gravity threads) to
88% (using (1,2,2) configuration and 4 gravity threads), meaning that most of
the execution time is spent on self-gravity calculations rather than on contact
forces calculation. With regard to the average self-gravity calculation time,
the lowest value was 11.01 s, using one process and eight threads. Despite

52

Table 6.5: Performance results of the Barnes & Hut method for the two-
agglomerate scenario with 38,538 particles (large instance).

#particle #gravity execution time computing # self-gravity avg. self-gravity
processes threads time(s) self-gravity updates time(s)

1 (1,1,1) 1 8.58×104 71% 3813 16.06
1 (1,1,1) 2 7.45×104 76% 3813 12.22
1 (1,1,1) 4 6.00×104 74% 3813 11.67
1 (1,1,1) 8 5.48×104 77% 3813 11.01
1 (1,1,1) 16 8.32×104 68% 3815 14.84
2 (1,1,2) 1 7.74×104 77% 3807 15.65
2 (1,1,2) 2 6.34×104 69% 3807 11.48
2 (1,1,2) 4 5.96×104 71% 3813 11.13
2 (1,1,2) 8 6.52×104 76% 3807 13.09
2 (1,1,2) 16 7.36×104 76% 3807 14.69
4 (1,2,2) 1 7.32×104 83% 3781 16.08
4 (1,2,2) 2 6.31×104 75% 3781 12.43
4 (1,2,2) 4 4.96×104 88% 3781 11.50
4 (1,2,2) 8 6.14×104 84% 3781 13.67
4 (1,2,2) 16 6.77×104 83% 3781 14.84
8 (2,2,2) 1 7.43×104 83% 3781 16.26
8 (2,2,2) 2 7.14×104 76% 3781 14.35
8 (2,2,2) 4 6.35×104 84% 3781 14.03
8 (2,2,2) 8 6.77×104 80% 3781 14.37
8 (2,2,2) 16 6.35×104 82% 3781 13.79

that the large instance has almost four times more particles than the medium
instance, the average self-gravity calculation time is only 1.26× longer. These
results indicate that the growth in the average self-gravity calculation time
is sub-linear when using the Barnes & Hut method. The reason is that the
method is based in cells rather than the individual particles. This way, if a
scenario grows in number of particles but the cell size stays unchanged, the
increment in execution time will be sub-linear. Anyway, if more precision is
needed, smaller cells should be used, hence resulting in larger execution times.

6.1.4 Overall discussion for the two-agglomerate sce-

nario

For the execution using the Barnes & Hut method, in the small instance the
self-gravity was updated 1167 times, whereas on the medium instance it was
updated from 1828 to 1866 times, and on the large instance it was updated

53

between 3781 and 3813 times. So, the number of gravity updates increases
when the size of the particles decreases.

In general, using the Barnes & Hut method to simulate the two agglom-
erates scenario lowered the percentage of time calculating the self-gravity in
up to 23%. This effect is caused by the up to 10× lower average self-gravity
calculation time of the Barnes & Hut method in comparison with the occupied
cells method. In addition, the overall execution time of the scenario of the two
agglomerates using the Barnes & Hut method was affected by the 10× accel-
eration of the average self-gravity calculation time. Using the Barnes & Hut
method, the execution time reported is one order of magnitude lower than the
occupied cells method. This is a very relevant performance result that allows
the execution of instances with a larger number of particles, and also for a
larger number of time steps.

Results show a sub linear increase in the performance of the proposed
implementation of the Barnes & Hut method when increasing the number
of computational resources. The reason for this behavior is twofold: i) the
average self-gravity calculation time is usually too short to exploit the benefits
of a parallel environment, ii) the process of creation and deletion of the Barnes
& Hut tree is not implemented in parallel, so most of the time updating the
self-gravity is spent performing sequential operations. This last issue of the
Barnes & Hut based method is proposed be addressed in future work.

6.2 Collapsing cube scenario

This section reports and analyzes the performance results of both the occupied
cells and the Barnes & Hut methods for the defined instances of the collapsing
cube scenario.

6.2.1 Small instance

Table 6.6 reports the experimental results of the execution of the occupied
cells method for the small cube instance. The number of self-gravity updates
was 11 for all the tested configurations of processes and threads. The lowest
execution time was 1.50×104 s using four processes and eight threads. The low-
est average self-gravity calculation time (1238.24 s) was also achieved with the
same configuration of processes and threads. However, the lowest percentage

54

Table 6.6: Performance results for the collapsing cube scenario with 32,768 particles
(small instance) executed with the occupied cells implementation.

#particle #gravity execution time computing # self-gravity avg. self-gravity
processes threads time(s) self-gravity updates time(s)

1 (1,1,1) 1 3.26×104 82.79% 11 2451.75
1 (1,1,1) 2 2.90×104 77.60% 11 2046.41
1 (1,1,1) 4 2.45×104 71.51% 11 1591.73
1 (1,1,1) 8 2.10×104 65.10% 11 1241.98
2 (1,1,2) 2 2.24×104 84.86% 11 1725.69
2 (1,1,2) 4 2.22×104 84.77% 11 1711.92
2 (1,1,2) 8 1.76×104 80.02% 11 1279.81
4 (1,2,2) 1 3.34×104 98.65% 11 2998.07
4 (1,2,2) 2 2.41×104 91.42% 11 2001.9
4 (1,2,2) 4 2.06×104 81.48% 11 1524.34
4 (1,2,2) 8 1.50×104 91.10% 11 1238.24

of time computing self-gravity (71%) was obtained using one process and four
threads.

In turn, Table 6.7 reports the results of the Barnes & Hut method for
the small instance of the collapsing cube scenario. The number of self-gravity
updates was 13 for all the configurations. Results indicate that the variation in
the self-gravity computation time when increasing the number of self-gravity
threads is of about 50% being the lowest value reported 26.14 s, using one
process and four threads, and the highest value 39.28 s, using four processes and
one thread. However, the lowest execution time measured was 2.25×103 s using
eight processes and eight threads. The lowest percentage of time calculating
the self-gravity was 4.51% using one process and two threads. Most of the
simulation time was spent on the calculation of the contact forces, varying
from 81.9% of the time to 96.5% of the time.

The percentage of time calculating self-gravity during the simulations was
analyzed. Results presented on Table 6.6 report that using the selected imple-
mentation of the occupied cells method, most of the execution time was spent
calculating self-gravity, with values varying from 65% to 98% of the total exe-
cution time of a simulation. On the other hand, for the Barnes & Hut method
the percentage of time spent calculating self-gravity varied from 4% to 19%, as
it is shown in Table 6.7. In addition, a comparison was performed regarding
the average self-gravity calculation time of the occupied cells and the Barnes
& Hut method. The lowest value of the average self-gravity calculation time

55

Table 6.7: Performance results for the collapsing cube scenario with 32,768 particles
(small instance) executed with the Barnes & Hut method implementation.

#particle #gravity execution time computing # self-gravity avg. self-gravity
processes threads time(s) self-gravity updates time(s)

1 (1,1,1) 1 8.89×103 4.78% 13 32.65
1 (1,1,1) 2 8.79×103 4.51% 13 30.51
1 (1,1,1) 4 7.52×103 4.52% 13 26.14
1 (1,1,1) 8 7.64×103 4.59% 13 26.99
2 (1,1,2) 1 4.24×103 8.49% 13 27.68
2 (1,1,2) 2 7.41×103 5.60% 13 31.90
2 (1,1,2) 4 7.83×103 5.35% 13 32.21
2 (1,1,2) 8 6.41×103 6.34% 13 31.24
4 (1,2,2) 1 5.10×103 10.01% 13 39.28
4 (1,2,2) 2 3.62×103 11.47% 13 31.90
4 (1,2,2) 4 3.30×103 12.99% 13 32.93
4 (1,2,2) 8 3.85×103 11.21% 13 33.18
8 (2,2,2) 1 2.35×103 19.11% 13 34.54
8 (2,2,2) 2 2.37×103 18.52% 13 33.80
8 (2,2,2) 4 2.39×103 18.31% 13 33.69
8 (2,2,2) 8 2.25×103 16.58% 13 28.65

for the occupied cells method was 1238.24 s, which is two orders of magni-
tude higher than the lowest value of 26.14 s obtained using the Barnes & Hut
method. The self-gravity is calculated up to 47.37×47.37×47.37× faster using the Barnes
& Hut method rather than using the occupied cells method. The reduction
of the calculation time of the self-gravity allows the simulation of larger and
more realistic scenarios.

6.2.2 Medium instance

Table 6.8 reports the experimental results of the Barnes & Hut method for the
medium instance. The number of self-gravity updates was 21 for all the con-
figurations used. The lowest average self-gravity calculation time was 251.06 s,
using eight processes and four threads. According to the results, the lowest
percentage of time computing self-gravity was 7.69%, using one process and
two threads. The lowest execution time obtained was 1.84×104 s using 27 pro-
cesses and 16 threads. Partial simulations were performed for the occupied
cells method on the medium size instance, for the reasons explained below.
Results showed that the time needed to perform a single self-gravity update

56

Table 6.8: Performance results for the collapsing cube scenario with 262,144 par-
ticles (medium instance) executed with the Barnes & Hut method implementation.

#particle #gravity execution time computing # self-gravity avg. self-gravity
processes threads time(s) self-gravity updates time(s)

1 (1,1,1) 1 8.01×104 8.24% 21 314.69
1 (1,1,1) 2 7.38×104 7.69% 21 270.38
1 (1,1,1) 4 1.04×105 11.66% 21 575.64
1 (1,1,1) 8 7.89×104 9.71% 21 364.81
1 (1,1,1) 16 6.79×104 10.41% 21 336.64
8 (2,2,2) 2 3.56×104 20.78% 21 352.40
8 (2,2,2) 4 1.85×104 28.50% 21 251.06
8 (2,2,2) 8 2.80×104 35.42% 21 472.47
8 (2,2,2) 16 2.50×104 27.53% 21 327.87
27 (3,3,3) 16 1.84×104 36.34% 21 320.09

was 2.08×105 s. This self-gravity calculation time is three orders of magnitude
larger than the result reported for the average self-gravity calculation time
using the Barnes & Hut method. Due to the large execution time required
to perform a complete simulation, the complete performance study for the
occupied cells method was not performed in the context of this research.

6.2.3 Large instance

Table 6.9 reports the results of the Barnes & Hut method for the large instance.
Executions using one process and one thread, and using the occupied cells
method were not performed due to the large execution times required: the
estimated execution time using a configuration of one process and one thread is
1.5×106 s, while the estimated execution time using the occupied cells method
is 9.0×107 s. The large instance simulation performed 41 or 42 self-gravity
updates, depending on the configuration of processes and threads used. The
percentage of time of the simulation spent updating self-gravity varied from
6.60% to 20.21%. In addition, the lowest execution time was 1.25×105 s using
36 processes and 16 threads. The lowest average self-gravity calculation time
was 313.14 s.

6.2.4 Overall discussion for the collapsing cube scenario

A comparative analysis of the results after the execution of the simulations
using the Barnes & Hut method for the large instance indicates that the exe-

57

Table 6.9: Performance results for the collapsing cube scenario with 2,097,152
particles (large instance) executed with the Barnes & Hut method implementation.

#particle #gravity execution time computing # self-gravity avg. self-gravity
processes threads time(s) self-gravity updates time(s)

8 (2,2,2) 8 1.43×105 20.21% 42 689.01
8 (2,2,2) 16 1.95×105 6.60% 41 313.14
27 (3,3,3) 8 1.57×105 8.65% 41 331.41
36 (3,3,4) 16 1.25×105 11.09% 41 336.72

cution time grows one order of magnitude with respect to the medium instance.
However, the average self-gravity calculation time registered for the medium
and large instances is of the same order of magnitude. The self-gravity cal-
culation time did not vary significantly because the Barnes & Hut method
performance is not bounded to the number of particles but to the number of
boxes. In the medium and large instances, the same box size was used to
perform the calculations. This means that, if the number of boxes is fixed,
increasing the number of particles of a scenario does not affect the self-gravity
calculation time.

Results show that the acceleration for the simulations of the cube scenario
using the Barnes & Hut method was more than 50× for the small instance, and
was more than 100× for the medium instance compared to the occupied cells
method. In addition, the average self-gravity calculation time was of the same
order of magnitude for the medium and large instance of the cube scenario
using the Barnes & Hut method. Thus, performance improvements of up to
100× are also expected in this case. These performance improvements allow
scaling up to perform realistic simulations with a large number of particles
(tens of millions) in reasonable execution times, which constitutes the main
algorithmic contribution of this thesis.

6.3 Numerical accuracy: analysis of the posi-
tion of the center of mass

This section studies the numerical accuracy of the results obtained in the
simulations performed using the occupied cells and the Barnes & Hut methods.

58

6.3.1 Description of the studies

The analysis is organized in two parts: the study of the position of the center
of mass for the two agglomerates scenario and for the collapsing cube scenario.
Two analysis are presented for each scenario. One is the comparison of the
position of the center of mass for the small size instance using both the occupied
cells method and the Barnes & Hut method. The second is an analysis of
the scalability of the Barnes & Hut method by performing a comparison and
discussion of the movement of the position of the center of mass for the small,
medium, and large instances of both scenarios. Both studied scenarios were
configured to be symmetrical, so the center of mass of all particles stays in the
same position for the complete simulation. The less the center of mass moves
during the simulation, the more accurate to the reality represented. In an ideal
scenario where the initial velocity of the center of mass is zero, and due to the
symmetrical characteristics, the total movement of the center of mass should
be zero during the complete simulation. The analysis of the variation of the
position of the center of mass is performed in order to determine the numerical
accuracy of the proposed methods. This analysis allows verifying that the
approximations in the proposed methods do not introduce significant errors
on the particles movement, thus allowing performing accurate simulations of
the systems studied.

Regarding the figures presented in this subsection, four sets of data are
reported in each figure: red, green, and blue lines represent the evolution
of the X, Y, and Z components of the position of the center of mass for a
simulation, respectively. The variation of the modulus of the position of the
center of mass for the same simulation is represented in black. Values are
reported for different time step values for a representative simulation.

6.3.2 Results for the two agglomerate scenario

Figure 6.1 shows the variation of the position of the center of mass for the
small instance of the two agglomerates scenario. Results for the occupied cells
method are presented in Figure 6.1a and results for the Barnes & Hut method
are presented in Figure 6.1b.

Results show that the position of the center of mass varies in the order of
1×10−3m when using the occupied cells method and in the order of 1×101m
when using the Barnes & Hut method. So, a loss of precision of the calculation

59

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

×105

0

0.5

1

1.5

×10−3

Timestep

P
os
it
io
n
of

th
e
ce
nt
er

of
m
as
s
(m

)

X component
Y component
Z component
Modulus

(a) Occupied cells method.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

×105

0

5

10

15

20

25

Timestep

P
os
it
io
n
of

th
e
ce
nt
er

of
m
as
s
(m

)

X component
Y component
Z component
Modulus

(b) Barnes & Hut method.

Figure 6.1: Position of the center of mass over time for the small instance of the
two agglomerates scenario.

of the self-gravity is perceived when the Barnes & Hut method is used with a
neighborhood of size 3. The cause of the loss of precision lies in the strategy
implemented to traverse the octal tree and to create the list of tree nodes
from which the self-gravity of a node is calculated. The strategy consists of
creating groups of tree nodes, that do not contain the node to be calculated,

60

into bigger nodes. The action of grouping the nodes into bigger nodes causes a
loss of precision in the calculation. In addition, bigger nodes cause a larger loss
of precision in the calculation of the self-gravity. In systems where the effect
of the self-gravity of the particles has significance, rounding the calculation of
the acceleration produced by grouping the particles into a single major particle
introduces changes in the net force applied to the particles.

Figure 6.2 shows the position of the center of mass for the medium (Fig-
ure 6.2a) and large (Figure 6.2b) scenarios using the Barnes & Hut method.
Results show that the position of the center of mass in both scenarios varies
in the same order of magnitude as in the small scenario. The X and Y com-
ponents vary between zero and five meters, while the Z component moves up
to 36.01m in the medium scenario and up to 40.26m in the large scenario
at the time step 1×105. Recall that the two agglomerates are separated by
5, 000m. So, movement the Z component for the medium scenario (36.01m)
represents 0.72% of the distance between the agglomerates, while the move-
ment for the large scenario (40.26m) represents 0.81% of distance between the
agglomerates. The less the center of mass moves during the simulation, the
more accurate to the reality represented is the simulation. In an ideal scenario
where the initial velocity of the center of mass is zero, and due to the symmet-
rical characteristics, the total movement of the center of mass should be zero
during the complete simulation. The two agglomerates move along the plain
that contains the X and Y axis. So, the center of mass moves mainly over the
Z component by less than 1% of the distance between the agglomerates for all
the scenarios studied.

6.3.3 Results for the collapsing cube scenario

Figure 6.3 shows the variation of the position over time of the center of mass
for the small cube scenario. Figure 6.3a shows the results for the occupied
cells method. Figure 6.3b shows the results for the Barnes & Hut method.
Results indicate that using either algorithm, the modulus of the center of
mass increases over time.

For the small instance, the position of the center of mass varies in the or-
der of 1×10−4m in the case of the occupied cells method, and in the order of
1×10−2m for the Barnes & Hut method. The values obtained confirm that the
occupied cells method is more precise than the Barnes & Hut method. How-

61

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

×105

0

10

20

30

Timestep

P
os
it
io
n
of

th
e
ce
nt
er

of
m
as
s
(m

)
X component
Y component
Z component
Modulus

(a) Medium scenario.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

×105

0

10

20

30

40

Timestep

P
os
it
io
n
of

th
e
ce
nt
er

of
m
as
s
(m

)

X component
Y component
Z component
Modulus

(b) Large scenario.

Figure 6.2: Position of the center of mass over time for the medium and large
instances of the two agglomerates scenario using the Barnes & Hut method.

ever, the precision of the algorithm is higher for the collapsing cube scenario
rather than for the two agglomerates scenario. These results suggest that the
Barnes & Hut algorithm performs best in scenarios with slow movements of
the particles.

Figure 6.4 shows the position of the center of mass for the medium (Figure
6.4a) and large (Figure 6.4b) scenarios using the Barnes & Hut method. For

62

the medium scenario, the maximum value for the position of the center of mass
is 36.0m and for the large scenario is 40.3m. Both values were registered at the
1×105 time step. Results indicate that the variation of the position of the center
of mass for the medium and large instances is of the same order of magnitude
to the one obtained for the small instance. Thus, the reported results show
that scaling the number of particles does not affect the numerical accuracy
of the results obtained when a simulation is performed. The reason of this
behavior is that the loss in precision is introduced mainly by the calculation of
the self-gravity, which is calculated based on the nodes and boxes rather than
on the particles.

6.4 Numerical accuracy: analysis of the angu-
lar momentum

This section studies the conservation of the angular momentum measured for
both scenarios and their small, medium, and large instances using a neigh-
borhood of size three. The results obtained are reported, commented, and
discussed in the following subsections.

6.4.1 Angular momentum and its relevance

The angular momentum is used to calculate and describe the rotational mo-
mentum of a particle or group of particles. The importance of angular mo-
mentum resides in the fact that it has the property that it is conserved with
respect to a point and in this experiment it is not affected by external forces.
The angular momentum of a point particle with respect to the origin is de-
scribed by Equation 6.1, where ~ro represents the distance of the particle from
the origin, m represents the mass of the particle, and ~v is the velocity of the
particle. The angular momentum is measured in kgm2

s
.

Lo = ~ro ×m~v, (6.1)

63

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

×105

0

2

4

6

8

×10−4

Timestep

P
os
it
io
n
of

th
e
ce
nt
er

of
m
as
s
(m

)

X component
Y component
Z component
Modulus

(a) Occupied cells method.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

×105

0

0.5

1

1.5

2
×10−2

Timestep

P
os
it
io
n
of

th
e
ce
nt
er

of
m
as
s
(m

)

X component
Y component
Z component
Modulus

(b) Barnes & Hut method.

Figure 6.3: Position of the center of mass over time for the small instance of the
cube scenario.

The aim of the study of the angular momentum is to measure its conser-
vation throughout the simulations. To that extent, the angular momentum
is calculated based on the results obtained from the simulations performed.
Then, the modulus of the angular momentum vector is calculated, and the
variation is studied and commented.

64

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

×105

0

0.2

0.4

0.6

0.8

1

1.2

1.4
×10−2

Timestep

P
os
it
io
n
of

th
e
ce
nt
er

of
m
as
s
(m

)
X component
Y component
Z component
Modulus

(a) Medium cube scenario.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

×105

0.5

1

1.5

2

×10−2

Timestep

P
os
it
io
n
of

th
e
ce
nt
er

of
m
as
s
(m

)

X component
Y component
Z component
Modulus

(b) Large cube scenario.

Figure 6.4: Position of the center of mass over time for the medium and large
instances of the cube scenarios using the Barnes & Hut method.

6.4.2 Results for the two agglomerates scenario

Figure 6.5 shows the shows the variation of the angular momentum over time
for the small instance of the two agglomerates scenario. Figure 6.5a shows the
angular momentum variation using the occupied cells algorithm, while Figure
6.5b shows the variation using the Barnes & Hut octal tree algorithm.

65

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

×105

0

0.2

0.4

0.6

0.8

1

Timestep

A
ng

ul
ar

m
om

en
tu
m

(k
g.
m

2
/s
)

X component
Y component
Z component
Modulus

(a) Occupied cells method.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

×105

0

0.2

0.4

0.6

0.8

1

Timestep

A
ng

ul
ar

m
om

en
tu
m

(k
g.
m

2
/s
)

X component
Y component
Z component
Modulus

(b) Barnes & Hut method.

Figure 6.5: Angular momentum over time for the small instance of the two ag-
glomerates scenario.

Results for the two agglomerates scenario indicate that the values for the X
axis, Y axis, Z axis, and modulus using the occupied cells method are similar
to the values using the Barnes & Hut method. Comparing the results obtained,
the value for the angular momentum is 6.13×1018 kg.m2/s using either method
for the last time step of the simulation, which is time step 1×105. So, the
obtained results suggest that the angular momentum for the small instance

66

is conserved with the same precision for the occupied cells method and the
Barnes & Hut method.

Figure 6.6 shows the variation of the angular momentum over time for the
two agglomerates scenario using the Barnes & Hut method. Figure 6.6a shows
the results obtained for the medium instance, while Figure 6.6b shows the
results for the large instance. The initial value for the modulus of the angular
momentum is 6.20×1018 kg.m2/s and the value at the end of the simulation is
6.03×1018 kg.m2/s. The difference between the initial value and the value at the
last time step is of 0.17×1018 kg.m2/s, which is similar to the difference for the
same interval for the small scenario using both methods (0.14×1018 kg.m2/s).

In the case of the execution of the large instance using the Barnes & Hut
method, the results obtained were similar to the ones obtained for the medium
instance. In this case, the values of the angular momentum modulus oscillated
between 8.42×1018 kg.m2/s and 8.33×1018 kg.m2/s, therefore in this case the
difference of the angular momentum modulus is 0.09×1018 kg.m2/s. The results
presented for the medium and large instances suggest that for the two orbiting
agglomerates the angular momentum varies in the same order of magnitude
for the Barnes & Hut method and the occupied cells method.

6.4.3 Results for the collapsing cube scenario

Figure 6.7 shows the variation of the angular momentum for the execution
of the small instance of the collapsing cube scenario. The results using the
occupied cells method are presented in figure 6.7a, while the results for the
Barnes & Hut method are presented in figure 6.7. In this scenario, the modulus
of the angular momentum should ideally remain with a value of 0 kg.m2/s for
the complete simulation. Given that both the occupied cells and the Barnes
& Hut are approximated methods, the results deviate from the ideal values.
The modulus of the angular momentum increases with the succession of the
time steps. The maximum value obtained for the small instance using the
occupied cells method is 1.48×106 kg.m2/s , while the maximum value using
the Barnes & Hut method is 1.97×108 kg.m2/s. Results show that in this case
the modulus for the Barnes & Hut method is two orders of magnitude larger
than for the occupied cells method. In addition, the behavior of the increase of
the modulus is different for both methods: for the occupied cells method the
speed of the increase slows down as the time steps increase, while the results for

67

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

×105

0

0.2

0.4

0.6

0.8

1

Timestep

A
ng

ul
ar

m
om

en
tu
m

(k
g.
m

2
/s
)

X component
Y component
Z component
Modulus

(a) Medium scenario.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

×105

0

0.2

0.4

0.6

0.8

1

Timestep

A
ng

ul
ar

m
om

en
tu
m

(k
g.
m

2
/s
)

X component
Y component
Z component
Modulus

(b) Large scenario.

Figure 6.6: Angular momentum over time for the medium and large instances of
the two agglomerates scenario using the Barnes & Hut method.

the Barnes & Hut method show an steady increase of the modulus throughout
the simulation. In spite of the difference in precision, the acceleration using
the Barnes & Hut method is calculated 47.37× faster than using the occupied
cells method (see section 6.2.1).

68

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

×105

−1

−0.5

0

0.5

1

1.5

×106

Timestep

A
ng

ul
ar

m
om

en
tu
m

(k
g.
m

2
/s
)

X component
Y component
Z component
Modulus

(a) Occupied cells method.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

×105

−1

0

1

2

×108

Timestep

A
ng

ul
ar

m
om

en
tu
m

(k
g.
m

2
/s
)

X component
Y component
Z component
Modulus

(b) Barnes & Hut method.

Figure 6.7: Angular momentum over time for the small instance of the collapsing
cube scenario.

Figure 6.8 shows the results obtained for the study of the evolution of
the angular momentum over time for the medium and large instances of the
collapsing cube using the Barnes & Hut method. The results presented in
Figure 6.8a show that the modulus of the angular momentum also increases

69

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

×105

−6

−4

−2

0

2

4

6

8

×106

Timestep

A
ng

ul
ar

m
om

en
tu
m

(k
g.
m

2
/s
)

X component
Y component
Z component
Modulus

(a) Medium scenario.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

×105

−6

−4

−2

0

2

4

6

×106

Timestep

A
ng

ul
ar

m
om

en
tu
m

(k
g.
m

2
/s
)

X component
Y component
Z component
Modulus

(b) Large scenario.

Figure 6.8: Angular momentum over time for the medium and large instances of
the collapsing scenario using the Barnes & Hut method.

for this instance, even though the derivative decreases for the last three time
steps measured. The larger value for the modulus of the angular momentum
for the medium scenario is 8.52×106 kg.m2/s.

70

Figure 6.8b shows the results of the study of the angular momentum per-
formed to the large instance of the collapsing cube scenario using the Barnes &
Hut method. For this instance, the large value for the modulus of the angular
momentum is 6.40×106 kg.m2/s; this value is of the same order of magnitude
as the larger value obtained for the small instance using the occupied cells
method. Also, the values of the modulus of the angular momentum increase
over time. This increase follows the same pattern that was previously com-
mented for the small and medium instances and for both the occupied cells
and the Barnes & Hut method.

Overall, the results obtained for the study of the angular momentum per-
formed to the collapsing cube suggest that as the number of particles in the
instance increases, the numerical results for the modulus of the angular mo-
mentum using the Barnes & Hut method approximate to the values obtained
using the occupied cells method. In addition, results for all the instances tested
showed that the modulus of the angular momentum increased over time. This
last result show that the angular momentum behaved differently for the col-
lapsing cube compared to the two agglomerates scenario, in which the variation
of the modulus of the angular momentum was such that all the values were of
the same order of magnitude.

71

72

Chapter 7

Experimental evaluation: binary
tree algorithm and upper tree
level mass center calculation

This chapter reports the results of executions performed with the two agglom-
erates scenario using the binary tree algorithm and a comparison of perfor-
mance against the Barnes & Hut octal tree. The results include the numerical
accuracy of the performance of the compared methods. In addition, a study
of the performance of a variation of the octal tree is presented, in which the
mass center is calculated using the particles of the system at upper tree levels
rather than center of mass of the lower levels.

7.1 Performance results of the binary tree al-
gorithm

The performance of the binary tree algorithm was studied by means of a com-
parison against the octal tree algorithm. Results are reported for the exe-
cutions of the three instances defined in Section 5.1, using different configu-
rations of processes and threads. The processes are related to the workload
distribution of the contact forces calculation, while the threads are related to
the self-gravity update process. All results correspond to the average of five
executions for each configuration.

73

Table 7.1 reports the total execution time and the average time of a self-
gravity update when using the octal tree and the binary tree algorithms for
the small instance of the two agglomerates scenario.

Table 7.1: Performance results for the two agglomerate scenario with 3,866 particles
(small instance).

octal tree binary tree

#particle #gravity execution avg. self-gravity execution avg. self-gravity
processes threads time(s) time(s) time(s) time(s)

1 (1,1,1) 1 9.15×102 10.11 1.30×103 14.55
1 (1,1,1) 2 6.64×102 6.99 1.03×103 11.65
2 (1,1,2) 1 9.59×102 10.58 1.76×103 18.78
2 (1,1,2) 2 7.08×102 7.40 1.47×103 15.18

For the small instance, experiments were executed for up to two processes
and two threads, taking into account the rule-of-thumb that recommends as-
signing at least 5, 000 particles to each process on the distributed mode of
ESyS-Particle. When using either tree algorithm, self-gravity was updated 82
times.

For self-gravity update, results show that the octal tree algorithm is up to
2×faster than the binary tree algorithm. Results confirm the rule-of-thumb,
since the lowest execution time was obtained using one process and one thread.
When increasing the number of gravity threads from 1 to 2, the small instance
ran approximately in 30% less time for the octal tree, whereas in the case of
the binary tree the instance finished the execution in approximately 25% less
time. Thus, the small instance ran faster using the octal tree algorithm than
using the binary tree.

For the medium instance, the evaluation was performed for six configura-
tions of gravity processes and gravity threads. When using either tree algo-
rithm, the self-gravity was updated for a total of 127 times. Table 7.2 reports
the results obtained for the execution of the medium instance of the two ag-
glomerate scenario when using the octal tree and the binary tree algorithm.
The lowest execution time was achieved using the octal tree algorithm with
a configuration of two processes and four threads, which supports the rule of
thumb. For the medium instance, the best binary tree execution time was
approximately 20% slower than the best octal tree time.

74

Table 7.2: Performance results for the two agglomerate scenario with 11,100 par-
ticles (medium instance).

octal tree binary tree

#particle #gravity execution avg. self-gravity execution avg. self-gravity
processes threads time(s) time(s) time(s) time(s)

1 (1,1,1) 1 6.87×103 51.37 8.02×103 59.55
1 (1,1,1) 2 4.75×103 31.22 6.32×103 46.41
1 (1,1,1) 4 4.30×103 31.09 5.27×103 38.19
2 (1,1,2) 1 7.14×103 54.23 9.76×103 72.70
2 (1,1,2) 2 4.57×103 33.85 7.31×103 53.70
2 (1,1,2) 4 4.10×103 30.35 5.70×103 41.26

The large instance was studied considering experiments performed with 20
different configurations of processes and threads. In the tests performed for
the large instance, the gravitational potential was updated 264 times for both
algorithms. Table 7.3 reports the results obtained for each of the studied
configurations.

For the large instance, the best execution time was obtained using the
binary tree with the configuration of eight processes and four threads. This
result supports the rule of thumb. Also, for configurations with the same num-
ber of processes, the configurations using eight or 16 threads performed slower
than the configurations using four threads. Results obtained suggest that the
binary tree algorithm performs faster than the octal tree for large instances.
This is a relevant result from the research reported in this document, as using
a binary tree has not been previously proposed and is a direct contribution of
this thesis.

7.2 Numerical accuracy of the binary tree al-
gorithm: analysis of the center of mass

Due to the symmetrical characteristics of the scenario, the center of mass of
the system should remain static at the center of the space as the agglomerates
move. However, the simulation calculates the interactions of the particles
in discrete steps, which introduces error in the calculations. So, a study of
the numerical accuracy was performed analyzing of the position of the center
of mass during time for the three instances considered in the experimental
analysis of the binary tree algorithm.

75

Table 7.3: Performance results for the two agglomerate scenario with 38,358 par-
ticles (large instance).

octal tree binary tree

#particle #gravity execution avg. self-gravity execution avg. self-gravity
processes threads time(s) time(s) time(s) time(s)

1 (1,1,1) 1 1.49×104 49.79 1.89×104 64.40
1 (1,1,1) 2 1.04×104 32.86 1.34×104 42.94
1 (1,1,1) 4 9.21×103 28.08 1.10×104 35.38
1 (1,1,1) 8 9.59×103 29.60 1.10×104 35.37
1 (1,1,1) 16 1.09×104 34.81 1.16×104 36.75
2 (1,1,2) 1 1.43×104 49.58 1.90×104 65.97
2 (1,1,2) 2 1.07×104 35.54 1.27×104 42.79
2 (1,1,2) 4 1.01×104 32.62 1.10×104 35.81
2 (1,1,2) 8 1.09×104 35.79 1.02×104 33.92
2 (1,1,2) 16 1.06×104 34.95 1.12×104 36.32
4 (1,2,2) 1 1.62×104 57.63 1.88×104 65.91
4 (1,2,2) 2 1.07×104 36.56 1.49×104 52.46
4 (1,2,2) 4 9.56×103 32.27 9.72×103 32.64
4 (1,2,2) 8 1.04×104 35.07 9.82×103 33.09
4 (1,2,2) 16 1.07×104 36.20 1.09×104 37.28
8 (2,2,2) 1 1.65×104 60.27 1.74×104 62.80
8 (2,2,2) 2 1.12×104 39.78 1.11×104 39.23
8 (2,2,2) 4 1.03×104 36.72 8.83×103 30.94
8 (2,2,2) 8 9.69×103 34.29 9.58×103 33.86
8 (2,2,2) 16 1.02×104 36.38 1.06×104 37.10

Figure 7.1 shows the position of the center of mass (x, y, z components
and its module) and its variation over time for the small instance for (a) the
executions using the octal tree, and (b) the executions using the binary tree.
Results confirm that the numerical accuracy using the binary and octal trees
are of the same order of magnitude. However, the octal tree presented a
slightly lower change in the position of the center of mass compared to the
binary tree algorithm. The study of the numerical accuracy for the medium
and large instances are reported in Figure 7.2 and Figure 7.3, respectively.
Results support the commented trends for the small instance. In addition to
the differences in accuracy, differences in the position of the components of
the center of mass were detected when using the different tree structures. An
example is shown in Figure 7.1, the position of the center of mass when using
the octal tree moved away from the origin in the direction of the x component
up to step 6, 000, but then went back to the origin, while this movement did

76

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

×104

0

1

2

3

4

5
×10−3

Timestep

P
os
it
io
n
of

th
e
ce
nt
er

of
m
as
s
(m

)
x component
y component
z component
modulus

(a) Octal tree algorithm.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

×104

0

1

2

3

4

5
×10−3

Timestep

P
os
it
io
n
of

th
e
ce
nt
er

of
m
as
s
(m

)

x component
y component
z component
modulus

(b) Binary tree algorithm.

Figure 7.1: Position of the center of mass over time for the small instance of the
two agglomerates scenario using the Barnes & Hut method with octal and binary
tree.

not occur when using the binary tree structure. Either way, the modulus of the
center of mass behaves in a similar way for the binary and octal trees. From
the reported results, the method based on the binary tree emerges as robust
alternative to the standard octal tree proposed by Barnes & Hut.

77

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

×104

0.0

0.05

0.1

0.15

0.2

0.25

0.3

Timestep

P
os
it
io
n
of

th
e
ce
nt
er

of
m
as
s
(m

)
x component
y component
z component
modulus

(a) Octal tree algorithm.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

×104

0

0.1

0.2

0.3

Timestep

P
os
it
io
n
of

th
e
ce
nt
er

of
m
as
s
(m

)

x component
y component
z component
modulus

(b) Binary tree algorithm.

Figure 7.2: Position of the center of mass over time for the medium instance of the
two agglomerates scenario using the Barnes & Hut method with octal and binary
tree.

78

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

×104

0

0.1

0.2

0.3

Timestep

P
os
it
io
n
of

th
e
ce
nt
er

of
m
as
s
(m

)

x component
y component
z component
modulus

(a) Octal tree algorithm.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

×104

0

0.1

0.2

0.3

0.4

Timestep

P
os
it
io
n
of

th
e
ce
nt
er

of
m
as
s
(m

)

x component
y component
z component
modulus

(b) Binary tree algorithm.

Figure 7.3: Position of the center of mass over time for the large instance of the
two agglomerates scenario using the Barnes & Hut method with octal and binary
tree.

7.3 Numerical accuracy of the binary tree
algorithm: analysis of the angular
momentum

This section reports the results of the study of the angular momentum of the
execution of the small, medium, and large instances of the two agglomerates
scenario using the octal tree and the binary tree methods.

79

Figure 7.4a, and Figure 7.4b report the results of the study of the angular
momentum for the execution of the two agglomerates scenario using the octal
tree and the binary tree for the small instance.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

×104

0

2

4

6

×1018

Timestep

A
ng

ul
ar

m
om

en
tu
m

(k
g.
m

2
/s
)

x component
y component
z component
modulus

(a) Octal tree algorithm.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

×104

0

2

4

6

×1018

Timestep

A
ng

ul
ar

m
om

en
tu
m

(k
g.
m

2
/s
)

x component
y component
z component
modulus

(b) Binary tree algorithm.

Figure 7.4: Angular momentum over time for the small instance of the two ag-
glomerates scenario using the Barnes & Hut method with the octal tree and the
binary tree algorithm.

80

Then, Figure 7.5 and Figure 7.6 report the results for the medium instance.
Finally, Figure 7.7 and Figure 7.8 report the results for the large instance. Re-
sults indicate that the angular momentum is of the same order of magnitude
either using the octal tree or the binary tree. This results confirm that the sim-
ulation results are of the same quality in terms of conservation of the angular
momentum of the system.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

×104

0

1

2

3

4

5

6

×1018

Timestep

A
ng

ul
ar

m
om

en
tu
m

(k
g.
m

2
/s
)

x component
y component
z component
modulus

Figure 7.5: Angular momentum over time for the medium instance of the two
agglomerates scenario using the Barnes & Hut method with the octal tree algorithm.

7.4 Analysis of the upper level direct calcula-
tion of the center of mass

This section reports the experimental results of the application of the higher
level direct calculation of the center of mass introduced at the end of chapter 4.
The results presented include the execution time of the simulations performed
and the numerical accuracy of the calculation by the study of the movement
of the center of mass of the system. In addition, a discussion of the results
obtained is presented.

81

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

×104

0

1

2

3

4

5

6

×1018

Timestep

A
ng

ul
ar

m
om

en
tu
m

(k
g.
m

2
/s
)

x component
y component
z component
modulus

Figure 7.6: Position of the center of mass over time for the medium instance of
the two agglomerates scenario using the Barnes & Hut method with the binary tree
algorithm.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

×104

0

2

4

6

8

×1018

Timestep

A
ng

ul
ar

m
om

en
tu
m

(k
g.
m

2
/s
)

x component
y component
z component
modulus

Figure 7.7: Angular momentum over time for the large instance of the two ag-
glomerates scenario using the Barnes & Hut method with the octal tree algorithm.

The aim of the study is to prove that the precision of the calculation of
the potential increases by calculating the center of mass in higher levels using
particles. So, a study of the position of the center of mass was performed. The
large instance of the two agglomerates scenario was considered. The study
consisted of varying the neighborhood size of the boxes and then compare the

82

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

×104

0

2

4

6

8

×1018

Timestep

A
ng

ul
ar

m
om

en
tu
m

(k
g.
m

2
/s
)

x component
y component
z component
modulus

Figure 7.8: Angular momentum over time for the large instance of the two ag-
glomerates scenario using the Barnes & Hut method with the binary tree algorithm.

movement of the position of the center of mass of the system over time.

Table 7.4 shows the execution time results obtained for the set of configu-
rations defined and tested. All the executions were performed for 10, 000 time
steps using the large instance of the two agglomerates scenario and a config-
uration of 8 processes and 8 threads. The first row of the table corresponds
to the execution of the baseline configuration. Then, from the second row on,
the results correspond to the execution of the Barnes & Hut octal tree using
the adaptation introduced in Section 4.5 and increasing the neighborhood size
by one for each configuration.

Figure 7.9 shows the movement of the center of mass over time for the
configurations studied. Results indicate that the movement of the center of
mass reduces as the neighborhood size increases. For the scenarios using a
neighborhood size 0 to 3, every measure of the distance of the center of mass
towards the center of the system is greater than the measure for the previous
time steps. On the other hand, for the configuration with a neighborhood size
4, the center of mass starts to move nearer to the center of the system for the
last part of the simulation.

The results presented for the study of the center of mass for the octal tree
on Figure 7.3a show that using the octal tree algorithm, the center of mass of
the system, for the scenario studied, moves 3.79×10−1m on time step 10, 000.
On the other hand, using the higher level direct calculation, the center of

83

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

×104

0

0.2

0.4

0.6

0.8

1

×10−2

Timestep

P
os
it
io
n
of

th
e
ce
nt
er

of
m
as
s(
m
)

Occ. cells
Neigh. 1
Neigh. 2
Neigh. 3
Neigh. 4

Figure 7.9: Position of the center of mass over time for the large instance of the
two agglomerates scenario.

Table 7.4: Performance results for the large instance of the two agglomerate sce-
nario.

neighborhood execution time computing # self-gravity avg. self-gravity
size time(s) self-gravity updates time(s)

0 1.80×103 1.28×103 264 4.86

1 1.73×103 1.16×103 264 4.39
2 1.96×103 1.44×103 263 5.49
3 2.99×103 2.16×103 263 8.21
4 3.00×103 2.50×103 263 9.49

mass moves 7.94×10−4m on time step 10, 000. This way, results shows that by
applying the strategy presented in this section, the precision of the calculation
improves up to four levels of magnitude.

84

Chapter 8

Conclusions and future work

This thesis presented the design, implementation, and evaluation of efficient
parallel algorithms for self-gravity simulations in astronomical agglomerates.
The algorithms are implemented as a self-gravity module in ESyS-Particle, a
DEM simulator for geological phenomena. Three methods are presented and
compared: the occupied cells method, and two variations of the Barnes & Hut
method.

Before implementing the occupied cells method, a profiling of the self-
gravity calculation was performed. The purpose of the profiling was to iden-
tify bottlenecks on the implementation, to be mitigated before the performance
study. The profiling was performed using the two agglomerates scenario and
executed for 10,000 time steps. After the profiling was performed, time con-
suming routines were identified and then specific modifications were included
to reduce the number of invocations of those routines. The implemented mod-
ifications resulted in the occupied cells method, which consists of updating the
acceleration of the occupied nodes of an overlying grid.

The two variations of the Barnes & Hut method proposed apply an oc-
tal and a binary tree for domain partitioning. Both methods consist of four
stages: the creation of the self-gravity tree, the construction of the occupied
nodes list, the computation of the self-gravity of the occupied nodes using the
self-gravity tree, and the deletion of the tree. For the stage of the tree creation,
the root of the tree is the whole simulation domain and tree nodes are created
by refining the space of the simulation into eight regular cubical cells (octal
tree) or into two non-cubical ones (binary tree). The refinement is recursively
performed for each of the resultant nodes that have particles. The occupied
nodes list is created using the occupied nodes and extending the list by adding

85

the neighboring nodes for each occupied cell. Then the force vector is calcu-
lated for each of the occupied nodes plus the neighbors and the self-gravity
tree. Finally, the tree is deleted and the calculated data is broadcasted to all
the worker processes. A specific variation was also proposed at the stage of
the creation of the self-gravity tree, in which the mass center of the tree nodes
is calculated directly from the particles in an upper level of the octal tree.

The proposed methods for self-gravity calculation were evaluated over two
realistic scenarios: two identical agglomerates orbiting each other and a col-
lapsing cube scenario, including a instance with more than two million par-
ticles. Results showed that the Barnes & Hut method was 10× faster than
the occupied cells method in simulations to compute self-gravity for the two
agglomerates scenario and up to 100× faster for the collapsing cube scenario.
The numerical accuracy was evaluated by studying the position of the center
of mass and the angular momentum over the simulations. Results for two
agglomerates scenario showed that using the occupied cells method the posi-
tion of the center of mass varies in the order of 10−3m, whereas it varies in
the order of 101m when using Barnes & Hut. For the small instance of the
collapsing cube scenario, the position of the center of mass using the occupied
cells algorithm varied in the order of 10−4m, while using the Barnes & Hut
algorithm the position of the center of mass varied 10−2m. Regarding the an-
gular momentum, the difference in values had the same order of magnitude for
both algorithms. The Barnes and Hut method is substantially faster than the
busy occupied cells method. However, Barnes and Hut is less accurate than
the occupied cells method in terms of numerical accuracy.

The comparison of the binary tree the octal tree variations of Barnes &
Hut showed that the octal tree algorithm was up to 100% faster for the small
instance, and 20% faster for the medium instance compared to the binary tree.
On the other hand, the fastest execution time for the large instance was com-
puted for the binary tree algorithm, suggesting that the binary tree algorithm
performs faster than the octal tree for large instances. The numerical accu-
racy comparison indicated that both the position of the center of mass and the
angular momentum vary in the same order of magnitude for both algorithms.
Finally, results for the upper level calculation improved the accuracy of the
calculations compared to the original Barnes & Hut. The center of mass moved
in the order of 10−1m using Barnes & Hut. However, using the upper level
direct calculation, the center of mass moved on the order of 10−4m.

86

The main lines for future work include extending the performance evalu-
ation to consider larger, more realistic, and more diverse problem instances
and scenarios, and proposing more strategies to improve the precision of the
calculations over a simulation.

The future work also includes to propose strategies to improve the perfor-
mance of the self-gravity module. One strategy is to update the Barnes & Hut
tree partially during the simulation in order to increase the self-gravity up-
date performance. Also, another strategy includes adapting the implemented
Barnes & Hut algorithm to allow that the parameter that sets the box size
to be any given value instead of only a power of two. Making the size of the
boxes more flexible by accepting a wide range of values will allow performing
simulations with tighter box sizes and hence allowing to reduce the bounding
box, which in turn can help to improve the performance of simulations. Finally,
another strategy is to improve the self-gravity overlaying grid to allow the cells
to be of a different size than the cells that belong to the grid of contact forces
that is located in the main module of ESyS-Particle. By decoupling the sizes
of the boxes from these two grids, the size of the box of the contact forces grid
can be close to or equal to the recommended two and a half times the radius
of the largest particle. While, for the calculation of the self-gravity, a larger
cell size could be used and thus improve the performance of the simulator.

87

88

Bibliography

Abe, S., Altinay, C., Boros, V., Hancock, W., Latham, S., Mora, P., Place, D.,
Petterson, W., Wang, Y., and Weatherley, D. (2009). Esys-particle: Hpc
discrete element modeling software. Open Software License version, 3.

Bagla (2002). Treepm: A code for cosmological n-body simulations. Journal
of Astrophysics and Astronomy , 23(3), 185–196.

Barnes, J. and Hut, P. (1986). A hierarchical O(N log N) force-calculation
algorithm. Nature, 324(6096), 446–449.

Binney, J. and Tremaine, S. (2011). Galactic dynamics . Princeton university
press.

Bode, P., Ostriker, J. P., and Xu, G. (2000). The tree particle-mesh n-body
gravity solver. The Astrophysical Journal Supplement Series , 128(2), 561.

Cochran, W. T., Cooley, J. W., Favin, D. L., Helms, H. D., Kaenel, R. A.,
Lang, W. W., Maling, G. C., Nelson, D. E., Rader, C. M., and Welch, P. D.
(1967). What is the fast fourier transform? Proceedings of the IEEE , 55(10),
1664–1674.

Couchman, H. M. P. (1991). Mesh-refined p3m-a fast adaptive n-body algo-
rithm. The Astrophysical Journal , 368, L23–L26.

Cundall, P. and Strack, O. (1979). A discrete numerical model for granular
assemblies. Geotechnique, 29(1), 47–65.

Frascarelli, D., Nesmachnow, S., and Tancredi, G. (2014). High-performance
computing of self-gravity for small solar system bodies. Computer , 47(9),
34–39.

89

Fujiwara, A., Kawaguchi, J., Yeomans, D., Abe, M., Mukai, T., Okada, T.,
Saito, J., Yano, H., Yoshikawa, M., and Scheeres, D. (2006). The rubble-pile
asteroid itokawa as observed by hayabusa. Science, 312(5778), 1330–1334.

Greengard, L. and Rokhlin, V. (1987). A fast algorithm for particle simula-
tions. Journal of computational physics , 73(2), 325–348.

Harris, A., Fahnestock, E., and Pravec, P. (2009). On the shapes and spins of
“rubble pile” asteroids. Icarus , 199(2), 310–318.

Hockney, R. W. and Eastwood, J. W. (1988). Computer simulation using
particles . CRC Press.

Intel (2017 (accessed July, 2017)). Intel® VTune™ Amplifier
2017 . Available online at https://software.intel.com/en-us/

intel-vtune-amplifier-xe.

Intel (2018 (accessed March, 2018)). Intel Developer Zone - CPU Usage - Met-
ric Description. Available online at https://software.intel.com/en-us/
vtune-amplifier-help-cpu-usage.

Ishiyama, T., Nitadori, K., and Makino, J. (2012). 4.45 pflops astrophysical
n-body simulation on k computer: the gravitational trillion-body problem.
In Proceedings of the International Conference on High Performance Com-
puting, Networking, Storage and Analysis , page 5. IEEE Computer Society
Press.

Khandai, N. and Bagla, J. S. (2009). A modified treepm code. Research in
Astronomy and Astrophysics , 9(8), 861.

Kravtsov, A. V., Klypin, A. A., Khokhlov, and Alexei, M. (1997). Adaptive
refinement tree: a new high-resolution n-body code for cosmological simu-
lations. The Astrophysical Journal Supplement Series , 111(1), 73.

Nesmachnow, S. (2010). Computación científica de alto desempeño en la Fac-
ultad de Ingeniería, Universidad de la República. Revista de la Asociación
de Ingenieros del Uruguay , 61(1), 12–15.

Nesmachnow, S., Frascarelli, D., and Tancredi, G. (2015). A parallel multi-
threading algorithm for self-gravity calculation on agglomerates. In Inter-
national Conference on Supercomputing , pages 311–325. Springer.

90

https://software.intel.com/en-us/intel-vtune-amplifier-xe
https://software.intel.com/en-us/intel-vtune-amplifier-xe
https://software.intel.com/en-us/vtune-amplifier-help-cpu-usage
https://software.intel.com/en-us/vtune-amplifier-help-cpu-usage

Nesmachnow, S., Rocchetti, N., and Tancredi, G. (2019). Large-scale multi-
threading self-gravity simulations for astronomical agglomerates. In 2019
Winter Simulation Conference (WSC), pages 3243–3254. IEEE.

Rocchetti, N., Frascarelli, D., Nesmachnow, S., and Tancredi, G. (2017). Per-
formance improvements of a parallel multithreading self-gravity algorithm.
In Latin American High Performance Computing Conference, pages 291–
306. Springer.

Rocchetti, N., Nesmachnow, S., and Tancredi, G. (2018). Comparison of tree
based strategies for parallel simulation of self-gravity in agglomerates. In
Latin American High Performance Computing Conference, pages 141–156.
Springer.

Rozitis, B., MacLennan, E., and Emery, J. (2014). Cohesive forces prevent
the rotational breakup of rubble-pile asteroid (29075) 1950 DA. Nature,
512(7513), 174–176.

Sánchez, P. and Scheeres, D. (2012). Dem simulation of rotation-induced re-
shaping and disruption of rubble-pile asteroids. Icarus , 218(2), 876–894.

Tancredi, G., Maciel, A., Heredia, L., Richeri, P., and Nesmachno, S. (2012).
Granular physics in low-gravity environments using discrete element method.
Mnras , 420, 3368–3380.

Walker, D. W. and Dongarra, J. J. (1996). Mpi: a standard message passing
interface. Supercomputer , 12, 56–68.

Weatherley, D., V., B., Hancock, W., and Abe, S. (2010). Scaling benchmark
of ESyS-Particle for elastic wave propagation simulations. In IEEE Sixth
International Conference on e-Science, pages 277–283. IEEE.

Xu, G. (1994). A new parallel n-body gravity solver: Tpm. arXiv preprint
astro-ph/9409021 .

91

	Introduction
	Self-gravity calculation and related work
	Calculating the self-gravity
	The Discrete Element Method
	Related work on domain decomposition techniques

	Improvements of a parallel self-gravity algorithm
	A parallel algorithm for self-gravity calculation
	Implementation of the Self-gravity algorithm on ESyS-Particle
	Reducing the execution time of the self-gravity computation
	Profiling the self-gravity calculation
	Implementation on ESyS-Particle and the self-gravity module

	Adapted Barnes-Hut method for self-gravity calculation
	Octal tree structure
	Process of creation of the octal tree
	Implementation of the Barnes and Hut method on ESyS-Particle
	The binary tree
	Increasing the numerical accuracy of the octal tree algorithm

	Description of the experimental setup
	Two agglomerates scenario
	Free falling symmetric cube
	Hardware platform
	Profiling the optimized version of self-gravity calculation

	Experimental evaluation: occupied cells versus octal tree
	Results for the two agglomerates scenario
	Small size instance
	Medium size instance
	Large size instance
	Overall discussion for the two-agglomerate scenario

	Collapsing cube scenario
	Small instance
	Medium instance
	Large instance
	Overall discussion for the collapsing cube scenario

	Numerical accuracy: analysis of the position of the center of mass
	Description of the studies
	Results for the two agglomerate scenario
	Results for the collapsing cube scenario

	Numerical accuracy: analysis of the angular momentum
	Angular momentum and its relevance
	Results for the two agglomerates scenario
	Results for the collapsing cube scenario

	Experimental evaluation: binary tree algorithm and upper tree level mass center calculation
	Performance results of the binary tree algorithm
	Numerical accuracy of the binary tree algorithm: analysis of the center of mass
	Numerical accuracy of the binary tree algorithm: analysis of the angular momentum
	Analysis of the upper level direct calculation of the center of mass

	Conclusions and future work
	Bibliography

