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Abstract

This document presents the development of a statistical HPSG parser for Span-
ish. HPSG is a deep linguistic formalism that combines syntactic and semantic
information in the same representation, and is capable of elegantly modeling
many linguistic phenomena. Our research consists in the following steps: de-
sign of the HPSG grammar, construction of the corpus, implementation of the
parsing algorithms, and evaluation of the parsers performance.

We created a simple yet powerful HPSG grammar for Spanish that models
morphosyntactic information of words, syntactic combinatorial valence, and se-
mantic argument structures in its lexical entries. The grammar uses thirteen
very broad rules for attaching specifiers, complements, modifiers, clitics, rela-
tive clauses and punctuation symbols, and for modeling coordinations. In a
simplification from standard HPSG, the only type of long range dependency we
model is the relative clause that modifies a noun phrase, and we use semantic
role labeling as our semantic representation.

We transformed the Spanish AnCora corpus using a semi-automatic process
and analyzed it using our grammar implementation, creating a Spanish HPSG
corpus of 517,237 words in 17,328 sentences (all of AnCora).

We implemented several statistical parsing algorithms and trained them over
this corpus. The implemented strategies are: a bottom-up baseline using bi-
lexical comparisons or a multilayer perceptron; a CKY approach that uses the
results of a supertagger; and a top-down approach that encodes word sequences
using a LSTM network.

We evaluated the performance of the implemented parsers and compared
them with each other and against other existing Spanish parsers. Our LSTM
top-down approach seems to be the best performing parser over our test data,
obtaining the highest scores (compared to our strategies and also to external
parsers) according to constituency metrics (87.57 unlabeled F1, 82.06 labeled
F1), dependency metrics (91.32 UAS, 88.96 LAS), and SRL (87.68 unlabeled,
80.66 labeled), but we must take in consideration that the comparison against
the external parsers might be noisy due to the post-processing we needed to
do in order to adapt them to our format. We also defined a set of metrics
to evaluate the identification of some particular language phenomena, and the
LSTM top-down parser outperformed the baselines in almost all of these metrics
as well.



Resumen

Este documento presenta el desarrollo de un parser HPSG estad́ıstico para el
español. HPSG es un formalismo lingǘıstico profundo que combina información
sintáctica y semántica en sus representaciones, y es capaz de modelar elegante-
mente una buena cantidad de fenómenos lingǘısticos. Nuestra investigación se
compone de los siguiente pasos: diseño de la gramática HPSG, construcción del
corpus, implementación de los algoritmos de parsing y evaluación de la perfor-
mance de los parsers.

Diseñamos una gramática HPSG para el español simple y a la vez poderosa,
que modela en sus entradas léxicas la información morfosintáctica de las pal-
abras, la valencia combinatoria sintáctica y la estructura argumental semántica.
La gramática utiliza trece reglas genéricas para adjuntar especificadores, com-
plementos, cĺıticos, cláusulas relativas y śımbolos de puntuación, y también
para modelar coordinaciones. Como simplificación de la teoŕıa HPSG estándar,
el único tipo de dependencia de largo alcance que modelamos son las cláusulas
relativas que modifican sintagmas nominales, y utilizamos etiquetado de roles
semánticos como representación semántica.

Transformamos el corpus AnCora en español utilizando un proceso semi-
automático y lo analizamos mediante nuestra implementación de la gramática,
para crear un corpus HPSG en español de 517,237 palabras en 17,328 oraciones
(todo el contenido de AnCora).

Implementamos varios algoritmos de parsing estad́ıstico entrenados sobre
este corpus. En particular, teńıamos como objetivo probar enfoques basados en
redes neuronales. Las estrategias implementadas son: una ĺınea base bottom-up
que utiliza comparaciones bi-léxicas o un perceptrón multicapa; un enfoque tipo
CKY que utiliza los resultados de un supertagger; y un enfoque top-down que
codifica las secuencias de palabras mediante redes tipo LSTM.

Evaluamos la performance de los parsers implementados y los comparamos
entre śı y con un conjunto de parsers existententes para el español. Nuestro
enfoque LSTM top-down parece ser el que tiene mejor desempeño para nuestro
conjunto de test, obteniendo los mejores puntajes (comparado con nuestras es-
trategias y también con parsers externos) en cuanto a métricas de constituyentes
(87.57 F1 no etiquetada, 82.06 F1 etiquetada), métricas de dependencias (91.32
UAS, 88.96 LAS), y SRL (87.68 no etiquetada, 80.66 etiquetada), pero debe-
mos tener en cuenta que la comparación con parsers externos puede ser rui-
dosa debido al postprocesamiento realizado para adaptarlos a nuestro formato.
También definimos un conjunto de métricas para evaluar la identificación de al-
gunos fenómenos particulares del lenguaje, y el parser LSTM top-down obtuvo
mejores resultados que las baselines para casi todas estas métricas.
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Acojo en mi hogar
Palabras que he encontrado

abandonadas en mi palabrera
Examino cada jaula y alĺı
Ladrando vocales y consonantes
Encuentro sucios verbos
Que lloran después de ser

abandonados
Por un sujeto que un d́ıa fue su amo
Y de tan créıdo que era
Prescindió del predicado

Esta misma semana
Han encontrado a un par de adjetivos

transtornados
A tres adverbios muertos de fŕıo
Y a otros tantos de la raza pronombre
Que sueñan en sus jaulas
Con ser la sombra de un niño

(...)

Pero todo es ley de vida

Como un d́ıa me dijo el poeta Halley
Si las palabras se atraen
Que se unan entre ellas
Y a brillar
Que son dos śılabas

El poeta Halley
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Chapter 1

Introduction

Natural Language Processing is an interdisciplinary field that combines linguis-
tics and artificial intelligence, its main intent is to create automatic methods
that could understand or generate human language. This is undoubtedly a very
ambitious objective, and we can say that even with the current state of the
art, machines are not yet able to have a seamless conversation with humans.
Nevertheless, the field advances relentlessly towards that goal, improving the
performance on the tasks already defined and expanding the reach of the field
to tasks that previously could not be solved.

One historical approach to Natural Language Processing [Jurafsky and Mar-
tin, 2009] proposes a possible set of linguistic knowledge that an NLP application
should acquire, in increasing order of complexity:

• Phonetics and Phonology

• Morphology

• Syntax

• Semantics

• Pragmatics

• Discourse

Each of these items could be seen as steps in a pipeline that an NLP ap-
plication would perform: starting from a raw sentence, apply certain analysis
processes to extract linguistic information beginning from the earlier steps that
collect simpler features, so that the later steps could use the features previously
collected to build more complex representations. This pipeline is the backbone
that enables classical approaches to higher order NLP tasks such as automatic
summarization, question answering or machine translation. It is clear that in
such a scenario, improvements in each of the steps lead to further improvements
in downstream tasks. Although this pipeline approach is nowadays gradually
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falling out of favor to more direct approaches like end-to-end systems that do
not necessarily rely on having linguistic knowledge explicitly annotated to solve
a problem, it is still widely used for many tasks, especially for languages with
fewer linguistic resources than English. Besides seeking improvement in NLP
tasks, the analysis of each one of the steps is in itself a very interesting problem
that can shed light on important linguistic questions and, indirectly, give us
insights on human language and the human mind itself.

In the middle of the pipeline we find the stage of syntactic analysis. Syntax
tries to model a language using a set of rules that govern how to build sentences.
These sets of rules are known as grammarsGrammar . Approaches to model natural
language syntax have existed since antiquity (e.g. Pān. ini’s Sanskrit grammar,
the As.t.ādhyāȳi). Modern takes on the subject often try to incorporate linguistic
and even cognitive approaches on both syntax and semantics. The process of
taking a sentence and building a syntactic representation of it is known as
syntactic analysis, and it is generally referred to as parsingParsing . A system that
performs this kind of analysis is referred to as a parserParser .

There are several linguistic formalisms (grammars) that could be used to
represent the syntax of a sentence. Some grammar formalisms are more shallow
and just give surface information on the sentences and how their words inter-
act, while others are deeper and often involve different types of syntactic and
semantic information. One of these deep linguistic formalisms is Head-driven
Phrase Structure Grammar (HPSGHPSG ) [Pollard and Sag, 1994], a rich linguistic
formalism that combines syntactic and semantic information in its analyses and
is able to model many interesting linguistic phenomena. We will focus on this
formalism in this work.

Grammars and parsers can be developed with different intentions in mind.
One approach is to build a grammar that is capable of correctly telling apart if a
sentence is well-formed for a language or not. Such a grammar (and a parser that
uses it) accepts some sequences of words as correct sentences of the language,
and rejects others that might have errors. However, natural language is written
by people, which on the one side are prone to make mistakes, and on the other
hand are very creative so that new terms and expressions are coined everyday.
Given this scenario, there is an approach to grammar development and parsing
that does not strive to asses if a sentence is correct, but tries to infer what is
the most likely syntactic structure a sequence of words could have. In this case,
sentences with small errors (e.g. typos or minor grammatical mistakes) might
still get a good enough analysis that could be used by downstream applications.
These systems rely on statistical knowledge of the language, generally obtained
from a corpusCorpus , a collection of sentences that is used as a representation of the
language. Corpora used for parser development should be large, comprehensive
and varied enough so as to capture the main characteristics of the language we
want to model.
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1.1 Motivation

Historically, English has been the most explored language in NLP. The amount
of data, both annotated and unannotated, that exists for English is not com-
parable to what exists for other languages. Similarly, the state of the art per-
formance for different NLP tasks in English is often much higher than for other
languages. In this regard, HPSG is no exception: there exist fast high perform-
ing parsers for English, but for other languages the research has in some ways
lagged behind. In this work, we will try to further explore the adaptation of the
HPSG deep linguistic formalism to Spanish.

This formalism has been explored for Spanish in the past: [Marimon et al.,
2007] implemented a hand-crafted grammar for Spanish. This hand-crafted
grammar might be a good way of describing the correctly formed sentences in
the language, but in this work we take a rather different approach. Our aim is
to build a statistical parser that could, given a sentence, return the most likely
HPSG representation for that sentence. Because of this, our grammar will try to
be as broad and generic as possible: we are not trying to tell apart if a sentence
is well-formed or not, so the grammar should be able to capture a great number
of sequences of words. In order to do this we need a corpus large enough to let
us train a statistical parser, which we will create based on the information of
an already established Spanish corpus.

It is our hope that this work could be able to narrow, even if very slightly, the
existing gap between NLP capabilities for English and Spanish, and also that it
could help foster the interest in developing and using resources for Spanish and
for rich grammar formalisms.

1.2 Objectives

The objective of this work is to create a statistical HPSG parser for Spanish.
In order to do this, the following milestones have to be completed:

• Define a HPSG grammar for Spanish that covers the language phenomena
we want to address.
We also want to make it flexible enough to be able to model many possible
sentences, as we want to use it in the context of a statistical parser.

• Create a corpus of HPSG annotated sentences using that grammar.
The parser would need to have a large collection of sentences in order to
create good statistical models.

• Develop statistical parsing algorithms based on the information of the
corpus.
We will focus mainly on applying neural network techniques to the problem
of HPSG parsing, which have not yet been widely explored for this task.

• Analyze the performance of the parsing algorithms compared to other
established Spanish baselines.
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1.3 Products of this thesis

During the course of this project we presented some partial results in different
international venues. Sharing the early results of our research with the aca-
demic community gave us relevant feedback and helped us improve our work in
numerous ways.

• “Spanish HPSG Treebank based on the AnCora Corpus” [Chiruzzo and
Wonsever, 2018] was presented in the Eleventh International Conference
on Language Resources and Evaluation (LREC-2018). The paper de-
scribes the HPSG grammar we use and the corpus we built by trans-
forming the Spanish AnCora corpus, which will be described in detail in
chapters 3 and 4.

• “Building a supertagger for Spanish HPSG” [Chiruzzo and Wonsever,
2019a] was published in volume 54 of the Computer Speech & Language
journal. This paper describes some preliminary experiments we carried on
supertagging with our HPSG grammar. The supertaggers developed for
this paper were finally not used in the final parsers, but served as basis
for the developments we will see in section 5.4.

• “Syntactic Analysis and Semantic Role Labeling for Spanish using Neural
Networks” [Chiruzzo and Wonsever, 2019b] was presented as a poster in
the 20th International Conference on Computational Linguistics and In-
telligent Text Processing (CICLing 2019). The paper presents some initial
results of the parsing architecture described in section 5.5.

• “Statistical Deep Parsing for Spanish Using Neural Networks” [Chiruzzo
and Wonsever, 2020] was presented as an oral presentation in the 16th In-
ternational Conference on Parsing Technologies (IWPT 2020), a workshop
of ACL 2020. The paper describes an initial comparison between two of
the parsers we developed and some Spanish baselines. The description of
the parsers and their results are expanded in this work in chapters 5 and
6.

It is also possible to test the parsing strategies we implemented in the web site
parsur.com1. The site lets you parse sentences using the CKY and the LSTM
top-down strategies and provides an interactive visualization of the resulting
HPSG trees.

1.4 Document structure

The rest of this document is structured as follows:
Chapter 2 presents a series of concepts that will be used throughout the

document. It starts by reviewing different types of grammar formalisms, in

1http://parsur.com/
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particular HPSG, as well as parsing algorithms and linguistic resources. Then
it describes important concepts on the field of machine learning and neural
networks. Finally, it shows a review of the state of the art in parsing.

Chapter 3 presents the HPSG grammar adapted to Spanish we use in this
project, introducing the feature structures, rules and principles.

Chapter 4 describes the transformation of the Spanish AnCora corpus into
our HPSG format, the validation of the approach using our HPSG implemen-
tation and finally some statistics on the created corpus.

Chapter 5 introduces the concept of parsing in our grammar in a more formal
way, together with the metrics used to evaluate the results of a parser. Then it
describes the different parsing strategies we implemented and presents an initial
comparison evaluating them against the development corpus.

Chapter 6 shows the actual evaluation of our approaches against the test
corpus. We show the results of our parsers and compare them to other Spanish
parsers in terms of global metrics, speed, and some particular metrics we defined
for capturing interesting language phenomena.

Finally, chapter 7 presents the conclusions of our work and outlines some
ideas that might be interesting to explore in the future.
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Chapter 2

Background

This chapter presents important concepts about parsing and machine learn-
ing that will be used throughout this work. We begin by describing different
grammar formalisms, parsing algorithms and resources, in particular the HPSG
formalism we will be using. Then we present key ideas about machine learning,
neural networks, word embeddings and neural parsing. We finish the chapter
with a review of the state of the art in parsing both for English and Spanish.

2.1 Grammar formalisms

Within the field of Natural Language Processing, the task of parsing implies
transforming a sentence in natural language to a representation in some formal-
ism, usually generating tree structures or graphs. There are several formalisms
that differ in the kind of information they represent, e.g. syntactic or seman-
tic information, and the depth level of representation (surface parsing or deep
parsing).

The two main families of syntactic representations are the ones based on
constituents and the ones based on dependencies. The constituency based for-
malisms generally try to provide an analysis of a sentence in which the words
are grouped in local units called phrases or constituents (some of them with
linguistic foundations). On the other hand, the dependency based represen-
tation frames the analysis as a collection of relations between pairs of words
(bi-lexical relations) named dependencies. In both cases, we say that the result
of the parsing process of a sentence is a parse treeParse Tree of the sentence, although
there will be differences on the types of trees and information provided in each
formalism.

In this work we will focus mainly constituency based grammars and partic-
ularly on deep grammar formalisms whose representations include rich informa-
tion and incorporate both syntactic and semantic information, but we will also
sketch the main characteristics of several other formalisms.
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2.1.1 Context Free Grammars

One of the first formalisms that became widely used is the Context Free Gram-
mar (CFG) formalism. In this type of grammars, a parse tree is a tree where
the leaves represent words and the inner nodes represent phrases containing
syntactical information in the format specified by the grammar.

Formally, a CFG [Jurafsky and Martin, 2014] is a 4-tuple < N,Σ, R, S >
where:

• N is a set of non-terminalNon-terminal symbols. These are used, for example, for
modeling the different types of constituents.

• Σ is a set of terminalTerminal symbols. These symbols are the words or other
tokens used in the modeled language. Σ is the vocabulary.

• R is a set of rulesRule . Each rule has the form A → β, where A ∈ N and
β ∈ (Σ ∪N)∗.

• S is a symbol that belongs to N and is called the start symbol. This is
generally used to indicate which non-terminal represents the sentences of
the grammar.

One very simple example of this type of grammars that could be used for
modeling some Spanish sentences is shown below:

• N = {S, NP, V P, Det, Noun, V erb, Adj}1

• Σ = {la, gata, duerme, negra}

• R = {S → NP V P, NP → Det Noun, NP → Det Noun Adj,
V P → V erb,
Det→ la, Noun→ gata, V erb→ duerme, Adj → negra}

Using this grammar we can analyze the following sentences:

(1) La gata duerme / The cat sleeps

(2) La gata negra duerme / The black cat sleeps

The trees shown in figure 2.1 are the corresponding syntactic analyses given
by this grammar to the sample sentences 1 and 2. Each inner node in the tree
corresponds to the application of a rule from R, where the parent node is the
non-terminal and there is one daughter for each symbol on the right side of the
rule. The leaves are the terminal symbols that correspond to the words of the
sentence.

An important aspect of CFGs is that they can be used both for recognizing
correct sentences in the language or for generating sentences. We say that a CFG
recognizes a sentence if there exists a derivation (i.e. a sequence of applications
of rules) that yields the corresponding sentence.

1In this example we are using the English names for the constituents, e.g., S is a sentence
(oración), NP is a noun phrase (sintagma nominal) and VP is a verb phrase (sintagma verbal).
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Figure 2.1: Syntactic trees using a CFG for samples 1 (a) and 2 (b).

In a CFG used for modeling a natural language, it is often the case that
the non-terminal symbols that immediately precede the terminals represent the
grammatical categories (either parts of speech or, as we will see later on, more
complex categories that extend the parts of speech). This set of non-terminals
that precede the terminals are also called pre-terminalsPre-terminal .

Let us simplify the notation in the following way: Notice that, assuming
all terminals and non-terminals are used in the grammar (so they appear in at
least one rule) and that the start symbol is always S (sentence), we could fully
determine a CFG just by knowing the rules set R. We can separate the set R
in two subsets R = Rg ∪ Rv, where Rg is the set of grammar rules, i.e., rules
that operate over the non-terminals (including pre-terminals); while Rv is the
set of rules that go from pre-terminals to terminals (from categories to words),
defining the vocabulary. The previous grammar could be defined as follows:

• Rg = {S → NP V P, NP → Det Noun, NP → Det Noun Adj,
V P → V erb}

• Rv = {Det→ la, Noun→ gata, V erb→ duerme, Adj → negra}

Using this notation we can start adding more vocabulary or more rules to
the grammar in order to model more sentences of the language. Suppose we
now want to model the following sentences:

(3) El perro duerme / The dog sleeps

(4) El perro negro duerme / The black dog sleeps

(5) Las gatas duermen / The cats sleep

We can do so by adding new items to the vocabulary Rv, leaving Rg un-
changed:

• Rv = {Det→ la|las|el, Noun→ gata|gatas|perro,
V erb→ duerme|duermen, Adj → negra|negro}
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Now sentences 3, 4 and 5 are licensed by our grammar. But on the other
hand, the grammar also generates other sequences of words that are not gram-
matical sentences, such as the following:

(6) * El gata duerme

(7) * El perro negra duerme

(8) * La gata duermen

Natural languages such as English and Spanish present a phenomenon called
agreementAgreement which means that within constituents some of the words must
have matching morphological characteristics (they must agree). For example,
in Spanish the determiner and the adjectives in a noun phrase must agree in
number and gender to the noun; and also the subject of a sentence must agree
in number to the main verb of the sentence. We can see that sentences 6 and 7
violate the noun phrase agreement principle, while 8 violates the subject-verb
agreement principle for Spanish.

One way of fixing this would be creating new non-terminals that help us
determine the behavior of each word further. For example, we could indicate
the number and gender of each word using F (female), M (male), S (singular)
or P (plural) as suffixes for the pre-terminals:

• Rv = {DetFS → la, DetFP → las, DetMS → el,
NounFS → gata, NounFP → gatas, NounMS → perro,
V erbS → duerme, V erbP → duermen,
AdjFS → negra, AdjMS → negro}

This also means we have to change the non-terminals that use these pre-
terminals:

• Rg = {S → NPS V PS , S → NPP V PP ,
NPS → DetFS NounFS , NPP → DetFP NounFP ,
NPS → DetMS NounMS , NPP → DetMP NounMP ,
NPS → DetFS NounFS AdjFS , NPP → DetFP NounFP AdjFP ,
NPS → DetMS NounMS AdjMS , NPP → DetMP NounMP AdjMP ,
V PS → V erbS , V PP → V erbP }

Previously we had only one way of writing a sentence S or a verb phrase V P ,
now there are two of each because we must define S or P versions. Even worse,
previously we had two ways of writing a noun phrase NP , with or without an
adjective, but not we must define four times more rules, because we have FS,
FP, MS or MP versions of this constituent.

So far the sentences we can model with out grammar are very simple, once
we start adding transitive verbs, ditransitive verbs, subject or object control
structures, or many other language phenomena that are interesting to model,
the number of rules starts to grow exponentially. This means that only using
CFGs for natural language becomes quickly an intractable problem.
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Nonetheless, CFG grammars might still be used as a simple way to model
a natural language if we only want to capture some of the phenomena. These
problems could be solved more easily, as we will see later on, using other types of
grammars that work with feature structures and can define constraints between
the features.

Let us see two more examples and how they can be modeled using a CFG:

(9) La gata come el pescado / The cat eats the fish

(10) Juan da pescado a la gata / John gives fish to the cat

So far the only verb we modeled (“duerme” / “sleeps”) had only one argu-
ment, which is the subject. Verbs whose only argument is the subject are called
intransitive verbsIntransitive Verb , but there are other types of verbs that could accept other
types of arguments. Sentence 9 uses the verb “come” (“eats”), which is a tran-
sitive verbTransitive Verb : a verb that requires a subject and a direct object. On the other
hand, sentence 10 uses the verb “da” (“gives”), which is a ditransitive verbDitransitive Verb ,
requiring a subject, a direct object and an indirect object as arguments. These
are not the only types of verbs, as there are verbs that accept only some kinds
of complements, or none of them, or impose different properties over the types
of arguments. The capacity of a verb to select the types of arguments it can be
combined with is called the subcategorization

Sub-
categorization

of the verb, and modeling it is
an important problem when developing a grammar.

One way of modeling these two new sentences in our grammar would be to
add particular rules for the transitive and intransitive verbs (besides the rules
for modeling the rest of the structures and terminals). For example we could
extend the ways we build V P s like the following:

• V P → V erb

• V P → V erb NP

• V P → V erb NP PP

These new rules would allow us to analyze all the previous sentences plus
the new sentences, but adding new rules for each possible subcategorization
might make the grammar grow in an uncontrollable way and lead to a combi-
natorial explosion like the one we saw for the agreement case. Another way of
representing these same three options would be the following:

• V P → V erb

• V P → V P NP

• V P → V P PP

In this case we have a binarizedBinarization version of the previous rules, which is
conceptually simpler. We can easily see that any sentence accepted by the
previous set of rules would also be accepted by these rules. The corresponding
parse trees might be a little deeper. However, it is also true that these new
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rules license more sentences than the previous ones, as one can arbitrarily add
more NP s or PP s to the right of a verb phrase. This might not be a bad
thing, perhaps we want the grammar to be able to model any combination of
complements on the right of a verb, this will depend on the language. We can
see there could be a trade-off between the simplicity of the grammar and its
expressive power.

Binarization can also be applied to other rules, like NP → Det Noun Adj
in order to make them simpler or more flexible (you could add any number of
adjectives to a noun phrase), and it is mandatory for some parsing algorithms
(see section 2.2.1).

2.1.2 Probabilistic Context Free Grammars

Consider the following sample sentences 11 and 12:

(11) La gata de Juan come pescado / John’s cat eats fish

(12) La gata come pescado de noche / The cat eats fish in the night

We could change and extend the grammar we have been using in the following
way to analyze those sentences:

• Rv = {Det→ la, Noun→ gata|pescado|Juan|noche,
V erb→ duerme|come, Adj → negra, Prep→ de}

• Rg = {S → NP V P,
NP → Nom, NP → Det Nom,
Nom→ Noun, Nom→ Noun Adj, Nom→ Noun PP,
V P → V erb, V P → V erb NP, V P → V erb NP PP
PP → Prep NP}

Figure 2.2 shows the analysis for sample 11, but for sample 12 the grammar
allows two possible analyses: either the prepositional phrase “de noche” (“in
the night”) is modifying the verb “come” (“eats”) or it is modifying the noun
“pescado” (“fish”). A speaker of the language would have no problem in iden-
tifying that the appropriate analysis is the first one. However, there is a priori
no way of telling that from the grammar, so we say the sentence isAmbiguity ambiguous
with respect to this grammar.

This particular type of ambiguity is very well known in NLP as a pervasive
problem that is very hard to solve with automatic techniques. Within the NLP
literature this is called thePP-attachment PP-attachment (prepositional phrase attachment)
problem.

One way of dealing with this ambiguity is including some statistical infor-
mation in the grammar so that we can choose the most likely analysis from the
set of possible trees. The Probabilistic Context Free Grammars are a kind of
grammar very similar to CFGs but incorporating this statistical information.
The main difference between a PCFG and a CFG is that it has a probability
defined for each rule. So we change the previous definition of the set R in section
2.1.1 to the following:
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Figure 2.2: Syntactic tree using CFG for sample 11 (a) and two possible analysis
for sample 12 (b) and (c).

• R is a set of rules. Each rule has the form A → β with an associated
probability P (A→ β), where:

– A ∈ N
– β ∈ (Σ ∪N)∗
–
∑
β P (A→ β) = 1
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Rule Prob Rule Prob
S → NP V P 1.0 Det→ la 1.0
NP → Nom 0.5 Noun→ gata 0.25

NP → Det Nom 0.5 Noun→ pescado 0.25
Nom→ Noun 0.33 Noun→ Juan 0.25

Nom→ Noun Adj 0.33 Noun→ noche 0.25
Nom→ Noun PP 0.33 V erb→ duerme 0.5

V P → V erb 0.25 V erb→ come 0.5
V P → V erb NP 0.25 Adj → negra 1.0

V P → V erb NP PP 0.5 Prep→ de 1.0
PP → Prep NP 1.0

Table 2.1: Possible probability assignment for the grammar rules.

As in this formalism we assume the independence between branches of a tree,
the probability of a particular tree for a sentence can be calculated as the prod-
uct of the probabilities of all the rules used in the tree. In a consistent grammar,
the probabilities of all the possible sentences generated by the grammar will add
up to 1.

Continuing with the example, we need to assign probabilities for all the rules,
both the vocabulary rules and the grammar rules. Table 2.1 shows a possible
assignment of probabilities for each rule.

Using these probabilities we might calculate the probabilities for the trees
2.2b and 2.2c in the following way:

P (tree2.2b) = P (S → NP V P )P (NP → Det Nom)P (Nom→ Noun)

P (V P → V erb NP PP )P (NP → Nom)P (Nom→ Noun)

P (PP → Prep NP )P (NP → Nom)P (Nom→ Noun)

P (Det→ la)P (Noun→ gata)P (V erb→ come)

P (Noun→ pescado)P (Prep→ de)P (Noun→ noche)

= 1 · 0.5 · 0.33 · 0.5 · 0.5 · 0.33 · 1 · 0.5 · 0.33 · 1 · 0.25 · 0.5 · 0.25 · 1 · 0.25

= 0.000017547

P (tree2.2c) = P (S → NP V P )P (NP → Det Nom)P (Nom→ Noun)

P (V P → V NP )P (NP → Nom)P (Nom→ Noun)

P (PP → Prep NP )P (NP → Nom)P (Nom→ Noun PP )

P (Det→ la)P (Noun→ gata)P (V erb→ come)

P (Noun→ pescado)P (Prep→ de)P (Noun→ noche)

= 1 · 0.5 · 0.33 · 0.25 · 0.5 · 0.33 · 1 · 0.5 · 0.33 · 1 · 0.25 · 0.5 · 0.25 · 1 · 0.25

= 0.000008774

As we can see, the probability for tree 2.2b is higher than the one for tree
2.2c, which for our example corresponds to the intuition that the preferred tree
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is 2.2b. PCFGs can be used to disambiguate parse trees obtained by a CFG. The
catch in this example is that we defined the probabilities so that the probability
of the verb phrase rule used in the first tree (V P → V erb NP PP ) is higher
than the one used in the second tree (V P → V erb NP ).

Of course, this is a very simple example using arbitrary probabilities. When
the number of rules and words starts to grow, assigning these probabilities by
hand becomes unfeasible. The easiest way to assign probabilities to a PCFG is
to extract them from a treebankTreebank , i.e., a corpus of appropriately labeled trees.
We will discuss treebanks in section 2.4.

The standard PCFGs described so far are not exempt from problems. Con-
sider the following samples:

(13) Maŕıa come arroz con tenedor / Mary eats rice with a fork

(14) Maŕıa come arroz con leche / Mary eats rice pudding

Both examples have the same ambiguity: the prepositional phrases “con
tenedor” or “con leche” might be attached to the verb “come” or to the noun
“arroz”. The particularity of these examples is that the ambiguity cannot be
solved using the rules that correspond to the VP as in the previous exam-
ple, because the correct rule to use in both examples is different. Example 13
should use rule V P → V erb NP PP because “con tenedor” describes an in-
strument associated to the action “come”. However, example 14 should use rule
V P → V erb NP and later on attach “con leche” to the noun “arroz” because
it represents an ingredient that is modifying the food. So the trick of changing
only the probability of the VP rule will not be enough in this case. We could
instead start tinkering with the probabilities of the nouns, but we will probably
run into the same situation when we want to use these nouns in other contexts.

This situation points to a larger problem in this type of PCFGs: as the
probabilities are assigned to rules composed of non-terminals, regardless of the
lexical entries they will be materialized on, they fail to capture the interactions
that might happen between these lexical entries. In this case, the disambiguation
should take into account that “tenedor” could often be used an instrument for
“comer”, while “arroz con leche” is an expression that denotes a type of dish,
and the relationship between these words and other verbs of nouns might not
be as strong.

The way to deal with this in a more expressive way is by usingLexicalized
grammar

lexicalized
grammars, i.e., grammars that pay more attention into modeling the words
(lexical entries) and the interactions between them. There are extensions to
PCFGs that account for lexicalized items, such as the one described in [Collins,
1997], but in this work we will focus on another type of lexicalized grammar that
include specific information into the lexical entries so as to guide the parsing
process, as we will see in the following sections.

17



2.1.3 Dependencies

Dependency grammars are not based on the idea of identifying constituents in
a sentence, but only identifying relations (called dependenciesDependency ) between the
words of the sentence. The dependencies are always determined between pairs
of words, denominated a head

Head
and a dependent

Dependent
, and thus they are called

bi-lexical dependencies. Every word in a sentence has a dependency to another
word (its head), and this dependency is noted as an arc that is labeled with the
name of the relation between the words (e.g. subject, direct object, specifier).
There is one word in the sentence that does not depend on any other word,
which is called the rootRoot of the sentence.

The set of dependencies in a sentence form a directed acyclic graph which is
denominated the dependency treeDependency tree . Formally, a dependency tree [Jurafsky and
Martin, 2014] is a structure G = (V,A) where the set or vertices V corresponds
to the words of the sentence, and the set of arcs A corresponds to the bi-lexical
dependencies in the sentence. These arcs are often labeled with a relation name.
A dependency grammar is defined with the set of labels D that could be used
to label the arcs of a tree.

For example, let us assume that we have a grammar with the following set
of dependencies:

D = {subject, direct object, specifier, modifier}
Sentences 1 through 5 and also 9 and 10 can be modeled in this grammar.

Figure 2.3 shows the dependency trees corresponding to samples 1 (“La gata
duerme”) and 9 (“La gata come el pescado”).

duerme

subject

gata
specifier modifier

la negra

(a)

come
subject direct object

gata

specifier

pescado

specifier

la el

(b)

Figure 2.3: Syntactic trees using dependencies for samples 2 (a) and 9 (b).

However, notice that samples 6 through 8 could also be drawn as graphs
in this dependency format, even if they are ungrammatical. We usually talk
about dependency grammars, but this formalism generally does not provide a
way of accepting or rejecting a sequence as a valid sentence, as CFG and other
grammars do.

In this formalism the relations are established directly between pairs of words
and potentially any sequence can be transformed into a dependency graph. In
this case, the task of deciding if a sequence is properly labeled as a sentence
becomes, instead, the problem of finding the most likely assignment of arcs
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and labels to the set of nodes, a fundamentally statistical problem. The use
of treebanks that indicate which associations are more frequent than others is
crucial for this.

Different implementations of dependency grammars also vary in how they
define headness, i.e. what word should be considered the head of a linguistic
structure. Remember these grammars have no notion of constituents, but often
dependency treebanks are built from the transformation of corpora annotated
in a constituency grammar like CFG. For these conversions, it is important to
define which word inside a constituent should be indicated as the head, and
how the other words relate to it. For example, some head-finding rules [Collins,
2003] for the Penn Treebank (see section 2.4.1) consider that the head of a
prepositional phrase should be the preposition. However, when building the
dependency trees using Universal Dependencies (see section 2.4.3), we would
choose the head to be the content word instead of the function word.

Another important concept in dependency formalisms is the notion of pro-
jectivityProjectivity . A dependency tree is said to be projective if it is possible to draw it
down without crossing arcs, or more formally: if there is an arc from head i to
dependent j, there should be a path from i to k for every k between i and j. If
we take the trees shown in figure 2.3 and draw them so that the words follow
the same order as in the sentence, the resulting trees would be projective, but
consider the following sentence:

(15) Vi un perro ayer que era negro / I saw a dog yesterday that was black

A dependency tree for sentence 15 is shown in figure 2.4. Notice that the
mod arc from 1 to 4 crosses paths with the rel arc from 3 to 5, thus this is a
non-projective dependency tree. Natural languages contain some of these non-
projective structures that are not easy to model. For example, CFG grammars
always generate trees that are projective when converted to dependencies, so a
corpus made by transforming CFG-annotated trees will contain only projective
trees. Furthermore, some dependency parsing algorithms can only find projec-
tive trees.
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Figure 2.4: Non-project dependency analysis for the sentence “Vi un perro ayer
que era negro” (“I saw a dog yesterday that was black”).

19



2.1.4 Head-driven Phrase Structure Grammars

We have seen so far grammars like CFG that focus on modeling the constituents
of a sentence, and lexicalized dependency grammars that focus on modeling the
relations between words without considering constituents. There exist other
types of grammars that, while strongly lexicalized, still focus on modeling the
constituency structure of the sentence. These grammar formalisms are generally
called deep linguistic formalisms and they can deal with a wide range of linguistic
phenomena and also could incorporate both syntactic and semantic information
into their parse trees.

Deep formalisms are strongly lexicalized, which means much of the complex-
ity of the grammars is encoded in the description of its lexical entries. Because
of this, these formalisms often have very few rules and the rules can generally
be applied in a broad range of scenarios, but only when they are licensed by
the lexical entries. Examples of these formalisms include Combinatory Catego-
rial Grammar [Steedman, 1996], Tree Adjoining Grammar [Joshi, 1985], Lexi-
cal Functional Grammar [Dalrymple, 2001] and Head-driven Phrase Structure
Grammar [Pollard and Sag, 1994]. These deep grammars differ in the way they
describe the lexical entries, how they can be combined to form greater units, and
the shape of the structure that represents a parse tree in each grammar. In this
work we will focus on Head-driven Phrase Structure Grammars, see appendix
A for a description of other types of deep grammars.

Head-driven Phrase Structure Grammar (HPSG) is a strongly lexicalized
grammar formalism based on feature structures with a unification operation.
Each lexical entry is represented with a feature structureFeature structure , i.e., an association
of features and values that describes the behavior of the word. Feature struc-
tures can be combined using unificationUnification : a process by which the features of
two feature structures are merged forming a new one containing the features
of both, and goes on recursively unifying the values when the same feature is
found in both structures.

Standard HPSG uses typed feature structuresTyped feature
structure

(TFS) [Carpenter, 1992],
which include an ontology-based type hierarchy definition for all the possible
features and values present in the grammar.

The rules of the grammar and eventually the whole parse trees are also
represented as feature structures. Every rule defines one of its daughters as the
syntactic head of the rule, and there are a series of principlesPrinciple that indicate
the way the daughters features are percolated to the parent structure. The
grammar is head-driven because the principles indicate that, unless explicitly
specified, the parent structure will inherit the features of the daughter marked
as head.

Suppose we want to analyze sample sentence 2 “La gata negra duerme” us-
ing an HPSG grammar. We first need to define the lexical entries, as shown
in figure 2.5. Notice that lexical entries are represented by feature structures
(drawn as attribute-value matrices) and each one of them includes a HEAD fea-
ture. This feature defines the part of speech of the lexical entry together with
its morphological attributes. The VAL feature includes the combinatorial in-
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formation for the words, i.e., how they could be combined with other words.
Words can indicate whether they are expecting a specifier (feature SPEC) or
some complements, or if they are expecting to modify another word (feature
MOD). The expressions written between angled brackets < and > indicate a list
of values, and each one of the values can declare constraints on the types of
elements that can be selected. For example, the adjective “negra” indicates its
modified element must have the part of speech noun.
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Figure 2.5: HPSG lexical entries for “La gata negra duerme”.

Now we need to define some rules for our grammar. For our simple example
we will only need two rules: a rule for attaching a modifier to the right of a head
(head mod), and a rule for attaching a specifier to the left of a head (spec head).
Figure 2.6 shows these rules.

We will base our discussion on the HPSG version presented in [Sag et al.,
2003] which, unlike the original [Pollard and Sag, 1994], uses the same speci-
fier rule for indicating a determiner-noun construction and a subject-verb con-
struction. That is why we only need the spec head rule for representing both
constructions.

Because much of the combinatorial information is encoded in the lexical
entries and not in the rules, there tend to be very few rules in an HPSG grammar
compared to a CFG. These are generally very broad rules, inspired mainly in
X’ theory ([Chomsky, 1970], [Chomsky, 1995]), for example describing the way
to attach a specifier, a modifier or a complement to a head.

Figure 2.6 shows the description of the two rules head mod and spec head.
In a rule definition, we show the daughters of the rule on the left side of the
arrow, and the parent on the right side2, which is the expression that results of
combining the daughters according to this rule. Both spec head and head mod

2Compare this with the CFG rules presented in section 2.1.1, which were written the other
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1 + (H)

expr

VAL

[
SPEC

〈
1

〉]
→

phrase

VAL
[
SPEC 〈〉

]
(a) spec head

(H) 1 +

expr

VAL

[
MOD

〈
1

〉]
→ 1

(b) head mod

Figure 2.6: HPSG rules for attaching a specifier to the left of a head, and for
attaching a modifier to the right of a head.

are binary rules: they take exactly two expressions as daughters. Notice that
the daughter that is the syntactic head in each rule is signaled with a “(H)”
mark.

Figure 2.6a shows that spec head takes an expression on the left, and an-
other expression on its right that declares to be expecting a specifier, the result
of the application of the rule is another expression that will not expect a speci-
fier (hence the empty list for the SPEC feature). An important characteristic of
the formalism is the use of coindexationCoindexation : marking two or more elements in a
structure as being the same (they are unified and point to the same substruc-
ture). This means that in the final tree the head expression will have a pointer
to the expression marked as specifier.

In figure 2.6b we see that mod head takes an element on the left that will
act as head of the construction, and combines it with an expression on its right
that declares to be expecting another element to modify (the feature MOD). The
result will share the same properties as the head, but also after applying the rule
the MOD feature of the right daughter will be coindexed with the left daughter,
thus in the tree the modifier element will have a pointer to its corresponding
modified head.

Notice a difference between the SPEC and MOD features. SPEC is a feature
belonging to a head that declares to be expecting some object as a specifier.
We call this an endocentric feature

Endocentric
feature

, i.e. a feature from a head that points
to a dependent structure outside the head. Contrast this with the MOD feature,
that is defined by the modified element and points back to the head. This is an
example of an exocentric featureExocentric

feature
, i.e. a feature from a dependent that points

to the head of the construction.
Figure 2.7 shows the derivation steps for analyzing sentence 2 “la gata negra

duerme” using our small HPSG grammar. The first step, shown in figure 2.7a, is
combining “gata” and “negra” using the head mod rule. Notice that this leaves
the head “gata” coindexed with the MOD feature of “negra”, and the parent of

way round with the parent on the left. This is only a matter of notation style, as both types
of definitions are analogous.
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Figure 2.7: HPSG derivation for “La gata negra duerme”.

the structure contains the same features as the head daughter, even expecting
the same SPEC as it is coindexed with the daughter’s feature.

The second step, shown in figure 2.7b, combines the result of the first step
with the determiner “la” using the spec head rule. The result will have an
empty value for SPEC, which means the specifier that the daughter was expecting
has been satisfied. When this happens, we say that this valence feature has been
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saturatedSaturated feature in this construction. The tree now indicates the word “la”, and the
SPEC features of both “gata” and its parent expression as coindexed, so the head
“gata” effectively has a pointer to its specifier “la”.

Figure 2.7c shows the last step of this derivation, the result of combining the
previous structure “la gata negra” with the verb “duerme” using the spec head

rule. After this rule application, the SPEC feature of the verb gets saturated, and
“duerme” gets a pointer to its subject “la gata duerme”. The parent expression
is a verb with all its valence features saturated, which is the way a sentence is
defined in this formalism.

Let us revisit the problem of modeling agreement described in section 2.1.1.
Suppose we want to analyze the ungrammatical sentence 6 “el gata duerme”.
We would need the following lexical entry for modeling the word “el”:

word

HEAD


d

AGR

[
NUM s

GEN m

]


It is essentially the same as the one for word “la”, but changing the gender
agreement feature to m (male). HPSG defines the agreement principleAgreement

principle
that

states that, when applying the spec head rule, the AGR features of the head
and the dependent should unify. It we try to apply the spec head rule to “el”
and “gata”, the AGR features of both lexical entries would fail to unify (GEN is m
for “el” but f for “gata”), thus the rule could not be properly applied and the
derivation of the tree would fail.

The same thing would happen if we try to analyze sentence 8 “la gata duer-
men”. In this case the NUM feature corresponding to “duermen” would be p

(plural), while it is s (singular) for “gata”.
Although the original theory proposed for English does not include it, we

could extend the agreement principle and apply it to the head mod rule as well
in order to capture the noun-adjective agreement existing in Spanish. With this
extension, sentence 7 “el perro negra duerme” would also be ruled out as the
head mod rule could not be applied to “perro” and “negra”.

HPSG grammars are also very good at modeling the subcategorization of
verbs, as each verb can be modeled with a lexical entry that specifies exactly
the types of complements and subject it expects and, as we will see, it can also
link this information with a semantic representation.
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2.1.5 Semantic representations

Besides the syntactic representations we have seen so far, there exists particular
interest in finding representations of a sentence that are more closely related to
the meaning of the sentence rather than its surface realization. The study of
these representation is part of the field of computational semantics.

First-order Logic

One of the first ideas for representing the meaning of a sentence is using first-
order logic. First-order logic is a flexible tool that allows to create a meaning
representation of many situations by defining the set of participants and rela-
tions between them. For example, suppose we want to represent the meaning
of the following sentence:

(16) Juan persiguió un ratón / John chased a mouse

One possible representation for this sentence in first-order logic could be the
following:

∃x · raton(x) ∧ persiguio(juan, x)

To make this semantic representation, we must define a few elements of the
reality we are trying to model. In our example we would treat proper nouns (like
“Juan”) as constants in the domain (juan), while common nouns (like “ratón”)
could be seen as unary predicates (raton(x)) so they can take variable values
depending on the intended meaning. The actions or states in a sentence would
also be represented as predicates. For example a transitive verb like “persiguió”
would correspond to a binary predicate persiguio(x, y).

This idea was explored by [Montague, 1970] for English, defining a semantic
expression for each word and grammar rule in the language that consists in a
first-order logic term wrapped into a lambda expression. This allowed for the
combination of words and expressions into more complex terms, finally reaching
the full first-order logic representation of the sentence.

Later on this basic first-order logic representation was made more expressive
by the inclusion of event representations in the form of event variables ([David-
son, 1967; Parsons, 1990]). This means that instead of representing a situation
like “persiguió” as a binary predicate persiguio(x, y), we would create an event
for the “situation of chasing” perseguir(x), and other predicates for indicating
the different participants in the situation and other features like the time of the
action. In our example:

∃e∃x · perseguir(e) ∧ raton(x) ∧ perseguidor(e, juan) ∧ perseguido(e, x) ∧
tiempo pasado(e)

This can be interpreted as: there is a chasing situation e (perseguir(e))
in which the chaser is “Juan” (perseguidor(e, juan)), the chased thing is the
mouse (perseguido(x)), and the action occurs in the past (tiempo pasado(e)).
The advantage of this representation over the previous one is that it is flexible
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with respect to the different arguments and modifiers that could be used to
change the modeled situation, as they could be added as different terms that
predicate over the event variable e.

An important aspect associated with semantic representations like first-order
logic and others is the notion of compositional semanticsCompositional

semantics
: the meaning repre-

sentation of a larger unit can be built by combining the meaning representations
of its parts. This fits nicely with the notion of compositionality of the language
and trying to link the semantics representation to one of the syntactic for-
malisms, for example the lambda expressions used for building first-order logic
predicates can be attached to terminals and non-terminals in a CFG grammar
so as to let the syntax guide the semantic analysis. This is not always possible,
however, because on many occasions the language presents non-compositional
semantics

Non-
compositional

semantics

, i.e. when the meaning of an expression cannot be built up from the
meaning of its parts. This happens, for example, in idioms like “dar una mano”
(“lend a hand”) which literally means “ayudar” (“to help”), but its meaning
cannot be built up from the literal meaning of the words.

Semantic Roles

The notion outlined in the previous section about modeling the meaning of a
sentence as a set of events with their participants and establishing the relations
between them leads us to another popular format for representing meaning: the
use of semantic roles. Semantic rolesSemantic Role are a way of describing the relation
that different constituents of a sentence might have with respect to a predicate
(mainly verbs, but there could be other types of predicates). For example in
sentence 16, we could say that “Juan” is the agentAgent (i.e. the participant that
causes the action) of “perseguir”, while “un ratón” is the themeTheme (i.e. the
participant that suffers the effects of the action). There is a rather large set
of standard roles that could be used, including the aforementioned agent and
theme, but also instrument, force, source, destination, etc.

Different theories might work with different sets of possible semantic roles,
so there have been some attempts to unify these theories into a consistent
set of categories. One of these approaches is PropBank (short for Proposition
Bank) [Kingsbury and Palmer, 2002], a project for annotating all the predicate-
argument structures found in the Penn Treebank (see section 2.4.1). In order to
create this corpus, they had to build a unified annotation framework for labeling
the different roles in a consistent way. This annotation style [Bonial et al., 2010]
has been extended to many languages other than English and has become a de
facto standard in semantic roles annotation.

In PropBank notation, they define the semantic roles associated to a predi-
cate using numbered labels like arg0 though arg4 and some special labels like
argM (although some implementations might use a few other labels). The mean-
ings of some labels are fixed, but others might change from verb to verb:

• The label arg0 is called the proto-agent, and is reserved for denoting the
predicate argument that causes the action, which in other theories might
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involve the agent, force, or other types of roles.

• The label arg1 is called the proto-patient, and is reserved for denoting the
predicate argument that is affected by the action, which in other theories
might involver the theme, patient, or other types of roles.

• The rest of the labels depend on the predicate. In general arg2 will be
used for roles like instrument, benefactive or attribute, while arg3

could be used for start-point and arg4 for end-point, but this might
vary for each predicate.

• The label argM is used for denoting elements that are not arguments se-
lected by the predicate (they are adjuncts or modifiers), and could be
further subcategorized marking the type of modifier (i.e. argM-LOC or
argM-TMP).

In our example, the subject is the agent and the direct object is the theme,
so in PropBank notation it would look like the following:

[arg0Juan] persiguióARG [arg1un ratón]

Semantic roles are useful for defining a semantic representation that is invari-
able with respect to the syntactic functions of the constituents. For example,
consider the passive voice version of sentence 16:

(17) Un ratón fue persiguido por Juan / A mouse was chased by Juan

In sentence 17, the subject and the direct object are switched with respect
to sentence 16, but the semantic roles assigned to the participants would be the
same:

[arg1Un ratón] fue persiguidoARG [arg0por Juan]

The task of assigning the correct semantic roles to a sentence is denominated
Semantic Role Labeling

Semantic Role
Labeling

. It is a well studied problem in NLP and has been
the subject of several competitions, for example [Carreras and Màrquez, 2005]
and [Hajič et al., 2009].

The semantic roles representation has the advantage of being very simple.
Although it is not as powerful as other semantic representations, it is often used
as a base for them, as we will see next.

Abstract Meaning Representation

Abstract Meaning Representation [Banarescu et al., 2013] is a formalism that
models a sentence into a graph of participants and actions that relates the
participants. It uses the PropBank notation for establishing the relations be-
tween predicates and arguments, and it improves over the simple PropBank
representation in that the participants can be reused as arguments for differ-
ent predicates in the graph, and there are more expressive representations for
relative and subordinate sentences.

27



For example, sentence 16 would be modeled as shown in figure 2.8. Notice
that all content words in the sentence, the participants and the action, are
represented by nodes in the graph, but not the function words. There is an arc
from the action to every participant labeled with the semantic role.

(p / perseguir-01

:ARG0 (j / juan)

:ARG1 (r / ratón)) perseguir-01

juan

ratóninstance

instance

instancearg0

arg1

Figure 2.8: AMR text and graph representation for “Juan persiguió un ratón”.

Let us consider a slightly more complex sentences that uses a modal verb:

(18) Maŕıa quiere comer sushi / Mary wants to eat sushi

Sentence 18 would be modeled as shown in figure 2.9. In this case, the node
that represents “Maŕıa” would be reused as arg0 of both actions querer-01

and comer-01, but the arg1 of querer-01 would be set as the action comer-01.

(q / querer-01

:ARG0 (m / marı́a)

:ARG1 (c / comer-01

:ARG0 m

:ARG1 (s / sushi)))
querer-01

maria

comer-01

sushi

instance

instance

instance

instance

arg0

arg1

arg0
arg1

Figure 2.9: AMR text and graph representation for “Maŕıa quiere comer sushi”.

One thing left out in the representation of AMR is the use of universal quan-
tifiers like “todo” (“all”), which have their own sets of modeling complexities
in natural language, as we will see in the following section.

Minimal Recursion Semantics

Minimal Recursion Semantics [Copestake et al., 2005] is a semantics representa-
tion formalism that, amongst other things, tries to model the underspecification
present in some natural language constructions. Consider the following sample
sentence:

(19) Todos los niños leen un libro / Every kid reads a book
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If we are using first-order logic as a semantic representation, we would see
that there are two possible interpretations of this sentence as logic expressions:

∃x · libro(x) ∧ ∀y · niño(y)→ lee(y, x)

Which means, there is a book which all the kids read (they all read the same
book). The other possible interpretation is:

∀y · niño(x)→ ∃x · libro(y) ∧ lee(y, x)

In this case it means each kid reads a book, and all the books are potentially
different for each kid. This is an example of quantifier scope ambiguityQuantifier scope

ambiguity
,

because it is introduced by the interaction between the universal (“todos”) and
existential (“un”) quantifiers in the sentence. Notice that the both the Spanish
and English versions of this sentence present the same ambiguity, and it also
happens with other natural languages. This kind of ambiguity is one of the
language features that MRS tries to model: in this case the representation will
indicate that the precedence of one quantifier over the other is underspecified,
so without further information from the text it will remain ambiguous.

The representation of this sentence in MRS would include a set of fixed
expressions for h1 : niño(x), h2 : libro(y) and h3 : lee(y, x), and a set of
expressions with variable handles for the quantifiers h4 : todo(x, h1, h6) and
h5 : un(y, h2, h7). This way, the quantifier h4 : todo is applied to h1 : niño, the
quantifier h5 : un is applied to h2 : libro, but the precedence between h4 and
h5 remains underspecified with handles h6 and h7. In order to specify one of
the two possible meanings, some constraints should be added to these handles,
so that either h6 = h5 ∧ h5 = h3 or h6 = h3 ∧ h5 = h4.

MRS is the semantic representation used in many HPSG frameworks like
DELPH-IN, which we will see later on, as it can be implemented as a series of
constraints combined using unification during the parsing process.
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2.2 Parsing algorithms

As mentioned before, the process of transforming a sentence into its represen-
tation in a grammar formalism is called parsing. In this section we will review
one of the most important classic parsing algorithms used for CFG called CKY,
and present a technique to use this parsing algorithm in the context of deep
grammars. See appendix B for a description of other classic parsing algorithms
for CFG and dependencies that, like CKY, could be used as a basis for other
more complex algorithms we will discuss later.

2.2.1 Cocke-Kasami-Younger

The Cocke-Kasami-Younger (CKY) algorithm [Kasami, 1966; Younger, 1967;
Cocke, 1969] is a dynamic programming algorithm that can be used to recognize
if a sentence is generated by a grammar in polynomial time. The algorithm
works with grammars in the Chomsky Normal Form (CNF). This means all the
rules in the grammar must be either binary non-terminal to non-terminal rules
(A→ B,C) or unary non-terminal to terminal rules (A→ w) (the pre-terminal
rules).

Given this setting, the CKY parser will take a sentence (sequence of tokens)
of length n and iteratively fill the upper triangular part of a square matrix M
of size n · n, in the following way:

• The first step fills the cells in the diagonal of the matrix (cells M [i, i])
with the pre-terminal rules for all the tokens.

• At each following step, an upper diagonal line will be filled in the matrix.
Each cell M [i, j] will contain the possible ways of combining the tokens t
from the sentence so that i ≤ t, t ≤ j, like this:

– Analyze M [i, k] and M [k + 1, j] for 1 ≤ k ≤ j − 1

∀{A→ α} ∈M [i, k],∀{B → β} ∈M [k + 1, j]

if ∃{X → AB}, add {X → AB} to M [i, j]

• After the algorithm ends, the sentence will be recognized if a rule with
the symbol S (a sentence) is found in the cell < 1, n >, i.e. the top-right
cell of the matrix.

Let us walk through this algorithm using sample sentence 9 “La gata come
el pescado” (“The cat eats the fish”) and the following grammar:

• Rv = {D → la|el, N → gata|pescado, V → come}

• Rg = {S → NP V P, NP → D N, V P → V NP}

This grammar is very simple and is already in CNF, but it will help us
illustrate how the algorithm works. First fill the diagonal with the pre-terminal
rules according to the sentence tokens:
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D → la

N → gata

V → come

D → el

N → pescado

In order to fill the next upper diagonal, we start by analyzing cell M [1, 2].
The objects in this cell should be composed of elements from M [1, 1] and M [2, 2],
which means we should combine D, and N . As there is a rule NP → D N in the
grammar, we add this rule to the cell. We will also leave a mark that indicates
which cells participated in this rule application.

The same happens for cell M [4, 5], in this case applying NP → D N to
the content of cells M [4, 4] and M [5, 5]. The other cells M [2, 3] and M [3, 4] do
not have elements that can be combined (there are no rules in this grammar to
combine N V or V D). The matrix after this step looks as follows:

D → la NP → D N
[1, 1] : [2, 2]
N → gata

V → come

D → el NP → D N
[4, 4] : [5, 5]

N → pescado

For the following diagonal, the algorithm will look first at cell M [1, 3], and for
this cell it will try to combine the elements in the cells M [1, 1] with M [2, 3] and
M [1, 2] withM [3, 3]. AsM [2, 3] andM [1, 2] are empty, no suitable combinations
will be found. The same will happen when analyzing cell M [2, 4]. However,
when analyzing cell M [3, 5], the algorithm will find that V from M [3, 3] can
be combined with NP from M [4, 5] using rule V P → V NP , thus this rule
application is added to M [3, 5]. The matrix now looks as follows:
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D → la NP → D N
[1, 1] : [2, 2]
N → gata

V → come V P → V NP
[3, 3] : [4, 5]

D → el NP → D N
[4, 4] : [5, 5]
N → pescado

The next diagonal will not add any new combinations of elements. First it
will look at cell M [1, 4], where there are three possible combinations of cells to
consider: M [1, 1] with M [2, 4], M [1, 2] with M [3, 4] and M [1, 3] with M [4, 4].
There are no suitable elements to combine in those cells, neither in the cells
considered for M [2, 5], so the matrix will remain the same as in the previous
step:

D → la NP → D N
[1, 1] : [2, 2]
N → gata

V → come V P → V NP
[3, 3] : [4, 5]

D → el NP → D N
[4, 4] : [5, 5]
N → pescado

Finally, the last step will only look at one cell M [1, 5] and try to fill it
with combinations of four different pairs of cells: M [1, 1] with M [2, 5], M [1, 2]
with M [3, 5], M [1, 3] with M [4, 5] and M [1, 4] with M [5, 5]. The only pair with
suitable elements to combine is M [1, 2] (NP ) and M [3, 5] (V P ), so the rule
S → NP V P is added to this cell.

D → la NP → D N S → NP V P
[1, 1] : [2, 2] [1, 2] : [3, 5]
N → gata

V → come V P → V NP
[3, 3] : [4, 5]

D → el NP → D N
[4, 4] : [5, 5]
N → pescado

After the algorithm finished filling up the matrix, there is a rule application
with left side S in the cell M [1, 5], which means the entire sequence could be
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recognized as a sentence. Furthermore, if we keep pointers to the different rule
applications that were used in each step, we can build the corresponding parse
tree for the sentence.

CKY is also good for handling possible ambiguities in the input. Suppose
we are trying to parse sample sentence 12 “La gata come pescado de noche”, let
us focus on the application of the algorithm to the subsequence “come pescado
de noche” (“eats fish in the night”) using the following grammar extract:

• Rv = {. . . N → pescado|noche, V → come, P → de}

• Rg = {. . . NP → N PP, PP → P N
V P → V N, V P → V NP, V P → V P PP}

We first fill the diagonal in the matrix with the pre-terminals:

V → come

N → pescado

P → de

N → noche

In the following step, cells M [1, 1] and M [2, 2] are combined using the V P →
V N rule; and cells M [3, 3] and M [4, 4] are combined using the PP → P N
rule.

V → come V P → V N
[1, 1] : [2, 2]

N → pescado

P → de PP → P N
[3, 3] : [4, 4]
N → noche

The next step will combine cells M [2, 2] “pescado” and M [3, 4] “de noche”
to form a possible noun phrase.

V → come V P → V N
[1, 1] : [2, 2]
N → pescado NP → N PP

[2, 2] : [3, 4]
P → de PP → P N

[3, 3] : [4, 4]
N → noche
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When getting to the final step, there will now be two ways of generating
the V P : first it is possible to combine M [1, 2] “come pescado” with M [3, 4]
“de noche”; the other option is combining M [1, 1] “come” with the NP created
in the previous step M [2, 4] “pescado de noche”. For a human, the preferred
option would certainly be the first one, but the ambiguity of this sequence with
respect to this grammar is real, and CKY is able to capture all possible analysis
and pack them into its matrix, as shown below:

V → come V P → V N V P → V P PP [1, 2] : [3, 4]

[1, 1] : [2, 2] V P → V NP [1, 1] : [2, 4]

N → pescado NP → N PP
[2, 2] : [3, 4]

P → de PP → P N
[3, 3] : [4, 4]
N → noche

When the length of the sentence and the complexity of the grammar grow,
there will probably be many possible interpretations for a single sentence, and
not all of them would be equally likely. One way of dealing with this would
be using a PCFG (see section 2.1.2). It is possible to include the calculation
of probabilities at each step during the CKY algorithm to in the end we can
get each tree associated with its probability. As well as this, when the number
of possible parse trees becomes too large, it is also possible to use a pruning
strategy based on the partial probabilities found for the subtrees in each cell.
This strategy is not perfect, as in some cases it is possible that the most likely
tree might not be found, but it is generally a good strategy for speeding up the
execution time of CKY when the sequences are too ambiguous and still getting
trees with high probability.

CKY can also be used with slight adaptations for parsing using grammar
formalisms different than CFG, such as CCG or HPSG, if we make sure that
the possible rules to apply are always binary.

2.2.2 Supertagging

Deep formalisms like CCG, TAG or HPSG are all highly lexicalized, which
means much of the combinatorial information that would be used during the
parsing process is encoded in the categories associated to the words. This has
the consequence that in general there will be multiple possible categories that
a word could have, because the same word in different contexts might behave
differently. Trying with hundreds of different categories for each word in a
sentence renders the parsing problem intractable, so having the correct category
for each word is essential for these deep grammars.

Because of this, one very common approach to parsing with deep grammars
involves the following steps:
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• Find the most likely categories for each word.

• Use a parsing algorithm like CKY or chart parsing to find the best tree
given those categories.

The first step is calledSupertagging supertagging. It is an extension of the task of part of
speech tagging, but instead of returning a simple category like a part of speech,
it returns a fine grained label that contains more information. Using these fine
grained labels, calledSupertag supertags, one might reconstruct the appropriate lexical
entry for each word that will be used in the rest of the analysis. For example,
consider we want to parse sample sentence 2 into HPSG format:

la gata negra duerme

First we need to use a supertagger to guess the appropriate lexical entries
for each word. The supertagger would return a supertag for each word in the
sentence, like the following:

la/d-x gata/n-sd-x negra/a-mn-x duerme/v-sn-x

The supertag format used in this example is the one we are going to use in
this work. It will be defined in detail in section 5.4, but for now we can say
that each tag indicates the part of speech followed by a description of the HPSG
features that the lexical entry has. For example, the tag for “negra”, a-mn-x,
starts with “a” meaning that it is an adjective, followed by “mn” which means
that the lexical entry should have a MOD feature expecting something of type n

(like a noun phrase). From these supertags, it is easy to build the corresponding
lexical entries like the ones shown in figure 2.5. Then it is possible to use an
algorithm like CKY to find the correct tree.

Creating a supertagger often involves using machine learning to train a sys-
tem from a corpus of examples. The task of supertagging was initially pro-
posed in the context of lexicalized TAG parsing [Joshi and Srinivas, 1994; Kasai
et al., 2017; Friedman et al., 2017] but has later on been applied for other
deep formalisms like CCG [Curran et al., 2006; Lewis and Steedman, 2014] or
HPSG [Matsuzaki et al., 2007; Dridan, 2009; Zhang et al., 2010]. The main aim
of the process is to limit the combinatorial explosion that happens in this kind
of grammars due to the high ambiguity of the lexical entries.

Supertagging is not a parsing algorithm in itself, but depending on the level
of detail contained in the supertags, the rest of the parsing process might be
simplified or even made trivial. Because of this the process has sometimes been
referred to as “almost parsing” [Joshi and Srinivas, 1994].
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2.3 HPSG implementations

Originally proposed for English [Pollard and Sag, 1994] but with possible ex-
tensions to other languages, HPSG has had some variants and differences in
implementations throughout the years. The main characteristics of the gram-
mar shared by all implementations include the use of feature structures for
modeling words, phrases and whole sentences, but the concrete set of features
used varies from implementation to implementation.

For example, in the original grammar from Pollard and Sag [Pollard and
Sag, 1994], there were different valence features for indicating the subject of a
verb and the determiner attached to a noun in a noun phrase. This was changed
in future revisions [Sag et al., 2003] so as to use an approach more similar to
X’ [Chomsky, 1995], in which both the subject of a sentence and the determiner
of a noun phrase are considered the specifiers of their corresponding phrases.
Some of the HPSG implementations are more closely based on one model or the
other, and tend to use the features defined in that model. These differences are
accentuated when creating different grammars for languages other than English,
because the languages vary on agreement, word order, use of affixes, and many
other characteristics. There are also differences in the way the implementations
represent semantics.

We will explain some concepts of the two more widely used implementations
of HPSG grammars: the DELPH-IN framework and the Enju family of parsers.
We will discuss characteristics of these two implementations for English, and
one example for Spanish, although this does not mean to be an exhaustive rep-
resentation of all HPSG implementations. In our case, our own implementation
of HPSG will share elements with both (see chapter 3), but also some adapta-
tions to the language and some simplifications derived from the resources we
used to build it.

2.3.1 DELPH-IN

DELPH-IN3 (short for Deep Linguistic Processing with HPSG Iniciative) is an
initiative to create HPSG grammars for different languages, so that the created
grammars share certain characteristics that allow some level of interoperabil-
ity. This interoperability could be used, for example, to support syntactic and
semantic based machine translation between the participant languages [Bond
et al., 2005].

One of the projects associated to DELPH-IN is the LinGO Grammar Ma-
trix [Bender et al., 2002], a framework for creating HPSG grammars that has
been used for creating Norwegian, Korean, Portuguese and Spanish versions of
the grammar, amongst other languages. DELPH-IN also includes the Linguistic
Knowledge Builder (LKB) system [Copestake et al., 1999; Copestake, 2002], an
environment for implementing constraint-based grammars that is widely used in
the development of HPSG grammars. The parsing process used by this system

3http://www.delph-in.net/wiki/index.php/Home
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is based on a chart parser (see appendix B.1). Besides LKB, DELPH-IN also
includes another system for working with unification grammars denominated
PET [Callmeier, 2000], which is based on the same language as LKB and in-
cludes a re-ranking module for classifying the possible parse results according
to a statistical model selection.

There exists another more modern parser that can be used with the same
language for creating grammars in LKB which is the Answer Constraint Engine
(ACE parser) [Packard, 2013]. It includes built-in support for part of speech
tagging and unknown words handling, and it is reported to run up to fifteen
times faster than the LKB parser (on par and sometimes exceeding the PET
parser performance).

The de facto standard implementations of English and Spanish HPSG gram-
mars are built in the DELPH-IN framework. The reference implementation
for English HPSG is the English Resource Grammar (ERG)4 [Copestake and
Flickinger, 2000], a grammar that was manually designed with the aim of pro-
viding very detailed and rich analysis for complex sentences. All feature struc-
tures, grammar rules, type hierarchy and lexical entries were hand crafted. An
example of a valid sentence that can be analyzed using this grammar is:

So if we can not make it on Thursday afternoon, we will have to, you know,
look for something.

With this example, the tool would yield 92 possible analyses for the sentence.
The grammar also tries to be very precise in letting out ungrammatical sentences
like the following:

* How does Wednesday the twenty fourth after one o’clock?

If was first applied in the machine translation project Verbmobil for trans-
lating between English, German and Japanese. The use of MRS for semantic
representation was one of the strengths to use in this translation project ori-
ented to semantic transfer. For that first project the first 5,000 lexical entries
were hand written, but later on the project has grown in size and coverage of
the language (see section 2.4.4).

The ERG follows closely the HPSG description found in [Sag et al., 2003].
It also uses the proposed semantic representation, minimal recursion semantics,
with the following characteristics:

• Each word marked as predicate defines a set of semantic arguments as
features.

• Compositional semantics: the parsing process creates a list of semantic
restrictions by concatenating the restrictions of each predicate and their
associated arguments.

• There is a feature that describes the semantic mode of a predicate: propo-
sition, question, directive, reference.

• It takes into account semantics of quantifiers and their scopes.
4http://www.delph-in.net/erg/
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2.3.2 Spanish Resource Grammar

The Spanish implementation of HPSG contained in the LinGO framework is
denominated the Spanish Resource Grammar (SRG) [Marimon, 2010]. It is
to date the most complete HPSG grammar developed for Spanish, containing
more than 50,000 lexical entries, 64 lexical rules and 191 combinatorial rules for
forming phrases. The rules were developed manually and they used manual and
semi-automatic processes to build the lexicon [Marimon et al., 2007]. As part
of the DELPH-IN initiative and the LinGO matrix, SRG also uses the MRS
semantics representation. The parse trees obtained using SRG are very rich
trees that support many of the linguistic constructions provided by the HPSG
theory.

Due to the use of the LKB parser, the original version of this grammar did
not include statistical analysis support, for example for tree disambiguation.
However, later on a disambiguation post-processing was added [Marimon et al.,
2014b], created with an iterative process together with the construction of the
IULA corpus (see section 2.4.5).

In this work we focus on a different approach for building a Spanish HPSG
grammar: beginning with an annotated corpus, and using this information to
extract the lexical entries and perform a statistical modeling of the grammar
rules and lexical entries. This approach might be more flexible, but we must
take into account that it will rely strongly on the content of the original corpus
and how well it represents the language.

2.3.3 Enju

The grammar development strategy we follow in this work is inspired by the Enju
system5 [Ninomiya et al., 2006], a statistical HPSG parser with high coverage for
the English language. Enju is a high performance parser that also successfully
resolves some complex linguistic phenomena like raising verbs and control verbs,
and also has some success at analyzing coordinated phrases. It also has versions
for Japanese and Chinese.

For building this parser, they followed a radically different approach than
the one used for the ERG. Instead of manually crafting the grammar rules and
lexical entries, they created an HPSG corpus based on the Penn Treebank corpus
(see section 2.4.1). As the syntactic annotations of this corpus are not directly
comaptible with an HPSG grammar, they implemented a conversion process
that adapts the Penn Treebank rules to a format similar to HPSG [Miyao et al.,
2005]. Then they used the resulting corpus to build the lexical entries and
extract the rule application probabilities.

The Enju framework includes two parsers:

• The eponymous Enju parser first uses a supertagger to obtain the most
likely lexical entries for the words in a sentence and applies a statistical
CKY algorithm (see section 2.2.1) with these lexical entries to obtain the

5https://mynlp.is.s.u-tokyo.ac.jp/enju/index.html
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most likely parse tree [Miyao and Tsujii, 2005]. This process returns the
parse trees with high accuracy, although it could be a little slower than
the other parser (around 500 ms per sentence).

• The Mogura parser uses the same supertagger as Enju, but it only keeps
the most likely entry for each word and uses a shift-reduce parser (see
appendix B.2) for building the final tree [Matsuzaki et al., 2007]. This
process is much faster (around 50 ms per sentence) but in some cases the
analyses might not be the best possible.

The supertagger built for Enju [Zhang et al., 2010], and used by both parsers
Enju and Mogura, uses a CFG that approximates the Enju HPSG grammar.
This CFG allows to quickly discard invalid analyses, information that is incor-
porated during the supertagger training in order to improve its precision. This
supertagger achieves an accuracy of 93.98%.

Enju does not use the LKB platform for working with feature structures like
the grammars supported by DELPH-IN do. Instead, they developed their own
language called LiLFeS [Takaki et al., 1998]. LiLFeS is a programming language
based on the logic programming paradigm where the fundamental data type is
the typed feature structure (TFS).

Unlike the English Resource Grammar, the grammar used by the Enju parser
incorporates some more elements of the HPSG version in [Pollard and Sag,
1994]. Their approach for semantics is also different than DELPH-IN as the
representation they use is more akin to standard semantic role labeling. Instead
of modeling semantics using MRS, they just include features for modeling the
semantic roles in the PropBank notation [Bonial et al., 2010]. This is a simpler
approach that lacks the compositional restrictions and more complex modeling
found in MRS.

Enju’s approach of transforming a constituency treebank into HPSG nota-
tion and use this conversion for training a parser was also followed more recently
in the work of [Zhou and Zhao, 2019], which combined the constituency and de-
pendency versions of the Penn Treebank to infer HPSG annotations. They were
also inspired by the original Enju grammar but decided to use their own trans-
formation of the corpus. The parser they built obtains very good performance
over the Penn Treebank (see section 2.7).
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2.4 Treebanks

Treebanks are collections of sentences annotated with syntactic information in
some formalism. They are an essential component for parser development and
for statistical analysis. Treebanks differ in their language, size, and the formal-
ism they are annotated in.

2.4.1 Penn Treebank

The Penn Treebank [Marcus et al., 1993] is a corpus of English language sen-
tences of about 4.5 million words. It contains texts from different sources, each
section annotated with different types of annotations including parts of speech,
parse trees, predicate-argument structure, or speech disfluencies [Taylor et al.,
2003]. This corpus is widely used for statistical parser development because it
contains a large part annotated with syntactical annotations consistent with a
CFG-style grammar. This section consists in articles from the Wall Street Jour-
nal (WSJ) and comprises 25 sections, where sections 0-18 (about 910K words)
are generally used for training, 19-21 (around 130K words) for development and
22-24 (around 130K words) for testing purposes.

As the syntactic trees present in the Penn Treebank include generally rather
flat structures (called skeletal parses), the CFG induced by these trees contains
a great number of rules. There are many rules for each non-terminal, and some
of them might be very long. For example, there are 4,500 rules for VPs, and
the whole WSJ section contains 17,500 CFG-style rules [Jurafsky and Martin,
2014].

Figure 2.10 contains an extract of one sentence from the Penn Treebank
annotated in its syntactic format. The full sentence without markup reads: “Mr.
Wathen, who started his career as an Air Force investigator and worked as a
security officer for several large companies, built his California Plant Protection
from a tiny mom-and-pop security patrol firm here in the San Fernando Valley.”
Notice that even for this sentence there are already twelve different ways of
writing a NP :

• NP → NNP NNP

• NP → -NONE-

• NP → PRP$ NN

• NP → DT NNP NNP NN

• NP → NP PP

• NP → DT NN NN

• NP → JJ JJ NNS

• NP → NP , SBAR ,
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( (S

(NP-SBJ

(NP (NNP Mr.) (NNP Wathen) )

(, ,)

(SBAR

(WHNP-14 (WP who) )

(S

(NP-SBJ (-NONE- *T*-14) )

(VP

(VP (VBD started)

(NP

(NP (PRP$ his) (NN career) )

(PP (IN as)

(NP (DT an) (NNP Air) (NNP Force) (NN investigator) ))))

(CC and)

(VP (VBD worked)

(PP-CLR (IN as)

(NP (DT a) (NN security) (NN officer) ))

(PP-CLR (IN for)

(NP (JJ several) (JJ large) (NNS companies) ))))))

(, ,) )

(VP (VBD built)

(NP (PRP$ his) (NNP California) (NNP Plant) (NNP Protection) )

(PP-CLR (IN from)

(NP

(NP (DT a) (JJ tiny) (JJ mom-and-pop) (NN security) (NN patrol) (NN firm) )

(ADVP-LOC (RB here)

(PP (IN in)

(NP (DT the) (NNP San) (NNP Fernando) (NNP Valley) ))))))

(. .) ))

Figure 2.10: Extract from the WSJ section of the Penn Treebank.

• NP → PRP$ NNP NNP NNP

• NP → DT JJ JJ NN NN NN

• NP → DT NNP NNP NNP

• NP → NP ADV P

Penn Treebank includes some marks after the grammar categories for indi-
cating attributes about the syntactic structure. For example, some of the NP s
are marked as -SBJ , indicating they are the subjects inside their respective
clauses.

It also includes some discontinuity markers, for example the subject of the
relative sentence “started his career as an Air Force investigator and worked
as a security officer for several large companies” is marked as -14, which is
coindexed with the previous WHNP “who”.

This information is very useful for the development of deep grammars. For
example [Miyao et al., 2005] and [Zhou and Zhao, 2019] use a rule-based trans-
formation process for converting this corpus into an HPSG compatible format,
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and it has also been used for CCG grammar development [Hockenmaier and
Steedman, 2007].

2.4.2 AnCora

AnCora [Taulé et al., 2008] is a corpus of Spanish and Catalan texts of ap-
proximately 500,000 words. It contains 17,000 sentences in around 1,600 news
articles. All sentences are annotated syntactically in a CFG-style format. Words
and constituents also incorporate more information as XML attributes, for ex-
ample:

• Morphological attributes: The parts of speech and morphological informa-

tion of the words are encoded using the EAGLES tagset6. Besides this,
AnCora also encodes each morphological feature as a separate attribute
in every word.

• Grammatical categories of constituents: There is an extensive set of cat-
egories including grup.verb for verbal periphrases, S for subordinate
sentences, sn for noun phrases and grup.nom for noun groups (noun
phrases that lack a specifier). There are many singleton categories such
as infinitiu for infinitive verbs, participi for participles and prep for
prepositions that are generally redundant as they do not add extra at-
tributes. Also, the annotation is not completely consistent across the
whole corpus.

• Semantic argument structure: They use the arg attribute for marking se-
mantic roles using the PropBank notation. Values arg0 through arg4 are
semantic arguments, argM are adjunct and argL are arguments of light
verbs (e.g. “las gracias” in “dio las gracias” / “thanked”).

• WordNet senses: This is encoded as the attribute sense, but is annotated
for nouns only.

• Verbal subcategorization: Encoded in the lexical semantic structure (lss)
attribute. There are thousands of different subcategorization frames for
verbs classified in four different categories (accomplishments, achievements,
states and activities) [Aparicio et al., 2008].

• Null subjects: Instances of null subjects in the corpus, which are very
common in Spanish, are marked as a noun phrase sn with an attribute
elliptic=’yes’. This is useful as this structure is marked as subject and
has the corresponding semantic role when available.

The process for building AnCora used an automatic morphosyntactic and
surface chunking method and based on this information the annotators per-
formed a manual labeling of the deep structure of the sentences [Mart́ı et al.,
2007].

6http://blade10.cs.upc.edu/freeling-old/doc/tagsets/tagset-es.html
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Besides the annotated corpus, there are also two lexical resources associated
to AnCora: AnCora-Verb [Aparicio et al., 2008] contains 2,647 verbs for Spanish
and their corresponding subcategorization frames. AnCora-Nom [Peris Morant
and Taulé Delor, 2011] contains 1,600 Spanish deverbal nouns and their corre-
sponding subcategorization frames.

<sentence>
<sn tem=’tem’ func=’suj’ arg=’arg1’>

<spec> <d wd=’La’ pos=’da0fs0’ lem=’el’/> </spec>
<grup.nom>

<s.a func=’cn’>
<grup.a> <a wd=’próxima’ pos=’aq0fs0’ lem=’próximo’/> </grup.a>

</s.a>
<n wd=’apuesta’ lem=’apuesta’ pos=’ncfs000’/>
<sp tem=’agt’ func=’cn’ arg=’arg0’>

<prep> <s wd=’del’ pos=’spcms’ lem=’del’/> </prep>
<sn> <grup.nom> <n wd=’Gobierno’ pos=’np00000’ lem=’Gobierno’/> </grup.nom> </sn>

</sp>
<S func=’cn’>

<f wd=’,’ lem=’,’ pos=’fc’/>
<infinitiu> <v wd=’reformar’ pos=’vmn0000’ lem=’reformar’/> </infinitiu>
<sn tem=’tem’ func=’cd’ arg=’arg1’>
<spec> <d wd=’la’ pos=’da0fs0’ lem=’el’/> </spec>
<grup.nom>

<n wd=’negociación’ pos=’ncfs000’ lem=’negociación’/>
<s.a func=’cn’>

<grup.a> <a wd=’colectiva’ pos=’aq0fs0’ lem=’colectivo’/> </grup.a>
</s.a>

</grup.nom>
</sn>
<f wd=’,’ lem=’,’ pos=’fc’/>

</S>
</grup.nom>

</sn>
<grup.verb>

<v wd=’puede’ pos=’vmip3s0’ lem=’poder’/>
<infinitiu> <v wd=’ser’ pos=’vsn0000’ lem=’ser’/> </infinitiu>

</grup.verb>
<sn tem=’atr’ func=’atr’ arg=’arg2’>

<spec> <d wd=’el’ pos=’da0ms0’ lem=’el’/> </spec>
<grup.nom>

<n wd=’reactivo’ pos=’ncms000’ lem=’reactivo’/>
<sp>

<prep> <s wd=’para’ lem=’para’ pos=’sps00’/> </prep>
<S clausetype=’completive’>
<infinitiu> <v wd=’recuperar’ pos=’vmn0000’ lem=’recuperar’/> </infinitiu>
<sn tem=’pat’ func=’cd’ arg=’arg1’>

<spec> <d wd=’la’ pos=’da0fs0’ lem=’el’/> </spec>
<grup.nom>

<s.a> <grup.a> <a wd=’deseable’ pos=’aq0cs0’ lem=’deseable’/> </grup.a> </s.a>
<n wd=’unidad’ pos=’ncfs000’ lem=’unidad’/>
<s.a>

<grup.a> <a wd=’sindical’ pos=’aq0cs0’ lem=’sindical’/> </grup.a>
</s.a>

</grup.nom>
</sn>

</S>
</sp>

</grup.nom>
</sn>
<f wd=’.’ lem=’.’ pos=’fp’/>

</sentence>

Figure 2.11: Simplified extract from the Spanish AnCora corpus.
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Figure 2.11 shows a simplified example of a sentence from the Spanish An-
Cora corpus. The words of the sentence are encoded in the attribute wd of the
elements whose tags correspond to one of the POS-tags (n, v, a, etc.). The
full sentence reads: “La próxima apuesta del Gobierno, reformar la negociación
colectiva, puede ser el reactivo para recuperar la deseable unidad sindical.” We
simplified the example by removing most of the attributes (redundant morpho-
logical information, coreferences, subcategorization types, noun senses, etc.),
but we kept the full structure of categories.

Compared to Penn Treebank, the structure of AnCora is more complex in
terms of categories and in the level of elements nesting. For example, a noun
phrase (sn) usually will contain a nominal group (grup.nom) and optionally a
specifier (spec). The grup.nom will contain the main noun (n) of the phrase and
other modifiers such as adjectival phrases (s.a or sa) or prepositional phrases
(sp).

This structure is honored in many cases, but not always, as there are some
inconsistencies in the annotation in some parts of the corpus. Because of this,
it happens that, like the Penn Treebank, there is a great number of rules per
category and a huge diversity in the way the rules are used. For example, in the
corpus there are 5,826 rules for subordinate sentences (S), 2,403 for sentences
(sentence), 905 for nominal groups (grup.nom) and 295 for noun phrases (sn).
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2.4.3 Universal Dependencies

Universal Dependencies7 [Nivre et al., 2016] is a framework for annotating de-
pendency grammars across many languages in a unified format. They also
include a standard unified notation for parts of speech and morphological at-
tributes across all languages.

The latest version of Universal Dependencies includes corpora for 150 lan-
guages, although the sizes of these corpora varies greatly between languages. For
English and for Spanish there are several corpora, summing up approximately
650 thousand tokens in 37,000 sentences for English, and one million tokens in
35,000 sentences for Spanish. One of the Spanish corpora is the conversion of
AnCora to the Universal Depedencies format.

One of the aims of the project is trying to have a unified format that would
apply to all languages. This could be used to improve the quality of the in-
formation used in multilingual parsing, an idea that has been explored in some
parsing challenges [Zeman et al., 2017, 2018].

This unified representation involves defining the notion of headness in a
way rather different than other dependency specifications. For example, some
conversions of the Penn Treebank to dependency format define the head of a
prepositional phrase to be the preposition. The same happens for some con-
versions of Spanish AnCora to dependencies. However, Universal Dependencies
prefers using content words over function words as heads. One reason for this is
that it is easier to create more similar dependency representations for languages
that use post-positions instead of prepositions. The way to do this in UD is
considering that the main content word is the head and the affix will be marked
as a case.

UD also has its own strict definition of what is considered a token, and multi-
word expressions are not considered single tokens as in AnCora. The AnCora
conversion to this format [Alonso and Zeman, 2016] involved separating these
multi-word expressions and providing adequate analyses for them, for example
for verbs with enclitics and proper names. The UD formalism does not provide
argument structure information in the form of semantic roles, so this information
is lost from the original AnCora. Furthermore, given that the original AnCora
tokens were transformed, the map between the semantic roles information in
AnCora and its UD version is not straightforward.

7https://universaldependencies.org/

45

https://universaldependencies.org/


2.4.4 DeepBank

DeepBank is a version in HPSG format of all 25 WSJ sections of Penn Treebank
(around 50,000 sentences) [Flickinger et al., 2012]8. They parsed the sentences
using the English Resource Grammar over LKB and PET.

The corpus was developed through an iterative process. They used PET to
find the 500 most likely analyses according to the grammar, manually picking
the best one, then updating the parser with the new information. The grammar
might occasionally be updated to improve the coverage of the rules based on
new information, and the existing trees needed to be re-parsed after that.

Not all the sentences have a representation in the corpus. Around 15% of
the sentences could not be parsed completely using the HPSG grammar mainly
because of these reasons:

• Some of the sentences contained errors in the original corpus.

• Even after the corrections performed to the ERG, the grammar might still
have some representation gaps, and some rare constructions might not be
fully analyzed.

• There are limits in the computational resources. Sometimes the correct
tree is not amongst the most likely trees found by the PET parser.

The final corpus contains full HPSG derivations together with their MRS se-
mantic representation for approximately 85% of the sentences. They completed
the representation of the rest of the corpus using a PCFG that approximates
the behavior of ERG.

2.4.5 IULA

The IULA Treebank9 [Marimon et al., 2012, 2014a] is a corpus of Spanish sen-
tences annotated in a dependency grammar style, containing about 590,000
words in 42,000 sentences. The development of this corpus was done together
with the development of the statistical disambiguation module for SRG [Mari-
mon et al., 2014b]. The process for developing this corpus was similar to the
one used for DeepBank, with some differences:

• Get all the possible analyses for the sentences using the LKB parser with
the SRG grammar.

• Manually pick the best analysis for each sentence.

• Train two models over the already parsed sentences (a maximum entropy
model and one based on dependency-like features) for predicting the best
parse tree.

8http://moin.delph-in.net/DeepBank
9http://www.iula.upf.edu/recurs01_tbk_uk.htm
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• If both models agree on the correct parse tree for a sentence, pick that tree,
or else mark the sentence to be manually disambiguated by an annotator.

Using this process, the authors could build a large corpus starting with a
relatively small set of manually disambiguated parse trees, building a larger
corpus together with more accurate classifiers with each iteration. The final
corpus was transformed into dependency format for publication. However, the
original HPSG version of the corpus is not available for download.

Compared to AnCora, the IULA Treebank generally contains shorter sen-
tences: the longest sentence in IULA has 33 words, while AnCora has sentences
longer than a hundred words. It contains a lot of technical language, as it was
built using sentences from documents about law, economy, genomics, medicine,
and environment. One problem with this corpus is that, unlike AnCora, it does
not provide readily available argument structure information.

There was another attempt at creating a Spanish HSPG corpus based on An-
Cora using the same idea as DeepBank: the Tibidabo Treebank [Marimon Fe-
lipe, 2010]. However, this treebank also has limitations, as only sentences less
that 40 words long could be converted, and not all of them could be parsed into
the HPSG format.
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2.5 Machine Learning

The term machine learning [Mitchell, 1997] refers to the study of algorithms that
improve their performance automatically through experience. These algorithms
are usually statistical techniques that take a set of data as input and generate
a model, this model could be then used to guide the behavior of the algorithm
on new unseen data. The main machine learning approaches can be categorized
as:

• Supervised learning: The system has a set of inputs associated with the
corresponding expected outputs, so the algorithm will try to create a
model that predicts outputs on unseen data.

• Unsupervised learning: The system has a set of inputs but no expected
outputs, so the algorithm tries to discover correlations in data without
having an explicit goal on what to find.

• Reinforcement learning: The system can make decisions at some points
during the execution, and some sequences of decisions lead to positive
or negative feedback, the algorithm tries to learn how to maximize the
positive outcomes while minimizing the negative ones.

In this work we will deal mainly with supervised techniques. Supervised ma-
chine learning problems can be further subdivided in regression or classification
problems. Regression problems are those in which the output values belong to a
continuum, for example obtaining the price of a house given a series of features
like size, number of bedrooms, neighborhood, etc.

Classification problems are those in which the output is a value from a
discrete set of classes. For example, given a tweet, classify whether the tweet
has positive, negative or neutral sentiment.

For some problems, the possible outputs are not simple classes but convey
structured information, like a list or a tree of values, which are in some way
linked to the input object. Parsing is one of these problems with structured
outputs. The output could be, for example, a tree where each node is a category,
and in which the leaves are the words of the input sentence.

As mentioned earlier, supervised learning always relies on having a set of
input data for which we already know the corresponding outputs. In NLP, the
input data generally is an annotated (or labeled) corpusAnnotated corpus of samples. When
we use a machine learning method to create a statistical model of the data
we say we are trainingTraining the model. For supervised classification problems, we
usually call these models classifiers.

2.5.1 Methodology

When using machine learning, our aim is to find a model, based on the available
data, that can predict the outcome over unseen data. There are many supervised
machine learning methods, like Näıve Bayes, Support Vector Machines, Logistic
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Regression or the nowadays ubiquitous Artificial Neural Networks, that could be
used for this. These methods differ in the kind of problems they can tackle, the
amount of data and computing power needed to train them, their generalization
capacity, and other factors. But besides selecting the method, each one has
its own set of hyperparametersHyperparameters : parameters (different than the input data)
that modify the training process and which should be tuned to get optimal
performance. Given this wide range of possibilities, we need a methodology
to guide us into finding, if not the best possible model, at least a model good
enough to suit our needs.

As we want the model to be able to predict the outcome on unseen data, we
need to keep a set of data that the method has not used for training. The usual
way to do this is to split the original annotated corpus we have in two partitions:
one of them is going to be used to train the model (training corpusTraining corpus ) while
the other is going to be used to evaluate how well the model behaves on data
that it has not been trained on (test corpusTest corpus ). If we used the same set of data
for training and testing, then the method could just be memorizing the training
data samples and not generalizing. We want to find a model that generalizes
as much as possible to unseen data, and keeping the training and test data
separated is essential to check if the model has generalized.

When a model that has been trained on some data has a very low perfor-
mance when evaluated against that same data, we say the model has underfitUnderfitting ,
and it generally means that the capacity of the model is not enough to learn
the differences in the input data. On the other hand, if the model has very high
performance on the training data, but has low performance on the test data, we
say the model has overfitOverfitting : it learned to make predictions based on particulari-
ties of the training data but was not able to generalize to unseen data. As we
want a model that has the best possible performance, we want to avoid both of
these scenarios. Sometimes the only way to find the best system that does not
overfit or underfit implies searching through several machine learning methods
and trying many different configurations. Because of this, it is not enough to
have only one test set for evaluating the outputs. As we have many possible
supervised methods, each one of them with many possible hyperparameters, we
are probably going to create a large number of statistical models and keep the
one with the best performance. If we test all these models against our only test
corpus, there is no way of telling if the results of our best model were achieved
because this model is the one that best generalizes on unseen data, or if we just
stumbled by chance upon a model that has good results over the test data but
does not generalize to other cases.

The way to solve this is not using the test set until the end of the process,
and only use it to evaluate the final results of the model (or models) selected.
This means that we must evaluate the intermediate models we are generating
on other unseen data. There are two techniques that are used for this. One of
them is creating a subdivision of the original corpus in three partitions instead
of two, adding a new partition that is called the development corpusDevelopment

corpus
(or

sometimes validation corpus), that will be used specifically to evaluate and
compare different models and tune hyperparameters. Splitting the corpus in
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training, development and test sets is the best solution if there is enough data.
However, if the training corpus is already too small, we might use another
technique called cross validationCross validation that entails subdividing the training corpus
in n parts. For each model that we want to evaluate, we train n versions of the
model using n − 1 partitions as training data and one partition for validation.
Then we average the results of the n models and pick the one that is best on
average.

Depending on the machine learning method we use, there might also be
other kinds of partitions used to tune the inner parameters of the method. For
example it is usual when training a neural network that we further subdivide the
training corpus to create a held-out corpusHeld-out corpus (which is also sometimes referred
to as validation corpus).

2.5.2 Metrics

We mentioned the need to evaluate the models over unseen data, but we have
not addressed what it means to evaluate a model yet. Evaluation is also a crucial
step in machine learning, as we want the models to improve their performance
based on experience, so we need a way to measure this performance.

The evaluation metrics to use will depend on the problem we are trying
to solve. Regression and classification problems use different metrics. In this
section we will discuss some of the metrics associated to classification, that will
serve as basis for the more concrete performance metrics we will discuss in later
sections.

Suppose we have a classification problem with binary output. For example
given a tweet, the system must tell if the tweet has a positive (class P) sentiment
or not (class N). We train a classifier with the training data using some machine
learning method, and then we run the classifier over the test data and obtain
a set of outputs. We already know the expected output values for each sample
from the test set (which we will call the gold standardGold standard ), and the classifier
(whose outputs we will call the candidatesCandidate ) could have correctly guessed some
of those values, and probably missed some others.

Classifier output
P N

Expected P 10 4
values N 2 8

Table 2.2: Example of expected outputs (gold standard) vs. classifier outputs
(candidates) for a fictitious classification problem.

Table 2.2 shows an example of counts of expected values against the values
output by the classifier. This is called a confusion matrixConfusion

matrix
. We will denomi-

nate true positives the samples that were expected to be positive and the model
classified them as so, true negatives the samples that were expected to be nega-
tive and were correctly classified, false positives the samples that were expected
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to be negative but the model classified as positive, and conversely false nega-
tives are the samples that were expected to be positive and the model classified
erroneously as negative. We can then define the following metrics:

Precision Precision =
true positives

true positives+ false positives
=
|gold ∩ candidates|
|candidates|

(2.1)

The precision is the proportion of times that the model was correct when
classifying something as positive.

Recall Recall =
true positives

true positives+ false negatives
=
|gold ∩ candidates|

|gold|
(2.2)

The recall is the proportion of positive values that were actually captured
by the model.

F1 Score F1 Score =
2 · Precision ·Recall
Precision+Recall

(2.3)

The F1 score is the harmonic mean of precision and recall. This metric is
widely used because it strikes a balance between the other two metrics, and
drops to zero when either of them is zero.

Accuracy Accuracy =
true positives+ true negatives

all samples
=
|correct guesses|
|samples|

(2.4)

The accuracy is the ratio of values correctly labeled by the classifier with
respect to the whole test corpus. If the test corpus is highly unbalancedUnbalanced

corpus
(i.e.

there are too many examples of one class respect of the other), this metric
tends to favor models that are more prone to assign labels of the majority class.
Because of this, in a binary scenario (or with few classes) the F1 Score is usually
preferred over the accuracy as metric.

All these metrics have values between 0 and 1, and could be expressed as
percentages. In our example, the values for the metrics would be the following:

• Precision: 10/(10 + 2) = 0.833 (83.3%)

• Recall: 10/(10 + 4) = 0.714 (71.4%)

• F1 Score: 2 · 0.833 · 0.714/(0.833 + 0.714) = 0.769 (76.9%)

• Accuracy: (10 + 8)/(10 + 3 + 2 + 8) = 0.783 (78.3%)

These metrics can easily be extended to problems with more than two classes.
For example, we could try to classify tweets that have a positive (P), negative (N)
or neutral (Neu) sentiment. In this case, we would define precision, recall and
F1 scores per class, considering one class against all the rest for each case. Then
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we could define averaged metrics for all the classes. The most frequent ones are
the macro averagedMacro Average metrics (Macro-Precision, Macro-Recall and Macro-F1),
which assign equal weight to all classes in the test set. Another set of metrics
are the micro averagedMicro Average (Micro-Precision, Micro-Recall and Micro-F1), which
assign a weight to each class relative to the proportion of elements of that class
in the test set. Finally, the accuracy for a multi-class problem can be defined
as easily as for a binary problem, considering the sum of all correct guesses for
any class, divided by the total number of samples in the test set.

As we will see in section 5.2, these simple and widely used metrics can be
extended to define more complex metrics for evaluating structured outputs such
as the ones provided by our parsing processes.

2.6 Neural Networks

Artificial Neural Networks are a family of machine learning methods originally
inspired by the observation of how biological systems learn using complex net-
works of interconnected neurons [Mitchell, 1997]. The first model of artificial
neuron, outlined in figure 2.12, was presented in 1943 by McCulloch and Pitts.
The idea, taken from biological neurons, is that an artificial neuron would re-
ceive a series of inputs xi (stimuli) that would be multiplied by different weights
wi (corresponding to the excitatory of inhibitory capacity of the dendrites), the
results would be summed up in the body of the neuron (summation of poten-
tials) and if it exceeds certain threshold, the neuron would output a signal y
(action potential in neurons).

Figure 2.12: Simple artificial neuron.

As shown in the figure, the comparison against a fixed threshold is later on
changed for a more expressive function σ, called the activation functionActivation

function
of

the neuron. So the equation of the output for this neuron would be:

y = σ(
∑

xi · wi) (2.5)

There are many possible activation functions, and generally they have some
desirable properties like being differentiable and monotonic. Some examples of
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usual activation functions include the logistic or sigmoid function (1/(1 + e−x))
or its multi-class generalization the softmaxSoftmax function, the hyperbolic tangent
(tanh(x)) or the rectified linear unit (reluRelu ) function (max{0, x})).

We can organize a collection of these neurons (also called units in the artifi-
cial neural network terminology) in an array where the inputs to all the units are
the same xi, and the corresponding output for each unit is yj . This arrangement
is called a layerLayer , and it is one of the most common ways of organizing artificial
neural networks (see section 2.6.2). In this case, we could use the notation wi,j
for the ith weight corresponding to the unit in the jth output. We can then
consider a matrix notation where the inputs are a vector x = {x1 . . . xn}, the
outputs are a vector y = {y1 . . . ym} and the weights are organized in a matrix
W = [[wi,j ]], i ∈ 1 . . . n, j ∈ 1 . . .m. Then the equation for calculating the out-
put of the whole layer can be written in this matrix notation using the product
between x and W :

y = σ(xW ) (2.6)

Neural networks are a very flexible machine learning technique that can be
used to solve a wide range of problems, in fact, they are universal approximators
of functions [Cybenko, 1989; Hornik et al., 1989]. This is important from a
theoretical point of view, and it helps us understand why they are so widely
used, but they only started to be popular in the NLP community later on when
the availability of data and computing power was enough to really put them to
good use.

2.6.1 Training

Training a neural network is generally treated as an optimization process that
tries to minimize a function related to the difference between the actual out-
put of the network and its expected output. This function is called the loss
functionLoss function . There are many different loss functions used for different kinds of
problems. Some of the most usual ones are the mean squared error loss (for
regression problems) and the categorical cross entropy (for multi-class classifi-
cation problems).

Activation functions need to be differentiable because the training process
will generally perform some form of gradient descent in order to minimize the
loss. In particular, the networks can be trained using stochastic gradient
descent

Stochastic
gradient descent , which implies starting with random weights and iteratively selecting

a batch of samples, calculating the output for those samples, and adjusting the
weights to make the actual output of the network more similar to the expected
output, until some stop criteria is met.

The calculation of the gradient used for updating the weights can be done
efficiently using backpropagationBackpropagation . This means that, once the output for a
sample has been calculated, it is possible to use the delta between the output
and the expected value and the intermediate results for each unit inside the
network layers to efficiently calculate the partial derivatives at each point and
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propagate this information back through the network in order to update all
weights.

One possible stop criterion could be to iterate until the weights stabilize, or
the difference between iterations is less than certain threshold. However, neural
networks generally have a lot of parameters and thus tend to overfit very quickly
to the training data. Because of this, it is usual to keep a held-out set of samples
that are not used for training but for controlling the state of the network. The
technique of early stoppingEarly stopping is a criterion for stopping the training when the
performance of the network over this held-out data has not improved after some
iterations. This greatly improves the training time and generalization of some
networks.

Another technique that is used to alleviate overfitting and improve general-
ization is dropoutDropout . In this technique, at each training step we randomly select
a set of units that will not be used to calculate weights and will not be updated.
Dropout is generally applied at layer level, setting for each layer the ratio of
units that would be randomly selected not to be updated.

2.6.2 Multilayer Perceptron

One of the simplest neural architecture architectures that is widely used is the
Multilayer Perceptron (MLP). In essence, an MLP is a stack of layers of fully
connected units (also called dense layersDense layer ). The output of each layer is con-
nected to the inputs of the following layer. For definining an MLP, we need to
set the number of layers, the number of units in each layer, and the activation
function to use for each one of them.

Figure 2.13: Example of an MLP with three layers.

For example, we could use a MLP architecture for the problem of predicting
the sentiment of a tweet between positive, negative or neutral. Suppose we
represent the tweet using bag of words, the input of the network would be
a vector of the value for each word in the vocabulary. Figure 2.13 shows an

54



example of a MLP for this problem, using three layers with five, seven and
three units each. In MLP terminology, the layers except the output layer are
called hidden layers, so in this case we have a network with two hidden layers.
Notice that the output of all units from each layer are connected to the inputs
of the following layer. The activation function could be, for example, relu for
each hidden layer, and softmax for the output layer, and we will consider the
prediction of the network to be the unit with the highest output.

2.6.3 Long Short-Term Memory

Multilayer perceptrons are useful when the input has fixed size, but a great
number of problems have representations with variable sizes. In the previous
example, we modeled the tweet with a bag of words representation that has a
fixed size. However, the bag of words representation has some shortcomings.
For example, it does not take into account the relative order of words in a
sentence, which is important information for many tasks. A more flexible rep-
resentation would be having an input for each word, this could be done using
a representation like one-hot encoding

One-hot encoding
: the input vector has the size of the

vocabulary, composed entirely of zeros except a value set to one in the position
corresponding to the represented word.

We can create neural network architectures that consume a sequence of words
in one-hot encoding, that are presented to the network one at a time. The
Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN)
are two families of architectures that are aimed at this. Here we will discuss
the Long Short-Term Memory (LSTM) [Hochreiter and Schmidhuber, 1997]
networks, which are a specific kind of Recurrent Neural Networks.

LSTM networks use a different kind of unit than the one presented in figure
2.12. First of all, they are recurrent in the way that the units have a loop that
goes from the output and is injected back as an input. This means that the
input of the unit at time t+ 1 will be a combination of some new inputs coming
from upper layers plus the outputs of the same layer at time t. LSTM network
units are composed of a cell, an input gate, an output gate and a forget gate.
The cell is the memory of the unit, the value it stores, and at each step the
output will be a combination of the value stored in this cell and the new input
mediated by the forget gate.

When creating a LSTM layer containing several LSTM units, the layer is
able to consume one input at each step, generate an output, and then use the
inner state as partial input for the next step. During training, the network will
tune how to use the forget gates so as to allow more information from the input
or more information from the memory depending on the situation.

These layers can be used to output a value for each entry (for example to
obtain a representation of each word of the sentence) or a final value after all
the sequence has been consumed (for example to obtain a representation of the
whole sentence). In our example, we could use a LSTM that consumes all the
words of the tweet, one at a time, and outputs a representation with the most
salient features of the tweet that could be used for calculating the sentiment
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polarity. LSTMs are good at capturing relevant features in language such as
long distance dependencies.

There also exist variants of these networks. LSTMs can be used to consume
the sequence from left to right or from right to left. Combining these, it is also
possible to create bi-directional LSTMsBi-directional

LSTM
: using a layer that reads the input

from left to right and another layer that reads the input from right to left and
then concatenating the outputs. We will be using these kinds of networks in
some of the parsing architectures we will use (see section 5.5).

2.6.4 Deep Learning

The term deep learning is generally used to refer to the application of neural
networks of many layers to solve different kinds of tasks. In the latest years, the
use of neural networks in machine learning has been expanding rapidly and it
has become the standard for many applications, including many tasks in NLP.

These advancements have been possible because of the amount of data, both
labeled and unlabeled, that has been made readily available lately, and also
improvements in computing power.

Although strictly we could say a multilayer perceptron could be considered
a deep learning architecture because it contains many layers, the term is usually
reserved to more complex architectures that involve one or more layers of other
more complex types (such as CNNs or RNNs). The idea behind a deep learning
architecture is that the first layers perform feature extraction transforming the
input into low level features, while deeper layers use these high level features
to extract higher level information. For example, in an image recognition task,
the first layers might look at the input pixels to detect edges, deeper layers
might identify shapes by combining different edges, and the final layers might
recognize whole pictures from the basic shapes.

In NLP, the use of deep learning has been growing steadily since the 2000s,
with works like: [Bengio et al., 2003], which presents a multi-layer neural net-
work for computing a language model where one of the layers is used as a con-
tinuous vector representation of words (similar words tend to have vectors close
in space); and [Collobert and Weston, 2008], which presents a unified neural
network architecture that can perform several NLP tasks (including language
modeling, POS-tagging, NER and SRL) using multi-task training and it can
leverage the information learnt from the different tasks to improve the perfor-
mance on others. These and other works paved the way for great advances in
the application of neural networks to NLP tasks like the use of word embeddings
and other more complex language modeling techniques.

2.6.5 Word Embeddings

The notion of word embeddingsWord embeddings refers to a collection of techniques for auto-
mated feature learning in the context of language modeling. It essentially means
creating a representation for words in a dense vector space that is considerably
smaller than the vocabulary size, hence embedding the language vocabulary into

56



another structure while preserving its most salient features. One key idea sur-
rounding word embeddings comes from the notion of distributional semantics,
that it is possible to infer the behavior of a word by looking at all the contexts
it appears in.

The idea of word embeddings has been around for some time, but it took
off mainly since the popularization of neural networks for NLP. Initial attempts
like [Bengio et al., 2003] showed that when training a neural language model,
the first layer acted as an embeddings layer for words. This layer could then
be used to train other networks (like in [Collobert and Weston, 2008]) or even
other types of classifiers (see [Ghosh et al., 2015; Rosá et al., 2017]). Over
the years several techniques for creating embeddings collections were designed,
involving architectures related to neural networks (such as [Mikolov et al., 2013;
Bojanowski et al., 2017]) or other kinds of counting models (such as [Pennington
et al., 2014]).

In particular, [Mikolov et al., 2013] proposed the very popular model known
as word2vec for training word embeddings efficiently from large corpora. They
presented two ways of casting the problem as a prediction problem (the Contin-
uous Bag of Words and Continuous Skip-gram models) and propose a set of tests
for measuring the quality of the generated embeddings based on the intuition
that similar words would have similar vectors in space. In this work, we will use
word embeddings based on the Continuous Bag of Words model (CBOW).

The CBOW model proposes a fake task for training word embeddings (see
figure 2.14): considering a window of words, try to predict the word in the
middle w(t) given the surrounding words {w(t−n) . . . w(t−1), w(t+1) . . . w(t+
n)}. The words in the window are represented using one-hot encoding with a
vocabulary of size V , but they pass through a layer that outputs E units. This
is the embeddings layerEmbeddings layer , a layer of size V · E that transforms the one-hot
enconding input into a dense vector of E units for representing words. The aim
of this fake task is in fact to train this layer, which could later on be used in
other architectures as a pre-trained embeddings layer. The resulting vectors are
summed up, returning another vector of E units, which goes through a softmax
layer with V outputs, for predicting the word in the middle.

Using this fake task it is possible to efficiently train the embeddings layer
using large corpus of text [Mikolov et al., 2013]. The resulting word embeddings
have interesting characteristics, like the ability to capture some syntactic or se-
mantic relationships between words (also called word analogies in the literature)
using simple algebraic operations. For example, assuming v(w) is the vector
representation of word w, after training an embeddings collection (in English,
Spanish, or other languages) it is usual that we can make some morphological
correspondences like:

v(rey)− v(hombre) + v(mujer) ' v(reina)

v(king)− v(man) + v(woman) ' v(queen)

57



Figure 2.14: CBOW fake task architecture. In the diagram we consider a win-
dows of size two (two words to the left and to words to the right) around the
predicted word.

Also, we can make some semantic correspondences like:

v(parı́s)− v(francia) + v(uruguay) ' v(montevideo)

v(paris)− v(france) + v(uruguay) ' v(montevideo)

word2vec and other word embeddings techniques create vector representa-
tions at word level, which means a word will have a corresponding vector no
matter the context in which it is used. In natural language, it is usual that
words have ambiguous semantics, and depending on their context they might
mean different things. So in the following years there have been attempts to
create more powerful vector representations that can capture the meaning of
words in context or even create vector representations of entire sequences of
words. Two of these models are: ELMo [Peters et al., 2018] (Embeddings from
Language MOdels), which represents the words as character-level convolutions
and uses two layers of bi-directional LSTMs to encode the words in the sentence,
allowing to obtain embeddings for a word in context or for the whole sentence;
and BERT [Devlin et al., 2018] (Bidirectional Encoder Representations from
Transformers), which uses the transformers [Vaswani et al., 2017] neural net-
works architecture. In this work, we will not use these more advanced models,
and just use embeddings calculated using the word2vec technique.
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2.6.6 Neural Parsing

Similarly to other NLP tasks, the performance in parsing has improved dra-
matically since neural methods started to be applied massively. Most of the
work on applying neural network architectures to parsing has been done for the
two more classical syntactic paradigms (constituency and dependency parsing),
although there are some attempts at applying neural networks to deep parsing
as well, mostly for English. In this section we will try to make a review of some
of the most important works related to parsing using neural networks. This
discussion will present in broad lines what the different neural parsers do, and
we defer the performance comparison to the next section.

Constituency parsing

For constituency parsing, the work of [Socher et al., 2011a,b, 2012, 2013] is very
relevant. They define a class of networks dubbed as Recursive Neural Networks,
which perform a recursion over trees, instead of a recursion over sequences as
a standard Recurrent Neural Network does. There are different variants of this
architecture in the different works, but one of the key elements in the networks
is trying to generate a binary constituency tree by looking at pairs of elements
in a bottom-up fashion. Starting from the words of the sentence, the core net-
work takes a pair of consecutive words as input, encoded as embeddings, and
outputs another vector which represents an embedding of the combination of
both words, and a score that represents if this pair of words should be combined
as a constituent in the tree. They take the highest scoring pair and combine
them, and proceed to repeat the process with the remaining elements. This is
the greedy version of the process, a refinement of this is using a beam search to
consdier several possibilities instead of the greedy process, making it more sim-
ilar to a CKY. The different works present variants of this architecture growing
in complexity, with the most complex one being the Recursive Neural Tensor
Network, which they used to improve the performance of a sentiment analysis
system.

A rather different but very interesting approach is followed by [Vinyals et al.,
2015], which frames the parsing process as a sequence-to-sequence problem akin
to machine translation. They try to learn a translation model where one of
the languages is the collection of sentences in natural language, and the other
language is the same collection of sentences but written as bracketed represen-
tations of parse trees. The neural model they use is an encoder-decoder LSTM
model with attention mechanism. They found out that training such a model
using only standard corpus data (training sections of the Penn Treebank) did
not yield good results, but if they first pre-trained the model using a larger
corpus of sub-standard data (the result of another parser, or a combination of
parsers) the performance of the final model improved significantly.

The transition-based parsing algorithm (see appendix B.2) can also be ap-
plied to constituency parsing, considering the parsing process of a sentence as
a sequence of actions that are performed to each word transversed from left to
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right. Several works focus on creating neural based versions of this algorithm.
For example, Dyer et al. [2016] describes a transition based constituency parser
that uses neural networks for representing the state of the stack [Dyer et al.,
2015], the sentence buffer and the current derivation history. With all this in-
put, the network tries to predict the next action of the parser (shift, reduce, or
adding a new non-terminal to the stack).

Liu and Zhang [2017] combine this approach with sequence-to-sequence mod-
eling. They train a model that tries to translate an input sentence into a se-
quence of actions that a shift-reduce parser should take. They apply the same
idea for a dependency parser [Nivre et al., 2007] and a constituency parser [Dyer
et al., 2016], both for English, obtaining state of the art results.

Watanabe and Sumita [2015] propose a transition based approach for con-
stituency parsing where they model the stack using a RNN or Elman Network,
obtaining good results for English and Chinese treebanks, while [Cross and
Huang, 2016] describes a transition based constituency parser that uses LSTMs
for representing word spans instead of partially derived trees, obtaining good
results for parsing English and French.

Another approach that focuses on determining the word spans in the tree is
used in [Stern et al., 2017], which describes a top-down parser that calculates
scores and constituency labels for each span in the input sentence, and uses a
dynamic programming approach to find the partition of spans that generates
the best possible tree. They also report that, instead of evaluating all spans, it is
possible to greedily split the sentence in spans recursively in a top-down fashion
without losing much performance. The spans are encoded using LSTMs in order
to generate an intermediate representation that is used for calculating the score
and the constituency labels. They present results for English and French. This
model builds a binarized version of the trees, but a later refinement of the model
presented in [Gaddy et al., 2018] is able to build trees with non-binary rules.
They use CKY for finding the optimal tree, but introduce an empty label for
indicating spans that are not constituents, so the parent constituent of these
spans can be considered an n-ary rule.

Shen et al. [2018] describes a parser based on LSTMs trained to predict
the syntactic distances (concept related to the distance between words in the
expected parse tree) between consecutive words in the sentence. With the pre-
dicted syntactic distances, it is possible to build the tree in a top-down process
splitting constituents guided by the relative syntactic distances between words.
This process is faster as it only needs to calculate the syntactic distances for
the sentence once. They achieve good results for English and Chinese parsing.

Dependency parsing

The transition-based dependency parsing algorithm (see appendix B.2) has been
adapted using neural networks. For example Chen and Manning [2014] presents
a greedy transition based parser where they input a representation of the parser
configuration (words, parts of speech, arcs) to the neural network and try to
predict the next action to take. Their training and evaluation data includes the
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Stanford dependency conversion of Penn Treebank and other data.
The already mentioned work by [Liu and Zhang, 2017] performs both de-

pendency and constituency parsing. This transition-based parser frames the
problem as a sequence-to-sequence translation problem, trying to predict the
sequence of actions given the sentence.

Other works for neural dependency parsing use the graph-based method
instead of the transition-based method. Graph-based dependency parsers es-
sentially assign a weight to every possible arc in the graph and find a maximum
spanning tree using these weights. One of these works is [Dozat and Manning,
2017], where they use a biaffine attention mechanism for scoring the weights for
every pair of words in the sentence.

Clark et al. [2018] also uses a graph-based method but uses multi-task for
enriching the embeddings used for parsing. They train the dependency parsing
model together with models for CCG supertagging, text chunking, NER, POS
tagging and machine translation.

Zhang et al. [2020] is another example of neural graph-based dependency
parsing, that extends the idea from [Dozat and Manning, 2017] but includes
information from second order subtrees in the calculation of scores.

The works mentioned so far try to perform parsing for English. For Span-
ish, the interest in dependency parsing started to grow since its inclusion in
the multi-lingual dependency parsing task at CoNLL-X [Buchholz and Marsi,
2006], however, neural networks were not widely used yet at that time. Spanish
was also present in more recent editions of the task that focused on using the
Universal Dependencies framework, like CoNLL 2017 [Zeman et al., 2017] and
CoNLL 2018 [Zeman et al., 2018] shared tasks on multilingual parsing from
raw text to Universal Dependencies. One of the baseline systems in CoNLL
2017, UDPipe [Straka and Straková, 2017] provides tokenization, morphological
analysis and dependency parsing for several languages including Spanish, and
uses a transition-based method implemented as a simple neural network with
one hidden layer. The best performing parser for Spanish in CoNLL 2017 is
described in [Dozat et al., 2017], and it is essentially the same parser as [Dozat
and Manning, 2017]. For CoNLL 2018, [Che et al., 2018] presents a parser that
uses an architecture similar to [Dozat and Manning, 2017] but includes contex-
tualized embeddings (using ELMo) and also trains with treebanks from several
languages to leverage the similarities between language families, resulting in
high performance for many languages including Spanish.

Deep parsing

Most of the work over the last years applying neural network architectures to
the parsing of deep formalisms has been done for the English language. Some
of these works deal with improving the performance of supertagging, and then
using other methods such as CKY for parsing. For example Xu et al. [2015]
uses a recurrent neural network to improve supertagging accuracy for CCG,
which improves parsing performance, while [Vaswani et al., 2016] improves it
even further using a bi-LSTM architecture for the supertagger.
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Other works try to model all the parsing process using neural networks,
generally performing supertagging followed by another neural network approach
to parsing. Ambati et al. [2016] does this for CCG, combining the supertagging
approach with a transition based parser; while [Kasai et al., 2017; Friedman
et al., 2017] follow a similar approach for TAG parsing.

For HPSG, the work by [Zhou and Zhao, 2019] is very relevant as they try to
derive a HPSG grammar from the Penn Treebanks in English and Chinese and
use a self-attention based mechanism followed by a CKY decoder to parse them,
obtaining very good results. One interesting aspect of this work is that they
use a dependency version of Penn Treebank to enrich the original constituents
with head information, using this data to derive a bare HPSG structure. The
attention mechanism scores the possible spans in the sentence and this infor-
mation is used by the CKY decoder. They incorporate the use of embeddings
from ELMo, BERT, and XLNet [Yang et al., 2019] in order to further improve
their results.

This approach of simplified HPSG and its span representations was later
used by [Mrini et al., 2019], modifying the attention mechanism so that each
attention head represents a label (e.g. a syntactic category), they dub this
the Label Attention Layer. Using this mechanism they improve the parsing
performance over the English and Chinese Penn Treebanks.

2.7 Notes on the State of the Art

All the highest performing methods for parsing nowadays use neural network
architectures. This is the case for constituency parsing, dependency parsing and
also for parsing with deep grammar formalisms.

The definition of the parsing performance metrics used for each formalism
will be discussed in section 5.2, but let us present here a quick overview of
these metrics so as to present a comparison of results. Constituency parsing
uses variants of precision, recall and F1 score but counting constituents in the
sentences, both labeled and unlabeled (in this section we will present U-F1 and
L-F1 ). Dependency parsing, on the other hand, uses a kind of accuracy dubbed
attachment score, also with labeled and unlabeled versions (UAS and LAS ).
There are not standard metrics that are used specifically for parsing in deep
formalisms, and when comparing these types of systems they generally present
constituency and dependency metrics, usually involving some kind of transfor-
mation to the output of the parsers (for example see [Clark and Hockenmaier,
2002]). However, as noticed in the literature [Ivanova et al., 2016], this has the
effect of dampening the differences between parsers and their particular ways of
modeling the language.

Most of the work has historically been done for the English language, and
the comparison between parsers for that language is easier as all the parsers are
evaluated at least against some of the variants of the Penn Treebank. Table
2.3 shows a comparison of parsing performance for several English parsers using
different formalisms. All of them are evaluated against some version of the Penn
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Treebank, but there might be some differences between them because not all
the versions have exactly the same information. As well as this, not all works
report the same metrics.

For comparison, we include two works for English previous to the neural
networks popularization: Collins [1997] proposed a generative lexicalized parsing
model for CFG, and Charniak [2000] described a maximum-entropy statistical
model for CFG.

Parser Formalism U-F1 L-F1 UAS LAS
[Collins, 1997] CFG 87.8

[Charniak, 2000] CFG 89.5
[Socher et al., 2011a] CFG 90.29

[Chen and Manning, 2014] Dep 92.2 91.0
[Vinyals et al., 2015] CFG 92.8

[Watanabe and Sumita, 2015] CFG 90.68
[Xu et al., 2015] CCG 87.04

[Dyer et al., 2016] CFG 92.4
[Cross and Huang, 2016] CFG 91.3

[Vaswani et al., 2016] CCG 88.32
[Ambati et al., 2016] CCG 90.09 83.33

[Liu and Zhang, 2017] CFG+Dep 93.4 93.1 90.1
[Stern et al., 2017] CFG 91.79
[Kasai et al., 2017] TAG 90.97 89.68

[Friedman et al., 2017] TAG 90.31 88.96
[Dozat and Manning, 2017] Dep 95.7 94.1

[Gaddy et al., 2018] CFG 92.08
[Shen et al., 2018] CFG 91.8
[Clark et al., 2018] Dep 96.6 95.0

[Zhou and Zhao, 2019] HPSG 95.84 97.00 95.43
[Zhang et al., 2020] Dep 96.14 94.49
[Mrini et al., 2019] HPSG 96.38 97.42 96.26

Table 2.3: Performance of several English parsers evaluated over variants of the
Penn Treebank. We show the main formalism used by each parser and their
reported metrics.

For languages other than English, there is considerably less work on parsing
and more disparity of resources. For Spanish different parsers have used different
corpora for training and evaluation throughout the years, which makes it harder
to have a fair and accurate comparison.

There are few works focusing on constituency parsing for Spanish, all from
before the neural networks era. Cowan and Collins [2005] tries two approaches
to improve standard PCFG parsers: including morphological information in the
probabilistic model, and a reranking method with max-margin criterion trained
over a set of global features from the parse trees. This second approach works
best in their tests. Le Roux et al. [2012] experiments with Spanish parsing
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using a PCFG with latent annotations with a simplified tagset. Both parsers
are trained and evaluated over the Cast3LB corpus, which is a subset of the
AnCora corpus.

As mentioned before, many initiatives in Spanish parsing were driven by its
inclusion in CoNLL tasks beginning in CoNLL-X [Buchholz and Marsi, 2006].
The best approaches for Spanish in that edition were [McDonald et al., 2006]
with a graph-based maximum spanning tree method, and [Nivre et al., 2006] a
pseudo-projective dependency parser using Support Vector Machines. Lloberes
et al. [2010] describes a dependency grammar and a rule-based dependency
parser for Spanish (one of the Freeling parsers [Padró et al., 2010; Padró and
Stanilovsky, 2012]) transforming the result of a shallow parser. They carry their
experiments over the AnCora dependencies transformation used for CoNLL-X
and also over the Sensem corpus [Castellón et al., 2006]. Later on Spanish was
included in CoNLL 2017 [Zeman et al., 2017] and CoNLL 2018 [Zeman et al.,
2018] as a new corpus in Universal Dependencies format, which is the format
used by the latest parsers.

Table 2.4 shows the performance of the Spanish parsers described in this
section and the previous one. Notice that not all parsers use the same evaluation
corpus, and there are no works combining formalisms. As well as this, besides
constituency and dependency grammars, there seem to be no works evaluating
the performance of Spanish parsers on deep linguistic formalisms. We found
only one work dealing with a TAG grammar for Spanish [Kolachina et al.,
2011], but it only goes so far as to build the categories and a maximum entropy
supertagger, not the full parsing process and evaluation.

Parser Formalism Corpus L-F1 UAS LAS
[Cowan and Collins, 2005] CFG Cast3LB 85.1

[Nivre et al., 2006] Dep Ancora-DEP 84.67 81.29
[McDonald et al., 2006] Dep Ancora-DEP 86.1 82.3
[Lloberes et al., 2010] Dep Ancora-DEP 81.13 73.88
[Le Roux et al., 2012] CFG CastLB 85.47

[Straka and Straková, 2017] Dep es-UD 87.91 84.95
[Dozat et al., 2017] Dep es-UD 87.29
[Che et al., 2018] Dep es-UD 90.93

[Zhang et al., 2020] Dep es-UD 90.86

Table 2.4: Performance of several Spanish parsers for constituency and depen-
dency grammars.
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Chapter 3

Grammar

This chapter describes the grammar we use: a version of HPSG adapted to
Spanish. In HPSG grammars, both lexical entries and rules are defined as fea-
ture structures, and their constraints (selection constrains or rule application
constraints) are specified in their features. First of all we will introduce some
fundamental concepts on HPSG and the notation we use throughout the docu-
ment with a simple example of a parse tree. Then we will describe the general
feature structure for expressions (both words and phrases) and give an overview
of its features. Next we will present the different grammar rules that are used
to combine the expressions and form the parse trees. Finally we will describe
the principles we used in our grammar implementation.

3.1 Fundamentals and notation

Section 2.1.4 introduced some HPSG concepts in a light way, here we will begin
to formalize the key ideas behind the grammar and present the notation we use
to represent them in this document.

Remember the basic structure used in HPSG grammars is the feature struc-
ture, which is a collection of associations between features and values. We will
represent a feature structure as a matrix written between squared brackets (‘[’
and ‘]’) containing the corresponding features and their values. This is called
an attribute value matrixAttribute value

matrix
. For example:[

NUM s

GEN f

]

Features are noted using uppercase strings, values can be any arbitrary fea-
ture structure. The above example shows a simple grouping of two features and
their values: feature NUM (used to model the number agreement feature of words)
with value s (singular), and feature GEN (used to model the gender agreement
feature of words) with value f (female). The example below shows a feature
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structure that represents a marker for a noun n with an agreement feature AGR,
which is itself another feature structure.n

AGR
[
NUM s

]
It is possible to combine two feature structures using the unification oper-

ation (noted t), and the result will contain the features from both. If some
feature is present in both structures, unification will proceed recursively and
the result will have the unified values of the original structures.

n

AGR
[
NUM s

] t

n

AGR
[
GEN f

] =


n

AGR

[
NUM s

GEN f

]
If two feature structures cannot unify (for example if they have different

values for the same feature), we note this as ⊥.n

AGR
[
NUM s

] t

n

AGR
[
NUM p

] = ⊥

An HPSG analysis of a sentence is a tree where each node is either a word
or a phrase. We will use the term expressionExpression to refer to either a phrase or a
word. An expression is like a super-class of words and phrases.

We write lists of expressions between angled brackets (‘<’ and ‘>’):

• < expression1, expression2, · · · expressionn > represents a list of expres-
sions.

• < > represents an empty list.

• < first | rest > represents a list composed by an expression first and a
list of expressions rest.

For defining an HPSG grammar, we need to specify the feature structure
that is going to represent the expressions and the grammar rules. Rules are the
definitions of the valid ways to combine expressions in order to create larger
expressions. In our case, the rules are all going to be binary, and each one of
them will define the daughter that is the syntactic head.

As mentioned in section 2.1.4, when describing a rule we write on the left the
elements being combined (the daughters), an arrow (→), and the result on the
right (the parent structure), as shown in figure 3.1. Because our rules are always
binary, on the left we will have the two daughters being combined separated by
a plus (+) sign. The syntactic head is signaled with a ‘(H)’ marker.
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(H) head expression + dependent expression → result expression

(a) Left-headed rule.

dependent expression + (H) head expression → result expression

(b) Right-headed rule.

Figure 3.1: Notation for rules.

As we will see, most of the rules we use have two variants, for example
you can apply a complement or a subject to the left or to the right of a head.
Although Spanish is nominally a SVO language like English, sentences with dif-
ferent word order are very common and in many cases sound more natural than
their SVO counterparts (see for example [Di Tullio and Malcuori, 2012]). Be-
cause of this, for most of the rules we have left-headed of right-headed variants,
depending on which daughter they define as their syntactic head. The figure
shows the notation for the two rule flavors: the left-headed rules (figure 3.1a)
and the right-headed rules (figure 3.1b).

Rules are implemented as feature structures as well, so this simplified nota-
tion for rules is only syntactic sugar. See section 3.11 for details about how we
implement these rules as feature structures.

A box with a number like 1 is a coindexation marker. They represent that
the positions indicated by the markers with the same number in the structure
have the same value. Let us see, for example, how to define head comp rule,
which attaches a head to a complement on its right (see section 3.4):

(H)

expr

VAL

[
COMP

〈
1 | 2

〉]
+ 1 →

phrase

VAL
[
COMP 2

]
Notice this is a left-headed rule because the ‘(H)’ marker is on the left

expression. The left expression has a COMP feature defined as a list with first
expression 1 and rest 2 . The first expression is coindexed with the daughter

on the right (only represented as the marker 1 ), while the rest is coindexed
with the COMP feature of the resulting expression.

Finally, let us put these concepts together with a simple example of an HPSG
analysis. Consider the following sentence:

(20) Juan come manzanas rojas (John eats red apples)

Using our grammar, sentence 20 would be analyzed as the tree in figure
3.2. Notice that the representation of the sentence is a tree where the leaves
are words and the internal nodes are phrases. In the figure, word nodes are
labeled with their corresponding words, while phrase nodes are labeled with
their corresponding rule.
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

phrase

HEAD



v

AGR


NUM s

PER 3

MOOD ind

TENSE pre




VAL

[
SPEC 〈〉
COMP 〈〉

]


spec head

1



word

HEAD


n

AGR


NUM s

GEN m

PER 3









word

HEAD



v

AGR


NUM s

PER 3

MOOD ind

TENSE pre




VAL

SPEC
〈

1

〉
COMP 〈〉




Juan head comp

word

HEAD



v

AGR


NUM s

PER 3

MOOD ind

TENSE pre





VAL

SPEC
〈

1

〉
COMP

〈
2

〉


SEM

ARG0
〈

1

〉
ARG1

〈
2

〉




2



phrase

HEAD


n

AGR


NUM p

GEN f

PER 3







come head mod

3



word

HEAD
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Figure 3.2: Analysis of the sentence “Juan come manzanas rojas” (“John eats
red apples”).

Notice that each expression has a HEAD feature that defines its part of speech
and contains its morphological attributes (in the agreement AGR feature). Fur-
thermore, the expressions define other features that indicate how they can be
combined (in the valence VAL feature). Section 3.2 describes all the features we
use for expressions.

This example first applies the modifier rule head mod to combine “manzanas”
and “rojas”; then the result is applied as a complement of “come” using the
complement rule head comp; and finally the subject “Juan” is applied as a
subject to the structure using the specifier rule spec head. Each rule imposes
constraints on the features the expressions must have in order to combine them,
and the expressions themselves might define further constraints.
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In HPSG the parse trees are not simple structures but reentrant trees, i.e.,
there can be more links between a pair of nodes than the parent-daughter re-
lation. This is represented in the tree by the coindexation markers 1, 2 and 3.
For example, the object “manzanas rojas”, marked as 2 is set as the value for
the features COMP and ARG1 of the verb “come”.

In our case, the difference in terms of features between words and phrases is
that words might include a SEM feature for defining the semantic structure of the
word. Notice that the verb “come” in this case defines the features ARG0 and
ARG1, which are coindexed with other values in the structure (the subject and
the complement). This means that the subject of the verb (“Juan”) corresponds
to the agent of the predicate, and the object (“manzanas rojas”) corresponds
to the theme. These values might be switched in a passive voice construction,
and in that case the feature structure for the verb would reflect this difference.

In the following sections we will define what are the possible features for
each structure, and how each one of the rules work.
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3.2 Feature structure for expressions

The feature structure we use for a word or phrase contains the features shown
in figure 3.3. Notice that many these features are implemented as lists of ex-
pressions but in some cases the only possibilities for the list are only zero or one
expressions.
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Figure 3.3: Feature structure for a word.

Syntactic features

• SPEC: List of expressions that are expected as specifiers of a node. In
general there should only be zero or one of these. As in [Sag et al., 2003],
the specifier feature is used to model both the specifiers of nouns (generally
determiners) and the subjects of verbs.

• COMP: List of expressions that are expected as complements of a node.
This list is unbounded, as some words (especially verbs) can have multiple
complements, though in general it has up to four or five elements.
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• MOD: List of expressions that this node is expected to modify. There can
be only zero or one elements in this list.

• CLITIC: List of expressions that are expected as clitics of a node. Because
of Spanish constraints, this list should have up to two elements.

• LEFT COORD (and RIGHT COORD): List of expressions this node is expected
to have on its left (or right) in order to form a coordination (only zero or
one expressions).

• REL: List of expressions that this node is expected to be modifying as a
relative clause. There can be only zero or one elements in this list.

Figure 3.3 shows where these features are located inside the feature structure.
Notice that the SPEC, COMP, MOD, CLITIC, LEFT COORD, and RIGHT COORD features
are valence features, and are located inside a bigger feature called VAL. However,
the REL feature is the sole feature inside the NONLOCAL structure, this is because
relative clauses that act as modifiers are the only type of non-local structure
we are modelling in this grammar, as explained in section 3.8. As we will see,
SPEC, COMP and CLITIC are endocentric features (they are defined by a head
that expects some dependents), while MOD, REL and the coordination features
are used in an exocentric way (they are defined by a dependent that will be
attached to a head).

Semantic features Inside the SEM feature, there are features for determining
the semantic role label structure of the expressions that are attached to a word.
Unlike the original HPSG grammars, we use a representation based on the
PropBank [Bonial et al., 2010] notation of semantic arguments. The features
we use are the following:

• ARG0, ARG1, ARG2, ARG3, ARG4, ARGM and ARGL: The PropBank features
that are included as annotations in AnCora. ARG0 indicates a proto-agent,
ARG1 indicates a proto-patient, while the rest of the numeric arguments
indicate roles that depend on the verb. ARGM corresponds to adjuncts and
ARGL indicates arguments of light verbs [Taulé et al., 2008].

• ARGC: This is a special feature we use to model verbal complements for
verb phrases, as explained in section 3.5.

• IS ARG0, IS ARG1, IS ARG2, IS ARG3, IS ARG4, IS ARGM and IS ARGL:
These are the symmetric features for modeling arguments that are in-
troduced by modifiers, and are thus exocentric.

71



3.3 Specifier rules

The two rules for attaching a specifier to the left or to the right of a head are
called spec head and head spec. The definitions of the two rules are shown
in figure 3.4: given a head that expects a SPEC and a dependent, the rule
unifies the dependent with the SPEC feature and returns a phrase with the SPEC

feature saturated (empty). The head expression will also specify other selection
constrains, e.g. a verb head might indicate that the expected SPEC has to be a
noun.

1 + (H)

expr

VAL

[
SPEC

〈
1

〉]
→

phrase

VAL
[
SPEC 〈〉

]
(a) spec head

(H)

expr
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[
SPEC

〈
1

〉]
+ 1 →

phrase

VAL
[
SPEC 〈〉

]
(b) head spec

Figure 3.4: The left-headed and right-headed versions of the specifier rule.

The most common version of this rule is spec head, shown in figure 3.4a.
This is used for applying a determiner as specifier of a noun, or a subject to
the left of a verb. The head spec rule is used in the cases of postponed subject
(sujeto pospuesto), a very common phenomenon in Spanish.

Figure 3.5 shows the analysis of the noun phrase “las manzanas” (“the ap-
ples”), as a typical example of a determiner specifier applied to a noun. Other
typical cases involve other parts of speech, such as a number (z) acting as the
specifier of a noun.



phrase

HEAD


n

AGR

[
NUM p

GEN f

]
VAL

[
SPEC 〈〉

]


spec head

1


word

HEAD


d

AGR

[
NUM p

GEN f

]





word

HEAD


n

AGR

[
NUM p

GEN f

]
VAL

[
SPEC

〈
1

〉]


las manzanas

Figure 3.5: Analysis of the noun phrase “las manzanas” (“the apples”).
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Figures 3.6 and 3.7 show two variants of the sentence “the train arrived”
in Spanish: one of them using the subject on the left like in English (“el tren
llegó”), and the other equally valid using a postponed subject (“llegó el tren”).
In both cases the result of the analysis is a sentence (a verb phrase that is not
expecting any other argument). The analyses in both cases are very similar, but
they use the right-headed or left-headed variants of the specifier rule, spec head

or head spec respectively.
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Figure 3.6: Analysis of the sentence “el tren llegó” (“the train arrived”).
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Figure 3.7: Analysis of the sentence “llegó el tren” (variant of “the train ar-
rived”).

One potential problem that could arise from having both rules is that it
could be possible to allow wrong analyses when applying this rule for non-
verbal cases, for example the phrase *“manzanas las” (“apples the”). However,
as the aim is to create a statistical parser, we will in principle not rule out any
combination and trust that the statistical process will learn such combinations
are not possible as it will not see examples of those constructions in the training
corpus.
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3.4 Complement rules

The two rules used for attaching a complement to the left or to the right of a
head are called comp head and head comp. The definition of the two rules are
shown in figure 3.8. Similarly to what happens to subjects of verbs in Spanish,
complements are usually located to the right of a verb, but occasionally they
might be on the left.
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Figure 3.8: The left-headed and right-headed versions of the complement rule.

Figures 3.9 and 3.10 show two variants of the verb phrase “said something”
in Spanish: one of them using the complement on the right like in English (“dijo
algo”), and the other variant uses the complement on the left (“algo dijo”). In
both cases the result of the analysis is a verb phrase that expects a subject
to form a sentence. The analyses in both cases are very similar, but they use
the left-headed or right-headed variants of the complement rule, head comp or
comp head respectively. Furthermore, as we will see in section 3.8, the use of
the right-headed rule comp head will be specially important for the analysis of
relative clauses.

The left-headed head comp is also used to analyse prepositional phrases such
as “de madera” (“wooden)” or “en casa” (“at home”). The prepositions define
through the COMP feature the type of expression they are expecting.
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Figure 3.9: Analysis of the verb phrase “dijo algo” (“said something”).



phrase

HEAD


v

AGR

[
NUM s

PER 3

]
VAL

SPEC
〈

2

〉
COMP 〈〉




comp head

1


phrase

HEAD

p

AGR
[
NUM s

]




word

HEAD


v

AGR

[
NUM s

PER 3

]
VAL

SPEC
〈

2

〉
COMP

〈
1

〉



algo dijo

Figure 3.10: Analysis of the verb phrase “algo dijo” (variant of “said some-
thing”).
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3.5 Semantic complement rule

Consider the example sentences 21 through 26 that use the Spanish verbal form
pretérito pluscuamperfecto (roughly equivalent to a past perfect in English),
which could all be translated as “John had said something”.

(21) Juan hab́ıa dicho algo

(22) Algo hab́ıa dicho Juan

(23) Juan algo hab́ıa dicho

(24) Hab́ıa dicho algo Juan

(25) Hab́ıa dicho Juan algo

(26) Algo Juan hab́ıa dicho

(27) * Juan dicho hab́ıa algo

This structure is always formed by the auxiliary verb “haber” and a past
participle, where the auxiliary verb is inflected in order to match the subject.
Notice that sentences 21 through 26 are all variants of the same sentence but
moving the subject and object to the beginning or to the end. However, sentence
27 is ungrammatical, consisting of the participle preceding the auxiliary verb.
It seems to be that once the verb phrase “hab́ıa dicho” is built, it can be moved
around the sentence as a unit, expecting the subject and the object in any
position, but it cannot be built in an incorrect order.

We model this behavior in our grammar with a rule for building this kind of
verb phrases that act as a unit. We want the verb phrases to have the following
properties:

• There is a conjugated verb, whose number and person will agree with the
subject. We will call it the support verbSupport verb 1.

• There is another verb in a non-finite form (in this case a participle) that
carries the main semantic content for the verb phrase. We will call it the
content verbContent verb .

• The only arguments that the support verb expects are the subject and the
content verb.

• All the other arguments around the verb phrase should be applied to the
content verb, instead of the support verb.

It is as if these verb phrases have two different heads: a syntactic head (in
this case “hab́ıa”) which carries the agreement features) and a semantic head
(in this case “dicho”) which carries the argument valence features. In order
to analyze these cases, we use a variant of the complement rule that works
like head comp but percolates the dependent valence arguments to the resulting
phrase. This is the head comp sem rule, as shown in figure 3.11.

1In this work, we are using the expression support verb with a different meaning than the
usual verbo soporte in Spanish [Ingelmo, 2002].
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Figure 3.11: The head comp sem rule.

Figure 3.12 shows the parse tree for sample sentence 22: “Algo hab́ıa dicho
Juan””. Notice that the support verb “hab́ıa” uses the ARGC semantic feature to
mark its verbal complement, and that the content verb “dicho” could correctly
fulfill both of its semantic arguments ARG0 and ARG1.
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Figure 3.12: Analysis of the sentence “Algo hab́ıa dicho Juan” (“John had said
something”).
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Verb phrases built with the auxiliary verb “haber” are not the only structures
in Spanish that could be analyzed in this way. Something similar happens in
example 28, though in this case the verb phrase does not use an auxiliary verb
but a modal, we still would like to associate the object to the main lexical verb
“decir” and the subject should agree with the inflected verb (the syntactic head)
“pod́ıa”. Other verb phrases that could use the same analysis are the ones shown
in examples 29 and 30. These constructions can also be nested, such as in 31.

(28) Juan pod́ıa decir algo (John could say something)

(29) Juan tiene que ir a la escuela (John has to go to school)

(30) Juan comenzó a cantar una canción (John began to sing a song)

(31) Juan hab́ıa comenzado a cantar una canción (John had began to sing a
song)

The head comp sem rule is flexible enough to model all these structures:

• Sentence 28 is analogous to 21 but using the support verb “pod́ıa” and
the content verb “decir”.

• For sentence 29, we first apply head comp sem between “que” and “ir”,
which creates the intermediate phrase “que ir” that expects the same
arguments as “ir”, and finally we apply “tiene” to the phrase “que ir”
using head comp sem again.

• The phrase “comenzó a cantar” in sentence 30 is analyzed in the same
way as in sentence 29.

• For sentence 31 we can add one more nesting level, the final structure
links “hab́ıa” to “comenzado” and “comenzado” to “a cantar”, applies
the remaining arguments to the content verb “cantar” and also coindexes
“Juan” to the subject of “hab́ıa”.

78



3.6 Modifier rules

Modifiers are structures that depend on a head but are not selected by it,
i.e., they are not arguments that the head expects. Instead, modifiers can
be attached more freely, and they define using the MOD feature which kind of
structure they want to be attached to. Modifiers can also be applied in any
order to the left or to the right of a head. The two rules for attaching a modifier
to the left or to the right of a head are called mod head and head mod. The
definitions of these two rules are shown in figure 3.13.expr

VAL

[
MOD

〈
1

〉]
+ (H) 1 → 1

(a) mod head

(H) 1 +

expr

VAL

[
MOD

〈
1

〉]
→ 1

(b) head mod

Figure 3.13: The left-headed and right-headed versions of the modifier rule.

Figure 3.14 shows an example of application of the rule head mod in the
phrase “perro negro” (“black dog”). The adjective “negro” defines in its feature
MOD that is expecting to modify a noun, which will be unified with the head
“perro”. Notice that the resulting phrase still carries other valence features
that are still pending from the noun (in this case the SPEC feature).
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Figure 3.14: Analysis of the noun phrase “perro negro” (“black dog”).
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Figure 3.15 shows an example of application of the rule mod head for the
sentence “ayer llovió” (“yesterday it rained”). In this case, the adverb “ayer”
must define in its feature MOD that it expects to modify a verb.
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Figure 3.15: Analysis of the sentence “ayer llovió” (“yesterday it rained”).
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3.7 Clitics rule

Clitic pronouns in Spanish are pronouns that can appear before or after a verb
and can either take the place of a verbal argument or be used together with the
argument (this is called clitic reduplicationClitic

reduplication
or clitic doubling). If the clitic

is used before the verb, it is written as a separate word, e.g. “yo lo vi” (“I saw
him”) or “yo lo vi a Juan” (“I saw Juan”). On the other hand, when the clitic
is used after the verb, it is conjoined with the verb (this is called enclitic), e.g.
“iba a verlo” (“I was going to see him”).

In our grammar, we only model the clitics that appear before the verb. We
are not splitting conjoined words as they appear in the original AnCora corpus,
so we do not model the enclitic case. Because of this, there is only one rule for
clitics in the grammar that applies a clitic to the left of a phrase. The rule is
called clitic head, and it is shown in figure 3.16.

1 + (H)

expr

VAL

[
CLITIC

〈
1 | 2

〉]
→

phrase

VAL
[
CLITIC 2

]
Figure 3.16: The clitics rule clitic head.

Figure 3.17 shows the analysis of the sentence “Yo lo vi” (“I saw him”)
using the clitics rule. Notice that the clitic acts as ARG1 of the verb. Clitics in
Spanish often (though not always) act as semantic arguments of the verb, and
in these cases they might take the place of ARG1 or ARG2.

Compare this to figure 3.18, that shows the analysis of the sentence “Yo lo
vi a Juan” (“I saw John”). In this case both the clitic pronoun “lo” and the
prepositional phrase “a Juan” are set as ARG1 of the verb. This is a case of clitic
reduplication, which is a very common phenomenon in Spanish [Pineda and
Meza, 2005]. Notice that in this same example, the clitic is applied to the head
(verb) before the complement. We consider there is an implicit precedence of the
clitic application over the combination with any other expression. However, this
characteristic is not explicitly encoded in the grammar: the statistical process
is expected to discover this property based on the training data.

In Spanish it is possible to apply up to two clitics for a verb. If both the
indirect object and direct object clitics are present, the leftmost one must be
the indirect object clitic. Figure 3.19 shows the analysis of “Juan me lo dijo”
(“John told me”), which has indirect and direct object clitics, coindexed to ARG2

and ARG1 respectively.
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Figure 3.17: Analysis of the sentence “Yo lo vi” (“I saw him”).
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Figure 3.18: Analysis of the sentence “Yo lo vi a Juan” (“I saw Juan”).
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Figure 3.19: Analysis of the sentence “Juan me lo dijo” (“John told me”).

84



3.8 Relatives rule

Relative pronouns are pronouns that allow the introduction of a relative clause
inside another sentence. Consider the following examples:

(32) El libro que Juan leyó era largo / The book that John read was long

(33) El perro que me mordió era gris / The dog that bit me was gray

The pronoun “que” (“that”) in sentences 32 and 33 is used to introduce the
relative clauses. Notice that in these cases, the clauses “que Juan leyó” and “que
me mordió” are acting as modifiers of the corresponding nouns, but at the same
time the nouns play a role in the subordinate sentence (the book is the read
object, and the dog is the one who bit me), even if they are syntactically out
of the scope of the relative sentences. The relative pronouns are the links that
allow to introduce a sentence with a missing dependency (a gap) and establish
a correspondence to the noun that will fill this dependency. This is a case of
the larger problem of long range dependencies in natural language. Relative
sentences that act as noun modifiers is the only type of long range dependency
we will explore in detail in this work.

Besides single pronouns, in Spanish it is possible to use more complex phrases
to introduce a relative sentence, like in the following examples:

(34) La ciudad en donde naćı / The city where I was born

(35) La mujer cuyo auto compré / The woman whose car I bought

Phrase 34 introduces the relative clause using the expression “en donde”
(“where”), while phrase 35 uses the pronoun “cuyo” (“whose”) followed by a
noun phrase. We will call single pronouns (like “que”) or other expressions (like
“en donde” and “cuyo auto”) that can introduce a relative sentenceRelative

pronominal
expression

relative
pronominal expressions. The relative sentence introduced by one of these
relative pronominal expressions will have a dependency with the context, and
the expression will act both as an argument inside the relative sentence and as
a modifier to a noun in the container sentence.

The head rel rule, shown in figure 3.20, allows the combination of a relative
pronominal expression with the relative sentence it introduces. Notice that this
rule is very similar to the head mod rule, because it is essentially an application
of a modifier, with the difference that the non-local feature REL is used instead
of the valence feature MOD.

(H) 1 +

expr

NONLOCAL

[
REL

〈
1

〉]
→ 1

Figure 3.20: Feature structure for the relatives rule head rel.

The way the REL feature works is different than the way the valence features
work. After the application of any rule (except for head comp sem as seen in
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section 3.5), the result of the rule will inherit all valence features from the head
daughter that are not affected by the rule. This is how the standard valence
principle works in HPSG. For the REL feature, however, the result will inherit
the union of the REL values in the daughters, in the following way:

• If the REL feature is empty in both daughters, the REL of the result will
be empty.

• If only one of the daughters has a non-empty REL feature, it is copied to
the result.

• If both daughters have non-empty REL features, they must unify, and the
unified expression is copied to the result.

The REL feature is generally empty for all lexical entries except relative
pronouns (such as “que” and “donde”). Consider the phrase “El libro que Juan
leyó” (“The book that John bought”) from sample 32, whose analysis is shown
in figure 3.21. “Juan leyó” is analyzed as a verb phrase that is missing a
complement. This complement is fulfilled by the relative pronoun “que” using
the comp head rule. This causes the REL feature that was in the pronoun to
be percolated to the resulting verb phrase, which enables the application of the
head rel rule with the noun “libro”.

The application of the head rel rule stops the percolation of the REL feature.
The feature is no longer needed up the tree, as its constraints have already
been satisfied. This works in a similar way to the filler-gap constructions in
standard HPSG.

In the parse tree we can navigate from ARG1 of the verb “llegó” to the relative
pronoun “que”, and from there through the REL feature to the noun “libro”, so
this analysis allows us to retrieve the correct argument for the verb in this
non-local dependency construction.

Notice that in English it is possible to translate this sentence as “The book
John read” omitting the relative pronoun. This is not possible in Spanish:
relative sentences are always introduced by some kind of relative pronominal
expression that will include a pronoun, so we can be sure the REL feature will
be introduced by this pronoun.

The analysis of “El perro que me mordió” (“The dog that bit me”) from
sample 33, as shown in figure 3.22, is essentially the same, but in this case
the relative pronoun is acting as the subject of the relative sentence, so the
spec head rule is used.

The analysis of phrase 34 “La ciudad en donde naćı” (“The city where I was
born”), as shown in figure 3.23, presents some differences. First of all, instead
of a single pronoun it uses the relative pronominal expression “en donde”. The
pronoun “donde” is the one that introduces the REL feature, which is percolated
to the prepositional phrase upon application of the head comp rule.

The relative expression in this case is not acting as a subject or complement,
but as a modifier of the relative sentence (it is not shown in the diagram but
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Figure 3.21: Analysis of a fragment of the noun phrase “El libro que Juan leyó”
(“The book that John read”).

it becomes an ARGM). This is why we apply the rule mod head to combine the
expression to the relative sentence.

The analysis shown in figure 3.24 of phrase 35 “La mujer cuyo auto compré”
(“The woman whose car I bought” has a complex relative pronominal expression
that combines a pronoun with an argument. As usual, the pronoun introduces
the REL feature, and this pronoun “cuyo” (“whose”) also expects a noun phrase
as a complement. Once the complement is applied, the resulting phrase inherits
the REL feature so it can be treated as any other relative pronominal expression:
it is applied as a complement of the relative sentence, and the result is applied
as a relative (modifier) of the noun.

We can summarize the life cycle of the REL feature during the parsing process
as follows:
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Figure 3.22: Analysis of a fragment of the noun phrase “El perro que me mordió”
(“The dog that bit me”).

• The REL feature is always introduced by a relative pronoun.

• Any non-empty REL feature will be inherited by its parent in the tree. If
both daughters of a node contain a non-empty REL feature, their values
are unified.

• The relative pronominal expression will be attached to the left of a relative
sentence, which implies applying one of the rules spec head, comp head

or mod head.

• The head rel rule expects an expression with a non-empty REL feature
on the right side, and its result clears the REL value so it is not inherited
further up the tree.
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Figure 3.23: Analysis of a fragment of the noun phrase “La ciudad en donde
naćı” (“The city where I was born”).
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Figure 3.24: Analysis of a fragment of the noun phrase “La mujer cuyo auto
compré” (“The woman whose car I bought”).
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3.9 Punctuation rules

Any punctuation marker can be attached to any expression using one of the two
head punctuation rules: head punct and punct head. Punctuation markers use
the part of speech f, so any word marked as f can be used for this rule, no other
feature is necessary.

However, certain punctuation markers can be used for building a coordina-
tion. For example, in the expression “manzanas, naranjas y peras” (“apples,
oranges and pears”), the first “,” is used as a coordination marker. These cases
use the two coordination features, as explained in section 3.10, so we ask that
for the standard punctuation rule, those features are defined as empty. This is
shown in figure 3.25, which shows the definition of the two punctuation rules.

word

HEAD f

VAL

[
LEFT COORD 〈〉
RIGHT COORD 〈〉

]
+ (H) 1 → 1

(a) punct head

(H) 1 +


word
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VAL

[
LEFT COORD 〈〉
RIGHT COORD 〈〉

]
→ 1

(b) head punct

Figure 3.25: The left-headed and right-headed versions of the punctuation rule.
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3.10 Coordination rules

Coordinations are associations between two or more compatible structures that
combine to form a structure with similar combinatorial properties as its parts.
For example it is possible to coordinate two noun phrases to generate another
noun phrase. In Spanish a coordinated structure always uses another grammat-
ical element that acts as connecting tissue between the coordinated elements:
typically a conjunction or a punctuation sign (see section 3.9). The simplest
example of this is the coordination between two structures using a conjunc-
tion, such as the coordinated noun phrase “manzanas y naranjas” (“apples and
organes”).

It is possible to connect an unbounded number of compatible elements in
a coordination, for example separating them by a comma: “duraznos, peras,
manzanas y naranjas” (“peaches, pears, apples and oranges”). In this case we
say there is a chained coordination

Coordination
chain

, that could be easily decomposed into
a series or applications of simpler coordinations: “duraznos” is coordinated to
“peras, manzanas y naranjas”; which is “peras” coordinated to “manzanas y
naranjas”; which is “manzanas” coordinated to “naranjas”.

Each of these simpler coordinations are indeed ternary structures that com-
bine:

• A left coordinated element.

• A connector: typically a conjunction (like “y” / “and”) or another element
that can act as connecting tissue for the coordination (such as a comma).

• A right coordinated element that is compatible with the left one. This
element might be another coordinated structure, allowing the formation
of chained coordinations.

As our grammar only contains binary rules, we need a way to binarize
this kind of ternary structures. In order to do this, we define two rules that
must be applied one after the other to form a coordination: coord left and
coord right. coord right attaches a conjunction (or another coordinating
connector) to the right side of the coordination yielding a incomplete coordina-
tion, while coord left attaches a left element to an incomplete coordination to
make it complete. Figure 3.26 shows the two rules, and figure 3.27 shows the
analysis of the “manzanas and naranjas” example.

The different elements in a coordination are said to be compatible, but they
do not necessarily have the same POS. Consider the following example:

(36) La cerca es blanca y de madera (The fence is white and wooden)

Example 36 contains the expression “blanca y de madera” that coordinates
an adjective and a prepositional phrase. Both elements are compatible in the
sense that both define properties of the fence. In our grammar, the connector
is the key element for modelling this behavior. Unlike standard HPSG, we
include two new valence features in the connectors intended to specify the type
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expr
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[
RIGHT COORD

〈
1

〉]
 + (H) 1 →

phrase
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[
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]
(a) coord right

(H) 1 +


expr
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LEFT COORD
〈

1

〉
RIGHT COORD 〈〉


 →


phrase

VAL

[
LEFT COORD 〈〉
RIGHT COORD 〈〉

]
(b) coord left

Figure 3.26: The left and right coordination rules.
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Figure 3.27: Analysis of the coordination “manzanas y naranjas” (“apples and
oranges”).

of elements the connector is meant to coordinate: LEFT COORD and RIGHT COORD.
This will of course depend on the context of the sentence. The lexical entry for
the conjunction “y” in example 36 is shown in figure 3.28, and the resulting
coordination is shown in figure 3.29.

As shown in figure 3.26 by convention, the head of the coord right rule is
the right expression, and the head of the coord left rule is the left expression.
This means that, after creating a chain of coordinations, the leftmost element
of the chain will be its main head.
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Figure 3.28: Feature structure for conjunction “y” in “la cerca es blanca y de
madera”.
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Figure 3.29: Analysis of the coordination “blanca y de madera” in “la cerca es
blanca y de madera”.
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3.11 Basic implementation of a rule

As mentioned in section 3.1, the rule notation we used so far is a simplification.
Rules are also implemented as feature structures, and the relationships between
the features of the head and its daughters are defined in terms of feature con-
straints. As we consider all rules to be binary and each one of them identifies
only one of their children as its head, we can define the simplest feature struc-
ture for a rule as the one shown in figure 3.30. This feature structure defines
a RULE HEAD that will be the head expression, and a RULE DEP that will be the
dependent expression. The head and the dependent each will contain an ex-
pression, and the result of the application of the rule will be another expression
that is the CONTENT of the rule itself.

rule

RULE HEAD
[
CONTENT expr

]
RULE DEP

[
CONTENT expr

]
CONTENT expr

RULE NAME text


Figure 3.30: Basic feature structure for an abstract rule.

As we have seen, most of the rules have left-headed and right-headed vari-
ants. It is easy to implement this by having two features LEFT and RIGHT in the
rule and coindexing them with the RULE HEAD or RULE DEP features accordingly,
as shown in figure 3.31.



rule

RULE HEAD 1

[
CONTENT expr

]
RULE DEP 2

[
CONTENT expr

]
LEFT 1

RIGHT 2

CONTENT expr

RULE NAME text


(a) Left-headed rule.



rule

RULE HEAD 1

[
CONTENT expr

]
RULE DEP 2

[
CONTENT expr

]
LEFT 2

RIGHT 1

CONTENT expr

RULE NAME text


(b) Right-headed rule.

Figure 3.31: Feature structure for the abstract left-headed and right-headed
rules.

Notice how the feature structures in figure 3.31 match the simplified notation
shown in figure 3.1: The daughters (on the left of the arrow in figure 3.1) are
the expressions marked as LEFT or RIGHT in the feature structure. The head
marker ‘(H)’ is represented by coindexing the features RULE HEAD and RULE DEP

accordingly. Finally, the resulting expression on the right side of the arrow in
figure 3.1 is the expression pointed by the root feature CONTENT in figure 3.31.
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3.12 Principles

HPSG encodes some of its constraints as principles Sag et al. [2003]. Some
of these principles can be implemented directly into the feature structures and
some are used as a guideline for implementing the features or rules. In our
grammar we use the following principles:

Head Feature Principle

The HEAD feature of the daughter marked as head should be the same as the
HEAD daughter of the resulting phrase. This is the same as the Head Feature
Principle used in [Sag et al., 2003]. It can be easily implemented by unifying
all rules with the structure shown in figure 3.32, which ensures that the HEAD

feature of the daughter is unified with the HEAD feature of the resulting phrase. RULE HEAD

[
CONTENT

[
HEAD 1

]]
CONTENT

[
HEAD 1

]


Figure 3.32: Implementation of the Head Feature Principle.

Valence Principle

Unless otherwise stated by the rules, the features inside the VAL feature from the
daughter should be the same for the resulting phrase. This is analogous to the
Valence Principle used in [Sag et al., 2003]. Notice, however, that this principle
indicates a default value, but the different rules should change this behaviour
depending on their needs. Because of this, it is not possible to implement it as
a single feature structure.

In our case, we copy the values of the SPEC, COMP, CLITIC, MOD, LEFT COORD

and RIGHT COORD from the head daughter to the resulting phrase, except for
the features explicitly modified by the rule. For example, the specifier rules
should copy all the rest of the VAL features but modify only the SPEC value in
the phrase.

An important exception to this principle is the head comp sem rule, which
is designed explicitly to copy the valence features from the dependent instead
of the head daughter.

Agreement Principle

As mentioned in section 2.1.4, HPSG defines an agreement principle that allows
us to model agreement constraints without the complexities that would happen
in CFG. [Sag et al., 2003] defines the Specifier-Head Agreement Constraint,
which states that if a lexical element requires a specifier, it should agree with
its specifier. This principle was formulated for English, but it is true in Spanish
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as well. Also, for Spanish we would like an adjective to agree with the head
noun in a noun phrase construction. As adjectives are attached using the MOD

feature, we would also need to indicate that the agreement principle should be
honored when applying a modifier.

In terms of implementation as feature structures, our version of the agree-
ment principle implies unifying the specifier and modifier rules with the struc-
ture shown in figure 3.33, which ensures that for those rules the AGR feature in
the dependent unifies to the one in the head.

RULE HEAD

[
CONTENT

[
HEAD

[
AGR 1

]]]

RULE DEP

[
CONTENT

[
HEAD

[
AGR 1

]]]


Figure 3.33: Implementation of the Agreement Principle.

As both number and gender are encoded as features in AGR, this principle
effectively works for modeling number and gender agreement in Spanish. How-
ever, see section 4.7 for a discussion of the behavior of this principle in an actual
corpus.

Relative Principle

As seen in section 3.8, the REL feature works differently than the valence features.
We want that if the REL feature has a non-empty value in either the head or the
dependent, this value is percolated to the resulting phrase, otherwise the empty
REL is kept.

This is similar, but not exactly the same, as the Gap Principle in [Sag et al.,
2003], which states that the GAP feature of the daughters are added up in the
GAP feature of the parent. The difference is that we are not allowing many REL

expressions, as would happen with gaps, so if two expressions expect a REL, both
values would be unified. In practice this works well because the REL feature is
generally fulfilled by expressions that are relatively close in the tree.

This principle is not implemented as a single feature structure, but is en-
forced during the rule applications.
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Chapter 4

Description of the Corpus

This chapter describes the way we created a corpus of sentences analyzed ac-
cording to our HPSG grammar. The corpus is based on the AnCora corpus (see
section 2.4.2) and was transformed using a set of heuristics and later analyzed
using a feature structure implementation of our grammar. We also provide some
statistics of interest for the corpus.

4.1 Initial corpus transformation

The initial transformation of the Spanish AnCora corpus is described in [Chiruzzo
and Wonsever, 2016; Chiruzzo, 2015]. The transformation process comprises a
top-down step followed by a bottom-up step, with the aim of transforming all
sentences in AnCora into elementary HPSG treesElementary

HPSG tree
, i.e. a head surrounded

by its direct dependents (complements, specifier, modifiers).
The top-down step is in charge of simplifying some complex structures found

in the corpus. As mentioned in section 2.4.2, AnCora contains many variants of
rules for some of its categories like S (subordinate sentence), sn (noun phrase) or
grup.nom (nominal group). Much of this variability can be explained because
the tree structures in AnCora tend to be rather flat. Many structures like
nested blocks, subclauses, coordinations and some punctuation lack a uniform
annotation throughout the corpus, and are often attached to the same parent
without deeper analysis. Figure 4.1 shows some examples of AnCora nodes with
several children. In the first case, 4.1a, we see a subordinate sentence “, Llorenç
sigue en el Barça, ¿no?”, which contains as children the subject, main verb, the
prepositional complement, a modifying block, and several punctuation symbols.
As can be seen in the example, the punctuation symbols and some constructions
do not follow a strict annotation logic: the first comma (separating from a
previous sentence) is located inside the subordinate sentence, but the question
marks associated to the nested block “¿no?” are outside the block.

The second example, 4.1b, is a coordination of three elements. When mod-
eling coordinations in AnCora the usual structure is a parent category that con-
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tains any number of subtrees for the coordinated elements and their connectors
in a flat arrangement. The figure shows the original structure of grup.nom1234
“1956, 1967, y 1973” in the corpus. We can see that the direct children of the
top grup.nom node are a flat mixture of other grup.noms, punctuation symbols
and a conjunction. There is a rule variant for this structure that coordinates
three groups with this combination of separators, and also variants for chains
of coordinations with many numbers of groups and different separators.

SS4170

,/f sn grup.verb sp ,/f ¿/f neg ?/f

Llorenç sigue en el Barça no

(a) Subordinate sentence S4170.

grup.nomgrup.nom1234

grup.nom ,/f grup.nom ,/f conj grup.nom

1956/w 1967/z y/c 1973/w

(b) Nominal group grup.nom1234.

Figure 4.1: Examples of original structures found in AnCora prior to the trans-
formation.

For modeling these sentences in our grammar we need them to be strictly
binary, and this kind of complexities represent challenges in the transformation
process. The top-down process tries to break down these complex structures
and leaves simpler units that can be tackled by the bottom-up process. The
bottom-up process assumes that the structures left behind represent flattened
elementary HPSG trees, and is in charge of finishing the binarization and detec-
tion of arguments. This process uses a set of manually written heuristic rules for
deciding which the elements inside the phrase is the head, what rules should be
applied to relate this head to the rest of the elements, and in which order they
should be applied so the constituent is correctly binarized. The rules are writ-
ten in a simple language, designed for that purpose, for defining the categories
and possible attributes that could be used to identify heads or arguments. For
example, table 4.1 shows the head finding rules used for the grup.nom category.
The rules are applied in order, so the first one has higher priority than the last
one. In this example it means that finding a noun (n) as head has precedence
over finding a number (z), an adjective (a) or a participle (participi). This
initial transformation process achieved an average 95.3% precision for head de-
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tection (98.7% without considering coordinations) and 92.5% average precision
for argument detection [Chiruzzo and Wonsever, 2016].

– n (sustantivo)
“. . . Rı́o Bravo y Saltillo para la [ [H compañ́ıa] [francesa] ]. . . ”

– grup.nom (grupo nominal anidado)
“. . . y sobre [ [H transmisiones y retenciones] [de fondos de inversión] ] .”

– p (pronombre)
“. . . obtuvo 19 diputados, [ [H dos] [más] ] que en 1996. . . ”

– w (fecha)
“. . . hundimiento del “Kursk” el [ [pasado] [H 12 de agosto] ] en aguas
árticas. . . ”

– z (número)
“. . . donde lograron el [ [H 71 por ciento] [de los sufragios] ] . . . ”

– a (adjetivo)
“. . . quien cuestiona al entrenador es [ [H enemigo] [del Barça] ] .”

– v (verbo)
“. . . sobre todo en el [ [H capitulo] [de las infraestructuras] ] . . . ”

– s.a (sintagma adjetival)
“. . . y la [ [H segunda] [, mucho más potente,] ] a las 07.30.42. . . ”

– participi (participio)
“. . . el relato ZZadjNM de lo [ [H ocurrido] [en la sima de ZZlugar] ] . . . ”

– S/clausetype=participle (oración subordinada de tipo participio)
“. . . en lugar del [ [H destituido] [Carlos Sainz de Aja] ] .”

– S/clausetype=relative (oración subordinada de tipo relativa)
“. . . incluidos los [ [H que él mismo ha hablado] [sobre śı mismo] ] . . . ”

– S/clausetype=completive (oración subordinada de tipo completiva)
“Al [ [H correr] [de los siglos] ] se hab́ıa manifestado un. . . ”

– sp (sintagma preposicional)
“aeropuerto de Miami, uno de los [ [H de mayor tráfico aéreo] [en EEUU] ]. . . ”

– sn (sintagma nominal)
“. . . el hotel ( un [ [H cinco estrellas de gran lujo] ] ). . . ”

Table 4.1: Head finding rules for the grup.nom category.

4.2 Verb phrases

Special care had to be taken for the transformation of verb phrases, which
include auxiliary and modal verb constructions, because their analysis in An-
Cora was different than the rest of the phrases. The grup.verb category in
AnCora includes single verbs and also verbal periphrases like “pueden hacer”
(“can make”) or “han comenzado a cantar” (“have begun to sing”). Keep-
ing this behavior found in the AnCora corpus is the reason why decided to
model verbal periphrases as units, as described in section 3.5. If we consider a
sentence like “ellos pueden hacer pasta” (“they can make pasta”), a standard
HPSG analysis for this phrase would first apply the complement “pasta” to the
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verb “hacer”, then this verb would be applied as a complement to the verb
“pueden” and finally the subject “ellos” would be applied to the resulting head.
However, constructions of this type are analyzed differently in AnCora: the ver-
bal periphrasis is considered a unit, so “pueden hacer” becomes a phrase that
should expect a complement and a subject. Considering verbal periphrases as
units simplifies the analysis of displaced constituents, so we kept this behavior
in our grammar and designed the head comp sem rule that percolates the verbal
arguments from the dependent to the parent of the rule in order to model it
homogeneously in our framework. Figure 4.2 shows the analysis of the verbal
periphrasis “pueden hacer” as it would be used in the sentence “ellos pueden
hacer pasta”.
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pueden hacer

Figure 4.2: Analysis for verb phrase “pueden hacer” (“can make”).

The transformation of verb phrases was forcefully different than the trans-
formation of other categories, as a grup.verb does not correspond to the “head
surrounded by arguments” paradigm. We wrote a set of fifteen templates for
identifying different types of grup.verb instances, with a particular way of
transformation for each. The result is always a structure that has the leftmost
verb as syntactic head (the support verb), but expects the arguments of the
rightmost verb (the content verb).
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4.3 Clitics

Clitics also needed a special treatment, as described in [Chiruzzo and Wonsever,
2018]. In order to model the Spanish clitic system we use the clitic head rule,
which allows us to attach a verb head to a clitic pronoun on its left, as mentioned
in section 3.7. This rule is used for modeling any clitic pronoun that is attached
directly to the verb, whether it is used for marking a pronominal verb, or as a
verb argument. The difference between them is that the verb arguments will
also be coindexed with a semantic argument inside the verb. Furthermore, if
the sentence contains clitic reduplication, the ARG feature will have two values in
its list: the clitic and the explicit argument. For example in the sentence “Juan
le dará un regalo a Maŕıa” (“John will give a present to Mary”), the clitic
(“le”) corresponds to the indirect object (“a Maŕıa”) which is also present in
the sentence. The lexical entry for the verb “dará” (“will give”) as used in this
sentence is shown in figure 4.3. Notice that both the clitic and the prepositional
complement are set as ARG2 in the argument structure, which corresponds to
the beneficiary semantic role. If either the clitic or the explicit argument are
present, then the semantic argument will point to that expression, if both are
present then the list associated to the semantic argument will contain both
expressions. AnCora provides a semantic role attribute for clitics and for other
expressions that can be used to identify the appropriate semantic feature.
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person singular form of the verb “to give”
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4.4 Relatives

As mentioned in section 3.8, the only long range dependencies we focus on in
this work are the relative clauses used as modifiers of nouns. In these cases, the
noun is at the same time acting as an argument of the verb in the clause besides
being modified by it. Generally the noun acts as the subject (e.g. “el perro que
me mordió” / “the dog that bit me”) or direct object (e.g. “el libro que léı” /
“the book I read”), but it could act as any argument. Unlike English, in Spanish
it is mandatory that these clauses are introduced by a subordinating relative
expression that always contains a relative pronoun, such as “que” (“that”) or “a
quien” (“to whom”), which makes these expressions the ideal hooks for including
the REL feature that models this behavior.

AnCora also provides some information for other kinds of long range depen-
dencies like discontinuities. However, the analysis of these constructions entails
further complexities that should be explored in detail, so the modeling of these
in our grammar was left out of the scope of this work.
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Figure 4.4: Simplified analysis for “los cultivos que contienen almidón” (“the
crops that contain starch”).

Figure 4.4 shows the analysis according to our grammar for the example
noun phrase with id sn29674 originally in AnCora: “los cultivos que contienen
almidón” (“the crops that contain starch”). The verb of the relative clause is
transitive, but its corresponding subject (“cultivos”) is not readily available.
Instead, the relative pronoun “que” takes the place of the subject, but keeps a
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non-local feature REL that points to the noun it stands for. The rule head rel

is used to unify a non-saturated NONLOCAL.REL feature to the appropriate ex-
pression it should be bound to, the resulting phrase cancels the value of the
NONLOCAL.REL feature. The semantic role information for these structures is also
present in AnCora, encoded as an attribute in the relative expression. These
attributes were leveraged during the transformation process and identified as
semantic arguments of the corresponding verb inside the relative clause.

4.5 Null subjects

As seen in section 2.4.2, AnCora marks null subjects in a sentence as a sn struc-
ture with a special attribute. We kept this behavior in our corpus, transforming
all instances of null subjects to a special empty lexical entry (its text value is
“()”, as this sequence of tokens is not used in the AnCora corpus). This allows
us to model null subjects in the same way as AnCora does.

However, we must take into account that a parser trained using these marks
will have lower performance when presented with an input text that does not
have them. One way of solving this issue is preprocessing the inputs of the
parser and artificially adding the null subject marks. Doing this accurately is
not easy, and it is an interesting area of research (see [Rello et al., 2012; González
and Mart́ınez, 2018]), but we left this treatment out of the scope of the current
work.

4.6 Analysis with HPSG grammar

The result of the transformation process is a set of sentences containing infor-
mation on each lexical entry, the values for some features, and the rules to apply
to them so as to build each sentence as an HPSG tree. We then processed each
one of the trees restoring the corresponding valence features for each lexical en-
try. This process is relatively simple: Based on the rules applied to each of the
structures, we recursively transverse from the root of the sentence to the leaves
inferring the features that the lexical entries should have. The process collects
the rules applied in a chain of nested heads, and starts over for each dependent
(non-head element). We infer the valence features from this sequence of rules
applied from the root to a leaf. Special care has to be taken for dealing with
the following constructions: for coordinations, the features should be replicated
on the different branches; and when handling relative constructions, we must
ensure that the relative pronouns end up with the REL feature, but not the rest
of the words.

In order to validate our HPSG grammar and evaluate the factibility of using
it on this corpus, we implemented the grammar using the feature structure
implementation provided by the nltk library1. This feature structure library
contains the basic principles for describing feature structures with unification

1http://www.nltk.org/howto/featstruct.html
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and coindexation, but it is not designed to specifically enforce structure typing,
unlike the one used in standard HPSG theory. This means we are using feature
structures without a type hierarchy, but in our case this is not a problem because
we use the corpus to generate the lexical entries. The type hierarchy becomes a
key feature when developing a manual grammar because it gives the developer
the flexibility to encode the linguistic information elegantly in types and apply
them throughout the grammar. However, in our case we extract the grammar
information directly from the corpus, for example the lexical entries are all found
in the corpus and they can be modeled with the exact level of detail that the
corpus provides.

Table 4.2 shows the number of lexical frames (superclass of lexical entries
without considering the word and the morphological features), lexical entries
and instances discriminated by part of speech.

POS Frames Entries Instances

a - adjective 120 11,697 35,939
c - conjunction 191 796 27,067
d - determiner 11 303 76,135
f - punctuation 57 136 65,546
i - interjection 8 62 99
n - noun 226 34,193 121,113
p - pronoun 38 431 22,692
r - adverb 74 2,214 18,952
s - preposition 227 1,841 79,901
v - verb 2,234 28,486 61,699
w - date 21 1,043 2,731
z - number 38 2,392 5,363

Total 3,245 83,594 517,237

Table 4.2: Number of lexical frames, entries and instances for each part of
speech.

The feature structure library allowed us to implement both the lexical entries
and the rules as feature structures. We used these to create a feature structure
version of all the trees in the corpus, by building each lexical entry and applying
the corresponding rules for building the tree. The aim of this exercise was to
validate the grammar and create a final version of the corpus annotated in a
feature structure format.

During this process, we detected and corrected errors in the annotations
of words and constituents that impeded the proper application of the rules.
Only 232 errors (e.g. in lexical entries or rule applications) had to be manually
corrected, which is less than 0.05% of the total number of tokens. However,
there was one structure in particular that yielded a great number of errors, as
we will see in the following section.
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4.7 Analysis of the agreement principle

We noticed a great number of analysis errors that occurred due to the agreement
principle as described in section 3.12, i.e. checking that the specifier (or subject)
agrees with the head in morphological features like person, number or gender (in
Spanish we would also require that an adjective agrees with a modified noun).
We ran the analyzer for a sample of 1,000 sentences and found that roughly 10%
of those sentences failed due to agreement errors. When manually analyzing
those errors, we found out there were several situations in which the agreement
principle fails for our corpus using our grammar. Some of these situations are
due to the nature of the corpus, while others happened because of the grammar
design. Let us see examples of some of the situations in which the agreement
principle in the way we implemented it fails:

• Subordinate sentences

[H no será una blasfemia] [S llevar adelante la operación de rescate]
wouldn’t it be blashpemy to perform this rescue operation

The subject in this sentence is a subordinate sentence. In these cases
trying to enforce agreement between these structures would not make
sense. The AGR feature in the subject will generally carry information
that contradicts the AGR feature in the head, for example the verb tense
or time.

• Coordinations

In a coordination chain, we take as representative the leftmost element
in the chain, and we are not doing any particular treatment for changing
their agreement features of the chain (for example from singular to plural).
This means that, on occasions, the coordination will not agree with the
original context. This could happen when a coordinated chain like is used
as subject, for example “Juan y Maŕıa corren” (“John and Mary run”),
if we take only “Juan” (singular) as representative of the coordination, it
will fail the agreement with “corren” (plural).

• Noun phrases with units

[S un centenar de artistas] [H fueron] / a hundred artists went

[S más de un millón de espectadores] [H lo vieron] / more than a million

spectators saw it

[S la mayoŕıa de los presentes] [H manifestaron su apoyo] / most of those

present expressed their support

[S el resto de imputados] [H se han acodigo a su derecho] / the rest of the

accused exercised their right

In these cases the head word is the unit (“centenar”, “millón”, “mayoŕıa”,
“resto”) which does not agree with the plural verbs.
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• Annotation errors in AnCora

On several occasions the sentence was correct but there were some errors
in the features assigned to the words originally in AnCora, for example:

[S las] [H generales de hace cuatro años] / the general (elections) four years

ago

The word “generales” is marked as male, though it is an adjective talking
about the elections (female).

[S las] [H navieras de japón] / the shipping companies from Japan

The word “navieras” is marked as singular.

• Errors in the original text

[S la] [H bolsas españolas] / the Spanish stock exchanges

[S la siniestralidad de las carreteras argentinas] [H elevan a 10.000 el
número de v́ıctimas] / the accident rate of Argentine roads raises the number of

victims to 10,000

The original text violates the agreement principle, but ideally the system
should be able to recover from these errors and provide a suitable analysis.

• Use of possessive pronouns

Possessive pronouns have the person agreement feature (“mi” is 1st per-
son, “tu” is 2nd person, etc.) provided by the morphological information.
Of course nothing indicates that this person feature should agree with the
person feature of the verb they will be transitively bound to. Using this
feature values out of their context is an error.

• Gender of determiners

[S el] [H agua] / the water

[S el] [H alza más importante] / the most important rise

[S los] [H cabezas de listas] / the heads of lists

In Spanish there are rules for changing the gender of the determiner on
some occasions for tonal reasons, these rules are very hard to model in
this context.

• Relatives and ellipses

[S la] [H que tiene el ave] / the one the bird has

[S las] [H que rige este mercado] / the ones governed by this market

These are rare cases in which the rule application would unify the male
feature of “bird” or “market” with the verb (because they are the corre-
sponding subjects) and then try to unify the relative sentence with the
determiners (which are female) and fail.

These are the most frequent situations, although there are a few more. Some
of them occur due to use of language, others because of flaws in our grammar,
and others are real errors in the data that a parser should try to recover from.
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We could try to tune the rules further in order to model some of these situa-
tions better, which would imply making the rules more complex. In this work,
however, we decided to leave the more complex analysis as future work, and
just disable the agreement principle, so the rules can accept all the faulty cases.
It is clear that the agreement between subject and verb or between determiner
and noun gives important information that a parser could use to identify the
rules to apply, but given there are also plenty of exceptions, we expect that the
statistical process for training the parser can learn to tell the different cases in
which the agreement principle should or should not be honored directly from
the data.

4.8 Statistics

The final corpus has approximately half a million words (517,237) in over 17,000
sentences. We split the contents of the corpus in training, development and
test partitions according to the standard AnCora partitions used in CoNLL-
2009 shared task [Hajič et al., 2009]: around 80% words for training, 10% for
development and 10% for test. Table 4.3 shows the number of documents,
sentences and words in each partition.

Train Dev Test Total
Documents 1,312 155 168 1,635
Sentences 14,018 1,638 1,692 17,348
Tokens 418,319 49,338 49,580 517,237

Table 4.3: Statistics of the corpus partitions in terms of number of documents,
sentences and tokens.

POS Train Dev Test Total

a - adjective 29,011 3,494 3,434 35,939
c - conjunction 21,942 2,526 2,600 27,068
d - determiner 61,581 7,224 7,330 76,135
f - punctuation 52,919 6,296 6,330 65,545
i - interjection 85 1 13 99
n - noun 89,324 10,569 10,444 110,337
p - pronoun 18,418 2,122 2,152 22,692
r - adverb 15,360 1,776 1,816 18,952
s - preposition 73,252 8,780 8,645 90,677
v - verb 50,012 5,751 5,936 61,699
w - date 2,169 282 280 2,731
z - number 4,246 517 600 5,363

Total 418,319 49,338 49,580 517,237

Table 4.4: Number of word instances by part of speech for each corpus partition.

The number of words for each part of speech is shown in table 4.4, while the
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number of times each rule is applied is shown in table 4.5.

Rule Train Dev Test Total

clitic head 6,554 789 727 8,070
comp head 4,679 544 553 5,776
coord left 14,725 1,725 1,785 18,235
coord right 14,725 1,725 1,785 18,235
head comp 116,057 13,597 13,568 143,222
head comp sem 8,325 935 1,002 10,262
head mod 74,171 8,979 8,825 91,975
head punct 31,266 3,767 3,684 38,717
head rel 6,269 731 737 7,737
head spec 5,272 599 606 6,477
mod head 22,520 2,662 2,691 27,873
punct head 18,424 2,192 2,237 22,853
spec head 89,964 10,501 10,742 111,207

Table 4.5: Number of times each rule is applied in the corpus for each corpus
partition.

Figure 4.5 shows a histogram of sentence lengths for the whole corpus. The
longest sentence in the corpus is 149 words long. We dropped sentences with
only one word because they are trivial for parser development, so the shortest
sentence is 2 words long. The majority of sentences (almost 80%) in the corpus
are between 11 and 50 words long.
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Figure 4.5: Distribution of sentences by length in the corpus.
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Chapter 5

Parser development

In this chapter we present the parsers we implemented. We begin with a defini-
tion of the parsing problem, we outline some ways in which it could be solved,
and discuss how to evaluate the performance of the parsers built for our gram-
mar. Then we describe the different parsing strategies we tried for building our
parser: some bottom-up parsing baselines of increasing complexity, a CKY ap-
proach, and a top-down approach. All the results presented in this chapter are
evaluated against the development corpus, which we used for parameter tuning.

5.1 Definition of the problem

The aim of our parser is to transform a sentence into a tree encoded in our
HPSG grammar. Given a sentence S = {w1, w2, . . . wn} find the HPSG tree
T ∈ T that best represents S. T represents the set of possible trees that use
the HPSG grammar defined in chapter 3.

This means taking as input a sentence like 37 and transforming it into the
tree shown in figure 5.1.

(37) El perro que vi estaba corriendo (The dog I saw was running)

There are at least two ways to do this: we can start from the lexical entries
and find the best tree, or we can try to find the best tree and infer the lexical
entries from it. Both approaches have different advantages and disadvantages.

5.1.1 From lexical entries to trees

On the one hand, if we had the correct lexical entries for each one of the words
in the sentence (the ones shown in figure 5.2), we could use an algorithm like
CKY to find the correct rules to apply in order to get the correct tree.

For this approach, we need a process for assigning the correct lexical entries
for each word. A grammar like ours generally has many possible lexical entries
for each word, and some particularly ambiguous words could have hundreds of
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Figure 5.1: Expected parse tree for the sentence “El perro que vi estaba co-
rriendo” (“The dog I saw was running”).

possible lexical entries. The use of a supertagger becomes essential if we want
this approach to be tractable.

The main drawback of this is that a supertagger in general does not guaran-
tee that the sequence of tags obtained will be compatible to form a valid tree,
let alone the correct tree. It is possible that the supertagger returns a sequence
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Figure 5.2: HPSG lexical entries for “El perro que () vi estaba corriendo”,
simplified without morphological features.

of supertags that cannot be combined into a suitable tree, so we would need a
backup plan to try to form the best tree we can even if the lexical entries are
faulty.

It is also possible that the appropriate lexical entries for the sentence are
rare and there are no examples of them in the training corpus. If this is the
case, it is hard for a process like a supertagger to come up with new lexical
entries it has not seen before.

5.1.2 From trees to lexical entries

On the other hand, we could try an alternative approach that is trying to guess
the overall structure of the tree with its rule applications, without knowing the
actual entries. After this is ready, we can derive the features of the lexical
entries from the rules that are applied in the tree at each step. We know we can
do this, because it is the way the corpus is built in the first place (see section
4.6): we labeled each binary tree with the corresponding rule and then inferred
the features from that base structure. For example, the process could return a
tree like the one in figure 5.3, and we can infer the appropriate features for each
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lexical entry from the structure.

spec head

spec head head comp sem

El head rel estaba corriendo

perro comp head

que spec head

() vi

Figure 5.3: Constituency tree for the sentence “El perro que vi estaba corriendo”
(“The dog I saw was running”).

The drawback in this case is that the final trees might end up containing a
invalid combination of rules. One example of this is having a tree that applies a
coord left rule without its corresponding coord right. It is also possible that
we end up with invalid lexical entries. We do not impose many restrictions on
the features that could be used for each lexical entry but it could happen, for
example, that a head rel rule is applied with a dependent that does not have
a relative pronoun. We could either trust that the statistical process learns to
infer from the data which situations are invalid and avoid them, or we could use
other mechanisms to enforce that the process returns valid trees.

An important advantage of this approach is that it is free to generate any
kind of lexical entry it needs to represent the tree, even if it has never seen it
in the training set.
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5.2 Performance metrics

This section defines the metrics we use to evaluate the performance of the dif-
ferent parsers we built. These are global metrics, which compare the candidate
parse tree with the gold standard, the one considered correct from the corpus.
Later on we will define other metrics that only focus on some specific aspects.

Consider the following sentence:

(38) En invierno Juan se irá a Barcelona (In winter Juan will go to Barcelona)

The parse tree for this sentence in our grammar is shown in figure 5.4. The
tree also includes unique identifiers for each word and phrase. The leaves of the
tree are the words (w1 through w7) of the sentence and the intermediate nodes
are the phrases (p1 through p6).
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Figure 5.4: Parse tree for the sentence “En invierno Juan se irá a Barcelona”
(“In winter Juan will go to Barcelona”).
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5.2.1 Constituency metrics

From the full parse tree shown in figure 5.4 we can extract a constituency tree
as the one shown in figure 5.5. The process for generating this tree is straight-
forward: just replace every leaf in the tree for the corresponding word and every
non-leaf for the corresponding rule applied at that node. Notice that not all the
information of the original tree can be retrieved from this representation: we
could infer all the syntactic features (specifiers, complements, relatives, etc.),
but not the corresponding semantic features.

p1mod head

p2head comp p3spec head

w1En w2invierno w3Juan p4head comp

p5clitic head p6head comp

w4se w5irá w6a w7Barcelona

Figure 5.5: Constituency tree for the sentence “En invierno Juan se irá a
Barcelona” (“In winter Juan will go to Barcelona”).

The constituency tree in figure 5.5 also inherits the unique identifiers for
each word and phrase of the original tree. Using these identifiers, the tree can
also be described as the following list of constituents by taking the sequence of
leaves corresponding to each subtree:

• p1: [mod head w1 w2 w3 w4 w5 w6 w7 ]

• p2: [head comp w1 w2 ]

• p3: [spec head w3 w4 w5 w6 w7 ]

• p4: [head comp w4 w5 w6 w7 ]

• p5: [clitic head w4 w5 ]

• p6: [head comp w6 w7 ]

This representation format is useful for defining a metric of comparison be-
tween trees. Given two trees in this format, one taken as gold standard and one
taken as candidate, we can define the following measures [Jurafsky and Martin,
2014]:
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Precision:
|gold constituents ∩ candidate constituents|

|candidate constituents|
(5.1)

Recall:
|gold constituents ∩ candidate constituents|

|gold constituents|
(5.2)

F1 Score:
2 ∗ precision ∗ recall
precision+ recall

(5.3)

Taking in consideration that all the trees used in our process are strictly
binary trees, the number of constituents in any tree (gold or candidate) will
always be one less than the number of words in the sentence. Because of this,
the denominators in equations 5.1 and 5.2 will always have the same value, so
both metrics will be the same, and also the F1 score will have the same value as
precision and recall. In our results, we will use the constituency F1 score, but
it actually represents any of the three values.

The constituency metrics can be defined in two flavors, whether we consider
only the structure of the tree or if we also take in consideration the grammar
rules applied at each step. If we count the number of constituents considering
the rule they apply, it should be considered the Labeled F1. Conversely, if we
count the constituents without the rule, it should be considered Unlabeled F1,
which is a more relaxed measure. To distinguish them from other metrics, in
this document we will call the labeled constituency F1 the L-ConsL-Cons metric, and
its unlabeled version the U-ConsU-Cons metric.

5.2.2 Dependency metrics

Considering that each binary rule defines its children as a head and a dependent,
we can transform the tree in figure 5.5 to a format similar to dependency trees
by moving the head words up the tree. The process works as follows:

• Select a phrase node that only has words as children, but not other phrases.

• Substitute that phrase node in the tree for its head daughter, which is a
word, and merge the children of both nodes (phrase and word).

• Iterate the process until there are no more phrases in the tree.

Figure 5.6 shows this process in action for sample 38. Starting from the
constituent tree (5.6a), we first move the head words “En”, “irá” and “a” up
one level in the tree (5.6b), then in each iteration only the word “irá” will move
up the tree until the process converges to the final tree in figure 5.6e.

This tree can be described as a set of three-tuples <dependent word, head
word, rule name> in the following way (we include an extra tuple for the root
of the sentence, i.e. the word that does not have an outbound dependency):
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(e)

Figure 5.6: Conversion from constituency to dependency tree for the sentence
“En invierno Juan se irá a Barcelona” (“In winter Juan will go to Barcelona”).

• w1, w5, mod head

• w2, w1, head comp

• w3, w5, spec head

• w4, w5, clitic head

• w5, -, root

• w6, w5, head comp

• w7, w6, head comp

Notice that this notation is structurally equivalent to a dependency tree
notation, but the labels correspond to our grammar rules instead of the usual
labels for dependency trees. Every dependency grammar defines its own set of
available labels, so this format could be seen as a dependency grammar with a
particular set of labels adapted to our needs. Of course it would not be possible
to compare the labels with other dependency formats without performing some
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kind of transformation, but it is possible to compare different trees annotated
in our format.

Given a gold tree and a candidate tree in this format, we can define the
metrics corresponding to dependency trees [Buchholz and Marsi, 2006]. The
Labeled Dependency Accuracy or Labeled Attachment Score (LAS) is the pro-
portion of correctly predicted tuples; while the Unlabeled Dependency Accuracy
or Unlabeled Attachment Score (UAS) is the proportion of correctly predicted
heads without considering the rule. More formally:

LAS:
|labeled tuples in gold tree ∩ labeled tuples in candidate tree|

|words|
(5.4)

UAS:
|unlabeled tuples in gold tree ∩ unlabeled tuples in candidate tree|

|words|
(5.5)

In order to distinguish them from other metrics, in this document we will call
the Labeled Attachment Score the L-DepL-Dep metric and the Unlabeled Attachment
Score the U-DepU-Dep metric.

The constituency metrics L-Cons and U-Cons are more strict than the de-
pendency metrics L-Dep and U-Dep defined in this section. This can be seen
in the following example: Consider the candidate parse tree in figure 5.7. This
tree is different from the one in figure 5.5 in that in this case the subject “Juan”
is applied to the verb before applying the complement “a Barcelona”.

p1mod head

p2head comp p3head comp

w1En w2invierno p4spec head p6head comp

w3Juan p5clitic head w6a w7Barcelona

w4se w5irá

Figure 5.7: Constituency tree of a parser candidate for the sentence “En invierno
Juan se irá a Barcelona” (“In winter Juan will go to Barcelona”).

118



For this candidate tree, the list of constituents is the following:

• p1: [mod head w1 w2 w3 w4 w5 w6 w7 ]

• p2: [head comp w1 w2 ]

• p3: [head comp w3 w4 w5 w6 w7 ]

• p4: [spec head w3 w4 w5 ]

• p5: [clitic head w4 w5 ]

• p6: [head comp w6 w7 ]

This constituent tree presents a violation with respect to the standard be-
havior of HPSG: the complements should be attached to the head before the
specifier. However, it is a typical error that a parser might make, and from the
point of view of the attachments of arguments to the respective heads it behaves
almost as well as the correct tree.

Notice that in this case, only five out of the six expected constituents are
present in the candidate tree, and only four of them have the appropriate rule.
This means that U-Cons is 0.83 and L-Cons is 0.67 for this example. However,
if we transform the constituency tree to dependencies using the process defined
above, we will arrive to the exact same tree as 5.6e, which means the U-Dep and
L-Dep in this case are both 1.0. This gap between the two metrics could become
much higher for longer sentences, because increasing the number of constituents
will result in exponentially more possibilities in the order of application of the
rules that represent the same dependency tree.

5.2.3 SRL metrics

So far we have only dealt with the evaluation of the structural syntactic infor-
mation contained in the parse trees, whether constituents or dependencies, but
we left out their semantic information. Given that our semantic representation
is SRL, we could use standard SRL metrics for this. In this work we base our
metrics on the ones used in CoNLL 2009 shared task [Hajič et al., 2009]. They
propose building a semantic dependency graph that contains an arc when there
is a semantic dependency between an argument and a predicate, labeled with
the argument type, and another arc between the predicate and the root, labeled
with the predicate type. Both the argument and the predicate are represented
by their heads in the dependency tree. Then they compare the arcs in a gold
and candidate tree using precision, recall and F1 score.

In our work we are not trying to predict the predicate types, so we discard the
arcs corresponding to these types and only keep the arcs between arguments and
predicates. The dependency tree with the semantic annotations corresponding
to the tree defined in 5.4 is shown in figure 5.8. Notice that the semantic
arguments that are introduced by endocentric semantic features (like IS ARGM)
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Figure 5.8: Dependency tree with semantic annotations for the sentence “En
invierno Juan se irá a Barcelona” (“In winter Juan will go to Barcelona”).

are represented as their exocentric versions in this representation, so the relation
between “irá” and “En invierno” becomes ARGM.

From this tree we can extract the following set of semantic dependencies:

• w1, w5, ARGM

• w3, w5, ARG0

• w6, w5, ARG4

Using the semantic dependencies, the SRL metrics between a gold and a
candidate tree are defined in the following way:

Precision:
|gold sem dependencies ∩ candidate sem dependencies|

|candidate sem dependencies|
(5.6)

Recall:
|gold sem dependencies ∩ candidate sem dependencies|

|gold sem dependencies|
(5.7)

F1 Score:
2 ∗ precision ∗ recall
precision+ recall

(5.8)

In this work we will mainly refer to the F1 score as the main metric for SRL.
We will define two versions of this metric, one of them considering a match if
the semantic dependency is predicted correctly together with its argument type
(the Labeled F1 Score, which we call L-SRLL-SRL ), and an unlabeled version of this
metric that considers a match for the pair dependency-predicate regardless of
the argument type (the Unlabeled F1 Score, which we call U-SRLU-SRL )1.

1SRL systems are usually evaluated using the labeled metric, but for completeness we
include the unlabeled metric in our results as well.
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5.3 Bottom-up Baseline

To begin with our parsing experiments, we first designed a very simple parsing
strategy that we use as a baseline in order to compare to more complex ap-
proaches. This simplest strategy uses a greedy approach to build the parse tree
in a bottom-up way. Consider the following example:

(39) El niño come una manzana roja (The kid eats a red apple)

The expected constituency tree for sentence 39 in our grammar is shown in
figure 5.9.

spec head

head comp

spec head

head mod

w6

roja/a

w5

manzana/n

w4

una/d

w3

come/v

spec head

w2

niño/d

w1

El/d

Figure 5.9: Simplified constituents tree for “El niño come una manzana roja”
(“The kid eats a red apple””) without feature structures and semantic role label
information.

Given the way the grammar works, we can be sure that in the expected tree
there are at least two consecutive words of the original sentence that should be
combined together to form a phrase. The aim of the bottom-up baseline parser
is to find a suitable pair of consecutive words to combine, select the appropriate
rule, and substitute the words for a phrase. Then it will proceed iteratively until
all words are structured into phrases. Let us see how it works in this example.

First of all, there are two possible phrases that can be extracted in this case:

[ El niño ] come una [ manzana roja ]

If the process extracts any of those two phrases, the final tree will be the
same. The process might decide to extract, for example, the phrase [ manzana
roja ] and decide that the rule to apply is head mod. Then it will substitute the
pair of words for the syntactic head of the phrase, leaving the following:

El niño come una manzana
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Now there are two more options to reduce: [ El niño ] and [ una manzana ].
The process might decide to extract [ El niño ] and label it with the spec head

rule. After reducing the phrase, the rest of the sentence looks like the following:

niño come una manzana

From now on, there is only one way of extracting phrases and reducing the
tree in order to get the gold parse tree. The process must first extract [ una
manzana ] as spec head and substitute it with manzana, then it must extract [
come manzana ] as head comp (leaving come) and finally extract [niño come] as
spec head. With this sequence of reductions, the process yields the parse tree
shown in figure 5.9. We will call this sequence of steps theParsing history parsing history for
the sentence.

What the process needs to learn is how to decide which pair of words is the
most suitable to extract on the next step, and which rule it should apply. We
created different statistical models for this, which will be explained in increasing
order of complexity in the following sections.

5.3.1 Bilexical comparison

The easiest way to make the comparison is creating a scoring function that
assigns a higher score to pairs of words that have been seen together in the
training corpus, and less score, to the pairs that have not been seen together.

Consider the example 39 above and the new example 40

(40) La manzana verde es rica (The green apple is tasty)

Let us walk through the score definition using these examples. First of all,
write down the parsing history for both sentences 39 and 40, as shown in table
5.1.

Example Step Text

39

1 [ el niño ]spec head come una [ manzana roja ]head mod
2 niño come [ una manzana ]spec head
3 niño [ come manzana ]head comp
4 [ niño come ]spec head

40
1 la [ manzana verde ]spec head [ es rica ]head comp
2 [ la manzana ]spec head es
3 [ manzana es ]spec head

Table 5.1: Parsing history for sentences 39 and 40.

The objective is to build a table that indicates, for every pair of consecutive
words, if they should be reduced and which rule should be applied. In this first
approach we just count all pairs of consecutive words and the rule applied for
each one, considering that if two consecutive words are not reduced in a step,
the corresponding rule is a fictitious label none. Let us assume for a moment
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that the only possible rules are spec head, head comp, head mod, and none,
then table 5.2 shows the normalized counts for the word pairs in our examples.

Left Right none spec head head comp head mod

come manzana 0 0 1 0
come una 1 0 0 0

el niño 0 1 0 0
es rica 0 0 1 0
la manzana 0.5 0.5 0 0

manzana es 0.5 0.5 0 0
manzana roja 0 0 0 1
manzana verde 0 0 0 1

niño come 0.75 0.25 0 0
una manzana 0.5 0.5 0 0

verde es 1 0 0 0

Table 5.2: Normalized pair counts.

Now let us try to parse a new sentence using the scores defined by this table.
Consider example sentence 41, which is a combination of the previous sentences.

(41) El niño come una manzana verde (The kid eats a green apple)

First of all, we want to know which pair of consecutive words should be
reduced. In order to do that, we try to find the score associated to none for
each pair of words:

Step 1
Words: el niño come una manzana verde
Score: 0 0.75 1 0.5 0

The pairs of words that are least likely to be labeled as none (the smallest
score) are “el niño” and “manzana verde”. We can take the first pair (“el niño”)
to reduce, and look up in the table what is the most likely rule to apply, in this
case spec head. We reduce this pair and substitute the word for the head of
the phrase (“niño”), and we iterate the process:

Step 2
Words: niño come una manzana verde
Score: 0.75 1 0.5 0

In this second step we reduce “manzana verde” using the rule head mod, and
leave “manzana” for iterating the process:

Step 3
Words: niño come una manzana
Score: 0.75 1 0.5
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In the third step we reduce “una manzana” using the rule spec head.

Step 4
Words: niño come manzana
Score: 0.75 1

Thus, in the fourth step we reduce “come manzana” with rule head comp

and substitute it for “come”.

Step 5
Words: niño come
Score: 0.75

In the fifth and final step it is not even necessary to calculate the score of
none, as there will only be two words, but we must look up in the table to see
what is the most likely rule to apply. In this case it is spec head. The resulting
tree is shown in figure 5.10.

spec head

head comp

spec head

head mod

verdemanzana

una

come

spec head

niñoel

Figure 5.10: Constituents tree for “El niño come una manzana verde” (“The
kid eats a green apple”) after the parsing process.

This simple process can be extended to the whole training corpus and con-
sidering all possible rules, but it is of course far from perfect. The first problem
we run into is what to do if a word or a pair of consecutive words are not found
in the training corpus. We designed a simple back-off mechanism for handling
this situation that uses the parts of speech of the words, which must be indicated
in the sentence at parse time.

The back-off mechanism implies adding new fictitious words to the corpus
that represent an unknown word for each part of speech. New entries are added
to the table that represent the behavior of this unknown words with respect to
other words. Each pair of words <word1, word2> with parts of speech <pos1,
pos2> in the corpus counts as if it was these four entries:

• <word1, word2>→ rule

• <word1, pos2>→ rule
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• <pos1, word2>→ rule

• <pos1, pos2>→ rule

For example, the words “el niño” from step 1 of the parsing history of
sentence 39 would provide the following counts:

• <el, niño>→ spec head

• <el, unk N>→ spec head

• <unk D, niño>→ spec head

• <unk D, unk N>→ spec head

Left Right none spec head head comp head mod

come manzana 0 0 1 0
come una 1 0 0 0
come unk D 1 0 0 0
come unk N 0 0 1 0

el niño 0 1 0 0
el unk N 0 1 0 0
es rica 0 0 1 0
es unk A 0 0 1 0
la manzana 0.5 0.5 0 0
la unk N 0.5 0.5 0 0

manzana es 0.5 0.5 0 0
manzana roja 0 0 0 1
manzana unk A 0 0 0 1
manzana unk V 1 0 0 0
manzana verde 0 0 0 1

niño come 0.75 0.25 0 0
niño unk V 0.75 0.25 0 0
una manzana 0.5 0.5 0 0
una unk N 0.5 0.5 0 0

unk A es 1 0 0 0
unk A unk V 1 0 0 0
unk D manzana 0.5 0.5 0 0
unk D niño 0 1 0 0
unk D unk N 0.4 0.6 0 0
unk N come 0.75 0.25 0 0
unk N es 0.5 0.5 0 0
unk N roja 0 0 0 1
unk N unk A 0 0 0 1
unk N unk V 0.667 0.333 0 0
unk N verde 0 0 0 1
unk V manzana 0 0 1 0
unk V rica 0 0 1 0
unk V una 1 0 0 0
unk V unk A 0 0 1 0
unk V unk D 1 0 0 0
unk V unk N 0 0 1 0
verde es 1 0 0 0
verde unk V 1 0 0 0

Table 5.3: Normalized pair counts with backoff.

After counting all entries in this fashion, the normalized counts for all pairs
of words (and unknown words) looks like table 5.3. Now the score for applying a
rule to a pair of words can be defined as a linear combination of the scores applied
to the words plus the different combinations of words and parts of speech:

srule = α1s(w1, w2) + α2s(w1, p2) + α3s(p1, w2) + α4s(p1, p2) (5.9)
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We used the development corpus to empirically determine the most suitable
combinations of weights, and we found the best score in this case is: α1 =
0.7, α2 = α3 = α4 = 0.1. By default, if a combination of words is not in the
table, the standard score for the pair <word1, word2> is 0 for all rules except
for none, whose value is 1.

Let us try to parse a sentence with unknown words using this process.

(42) El niño ve la manzana (The kid sees the apple)

The parsing process for sentence 42 would be like the following:

Step 1
Words: el niño ve la manzana
POS: D N V D N
Score: 0.04 0.94 1 0.49

Action: Reduce “el niño” with rule spec head

Step 2
Words: niño ve la manzana
POS: N V D N
Score: 0.94 1 0.49

Action: Reduce “la manzana” with rule spec head

Step 3
Words: niño ve manzana
POS: N V N
Score: 0.94 0.8

Action: Reduce “ve manzana” with rule head comp

Step 4
Words: niño ve
POS: N V
Score: 0.94

Action: Reduce “niño ve” with rule spec head

Table 5.4 shows the performance of this approach over the validation corpus
for the global performance metrics defined in section 5.2. From now on, we will
refer to this approach as Bottom-up Bilex Context 0.

U-Cons L-Cons U-Dep L-Dep
Bottom-up Bilex Context 0 49.19 38.40 63.37 59.92

Table 5.4: Performance for the bilexical comparison baseline over the develop-
ment corpus.

5.3.2 Bilexical comparison with context

One problem with this approach is that it is too local: the score for a pair of
words only depends on the words but not on the context. This might lead the
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parser to make greedy decisions early on that hinder the parsing performance.
For example for a phrase like “la casa de madera” (“the wooden house”) the
parser might choose to reduce the pair “casa de” before it reduced the pair “de
madera”, just because one of them might be more frequent in the corpus.

In order to mitigate this problem, we extend the first approach by adding
one word of context to the left and one to the right of the pair of words (thus
we will call this approach Bottom-up Bilex Context 1). So the new scoring
function will try to obtain the score and the rule to apply to the pair <word1,
word2> given that the word context1 is on the left and the word context2 is on
the right.

For this to work properly, we add two extra tokens (<none>) to each sentence
marking the beginning and the end of the sentence, so that the first and last
words of the sentence have appropriate context tokens.

Tabe 5.5 illustrates what happens to “la casa de madera” in this approach
compared to the previous one. The scores in the table are the real scores cal-
culated from the training corpus. The heuristic without context has an error
on the first step that carries on the rest of the derivation, while in this case the
heuristic with context handles the situation correctly. Notice that on the left
side the score assigned to the bigram “la casa” is constant through the steps,
but on the right side it changes when the trailing context changes.

Bilexical wihtout context Bilexical with context
Step 1
Words: la casa de madera la casa de madera
POS: D N S N D N S N
Score: 0.723 0.693 0.712 0.839 0.815 0.765

Action: Reduce “casa de” with rule head mod Reduce “de madera” with rule head comp

Step 2
Words: la casa madera la casa de
POS: D N N D N S
Score: 0.723 0.082 0.839 0.775

Action: Reduce “casa madera” with rule head mod Reduce “casa de” with rule head mod

Step 3
Words: la casa la casa
POS: D N D N
Score: 0.723 0.702

Action: Reduce “la casa” with rule spec head Reduce “la casa” with rule spec head

Table 5.5: Comparison of the bottom-up parsing strategies for “la casa de
madera” (“the wooden house”) with and without using context.

In this case, handling out of vocabulary words becomes more complicated,
as we now have several combinations of known and unknown words that should
be taken in consideration. We performed a series of experiments tuning the
weights of the different combination of words against the development corpus
and found out that the best configuration was using a weight of 2/5 for the
perfect match of words, and 1/25 to every other possible match (compare to the
weights found for equation 5.9).
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Table 5.6 shows the global metrics over the development corpus for this
heuristic. Interestingly, the approach significantly improves the constituents
metrics (both labeled and unlabeled). However, the dependency metrics vary
much less: the unlabeled dependency metric improves a little, and the labeled
dependency metric remains almost the same, even falling a little. This might
indicate that the heuristic with context helps the system learn the order of
application of the rules better, but it is not that significant for finding the heads
of the words.

U-Cons L-Cons U-Dep L-Dep
Bottom-up Bilex Context 1 61.13 47.17 65.36 59.81

Table 5.6: Performance for the bilexical comparison with context baseline over
the development corpus.

We could expand this approach to have even more words of context (e.g. two
to the left and two to the right), but in this case the counts in the corpus start
to be very sparse, so we cannot calculate the probabilities accurately. There is,
however, another way of expanding the context that we will see in the following
section.

5.3.3 Multilayer Perceptron

In order to expand the number of context tokens without losing generality due to
sparsity, we can use word embeddings. Word embeddings have the property that
semantically related words are nearer in the embeddings space than unrelated
words. So if we train the model with sentence 39 “el niño come una manzana
roja”, it would tend to generalize to some other concepts that could be close
in the embeddings space such as other fruits, colors, or verbs related to eating.
Ideally, this would imply that even with few examples of each concept the model
could generalize better.

The main idea for this heuristic is analogous to the bottom-up approach we
have described in this section, but in this case instead of a table holding the
scores for the different combinations of words, we will train a Multilayer Per-
ceptron (see section 2.6.2) neural network that will model the scoring function
we want.

The architecture of the network, as shown in figure 5.11, is the following:

• Input layer: One input for each word considered. We will call this size N .

• Embeddings layer: This layer outputs 300 dimensions for each word. The
size of the output is N · 300.

• Dense layers: Two dense layers with relu activation that take the N · 300
parameters as input.

• Output layer: A dense layer with softmax activation that has 14 output
units (one for each rule and one for none).
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This strategy is inspired in the work of [Socher et al., 2013], although our
approach is simpler. Instead of using the network as a recursive unit that out-
puts an embedding representing the combination of two elements, our network
will only be used to decide which rule to apply, and the embedding of the com-
bination will be the embedding of the word that corresponds to the head word.

Figure 5.11: Architecture of the MLP neural network. The dashed lines repre-
sent the variable number of words in context.

The training data for the network corresponds to the same training points
described in section 5.3.1 and shown in table 5.1. There is one training point
for each consecutive pair of words in the training history. However, using the
embeddings allows us to extend the context we present to the network, so we
tried two versions of the architecture:

• Context 1: using the two words plus one word to the left and one to the
right for context (this implies N = 4 in the network architecture). After
tuning with the development corpus, the best model for Context 1 has 400
units in the first layer, 100 units in the second layer, and dropout 0.2.

• Context 2: using the two words plus two words to the left and two to the
right for context (this implies N = 6 in the network architecture). After
tuning with the development corpus, the best model for Context 2 has 450
units in the first layer, 150 units in the second layer, and dropout 0.1.

The words are represented by word embeddings trained from a six billion
words Spanish corpus [Azzinnari and Mart́ınez, 2016] using the word2vec im-
plementation of the gensim library [Řeh̊uřek and Sojka, 2010]. The word em-
beddings set has 1,146,242 vectors of dimension 300. But even with this large
collection of embeddings, there could be words in the corpus (and later on in a
real parsing scenario) that are not in the embeddings table. In order to handle
these out of vocabulary words, we created a set of different tokens that represent
unknown words, one for each POS. We listed all the combinations of parts of
speech with their corresponding morphological attributes in the training corpus
and calculated the most frequent word for each combination. Then we found
the embeddding corresponding to that word in our collection, and created an
embedding for representing an unknown word for each POS using that an un-
known token for each POS tag (considering morphological information) and use
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the vector corresponding to the most frequent word for that POS. For example,
the most frequent word for the POS NP0000L (proper noun of type location)
is “España” (“Spain”), so the embeddding for “España” would be used in lieu
of the embeddings of other locations if they are not found in the vocabulary.
This is of course far from perfect, as all the unknown locations will be treated
as “España”, but is nonetheless better than using null or random embeddings
for those cases, as the embedding for “España” is more likely to share some
characteristics with the other countries or locations embeddings.

Table 5.7 shows the performance of these approaches (we will call them
Bottom-up MLP Context 1 and Bottom-up MLP Context 2) over the
development corpus. Notice that even the context 1 approach improves over the
bilexical comparison with context approach, which could be explained by the
powerful generalization capabilities of word embeddings and MLP.

U-Cons L-Cons U-Dep L-Dep
Bottom-up MLP Context 1 70.53 61.46 79.96 75.17
Bottom-up MLP Context 2 74.18 65.17 81.57 76.70

Table 5.7: Performance for the MLP baselines over the development corpus.

5.3.4 SRL baseline

So far these baselines have only focused in the syntactic aspect of the parsing
process, but our model also considers semantic information in the form of SRL
annotations for predicates. We implemented a simple rule based heuristic for
attempting SRL on top of the result of the purely syntactic parsers.

The heuristic first calculates the valence features for each node in the tree
based on the rules selected during the parsing process. For sample sentence 39
the resulting tree is the one shown in figure 5.12. This process is straightforward
(see section 4.6): we start with the root and traverse each daughter collecting
syntactic features based on the rule applied at each step (e.g. head spec and
spec head create a SPEC feature, while head mod and mod head create a MOD

feature). The process traverses the tree recursively and stops at each leaf.
Next we traverse the tree again and use the following rules for calculating

the semantic features of each leaf:

• If the word is a verb and has a SPEC feature, coindex it with its ARG0

feature.

• If the word is a verb, noun or adjective and has a COMP feature, coindex
all its complements with its ARG1 feature.

This is a really näıve heuristic for calculating SRL, but it helps us complete
the baseline parsing process and sets the ground for comparing these heuristics
to more advances models. The performance of this SRL heuristic over the
development corpus for the different baselines is shown in table 5.8.
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Figure 5.12: Tree with syntactic features for the sentence “el niño come una
manzana roja” (“the kid eats a red apple”).

U-SRL L-SRL
Bottom-up Bilex Context 0 59.14 45.72
Bottom-up Bilex Context 1 58.93 44.58
Bottom-up MLP Context 1 65.56 49.21
Bottom-up MLP Context 2 67.35 50.41

Table 5.8: SRL F1 score performance for the different baselines over the devel-
opment corpus.
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5.4 CKY with Supertags

The baseline processes described so far have some very important drawbacks.
First of all, once the next pair of words to reduce has been decided, there is no
turning back to analyze other options. That is because the process is greedy.
This has the advantage of being fast, as each option is only considered once,
but also the disadvantage that errors committed early in the process condition
the rest of the parsing process and could easily cascade into other errors.

Another problem with the approaches above is that they only consider the
information conveyed by words, but not other information that would be avail-
able in a HPSG approach. Furthermore, once we decided which pair of words
to reduce, we simply substitute the pair for the head word according to the
selected rule. This implies forgetting the derivation history so far, information
that could be exploited in order to improve the rest of the process.

In order to deal with these problems, we implemented a more standard
strategy that has been used for parsing HPSG [Matsuzaki et al., 2007] and
other grammar formalisms. Given our grammar is binarized, it is possible to
use the well known CKY algorithm for parsing (see section 2.2.1). Instead of
using a greedy process, CKY is a dynamic programming algorithm that keeps a
chart of partially parsed trees and analyzes all possible combinations bottom-up
in polynomial time. It is possible that many valid trees are generated in the
process, so we also need a probabilistic model for determining which of the trees
is the most likely one.

The simplest way of implementing this CKY process would be directly using
the unification process: at each step we try to apply every rule (unifying the
rule with the left and right subtrees), and we add the tree to the chart if the
unification is sound. This has an important shortcoming: the unification process
is so slow that parsing with this strategy becomes impossible. So in order to
make this work in a reasonable time, we implemented a speed up strategy based
on the use of supertags: We designed a set of supertags based on the grammar
categories that contain the necessary information to infer the possible rules to
apply given a pair of supertags.

The supertags are used in two ways in our process: on the one hand we
implemented a standard approach to supertagging meant to disambiguate the
possible categories to apply to a word, and on the other hand we will use the
same tags to speed up the calculation of the possible rules to apply.

5.4.1 Supertags

Our definition of supertags tries to represent the way a word is being used in the
context of a sentence. It describes the feature slots the word has to fill and in
which positions with respect to the current word. These supertags are designed
to be very expressive in terms of the description of the word, so the parsing
process becomes as unambiguous as possible.
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Consider again the sample sentence 39:

El niño come una manzana roja.
(The kid eats a red apple.)

The main verb of the sentence (come) has a noun phrase specifier to its left
(El niño) and a noun phrase complement to its right (una manzana roja). This
will be the information conveyed by the supertag for come, as shown below:

come/v-sna0-x-cna1

The leftmost character is the part of speech of the word. The rest of the
supertag is a description of the use of the word in that context, where x repre-
sents the position of the word. In this case, sna0-x-cna1 encodes the following
information: the word will have a noun phrase acting as specifier on its left (sn)
coindexed with ARG0, plus a noun phrase acting as a complement on its right
(cn) coindexed with ARG1.

The corresponding supertags for the whole sentence are the following:

El/d-x niño/n-sd-x come/v-sna0-x-cna1 una/d-x manzana/n-sd-x
roja/a-mn-x ./f-x

Notice that when the word has no syntactic valence on its own (such as
una/d-x), its supertag is simply POS -x. The supertags have the following syn-
tax:

supertag = POS -features list -x-features list

features list = feature def (- feature def )*

feature def = feature POS [ arg def ]

feature = s | c | t | m | r | e
POS = any valid part of speech

arg def = ( a | i ) ( 0 | 1 | 2 | 3 | 4 | m | l )

The supertags contain the same information that the feature structure for
the word contains. For example, the supertag for the adjective roja indicates it
is expected to modify a noun phrase on its left: a-mn-x. In this case, the head of
the resulting structure will not be the adjective, but the noun phrase (because
MOD is an exocentric feature). On the other hand, the word manzana has the
supertag n-sd-x, which means it expects a determiner to act as specifier, and the
resulting phrase will have the noun as its head (because SPEC is an endocentric
feature). The supertag markers corresponding to the different features can be
classified in the following way:

• Endocentric feature markers:

– s - SPEC - Specifier

– c - COMP - Complement

– t - CLITIC - Clitic pronoun
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• Exocentric feature markers:

– m - MOD - Modifier

– r - REL - Relative marker

– e - COORD LEFT or COORD RIGHT - Coordinated element

At the same time, we can consider the argument markers a as endocentric
and i as exocentric, like the corresponding semantic argument features.

5.4.2 Expressing the grammar rules using supertags

The possible rules to apply to a pair of words will depend on the supertags
associated to those words. Once the words are combined following certain rule,
the resulting phrase will have a new supertag that could be used to continue
the parsing process. The supertag structure is simple enough so that all the
rules defined in our grammar can be expressed in terms of regular expressions
(with capture groups) over pairs of supertags, which is much faster than the
unification method, but at the same time expressive enough so that the invalid
combinations are filtered out. Consider the following example:

P1-L1x-cP2R1 + P2-x => P1-L1xR1 , head comp

P1,P2 ∈ POS

L1,L2 ∈ features list

The expression on the left has the form P1-L1x-cP2R1, which means:

• P1 is its part of speech.

• It has some pending features (L1) on the left.

• It expects a complement of type P2 on the right.

• It has some more pending features (R1) on the right.

The expression on the right has the form P2-x, which means its part of
speech is compatible with the expression on the left, and it has no pending
features. In that case, the rule head comp can be applied and the resulting
supertag will be the same as the left side supertag, removing the complement
feature (P1-L1xR1).

Using these regular expressions, it is possible to write all the grammar rules.
The number of regular expressions needed to cover each grammar rule is shown
in table 5.9. The most complex rule to cover is head comp sem, the rule used to
build verb phrases that percolate the arguments of a complement to the verb
head. Five expressions are needed to cover the different scenarios in which this
could happen, considering the presence or absence of subject and the different
left and right scenarios.
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Rule Number of r.e.
head punct 1
punct head 1
mod head 2
spec head 2
comp head 2
head spec 1
head comp 2
head comp sem 5
head mod 1
clitic head 1
head rel 1
coord left 1
coord right 1

Table 5.9: Number of regular expressions used for each grammar rule.

5.4.3 Probabilistic Model

We created a probabilistic model for this grammar in a way similar to the model
of a probabilistic context-free grammar. In this type of grammars (see section
2.1.2), the probabilities of all the rules with the same left hand side (the same
non terminal) must add to 1. The probability of a derivation tree is the product
of the probabilities of applying each one of the rules.

One way of generating a probabilistic model for this grammar would be con-
sidering each possible supertag as a potential non-terminal, and all the ways of
combining it to other supertags to form the different rules for that non-terminal.
The problem with this approach is that the number of supertags is very large.
There are potentially infinite possible supertags if we consider that the number
of complements is unbounded, though in real examples one should not expect
more than four or five complements, even so the number of combinations is
huge. In our training corpus there are 4,146 different supertags. As the num-
ber of possible supertags is so big, the number of times the combination of
a particular pair of supertags appears in the corpus is consequently very low
(sparsity problem). Because of this, we need a way of reducing the number of
non terminals.

In this work, we propose two ways of creating simpler models for abstracting
the non terminals:

Abstract tags model 1: Reduce a supertag to only the POS of the word
followed by a set of flags that indicate if a feature is expected or not (regardless
of how many copies of the feature the supertag has, in which positions they are,
what POS they have and their SRL information).

For example, according to model 1, the word daba/v-sna0-x-cna1-csa2
would have an abstract tag vcs, which means it is a verb that expects comple-
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ments and specifier, but not the finer grained information. A verb that expects
the specifier and only one complement would have exactly the same abstract
tag.

Abstract tags model 2: Reduce a supertag to only the POS of the word
followed by a set of flags that indicate the expected features and corresponding
parts of speech (regardless of their position with respect to the word and SRL
information).

For example, according to model 2, the word daba/v-sna0-x-cna1-csa2
would have an abstract tag vcncssn, which means it is a verb that expects a
nominal complement, a prepositional complement and a nominal specifier.

The probabilistic model for our CKY parsing process uses an average of
the probabilities calculated over these two abstract tag models, and assigns a
very small probability to unseen tag combinations in order to avoid giving rare
examples zero probability.

Notice that the abstract tags have no effect in the process of determining
the possible rules to apply (the full supertag is used for that), but only for
estimating the probability of application of a rule.

5.4.4 Supertagger

The CKY algorithm relies on knowing the exact categories of the words to find
the valid rules to apply, but when parsing a sentence from scratch that infor-
mation would not be available. As the number of possible categories per word
is large, we trained a supertagger for calculating the most suitable supertags
given a sentence. The supertagger uses as information the words and POS-tags
for the sentence and returns a sequence of supertags.

This supertagger is built using stacked LSTM neural networks. The struc-
ture of the network (after tuning against the development corpus) is the follow-
ing (see figure 5.13):

• Input: Words and corresponding POS-tags

• Embeddings layer: word embeddings of size 300, POS embeddings of size
5.

• LSTM layers: Three layers of stacked bi-directional LSTMs with size 450
in each direction and activation tanh.

• Dense layer: A fully connected layer of size 300 and activation tanh.

• Output: Layer that selects one out of 4,146 possible supertags with acti-
vation softmax.

Using this network, we get a 89.1% accuracy over the development corpus
for the top selected tag, 94.3% when choosing the top two tags, and 96.0% when
choosing the top three tags.
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Figure 5.13: Architecture of the neural network for supertagging.

5.4.5 CKY Parser

We implemented the CKY algorithm adapted to our grammar rules and our
probabilistic model. The number of possible rule combinations grows very
steeply with the size of input, and this makes the parsing process very time
consuming for long sentences. Because of this, we limit the number of deriva-
tions to explore in each cell of the CKY matrix to a maximum of n, taking only
the partial derivations that yield the highest probability for the same combina-
tion of words. Initial experiments over the development corpus indicated that
the best combination of speed and performance could be achieved using n = 5,
so we used that number in the rest of our experiments.

However, as the performance of the supertagger is not perfect, the sequence
of supertags selected might be invalid for forming a tree according to the gram-
mar rules. To mitigate this problem, if a tree is not found we enable two fallback
rules with very low probability (head none and none head) that combine two
arbitrary nodes and take either the left one or the right one as heads. These
rules guarantee that a tree will be found, but they make the process much slower
as many more subtrees are tried during parsing. When the fallback rules are
enabled, we use n = 2 instead of n = 5 so the process becomes faster.

Table 5.10 shows the results of using the CKY process over the development
corpus, both for the unrealistic ideal scenario of knowing the correct supertags
for the sentence (CKY Gold tags), and the more realistic scenario of using
the supertagger prior to executing the CKY algorithm (CKY Supertagger).
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Notice that the performance for the constituency metrics is not good even for
the gold supertags case, but the dependency and SRL metrics are very good.
As expected, the performance using the supertags predicted by the supertagger
dramatically decreases, between 10 and 13 points for each metric. Improving
the supertagger would yield better results for these metrics, but it still has the
roof delineated by the gold supertags parser.

U-Cons L-Cons U-Dep L-Dep U-SRL L-SRL
CKY Gold tags 76.22 71.96 91.89 91.89 91.21 91.21

CKY Supertagger 65.83 59.26 83.03 80.58 83.73 78.28

Table 5.10: Performance for the CKY parsers over the development corpus. We
show constituency F1, dependency accuracy and SRL F1 evaluations.

5.5 Top-down

The top-down parsing strategy takes a completely different approach. This
strategy will try to leverage information from all the text sequence instead of
the more localist approaches seen so far. In this case, the parsing process consists
in a series of steps that incrementally build the parse tree: splitting a sentence
into a binary tree, finding out the rules that apply to the nodes of the tree,
and finally determining what nodes should be labeled with semantic argument
categories.

5.5.1 Process

Let us walk through the proposed parsing process using again the sample sen-
tence 39:

[ El niño come una manzana roja ]
(The kid eats a red apple)

Step 1: Splitter In the first stage, the process will take the whole sentence
and split it in two sequences of words. The resulting subsequences are expected
to be constituents of the sentence. In this case it should split the subject and
the predicate. The result will look like the following:

[ El niño ] [ come una manzana roja ]

This process is repeated for each subsequence with three or more words, as
sequences with two words are trivially split and sequences with only one word
are already leaves in the tree. In this case, [ El niño ] has two words, so only
the second subsequence will be split. The process should separate the verb from
the object, resulting in the following:

[ come ] [ una manzana roja ]
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Now the first subsequence has only one word (it is a leaf), and the process
continues with the second subsequence separating the determiner from the rest
of the noun phrase:

[ una ] [ manzana roja ]

At this point, there are no more non-trivial sequences to split, so the original
sentences has been effectively transformed into a binary tree of words. The
binary tree after step 1 for this example is shown in figure 5.14.

| |

El niño come |

una |

manzana roja

Figure 5.14: Tree for “El niño come una manzana roja” (“The kid eats a red
apple”) after step 1.

Step 2: Rules After the tree is created, the second stage transverses all pairs
of branches and tries to find the most suitable rule that describes the relation
between those branches. For example:

[ El ] [ niño ] → spec head

[ come ] [ una manzana roja ] → head comp

[ manzana ] [ roja ] → head mod

After this stage is completed, the tree looks as the one shown in figure 5.15.

Step 3: Arguments Once the tree is created and the syntactic features are
in place, the third step tries to determine which of the syntactic arguments of
the predicates (in our case all verbs, nouns and adjectives) should also be set as
semantic arguments.

Given the rules determined after step 2 for each pair of branches in the tree,
we can infer the head for each constituent. This third step considers each head
and each target argument that belongs to that head. In our example:

[ El niñoSPEC comeHEAD una manzana roja ] → arg0

[ El niño comeHEAD una manzana rojaCOMP ] → arg1

[ una manzanaHEAD rojaMOD ] → none

139



spec head

spec head head comp

El niño come spec head

una head mod

manzana roja

Figure 5.15: Tree for “El niño come una manzana roja” (“The kid eats a red
apple”) after step 2.

A simplified version of the final tree for our example, after the three stages
have been completed, is shown in figure 5.16. This final version of the tree
contains the information about the arguments of each predicate and the semantic
roles they have according to the argument structure.

1 spec head

spec head head comp

El niño



word

HEAD v

VAL

[
SPEC 1

COMP 2

]

SEM

[
ARG0 1

ARG1 2

]
TEXT come


2 spec head

una head mod

manzana roja

Figure 5.16: Simplified tree for “El niño come una manzana roja” (“The kid
eats a red apple”) after step 3.

Notice that this top-down strategy does not use any subcategorization in-
formation for the lexical entries, for example it does not use the supertags like
the CKY strategy does. Instead, this process just the uses the words of the
sentence as input, encoded as word embeddings.

5.5.2 Neural network architectures

Each of the steps in this process can be implemented using a neural network.
The architectures we chose for these networks in all cases include a central layer
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with one or more bidirectional LSTMs. For our parsing process, we created the
following models:

Step 1: Split model This model takes a sequence of words and returns a
probability for each word. The word with the highest probability is the one the
model considers the best split point for that sequence, i.e. the point in which
the sequence could be separated in two constituents so that the process can be
continued. The central part of this model is a three-layered stacked bidirectional
LSTM network that returns the probability of each word in the sentence to be
the split boundary.

This network was trained with sequences from the training corpus, so that
the expected value for the correct split word was set to 1 and the rest of the
words were set to 0.

The structure of the network is the following (see figure 5.17):

• Input: Sequence of words.

• Embeddings layer: Word embeddings of size 300.

• LSTM layers: Three layers of stacked bidirectional LSTMs.

• Dense layer: A fully connected layer.

• Output: Probability for each word.

Figure 5.17: Architecture of the neural network for step 1.

Step 2: Rule model This model takes two constituents (two sequences of
words) and returns the most likely rule that would define the relationship be-
tween them. The central part of this network are two parallel stacks of bidi-
rectional LSTM layers that process the two sequences of words and return the
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probability for each possible rule. One of the stacks is connected to the left
constituent and the other one to the right one.

This network is trained using all pairs of subsequences that are subtrees of
a tree in the training corpus and their corresponding rules. The two layers are
updated independently during training.

The structure of the network (as shown in figure 5.18), is the following:

• Input: Two sequences of words.

• Embeddings layer: Word embeddings of size 300.

• LSTM layers: Two layers of parallel stacked bidirectional LSTMs.

• Dense layer: A fully connected layer.

• Output: Label indicating the rule to use (head spec, spec head, head comp,
comp head, head comp sem, head mod, mod head, clitic head, head rel,
head punct, punct head, coord left, coord right).

Figure 5.18: Architecture of the neural network for step 2.

Step 3: Argument model The network for this model is more complex than
the other ones. In this case the network will take two sequences of words which
are contained inside each other: one of them is the argument to classify, and
the other is the largest constituent that contains the argument. It also takes
the head of the constituent and the grammar rule that relates the head to the
argument. The result of the network is the semantic role label that should be
applied for this argument (or none).

The core of the model is a stack of three bidirectional LSTM layers, both
input sequences (the argument and the other constituent) are run through the
LSTM layers, and after that their result is concatenated together with the head
and grammar rule information before calculating the final output.

This network is executed only for possible arguments of predicates, i.e. it is
used for each verbal, nominal or adjectival head and all of their dependents. It
is trained in the same way: using instances of <head, dependent> pairs from
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the training corpus with verb, noun or adjective heads, whether their dependent
is a semantic argument or not.

The structure of the network (as shown in figure 5.19), is the following:

• Input: Structured input with one word (the head, which is the predicate),
two sequences of words (the whole constituent, and the target argument),
and the syntactic valence of the target argument.

• Embeddings layer: Word embeddings of size 300. The embeddings layer
is used for transforming the head and the two sequences of words.

• LSTM layers: Three layers of stacked bidirectional LSTMs.

• Dense layer: A fully connected layer. It takes as input the concatenation
of the result of all the previous layers.

• Output: Label indicating the arg type (none, arg0, arg1, arg2, arg3,
arg4, argm, argl, argc).

Figure 5.19: Architecture of the neural network for step 3.

Using these three networks we can implement the process as described so
far following the three steps. However, as the three steps are performed in-
dependently, this presents two problems: the process is slow and the errors
committed on an early step are carried along to other steps, which accumulates
errors. Furthermore, as the steps are not trained at the same time, it cannot
leverage information of one step to improve the others.

Because of this, in later experiments we created two alternative network
architectures that attempt to merge the processing of different steps. One of
the architectures merges steps 1 and 2 into a single network that is in charge of
splitting a sequence and also determining the most likely rule to apply to the
resulting segments. The other architecture merges the three steps into a single
network that transverses the sequence and tries to predict all the information:
where to split, which rule to apply, and if the corresponding dependent should
be considered a semantic argument.
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• Split-Rule model This model is similar to the step 1 split model, but
instead of returning only the split probability for each word, it also returns
the probability of rule application for each possible split point. The core
of this model is a three-layered stacked LSTM network that transverses
the sentence and returns, for each word, the probability of it to be the
split boundary and the most likely rule to apply if that split point is used.

The output of the network is in fact a softmax over all the possible rules
plus the none rule for indicating that the word should not be used as a
split point. After a sequence is processed, we first look at the word with
the minimum score for the none output, which is selected as split point.
Then we look at the corresponding rule probabilities for that point and
select the most likely rule.

This combined model has the advantage of being faster than using the
models 1 and 2 independently, and it could also leverage the information
used for both tasks (splitting and determining the rule) in order to improve
the performance.

The structure of the network is the following (see figure 5.20):

– Input: Sequence of words.

– Embeddings layer: Word embeddings of size 300.

– LSTM layers: Three layers of stacked bidirectional LSTMs.

– Dense layer: A fully connected layer.

– Output: Split probability and rule to use for each word.

Figure 5.20: Architecture of the neural network for merged steps 1 and 2.

• Split-Rule-Arg model This model is also similar to the step 1 split
model taking a sequence of words to split, but it returns all the information
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necessary for the full parsing process: the most likely split point, and the
grammar rule and semantic argument probabilities for each possible split
point. As in the previous network, the central layer is a three-layered
stacked LSTM network that transverses the sentence. The output is now
divided in two: on the one side we have the split and rule scores as in the
Split-Rule model, and on the other side we have the semantic role label
to apply to this split (or the label none if it should not be considered a
semantic argument).

This architecture has the advantage of being very fast, as it only has to
be execute once for every subsequence, so it should run almost as fast
as only performing the step 1 of the process. However, the information
used by the argument detection step using the Arguments model considers
more context and has more information than this Split-Rule-Arg model.
We consider this is the reason why, as we will see in section 5.5.3, the
experiments using this combined network achieve good results for splitting
and detecting the grammar rule, but performs poorly for the semantic rule
labeling step.

The structure of the network is the following (see figure 5.21):

– Input: Sequence of words.

– Embeddings layer: Word embeddings of size 300.

– LSTM layers: Three layers of stacked bidirectional LSTMs.

– Dense layer: A fully connected layer.

– Output: Split probability, rule, and argument label to use for each
word.

Figure 5.21: Architecture of the neural network for merged steps 1, 2 and 3.

Although we developed it independently, our LSTM top-down approach
bears some similarities with [Stern et al., 2017], in that both approaches en-
code spans using a LSTM and use that information to find the best way to
split a sequence of words. In our case the approach has the advantage that the
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grammar is designed to be binary from scratch, so the strategy can leverage
that in order to find better trees. Also, we add a SRL step, which was not one
of the goals in [Stern et al., 2017].

5.5.3 Intrinsic evaluation by step

We will first present the intrinsic evaluation of the neural networks that imple-
ment the different steps of the process described so far. The intrinsic evaluation
for each step involves evaluating how well the step works in isolation using a
model. This could mean different things for the different steps. The evaluation
metrics we use in this section are the following:

• Split accuracy: Given a sequence, how often the model indicates the
correct split word position with a higher probability than the rest. For
this evaluation we will only present the model correct sequences that would
appear during the parsing history of the development set, so this intrinsic
evaluation will be artificially high. In a real scenario, mistakes at the
beginning of the parsing process would pile up making further mistakes
more likely.

• Rule accuracy: How often the model selects the correct rule to apply
when presented with a pair of sequences of words that represent two correct
subtrees. As in the split case, we will only present the model correct pairs
of sequences that would appear on the development set, so the evaluation
will be artificially high with respect to a real scenario.

• Args accuracy: How often the model predicts the correct semantic role
label for a sequence of words with respect to its predicate. The model will
only be evaluated with correct constituents and predicates (verbs, nouns,
and adjectives) that appear in the development corpus.

• Split-Rule accuracy: For combined models that are able to predict split
and rule information at the same time, we will also evaluate the how often
the model indicates the correct split point and also the correct rule is the
one with the highest probability at that point.

Using the different models described, there are three possible configurations
we can define for combining the models in order to execute the full process:

• Independent models: Using one neural network for each one of the
steps, i.e. using the separate Split, Rule and Argument models.

• Split-Rule combined + Arg model: Using a combined neural network
for performing steps 1 and 2, and another network for step 3.

• Split-Rule-Arg combined model: Using only one neural network for
performing the three steps.
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Split Acc. Rule Acc. Split-Rule Acc. Args Acc.
Split Model 89.99 - - -
Rule Model - 98.11 - -

Argument Model - - - 93.62
Split-Rule Model 94.38 96.22 92.81 -

Split-Rule-Arg Model 93.37 95.70 91.95 87.83

Table 5.11: Intrinsic accuracy for the split, rule and argument steps using the
different independent and merged models.

The objective of the intrinsic evaluation is to analyze which of the three
configurations would yield the best results so we can focus only on that config-
uration for the rest of the work and discard the others.

Table 5.11 shows the intrinsic accuracy for each step and for each one of
the models described above. In the table, the models that perform only one
step only have the accuracy for that step. As can be seen in the table, the
Split Model has the lowest intrinsic accuracy for step 1 of all the models. Even
if the independent Rule Model seems to be the best one for calculating the
rule in terms of intrinsic accuracy, if we use it after applying the Split Model,
its combined split-rule accuracy would never be more than the split accuracy
achieved by the Split Model.

On the other hand, the combined Split-Rule and Split-Rule-Arg models
achieve high split accuracy and almost as good rule accuracy, which trans-
lates into a high combined split-rule accuracy. The Split-Rule Model seems to
have a small advantage over the Split-Rule-Arg Model. Consequently, if we
consider that the arguments accuracy for the independent Argument Model is
considerably higher than the accuracy achieved by the Split-Rule-Arg Model, it
seems reasonable that the best configuration to use in terms of accuracy would
be Split-Rule combined + Arg model, which leverages the strengths of
combining the split and rule steps, and the good accuracy of the independent
arguments model.

5.5.4 Structural error analysis

As mentioned in section 5.1.2, this approach that starts by predicting the tree
and deriving the lexical entries from it does not have the limitation of the CKY
with supertagging approach in that classes of lexical entries not seen in the
training corpus could not be used. On the contrary, this approach is free to
generate lexical entries with any kind of features it needs in order to accommo-
date the predicted tree. However, this comes with a caveat: it is possible that
the generated trees violate some of the constraints imposed by our grammar or
our feature structures.

We ran a set of experiments on the results of the corpus for the development
set to try to see to what extent the resulting trees are well formed. Although our
grammar does not impose many constraints on how the trees are built, there are
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still some structural properties that should be held. We focused on the following
aspects:

• Invalid coordinations: Cases where there was a coord left without being
immediately followed by a coord right in the tree, or cases where there
was a coord right and the parent structure is not coord left.

• Invalid relatives: Cases where there is a head rel construction but the
structure on the right does not start with a relative pronominal expression.

• Double specifiers: There should be at most one specifier per head, so we
counted the times a lexical entry ended up with more than one specifier
attached.

• Invalid clitics: How many times the clitic head rule was applied but the
left element was not a clitic pronoun.

• Triple clitics: In Spanish there can be up to two clitic pronouns accompa-
nying a verb, so we count how many times there system attached three or
more clitics to a verb.

• Specifiers on the right of nouns: The head spec rule was designed with
the case of postponed subjects in mind, but as we use the same specifier
rules for modeling a determiner-noun construction, there is a possibility
that the system erroneously attaches a determiner on the right of a noun
as a specifier.

Error type Occurrences
Invalid coordinations 107
Invalid relatives 90
Double specs 104
Invalid clitics 3
Triple clitics 0
Right noun specifiers 0

Table 5.12: Number of occurrences over the development corpus for the different
structural errors.

Table 5.12 shows the number of times these errors occur in the results of
the parser for the development corpus. We can see that there are indeed some
cases in which the method incurs in some of these structural errors, particularly
for the first three structural error types. However, the number of structural
errors committed is rather low: only around 0.5% of the predicted structures
contain some error. Notice that this is a internal structural evaluation without
comparing to the gold trees, but any of these errors will necessarily imply a
deviation from the gold tree, so these kinds of errors are already contemplated
in the performance metrics as well. We consider that, as the proportion of errors
is low, this will not make much of a difference when comparing the performance
against other parsers.
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5.6 Training details

The following applies to all the neural network models we trained. The models
were implemented in the keras library [Chollet, 2015] over tensorflow [Abadi
et al., 2015]. The word embeddings layer uses the collection described in section
5.3. It is an embeddings collection of 1,146,242 vectors of dimension 300, and
we created an unknown token for each POS tag (considering morphological
information) for handling out of vocabulary tokens.

We tuned several hyperparameters against the development corpus, but we
are only reporting the results of the best performing model for each set of
experiments. We applied dropout to LSTM and dense layers, in general varying
between 0.1 and 0.5. We trained several configurations for every experiment
varying the number of units (between 100 and 600 units) and the activation
functions (generally relu or tanh) for each layer. When using a stack of LSTM
layers, we varied between one and three layers. For the bottom-up baseline
MLP architectures, we varied between one and two dense layers.

We also used the early stopping technique during training, with a held-out
set of between 10% and 20% of each training set, depending on the experiment.

5.7 Evaluation of approaches

Table 5.13 shows a summary of the results over the development corpus for the
approaches described in this chapter, including the LSTM Top-down architec-
ture that uses the Split-Rule combined + Arg model configuration. The results
for the CKY approach with gold supertags is shown for completeness, as it is
an unrealistic approach.

From the table we can conclude that the best approach of the ones described
is the LSTM top-down approach. Its performance is better than the other ap-
proaches on all metrics, and it is even better than the CKY with gold supertags
method for the constituency metrics. Nonetheless, there seems to be a wide gap
between the unlabeled and labeled metrics for this approach, both in terms of
constituency, dependency and SRL metrics. The gap for the top-down model
looks wider than the gap for the CKY approach. This might be explained by the
fact that the CKY encodes information about head-dependency, grammar rule
and semantic role label at the same time using the supertags, so once the su-
pertag is correctly predicted, guessing the appropriate relation between a head
and a dependent implies guessing the correct rule, and also the correct semantic
role. On the other hand, the top-down approach is more prone to select a correct
partition between a head and a dependent, but it fails to label the relationship
appropriately for the grammar rules or for the semantic roles.
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Approach U-Cons L-Cons U-Dep L-Dep U-SRL L-SRL
Bottom-up Bilex Context 0 49.17 38.40 63.37 59.92 59.14 45.72
Bottom-up Bilex Context 1 61.13 47.17 65.36 59.81 58.93 44.58
Bottom-up MLP Context 1 70.53 61.46 79.96 75.17 65.56 49.21
Bottom-up MLP Context 2 74.18 65.17 81.57 76.70 67.35 50.41

CKY Gold tags 76.22 71.96 91.89 91.89 91.21 91.21
CKY Supertagger 65.83 59.26 83.03 80.58 83.73 78.28
LSTM Top-down 87.17 81.71 90.92 88.60 87.40 80.23

Table 5.13: Performance for all the approaches over the development corpus.
We show constituency F1, dependency accuracy and SRL F1 evaluations.
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Chapter 6

Evaluation

So far we have presented a comparison between our parsing strategies evaluated
over the development corpus, which was used for parameter tuning. In this
chapter we show the experimental results for our parsing strategies over the
test corpus and compare them with other Spanish parsers in terms of syntactic
parsing and semantic role labeling. A preliminary version of this comparison
is presented in [Chiruzzo and Wonsever, 2020]. We will also make a compari-
son of execution times and an analysis of the performance for some particular
phenomena.

6.1 Evaluated systems

We compare the strategies defined in chapter 5 with other six well established
baselines for Spanish parsing. Unfortunately, none of the external baselines
works with a formalism similar to the one we use, so we will only be able to
compare some of the metrics for them. The only other parser that would use
a similar structure that we know of (the Spanish Resource Grammar) is not
available for comparison. It also has problems for parsing longer sentences, and
there are many of these in the corpus.

• Bottom-up baselines: These are the approaches presented in section 5.3,
both using simple counts of words or using multi-layer perceptrons for con-
sidering more context. These are the systems Bottom-up Bilex Con-
text 0, Bottom-up Bilex Context 1, Bottom-up MLP Context 1
and Bottom-up MLP Context 2.

• CKY approaches: We consider two approaches based on CKY, as pre-
sented in section 5.4. One of them is the unrealistic model that starts
from the gold supertags, which we consider is an upper bound for the
CKY process (CKY Gold tags). The other one is the more realistic
CKY process that first uses a supertagger to predict the lexical frames it

151



will have to use, and it will forcefully perform worse than the previous one
(system CKY Supertagger).

• LSTM top-down system: This is the approach described in section 5.5,
which uses a greedy top-down process with a LSTM for finding the struc-
ture and rules, and a second neural network for calculating the semantic
arguments (system LSTM Top-down).

• FreeLing: FreeLing [Padró and Stanilovsky, 2012] is an important suite
of NLP tools developed by Universitat Politècnica de Catalunya that has
several Spanish models which include both dependency parsing and SRL.
The ones we used for this comparison are:

– FreeLing Txala [Batalla et al., 2005; Lloberes et al., 2010] is a
dependency parser based on transforming the output of a previous
rule-based parser into dependency format.

– FreeLing Treeler1 is a parser that uses a factorization or decom-
position model trained using several statistical models (log linear,
max-margin and perceptron).

– FreeLing LSTM is a LSTM implementation of a dependency parser
trained over AnCora.

• spaCy: spaCy2 is a suite of NLP tools developed by Explosion AI. It
contains models for several languages and in particular two dependency
parsers and named entity recognizers for Spanish. These models are con-
volutional neural networks trained with multi-task training over the Uni-
versal Dependencies conversion of AnCora and the WikiNER corpus. We
use models es core news sm (small) and es core news md (medium), the
large model was not available. These models perform dependency parsing
but not SRL.

• UDPipe: UDPipe [Straka and Straková, 2017] is a trainable pipeline that
provides tokenization, morphological analysis and dependency parsing us-
ing the Universal Dependencies format. It was used as base implementa-
tion in CoNLL competitions. The parser uses a transition-based algorithm
implemented with a simple neural network with one hidden layer, it is very
fast and robust. They provide pre-trained models for several languages.
We are using model Spanish-AnCora, which was trained with the Uni-
versal Dependencies conversion of AnCora. Like the spaCy models, this
parser returns dependency parsing but not SRL.

1http://treeler.lsi.upc.edu/
2https://spacy.io
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6.2 Global metrics

The global metrics we used are the ones defined in section 5.2: Unlabeled Con-
stituency F1 (U-Cons), Labeled Constituency F1 L-Cons, Unlabeled Depen-
dency Accuracy (L-Dep), Labeled Dependency Accuracy (U-Dep), Unlabeled
SRL F1 (U-SRL) and Labeled SRL F1 (L-SRL). Notice, however, that not all
metrics are applicable directly to all parsers.

First of all, the constituency metrics only apply to our parsers, as we are
using a rather different grammar formalism. Our constituents are binarized
and are labeled with the rule that was applied to form them. This is not the
case for the only other Spanish constituency parser we could use, which belongs
to the FreeLing suite. In this case, the constituents are not binarized and are
annotated with a wide range of categories. The constituents in these trees tend
to be very flat, not unlike AnCora. Given the complexity that a conversion
between our format and FreeLing’s constituency format would have, we decided
to try a simpler approach that is doing the comparison only for dependencies,
as FreeLing allows dependency outputs for all its parsers.

The dependencies comparison is not exempt from problems either. As men-
tioned in section 2.1.3, different dependencies formalisms might differ in what
elements they consider should be the heads of structures. For example, when
transforming a prepositional phrase to dependencies, in our case we consider
that the preposition is the head of the structure. The parsers in the FreeLing
suite work in the same way. However, parsers based on Universal Dependen-
cies like spaCy or UDPipe give precedence to the content words over the func-
tion words to assign them as heads, so in those cases the preposition would
be a dependent instead of a head. In order to compare to these parsers, we
post-processed the results and transformed the heads of prepositional phrases,
copulas and other structures in order to adapt it to our format.

On the other hand, the labels we use in our dependency conversion are
the grammar rules used to attach the dependant at each step, so they are a
completely different label set from the ones used by the other parsers. The
different parsers also use different dependency tag sets, even the parsers in the
FreeLing suite have a different tagset (Treeler and LSTM use one tagset but
Txala uses a different one), while spaCy and UDPipe use the same tagset defined
by Universal Dependencies. Given this disparity of scenarios, we decided to only
perform the full comparison with all the metrics for our parsing strategies, but
only use the U-Dep metric when comparing to external parsers. The U-Dep
metric is the most similar to standard Unlabeled Attachment Score, with the
caveat that we are transforming the output of some parsers to comply to our
definition of dependencies.

Lastly, the semantic role labeling metrics should be comparable across parsers
because we defined them over them as dependencies between the heads of the
constituents. Unfortunately, not all the parsers provide the SRL information,
and in this case we can only compare to the parsers in the FreeLing suite.
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6.2.1 Syntactic parsing

The performance results over the test corpus for the different systems are shown
in table 6.1. The best performing model according to this table is the LSTM
top-down approach, both for constituency and dependency metrics. It is rather
surprising that the CKY method underperformed for the constituency metrics,
even when starting with the gold supertags which is the upper bound for the
CKY methods. We can see that the unlabeled constituency metric gets about
77% for this method, while the corresponding dependency metric jumps to 92%.
This might indicate that the main issue is that the method is able to identify the
heads and dependents correctly, but misses the order of application of the rules
frequently. The rather weak statistical model, than only takes in consideration
partial information from the supertags, might be one reason why these models
are underperforming. In the future we might try to enrich the statistical model
using more fine-grained information like the lexical entries being used or the
partial derivation history when applying the rules.

The LSTM top-down approach is very robust, outperforming all our other
strategies and even getting results for dependency that are almost as good as
with the CKY using gold tags. As expected, the bottom-up processes and the
CKY using the supertagger results have much lower performance for all the
metrics.

Compared to the external baselines, the results seem to indicate that our
top-down parser also outperforms them for this corpus. However, we must take
in consideration that the post-processing probably added some noise over the
comparison, because the structures are not exactly the same as the original and
also because we cannot be sure that the conversion of all structures that behave
differently was done exhaustively.

Model U-Cons L-Cons U-Dep L-Dep
Bottom-up Bilex Context 0 49.39 38.51 63.49 60.10
Bottom-up Bilex Context 1 60.97 47.45 65.43 60.05
Bottom-up MLP Context 1 70.83 61.52 79.83 75.12
Bottom-up MLP Context 2 74.38 65.42 81.59 76.77

CKY Gold tags 77.16 72.72 92.07 92.05
CKY Supertagger 66.08 59.33 83.34 81.03
LSTM Top-down 87.57 82.06 91.32 88.96

FreeLing LSTM - - 83.15 -
FreeLing Treeler - - 83.61 -
FreeLing Txala - - 69.75 -

spaCy es sm - - 83.01 -
spaCy es md - - 83.69 -

UDPipe - - 82.09 -

Table 6.1: Results of the syntactic parsing experiments over the test set.
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6.2.2 Semantic Role Labeling

The results for Semantic Role Labeling are shown in table 6.2. The upper bound
in this case is given by the CKY using gold tags, getting around 88% for the
SRL F1 metric, and a slight difference of one point between the unlabeled and
labeled versions. It is expected that the unlabeled and labeled metrics would
behave similarly for this case, because we are sure the parser starts with the
appropriate supertags, so if it can predict the head-dependent pair correctly,
it will certainly predict the appropriate semantic role for it as it is encoded in
the supertag. The CKY using supertags, however, performs worse for detecting
the head-dependent pair, and even worse for assigning the appropriate semantic
role. This might be explained in part by the fact we observed empirically that
the supertagger tends to predicts supertags without semantic role features more
likely than the versions with semantic roles.

The LSTM top-down approach gets almost as good results for the unlabeled
metric as the CKY with gold tags. However, it gets behind for the labeled
metric, which indicates is frequently predicts a syntactic argument as semantic
argument, but fails to assign the appropriate label.

Both CKY and top-down approaches outperform all the external baselines
based on FreeLing, which behave more or less as our bottom-up baselines.

Model U-SRL L-SRL
Bottom-up Bilex Context 0 59.73 45.82
Bottom-up Bilex Context 1 60.46 45.63
Bottom-up MLP Context 1 66.61 49.90
Bottom-up MLP Context 2 68.21 50.71

CKY Gold tags 88.51 87.51
CKY Supertagger 81.48 75.78
LSTM Top-down 87.68 80.66

FreeLing LSTM 68.50 60.74
FreeLing Treeler 69.10 61.53
FreeLing Txala 52.17 45.73

Table 6.2: Results of the semantic role labeling experiments over the test set.

6.2.3 Execution time

Besides the global performance metrics, we compared the different parsers in
terms of their speed based on the global execution time over our test corpus.
This comparison is more related to the different type of algorithms used by
each parser and might be skewed by how much fine-tuned or optimized they
are. Table 6.3 shows the average time for parsing a sentence in the test set for
the different models. The experiments were run on an Intel i7, 2.7GHz, 16GB
RAM, without GPU acceleration. The metrics in the table are an average over
all sentence lengths, with 1,692 sentences in total.
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Model Time (ms)
spaCy es sm (no SRL) 9.3

Bottom-up Bilex Context 0 18.8
spaCy es md (no SRL) 19.8

UDPipe (no SRL) 21.8
FreeLing Txala 41.8
FreeLing LSTM 60.3

Bottom-up MLP Context 1 63.9
Bottom-up MLP Context 2 78.0

LSTM Top-down 86.1
Bottom-up Bilex Context 1 88.3

CKY Gold tags 288.7
FreeLing Treeler 948.5

CKY Supertagger 1,237.3

Table 6.3: Average time in milliseconds for parsing a sentence in the test set.

There seems to be an advantage in terms of speed for the parsers based
on neural networks over the parsers based on other (statistical) techniques,
except our simplest bottom-up baseline, which is very fast (but, as we have
seen, performs very poorly for the global metrics). The fastest parsers are
spaCy and UDPipe (besides the simplest baseline), but we have to consider
that these parsers only perform the syntactic dependency analysis, and they do
not provide SRL information. This could be one of the reasons they are so fast.
Around the middle of the table (between 40 ms and 90 ms per sentence) we can
see the most of the parsers, including the LSTM top-down parser which is only
slightly faster than the slower baseline. On the trailing positions we find the
CKY parsers and FreeLing Treeler. The CKY with supertagger parser is the
worst of all, taking more than a second for each sentence on average, which can
be explained by the high number of times the back-off rules have to be enabled
due to invalid combinations of supertags returned by the supertagger (around
one word out of ten will have an incorrect supertag).

If we break down the execution time of the LSTM top-down process, we get
that there is a balance in the time spent at each step: 54.1 ms for syntactic
parsing and 31.9 ms for argument identification. This could be sped up if we
used a unified architecture that could handle the splitting, rule prediction and
semantic arguments identification steps at the same time. However, as seen in
section 5.5, this architecture underperformed for other metrics, so we kept two
separate networks.

The times shown in table 6.3 are average over all sentences in the test corpus,
but given the differences between parsing algorithms, it would be interesting to
see how well they behave for different sentence lengths. Figure 6.1 shows a
breakdown of execution times for our approaches when parsing sentences of
different length, up to 80 words long. In this case we show only the Bottom-up
MLP2 baseline because it is the best performing of the simple baselines.
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Figure 6.1: Breakdown of execution time in seconds for different input sizes.

The LSTM top-down and the MLP Bottom-up execution times seem to grow
close to linearly while for the CKY approaches it grows faster. One explanation
for this might be that the growth rate for both LSTM top-down and MLP
bottom-up (quasi-linear or quadratic) is lower than the one for CKY (at least
cubic). Particularly the CKY with supertagger grows much faster than the
others, which can be explained because, especially for longer sentences, the
probability of obtaining a sequence of tags that does not form a correct tree
is much higher as the sentence grows, so the fallback rules have to be enabled
more frequently, rendering the process much slower.
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6.3 Particular phenomena

We described in chapter 3 the grammar we are using and mentioned some of
the Spanish phenomena we are trying to model, which in some cases led us to
make particular choices for designing the rules and features. We now want to
analyze to what extent our parsers are able to capture these phenomena in actual
sentences. In this section we will define a set of metrics over some particular
Spanish phenomena, which cover some aspects of the language we wanted to
address. As was the case with the dependency results conversion, in these cases
it was also necessary to post-process the results of the external parsers so as to
adapt the different ways they represent these phenomena. Once again, this post-
processing might add some noise in the results, so the comparisons shown in
this section might hint at some differences between parsers, but further research
would be needed to confirm these results.

6.3.1 Postponed subjects

As seen in section 3.3, although in Spanish the usual position for a subject is on
the left of the verb (SVO style), it is also very common for some verbs to write
the subject on the right. We wanted to know how much the parsers were able to
identify a subject that occurs on the right of the verb. There are 542 instances
of postponed subjects in the test corpus. Table 6.4 shows the performance in
terms of precision, recall and F1 score of all the systems for this metric.

Precision Recall F1 Score
Baseline Bilex Context 0 28.45 12.91 17.76
Baseline Bilex Context 1 52.87 8.48 14.60
Baseline MLP Context 1 80.45 19.74 31.70
Baseline MLP Context 2 68.69 31.18 42.89

CKY Gold tags 99.25 98.89 99.07
CKY Supertagger 84.25 76.01 79.92
LSTM Top-down 82.22 64.02 71.99

Freeling Txala 60.00 19.92 29.91
Freeling LSTM 69.74 65.49 67.55
Freeling Treeler 74.07 62.73 67.93

spaCy es sm 60.11 56.45 58.23
spaCy es md 59.92 59.59 59.75

UDPipe 57.37 52.39 54.77

Table 6.4: Results of the parsers for postponed subject identification.

We can see that CKY with supertagger performs better for this case, mainly
because it has a better recall than LSTM top-down and their precisions are
similar. When analyzing the errors, we found out that LSTM top-down generally
attaches correctly the head to the subject, but most of the time it mistakenly
applies a head comp rule instead of a head spec rule.
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One example of this is the following, which involves a relative clause:

• “la reunión que mantendráH este jueves [S el Consejo de Administración
del club]”

“the meeting that the Administrative Council of the club will hold on Thursday”

This might indicate that the reason these cases are difficult to classify is
that the context that says the overall shape of the structure, in this case a
relative construction, is not available for the top-down parser in the moment
it is trying to define the relation between the head and the subject candidate.
This is better resolved by the CKY parser because the supertagger can leverage
the full context of the sentence when predicting the supertag for the verb. If
the supertag is predicted correctly, it will indicate that a postponed subject is
expected.

6.3.2 Clitics

The use of clitic pronouns in Spanish motivated us to create a special rule to
handle them (see section 3.7). We wanted to know if our parsing strategies are
any good at associating the clitic pronouns to their corresponding verbs (which
should be an easy task) and also if they are able to detect the semantic role
they correspond to. Table 6.5 shows the performance for these two experiments:
clitics identificacion and classification. As classification is a multi-class problem,
we show the accuracy and macro-averaged metrics.

Identification Classification
Prec Rec F1 Acc M-Prec M-Rec M-F1

Bottom-up Bilex Context 0 75.19 80.46 77.74 56.40 17.52 20.38 18.84
Bottom-up Bilex Context 1 80.00 78.67 79.33 57.63 18.31 20.83 19.49
Bottom-up MLP Context 1 96.38 91.60 93.93 66.57 18.17 24.06 20.70
Bottom-up MLP Context 2 94.23 92.15 93.18 66.16 17.95 23.91 20.50

CKY Gold tags 100. 100. 100. 95.46 98.46 88.18 92.78
CKY Supertagger 98.71 95.46 97.06 83.63 65.05 57.80 61.00
LSTM Top-down 98.76 99.03 98.90 85.28 76.20 66.52 70.60

Freeling Txala 96.44 85.83 90.82 75.10 72.03 44.02 49.20
Freeling LSTM 78.25 88.58 83.09 80.47 82.67 51.51 56.37
Freeling Treeler 80.67 88.44 84.38 80.88 83.50 54.60 58.63

Spacy-sm 84.99 97.38 90.76 - - - -
Spacy-md 83.47 97.93 90.12 - - - -
UDPipe 82.33 96.83 89.00 - - - -

Table 6.5: Results of the parsers for clitics identification and classification.

A special phenomenon we are interested in analyzing is the detection of clitics
reduplication. In order to do this, we focused on detecting the cases where there
is a clitic and another argument of the verb (subject or complement) that share
the same semantic role value, so this could only be calculated for the parsers that
return semantic role labels. There are 48 instances of clitics reduplication in the
test corpus. Table 6.6 shows the results of the clitics reduplication comparison.
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Precision Recall F1 Score
Bottom-up Bilex Context 0 0.00 0.00 0.00
Bottom-up Bilex Context 1 0.00 0.00 0.00
Bottom-up MLP Context 1 0.00 0.00 0.00
Bottom-up MLP Context 2 0.00 0.00 0.00

CKY Gold tags 100. 81.25 89.65
CKY Supertagger 75.00 18.75 30.00
LSTM Top-down 32.69 35.41 34.00

Freeling Txala 8.33 2.08 3.33
Freeling LSTM 22.05 31.25 25.86
Freeling Treeler 30.23 27.08 28.57

Table 6.6: Results of the parsers for clitics reduplication identification.

Detecting clitics reduplication seems to be a hard problem for all the parsers.
In this case the CKY with supertagger approach has much higher precision but
very low recall. It might be difficult to solve this by the supertagger because, as
mentioned before, it has a tendency to assign supertags that do not indicate a
semantic argument, instead of assigning the ones that do. For detecting clitics
reduplication, we need a supertag that has at least two semantic argument
markers. On the other hand, LSTM top-down is much more consistent between
precision and recall, which also seems to be the case for the external parsers.

6.3.3 Relative clauses

The only type of long range dependency we are modeling is the use of relative
clauses as modifiers of nouns, as described in section 3.8. It is interesting to see
if our parsing strategies are good at handling these scenarios. First of all, the
relative clauses identification metric focuses on measuring if the parsers are able
to detect a relative pronominal expression that is attached to a subordinate
sentence in order to create a relative clause. We also want to know if the
corresponding relative pronominal expression is classified correctly with respect
to SRL. For example, in the phrase “el perro que Juan vio” (“the dog that John
saw”), we would like the parsers to detect that the pronoun “que” is attached
to “vio” forming a relative clause, and also acts as ARG1 of the verb. Table 6.7
shows the results of these metrics.

Secondly, we focused on measuring how well the parsers could correctly
attach a relative pronominal expression both to its verb and the corresponding
nominal referent the expression points to. In the phrase “el perro que Juan vio”,
it should identify that the pronoun “que” is attached to the verb “vio” and also
to the noun “perro”. There are 737 cases of this in the test corpus. Table 6.8
shows the results for this metric.
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Identification Classification
Prec Rec F1 Acc M-Prec M-Rec M-F1

Bottom-up Bilex Context 0 22.05 4.07 6.87 2.04 20.09 0.90 1.72
Bottom-up Bilex Context 1 29.85 8.14 12.79 3.39 14.11 1.60 2.79
Bottom-up MLP Context 1 44.88 41.65 43.20 16.96 10.69 8.41 8.37
Bottom-up MLP Context 2 48.11 45.04 46.53 16.69 10.72 8.17 8.34

CKY Gold tags 100. 99.72 99.86 81.14 84.36 78.47 72.39
CKY Supertagger 92.27 81.00 86.27 57.67 54.32 37.82 43.29
LSTM Top-down 90.60 89.00 89.80 76.12 64.73 55.32 59.02

Freeling Txala 72.84 54.95 62.64 4.21 30.54 7.63 6.54
Freeling LSTM 76.59 58.61 66.41 43.15 40.75 24.78 29.18
Freeling Treeler 78.23 59.02 67.28 42.06 40.76 24.39 28.62

Spacy-sm 69.16 55.08 61.32 - - - -
Spacy-md 70.85 55.35 62.05 - - - -
UDPipe 66.49 52.23 58.51 - - - -

Table 6.7: Results of the parsers for relative clauses identification and classifi-
cation.

Precision Recall F1 Score
Bottom-up Bilex Context 0 16.91 3.12 5.26
Bottom-up Bilex Context 1 24.87 6.78 10.66
Bottom-up MLP Context 1 37.28 34.59 35.89
Bottom-up MLP Context 2 38.55 36.09 37.28

CKY Gold tags 77.68 77.47 77.58
CKY Supertagger 67.69 59.43 63.29
LSTM Top-down 73.61 72.32 72.96

Freeling Txala 37.23 28.08 32.01
Freeling LSTM 60.46 46.26 52.42
Freeling Treeler 63.30 47.76 54.44

Spacy-sm 54.17 43.14 48.03
Spacy-md 55.53 43.55 48.82
UDPipe 49.56 38.94 43.61

Table 6.8: Results of the parsers for relative referents identification.

Analyzing the cases LSTM top-down got right but CKY got wrong, we
noticed that it is usual that CKY has mistakes like the examples shown in
figure 6.2. In both cases there is a mismatch between the numbers of the verb
and the noun selected by the parser, while the correct noun should agree with
the verb. This could happen because the statistical model used by the CKY
algorithm is too simple, it does not use any lexical information so it does not
know whether the verbs and nouns are plural or singular. On the other hand,
LSTM top-down uses lexical information in the form of word embeddings for
all its decisions, so it should be better suited to handle these situations. This
might explain in part the better performance obtained by the LSTM top-down
parser in this case.
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• “un anticipoGOLD” mı́nimo de dos por ciento ” de sus
ingresosCANDIDATE brutos , queREL seŕıaV ERB deducible de (...)”

“a minimum advance of two percent of their gross income, which would be deductible

from (...) ”

• “un proyectoCANDIDATE de prevención del daño y atención sanitaria ,
que además persigue ” devolver la dignidad ” a personasGOLD queREL
vivenV ERB en (...)”

“a harm prevention and health care project that also aims to “restore dignity” to people

living in (...) ”

Figure 6.2: Two examples of relative referents that LSTM top-down hit but
CKY with supertagger missed. We show the expected relative referents (GOLD),
the referents that CKY chose (CANDIDATE), and also the corresponding relative
pronouns (REL) and the verbs they are attached to (V ERB).

6.3.4 Coordination chains

As seen in section 3.10, in our grammar we model chains of coordinations using
the coord left and coord right rules. We wanted to see how well the differ-
ent parsers capture the chains of two or more coordinated elements present in
the corpus. We are trying to find chains of elements like “peras, manzanas y
naranjas” and we expect the parsers to recognize the exact whole chain. There
are 1432 chains of coordinated elements in the test corpus. Table 6.9 shows the
results for this experiment.

Precision Recall F1 Score
Bottom-up Bilex Context 0 8.85 19.97 12.26
Bottom-up Bilex Context 1 16.33 5.09 7.77
Bottom-up MLP Context 1 30.00 21.57 25.10
Bottom-up MLP Context 2 30.57 24.79 27.38

CKY Gold tags 74.02 77.23 75.59
CKY Supertagger 54.92 48.25 51.37
LSTM Top-down 65.49 65.22 65.36

Freeling Txala 24.48 22.20 23.28
Freeling LSTM 56.53 53.49 54.96
Freeling Treeler 56.09 53.00 54.50

Spacy-sm 41.39 43.85 42.59
Spacy-md 42.47 44.34 43.38
UDPipe 37.22 39.59 38.37

Table 6.9: Results of the parsers for coordination chains identification.
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6.3.5 Verbs analysis

Finally, we wanted to analyze some aspects related to the modeling of verbs in
the corpus and in our grammar. These metrics only make sense for our parsers,
because we focused on modeling AnCora’s verbal periphrases (like “estaba em-
pezando a cantar”) in a special way using the head comp sem rule (see section
3.5). There are 826 instances of verb periphrases in the test corpus. Table 6.10
shows the result of the comparison for our parsing strategies.

Precision Recall F1 Score
Bottom-up Bilex Context 0 0.00 0.00 0.00
Bottom-up Bilex Context 1 0.00 0.00 0.00
Bottom-up MLP Context 1 83.91 70.09 76.38
Bottom-up MLP Context 2 86.52 66.10 74.94

CKY Gold tags 96.92 87.77 92.12
CKY Supertagger 82.75 69.73 75.68
LSTM Top-down 92.47 93.70 93.08

Table 6.10: Results of the parsers for verb periphrases identification.

LSTM top-down clearly outperforms the other strategies. The main differ-
ence in performance between the CKY and the LSTM top-down approaches
is in the recall. Manually inspecting the errors commited by the CKY parser,
we could see that most of the times it makes a mistake, there are one or more
head none or none head applications in the expected verb periphrasis chain. As
verb periphrases are generally comprised of words that are together in the text,
this might indicate that the main source of these errors is the supertagger, which
might be returning an incompatible sequence of tags, and not the probabilistic
model.

Another aspect we wanted to analyze was the capacity of the parsers to
detect impersonal verbs, i.e. verb instances that do not have any subject. In
our parsers we distinguish this from null subjects because we use AnCora’s null
subject markup, which is not possible for the other parsers, so this metric is
only calculated for our parsing strategies. There are 1051 instances of this kind
of verbs in the test corpus. Table 6.11 shows the results of this comparison for
our parsers.

In this case, the recall is generally good for all approaches. CKY with su-
pertagger has particularly low precision, which might indicate that it is skipping
an important number of subjects, so it mistakenly predicts that many of those
verbs are impersonal. LSTM top-down is the one with best overall performance
because it is the one with the highest precision in this case.
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Precision Recall F1 Score
Bottom-up Bilex Context 0 27.11 94.38 42.13
Bottom-up Bilex Context 1 31.21 95.05 47.00
Bottom-up MLP Context 1 48.76 96.19 64.72
Bottom-up MLP Context 2 51.95 94.76 67.11

CKY Gold tags 91.05 99.71 95.18
CKY Supertagger 68.80 93.81 79.38
LSTM Top-down 81.72 95.33 88.01

Table 6.11: Results of the parsers for impersonal verbs identification.
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Chapter 7

Conclusions

This chapter presents the conclusions of our work. We present a summary of
the research results described so far, and discuss some known limitations. Then
we describe some avenues of research that might be interesting to follow in the
future.

7.1 Research results

We set out this research with the objective of creating a statistical HPSG parser
for Spanish. This was accomplished by completing a series of steps.

HPSG grammar for Spanish

We designed a HPSG grammar adapted to Spanish. This grammar is different
than the previously existing Spanish HPSG grammar (SRG [Marimon et al.,
2007]) in that our grammar is built with the explicit design objective of creating
a statistical parser. Because of this, the rules in our grammar tend to be very
broad and capture a great number of situations, and we leave the finer-grained
task of distinguishing between good uses and bad uses of the language to the
statistical modules. In particular, we needed to be able to correctly model the
situations present in the corpus we would use (Spanish AnCora).

Compared to the original standard HPSG grammar, ours adds some features
for Spanish like the use of clitic pronouns, and some particularities for modeling
verb phrases. We also simplify some aspects like the use of semantic role labeling
as semantic representation instead of the minimal recursion semantics approach,
and the modeling of only one kind of non-local dependency.

The feature structure that represents the words in our grammar contains
features for:

• Part of speech and morphological attributes of words.

• Syntactic combinatorial valence.
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• Only one type of non-local dependency: relative clauses acting as noun
phrase modifiers.

• Semantic argument structure.

The grammar uses thirteen very generic rules:

• Two rules for attaching a specifier (or subject) to the left or to the right
of a head.

• Two rules for attaching a complement to the left or to the right of a head,
plus a rule for attaching a semantic complement to the right of a head.

• Two rules for attaching a modifier to the left or to the right of a head.

• One rule for attaching a clitic pronoun to the left of a head.

• One rule for attaching a relative clause to the right of a head.

• Two rules for attaching a punctuation symbol to the left or to the right
of a head.

• Two rules for binarizing coordinations.

Corpus of HPSG sentences

We transformed the AnCora corpus of Spanish sentences into our HPSG format.
We first used an automated process that transversed the corpus simplifying
complex structures and using heuristics to detect heads and rules to apply for
each constituent. Then we analyzed the resulting sentences using our feature
structure implementation of the grammar, creating a proper HPSG version of
the corpus.

The final corpus contains 517,237 instances of words (tokens) in 17,348 sen-
tences. These words correspond to 83,594 unique lexical entries, which are
structured in 3,245 lexical frames. The corpus was split in standard training,
development and test partitions of around 80%, 10% and 10%.

Parsers

We implemented several parsing algorithms for our grammar trained over the
data from our corpus. The algorithms belong to these three categories:

• A baseline bottom-up strategy that compares consecutive pairs of words in
a sentence until finding the pair that is most likely to form a constituent,
and repeats the process recursively until forming the whole tree. The best
performing of these baselines is based on a multilayer perceptron that uses
two words of context to the left or to the right of the words being analyzed.
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• A statistical CKY approach that uses the lexical entries encoded as su-
pertags, the possibility of applying the rules can be inferred from the
supertags, and we use a PCFG style statistical model for guiding the
CKY algorithm. We also trained a supertagger for finding the most likely
supertags given the words of the sentence, built using a LSTM neural
network.

• A top-down approach that recursively analyzes a sequence of words and
splits it in the most likely point to form appropriate constituents. After
forming the full trees, we use a second process that predicts the semantic
arguments. Both steps are performed by LSTM neural networks.

Evaluation

We evaluated the performance of our parsing strategies and compared them
to some well established Spanish parsers over the test corpus. We found that
the LSTM top-down strategy outperforms all the other baselines in terms of
constituency (87.57 U-Cons, 82.06 L-Cons), dependency (91.32 U-Dep, 88.96 L-
Dep) and semantic role labeling metrics (87.68 U-SRL, 80.66 L-SRL). However,
we must take in consideration that the results of the external parser had to
be post-processed to comply to our format, and this could have added some
noise to the comparison. In terms of speed, the LSTM top-down approach is
faster than than the CKY parser, but lags behind other parsers such as spaCy
or UDPipe.

We also evaluated the parsers using a set of metrics designed to test their
performance on some particular Spanish phenomena. In this case, we found out
that the CKY parser was the best parser at detecting postponed subjects (79.92
F1). On the other hand, the LSTM top-down parser was the best at detecting
(98.90 F1) and classifying (70.60 macro-F1) clitics, and also detecting cases of
clitics reduplication (34.00 F1), although the general performance for this was
quite low for all parsers. LSTM top-down is also the best parser at detecting
(89.60 F1) and classifying (59.02 macro-F1) relative clauses that modify a noun
phrase, identifying the referents of these constructions (72.96 F1), detecting
chains of coordinations (65.36 F1), identifying verbal periphrases (93.08 F1)
and detecting impersonal verbs (88.01 F1).

7.2 Known limitations

The parsers we built, especially the LSTM top-down parser, seem to have good
performance for our test corpus. However, this only means it behaves well when
compared against data similar to the one it was trained for. Further research
is needed to know if these results generalize to other types of data, for example
text that is not from news, and also what differences in performance might arise
when comparing against different variants of Spanish.

One aspect that might hinder the performance of our parser in a real scenario
is our modeling of null subjects. We transformed the null subject marks from
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the original AnCora corpus and kept them in our HPSG format, so our parsers
benefited from this information during training. Notice that, when used with
plain text, these markers would not be present, so the parsing performance
would probably be lower. One solution to this is to pre-process the sentences
using a classifier that is able to accurately detect null subjects and introduce
the markers before parsing (see [González and Mart́ınez, 2018]).

Another limitation related to the input format of the parsers is our handling
of out of vocabulary words. As mentioned in section 5.3.3, we use a collection of
more than a million word embeddings of size 300, but this does not guarantee
that all the words in any input sentence will have an embedding representation
in our collection. We use a technique for alleviating this problem that involves
creating proxy embeddings for unknown words based on morphological infor-
mation (e.g. the embeddings for a proper noun of type location would be the
same as the embedding for “España”, which is the most common location in the
corpus). This implies that we should have morphological information available
for the words in a sentence prior to the parsing process. This is no problem
when comparing with our HPSG version of the AnCora corpus because it has
all the information we need, but in other cases it would be necessary to pre-
process the input using a morphosyntactic analyzer such as FreeLing [Padró
and Stanilovsky, 2012] that gives enough information. We have not carried ex-
periments to see to what extent the parsing performance might be affected by
having substandard POS-tagging or morphological information in the input.

7.3 Future work

During the course of the project we found several directions in which we think
this work could be improved, that were not explored due to time limitations.

Improvements in the parsing process

The LSTM top-down parsing process performs well in terms of global metrics,
and according to our evaluation it outperforms the baselines we compared to
and is on par with other Spanish parsers. However, if we compare against the
current state of the art for English, the performance of our parser lies between
85% and 92% of the performance achieved for similar metrics. This seems to
be the case for Spanish parsers in general, so there is clearly still room for
improvement in this direction.

An aspect that could be greatly improved is the speed of the parsing pro-
cess. We tried to unify the two-step process of top-down parsing followed by
SRL classification into a single neural network architecture, but its performance
was much lower (see section 5.5). We would need a new way of thinking the
architecture in order to unify both steps without compromising performance,
for example using an attention mechanism or a time delayed layer.

There are also many refinements that could be done to the CKY strategy.
First of all, the supertagger performance has plenty of room for improvement,
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but even with a perfect supertagger the performance would not get past the
upper bound set by the CKY with gold tags parser. In order to really improve
the CKY performance, we would need to make a more powerful statistical model
that takes into account more information like the lexical entries, the saturated
and pending features, and the partial derivation history at each point.

Finally, we could try to combine both approaches by incorporating subcate-
gorization information in the top-down strategy. Knowing the subcategorization
features could help the top-down approach handle some situations better, for
example postponed subjects. In order to do this we could feed the LSTMs both
the word embeddings and an encoding of the supertags for each word. This
would require using the supertagger previous to applying the top-down strategy
as well, so improving the supertagger performance becomes essential for this
scenario.

Improvements in the grammar

As mentioned before, our grammar only models one type of long range depen-
dency, which is the relative clause that modifies a noun phrase. However, there
is information in AnCora that might allow us to incorporate knowledge on longer
distance dependencies. We would need to make changes in the grammar adding
a filler-gap mechanism that could leave any number of gaps in some parts of the
structure that are filled with elements found in other parts of the tree.

Further research is needed to understand how this could be integrated to
a top-down parsing strategy, or if a combination of top-down and bottom-up
heuristics might be needed in order to add this new complexity.

As well as this, it would be interesting to further analyze the behavior of the
agreement principle (as seen in section 4.7) and implement strategies to enable
it at least in some contexts. This could imply separating the morphological
features in different classes so that only some of them are used for agreement
checks, and also refining the rules so that the checks are done only at the
appropriate times.

Experiments with other grammars

We could analyze more thoroughly the existing HPSG grammar for Spanish
(SRG [Marimon et al., 2007]) to find ways of combining our version with this
other grammar. The aim of this would be to incorporate the fine-grained lin-
guistic knowledge existing in SRG (for example the very detailed type hierarchy
for lexical entries), while at the same time trying to keep the flexibility of our
approach. It would also push our model into the right direction for using a more
complex semantic representation scheme, such as minimal recursion semantics,
although this would probably need manual annotation or data curation.

On the other hand, it would be very interesting to try our approach applied
to other types of deep grammars. We could, for example, apply the LSTM top-
down strategy to existing an existing CCG corpus (like CCGbank [Hockenmaier
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and Steedman, 2007]) or design a similar transformation for generating a Spanish
CCG treebank and apply the parsing strategy to this new corpus.

Experiments in other languages

Our grammar was designed with some Spanish particularities in mind, but we
consider it flexible enough so that it can be ported to other languages, albeit
with some modifications. We can think of using a combination of dependency
and constituency corpora for the same language (similar to the idea in [Zhou
and Zhao, 2019]) that could at the same time give us proper constituency trees
and heads information, and use some semi-automatic process to transform these
to HPSG format. Then we could try our parsing approaches on these languages.

Experiments using other domains

The corpus we used to train our parsers consists in text from news articles, so
the performance of the parsing process might be higher for text from this domain
than for others. It would be interesting to analyze how well the parser performs
on other domains, and how easy it would be to adapt it if the performance is not
good enough. One type of text we could try to analyze is the legal domain, which
uses a particular lexicon and also particular syntax where very long sentences
are usual, often including high levels of subsection nesting and even itemization
within a sentence. These complexities make it a very challenging domain for
parsers in general. Besides the performance of the parsing process, we could
focus on some aspects like the use of SRL. Given the performance on SRL for
our parser seems to be good, we could try to apply this to legal text or other
domains and use it as a first step for deeper analyses, for example for information
extraction.
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Xue, N., and Zhang, Y. (2009). The CoNLL-2009 Shared Task: Syntactic
and Semantic Dependencies in Multiple Languages. In Proceedings of the
Thirteenth Conference on Computational Natural Language Learning (CoNLL
2009): Shared Task, pages 1–18. Association for Computational Linguistics.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural
computation, 9(8):1735–1780.

Hockenmaier, J. and Steedman, M. (2007). CCGbank: a corpus of CCG deriva-
tions and dependency structures extracted from the Penn Treebank. Compu-
tational Linguistics, 33(3):355–396.

Hornik, K., Stinchcombe, M., and White, H. (1989). Multilayer feedforward
networks are universal approximators. Neural networks, 2(5):359–366.

Ingelmo, J. L. H. (2002). Los verbos soportes: el verbo dar en español. Léxico
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Padró, L., Collado, M., Reese, S., Lloberes, M., Castellón, I., et al. (2010). Freel-
ing 2.1: Five years of open-source language processing tools. In Proceedings of
the Seventh International Conference on Language Resources and Evaluation
(LREC’10).
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Peris Morant, A. and Taulé Delor, M. (2011). AnCora-Nom: A Spanish lexicon
of deverbal nominalizations. Procesamiento del lenguaje natural, 2010, vol.
46, p. 11-18.

Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., and
Zettlemoyer, L. (2018). Deep contextualized word representations. arXiv
preprint arXiv:1802.05365.

179



Pineda, L. and Meza, I. (2005). The Spanish pronominal clitic system. Proce-
samiento del lenguaje natural, 34:67–103.

Pollard, C. and Sag, I. A. (1994). Head-driven Phrase Structure Grammar.
University of Chicago Press.
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Appendix A

Deep Linguistic Formalisms

Section 2.1.4 introduced the idea of deep grammar formalisms, mentioned some
characteristics they have, and gave some examples of formalisms that through-
out the years have been considered deep grammars. Although a deeper analysis
of these formalisms and their characteristics is out of scope of this work, in this
appendix we will give a brief sketch of two of these formalisms.

A.1 Combinatory Categorial Grammars

Combinatory Categorial Grammars [Steedman, 1996] are grammars that build
complex syntactic categories starting from simpler categories, and using opera-
tors to combine these so they can be applied to the left or to the right of other
categories. Each lexical entry can be represented with one or more categories,
and the tree derivations use only a few rules that indicate how the different
categories can be combined. The main components of a CCG grammar are:
the atomic categories, the complex categories (that are derived from the atomic
ones) and the combination rules.

Suppose we want to build a CCG grammar for analyzing sentence samples
1, 2 and 9. The parts of speech in these sentences are the following:

• La
Det

gata
Noun

duerme
Verb

• La
Det

gata
Noun

negra
Adj

duerme
Verb

• La
Det

gata
Noun

come
Verb

el
Det

pescado
Noun

We must first define the set of atomic categories for our grammar. In CCG
very few basic categories are generally used. For our three sentences, one basic
category for noun (N), one for noun phrase (NP ), and one for the final sentence
(S) are enough.
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The complex categories are derived from the atomic categories in the follow-
ing way:

• If X and Y are categories, then X/Y is a category.

This category is the base for a forward application, and it represents an
element that expects something of type Y on its right, and the result will
yield something of type X.

• If X and Y are categories, then X\Y is a category.

This category is the base for a backward application, and it represents an
element that expects something of type Y on its left, and the result will
yield something of type X.

These rules for building categories can be nested so that any number of
forward and backward applications can be combined in a category. With this in
mind, the rest of the categories for our example will be derived from the atomic
categories (N , NP , and S) in the following way:

• A determiner will take a noun on its right and return a noun phrase:
NP/N

• An adjective will take a noun on its left and return a noun: N\N

• An intransitive verb will take a noun phrase on its left (its subject) and
return a sentence: S\NP

• A transitive verb will take a noun phrase on its right (its complement) and
return something that must act just like an intransitive verb: (S\NP )/NP

Now we can assign the corresponding categories to the words of sample 1
and make the CCG derivation. Knowing the categories, the derivation for this
example is straightforward: first apply the noun to the right of the determiner
to form a noun phrase, then apply the newly formed noun phrase to the left of
the verb to form the sentence. This is shown below:

La gata duerme
NP/N N S\NP

NP
S

The second example (sentence 2) is very similar, but we include an extra step
for reducing the adjective with its noun on the left first. Then the derivation
proceeds as the previous one, because the remaining categories are the same:

La gata negra duerme
NP/N N N\N S\NP

N
NP

S
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Notice that these derivations look almost as an upside-down version of the
trees in figure 2.1, which correspond to the same sentences. This is generally
the case, as the derivation is in fact identifying the same constituents that could
be captured using a CFG.

The main difference in the third example is that we must first consume the
noun phrase on the right of the verb. Once that rule application is done, the
remaining category is the same as the one used in the previous examples, so the
derivation will go on in the same way:

La gata come el pescado
NP/N N (S\NP )/NP NP/N N

NP NP
S\NP

S

The two combination rules we used in these three derivations are the forward
application (reducing X/Y Y to X) and the backward application (reducing
Y X\Y to X). For these simple examples these rules are enough, but there are
some more rules for dealing with more complex constructions, for example the
composition rules, the type raising rule, and the coordinations rule. CCG are
particularly good for deriving coordinations of complex semi-defined structures
elegantly.
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A.2 Tree Adjoining Grammars

Tree Adjoining Grammars [Joshi, 1985] are grammars built on the notion of
tree substitution. The basic structures of the grammar are two types of trees:
initial trees represent simple structures, while auxiliary trees allow recursion over
the structures. These trees are combined through substitution and adjunction
rules [Joshi and Schabes, 1997].

Everything in TAG is represented through a tree: the words, the sentences,
and even the derivation process. The lexical entries for words like nouns and
verbs will usually be initial trees, while the ones for adverbs and adjectives could
be represented by auxiliary trees.

Suppose we want to build a tree for sentence 2 “La gata negra duerme”. First
we must define the initial and auxiliary trees that will represent the different
words. Figure A.1 shows these trees.

Det

la

(αla)

NP

Det↓ Nom

Noun

gata

(αgata)
S

NP↓ VP

Verb

duerme

(αduerme)

Nom

Nom* Adj

negra

(βnegra)

Figure A.1: TAG initial trees for “la”, “gata” and “duerme”, and auxiliary tree
for “negra”.

Initial trees can contain underspecified nodes (marked with ↓) that indicate
points where they expect a substitution with another tree. This can be seen in
trees αduerme and αgata.

At the same time, an auxiliary tree must contain an underspecified node
(marked with *) of the same type as its root node, as can be seen in tree βnegra.
An auxiliary tree β marked with type X can be adjoined to another tree that
has an element of type X and the whole tree β will be inserted in the parent
tree in the corresponding position. This allows to add an arbitrary number of
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subtrees to a derivation, which is especially useful for modeling the behavior of
modifiers and other structures.

We can use these lexical entries to build a derivation of sentence 2. TAG
makes the distinction between the derived tree (i.e. the final tree that results
in the representation of the sentence) and the derivation tree (i.e. the tree that
represents the derivation process) [Joshi and Schabes, 1991]. Figure A.2 shows a
step by step derivation for sentence 2, showing which substitution or adjunction
is performed at each step.

Start with the verb tree αduerme.

S

NP↓ VP

Verb

duerme

Substitute subtree 1 from αduerme (NP↓)
for the noun tree αgata.

S

NP VP

Det↓ Nom Verb

Noun duerme

gata

Substitute subtree 1 from αgata (Det↓)
for the determiner tree αla.

S

NP VP

Det Nom Verb

la Noun duerme

gata

Adjoin adjective tree βnegra to subtree 2
of αgata (Nom).

S

NP VP

Det Nom Verb

la Nom Adj duerme

Noun negra

gata

Figure A.2: TAG derivation of “La gata negra duerme”.

Notice that each substitution or adjunction operation is defined with respect
to the trees introduced in the previous steps. When we want to specify a subtree
inside a tree for an operation, we start counting from the left. For example,
subtree 1 of αgata represents the underspecified determiner Det↓, while subtree 2
of αgata represents the Nom structure. This set of substitutions and adjunctions
can also be described in a tree-like representation, called the derivation tree, as
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αduerme

αgata(1)

αla(1) βnegra(2)

Figure A.3: TAG derivation tree for “La gata negra duerme”.

shown in figure A.3. In this notation, substitutions are shown as an arc between
the parent tree and the tree being inserted marked with a dashed line, while
adjunctions are shown as an arc marked with a solid line. The substituion or
adjunction position is shown between parenthesis.

The final result of a derivation generally look very similar to a tree built
using a CFG-style notation, but the derivation history also contains important
information for understanding the sentence structure.
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Appendix B

Parsing algorithms

In section 2.2 we presented one of the most important classical algorithms for
parsing CFGs, the CKY algorithm. However, there exist other parsing algo-
rithms, and some of the systems we discussed use variants of them. In this
appendix, we will present another classical algorithm for parsing CFGs and one
of the most widely used algorithms for parsing dependencies.

B.1 Chart parser

Chart parser is another dynamic programming parsing algorithm for CFG that
can be adapted to be either top-down or bottom-up depending on the imple-
mented strategy. This algorithm does not need the grammar to be in CNF. In a
way it can be seen as a generalization of the CKY algorithm, only that instead
of a matrix it will fill a chart with partial derivations of trees at each step.

Suppose we want to parse sentence 2 “la gata negra duerme” using the
following grammar from section 2.1.1:

• Rg = {S → NP V P, NP → Det Noun, NP → Det Noun Adj, V P →
V erb}

• Rv = {Det→ la, Noun→ gata, V erb→ duerme, Adj → negra}

The algorithm starts with a graph containing one node for each position
between words. The words will be represented as arcs between the corresponding
position nodes.

0 1 2 3 4
D → la• N → gata• A→ negra• V → duerme•

Notice that each arc has a rule and a • sign. All arcs will have one of
these signs at some position. The sign indicates the completion point for that
rule. The arc labels will contain a rule annotated with a completion sign. For
example, for rule S → NP V P we have the following possible labels:
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• S → •NP V P indicates that for parsing a S, a NP followed by a V P are
expected. This is an active label.

• S → NP • V P indicates that a NP has been identified, and a V P is
expected to form a S. This is also an active label.

• S → NP V P• indicates that a NP followed by a V P have been identified,
so the sequence adorned by this label is a complete S. This is an completed
label.

Continuing with our example, we will add three active arcs to the graph
that will help us parse the sentence: starting from node 0, one arc for forming
a noun phrase, and another one for forming a sentence; and starting from node
3, an arc for forming a verb phrase.

0 1 2 3 4

NP → •D N A

S → •NP V P

D → la• N → gata• A→ negra•

V P → •V

V → duerme•

The fundamental rule of chart parsing states that, if we find an active arc
from i to j of the form A → X • BY and a completed arc from j to k of the
form B → Z•, then we can add a new arc from i to k of the form A→ XB •Y .
Notice that X and Y might be empty. If Y is empty, the newly added arc would
be complete.

In our example, we can use the NP → •D N A arc from 0 to 0 and the
D → la• arc from 0 to 1. We can also use the V P → •V arc from 3 to 3 and
complete it with the V → duerme• arc from 3 to 4.

0 1 2 3 4

NP → •D N A

S → •NP V P

D → la•

NP → D •N A

N → gata• A→ negra•

V P → •V

V → duerme•

V P → V •

Now we will forward two steps: First combine NP → D •N A from 0 to 1
with N → gata• from 1 to 2. Then the result will be combined with A→ negra•
from 2 to 3.

191



0 1 2 3 4

NP → •D N A

S → •NP V P

D → la•

NP → D •N A

N → gata•

NP → D N •A

A→ negra•

NP → D N A•

V P → •V

V → duerme•

V P → V •

We have just completed a NP which can be used for the first part of our
S, and we also have the V P that is needed to complete the whole S. We will
combine S → •NP V P from 0 to 0 with NP → D N A• from 0 to 3. Then we
will combine the result with V P → V • from 3 to 4.

0 1 2 3 4

NP → •D N A

S → •NP V P

D → la•

NP → D •N A

N → gata•

NP → D N •A

A→ negra•

NP → D N A•

V P → •V

V → duerme•

V P → V •

S → NP • V P

S → NP V P•

After this final step is complete, the algorithm has recognized the sentence
using the whole sequence from nodes 0 to 4.

Notice that we arbitrarily chose to add those arcs in the second step because
they would help us complete this particular parse. In a real scenario, there
are strategies for adding the different arcs that could lead to find the correct
parse tree more quickly or more slowly. Defining different rules for analyzing the
agenda of pending constituents might derive in creating top-down, bottom-up,
or mixed approaches based on different criteria.

As is the case with CKY, chart parsing is able to handle parsing ambiguity
by having multiple possible arcs in the chart that generate the same sequences of
words. This parser can also be used for grammars other than CFG, for example
it has been applied to HPSG in the LKB framework (see section 2.3.1).
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B.2 Transition-based dependency parsing

The algorithms shown in section 2.2.1 and appendix B.1 focus on using a CFG,
or they can be adapted to other formalisms. Now we will present a widely used
algorithm for dependency parsing that also can be adapted to other formalisms
(including constituency parsing).

The transition-based dependency parsing algorithm [Covington, 2001; Nivre,
2003] transverses the sentence from left to right and makes decisions for each
word. It keeps a stack of words that are being processed. At each step, the
algorithm looks at the current word and the stack and takes one of three possible
actions:

• SHIFT: Shift the current word to the top of a stack.

• LEFT ARC: Create an arc between the two words on the top of the stack,
so that the top word points at the previous word, then pops the previous
word.

• RIGHT ARC: Create an arc between the two words on the top of the stack,
so that the top word is pointed by the previous word, then pops the top
word.

Suppose we want to parse sentence 9 “La gata come el pescado” (“The cat
eats the fish”) using this algorithm. Table B.1 shows the sequence of actions
that this algorithm could take in order to parse the sentence. The result is a
set of (unlabeled) dependencies between the words, which effectively describes
the dependency parse tree shown in figure 2.3b. For simplicity, we are only
considering the actions that correspond to making the unlabeled tree, but the
approach can be expanded so that the actions LEFT ARC and RIGHT ARC also
output a label for the dependency.

Stack Words Action Dependency
[ ROOT ] [ la, gata, come, el, pescado ] SHIFT

[ ROOT, la ] [ gata, come, el, pescado ] SHIFT
[ ROOT, la, gata ] [ come, el, pescado ] LEFT ARC { la ← gata }

[ ROOT, gata ] [ come, el, pescado ] SHIFT
[ ROOT, gata, come ] [ el, pescado ] LEFT ARC { gata ← come }

[ ROOT, come ] [ el, pescado ] SHIFT
[ ROOT, come, el ] [ pescado ] SHIFT

[ ROOT, come, el, pescado ] [ ] LEFT ARC { el ← pescado }
[ ROOT, come, pescado ] [ ] RIGHT ARC { come → pescado }

[ ROOT, come ] [ ] RIGHT ARC { ROOT → come }

Table B.1: Example of transition-based dependency parsing for the sentence
“La gata come el pescado” (“The cat eats the fish”).

We have not yet discussed how we decide which action to take in each step.
The algorithm proposes that there is an oracle, a module that looks at the
current state of the parser (for example the top two words of the stack and the
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current word to process in the sequence) and decides which action to take. The
important matter in this algorithm is how to build this oracle.

If we have treebank (see section 2.4), or a collection of previously analyzed
sentences, we can build the parsing histories for each sentence, i.e. the sequence
of actions that an oracle should take in order to find the correct parse. Then we
can analyze the collection of parsing histories and create an oracle that outputs
the action that is the most likely to be correct, for example using machine
learning methods (see section 2.5).

This simplified version of the algorithm works in linear time on the length of
the sentence. However, the actual execution order will depend on the complexity
of the oracle used. If the oracle uses a lot of information from the stack, the
sequence, or other inputs, the execution time will certainly increase.

Notice that the algorithm described so far is completely greedy, once it makes
a decision there is no going back to fix it if something was wrong. This also
means that there is no way to handle the ambiguity of a sentence using this
algorithm, as it will only find one possible analysis. This is not necessarily a
drawback, since this type of algorithms are designed to find the most likely tree,
and they rely strongly on having a good statistical model that will predict the
correct analysis in most cases. There could be extensions to this algorithm that
incorporate the notion of backtracking on some decisions in order to cope with
ambiguities or for searching the best solution more exhaustively.

By the nature of this algorithm, it is only able to find projective trees.
There are extensions to this algorithm and also other dependency parsing al-
gorithms (for example maximum spanning tree algorithm) that can deal with
non-projective trees, although they are generally slower in execution time.
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Appendix C

Glossary

accuracy Metric that measures the ratio of values correctly labeled by the
classifier with respect to the whole data set. 51

activation function Function that computes the output of a neuron based
on its inputs and weights. 52

agent Semantic role that indicates the participant that causes the action. 26

agreement Linguistic phenomenon present in some languages such as English
and Spanish in which some of the words within constituents must have matching
morphological characteristics. 12

agreement principle HPSG principle that tries to model the linguistic phe-
nomenon of agreement. 24

ambiguity Property of sentences (or other linguistics constructions) that could
be interpreted in more than one way. 14

annotated corpus Corpus with (manual) annotations used for building and
evaluating statistical models. 48

attribute value matrix Representation of feature structures arranged as a
(possibly nested) matrix of feature names and their values. 65

backpropagation Technique for updating the weights in a neural network
that uses the difference between the output and the expected value and cal-
culates the partial derivatives at each point propagating this information back
through the network. 53
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bi-directional LSTM A recurrent neural network layer composed of two
LSTM layers: one reads the input from left to right and another one reads the
input from right to left, then it concatenates the outputs. 56

binarization Way of modeling grammars in which each rule can only have
two children elements. 13

candidate Data sample whose annotations are the predictions (outputs) of
some statistical model. 50

clitic reduplication Phenomenon by which both a clitic pronoun and the
argument it represents are present at the same time in the sentence. 81

coindexation Two features in a feature structure that point to the same value
are said to be coindexed. 22

compositional semantics Approach to semantics in which the meaning rep-
resentation of a larger unit is built by combining the meaning representations
of its parts. 26

confusion matrix Matrix that contains the counts of expected values against
values output by a classifier for each label. 50

content verb In a verbal expression, the verb in non-finite form that carries
the main semantic content. 76

coordination chain Sequence of two or more elements that form a coordi-
nation, separated by other elements like conjunctions or punctuation symbols.
92

corpus A collection of sentences that is used as a representation of the lan-
guage. 5

cross validation Technique for model selection and hyperparameter tuning
that entails subdividing the training corpus in smaller subsets, training several
models with these subsets, and comparing the average performance for those
models. 50

dense layer A neural network layer composed of fully connected units. 54

dependency A relation between a pair of words in a sentence. 18

dependency tree Directed acyclic graph that represents that set of depen-
dencies in a sentence. 18
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dependent Word or other element that modifies or complements the head in
a construction (for example in a phrase or a dependency relation). 18

development corpus Subset of a corpus that is used to evaluate and compare
intermediate statistical models for model selection and hyperparameter tuning.
49

ditransitive verb A verb that takes a subject, a direct object and an indirect
object as arguments. 13

dropout Technique that randomly selects at each training step a set of units
that will not be used to calculate weights and will not be updated, used to
prevent overfitting. 54

early stopping A criterion for stopping the training when the performance of
the network over held-out data has not improved after some iterations in order
to prevent overfitting. 54

elementary HPSG tree A structure composed of a head surrounded by its
direct dependents (complements, specifier, modifiers). 98

embeddings layer A layer in a neural network that transforms the inputs
into word embeddings representations. 57

endocentric feature A feature from a head that points to a dependent struc-
ture outside the head. 22

exocentric feature A feature from a dependent that points to the head of
the construction. 22

expression Feature structure that represents the super-class of words and
phrases. 66

F1 score Metric calculated as the harmonic mean between precision and re-
call. 51

feature structure An association of features and values, used in HPSG to
represent words, phrases, rules, and trees themselves. 20

gold standard Data samples that are assumed to be correctly annotated. 50

grammar A set of rules that govern how to build sentences. 5
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head Word that determines the syntactic properties of a construction (for
example in a phrase or a dependency relation), and could sometimes stand
alone for the whole construction. 18

held-out corpus Subset of a corpus used by some machine learning methods
for tuning inner parameters of the method. 50

HPSG Head-driven Phrase Structure Grammar, a rich linguistic formalism
that combines syntactic and semantic information in its analyses and is able to
model many interesting linguistic phenomena. 5

hyperparameter Parameter (different than the input data) that modify the
training process and which should be tuned to get optimal performance. 49

intransitive verb A verb whose only argument is the subject. 13

layer Arrangement of a set of units in a neural network that can be charac-
terized by its set of inputs, outputs and connections. 53

L-Cons Labeled version of the constituency metric, equivalent to the F1 score
of finding the expected constituents of the sentence, using the rule name as label.
116

L-Dep Labeled version of the dependency metric, equivalent to the Labeled
Attachment Score using the rule name as label. 118

L-SRL Labeled version of the SRL metric, equivalent to the F1 score of pre-
dicting the expected semantic dependencies together with their argument types.
120

lexicalized grammar A grammar that focuses on modeling words (lexical
entries) and the interactions between them. 17

loss function Target function of the optimization process when training a
neural network, generally related to the difference between the output of the
network and the expected output. 53

macro average Technique for averaging metrics in a multi-class classification
problem, which assigns equal weight to all classes in the data set. 52

micro average Technique for averaging metrics in a multi-class classification
problem, which assigns a weight to each class relative to the proportion of
elements of that class in the data set. 52
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non-compositional semantics Phenomenon in which the meaning of an ex-
pression cannot be built up from the meaning of its parts. 26

non-terminal Grammar symbol that can be rewritten as a combination of
terminals or other non-terminals. They can be used for modeling constituents
in a grammar. 10

one-hot encoding Input representation where the input vector has the size
of the vocabulary, composed entirely of zeros except a value set to one in the
position corresponding to the represented word. 55

overfit Phenomenon in which a statistical model has very high performance
when evaluated against the data it was trained on but very low performance on
the test data. 49

parser A system that performs syntactic analysis of sentences. 5

parse tree Representation of a sentence in a tree-like format, result of the
parsing process. 9

parsing The process of taking a sentence and building a syntactic represen-
tation of it. 5

parsing history Sequence of steps followed to generate a parse tree from a
sentence. 122

PP-attachment Prepositional phrase attachment, the problem of finding out
the word or constituent a prepositional phrase should be attached to. 14

precision Metric that measures the proportion of times that the model was
correct when classifying something as positive. 51

pre-terminal Non-terminal symbol that can only be rewritten as a terminal.
They can be used for modeling parts of speech. 11

principle A strategy for sharing or percolating features from daughters to
parent structures in a grammar. 20

projectivity Property of a dependency tree in which it is possible to draw
the tree without crossing arcs. 19

quantifier scope ambiguity Ambiguity that happens when there are at least
two possible interpretations for the scope of the quantifiers used in a sentence.
29

199



recall Metric that measures the proportion of positive values that were actu-
ally captured by the model. 51

relative pronominal expression Expression of one or more words that can
introduce a relative sentence into another sentence. 85

root The word in a sentence that does not depend on any other word. 18

rule Description of a way for combining elements of a grammar to generate
new elements. 10

saturated feature A feature that points to an empty list value, for example
the SPEC or COMP features in a phrase when they are not expecting any more
values. 24

semantic role A way of describing the semantic relation that a constituent
of a sentence might have with respect to a predicate. 26

SRL Semantic Role Labeling, the task of assigning the correct semantic roles
to a sentence. 27.

stochastic gradient descent Optimization method that implies starting
with random weights and iteratively selecting a batch of samples, calculating
the output for those samples, and adjusting the weights to make the actual out-
put of the network more similar to the expected output, until some stop criteria
is met. 53

subcategorization The capacity of verbs (or other words) to select the types
of arguments they can be combined with. 13

supertag Fine grained label used to represent a complex category in deep
grammars, for example a string representation of the lexical entry of a word. 35

supertagging The process of assigning the correct supertag to each word in
a sentence. 35

support verb In a verbal expression, the conjugated verb whose number and
person will agree with the subject. 76

terminal Grammar symbol that cannot be rewritten. They can be used for
modeling words or other tokens in a grammar. 10

test corpus Subset of a corpus that is used to evaluate the final statistical
models. 49
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theme Semantic role that indicates the participant that suffers the effects of
the action. 26

training The process of using a machine learning method to create a statis-
tical model from a set of data. 48

training corpus Subset of a corpus that is used to train statistical models.
49

transitive verb A verb that takes a subject and a direct object as arguments.
13

treebank A corpus of sentences with their corresponding syntactic analyses.
17

typed feature structure Feature structures with an ontology-based type
hierarchy definition for all the possible features and values. 20

U-Cons Unlabeled version of the constituency metric, equivalent to the F1
score of finding the expected constituents of the sentence, regardless of the label.
116

U-Dep Unlabeled version of the dependency metric, equivalent to the Unla-
beled Attachment Score. 118

U-SRL Unlabeled version of the SRL metric, equivalent to the F1 score of pre-
dicting the expected semantic dependencies, regardless of the argument types.
120

unbalanced corpus Phenomenon in which there are too many examples of
one class compared to the others in a data set. 51

underfit Phenomenon in which a statistical model has very low performance
when evaluated against the data it was trained on. 49

unification Process by which the features of two feature structures are merged
forming a new one containing the features of both, and goes on recursively
unifying the values when the same feature is found in both structures. 20

word embeddings Technique that represents words in a dense vector space
that is considerably smaller than the vocabulary size, hence embedding the
language vocabulary into another structure while preserving its most salient
features. 56
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