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RESUMEN

Para evaluar el estado de las estructuras civiles es frecuentemente necesario

conocer el nivel de tensión que soportan los distintos elementos estructurales.

Sin embargo, el desarrollo de técnicas eficientes de ensayos no destructivos pa-

ra la estimación de tensiones de estructuras de hormigón sigue siendo un tema

abierto. Con este fin, investigaciones anteriores han estudiado la dependencia

de la velocidad de propagación de ondas mecánicas con la tensión aplicada,

esto es el “efecto acustoelástico”. Estudios recientes en elementos de hormigón

sometidos a compresión axial han mostrado que el efecto acustoelástico tam-

bién puede ser detectado con técnicas basadas en fenómenos de vibración, lo

que ofrece varias ventajas. Esta tesis se centra en el estudio, documentación

y mejora del uso de técnicas de vibración (resonancia) para la caracteriza-

ción acustoelástica y la determinación de tensiones en elementos estructurales

alargados de hormigón, sometidos a compresión axial. Se incluye un desarro-

llo teórico exhaustivo con métodos anaĺıticos y numéricos, donde el modo de

vibración torsional se elige frente a los otros posibles modos de vibración. El

parámetro nolineal material βG se define en base a la vibración torsional, que

corresponde a la tasa de cambio del módulo elástico de corte G respecto a

la deformación axial. La expresión de βG se calcula anaĺıticamente respecto

a las constantes elásticas de segundo y tercer orden (l, m, y n) y se verifica

numéricamente usando modelos de elementos finitos. Los efectos de la torsión

no uniforme (alabeo), la no-linealidad geométrica (efecto P-δ) y el del cambio

de las condiciones de borde, son estudiados anaĺıtica, numérica y experimental-

mente, para evaluar su efecto en βG. Se realizan experimentos para tres mezlcas

de hormigón usando tres espećımenes prismáticos de dimensiones 15 × 15 × 60

cm3; los valores de βG se calculan para estos tres espećımenes sometiéndolos a

varios ciclos de carga y descarga, lo que prueba la existencia, dominio y repeti-

tividad del efecto acustoelástico: la frecuencia de vibración torsional aumenta

al aumentar las deformaciones (y tensiones) de compresión en elementos alar-

gados. Una segunda campaña experimental es realizada usando las técnicas de

propagación de ondas ultrasónicas y vibración torsional simultáneamente en el

mismo especimen de mortero. Contrariamente a las predicciones teóricas ba-
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sadas en la acustoelasticidad, el ultrasonido arroja resultados de βG un orden

de magnitud menor que los resultados de βG que arroja la vibración torsional.

Para afrontar esta aparente contradicción, la teoŕıa se completa heuŕıstica-

mente teniendo en cuenta fenómenos menores de viscosidad. Finalmente, se

presenta un caso de estudio de un estructura a escala real, un tanque de hor-

migón postensado para la contención de material nuclear, el cual se somete

a incrementos graduales de presión interior. Se identifican las frecuencias de

vibración usando un sistema de medición basado en técnicas de análisis modal

operacional y se observa que las frecuencias de vibración se correlacionan con

la presión interna. Tanto el experimento como el modelo de elementos finitos

muestran que las frequencias de vibración aumentan al aumentar la presión in-

terna, sugiriendo que, en este caso, la no-linealidad geométrica domina frente

a los efectos acustoelásticos.

Palabras claves:

ensayos no destructivos, análisis de vibración, ultrasonido, no-linealidad

material, torsión.
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ABSTRACT

Condition assessment of civil infrastructure often requires knowing the cur-

rent stress acting on a given structural member. However, the development

of an efficient nondestructive testing (NDT) technique for estimating current

stresses in structural concrete elements remains open. To this end, previous

research have studied the dependence of mechanical wave speed with applied

stress, “the acoustoelastic effect”. Recent research on concrete elements un-

der uniaxial compression has shown that the acoustoelastic effect can also be

detected with techniques based on vibration phenomena, which offers several

benefits. This thesis focuses on studying, documenting and improving the use

of resonance vibration for acoustoelastic characterization and current stress

determination of slender concrete structural elements under compression. An

exhaustive theoretical development using analytical and numerical methods is

provided, where the torsional vibration mode is selected over other vibration

modes. The nonlinear material parameter βG is defined based on torsional vi-

bration, which corresponds to the rate of change of the elastic shear modulus

G with respect to the uniaxial strain. The expression of βG is analytically

calculated with respect to the second and third-order elastic constants (l, m,

and n) and numerically verified with finite element method (FEM) models.

The effect of non-uniform torsion (warping), geometric nonlinearity (P-δ ef-

fect) and changing boundary conditions is studied analytically, numerically

and experimentally, to assess their effect on βG. Experiments are carried out

for three concrete mixture designs using prismatic specimens of dimensions 15

× 15 × 60 cm3; values of βG are calculated for these specimens submitted to

several loading and unloading cycles, which proves the existence, dominance

and repeatability of the acoustoelastic effect: torsional frequency of vibration

increases with increasing compressive strains (and stresses) in elongated ele-

ments. A second experimental campaign is conducted using ultrasonic wave

propagation and torsional vibration techniques simultaneously on the same

mortar specimen. Conversely to the theoretical predictions based on acous-

toelasticity, ultrasonic results yield a βG value an order of magnitude lower

than the torsional vibration-based βG. To address this apparent contradic-
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tion the theory is completed heuristically by accounting for the slight mate-

rial viscosity. Finally, a case of study of a real size post-tensioned-concrete

nuclear-containment structure is presented, where the containment is submit-

ted to gradual internal pressure. Frequencies of vibration are identified us-

ing an output-only sensing system and the tracked frequencies are correlated

with internal pressure. Both the experiment and an FEM model show that

frequencies of vibration increase with increasing internal pressure suggesting

that geometric nonlinearity dominates over acoustoelastic effects in this case.

Keywords:

nondestructive testing, vibration analysis, ultrasound, material

nonlinearity, torsion.
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Chapter 1

Introduction

Civil infrastructure is one of the key components for countries to develop

socially and economically. There are a number of examples that depict the

importance of civil infrastructure in our lives; they affect society much more

than we realize. Massive concrete dams are needed to generate electricity, large

bridges and deep tunnels connect otherwise isolated towns and cities, highways

enable fast and safe traffic, thick concrete tanks safely contain nuclear material,

and fantastic stadiums are built to house enjoyable shows.

We tend to note the importance of these structures only when they are lack-

ing or during their construction. But once they are standing and successfully

operating, they fulfill their function and our attention diverts. We see them as

everlasting immutable pieces of steel and concrete. Despite their appearance,

structures are not immutable, they change, for a variety of reasons, and as time

goes on, they tend to deteriorate. This brings up one very important task for

governments to manage, which is, the maintenance of civil infrastructure.

We do not only want to build new infrastructure, but also to keep what we

already have safe and functional. This latter task is naturally not as rewarding

as the former: a new bridge is built in one or two years, which solves a specific

problem in a short period of time and calls our attention very much, but we

are already used to the benefits of the existing infrastructure, and thus, we

cannot see the maintenance work gradually done over the decades which keeps

it functional. Therefore civil infrastructure maintenance tends to be politically

unattractive, so funding is usually scarce, increasing the problem even more.

Maintenance of civil infrastructure is therefore an enormous responsibil-

ity for all society, not only for our government leaders, but also for private
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companies, professionals, architects and engineers, the academia and the users

too. The application of early and responsible maintenance actions saves public

funds in comparison to lately applied maintenance; and this is the least im-

portant benefit. Early maintenance prevents catastrophes, which often involve

irrecoverable social, environmental and economic losses [1–4].

Once aware of these drastic consequences, it is not difficult to acknowl-

edge the benefits of early maintenance actions, but it is much more difficult

to decide when and how to make these actions, and of course, how much to

invest. To this end, good quality information is highly appreciated to feed an

efficient infrastructure management plan and produce well-founded decisions

for conservation actions. And there is no other way to gather good quality

information than from accurate structural inspections. The field of civil in-

frastructure maintenance is therefore composed by a mixture of these three

interdisciplinary areas: management, inspection and conservation.

This Thesis focuses on the inspection area for civil infrastructure assess-

ment. There are many criteria to classify inspection techniques. One of these

corresponds to the effect that techniques have on the structure under study:

if they involve extracting considerable physical samples or otherwise imposing

some sort of impairment they are called “destructive testing”. Those who do

not affect the structure significantly are called “nondestructive testing” (NDT)

or “nondestructive evaluation” (NDE) techniques. Destructive techniques are

necessary to produce direct and unquestionable results, for example, to mea-

sure material properties, but they are expensive and cannot be extensively

applied along the structure nor periodically applied in time. On the other

hand, NDT techniques tend to be less expensive, and can be extensively and

periodically applied.

The most basic—and extensively used—NDT technique for civil infrastruc-

ture condition assessment is visual inspection [5, 6]. This is a very powerful

NDT technique which allows detecting deterioration mechanisms and causes of

distress without the need of special equipment. On the other hand, it requires

an experienced inspector, and only accessible parts of the structure can be in-

spected successfully. Furthermore, visual inspection is obviously very limited

as only superficial macroscopic distresses can be identified. There are a number

of more sophisticated NDT techniques capable of providing useful information

about the structure, each specialized to satisfy a specific goal [5, 7]. To men-

tion some of them, ultrasonic wave propagation allows detecting internal flaws
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hidden within the material [5, 8], resonance vibration allows estimating the

material’s elastic properties [5, 9], ground penetrating radar allows identifying

internal steel reinforcement [5], etc.

As science and technology evolves, researchers continue developing new

techniques with higher capabilities, and finding new applications for existing

NDT techniques; and that is the general goal of this Thesis, to review, develop

and assess the use of a specific NDT technique for condition assessment of

concrete civil structures. The goal is to shed light upon an open topic in the

field of NDT techniques for concrete structures.

Civil structures are built to support loads and transfer them to the ground

safely and efficiently. These loads stress the materials composing the structure.

But materials cannot withstand any level of stress; at a certain maximum

stress level, materials fail. This maximum stress level is called, in general

terms, strength. To be sufficiently safe, concrete structures are designed to

work at stress levels far away from their strengths, but there is no accurate

way to know the exact stress that these structures actually support. This fact

would not sound strange for a structural engineer but it will definitely call

the attention of other professionals and scientists of other fields. How is it

possible that we design an engineering product (a structure) to have a certain

function (to support stresses) and we do not measure the outcome of the

product (the actual stresses occurring in the structure)? The problem resides

in the experimental difficulty for measuring current stresses in real structures.

There has been efforts to develop testing techniques to solve this problem

mainly on steel structures [10, 11] and also in concrete structures [12, 13].

As explained in Chapter 2, many of these are destructive testing techniques,

which might not be applied in many cases. The topic of having an accurate

NDT technique for current stress determination in concrete structures remains

open. This is the principal motivation of this Thesis’ work.

Within the field of NDT for concrete structures, there are those which

rely on the physical phenomenon of mechanical wave propagation. Waves

propagating through a solid medium can be measured and provide information

about the solid, for example, its elastic modulus, or some geometric feature.

In particular, there is an effect called “acoustoelastic” effect, which explains

the experimentally observed stress dependence of mechanical wave speed [14].

Thus, this effect provides a pathway for measuring current stresses in solids.

This topic has been deeply studied in metals [11, 15], and it has been gaining
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importance in concrete during the past decade [16–18]. However, these efforts

have not been sufficient to provide a successful tool for stress determination

in concrete structural elements yet. The acoustoelastic effect (the change of

wave speed due to stress changes) in concrete is so small that the effect is

frequently coupled with other material phenomena, so its characterization has

been difficult and highly variable.

Another set of NDT for concrete structures are those that rely on vibration

or structural dynamics. These tests inspect the whole piece of structure and

not some local portion as wave propagation does; so from that view point

they are more robust. On the other hand, vibration phenomena are affected

by the structure’s boundary conditions, involving another influencing factor

which introduces more experimental difficulties. Traditionally, the frequency

of vibration of elongated elements axially compressed (like piles, columns, or

post-tensioned beams) have been studied using the theory of linear-elasticity,

which predicts a slight decrement of the frequency of vibration with axial

compression increments [19]. However, recent research has shown the opposite

behavior: frequency of vibration increases with increasing axial compressions

[20, 21]. This behavior is actually in agreement with the acoustoelastic effect

previously posed, which in turn, is directly connected to material nonlinearity.

However, efforts to use resonance vibration for acoustoelastic characterization,

and ultimately for stress determination, did not continue prospering, leaving

a knowledge gap which this Thesis aims to fulfill.

The objectives of this Thesis are:

To increase the knowledge regarding NDT techniques applied for condi-

tion assessment of concrete structures.

To study, both theoretically and experimentally, the phenomenon of

acoustoelasticity and material nonlinearity in concrete and its potential

for current stress determination.

To develop an experimental technique for acoustoelastic characterization

of concrete elongated elements based on resonance vibration.

To propose and assess, theoretically and experimentally, a fully NDT

technique capable of determining current stresses in concrete elongated

elements under compression (columns).

This Thesis contains several contributions to the field of Materials, Struc-

tural and Civil Engineering from an applied academic point of view, with
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potential for field applications. Specific material parameters are analytically

posed using the Theory of Finite Elasticity applied to nonlinear materials,

in order to unify acoustoelastic observations of resonance tests to the exist-

ing acoustoelastic observations of wave propagation tests. Numerical analy-

ses substantiate the analytical developments. These nonlinear parameters are

experimentally calculated, to characterize material nonlinearity (acoustoelas-

ticity) of concrete and mortar1 elements. Thorough experimental details are

provided to enable external reproduction and verification of the results. A

virtual experiment is presented to study the capability of using acoustoelas-

ticity for stress determination in elongated concrete structural members under

compression.

This Thesis is organized in seven chapters and additional appendices.

Chapter 1 introduces the topic and objectives. Chapter 2 summarizes the

existing theory and background. Chapter 3 contains analytical and numerical

developments; it includes the proposition and theoretical development of two

material nonlinear parameters, βE and βG, their connection with the existing

theory of nonlinear elasticity and wave propagation theory, and the analysis of

the virtual experiment for stress determination. Chapter 4 presents the exper-

imental procedures, results and discussion that substantiates the development

of a resonant-vibration-based-NDT technique for the acoustoelastic character-

ization of concrete. Chapter 5 contains the experimental procedures, results

and discussion carried out to verify the theory of acoustoelasticity using both

sets of techniques: wave propagation vs. torsional vibration; it is shown that

these do not agree so the chapter includes a final section that discusses these

findings. Chapter 6 is a case-study where frequency of vibration is used to

monitor internal pressure in a real size concrete structure. Finally, chapter 7

contains the overall conclusions.

1Mortar materials are concrete-like materials composed of cement, water and fine aggre-
gate (sand) but without coarse aggregate.
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Chapter 2

Theory and Background

2.1. Concrete Materials and Structures

Concrete is a mixture of cement, usually Portland cement, water, coarse

aggregate (like gravel, granite or limestone chip), fine aggregate (sand) and

air. It can also contain mineral or chemical admixtures, added to improve a

specific property. Its constituents are put together during mixing, period in

which it behaves as a fluid-like material, and then it is poured into a previously

constructed formwork. The fresh concrete will then take the shape of the

formwork, and after a dormant period, it will harden to become what can

be conceived as a manufactured rock. This procedure is far from being as

simple as it sounds; it involves many specialized steps, for example, the use of

good vibration and compacting techniques depending on the type of structure,

the use of a proper curing technique to avoid water evaporation, the use of

compatible cement and aggregate to avoid unwanted chemical reactions during

its harden state, the amount (and also time of introduction into the mixture)

of the admixture material, and many more [22, 23].

The end product, the harden concrete becomes a complex material too. In

its harden state, concrete is naturally heterogeneous composed of three phases,

solid, liquid and gas. Moreover, its constituents form an “interfacial transition

zone”, a thin layer at the interface between the aggregate and the cementitious

hydration products, which accounts for many of the macroscopic solid proper-

ties that we measure. These are characteristics comparable to natural rocks.

Like natural rocks, concrete has a high strength when put under compression

forces, this is, it has a high compressive strength, but it has a lower tensile
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strength. For this reason, steel bars, with higher tensile strength than con-

crete are embedded into the concrete mass to produce reinforced concrete, an

even more complex material, but capable of resisting both compressions and

tensions [22, 23]. The use of steel reinforcement gives concrete the capability

of resisting bending, which has been key to enable slender and efficient con-

structions, leaving behind the massive arcs and thick columns, and giving way

to thinner slabs, walls, beams and columns.

2.2. The Behavior of Concrete Under Stress

Structures are built to support loads (dead loads, wind, live loads, earth-

quakes, etc.) and to transfer them to the ground safely. These loads stress

the materials that form the structures. Thus, understanding the behavior of

materials under stress is key to allow safe and efficient construction. With this

motivation, the behavior of concrete under stress has been a long investigated

and well documented field of study [22, 23].

Concrete microscopic complexity is responsible for its mesoscopic and

macroscopic-scale behavior. Even in these latter scales, concrete is heteroge-

neous and not fully isotropic, it is nonlinear, viscoelastic, and time-variant (due

to the ongoing hydration reactions that make concrete stiffer and stronger)[22].

Furthermore, the use of steel reinforcements introduces even more complexity.

Perhaps the most important effect is the fact that steel bars allow concrete

structural members to work partially cracked. Thus, the geometrical prop-

erties of the members’ cross-sections become stress-dependent, which affects

structural behavior in many ways. Such complexities have made scientists and

engineers undertake drastic hypotheses in order to ease reinforced concrete

design methods and guarantee safety at the same time [22, 23].

This Thesis focuses on the study of concrete members under compression,

as it could be the case of columns, arcs or even some loading situations of

prestressed and post-tensioned beams. So let us focus the analysis on con-

crete under simple compression; i.e. an elongated solid whose sections are

compressed uniformly. There are standardized procedures that prescribe how

to characterize concrete under compression, i.e. how to measure the mate-

rial’s strain-stress relationship, particularly to determine concrete compressive

strength and “elastic moduli” [24, 25].

Concrete compressive strength fc is the most important material property
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of structural concrete design. It is the ultimate stress that supports a cylin-

drical concrete specimen when submitted to simple compression. Figure 2.1

shows the stress-strain relationship of a typical compressive strength test and

indicates the compressive strength. Due to concrete complexity, standards

specify a number of experimental features, like the specimen’s shape, the age

of concrete when tested, the loading rate, the curing conditions (temperature

and humidity), and others, which need to be respected in order to obtain

valid (inter-laboratory-comparable) results [22]. Compressive strength is key

to design concrete and specifically to determine the ultimate load that a given

structural member supports. However, it does not describe the element’s be-

havior in service1, where load levels are low. For that we use the elastic moduli.

The elastic modulus of a material is a constant that relates linearly stresses

and strains. Because concrete has a clear nonlinear stress-strain relationship,

the use of a single elastic modulus to model its full stress-strain range (from

0 to its strength) is theoretically invalid. However, concrete in service is sub-

mitted to only ∼20 % of its strength [23], and for low-level compressions,

lower than ∼ 30-40 % of concrete compressive strength, its behavior can be

approximated to a linear-elastic model [22, 23]; thus, using an elastic mod-

ulus within that range of loads has provided practical and useful results for

purposes of structural engineering design. Nevertheless, concrete technology

specialized literature and structural standards define several “types” of elastic

moduli for concrete [22, 24, 26, 27]. Figure 2.1 [22] presents concrete compres-

sive stress-strain relationship, where the various “types” of elastic moduli for

concrete under compression are depicted, but there are other definitions for

tension and bending. These elastic moduli of concrete take special importance

to determine structural deformations in service for design purposes.

The stress-strain relationship presented in Figure 2.1 follows a fairly linear

behavior up to ∼40 % compressive strength and then there is a clear nonlinear

behavior, where stresses increase at a lower rate than the increments of strain.

This type of stress-strain nonlinearity is called softening, and it occurs due to

the initiation and coalescence of microcracks [22].

Recent research has shown that during the quasi linear-elastic period of

concrete under compression, i.e. when concrete is compressed below 40 % of

1“Service” makes reference to the state of the concrete being part of a standing structure.
Service loads are those that regularly act on a structure. These are much lower than the
ultimate or design loads, which are the maximum loads that the structural member supports.
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Figure 2.1: Compressive stress-strain relationship, and elastic moduli definitions,
proposed by the literature, structural standards and building codes specialized in
structural design of concrete.

its strength, it actually follows a minor stiffening behavior [16, 17, 28], meaning

that as compressive strains increase, compressive stresses increase at a higher

rate. This effect is not only seen in concrete but in other materials, like steel,

aluminum, rock, and plastic too [29–33]. Again, this behavior can be conceived

as a stress (or strain) dependent modulus of elasticity, where, in this case, the

elastic modulus increases with increasing compressions. Thus, any technique

capable of characterizing the elastic modulus, should in theory, be capable

of characterizing this stiffening effect, like for example mechanical (acoustic)

wave propagation techniques. Therefore, the field of science that studies this

effect has been known as acoustoelasticity; acoustoelastic effects are those in

which mechanical stresses of a solid material affect wave speed. It should be

noted though, that this effect is actually a corollary of material nonlinearity

[34].

2.3. Linear Elastic Solid

In order to gain insight about material nonlinearity, acoustoelasticity and

other nonlinear effects in concrete, let us first pose the traditional linear theory

of elasticity. Let us consider an elongated solid (prismatic bar) with axial
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dimension L1 and base dimensions L2 and L3= L2. This hypothesis focuses

the analysis on typical structural elements of the civil engineering field, such as

columns and beams. Also, consider the solid to be homogeneous and isotropic.

Whenever these hypotheses are in doubt, the necessary clarifications will be

done. Figure 2.2 shows a diagram with the bar’s dimensions and Cartesian

axes 1, 2 and 3.

1

2

3

L1

L3

L2

Figure 2.2: Prismatic bar of dimensions L1, L2 and L3 and Cartesian axes.

When this elongated bar is subjected to uniaxial stress, i.e. by applying

uniform stresses at their end faces, the expression that relates the normal

(longitudinal) stresses σ (in the direction 1) and the strain ε developed in that

same direction is the renowned Hooke’s Law

σ = Eε, (2.1)

where the elastic constant is the Young’s modulus E. The Hooke’s Law es-

tablished by equation (2.1) is a uniaxial version of a tridimensional law. To

describe the tridimensional elastic behavior it is necessary to consider the Gen-

eralized Hooke’s Law

T = λtr(D)I + 2µD, (2.2)

where T is the stress tensor, D is the strain tensor, I is the identity matrix,

λ and µ are the Lamé second order elastic constants which are related to the

10



Young’s modulus E and the Poisson’s ratio ν by

λ =
Eν

(1 + ν)(1− 2ν)
, (2.3)

µ =
E

2(1 + ν)
. (2.4)

Note that one can go from equation (2.2) to equation (2.1) by identifying

that σ = T11. Equation (2.2) poses a linear and elastic behavior between

stresses and strains, and it is usually applied under the condition of small

strains and small displacements, i.e. using the infinitesimal theory of elasticity,

which constitutes the approach to describe the majority of civil engineering

problems [35].

Another typical stress state is pure shear, which is particularly developed

in bars of circular cross-section under pure torsion. This stress state can be

studied using the Generalized Hooke’s Law described by equation (2.2), which

reduces to a scalar equation where the shear stresses τ (= T12) are related to

the shear strains γτ (= 2D12) by

τ = Gγτ , (2.5)

where G(= µ) is the elastic shear modulus.

2.4. Traditional Stress Determination Tech-

niques

In-situ stress determination has been a long studied topic, initially focused

on residual stress determination in rock and steel [36]. These topics have been

usually studied from a geotechnical or mechanical engineering stand point,

respectively. The latter field has developed significantly over the years, ulti-

mately converging into a number of handbooks and standards which detail the

proposed techniques [10, 11, 15]. The civil engineering and concrete materials

fields of study have adopted some of these techniques and tested them onto

concrete material structures.

The most basic techniques for stress determination in concrete are those

based on strain relief. They consist in gradually relieving the existing strain

(and stress) of a portion of the examined concrete structure by hole drilling,
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core drilling, or notch cutting. The strain relief is measured using strain gauges

during the intervention. If the type of the existing stress state is known (e.g.

uniaxial or biaxial stress field) and the elastic constants of concrete are known,

one can back-calculate the existing stress from the measured strain relief by

fitting the result into the assumed theoretical behavior.

A number of studies have expanded the theory and practice of these tech-

niques into concrete structures [12, 13, 37, 38]. For instance, Parivallal et al.

[39] provide a clear method for implementing the core drilling technique in

field. More recent research has continued this line, introducing finite element

method [36, 38, 40], and digital image correlation techniques [41], which have

improved the methods’ accuracy.

The main advantage of these techniques is that they directly measure the

strain relief and not some other magnitude that is later processed and converted

into strain. On the other hand, the experiments involve a destructive inter-

vention (drilling, coring or notching). Therefore, these techniques present the

usual drawbacks of any destructive test, as they cannot be applied extensively,

they tend to be expensive and they are not to be applied in delicate structures,

such as some post-tensioned beams, liquid containers, nuclear containers, etc.

In addition, the intervention creates heat which affect strains development, so

specific experimental actions need to be considered to mitigate this problem,

like using cooling water, which, in turn, can originate hygrothermal strains and

can also affect the electric sensors. Finally, these destructive testing methods

cannot be applied for continuous monitoring for obvious reasons, either for

overall health condition assessment or for other specific goals, for example,

tendon gradual stress losses in post-tensioned and prestressed beams. The use

of nondestructive testing techniques could complement or even replace the use

of destructive techniques for stress determination of concrete structures. The

following two sections describe the fundamental theory of two types of non-

destructive testing techniques: mechanical wave propagation-based techniques

and resonance (vibration)-based techniques.

2.5. Mechanical Wave Propagation

Propagating mechanical waves are pulses of stress-strain traveling within

a medium where energy travels but mass does not. As the pulse goes by,

particles vibrate around a fixed point, enabling the pulse to propagate within
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the medium, even though each particle stays close to their initial position.

To start the analysis, let us consider a harmonic plane wave traveling within

a solid, homogeneous, isotropic, infinite medium. Let us also consider the

medium to be linear-elastic, or otherwise consider that the stresses, strains

and displacements originated by the wave are so small that the linear-elastic

hypothesis holds. Under these hypotheses, it is possible to conclude that there

are two possible wave modes capable of propagating [35]. The first mode

corresponds to the primary waves or P-waves (also called pressure waves),

where the particle motion is parallel to the direction of wave propagation,

and the second mode to the secondary waves or S-waves (also called shear

waves), where the particle motion is perpendicular to the direction of wave

propagation. P-waves travel at a speed VP given by equation

V 2
P =

λ+ 2µ

ρ
=

E(1− ν)

ρ(1 + ν)(1− 2ν)
, (2.6)

where ρ is the medium’s density. S-waves propagate at a speed VS given by

V 2
S =

µ

ρ
=
G

ρ
. (2.7)

P and S-waves are called “bulk waves” because they exist in infinite media

(in reality, sufficiently far from boundaries). Note that the P and S-wave speeds

depend only on the medium’s density and two independent elastic constants.

Thus, for a given solid with known (or measurable) density, it is sufficient

to measure P-wave speed VP and S-wave speed VS to find both solid second

order elastic constants, using equations (2.6) and (2.7). This procedure (in-

version problem) will hold as long as the considered hypotheses are sufficiently

valid. To assess the hypotheses validity, two other important features of wave

propagation are needed to be presented: frequency and wavelength.

The wave speed V (of both P and S-waves) is related with the particles’

frequency of vibration f and with the wave’s wavelength λω by [35]

V = λωf. (2.8)

In many experiments, the frequency f is fixed as it is provided by the

transducer that generates the wave. The type and experimental configuration

of the transducer determines if only P-waves are generated, only S-waves, or

both (or other wave modes not analyzed here). Then, the wave speeds VP and
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VS are given by equations (2.6) and (2.7); and thus, the wavelength λω is given

by equation (2.8).

This technique in which wave propagation is used to characterize the ma-

terials elastic properties is widely used and has been vastly documented and

standardized [7, 8, 42]. However, as said before, the accuracy of the results are

directly dependent on the validity of the hypotheses. For concrete materials,

none of the hypotheses are truly valid. Thus, a number of features need to be

prescribed in order to allow these to hold. These are:

The medium can be considered infinite if the wave’s wavelength λω is

considerably smaller than the medium’s dimensions. Thus, frequency f

needs to be sufficiently high.

The medium can be considered homogeneous and isotropic if the wave’s

wavelength is sufficiently larger than the aggregates that constitute the

concrete mass. Thus, frequency f needs to be sufficiently low.

Stresses and strains created by the propagating wave are small enough

(and oscillate so fast) so that nonlinearity and viscosity are usually ne-

glected from the analysis. However, the elastic moduli determined by

this technique correspond to the “wave-propagation-dynamic-moduli”,

and are not equal to the “quasistatic moduli” that concrete has when

submitted to service loads [7, 8]. Traditionally, the dynamic modulus of

elasticity has been associated to the initial tangent modulus shown in

Figure 2.1 [22].

To meet these requirements, standards recommend using ultrasonic wave

propagation with frequencies between 20 to 200 kHz. These frequencies create

ultrasonic waves with sufficiently large wavelengths to “see” concrete as ho-

mogeneous, and sufficiently small to avoid boundary interaction and to enable

considering the medium as infinite [7, 8].

The reader should note that this section exposed the very basics of wave

propagation. For instance, the very important effect of attenuation has not

been introduced, which also prevents using higher frequencies. This and many

other important features of wave propagation for concrete inspection are de-

tailed elsewhere [7, 8, 42].

Finally, note that the wave speeds given in (2.6) y (2.7) are not dependent

on the stress state of the solid’s medium through which they travel. In other

words, the wave speed and the medium’s stress state are independent. This
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characteristic is no longer valid when the medium material is considered non-

linear, and a broader theory is needed: the Theory of Acoustoelasticity. Before

introducing this theory, let us pose the basics of the second set of nondestruc-

tive testing techniques, those based on resonating (vibrating) solids.

2.6. Structural Dynamics: Vibration of Solids

and Structures

Structural dynamics is a very broad field of study which touches trans-

versely many other scientific and engineering fields. In civil engineering, struc-

tural dynamics is mainly used for structural design, to allow buildings to sup-

port wind loads and earthquakes, or as a method for nondestructive structural

characterization (nondestructive testing or structural health monitoring). This

Thesis focuses on the latter application.

There are many sources that develop the broad topic of structural dynamics

[43, 44]. This section contains the very basics of this topic, in order to provide

the fundamental theory used in the following chapters. As it is conventional

in these textbooks, first, the single degree of freedom systems theory is pre-

sented, in order to gain insight about the specific concepts and magnitudes,

and then the analysis is extended to multiple degrees of freedom systems, and

to distributed-mass solids.

2.6.1. Single Degree of Freedom Systems

The most basic vibrating system, a single degree of freedom system, is rep-

resented by a mass m, a spring and a viscous damper connected as depicted in

Figure 2.3, and subjected to a time-dependent force p(t). The spring represents

the system’s stiffness, where the spring’s force is opposite and proportional to

the spring’s elongation; its constant of proportionality is named k. Likewise,

the viscous damper provides a force opposite and proportional to its rate of

displacement, where its constant of proportionality is c.

The governing equation of motion of the system is

mẍ+ cẋ+ kx = p(t), (2.9)

where x is the mass’s displacement (time-depending position with respect to
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Figure 2.3: Single degree of freedom vibrating system.

rest position) and the dot implies derivation over time t.

When p(t) = 0, the system is free, so it is call “free vibration”, in contrast

to the opposite situation where the vibration is “forced” by p(t). Also, if c = 0,

the system is undamped, so equation (2.9) reduces to

mẍ+ kx = 0. (2.10)

Periodic solutions of equation (2.10) are of the form

x(t) = x0e
iωt, (2.11)

where x0 is a complex constant that depends on the initial conditions, and ω

is the system’s angular frequency of vibration, which, in this case, is given by

ω2 =
k

m
= ω2

1. (2.12)

The value ω1=
√
k/m is the system’s natural angular frequency of vibration.

Note that “angular frequency” ω and “frequency” f are related by

ω = 2πf. (2.13)

For the case of an undamped vibration forced by

p(t) = p0e
iΩt, (2.14)

where Ω is the forcing force’s frequency, we can assume a solution of the form

x(t) = x0e
iΩt, (2.15)

where both x0 and p0 are complex constants, so that by substituting these
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equations into the equation of motion yields

(k − Ω2m)x0e
iΩt = p0e

iΩt. (2.16)

When the system is forced, it is common to characterize it using frequency

response function (FRF), defined as the “receptance” R= x0/p0. In this case,

the FRF becomes

R(Ω) =
x0

p0

=
1

k − Ω2m
. (2.17)

Note that when the forcing frequency Ω equals the system’s natural frequency

ω1, the receptance and the response x tend to infinity, i.e. the system resonates.

Of course, in reality this does not occur because systems always have some sort

of damping, which, even though amplitudes increase considerably around the

natural frequency, they do not become infinite, as it is explained below.

When c 6= 0, the system is damped. Thus, the free vibration analysis yields

a periodic solution

x(t) = x0e
−αteiω

′
1t, (2.18)

where α is the damping rate, equal to ξω1, where ξ = c/(2
√
km), and the

system’s natural frequency is

ω′1 = ω1

√
1− ξ2. (2.19)

Note at equation (2.18) that the free vibration x(t) of the viscous damped

system oscillates but decreases in amplitude following an exponential decre-

ment given by α, which is real and positive. Also, because the damping ratio

ξ tends to be much lower than 1 in concrete structures (in the order to 0.02

[45]), the system’s natural frequency of vibration, ω′1, is slightly lower than the

free undamped natural frequency ω1.

When the single degree of freedom damped system is forced by p = p0e
iΩt,

the receptance FRF is

R(Ω) =
1

(k − Ω2m) + iΩc
, (2.20)

which is complex. Thus,
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|R(Ω)| = |x0|
|p0|

=
1√

(k − Ω2m)2 + (Ωc)2
, (2.21)

so the receptance and the response peak when Ω = ω′1, but do not tend to

infinity as it occurs in the undamped case.

2.6.2. Multiple Degrees of Freedom Systems

Multiple degrees of freedom systems (MDOF) are, of course, capable of

representing a broader set of real situations than the single degree of freedom

systems. These systems are treated in a similar manner as the single degree

of freedom systems, but instead of having scalar magnitudes we now arrange

them into matrices to obtain analogous equations. For instance, the equation

of motion of an undamped MDOF system with N degrees of freedom is

[M ]{ẍ(t)}+ [K]{x(t)} = {p(t)}, (2.22)

where [M ] is the N ×N mass matrix, [K] is the N ×N stiffness matrix, and

{x(t)} and {p(t)} are the N×1 time-dependent displacement and force vectors,

respectively.

To exemplify the analysis, consider a two-floor building submitted to hor-

izontal forces, which can be modeled as a 2DOF system, where the floors

(slabs) are the masses, and the columns that connect the floors provide the

lateral (bending) stiffness. Figure 2.4 depicts the structural and the MDOF

mass/spring models.

Figure 2.4: Left: Structural model of a two-floor building with floors and columns
submitted to horizontal forces. Right: MDOF mass/spring model.

The two governing equations are
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m1ẍ1 + (k1 + k2)x1 − (k2)x2 = p1(t)

m2ẍ2 + (k2)x2 − (k2)x1 = p2(t),

which can be arranged in matrix form as

[
m1 0

0 m2

]{
ẍ1

ẍ2

}
+

[
k1 + k2 −k2

−k2 k2

]{
x1

x2

}
=

{
p1

p2

}
. (2.23)

The free vibration solution of equation (2.22) is obtained by taking

{p(t)} = {0}.

By assuming a solution

{x(t)} = {x0}eiωt,

we obtain

([K]− ω2[M ]){x0}eiωt = 0, (2.24)

so that the only non-trivial solutions for ω are given by

det([K]− ω2[M ]) = 0. (2.25)

Equation (2.25) yields a set of values ω1, ω2, ..., ωN which are the N un-

damped system’s natural frequencies. By substituting each of these back into

equation (2.24), the modal shapes, associated to each frequency, are obtained.

If we consider again the two-floor building example, since it is a 2DOF

system, it will have two undamped natural frequencies, ω1 and ω2. The lower

frequency, ω1, is associated to the first modal shape {Ψ}1, and ω2 to modal

shape 2, {Ψ}2. These are depicted in figure 2.5.

The analysis of MDOF can be expanded to incorporate viscous damping

(or other types of damping), and to forced situations. In the latter case,

the FRF functions can be deduced. Due to the multiple degrees of freedom,

FRF originate by computing the N2 terms x0,i/p0,j, for i, j = 1, 2, ..., N . The

analysis becomes considerably more complex than the SDOF analysis, and it

falls out of the scope of this thesis. The interested reader can consider the
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Figure 2.5: Modal shapes of an undamped 2DOF system. Left: first modal shape
{Ψ}1, associated to natural frequency ω1. Right: second modal shape {Ψ}2, associ-
ated to natural frequency ω2.

specialized bibliography [43, 44] for further information.

2.6.3. Distributed-Parameter Systems

The previous section presented the basic theory to describe vibration phe-

nomena where vibrating elements, the masses, are discrete. These systems

could be regarded as rigid elements (the masses) interconnected by other elas-

tic mass-less elements that provide the system’s stiffness. Thus, the model

neglects the elastic elements’ mass. When the elastic elements’ mass cannot

be neglected, the discrete system fails, and a distributed-parameter system

is needed. It should be noted that many particular systems could be mod-

eled both as discrete and as distributed-parameter systems, depending on the

analyses’ objective [44].

Let us consider the case of a circular shaft in torsional vibration, or any

elongated solid where the torsion of Saint-Venant is valid (warping terms ne-

glected), like long bars with uniform solid-cross-sections. In these cases, the

torsional moment in a cross-section is proportional to the rate of twist at that

section [46]. That is

M(x, t) = GJ
∂θ

∂x
(x, t), (2.26)

where M(x, t) is the torsional moment at time t and section defined by the

coordinate x (coordinate along the longitudinal axis), G is the material’s elastic

shear modulus, J is the torsional constant in units of m4, and θ(x, t) is the

angle of twist of section x at time t. By applying second’s Newton’s Law to a
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differential element without external loading, and substituting equation (2.26)

into it we obtain the governing equation of motion [35, 44]

GJ
∂2θ

∂x2
(x, t) = ρIp

∂2θ

∂t2
(x, t), 0 < x < L (2.27)

where ρ is the material’s density, Ip is the polar moment of inertia in units of

m4, and L is the shaft’s length.

By observing the partial differential equation (2.27), we can try solutions

of the form

θ(x, t) = φx(x)Yt(t),

where φx is a function that only depends on position x, and Yt is a function

that only depends on time t, and obtain

φ′′x
φx

=
1

c2
s

Ÿt
Yt

= −γ2,

where a dot over the magnitude indicates derivation over time t, and a quo-

tation mark indicates derivation over position x, c2
s = GJ/ρIp, and γ2 is a

positive constant (γ usually called wavenumber).

Now, by trying sinusoidal solutions of φx(x) and Yt(t), we find the solution

of equation (2.27)

θ(x, t) = [A1 sin(γx) + A2 cos(γx)][B1 sin(ωt) +B2 cos(ωt)], (2.28)

where ω2 = c2
sγ

2, A1 and A2 are constants that depend on the shaft’s boundary

conditions given at x = 0 and x = L, and B1 and B2 are constants that depend

on the initial shaft’s conditions.

For a shaft pinned at both ends, we have

θ(x = 0, t) = 0⇒ A2 cos(γ0) = 0⇒ A2 = 0,

and

θ(x = L, t) = 0⇒ A1 sin(γL) = 0⇒ γn =
nπ

L
,with n = 1, 2, 3, ...

21



As seen in the previous expression, there is an infinite number of solutions,

given by the family γn, that satisfy the boundary conditions, where n is the

modal number and takes the values 1, 2, 3, .... These are the infinite modes of

vibration, whose shapes are given by introducing the γn solution into equation

(2.28), which yields

φx,n(x) = A2 sin
(nπx
L

)
where A2 is an undefined real constant. Note that the modal shapes correspond

in this case to sine functions of increasing argument, all being multiples of γ1.

For each nth mode of vibration, there is a corresponding frequency of vibration

ωn, given by the definition of ω; thus the frequency of vibration of each mode

is given by

ω2
n =

(nπ
L

)2 GJ

ρIp
, n = 1, 2, 3, ... (2.29)

It should be noted that the problem of a circular shaft in torsional vibra-

tion is analogous to a thin rod in axial vibration, and also to a string in trans-

verse vibration [44]; they all consist of solving the same second-order partial

differential equation (2.27), with the involved coordinates having a different

physical meaning, and using a different set of physical parameters. For the

case of the rod in axial vibration, we only need to substitute, in the equation

(2.29), stiffness GJ for EA, and Ip for A, with E being the Young’s modulus

of elasticity, and A the cross-section area. Also, we can compare the circular

shaft in torsional vibration (and the rod in axial vibration) to the undamped

SDOF system in free vibration. In equation (2.29), we could define a spring

of stiffness k ≡ πGJ/L and a mass with inertia term m ≡ LρIp/π, to obtain

ω2
1 = k/m, equal to equation (2.12).

Another typical distributed-parameter structural element is the beam in

bending vibration. Most textbooks approach this problem by considering the

Euler-Bernoulli beam theory, which neglects the rotational inertia with respect

to the displacement inertia, and neglects the shear deformation with respect

to the bending deformation [44]. This last hypothesis is valid for beams with

length at least 10 times larger than their “bending” width (cross-section di-

mension) [44]. If this hypothesis is not met, it is necessary to consider the

Timoshenko beam theory, which accounts for these effects.

The equation of motion of the Euler-Bernoulli beam is a fourth order partial
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differential equation, and it is needed to define two boundary conditions at each

beam’s end to find the modal shapes and frequencies of vibration. For the case

of pinned-pinned boundary conditions (free rotation and fixed displacement at

both ends), the frequencies of vibration are [35]

ω2
n =

(nπ
L

)4 EI

ρA
, n = 1, 2, 3, ... (2.30)

with I being the principal moment of inertia that opposes bending, either Iy or

Iz, with x being the coordinate in the axial direction, and y and z the other two

coordinates associated to two principal directions forming a Cartesian system.

For the case of free-free boundary conditions, the first (fundamental) frequency

of vibration is

ω2
1
∼=
(

4.730

L

)4
EI

ρA
. (2.31)

For “short” beams, the Euler-Bernoulli beam theory is not valid, and the

Timoshenko beam must be considered. The interested reader should refer to

the specialized bibliography [47, 48] for detailed information.

Finally, there is another case that matters for the purpose of this thesis,

which is the case of bending-torsional vibration of axially loaded elongated

solids (beams, columns). Lawrence [19] addresses this problem by consid-

ering bending vibration in either direction and torsional vibration, and the

elements to be Euler-Bernoulli beams, where torsion is affected by both non-

uniform (warping) and Saint-Venant torsion. If the element’s cross-section is

doubly-symmetric, the three equations of motion decouple and there are three

decoupled mode families (two bending and one torsional). The first (funda-

mental) frequencies of vibration of these three modes, bending with respect to

direction 2 (coordinate y), bending with respect to direction 3 (coordinate z),

and torsional (θ) are given by

ω2
y,1 =

1

Aρ

[
P
(π
L

)2

+ EIz

(π
L

)4
]
, (2.32)

ω2
z,1 =

1

Aρ

[
P
(π
L

)2

+ EIy

(π
L

)4
]
, (2.33)

ω2
θ,1 =

1

ρIp

[
PIp
A

(π
L

)2

+ EIw

(π
L

)4

+GJ
(π
L

)2
]
, (2.34)
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where P is the axial force, positive in tension, Iy and Iz are the principal

moments of inertia with respect to directions 2 and 3, respectively, and Iw is

the warping moment of inertia.

This topic is further studied in Chapter 3, but here it is necessary to note

that the compressive axial load P tends to reduce the bending and torsional

frequencies of vibration (because compression is negative). Therefore, this

theory predicts reductions of the frequency of vibration as axial compression

increases—within small enough (service) loads. However, recent research have

observed the opposite behavior for concrete materials due to the nonlinear

stiffening effect of concrete under compression [16, 17, 28]. A broader theory

is needed to account for these findings, this is the Theory of Acoustoelasticity,

which is presented in the next section.

2.7. Approaches for Stress Determination:

Theory of Acoustoelasticity

2.7.1. Introduction

Experiments in metals and plastic materials carried out during the early

years of the 20th Century proved the dependence between the solids’ current

stress and mechanical wave propagation [34]. These observations were not

explained by the classical linear-elastic theory of materials, which, as shown

in equations (2.6) and (2.7), predicts independence between wave speed and

applied mechanical stress.

The topic moved forward by introducing linear empirical relationships be-

tween wave speed and stress, related by “acoustoelastic coefficients” [14, 15,

34]. However, it achieved a breakthrough when Hughes and Kelly [14] discov-

ered that this applied stress-wave speed dependence can be explained by the

fact that materials’ constitutive equations (stress-strain relationships) may not

be perfectly linear. In fact, slight material nonlinearity between stresses and

strains would affect the speed in which mechanical waves travel through the

deformed (stressed) medium.

Hughes and Kelly [14] obtained expressions of mechanical wave speed that

depend on the solid’s stress state. Their analysis started by considering the

medium a Murnaghan solid [49]. The Murnaghan solid is a hyperelastic nonlin-
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ear, homogeneous and isotropic solid material, in which stresses and strains are

related by five elastic constants (see Chapter 3 for more details). These elastic

constants are the two “second order” classic elastic constants, either the Lamé

constants λ and µ, or the engineering constants E and ν, plus three “third

order” elastic constants l, m, and n, later named “Murnaghan constants”. In

a solid body under uniaxial stress and considering a set of Cartesian axes, as

the one given in Figure 2.2, the expressions of bulk wave propagation given by

Hughes and Kelly [14] are

ρ0V
2

11 = λ+ 2µ+
σ

3K

[
2l + λ+

λ+ µ

µ
(4m+ 4λ+ 10µ)

]
(2.35)

ρ0V
2

12 = ρ0V
2

13 = µ+
σ

3K

(
m+

λn

µ
+ 4λ+ 4µ

)
(2.36)

ρ0V
2

22 = ρ0V
2

33 = λ+ 2µ+
σ

3K

[
2l − 2λ

µ
(m+ λ+ 2µ)

]
(2.37)

ρ0V
2

21 = ρ0V
2

31 = µ+
σ

3K

(
m+

λn

4µ
+ λ+ 2µ

)
(2.38)

ρ0V
2

23 = ρ0V
2

32 = µ+
σ

3K

(
m− λ+ µ

2µ
n− 2λ

)
(2.39)

where ρ0 is the material’s density in the undeformed state, K = λ + 2µ/3,

and σ is the applied uniaxial stress along direction 1, equivalent to T11, as

per equations (2.1) and (2.2). In equations (2.35) to (2.39), the bulk wave

speed magnitudes Vij correspond to a wave propagating parallel to direction i

and polarized in direction j, with i, j ∈ {1, 2, 3}; thus, wave speeds with equal

subindices correspond to P-waves and with different subindices correspond to

S-waves.

With the equations posed by Hughes and Kelly [14], the research and ap-

plications that followed, involving acoustoelasticity, initially focused on assess-

ing structures made of metal and polymer [29–32, 50–54]. These satisfactory

research gave way to acoustoelastic analysis and characterization of more com-

plex materials, such as concrete or rock [16–18, 20, 28, 33, 55–70].
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2.7.2. Classical nonlinear (acoustoelastic) characteriza-

tion of rock and concrete

Despite the fact of having a 3-D model given by the elastic Murnaghan solid

model, capable of explaining the observed acoustoelastic effects, many research

have opted for considering a 1-D solid model, which is of course less general

but equally accurate in the appropriate conditions, and easier to manage. This

model, known as the “classical nonlinear solid”, is defined by the nonlinear-

elastic constitutive equation

σ = E(1 + βε+ δε2 + ...)ε, (2.40)

where σ is the stress in the material, associated to a certain plane and direction,

ε is the strain associated to the same plane and direction, E is some elastic

constant, and β, δ,... are nonlinear elastic constants. Attention should be paid

when using equation (2.40), as it is a 1-D simplification of a more complex 3-D

general problem. In particular, the material elastic constants E, β, δ, ... have

one physical meaning if equation (2.40) represents an elongated solid (a “bar”

with one dimension much larger than the other two) composed of a nonlinear

material, or a different one if it represents an infinite medium. The former case

can be used to study the problem of a vibrating nonlinear solid bar, whereas

the latter case is used for a bulk wave traveling through the nonlinear solid. For

the latter case, and to distinguish it from the bar, let us rewrite the equation

σ = Ebulk(1 + βbulkε+ δbulkε
2 + ...)ε. (2.41)

where Ebulk = E(1 − ν)(1 + ν)−1(1 − 2ν)−1 for a P-wave, or Ebulk = G for

an S-wave (E, ν and G being the Young’s modulus, Poisson’s ratio and shear

modulus of elasticity, respectively). Similarly, the nonlinear material parame-

ters β, δ, are different depending on the conditions of the solid . For instance,

Otrovsky and Johnson [71] have found the value of βbulk in terms of the third

order elastic constants

βbulk =
3

2
+
l + 2m

λ+ 2µ
, (2.42)

which is associated to “wave propagation conditions” (a wave traveling through

an infinite medium); in the following chapters other β-values (namely βE and

βG), associated to other conditions, are derived.
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Before moving into the use of acoustoelasticity for current stress determi-

nation/monitoring, it is necessary to highlight that there are abundant studies

regarding nonlinear parameter characterization; there have been developed a

number of techniques that exploit the characteristic features observed in non-

linear materials, and allow characterizing β and δ-values; for example, higher

harmonic generation, mixed frequency response, sub-harmonic generation and

resonant frequency shift with amplitude of the forcing force [43, 44, 72–75].

These techniques rely on submitting the material to dynamic displacement

(strain) fields of significant amplitudes in order to activate the material non-

linearity, and, in general, they have been applied onto solids in a quasistatic-

unstressed rest state, i.e. no quasistatic external load. On the other hand, the

whole point of this research is to study and develop NDE techniques capable of

estimating the external quasistatic loads. Thus, the potential NDE techniques

to be developed are applied onto the already stressed solid, state in which the

overall material and structural behavior differs from the unstressed state (as

shown in the following chapters).

2.7.3. Acoustoelasticity for stress determination in con-

crete

The fact that wave speed is stress sensitive holds the potential of being

used for stress determination. In the last decade, several researchers have

made efforts to develop NDE methods capable of determining current stress

levels in concrete. During these years, the leading approach has been the use

of the acoustoelastic effect using wave propagation techniques [16–18, 28, 55–

61, 63–65, 67–70]. However, wave speed is also damage sensitive. In samples

under uniaxial compression, researchers have found that the acoustoelastic

effect dominates at stress-levels lower than around 30 % or 40 % of the concrete

compressive strength, i.e. within the elastic regime. At higher stress levels the

effect of damage (microcracking coalescence) starts to progressively dominate

concrete behavior [18, 28, 67].

However, even within the “elastic regime” of concrete under compression,

there exist minor viscoelastic [76] and micro-plastic effects [77], which can af-

fect the acoustoelastic results. Therefore, concrete material classical nonlinear

behavior and its applicability for stress determination are still under research.

For instance, only very few studies have calculated the third order elastic con-
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stants of concrete material [17, 64], as most researchers have characterized

classical material nonlinearities using the 1-D approximation, i.e. the non-

linear parameter βbulk, or even the empirical approach using “acoustoelastic

coefficients” that relate stress to wave speed directly.

From among the mentioned research focused on acoustoelastic characteri-

zation in concrete materials for stress determination/monitoring, there are four

of them of particular interest. Payan et al. [17] studied the ultrasonic wave

speed stress-dependence of a cylindrical concrete specimen under quasi-static

uniaxial compression, using the coda wave propagation technique, and deter-

mined the specimen’s material Murnaghan constants. The novelty of their

results, besides determining concrete Murnaghan constants for the first time,

rely on their technique, which does not need to measure absolute wave speed

values but only their variation during a loading test. Because the uncertainty

of the variation of the wave speed is much lower than the uncertainty of the

absolute wave speed, the obtained l, m and n results are more accurate. On the

other hand, the use of the coda wave technique undertakes several debatable

assumptions, for example, the fact that the coda waves are mainly S-waves,

where rigorously they are not. Moreover, only one loading cycle is shown, so

there is no assessment of how elastic the behavior is for an entire loading-and-

unloading cycle. Nogueira and Rens [64] computed the Murnaghan constants

of multiple concrete mixtures using a direct wave propagation technique, where

the concrete was subjected to one cycle of applied compression loads. They

do not assess the measurements uncertainty nor the elastic behavior either.

Shokouhi et al. [18] studied the Rayleigh wave speed dependence of a con-

crete sample under uniaxial compression. They applied several loading and

unloading cycles and were able to decouple the acoustoelastic effect from dam-

age (microcracking) effects. They concluded that acoustoelastic phenomenon

dominates the wave speed stress-dependence, showing a stiffening behavior,

for stresses between 0 and 35 % of the concrete strength. Finally, Lundqvist

and Rydén [20] studied the acoustoelastic effects of a large-scale post-tensioned

concrete beam. The main distinction of their investigation is that they used

vibration resonance instead of wave propagation to monitor acoustoelasticity.

They found that the specimen’s vibrational modal frequencies increased when

modest levels of axial compression were applied (by tensing the tendons).

The use of resonance techniques, including bending and torsional modes,

have been gaining attention to substantiate mainly the acoustoelastic effects,
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and also nonlinear nonclassical material descriptions (material conditioning

effects, hysteresis and damage in unstressed specimens) [72, 78–81]. This re-

search is focused on material acoustoelasticity specifically for concrete under

mechanical stress, so it does not consider broader nonclassical material pa-

rameters. The reader interested in nonclassical nonlinear material descriptions

should refer to the specialized bibliography [72, 79–81].

The main advantage of using vibration frequency instead of wave speed is

that the former is a global measurement, less affected by local material vari-

ability. On the other hand, the main drawback for vibration measurements is

that frequency is affected by the test sample’s boundary conditions whereas

direct wave speed is not. The use of vibration frequency measurements to mon-

itor stresses in concrete elements has not received much attention beyond the

initial work by Lundqvist and Rydén [20]. Although Lundqvist and Rydén

clearly demonstrate the acoustoelastic behavior in their beam sample, they

do not provide a specific theoretical description of the physical phenomenon,

and do not discuss factors that affect the frequency-stress relationship, such

as the effect of boundary conditions, geometric nonlinearity or the effect of

non-uniform torsion. This research expands and deepens the analysis on the

use of frequency of vibration for acoustoelastic characterization and stress de-

termination in concrete elements.
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Chapter 3

Theoretical development and

numerical analysis of the

vibration of an elongated

nonlinear solid

3.1. Introduction

Disclaimer: Most of the content in sections 3.2 and 3.4 of this chapter has

been published in: A. Spalvier, L.D. Domenech, G. Cetrangolo, J.S. Popovics,

“Torsional vibration technique for the acoustoelastic characterization of con-

crete, Materials and Structures, 53:7, 2020, https://doi.org/10.1617/s11527-

020-1438-6.

This chapter contains the theoretical development necessary to understand

the relationships between the elastic parameters of a solid, its stress state, and

its frequency of vibration. The analysis considers the three affecting factors:

geometric nonlinearity, non-uniform torsion (warping), and changing boundary

conditions. These factors, which are often neglected without proper justifica-

tion, could affect the frequency of vibration results depending on the properties

of the sample. The analyses posed in this chapter consider all these factors

together as a function of applied compressive stress. Then, they document

the theoretical background and mathematical description to characterize the

relationship between torsional frequency of vibration and compressive uniaxial

loading. This chapter is therefore important to enable the developing test-
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ing techniques capable of characterizing concrete nonlinearity, which would in

turn, shed light on the field of nondestructive estimation of mechanical stresses

in solids.

The specific objectives of this chapter are: to develop and analyze a theo-

retical description capable of explaining the frequency of vibration increments

observed in concrete bars under uniaxial compression, to provide the theo-

retical formulation that could be promptly used to fit the experimental mea-

surements of the following chapters, and to assess the possibility of using this

formulation for stress determination of concrete structural members subjected

to uniaxial external load.

3.2. Theory for the characterization of mate-

rial nonlinearity using torsional vibration

This section examines nonlinear material properties of concrete members

under uniaxial stress and details a testing method capable of characterizing

material nonlinearity.

3.2.1. Quasi-static dynamic problem

Let us consider again the same elongated prismatic bar of dimensions L1,

L2, and L3 = L2, shown in figure 2.2. Let us apply an external quasi-static

load (P , tension positive) uniformly distributed on the prism’s end faces, where

the lateral faces have no displacement restrictions. These conditions create a

quasi-static stress field with the non-null principal stress σ and strain ε acting

along the longitudinal axis (direction 1).

Then, let us consider a dynamic stress field superimposed onto the previ-

ously applied quasi-static uniaxial stress field. The dynamic field corresponds

to the fundamental torsional vibration mode acting along the longitudinal

direction. Let us assume then that the quasi-static stress field from the ap-

plied compressive load deforms the solid creating displacements that are much

greater than those caused by the dynamic stress field (vibration).
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3.2.2. Vibration of the linear-elastic bar axially loaded

Let us first assume an axially loaded prismatic beam that is simply sup-

ported, with end-twists impeded, and composed of an isotropic and linear-

elastic material. The theory of linear elasticity under small strains and the

double symmetry of the section leads to the existence of four uncoupled vi-

bration mode families: one longitudinal, two transversal (bending), and one

torsional. The torsional equation of motion is [19]

∂2Cθ
∂t

+
n2π2

ρL1

[
1

Ip

(
GJ +

π2EIw
L2

1

)
+ Eε

]
Cθ = 0, (3.1)

where ρ is the density of the material, Ip is the polar moment of inertia, J is

the torsional constant, Iw is the warping moment of inertia, E is the Young’s

modulus, G is the shear modulus of elasticity, n is the modal number, and ε

is the axial strain (tension positive) produced by the external load in a quasi-

static state. Cθ is a function that describes the amplitude of vibration with

time, where θ(x, t) = Cθsin(nπx/L1) and θ is the angle of twist. The sine

function in the product represents the vibrational mode shape and x and t are

the position along the bar’s longitudinal axis and time variables, respectively.

Solving equation 3.1 for n = 1, yields the frequency of the fundamental

torsional mode ω1,lin

ω1,lin(ε)2 =
1

ρIp

[
EIpε

(
π

L1

)2

+ EIw

(
π

L1

)4

+GJ

(
π

L1

)2
]
, (3.2)

where “lin” stands for “linear material”1. The first term within the brackets

corresponds to the effect of geometric nonlinearity, known as the P–δ effect.

Note that compressive strains (ε < 0) caused by the quasistatic load reduce

the fundamental frequency of vibration. This effect has also been named as

the “string effect”, because, as it occurs in a string, uniaxial tension increases

the natural frequency of vibration and compression reduces it. The second

term considers the non-uniform torsion or warping effect, whose consideration

is very important in open-sections, such as those used for steel structures

1It should be noted that “linear material” refers to the linearity between the 2nd Piola
stress tensor S and the Lagrange strain tensor E. Nevertheless, ω1,lin is affected by the
geometric nonlinearity introduced by considering the finite deformation ε, produced by the
external axial load.
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like I-beams, but not as much for solid-section members, such as those used

in concrete structures, usually rectangles or circles. Finally, the third term

represents Saint-Venant classical torsion theory. A more detailed discussion of

this topic is given in the following section, where the quantitative influence of

these three factors is analyzed.

3.2.3. Acoustoelasticity: a nonlinear material model

This denomination origins from the fact that the nonlinearity between

stresses and strains can be addressed by considering strain dependent (or stress

dependent) elastic “constants”, or “parameters”. For example, the nonlinear

relationship of stresses and strains in a bar under uniaxial stress can be mod-

eled using a parabolic relationship, where the applied stress σ and the observed

strain ε are defined by

σ(ε) = E0(1 + βEε)ε. (3.3)

In equation (3.3), βE is a nonlinear elastic parameter associated to the

strain dependency of the Young’s modulus E. The subindex 0 has been added

to the Young’s modulus E0 to indicate the fact that it is the Young’s modulus

of the solid in the undeformed state. Thus, let us define the “instantaneous”

Young’s modulus Eε, which is strain and stress dependent, which comes from

deriving the stress with respect to strain, i.e.

Eε(ε) =
∂σ(ε)

∂ε
= E0(1 + 2βEε). (3.4)

Figure 3.1 contains a graph that shows a possible nonlinear relationship

between stress and strain; note there the varying slope which means a varying

instantaneous Young’s modulus Eε.

The example of nonlinear material shown in figure 3.1 exhibits a stiffening

material behavior, i.e., as stresses increase, strains also increase but to a lower

extent. The opposite case is when instantaneous Young’s modulus decreases

with increasing stresses, that would be the case of a softening behavior. A

nonlinear stiffening effect has been previously observed in concrete under uni-

axial compression by various researchers [16, 17, 28] for levels of compression

lower than 30 % the failure load, i.e. where concrete behaves fundamentally

elastically; material softening starts to control after achieving 50 % the failure
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Figure 3.1: Nonlinear stress-strain generic relationship.

load [18, 28].

The equations (3.3) and (3.4) are simple expressions that allow modeling,

with certain limitations, the dependency of P-waves propagating longitudi-

nally, and the frequency of longitudinal vibration of an elongated solid, under

uniaxial stress. This is a problem in which, the quasistatic uniaxial stress is

applied first, the bar takes the associated strains, and then the dynamic event

takes place (either a propagating wave or a resonance vibration). The velocity

of wave propagation or the frequency of vibration are therefore affected be-

cause the material is pre-deformed, thus, behaving with an “effective” elastic

parameter that controls the dynamic event; this effective parameter is the Eε

and not E0.

The problem of a bar under uniaxial stress (pre-deformed) subjected to

torsional vibration can be analyzed in the same manner. In pure torsion, the

cross-sections of the bar are under pure shear (where warping is neglected, as it

is demonstrated below in this section). Thus, equation (2.5) applies. However,

because the vibration event occurs when the bar is pre-deformed it should be

considered an “instantaneous” shear modulus Gε, thus
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τ = Gεγτ , (3.5)

and

Gε(ε) =
∂τ(ε)

∂γτ
= G0(1 + βGε), (3.6)

with G0 being the shear modulus at the unstrained state, and βG being a

nonlinear elastic parameter associated with the stress and strain dependency

of the shear modulus G.

Note that the present model poses strain dependent Young’s modulus and

shear elastic modulus that vary linearly with strain. This fact comes from

considering only the square terms of the strain in the constitutive relation-

ships. Other researchers [76] have considered higher powers of strains; these

are certainly necessary for very soft materials, such as rubber, or for concrete

to model a wider range of the stress-strain relationship where both stiffening

and softening occurs at different stress levels. For our case, below 30 - 40 % of

concrete compressive strength, the present assumption is reasonable.

The present theoretical approach, which provided equation (3.4) and (3.6)

presents several advantages and disadvantages. The main advantage is its

simplicity, which allows addressing acoustoelastic dynamic problems by con-

sidering the strain dependent elastic parameters Eε and Gε instead of the usual

E and G. On the other hand, the theoretical development is not general as it

is a 1D version of a more complex 3D constitutive equation. Thus, there are

many acoustoelastic-dynamic phenomena that cannot be described using this

approach. For example, this approach cannot describe P or S wave traveling

through the solid bar perpendicularly to the direction of the applied uniaxial

stress. To study the full 3D problem it is necessary consider the complete 3D

constitutive equation.

From the literature [17, 20, 56] and from this investigation’s experiments,

it has been observed that the Eε and Gε increase around 2–3 % due to the

acoustoelastic effect. These apply to concrete bars submitted to compressive

strains of around 100 ×10−6. Considering these increments, let us go back to

equation (3.2) to inspect how the three factors—geometric nonlinearity, non-

uniform torsion (warping) and Saint–Venant torsion—affect torsional angular

frequency of vibration.

To simplify the interpretation of 3.2, consider the general aspect-ratio
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relationship L2 = αL1 (for experiments in Chapters 4 and 5, the samples

had α = 1/4). Let us calculate the involved parameters using their def-

initions, thus: Ip = L4
2/6 = α4L4

1/6, J ∼= 0.1338L4
2 = 0.1338α4L4

1, and

Iw ∼= 1.34 × 10−4L6
2 = 1.34 × 10−4α6L6

1. Rearranging 3.2 and substituting

the calculated terms within the brackets gives

ω1(ε)2 =
π2

ρL2
1

[
Eε(ε)ε+ Eε(ε)

Iw
Ip

(
π

L1

)2

+Gε(ε)
J

Ip

]
(3.7)

∼=
π2

ρL2
1

[
Eε(ε)ε+ 7.94× 10−3α2Eε(ε) + 0.80Gε(ε)

]
. (3.8)

Note in equation (3.7) that the subindex “lin” in ω1 has been removed.

Also this equation shows that only the warping term (second term within

the brackets) depends on the aspect-ratio parameter α; this is an interesting

characteristic that gains importance in order to extend these laboratory results

to field tests.

Now let us consider the typical acoustoelastic increments of 2 % for a uni-

axial strain of ε∗ = −100× 10−6 (note the negative sign because it is compres-

sion). In other words, consider Eε(ε
∗) = 1.02E0 and Gε(ε

∗) = 1.02G0 where

the sub-index 0 stands for undeformed (zero strain) state. By substituting

those expressions into equation (3.8) we obtain

ω1(ε∗)2 =
π2

ρL2
1

[
−1.02× 10−4E0 + 8.1× 10−4α2E0 + 0.82G0

]
. (3.9)

Considering thatG0 = E0/(2(1+ν0)), from equation (2.4), and that ν0
∼= 0.2

(typical Poisson’s ratio for concrete), we get E0
∼= 2.4G0. Therefore, we see

in equation (3.9) that the Saint–Venant term (third term within the brackets)

is several orders of magnitude higher than the geometric nonlinearity (first

term within the brackets). This relationship is true for all values of uniaxial

compressive strain within concrete’s elastic range and is independent of the

value of α. The warping term (second term within the brackets) affects the

Saint–Venant term by more than 1 % only for values of α higher than 2; i.e.,

affects if L2 > 2L1. Note that typical elongated structural elements, such

as columns and beams, have α-values between 0.5 to 0.03, much lower than

2; thus, the warping term can be neglected in these cases. This fact was
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validated with a numerical simulation presented in section 3.4. Therefore, it

becomes clear that the effects on angular frequency produced by geometric

nonlinearity and warping, and also the influence of sample aspect ratio, can be

neglected with respect to the acoustoelastic increments of frequency resulting

from the Saint–Venant torsional term. Under this model, the uniaxial quasi-

static strains are small enough to neglect the nonlinear geometric effects but

large enough to activate the material nonlinearity.

Based on the previous discussion, let us consider a simplification of equa-

tion 3.7, where both the geometric nonlinearity and warping terms have been

neglected. Thus, the strain-dependent fundamental (n = 1) torsional angular

frequency ω1(ε) is

ω1(ε) = 2πf1(ε) =
π

L1

√
Gε(ε)J

ρIp
, (3.10)

where f1 is the fundamental frequency of torsional vibration. Thus, by squaring

3.10 we obtain

ω1(ε)2 = (2πf1(ε))2 =

(
π

L1

)2
Gε(ε)J

ρIp
. (3.11)

Let us then normalize the strain dependent fundamental frequency f1(ε)

with respect to the condition in which ε = 0, i.e. the undeformed state, thus

f1(ε)2

f1(0)2
=
ω1(ε)2

ω1(0)2
=
Gε(ε)

G0(0)
. (3.12)

Now let us substitute the definition of Gε given in equation (3.6) into

equation (3.12), to obtain

f1(ε)2 = (1 + βGε) f1(0)2. (3.13)

Note that by carrying out experiments in which a prismatic bar is axi-

ally loaded, it is possible to measure the axial strains ε and the fundamental

torsional frequency of vibration f1(ε) for the unloaded case and at least one

distinct level of ε; these values allow computing the nonlinear (shear) parame-

ter βG by carrying out a simple linear regression. Thus, equation (3.13) governs

the set of experiments presented in Chapters 4 and 5.

Note that an analogous analytical procedure can be deduced by considering

the longitudinal mode of vibration of the bar instead of the torsional mode.
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In this new case, we get

fL,1(ε)2

fL,1(0)2
=
ωL,1(ε)2

ωL,1(0)2
=
Eε(ε)

E0(0)
, (3.14)

where the subindex L has been added to indicate it corresponds to the “lon-

gitudinal” mode. Now using the definition of Eε given by equation (3.4) and

substituting it into equation (3.14), we get

fL,1(ε)2 = (1 + 2βEε) fL,1(0)2. (3.15)

Equation (3.15) can be used, in theory, to compute βE by measuring the

change of frequency of the longitudinal mode during a uniaxial loading test.

However, there are two reasons why parameter βE was not investigated any

further. First, its experimental characterization is much more cumbersome

as it requires access to their end faces to attach transducers, apply impacts,

and yet assure good boundary condition characterization. In second place, our

preliminary tests showed that the application of the load modifies the axial

boundary conditions too much, so that the model fails to fully explain the

actual behavior of the bar. This effect of changing boundary condition also

affects the torsional mode, but to a much lesser extent. To solve this problem,

a correction procedure is employed so that the proposed model can be used

satisfactorily.

3.2.4. The effect of changing boundary conditions

Consideration of changing boundary conditions of the system is needed for

some laboratory or field situations. Equation (3.10) was obtained assuming

that the prismatic bar was simply supported with impeded (fixed) twist at the

ends; however, the boundary conditions of a given element will likely differ from

this idealized condition. For example, in the experiments described in Chapters

4 and 5, the samples were not simply supported; a more appropriate model

for these experiments would be to consider the prismatic bar with matched

torsional springs, with a spring constant that depends on the uniaxial stress

k= k(σ).

Let us neglect the geometric nonlinearity and non-uniform torsion, the

general equation that governs the torsional vibration phenomenon of a bar

with uniform section is [35]

38



∂2θ

∂x2
− ρIp
GJ

∂2θ

∂t2
= 0. (3.16)

Under these new boundary conditions, we find the system’s frequencies by

solving

2kL1

GJ
(
ω
cs
L1

)
− (kL1)2

GJ( ω
cs
L1)

= tan

(
ω

cs
L1

)
(3.17)

where c2
s = GJ/(ρIp). The full derivation of equation (3.17) is provided in

Appendix 3. Equation (3.17) is graphically represented in Figure 3.2, where

the left side of equation (3.17) corresponds to the blue curve and the right

side to the red curve. The values of ω that satisfy equation (3.17) are ω̂i with

i = 0, 1, 2, .... These solutions are indicated by the points of intersection of the

blue and red curves in Figure 3.2, and allow computing ω for fixed values of L1

and cs. Note that to model the cases in which the twists at the ends are either

fully restricted (fixed-fixed) or fully unrestricted (free-free), these situations are

described by substituting k → ∞ and k = 0, respectively, in equation (3.17).

In both cases, the left side of equation (3.17) becomes zero; in other words,

the blue curve becomes horizontal and overlapped with the x-axis. Therefore,

it is clear that the fixed-fixed and free-free cases produce one set of matching

solutions ω̂i = ωi. For other values of k, there is a low-frequency root, ω̂0, that

corresponds to a “nearly rigid vibration” of the bar due to the presence of the

springs at the end boundaries. Moreover the fundamental frequency increases

from ω1 to ω̂1. Figure 3.2 shows these two effects.

Equation (3.17) enables the calculation of both k and G by measuring ω̂0

and ω̂1 at a given level of compressive stress. The significance of this procedure

is explained the Materials and Methods section of Chapter 4.

3.3. Derivation of βE and βG as a function of

the third order elastic constants

The nonlinear parameters βG and βE were presented in section 3.2.3, where

their physical meaning and simplicity have been shown. The use of βG for con-

crete nonlinear characterization is developed in Chapters 4 and 5. However,

as stated before, the βE and βG nonlinear elastic parameters are very useful
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Figure 3.2: Graphical representations of the functions in equation (3.17) for arbi-
trary values of G, J , L, and k.The dots represent solutions to 3.17 ω1, ω̂1, and ω̂0.
Dashed lines represent values where the equation (3.17) becomes undefined.

to explain certain nonlinear behavior of elongated solids (bars), and they are

not general elastic parameters capable of explaining a wider variety of situ-

ations, like for example waves propagating in solid media under stress. As

introduced in Chapter 2, a general approach was taken by Hughes and Kelly

[14] to explain the stress dependence of bulk wave speed. For a solid under

uniaxial stress, they established the relationships between all possible bulk

wave propagating modes in the solid and the uniaxial stress value (see equa-

tions (2.35) through (2.39)). To that end, they considered a nonlinear solid

model previously posed by Murnaghan [49], which, for the case of an (initially)

isotropic and homogeneous material, the elastic behavior can be fully described

by the two traditional elastic constants, plus three additional elastic constants,

l, m, and n, known as the third order elastic constants. All research regarding

acoustoelasticity and material nonlinearity, refer directly or indirectly to these

third order elastic constants. This section derives the analytical relationships

between the βG and βE and the third order elastic constants l, m, and n.

This theoretical development is a key topic of this thesis as it enables results

comparison against the existing literature.

The analysis consists of considering a prismatic bar composed of an elastic

nonlinear material. The first step is to apply a finite deformation compatible

with a uniaxial stress state due to a quasistatic load. The second step consists
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of applying a small deformation starting from the position resulting from the

first step. The second deformation field represents the vibration of the solid,

which, since it happens to be several orders of magnitude smaller than the ini-

tial quasistatic deformation, it is possible to accept the hypothesis of linearity

(its effects are obtained by linearization around the first state). The position

that attains the application of the second step is not actually calculated; in-

stead, only the rigidity of the element to take that deformation is calculated,

and that rigidity is used to derive the nonlinear parameters βG and βE with

respect to l, m, and n.

3.3.1. Derivation of βE

The derivation starts by considering an elongated prismatic solid of dimen-

sions L1, L2 and L3, where L1 >> L2 = L3. Consider a system of Cartesian

axes 1, 2 and 3, in which direction 1 corresponds to the longitudinal axis of an

elongated prismatic bar, and axes 2 and 3 are perpendicular to axis 1. The pa-

rameters X1, X2 and X3, are the material coordinates (Lagrange coordinates)

that determine the position of each material point in the reference configura-

tion; this reference configuration is considered to be equal to the undeformed

state of the solid prism. The parameters x1, x2 and x3 are the spatial coordi-

nates (Euler coordinates) that indicate the resulting position of the material

points after the deformation has occurred.

Let us apply a deformation (displacement) field compatible with a uniaxial

stress state produced by a dead load of value P uniformly acting onto both end

faces. Figure 2.2 depicts the prismatic bar, the Cartesian axes and geometric

dimensions.

The mentioned deformation field is defined by

x1 = aX1 (3.18)

x2 = bX2 (3.19)

x3 = bX3, (3.20)

where a is the longitudinal stretch, along direction 1, and b corresponds to the

lateral stretch along both directions 2 and 3. Note that a and b are dimen-

sionless magnitudes that represent a type of “strain”, which we have called
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“stretch” in order to differentiate them from the other magnitudes of strain.

The definition of a and b are given implicitly by equations (3.18)-(3.20); this

is, they transform the position of a particle in the initial configuration to the

position of that particle in the deformed configuration.

Figure 3.3 shows a diagram of the deformation field compatible with a

uniaxial stress applied along axis 1.

Figure 3.3: Undeformed prismatic bar with black thin outline and deformed pris-
matic bar with blue thick outline. A generic material point indicated by the black
dot moves to the blue dot after the deformation, as indicated by the arrow.

The deformation field χ becomes defined by

χ =

x1

x2

x3

 =

aX1

bX2

bX3

 . (3.21)

The deformation gradient F becomes

F = ∇mχ =

a 0 0

0 b 0

0 0 b

 , (3.22)

where ∇m implies the gradient operation in material coordinates.

Thus, the right Cauchy-Green strain tensor C becomes

C = FTF =

a
2 0 0

0 b2 0

0 0 b2

 . (3.23)
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The strain tensor C yields the square of the local distances in a given

material point due to the deformation. With C, the Green-Lagrange strain

tensor E can be calculated as

E =
1

2
(C− I) =


a2−1

2
0 0

0 b2−1
2

0

0 0 b2−1
2

 , (3.24)

where I is the identity tensor. The strain tensor E yields one half of the square

of the local distance changes.

Once the strain tensor is computed, it is necessary to relate the development

of the strains with the stresses, which, for this case, a nonlinear relationship is

to be considered. The constitutive equation of the material becomes defined

from the strain energy density ψ, in which a given stress at a specific plane

and direction is calculated as the derivative of the strain energy density with

respect to the strain at that same plane and direction, thus

Sij =
∂ψ

∂Eij
, (3.25)

where S is the Cosserat stress tensor (or second Piola-Kirchhoff stress tensor)

where i, j take the values 1, 2, or 3.

At this point it is needed to assume some specific strain energy density

function that describes adequately the experimental observations and charac-

teristics to be modeled. To this end, let us consider the material to be an

hyperelastic solid material of Murnaghan, which is the same hypothesis taken

by Hughes y Kelly [14] to derive the equations (2.35) through (2.39). The

Murnaghan strain energy density is defined as

ψ =
1

2
(λ+ 2µ)I2

1 − 2µI2 +
1

3
(l + 2m)I3

1 − 2mI1I2 + nI3, (3.26)

where I1, I2 and I3 are the three invariants of the strain tensor E, defined

as
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I1 = tr(E) (3.27)

I2 =
1

2

[
tr2(E)− tr(E2)

]
(3.28)

I3 = det(E). (3.29)

The Murnaghan strain energy density function contains third order terms,

i.e. cubic terms, which produce a nonlinear constitutive relationship; these

terms are not included in the traditional strain energy functions that produce

linear stress-strain relationship. Once the specific strain energy function ψ is

known as a function of the elastic constants of the solid (λ, µ, l, m and n),

the stress tensor S can be calculated by applying equation (3.25). Then it is

possible to calculate the Cauchy stress tensor in its material version σm using

σm = FJ−1
F SFT , (3.30)

with JF = det(F). The Cauchy stress tensor σ describes the stresses being

taken by the solid in its present configuration1, i.e., in the deformed config-

uration. Specifically, the stress tensor σ establishes the stress vector defined

in each point x1, x2, x3 of the deformed solid at certain plane defined by its

normal vector. The Cauchy stress tensor in its material version σm yields the

stress of the solid at the deformed configuration, in a point and plane given

by the material coordinates X1, X2, X3. It is easier to work with σm instead of

σ because the undeformed dimensions are known, and they remain unchanged

by definition, and the opposite happens to the deformed dimensions.

Each element of the stress tensor σm is a function of the five elastic con-

stants and of the stretch values a y b. In particular, we need to know σm,11

and σm,22, which are

σm,11 = {a[(λ/2 + µ)(a2 + 2b2 − 3)− 2m(2(a2/2− 1/2)(b2/2− 1/2)

+(b2/2− 1/2)2) + n(b2/2− 1/2)2 − 2µ(b2 − 1) + 3(l/3 + (2m)/3)(a2/2 + b2

−3/2)2 − 2m(b2 − 1)(a2/2 + b2 − 3/2)]}/b2,

(3.31)

and

1Note that the same symbol, σ, has been adopted here to express the Cauchy stress
tensor, and elsewhere in this thesis to express the uniaxial stress in a bar.
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σm,22 = ((λ/2 + µ)(a2 + 2b2 − 3)− 2m(2(a2/2− 1/2)(b2/2− 1/2)

+(b2/2− 1/2)2)− 2µ(a2/2 + b2/2− 1) + 3(l/3 + (2m)/3)(a2/2 + b2 − 3/2)2

−2m(a2/2 + b2 − 3/2)(a2/2 + b2/2− 1) + n(a2/2− 1/2)(b2/2− 1/2))/a.

(3.32)

There are also two boundary conditions associated to the considered uni-

axial stress state. These need to be applied now in order to calculate a and

b. The first boundary condition establishes that the lateral faces are free from

normal stresses, thus

σm,22 = 0,

which implies equating equation (3.32) to zero. From this boundary condition

we produce a relationship between a and b, given by

b = [4λ− 12l − 2m− n+ 4µ+ 4a2l − 2a2m+ a2n

−(4a4m2 − 4a4mn− 24la4m+ a4n2 + 8la4n− 32a2λm

+8a2λn− 8a2m2 + 8a2mn− 16a2mµ+ 48la2m− 2a2n2

+8a2nµ− 16la2n+ 32la2µ+ 16λ2 + 32λm

−8λn+ 32λµ+ 4m2 − 4mn+ 16mµ− 24lm+ n2

−8nµ+ 8ln+ 16µ2 − 32lµ)1/2]1/2/(2(−2l −m)1/2).

(3.33)

The second boundary condition corresponds to the applied uniaxial load

on the end faces of the specimen, thus

σm,11 =
P

(bL2)2 , (3.34)

where P is the applied load that does not vary during the deformation. In other

words, this implies assuming a situation where the load is constant, for example

during a load-controlled loading test or in a column submitted principally

to dead load. Figure 3.4 shows the boundary conditions values expressed

with black dots or blue dots, in the undeformed and deformed configurations,

respectively.

By applying this second boundary condition, we would obtain a relationship

between the applied load P and the stretch value a. However, for our purposes,

we do not need to actually apply this second boundary condition. Instead,
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Figure 3.4: Diagram of the deformed prismatic solid showing the applied stress
boundary conditions, where l1 is the deformed length L1.

let us use equation (3.33) and substitute it into equation (3.31) to obtain an

expression of σm,11 as a function of a and of the five elastic constants, expressed

as

σm,11 = σm,11(a, λ, µ,m, l, n). (3.35)

The resulting equation is too long so it is omitted (see “T11” in the code

in Appendix 2). It is needed to achieve a relationship between the stress σm,11

and the engineering strain ε11 expressed in an analogous form as the equation

(3.3), i.e. to be a polynomial function of second order expressed as

σm,11(ε11) = C0 + C1ε11 + C2ε
2
11. (3.36)

To this end, two more steps are followed. First, equation (3.35) needs to

be expressed as a function of ε11 instead of as a function of a. Then a Taylor

series expansion is carried out to equation (3.35) to achieve the form needed

as in equation (3.36).

The first step consists then in obtaining the relationship between the en-

gineering strain ε11 and the stretch a. Considering that the engineering strain

ε11 is defined as

ε11 =
l1 − L1

L1

, (3.37)

with l1 being the length of the deformed prism. Then, knowing that
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l1/2 = x1 = aX1

L1/2 = X1,

we obtain the wanted relationship

a = ε11 + 1. (3.38)

By substituting equation (3.38) in (3.35) and carrying out the Taylor series

expansion of second order around 0, we obtain the expression of equation

(3.36), in which the coefficients C0, C1, y C2 are obtained matching term to

term:

C0 = 0 (3.39)

C1 =
µ (3λ+ 2µ)

(λ+ µ)
(3.40)

C2 = [(8l + 4m)(3λ3n+ 50λµ3 + 30λ3µ+ 4lµ3 + 8mµ3 + 12µ4

+68λ2µ2 + 24λmµ2 + 18λ2mµ+ 3λ2nµ)]/[16(λ+ µ)3 × (2l +m)].
(3.41)

Let us now analyze the obtained coefficients and compare them to the

coefficients of equation (3.3). Note that it is consistent to have C0 = 0 because

it implies a null deformation if the applied stress is null. Note also that the

coefficient C1 corresponds to the Young’s modulus in the undeformed state

E0, such as it occurs in equation (3.3). This is a consistent result, which can

be assessed by observing that if we take l = m = n = 0, the equation (3.41)

becomes the Hooke’s Law shown in equation (2.1). Finally, by comparing C2

with equation (3.3) we obtain

C2 = E0βE.

Thus, by dividing C2 by C1 (which is equal to E0) we obtain the expres-

sion of the nonlinear parameter βE as a function of the second order elastic

constants λ and µ, and of the third order Murnaghan elastic constants l, m,

and n
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βE = [(3λ3n+ 50λµ3 + 30λ3µ+ 4lµ3 + 8mµ3 + 12µ4 + 68λ2µ2+

24λmµ2 + 18λ2mµ+ 3λ2nµ]/[4µ(λ+ µ)2(3λ+ 2µ)].
(3.42)

The expression of βE given by equation (3.42) takes a simpler form if it is

expressed as a function of the elastic engineering constants in the undeformed

state (Young’s modulus E0 and Poisson’s ratio ν0)

βE E0 = 2 m− l (−1 + 2 ν0)3 + E0

(
3

2
+ 2ν0

)
+ ν0

2 [3 n− 2 m (3 + 2ν0)]

(3.43)

3.3.2. Derivation of βG

To derive the relationship between the nonlinear parameter βG and the

Murnaghan third order elastic constants l, m, and n, let us take the analogous

steps as during the derivation of βE, with some exceptions. The most impor-

tant difference is the fact that βG is associated to the dependency of the shear

modulus G with respect to the prism’s deformation due to the applied load.

For that reason, we need to consider two deformation fields, the deformation

due to the uniaxial stress and the field of small strains due to the torsion.

First, let us impose the deformation field compatible with the uniaxial

stress (usually applied quasistatically in a loading test). This deformation can

be described from the stretch values a and b. The boundary conditions are

the same as during the derivation of βE, so that a and b have again the same

relationship given by equation (3.33).

At this point, the deformation χ(1) is defined as

χ(1) =

x
(1)
1

x
(1)
2

x
(1)
3

 =

aX1

bX2

bX3

 (3.44)

where the superindex (1) implies that the coordinates are referred to the in-

termediate state of deformation, before the application of the torsional field.

To apply now the torsional deformation field, let us first define the pa-

rameter Θ as the twist-per-unit-length, which we assume to be constant along

the entire length of the bar (in direction 1). This hypothesis implies that each
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section rotates proportionally to its position along axis 1, and its angle of twist

is

θ(x
(1)
1 ) = Θx

(1)
1 , (3.45)

Once the definition of Θ is known, the deformation of the prism after

applying the torsional deformation becomes

χ =

x1

x2

x3

 =

 x
(1)
1

cos(Θx
(1)
1 )x

(1)
2 − sin(Θx

(1)
1 )x

(1)
3

cos(Θx
(1)
1 )x

(1)
3 + sin(Θx

(1)
1 )x

(1)
2

 . (3.46)

To express the deformation as a function of the coordinates in the unde-

formed configuration, let us substitute equation (3.44) into (3.46), to obtain

χ =

x1

x2

x3

 =

 aX1

cos(ΘaX1)bX2 − sin(ΘaX1)bX3

cos(ΘaX1)bX3 + sin(ΘaX1)bX2

 . (3.47)

It is necessary to clarify that the proposed torsional deformation field con-

sists of a field in which the prism’s cross-sections rotate but remain in the

same plane. This hypothesis is exact for bars with circular cross-section, so

the theory of Saint-Venant torsion fully describes those problems. In bars with

non circular cross-sections it is necessary to consider the effect of warping to

improve precision. However, as previously demonstrated in section 3.2 (and

numerically verified in section 3.4), warping effects for solid-sections elongated

prisms are so small that the considered hypotheses do not disturb significantly

the derivation of βG. Thus, Saint-Venant torsion theory is sufficiently precise

in this case.

Once the deformation vector χ is known, we can calculate the tensors

F,C,E,S and σm following their definitions and procedure analogous as during

the derivation of βE. Thus,

F = ∇mχ,

C = FTF,
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E =
1

2
(C− I) ,

Sij =
∂ψ

∂Eij
,

σm = FJ−1
F SFT .

Let us expand the expression of σm,12 which corresponds to the shear stress

due to the torsional field. This stress is sufficiently small so that its relationship

with Θ can be considered linear. Therefore, let us consider the expression of

σm,12 which is an expression that depends on the five elastic constants and also

of the stretch a and Θ. Thus, we are considering that the relationship between

σm,12 and Θ is equivalent to the Saint-Venant torsion theory, where the shear

stress is proportional to the twist-per-unit-length Θ, so that

σm,12 = GεΘ(X3), (3.48)

where Gε is the instantaneous shear modulus, affected by the uniaxial defor-

mation. In that expression, let us use equation (3.38) to substitute a for ε11+1,

to express Gε as a function of the engineering strain ε11. By applying a Taylor

approximation at ε11 = 0, the expression becomes

Gε = D0 +D1ε11 (3.49)

where D0 and D1 are coefficients that depend on the five elastic constants.

Carrying out the math and expressing the results as a function of the Young’s

modulus E0 and the Poisson’s ratio ν0 we get

D0 = G0,

D1 = βGG0 = G0(3 + ν0) +
m(2− 4ν0) + nν0

2
, (3.50)

thus, the nonlinear parameter βG is given by

βG = 3 + ν0 +
m(2− 4ν0) + nν0

2G0

, (3.51)
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3.4. Numerical validation of βE and βG

The objective of this section is to validate the relationships of βE and βG

with respect to the third order elastic constants l, m, and n; or in other words,

to validate equations (3.43) and (3.51). To this end, a series of finite element

method (FEM) models have been built using COMSOL Multiphysics. More-

over, these series of models were employed to verify the conclusions drawn at

section 3.2 and in Chapters 4 and 5, where the the warping effect and geomet-

ric nonlinearity effect have been neglected with respect to the acoustoelastic

effect of the Saint-Venant term.

3.4.1. FEM model geometric and material description

Three models were built. All three involved prismatic solids of uniform

square cross-section L2 × L3 with L2 = L3 = 0.15 m. They had the same

material properties, as indicated in Table 3.1, and their only input difference

was their length L1; these were 0.60 m, 1.20 m and 2.40 m, for models 1, 2

and 3, respectively. The selected material properties were those considered by

Payan et al. [17] for their concrete specimen.

Table 3.1: General material and geometric properties of the FEM model.

E0 (GPa) 42.39
ν0 0.21

G0 (GPa) 17.5
ρ (kg/m3) 2386
l (GPa) -3007
m (GPa) -2283
n (GPa) -1813
L2 (m) 0.15

All three FEM models were formed by meshing the solid into tetrahedral

elements (COMSOL’s automatic meshing). The number of elements and their

size varied depending on the model. The effect of the mesh on the results was

considered by refining the mesh until the processed results of βG and βE did not

change more than 1 % in two successive refinements trials of the same virtual

experiment. Figure 3.5 shows the considered model’s geometry for the case of

model 1 (L1 = 0.60 m). This model contained 23357 tetrahedral elements of

an average volume of 0.58 cm3.
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L1

0.15 0.15

Figure 3.5: Geometry of model 1 (L1 = 0.60 m) showing dimensions and tetrahe-
dral mesh, units in meters.

3.4.2. FEM model virtual testing

The FEM model consisted of carrying out a virtual test, which was basically

a simulation an actual experimental test as in Chapter 4. Thus, the virtual test

consisted of carrying out a loading test in which the prism was submitted to

compression loads. This was done by assigning the applied compressive stress

onto the prism’s end faces and sweeping the value of the compressive stress

from 0 to 6 MPa in steps of 1 MPa; thus, seven loading cases were carried out

for each of the models 1, 2 and 3. At each loading case, two “step studies”

were performed.

First, the “stationary” step study was carried out in order to obtain the

deformed solid associated to the applied load level. In this study, the geometric

nonlinearity was enabled, and the boundary conditions were set accordingly

to represent the same case as in section 3.3 (where the expressions of βG and

βE where derived), i.e. no lateral displacement restrictions. The resulting
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uniaxial strain was “measured”. Then, using the solution of the stationary

step study (i.e. the deformed solid) an “eigenfrequency” study was applied to

obtain the fundamental torsional and the fundamental longitudinal frequencies

of vibration

Thus, for each model, the virtual test yielded uniaxial strain values (ε)

and frequencies of vibration (fundamental torsional f1 and fundamental lon-

gitudinal fL,1). We can then use torsional frequency vs. strain data to find

the best fit βG parameter using equation (3.13); and also use the fundamental

longitudinal frequency vs. strain data to find the best fit βE parameter using

equation (3.15). Figure 3.6 shows the fundamental mode shapes of vibration

for the longitudinal and torsional modes.

Figure 3.6: Fundamental longitudinal (on the left) and torsional (on the right)
modal shapes of vibration obtained for model 1 (L1 =0.60 m) where the dynamic
(vibrational) displacement field is shown in codes of color, in arbitrary units.

3.4.3. Analytical and numerical comparison of βE and

βG

The analytical values of βE and βG obtained by introducing the material

data of Table 3.1 into equations (3.43) and (3.51), respectively, are

βE = −109.0

and

βG = −83.3.
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Figure 3.7 shows the frequency increments obtained for model 2 with L1 =

1.20 m, but the increments do not differ among models. The graphs presented

in Figure 3.7 show that the longitudinal frequency is more sensitive to load

than the torsional frequency. The values of βE and βG obtained numerically

are presented in Table 3.2, including the relative differences of these results

with respect to the analytical results.

εc(×10−6)
0 50 100 150

f 1
(ε
)/
f 1
(0
)

1

1.005

1.01

1.015

Torsional

Longitudinal

Figure 3.7: Results of frequency increments of model 2 (L1 = 1.20 m) of the
torsional mode, with f1(0) = 1038.3 Hz, and of the longitudinal mode, with fL,1(0) =
1755.2 Hz, with respect to compressive strains εc(= −ε).

Table 3.2: Numerical results of βE and βG for the three FEM models (different
L1), including their relative differences with respect to the analytical values.

L1 (m) βE βG dif. βE (%) dif. βG (%)
0.6 -107.0 -83.3 -1.9 0.0
1.2 -108.0 -83.3 -0.9 0.0
2.4 -108.0 -82.9 -1.0 -0.4

From the results presented in Table 3.2 it can be observed that there are

minimal differences between the numerical and analytical values of βE and
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βG. Only model 1, with L1=0.60 m showed a relative difference of βE larger

than 1 %. This minimal differences could be due to the addition of several

error sources, such as neglecting the geometric nonlinearity, the application of

a Taylor expansion of second order during the derivation of βE, and numerical

deviations. Finally, it becomes clear from observing the three βG results in

Table 3.2, that neglecting the effects of warping and geometric nonlinearity

during the derivation of βG in section 3.3 was a valid assumption. This fact

is depicted in Figure 3.8 where the frequency increments of the three models

have been plotted; there it can be seen that the three curves overlap.

εc(×10−6)
0 50 100 150

f 1
(ε
)/
f 1
(0
)

1

1.001

1.002

1.003

1.004

1.005

1.006

L1 =0.60 m

L1 =1.20 m

L1 =2.40 m

Figure 3.8: Results of fundamental torsional frequency increments of models 1, 2
and 3, (L1 =0.60 m, L1 =1.20 m, and L1 =2.40 m, respectively) with respect to
compressive strains εc(= −ε).

3.5. Relationship between wave speed and βG

To obtain βG from wave propagation techniques, one could measure three

different wave modes during a loading test, for example S-wave speed V21, S-

wave speed V23 and P-wave speed V22, then use Hughes and Kelly’s equations
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(2.37), (2.38) and (2.39), to calculate l, m, and n, and then use equation (3.51)

to calculate βG. This is an inverse problem where the physical properties l, m,

and n, need to be found from the experimental observations V21, V23 and V22.

However, when the math is carried out, it occurs that the S-wave speed V21

observation becomes dependent on m and n (and not of l) with a relationship

which corresponds exactly to the definition of βG given by the equation (3.51).

This fact enables computing βG directly from observations of one wave mode

only, V21, instead of three wave modes. This section presents the analysis of

the relationship between these two magnitudes.

The dependence between the velocity of wave propagation in solids and the

applied uniaxial stress has been presented in equations (2.35) through (2.39).

The factors that multiply the stress σ in those equations, are responsible for

the wave speed stress-dependence. These factors have been named “acoustoe-

lastic factors”, and have been defined in numerous forms. The acoustoelastic

factors are naturally a function of the second and third order elastic constants.

Here, let us deepen into the wave mode propagating in direction 2 with a wave

polarization in direction 1. It should be noted that the election of wave modes

traveling in direction 2 (or 3), which are transverse directions, are experimen-

tally more convenient than those traveling in direction 1, in the longitudinal

direction, because specimens such as beams or columns are accessible to their

lateral faces but no to their end faces, easing attaching transducers and ca-

bling. Furthermore, within the three possible modes traveling in direction 2

(V21, V22 and V23), the one polarized in direction 1, V21, is the most sensitivity

to uniaxial stress in concrete specimens [17, 64].

Let us rewrite equation (2.39):

ρV 2
21 = ρV 2

31 = µ+
σ

3K

[
m+

λn

4µ
+ λ+ 2µ

]
,

where all the elastic parameters and density ρ are by definition stress-

independent, K = λ+ 2
3
µ and µ = G0.

Now, let us observe that any of the equations (2.35) through (2.39) can

be expressed as a linear relationship between the square of the velocity V vs.

the applied stress σ which, by carrying out a Taylor series expansion, take the

form

ρV 2(σ) = ρV 2
0 + 2ρV0

∆V

∆σ
σ, (3.52)
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where V0 is the wave speed in the undeformed solid. In equation (3.52),

the term ∆V/∆σ is the slope of the stress-dependent velocity and the applied

stress. Traditionally, this slope has been named the acoustoelastic coefficient

because of the early approaches for stress determination using wave propaga-

tion phenomena. In this case, because we are considering the wave-mode 21,

let us define the acoustoelastic coefficient A21 as the slope

A21 =
∆V

∆σ
. (3.53)

Let us compare equations (2.39) and (3.52) term to term, thus

m+ λn
4G0

+ λ+ 2G0

3(λ+ 2
3
G0)

= 2ρV21,0.A21, (3.54)

where the subindex 21 of V21,0, specifies that the wave speed corresponds to

that mode. Let us rewrite equation (3.51),

βG = 3 + ν0 +
m(2− 4ν0) + nν0

2G0

,

isolate m from it, and substitute it into (3.54), and express the Lamé constants

λ and µ in terms of the engineering constants E0 and ν0, to obtain

βG = 1 + 3ν0 + 2
√

2E0ρ(ν0 + 1)A21. (3.55)

Now, let us express ν0 in terms of E0 and V21,0, to obtain

βG = 1 + 3ν0 +
2E0

V21,0

A21. (3.56)

Note in equation (3.56) that βG could be estimated directly by measuring

A21, which depends only on V21 and the applied stress σ. This is an interesting

result because it reduces the experimental complexity given that only one

wave-mode is necessary, thus, only one pair of transducers would be needed.

This equation enables comparing the results of βG obtained from two different

techniques, the one developed in this Thesis, based on torsional vibration, and

the one based in wave propagation.

Finally, let us observe in (3.56), that the factor A21/V21,0 is actually the

slope of the wave-speed increment (V21/V21,0) vs. stress (σ). Thus, let us define

this slope A21 as
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A21 =
A21

V21,0

=
∆ V21
V21,0

∆σ
. (3.57)

Thus, by substituting this definition into equation (3.56) we obtain

βG = 1 + 3ν0 + 2E0A21, (3.58)

which means that only by measuring the increment of the wave speed V21

(and not necessarily its value) during a test in at least two different levels of

stress, it is possible to estimate βG, provided that E0 and ν0 are known or

measured. This is an important observation because it enables the application

of other testing techniques, such as coda wave interferometry [17] which relies

in measuring the relative wave speed variation but cannot measure the actual

value of wave speed. Moreover, by considering from the literature that A21
∼=

0.15 % per MPa [17, 56] and using that value to inspect equation (3.58), we see

that the term 2E0A21 should take values around -150, so the term 3×ν0 (which

for concrete takes values between 3 × 0.15 to 3 × 0.24) could be neglected or

roughly estimated without incurring much error on βG.

3.6. Theoretical analysis of the stress estima-

tion of columns from vibration acoustoe-

lastic tests

3.6.1. Computation of the existing strain ε1

This section poses a theoretical description of an experiment prepared to

estimate current strains (or stresses) on an elongated structural member.

Let us consider an elongated prism, for example a concrete column of square

cross-section, which is being submitted to an applied uniaxial stress σ1 and it

is therefore strained with ε1. Here the subindex 1 refers to the state of stress-

strain “1”. From equation (3.13) we know the relationship of the fundamental

torsional frequency of vibration of the specimen under stress, f1 (also associ-

ated to state 1 of stress-strain), and the fundamental torsional frequency of

vibration of the unstressed (undeformed) element, f0, the nonlinear material

parameter βG and the applied uniaxial strain ε1, which we rewrite as
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f 2
1 = f 2

0 (1 + βGε1) (3.59)

Note that for this analysis we have changed the nomenclature, in which,

the previous meaning of the subindex “1” implied n = 1, meaning the first or

fundamental frequency of vibration. This nomenclature has been dropped now.

For this analysis, let us only refer to the fundamental frequency of vibration,

and let us relate the subindices 0, 1, 2, 3, ... to different levels of strain (and

stress), 0, ε1, , ε2, ε3,... respectively (or 0, σ1, , σ2, σ3, ... respectively ).

Also, let us now assume that we have already characterized the concrete

material, and thus, we know the value of βG. However, we do not know the

fundamental frequency of vibration in the undeformed state, f0, and we want

to carry out a test to estimate the current strain ε1.

At the current loading state, state 1, we can measure the torsional frequency

f1. We can then load (or unload) the column, to reach another loading state,

state 2, and while doing that we can measure the change of strains ∆ε21, and

in the new state we can also measure the new frequency of vibration f2, which

also behaves following

f 2
2 = f 2

0 (1 + βGε2) . (3.60)

Thus, by subtracting equation (3.59) from (3.60) we get

f 2
2 − f 2

1 = f 2
0 (1 + βGε2)− f 2

0 (1 + βGε1) = f 2
0βG∆ε21 ⇒

f 2
2 − f 2

1

f 2
1

=
βG∆ε21

1 + βGε1

. (3.61)

We can isolate ε1 from equation (3.61) which yields

ε1 = − 1

βG
+

∆ε21

f22−f21
f21

. (3.62)

However, because the value of ε1 is very sensitive to small changes of mea-

sured frequencies, it is better to carry out tests at a series of loading i states,

where i goes from 1 through N . In each i loading state, we measure ∆εi1 and

fi. Thus, we can apply equation (3.61) to every i state, so that we have
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f 2
i − f 2

1

f 2
1

=
βG∆εi1

1 + βGε1

. (3.63)

From these test results, the slope of the line that fits the data to equation

(3.63) corresponds to βG/(1 + βGε1), from which ε1 can be calculated. This

reasoning is depicted in Figure 3.9 with created data.

∆εi1

(f
2 i
−
f
2 1
)/
f
2 1

i=4

i=3

i=2

slope

i=5

Figure 3.9: Created data of “measured” values of frequency increments (f2
i −f2

1 )/f2
1

with respect to ∆εi1 in order to depict the extraction of ε1.

By carrying out an experiment with the explained characteristics, one can

calculate ε1 using

slope =
βG

1 + βGε1

⇒

ε1 =
1

slope
− 1

βG
. (3.64)
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3.6.2. Monte Carlo analysis to study error of ε1

It is useful to calculate the expected error of ε1 and σ1 from typically known

experimental uncertainties of the involved parameters. To obtain the expected

error, a Monte Carlo analysis was carried out by simulating the experiment

5000 times in MatLab and taking the standard deviation of the relative differ-

ence between the “virtual-experimental” ε1 and the assumed value (“exact”).

To start the analysis, the “exact” values of the involved parameters were se-

lected and calculated. These are presented in Table 3.3.

Table 3.3: Material and geometric exact theoretical properties considered for the
Monte Carlo analysis.

E0 (GPa) 30
ν0 0.2

ρ (kg/m3) 2400
βE -156
βG -120

L1 (m) 0.6
L2 (m) 0.15
L3 (m) 0.15

ε1 (×10−6) -100
σ1 (MPa) -3.046

Note that ε1 and σ1 are parameters that the virtual experiment expects to

calculate. The virtual experiment consisted in carrying out N = 20 loading

states, starting from state 1, with applied strain ε1 and sequentially increasing

the applied strain at every i state in steps of ∆εi1. The presented formulation

allows calculation of all the involved parameters. In particular, during the

virtual experiment, at each step we measure (∆εi1)exp, (fi)exp, and we have

previously characterized our concrete and measured (βG)exp. The subindex

“exp” stands for experimental measurement, which implies that they have

an inherent uncertainty. Here, these uncertainties are modeled by considering

that they behave following a Normal distribution with zero mean and a certain

standard deviation, presented in Table 3.4.

Thus, after running the virtual experiment once we obtain N measurements

of frequencies of vibration (fi)exp (one for each i step) and N − 1 measure-

ments of strain increments (∆εi1)exp, obtaining virtual-experimental results as

depicted in Figure 3.9. By applying equations (3.63) and (3.64), it is possible

to find the virtual-experimental result of initial strain (ε1)exp. Because (ε1)exp
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Table 3.4: Uncertainties of the “experimental” measurements considered for the
Monte Carlo analysis.

Standard deviation
(βG)exp 0.1

(∆εi1)exp 0.1×10−6

(fi)exp 0.1 Hz

was found from “uncertain” parameters, (ε1)exp will differ from the “exact”

value ε1. This difference is assessed by considering their relative difference

(error) calculated as

Error(ε1) =
(ε1)exp − ε1

ε1

. (3.65)

Due to the randomness of the errors of the involved parameters ((fi)exp,

(∆εi1)exp and (βG)exp), the obtained Error(ε1) also varies if the experiment

is run several times. Thus, we can know which would be the range of most

probably values of Error(ε1) by building its distribution. Here the distribution

of Error(ε1) was built by running the virtual experiment a large number of

times, in this case 5000 times, and computing the Error(ε1) for each run.

These data are presented in the histogram shown in Figure 3.10.

The standard deviation of the distribution of Error(ε1) was found to be 10

%, meaning that approximately 68 % of the obtained values of (ε1)exp differ

from the actual value ε1 less than 10 %. A similar conclusion can be drawn

for the expected error of σ1 if E0 and βE have been well characterized. A 10 %

error standard deviation is a fair result for such a challenging goal like this one

(to estimate the actual stress of a column from fully nondestructive testing).

It should be noted that this virtual experiment depends on many variables

which may substantially affect the obtained distribution of Error(ε1), and thus,

they may increase or decrease the error standard deviation. For instance, im-

proving or reducing the accuracy of the measurements obviously tends to af-

fect the experimental accuracy likewise (improving the experimental accuracy

means reducing the error standard deviation). If one cannot have access to

equipment with enough accuracy, increasing the number of measurements (N)

would also improve the experimental accuracy. Selecting additional modes of

vibration from which to assess nonlinearity could also improve the accuracy,

but this is out of the scope of this thesis. Also, having a material with higher

nonlinearity (higher values of βG) improves the experimental accuracy and the
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Figure 3.10: Histogram showing the distribution of Error(ε1) in % from a Monte
Carlo analysis involving 5000 runs. Red lines indicate one standard deviation away
from zero.

opposite happens for lower material nonlinearity.

3.7. Conclusions

Based on the analytical and numerical developments presented in this chap-

ter, the following conclusions can be drawn.

Material nonlinear parameters βE and βG were defined based on 1D con-

stitutive equations of elongated prisms. These are associated to the rate

of change of the strain dependent Young’s modulus Eε, and the strain-

dependent shear modulus Gε, respectively. These nonlinear material

parameters are capable of modeling the acoustoelastic effect, i.e. the

frequency of vibration increments observed when elongated prisms are

uniaxially compressed.

In general terms, in order to use torsional vibration for acoustoelastic

characterization, the effect of non-uniform torsion and geometric non-
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linearity (P-δ effect) should be considered as they are coupled with the

acoustoelastic effect. However, they can be neglected for any specimen

with solid cross-section that exhibits an aspect-ratio L2/L1 lower than

2, which corresponds to essentially all typical beam-type concrete ele-

ments with solid sections. In these cases, the Saint-Venant torsion term

dominates, so the problem can be successfully modeled using the strain-

dependent shear modulus Gε. This fact was verified using an FEM model

in COMSOL.

Boundary conditions affect the frequencies of vibration of the element.

Ideally, boundary conditions should not be affected by the applied exter-

nal load. However, if they do, their effect must be somehow characterized

and decoupled from the results in order to characterize material nonlinear

parameters. For the case of torsional vibration for acoustoelastic char-

acterization, the existence of imperfect boundary conditions (springs of

constant k instead of free ends or fixed ends) shifts the fundamental fre-

quency of vibration and creates a “nearly rigid” low frequency mode;

these two modes can be used to back-calculate the concerning magni-

tudes k and G.

The problem of a nonlinear elongated prism under quasistatic compres-

sion was studied using the Theory of Finite Elasticity, and the expres-

sions of βG and βE were analytically calculated in terms of the third

order elastic constants l, m and n. These expressions were successfully

verified numerically using an FEM model in COMSOL.

It was shown that monitoring the variation of the wave speed mode 21

(V21) with respect to stress is sufficient to calculate βG. This provides

a method to compare the use of a torsional technique for acoustoelastic

characterization (or stress determination) to the traditional acoustoelas-

tic techniques based on wave propagation.

A virtual test was run using MATLAB, involving a column of known

properties and unknown applied quasistatic uniaxial stress (and strain).

Measurements were simulated by considering given uncertainties, and

equations were applied to calculate the “current applied strain”. A

Monte Carlo analysis showed that the “estimated” (calculated) current

applied strain is very sensitive to the rest of the involved material prop-

erties and measurements; however, under certain conditions (accurate

measurements and sufficient nonlinearity), it is possible to obtain ac-
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ceptable estimation of the unknown applied stress (and strain).
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Chapter 4

Development of an experimental

technique based on torsional

vibration for the acoustoelastic

characterization of concrete

4.1. Introduction

Disclaimer: Most of the content in this chapter has been published in: A.

Spalvier, L.D. Domenech, G. Cetrangolo, J.S. Popovics, “Torsional vibration

technique for the acoustoelastic characterization of concrete, Materials and

Structures, 53:7, 2020, https://doi.org/10.1617/s11527-020-1438-6.

The objective of this chapter is to provide a robust experimental description

of the use of the torsional resonance technique for the acoustoelastic (nonlin-

ear) characterization of concrete, based on the theory detailed in Chapters 2

and 3. The observed nonlinear stiffening behavior of concrete in one dimension

was modeled using a nonlinear parameter βG, which corresponds to the rate

of change of the dynamic shear modulus G with respect to the uniaxial com-

pressive strain ε. The experimental results fit well the theoretical description

given in Chapter 3, demonstrating and quantifying the acoustoelastic behavior

of concrete samples. The analyses posed in this chapter document the experi-

mental procedure to characterize the relationship between torsional frequency

of vibration and compressive uniaxial loading. This approach provides a path-

way for nondestructive estimation of in situ compressive stress in concrete
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structural members.

4.2. Materials and methods

4.2.1. Specimens

The experimental campaign comprised two types of specimens: prismatic

specimens of nominal dimensions 15×15×60 cm3 and standard companion

cylinders of dimensions 10 cm of diameter and 20 cm tall. Three concrete

mixture designs were tested, A, B and C. The prismatic specimens were used

in the acoustoelastic tests, i.e. to characterize concrete’s acoustoelasticity by

computing βG, and the companion cylinders to find concrete’s standard com-

pressive strength. Three companion cylinders per mixture were tested to mea-

sure standard compressive strength. One prismatic specimen per mixture was

used for the acoustoelastic tests; these specimens were named 1, 2, and 3, cast

from mixtures A, B and C, respectively. Other two prismatic specimens, cast

from mixture A, were employed to characterize the boundary condition stress-

dependency (see subsection Studying changing boundary conditions, below)

and to correct frequency measurements due to temperature changes (see sub-

section Controlling effect of temperature, below). Mixture B had a very low

water-to-cement ratio (w/c), around 0.32, whereas A and C had w/c around

0.42. Mixtures A and B were composed of granitic chip coarse aggregate with

25 mm maximum aggregate size, while mixture C contained 50 % of the same

coarse aggregate plus another 50 % of granitic chip coarse aggregate with

12 mm maximum aggregate size. These three mixtures reasonably represent

the range of mixtures expected for precast concrete. The mixtures were pro-

vided by a precast concrete company, so the exact mixture designs and weight

batches are proprietary. Table 1 contains the mixtures’ compressive strengths,

calculated from 3 cylinders per mixture, tested at day 28 after casting, follow-

ing ASTM C39/C39M [25] and ASTM C192/C192M [82]. Table 4.2 contains

the dynamic elastic constants characterization results for prisms 1, 2 and 3,

measured following ASTM C215 [9] prior to carrying out the acoustoelastic

tests.
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Table 4.1: Mean and standard deviation values of compressive strength (fc) for
mixtures A, B and C, obtained from standard cylinders.

Mean fc
Std.
dev.

(MPa) (MPa)
A 30.7 1
B 47.9 1.6
C 29.6 2.8

Table 4.2: Properties of prism specimens 1, 2 and 3, carried out prior to acoustoe-
lastic test loads.

Specimen
Name

1 2 3

Concrete Mixture A B C
ρ (kg/m3) 2251.2 2386 2318.7
E0 (GPa) 33.2 43.13 34.43
G0 (GPa) 13.92 18.03 14.57

Poisson’s ratio ν0 0.192 0.196 0.182

4.2.2. Acoustoelastic test procedure

After characterizing the prisms, they were subjected to four load-

ing/unloading cycles by applying compressive load steps of approximately 1

MPa between 0 and 6 MPa under load control. The applied load was kept con-

stant at each load step for 5 minutes before the resonance tests were carried

out.

Figure 4.1 shows the testing configuration. The load was applied onto the

prism through end platens that reacted against a steel frame. Two 16 mm-

thick neoprene pads were placed directly in contact to the concrete prism end

faces in order reduce stress concentrations and to acoustically isolate the prism

from the loading system. The longitudinal (axial) strains were measured using

a pair of strain gauges (Tokyo TML model PL-90-11-1LJC) attached onto

opposing faces of the prism.

The resonance tests were performed at each load step by applying five

low-energy impacts with a steel-tipped hammer. Signals were acquired by

conditioned accelerometers connected to a NI 9215 / NI cDAQ 9174 unit that

was connected to a personal computer. In order to decouple the fundamental

torsional mode from other modes of vibration, the specimen was impacted

close to the bottom end, towards one corner, and the acceleration signals were
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Figure 4.1: Experimental configuration for the acoustoelastic tests and scheme
showing the geometric configuration of the accelerometers and the impact for vibra-
tion measurements.

measured on the upper side of the prism, perpendicular to the direction of

impact, as depicted in Figure 4.1.

4.2.3. Signal processing

The time-domain raw signals consisted of 25,000 points, acquired at a 100

kHz sampling rate. Each signal was processed using MATLAB platform (The

MathWorks Inc.). A half-Tukey window (200 points long, 2000 µs ) was ap-

plied to the first portion of the signal that affects approximately the first 4

periods of the vibration signal; this process reduced the transient effect of the

impact and yielded more consistent results. The signals were then padded

with 500,000 zeros at their tails. Then, the Fast Fourier Transform routine
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was applied to obtain the amplitude spectrum of each signal. The five signals

associated with each impact event were averaged in the frequency domain to

obtain three (one per accelerometer) average amplitude spectra per load step.

The frequencies of vibration were peak-picked from the amplitude spectra. The

signals from all three accelerometers were used for peak-picking the frequency

of vibration associated with “mode 0” (the nearly rigid mode of vibration),

denoted as ω̂0 in Chapter 3. The signal from the top-most accelerometer was

used for peak-picking the frequency of vibration associated with “mode 1”,

which corresponds to the first “nearly fundamental” torsional mode, denoted

as ω̂1.

4.2.4. Studying changing boundary conditions

Equation (3.13) is the fundamental equation that governs the experiments.

It relates the fundamental torsional frequency of vibration f1 (corresponding

to a free-free boundary condition) with the measured compressive strains ε. By

carrying out a load test and measuring f1 and ε we can extract βG. However,

the neoprene pads at the samples’ ends restrain slightly their free end twist.

Thus, it is not possible to directly measure f1; rather, we can measure f̂0

(=ω̂0/2π) and f̂1 (=ω̂1/2π), as explained in the Changing boundary conditions

section of Chapter 3.

The procedure to obtain f1 involved characterizing the neoprene pad prior

to carrying out the acoustoelastic tests. To this end, a preliminary test using

another prism cast from concrete batch A (not specimen 1) was conducted.

Three loading/unloading cycles were applied, and at each loading step mea-

surements of ω̂0 and ω̂1 were taken; equation (3.17) was used to determine

the corresponding spring constant k. Then an empirical relationship (without

explicit physical meaning) between the computed k values and the measured

stress σ values was established. For this purpose, let us propose an equation

of the form

k(σ) = ak × loge (−bkσ + ck) + dk, (4.1)

where σ is the stress in MPa (where compression takes negative values), and

ak, bk, ck and dk are the coefficients to be found by the regression analysis.

Equation (4.1) was then used for the acoustoelastic tests of the three prisms 1,

2 and 3. Thus, in these tests, k was estimated by measuring the applied stress
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σ and by applying equation (4.1) for each loading step. Then, by knowing k

and by measuring f̂1, equation (3.17) is used to find Gε(ε). Then, ω1 and f1

are computed from equation (3.10).

4.2.5. Controlling effect of temperature

After calculating the free-free fundamental frequency of vibration at each

load step, a correction was applied to account for the effects of material tem-

perature. Because the experiments were carried out in a standard structural

laboratory, temperature variations during a given test (one loading and un-

loading cycle) did not vary significantly. However, for tests carried out on

different days, the temperature variations were more significant and likely af-

fected the frequency results. The temperature correction was carried out by

regularly measuring the free-free fundamental torsional frequency of vibration

on an unloaded “control prism”. This prism was cast from mixture A and was

housed on the same room as prisms 1, 2 and 3. The measured free-free funda-

mental frequency of vibration f1 of prisms 1, 2 and 3 was adjusted as indicated

by the percentage change observed in the control prism. The obtained frequen-

cies resulted in temperature-corrected boundary condition-corrected frequen-

cies of vibration, which were finally used to compute βG. Because temperature

changes during each loading/unloading cycle were very minor, the slopes of fre-

quency vs. strain were not measurably influenced. Therefore βG results were

not affected by temperature changes. This correction was carried out to allow

comparison of frequency data among different loading/unloading cycles and

specimens.

4.2.6. Summary of test procedure and calculations

Step 1 : Using a concrete sample from batch A (not specimen 1), carry out

an acoustoelastic test to measure the applied uniaxial stress σ and associated

torsional frequencies f̂0 and f̂1 (or ω̂0 and ω̂1) in several loading/unloading

steps. Use equation (3.17) to determine the corresponding spring constant k

(pad’s torsional stiffness). Fit equation (4.1) to the σ vs. k data by finding the

coefficients ak, bk, ck and dk.

Step 2 : Run the acoustoelastic test on the concrete samples by measuring

the applied stress σ, strain ε and frequency f̂1 (or ω̂1). Use equation (4.1), with

the known ak, bk, ck and dk, to find k at each load step of known stress σ. For
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each load step, introduce the measured ω̂1 and calculated k into equation (3.17)

and findGε(ε). Then, calculate ω1 and f1 with equation (3.10). Simultaneously

measure the fundamental torsional frequency of the control prism.

Step 3 : Correct the obtained f1 by using the fundamental torsional fre-

quency measured on the control prism to account for temperature variations.

Step 4 : Apply a linear regression to fit equation (3.13) using the corrected

f1 and the measured ε data. From the best fit coefficients of slope and Y-

intercept, find βG and f1(0).

4.3. Results and discussion

4.3.1. Signal results

Figure 4.2a shows a typical raw time-domain signal collected by the top-

most accelerometer during a given load step of the acoustoelastic tests. Note

it is a clean signal with an excellent SNR. Figure 4.2b shows the amplitude

spectra of five signals collected during one load step. There, note that the

spectra overlap, showing good consistency between independent impulse vi-

bration measurements. This figure shows the frequency peaks associated to

modes 0 and 1, from which f̂0 and f̂1 were identified, respectively.
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Figure 4.2: Example raw time domain signal acquired by the top-most accelerome-
ter; (b) five overlapping amplitude spectra, normalized with respect to the maximum
showing both nearly fundamental torsional mode (mode 1) at about 1900 Hz and
the nearly rigid mode (mode 0) at about 180 Hz.

As seen in Figure 4.2b, most of the vibrational energy excites mode 1, vi-

brating around 1900 Hz and only a minor portion of the energy excites mode
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0, around 180 Hz. This fact has to do with the characteristics of the impact

event and sensing configuration. It should be noted that mode 0 corresponds

to the “nearly rigid” mode discussed above. The measurement of mode 0 fre-

quency is necessary to characterize the spring constant k, in order to decouple

the effect of changing boundary conditions from the acoustoelastic effect.

4.3.2. Characterization of the boundary conditions

A preliminary prismatic sample cast from batch A was employed to char-

acterize the torsional springs constants k with respect to the applied stress σ.

Figure 4 shows the obtained results.
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Figure 4.3: Value of k with respect to applied compressive stress σc (= −σ) during
loading and unloading cycles 1, 2 and 3 for preliminary prism cast from batch A.
The continuous line is the best fit line using the function form shown in equation
(4.1).

In Figure 4.3, the superimposed black curve represents a best fit to the

data following equation (4.1), where ak = 14.01 kN.m/rad, bk = 15.57 MPa−1,

ck = 0.3458 and dk = 31.91 kN.m/rad, and σ is the applied stress in MPa where

a negative value indicates compression. The regression to the data yielded a

coefficient of determination R2 = 0.980 demonstrating excellent fit. Note that

the form of the equation used to fit the data is not good for stress values very

close to zero because there is a pole at σ ∼= +0.03 MPa caused by the loge fitting

function. However, this does not imply a problem for the analysis because we

focus on the structural/material behavior at compression stresses higher than

1 MPa, which correspond to those found in typical concrete structures. Thus,
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the frequency results obtained at compression stresses lower than 1 MPa are

not included in the following discussion. In Figure 4.3, values of k increase from

65 kN.m/rad at 1 MPa to 90 kN.m/rad at 5 MPa. This load-dependence of

k affects the computation of βG because the measured frequencies change due

to both the acoustoelastic effect and the change of k. If the load dependence

of k had not been considered, βG would have been overestimated by 20-30 %.

Note that other boundary conditions could imply greater or lesser influences;

for example, a column under compression restrained by beams at both ends is

likely to have a high k value that would probably be independent of applied

compression.

4.3.3. Torsional frequency vs. uniaxial strain

Figure 4.4 presents the variation of fundamental torsional frequencies as

a function of the uniaxial strains obtained during the loading and unloading

cycles of prism 1 (for data acquired at compressions higher than 1 MPa). There

is a clear positive correlation between frequency and compressive strain, where

frequency increases as compressive strain increases. Cycles 3 and 4 are more

similar to each other than the rest. This implies that the behavior tends to

become more consistent as the sample is subjected to more loading/unloading

cycles, as would occur in a real structural element. Similar results were found

for prisms 2 and 3.

Note that the first loading cycle starts at frequency approximately 1890 Hz

and after unloading it reaches frequency value close to 1885 Hz. This fact is

not observed in the other three cycles as prominent as in cycle 1. This obser-

vation suggests that some mechanism involving softening, e.g. damage, may

be occurring during loading cycle 1. It appears that stiffening (acoustoelastic)

and softening (damage or other) effects compete each other, which reduces the

slope (lower βG value) of the first loading cycle with respect to the subsequent

cycles. In cycle 1, the loading (blue) curve consistently stays above the unload-

ing (orange) curve, while the opposite happens in cycle 2. The characteristic

observed in cycle 2, where the unloading curve is above the loading curve, was

also observed in the other prisms. We cannot explain this behavior with the

proposed theoretical model, which predicts overlapping loading and unloading

curves. The causes underlying this behavior require deeper study and are not

within the scope of this research.

74



100 200 100 200 100 200 100 200

1880

1885

1890

1895

1900

1905

f 
 (

H
z
)

1

Stage
Loading

Unloading

(10    )-6
�c

Cycle 1 Cycle 2 Cycle 3 Cycle 4

(10    )-6
�c (10    )-6

�c
(10    )-6

�c

Figure 4.4: Fundamental torsional frequencies corrected considering boundary con-
ditions and temperature with respect to the uniaxial compressive strain εc (= −ε),
obtained during the loading and unloading cycles of the acoustoelastic test of prism
1.

Figure 4.5 presents the squared frequency increment results for prisms 1,

2 and 3 with respect to the measured strains. The frequency increment was

calculated at every load step as f1(ε)/f1(0) where f1(ε) corresponds to the

temperature-corrected free-free fundamental frequency of vibration computed

at every load step, and f1(0) is the estimation of that magnitude at zero strain.

This estimation was obtained from the linear regression described by equation

(3.13).

Figure 4.5 depicts good consistency between the three prisms, both for load-

ing and unloading cycles. Even though the prisms were made from different

concrete mixtures, the slopes of frequency increments are very similar.

4.3.4. Results of βG parameter

Figure 4.6 presents the results of βG for every prism at every load-

ing/unloading cycle. The βG values of loading cycle 1 are always lower (in

absolute value) than those from subsequent loads. This finding is consistent

with the hypothesis that softening occurs during loading cycle 1 and therefore

the stiffening effect (associated with negative βG values) competes with the
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Figure 4.5: Frequency increment results with respect to uniaxial compressive strain
εc (= −ε) of prisms 1, 2 and 3 for (a) loading and (b) unloading cycles.

initial softening due to damage or other effect (associated with positive βG

values). After the first loading cycle, βG values stay within a range of -103 to
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-142 for all the three prisms. Table 4.3 shows the mean and standard devia-

tion results of βG associated with each prism for the seven loading/unloading

cycles.

Figure 4.6: Results of βG for the four loading and unloading cycles of the specimens
1, 2, and 3.

Table 4.3: Mean and standard deviation results for βG for each prism, neglecting
loading cycle 1.

Prism Mean Std. dev.
1 -125 8
2 -119 11
3 -129 10

Observe in Table 4.3 that specimen 2, with highest Young’s modulus E0

and compressive strength fc obtained the lowest mean βG (in absolute value).

Let us also analyze the variability of the average βG values among concrete

mixtures by computing the coefficient of variation (CV), i.e. the standard

deviation over the absolute value of the mean. The CV of the average βG

results among mixtures is 4.1 %, lower in value than both the initial dynamic
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Young’s modulus and compressive strength, with CV = 14.7 % and 28.5 %,

respectively. This analysis is summarized in Table 4.4 where properties among

the three mixtures are compared. This suggests that an estimated value of βG

could be used for a concrete that has not been directly characterized, without

incurring much error. Characterization of more mixtures is needed to confirm

this presumption.

Table 4.4: Summary of concrete properties, including the mean, standard deviation
and coefficient of variation (CV) among mixtures.

Mean
Std.
dev.

CV %

ρ (kg/m3) 2319 67 2.9
E0 (GPa) 36.9 5.4 14.7
G0 (GPa) 15.5 2.2 14.2

ν0 0.19 0.007 3.8
fc (MPa) 36.1 10.3 28.5

βG -125 5 4.1

4.3.5. Comparison with βG values obtained from litera-

ture

The author could not find previous reports that explicitly calculate the

nonlinear parameter βG of concrete. However, it is still possible to use the

frequency shift data provided by Lundqvist and Rydén [20] to compute their

specimen’s βG, but without applying boundary condition nor temperature cor-

rections. By simply introducing their frequency data into equation (3.13) and

applying a linear regression, we obtain βG = -166 ; this value of βG is in the

same order of magnitude as those presented previously in this chapter, even

though our experimental configurations have considerable differences.

To deepen the analysis, let us use the results from the FEM numerical

model detailed in Chapter 3 to determine βG values using second and third

order elastic constants experimentally determined in previously published re-

search [17, 64]. Table 4.5 contains the concretes’ material properties and βG

associated with the findings of Payan et al. [17] and Nogueira and Rens [64].

Table 4.5 shows that the previously reported concrete’s second and third

order elastic constants yield results of βG that are similar (yet lower in value

over all) than the βG values obtained in this research. Their associated βG
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Table 4.5: Second and third order elastic constants of concrete concretes reported
elsewhere, with their corresponding βG according to the numerical model detailed
in Chapter 3.

Ref. ρ (kg/m3) E0 (GPa) ν0 l (GPa) m (GPa) n (GPa) βG
[64] 2327.1 31.31 0.211 -536 -994.5 -885.8 -48
[64] 2308.8 30.07 0.194 -762.6 -1056.5 -1096.8 -57
[64] 2268.3 29.42 0.203 -140 -648.9 -450.1 -32
[17] N/A 42.39 0.21 -3007 -2283 -1813 -83

values range between -32 and -83 whereas here these range between -119 to

-129. Note that these two investigations [17, 64] computed the concrete’s third

order elastic constants using wave propagation based techniques whereas in

the experiments presented here a vibration based technique was used; these

fact might explain the differences of measured βG values, also supported by

the βG (equal to -166) computed from Lundqvist and Rydén’s vibration-based

data [20]. This topic is investigated and discussed in Chapter 5.

Once the nonlinear parameter βG of a concrete mixture is established or

reasonably estimated for a concrete mixture, a loading/unloading test could be

performed in-situ on a concrete element composed of the mixture to estimate

the applied stress therein. Using data from that test, equation (3.13) could be

used to calculate the current uniaxial strain (ε1), and thus the current uniaxial

stress (σ1). Details of this potential test are given in Chapter 3.

4.4. Conclusions

Based on an experimental test series and the theoretical model proposed in

Chapter 3 (that relates the torsional frequency of vibration in concrete samples

with the applied compressive strain and stress), it is verified the model’s pre-

dictions are true. This is, the existence of a positive correlation between vibra-

tion frequency and applied compressive stress, within the limits of compressive

strain applied here, caused by the material stiffening nonlinearity (acoustoe-

lasticity). To quantify and characterize this behavior, the nonlinear parameter

βG was utilized, which corresponds to the rate of change of the shear dynamic

modulus G with respect to the level of compressive strain. Based on the results

presented in this chapter, the following conclusions can be drawn.

The torsional frequency of vibration of the tested concrete prisms shows
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a positive correlation with the applied uniaxial quasi-static compression

strain and stress level. The influence of the nonlinear material stiffening

dominates over that of geometric nonlinearity (P-δ effect) and possible

material softening.

The effect of changing boundary conditions cannot be neglected with

the used experimental configuration. A theoretical-empirical correction

to decouple this effect from that corresponding to the material nonlin-

earity was therefore proposed. Other experimental configurations or field

characteristics may increase or reduce the effect of changing boundary

conditions on the acoustoelastic effect; this characteristic must be as-

sessed for each situation.

The initial loading cycle of all prisms yielded βG values around -95, that

were clearly lower (in absolute value) than those obtained from sub-

sequent loading/unloading cycles on the same sample, which averaged

-125. Thus, competing stiffening (acoustoelastic) and softening (damage

or other) effects occur during the first loading cycle.

The obtained value of βG neglecting the first load cycle is consistent

among the range of concrete mixtures considered, even though other

mixture parameters such as Young’s modulus and compressive strength

vary significantly. The values of βG obtained numerically from previ-

ously published results, which used vibration-based techniques, are of

the same order of magnitude as the ones computed in this investigation.

Results of βG computed from previous studies based on wave propagation

techniques yielded values of βG lower than those computed here.

Once the nonlinear parameter βG of a concrete mixture is established, a

loading/unloading test could be performed to estimate applied stresses

of a concrete element composed of that mixture.
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Chapter 5

Experimental comparison of

techniques for acoustoelastic

characterization: torsional

vibration vs. wave propagation

5.1. Introduction

The equations (2.35) through (2.39), developed by Hughes and Kelly [14],

relating the mechanical wave speed with applied uniaxial strain (or stress)

were presented in Chapter 2. These equations could be used to estimate ap-

plied stress in a known solid by measuring wave speed, or inversely, one could

measure wave speed and applied stress to find the solid’s second order elastic

constants (λ and µ) and the third order elastic constants l, m and n. Also,

Chapter 3 presented the equations developed in this investigation, particularly

equation (3.13), relating torsional frequency of vibration with respect to ap-

plied uniaxial strain (or stress). These magnitudes are related by the second

order elastic constant G (= µ) and the nonlinear parameter βG. This equa-

tion could also be used to find the applied uniaxial stress in a known solid by

measuring frequency of vibration, or inversely, to compute βG by measuring

applied stresses and torsional frequency of vibration. Such a test was detailed

in section 3.6. Moreover, Chapter 3 also contains the analytical development

showing the expression of βG in terms of the third order elastic constants l, m

and n (equation (3.51)), including a numerical analysis that substantiates the
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analytical findings. The present chapter describes and discusses the experi-

ments developed to verify these analytical and numerical findings.

The typical experimental tests designed to measure l, m and n in concrete

under compression involve carrying out a loading test of a concrete sample,

and during the test, measuring the applied stress and/or strains, as well as

the velocity variation of three ultrasonic wave-modes. Thus, using the corre-

sponding equations (2.35) through (2.39), l, m and n can be determined. For

concrete materials, this was carried out by Payan et al. [17], and by Nogueira

and Rens [64]. The objective of this chapter is to carry out a similar test and

obtain a “wave propagation-based” βG, using equation (3.58) and at the same

time determine βG from torsional frequency of vibration. This is the first time

that a study employs these two techniques on the same specimen, for acous-

toelastic characterization of concrete, and compares their results. Thus, with

both approaches equations (3.58) and (3.51) would be verified, which would in

turn verify that the acoustoelastic effect (concrete stiffening effect) is responsi-

ble for both effects: the positive correlations between wave speed and uniaxial

compression and between frequency of vibration and uniaxial compression.

The experiments described in this section involved loading a concrete-

material specimen, measuring stresses, strains, wave propagation velocity and

torsional frequency of vibration. Thus, βG was computed from both techniques:

ultrasonic wave propagation, and torsional resonance. It would be expected to

find equal (or very similar) βG results, which would prove that the proposed

theory agrees with the experimental observations. However, preliminary tests

carried out in concrete samples showed results of βG computed from the wave

propagation technique an order of magnitude lower than βG results computed

from the torsional resonance technique. One of the main differences between

both techniques is the frequency of vibration at which the dynamic phenomena

are occurring, much higher in the case of wave propagation, ∼150 kHz, than

for torsional resonance ∼2 kHz. It was therefore initially presumed that there

could be an effect of the intrinsic concrete heterogeneity, in which the exis-

tence of aggregate of considerable size could be affecting propagating waves,

and thus, producing lower values of βG. Note that a shear wave centered at 150

kHz traveling at 2000 m/s would have a wavelength of 1.3 cm, which are of the

same order of magnitude as the coarse aggregate size. If this was true, it would

mean that wave propagation “sees” concrete more linear than resonance tests.

Therefore, to address this issue, a mortar concrete sample was cast (cement,
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water and sand, without coarse aggregate), so that the solid could be consid-

ered homogeneous both for wave propagation and for resonance. The following

description involves the mortar sample. Moreover, other affecting factors that

could alter the measured βG were considered, and specific experimental actions

were taken; these are, for example, the effect of temperature, the conditioning

effect (slow dynamics) produced by the actuator - experimentally observed as

an instantaneous softening which tends to recover in time- and the damaging

effect due to increasing the maximum historical compressions -also observed

as a softening effect- [83, 84]. These descriptions are presented in Materials

and Methods section, and the results analyzed in the Results and Discussion

section.

The reader will note that despite the mentioned experimental considera-

tions, the wave propagation technique yielded βG results considerably lower

than the torsional resonance technique, meaning that the previously posed

theory is incomplete. Thus, a final section has been included in order to pose

an extended theory, which includes concepts of viscoelasticity, and is poten-

tially capable of successfully explaining the observed experiments. It should

be noted that there are other possible influencing factors that may also explain

the apparent discrepancy and these were not addressed in this Thesis; some

of these are: inaccuracies while measuring nonlinearity (βE) from quasistatic

stress and strain data, as well as the assumed relationship between βE and βG,

the hypothesis of considering Poisson’s ratio to be frequency independent when

calculating dynamic shear moduli G from P-waves, longitudinal vibration and

bending vibration, and also the fact that frequencies of vibration, from which

dynamic elastic moduli are calculated, depend on the dynamic strain range

used for their characterization [72, 83].

5.2. Materials and Methods

5.2.1. Material and Specimens

The experimental campaign comprised two mortar prismatic specimens of

nominal dimensions 15 × 15 × 60 cm3 and three standard companion cylinders

of dimensions 10 cm of diameter and 20 cm tall. One prismatic specimen was

used in the acoustoelastic test. The second prismatic specimen was set aside

to control temperature variations. The companion cylinders were used to find
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the mortar’s compressive strength. The mortar mixture had a water to cement

ratio of 0.68. The mixture proportions are given in Table 5.1.

Table 5.1: Mixture proportions of mortar mixture design expressed as weight per
m3 of mortar mixture, with constituents in SSD condition.

weight (kg)
Portland cement 400

water 272
sand (SSD) 1883

“SSD” means saturated surface dry condition.

The average compressive strength of the three cylinders was 20.4 MPa,

tested at day 28 after casting, following ASTM C39/C39M [25] and ASTM

C192/C192M [82].

5.2.2. Characterization of Second Order Elastic Con-

stants

Prior to carrying out the acoustoelastic testing program, which involved

loading the sample several times, various nondestructive tests were performed.

First, the specimen was measured and weighed to calculate density. After-

wards, the mortar sample was tested using traditional longitudinal, flexural

and torsional resonance, as indicated in ASTM C215 [9]. With these, the

dynamic elastic moduli E and G (or µ) were calculated.

Finally, the mortar specimen was characterized using traditional wave prop-

agation techniques. A pair of P-wave ultrasonic transducers were attached on

opposing lateral sides of the prismatic specimen, using the UPV Pundit equip-

ment. The pulse, with a frequency spectrum centered at 54 kHz, was sent

by the sending transducer, traveled through the solid, and sensed by the re-

ceiving transducer, where the time of flight was measured. The P-wave speed

VP was computed by dividing the distance between transducers into the time

of flight. Note that, by definition, VP = V22,0 using the axes convention of

equation (2.35) through (2.39). Similarly, VP was also measured using another

pair of transducers model Olympus V1548 which sent/sensed pulses with fre-

quency spectrum centered at 150 kHz (originated from a pulser model Olympus

5072PR). Once the VP was measured, the dynamic E can be computed using

equations (2.6). The dynamic G (= µ) can be estimated by considering a

reasonable value of Poisson’s ratio.
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5.2.3. Acoustoelastic Testing Program

The acoustoelastic testing program was divided into three tests: Test 1,

Test 2 and Test 3, which were performed in order from 1 to 3. These are

depicted in a stress vs. time graph, presented in Figure 5.1.

Time

S
tr

e
s
s

Test 1

(Calibration)

Test 2 Test 3

Figure 5.1: Diagram of testing program protocol indicating tests 1, 2 and 3 in
time.

Each of these tests had their own specific goal in order to improve the

accuracy to determine βG. Each test involved monitoring the S-wave speed V21

and/or torsional vibration frequency. The objective of Test 1 was to study the

effect of temperature on S-wave speed and to establish a correlation between

the testing specimen and the control specimen. The objective of Test 2 was

to submit the specimen to a maximum historical compressive stress (which

would not be exceeded in Test 3), and also to observe slow dynamic effects,

like material softening and gradual recovery. The goal of Test 3 was to measure

βG with both techniques and to compare the obtained results.
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5.2.4. Testing configuration and signal processing for

wave speed monitoring

The testing configuration for wave speed monitoring consisted of attaching

a pair of S-wave transducers model Olympus V1548 onto opposing sides of

the prisms’ lateral faces. These were set so that wave polarization would be

parallel to the loading direction, thus, to send/sense S-waves traveling at speed

V21. Figure 5.2 depicts the experimental configuration.

1

2

3

�21

Figure 5.2: Diagram of wave speed monitoring experimental configuration, show-
ing transducers, and indicating direction of wave propagation with continuous blue
arrow V21 and direction of wave polarization with dashed blue arrow.

Sixteen individual pulses (not a burst) were produced by a pulser model

Olympus 5072PR to excite the sending S-wave transducer and sent through

the specimen. These propagating waves were sensed by the receiving S-wave

transducer on the opposite side of the specimen. The analog pulses were ac-

quired and digitized by a Tektronix oscilloscope model TDS 2004B with 25

MHz sampling frequency. The sixteen pulses were time-averaged by the oscil-

loscope. The time-averaged signal was transferred to the controlling personal

computer. Three of these time-averaged time-domain signals were recorded

with the personal computer and were averaged once more in order to improve

the signals’ vertical resolution. These “improved” time domain signals were

recorded at a rate of one every 90 s.
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The digitized time-domain signals were processed using MatLab in order

to monitor S-wave speed V21. The very first signal was recorded during Test 1,

which became the “base signal”. The S-wave arrival of the base signal was de-

termined by direct observation of the arriving pulse. The signals were filtered

using a Butterworth 750 kHz low pass filter of 2nd order. Then they were win-

dowed using a Tukey window in order to keep the first two cycles of the S-wave

arrival. All the windowed time domain signals were “splined” by interpolating

200 points between each consecutive pair of signal points, artificially creating

signals with 500 MHz sampling rate. Then these were cross-correlated against

the base signal in order to quantify the arrival time variations, and thus the

wave speed V21 changes. Figure 5.3 shows a typical raw signal collected using

the shear wave setup and a processed signal superimposed.
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Figure 5.3: Typical signal acquired with the shear wave mode 21 setup. In blue
the raw signal and in yellow the processed signal.

5.2.5. Testing Configuration and Signal Processing for

Vibration Monitoring

The testing configuration and signal processing used within this testing

program was identical as explained in Chapter 4. The low-energy impacts
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were applied to the sample in moments where S-waves were not propagating.

A special preliminary test was carried out to verify that S-wave speed was

not affected by the impacts, or, in other words, that the impacts were not

conditioning the material.

5.2.6. Test 1: Effect of Temperature on Wave Speed

Test 2 and 3 involved monitoring wave speed changes during several hours,

where temperature varied and affected the experimental results. Test 1 was

run in order to study the effect of temperature on the material, and specifically

to investigate the possibility of using a control specimen to account for these

temperature changes.

To pose a possible correlation equation between control and testing speci-

men, let us start by assuming that the elastic modulus G is linearly affected by

temperature changes. Thus the temperature-dependent and strain-dependent

shear modulus, Gε,T , is related to the existing temperature T and the applied

uniaxial strain ε with

Gε,T (ε, T ) = G0,T0 (1 + βGε) (1 + bG∆T ) , (5.1)

where ∆T = T − T0 and T0 is a reference temperature which is arbitrarily

selected and must then remain unchanged; G0,T0, is the elastic shear modulus

of the material at 0 strain (undeformed state) and at temperature T0, and bG

is the factor relating temperature changes with shear modulus changes. Note

that the use of this equation assumes that G is temperature dependent but

not βG.

Note that equation (5.1) is basically the same as the equation (3.6) with

the difference that the temperature factor (1 + bG∆T ) has been introduced to

account for temperature shifts. At temperature T = T0 equation (5.1) becomes

equivalent to (3.6). Let us call that factor iG(∆T ), thus

iG(∆T ) = (1 + bG∆T ) =
Gε,T

Gε,T0

, (5.2)

where Gε,T0= G0,T0 (1 + βGε).

From this model, bG is the parameter that relates temperature shifts and

their effect on the shear modulus G. However, our preliminary experiments

have shown that this relationship is hysteretic, which complicates its model-
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ing and characterization testing. Thus, instead of characterizing bG, it was

opted to use the control specimen and assume that the variations iG(∆T ) that

undergoes the testing specimen are linear with the variations iG,(C)(∆T ) that

undergoes the control specimen. This is

iG(∆T ) = nT +mT × iG,(C)(∆T ), (5.3)

where the subindex (C) stands for “control”, and mT and nT are the two linear

coefficients needed to be determined during a calibration test.

Note also that the increments of G are proportional to the increments of

S-wave speed VS squared. So, iG(∆T ) can be directly measured by measuring

the S-wave speed change on a sample that is only subjected to temperature

changes, that is

iG(∆T ) =
Gε,T

Gε,T0

=
V 2
ε,T

V 2
ε,T0

, (5.4)

where Vε,T and Vε,T0, are the S-wave speeds measured with the sample at

uniaxial strain ε and temperature T , and at temperature T0, respectively (note

that the subindices “S” and “21” of the wave speeds V have been dropped to

ease the nomenclature, but these still correspond to S-waves mode 21). By

substituting equation (5.4) into (5.3) we obtain

V 2
ε,T

V 2
ε,T0

= nT +mT ×
V 2

0,T,(C)

V 2
0,T0,(C)

, (5.5)

where (C) indicates the control specimen, and the subindex ε = 0 for the

control.

Thus, coefficients mT and nT can be obtained from a calibration test involv-

ing monitoring S-wave speed variations on both unloaded specimens (ε = 0).

This was done during Test 1. The coefficients nT and mT are those that best

fit equation (5.5) during this test.

Once the calibration test is carried out, and factors mT and nT determined,

we can consider any test in which temperature changes are occurring coupled

to other effects (such as in Tests 2 and 3), and decoupled the former from

the latter. An S-wave speed measurement can be corrected for temperature

variations by isolating V 2
ε,T0 from equation (5.5), which yields
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V 2
ε,T0 =

V 2
ε,T

nT +mT ×
(
VT,(C)

VT0,(C)

)2 , (5.6)

where Vε,T is the measured S-wave speed on the testing specimen at a given

temperature T , Vε,T0 is the temperature corrected S-wave speed, that is, the

wave speed that the testing specimen would have had at temperature T0, VT,(C)

is the S-wave speed of the control, measured at the same time than Vε,T and

VT0,(C) is the S-wave speed measured during the calibration test at temperature

T0.

Test 1 (the calibration test) consisted of placing both the testing specimen

and the control in their exact experimental configuration that they would have

during Test 2 and Test 3, and to monitor S-wave speed on both samples in a

lapse where no other effects were occurring but only temperature variations.

The experimental configuration used for Test 1 is detailed in section 5.2.4 and

lasted 35 hours. The temperature T0 was 17.6 oC , which corresponded to the

air temperature reading when the base signal was collected. The factors mT

and nT were computed from the S-wave speed data collected during that time,

using equation (5.5). These best-fit coefficients were used in Tests 2 and 3 to

“normalize” S-wave speeds to temperature T0 by applying equation (5.6).

5.2.7. Test 2: Peak Load and Long-term Monitoring

Test 2 consisted of gradually applying up to 4.5 MPa of uniaxial compres-

sion onto the testing specimen, and then gradually releasing it to reach 0 stress

once again, both at a rate of 500 N/s. During the loading/unloading cycle,

longitudinal strains were measured at a rate of one per second using a pair

of strain gauges attached to opposing sides of the specimen, connected to a

Wheatstone bridge in a quarter bridge configuration. S-wave speed V21 were

monitored both in the testing specimen and in the control specimen, using

the experimental setup explained in section 5.2.4. The S-wave monitoring was

prolonged for approximately 75 hours after releasing the stress.

Test 2 had two objectives. First, to apply a maximum compressive load

(4.5 MPa) that would not be exceeded during Test 3. Based on the Kaiser

effect, if the maximum historical load is not exceeded during a given test, then

no significant material damage occurs. Thus, because in Test 3 compressions

reached up to 3 MPa, no significant damage occurred during Test 3. This is
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important because Test 3 would be used to characterize acoustoelasticity.

The second objective consisted in monitoring the specimen during a long

period of time in order to study the existence of material conditioning/recovery

due to slow dynamics effects.

5.2.8. Test 3: Acoustoelastic Test

Test 3 consisted of carrying out four loading and unloading cycles onto the

testing specimen and, throughout the test, carry out torsional vibration and

S-wave propagation tests. Load was increased and decreased at a rate of 100

N/s. Within each loading cycle, five load steps were defined, in which load

was kept constant for 10 minutes, to allow measuring torsional vibration. The

testing protocol is shown in Figure 5.4. The longitudinal strains were measured

using a pair of strain gauges and a Wheatstone bridge, at a rate of one per

second.
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Figure 5.4: Applied compressive stress in time during Test 3. Markers point the
times in which torsional vibration measurements were taken.

Torsional vibration measurements were taken only during the steps in which

load was kept constant. The experimental configuration and procedure is

detailed in section 5.2.5. The S-wave propagation measurements were taken

continuously and not only during the load steps; more experimental details
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are given in section 5.2.5. Figure 5.5 is a photograph showing the testing

configuration used during Test 3. The torsional vibration measurements were

used to calculate βG as detailed in Chapters 3 and 4. The S-wave speed

measurements were corrected for temperature as explained in section 5.2.6

and then they were used to calculate βG using equation (3.58).
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Figure 5.5: Photograph of the testing configuration employed for Test 3.

5.3. Results and Discussion

5.3.1. NDE Characterization Results

The density of the testing specimen was 1981 kg/m3. Results of resonance

vibration are presented in Table 5.2. Results of P-wave speed are presented in

Table 5.3.

5.3.2. Results of Test 1: Effect of Temperature on Wave

Speed

Figure 5.6a presents the results of wave speed variations associated to S-

wave speed V0,T , which is a vertically polarized S-wave, that is, a 21 mode, and
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Table 5.2: Results of resonance tests (free vibration) on testing specimen and
computation of dynamic shear modulus G.

Mode f (Hz) G (GPa)

flexural 1214.2 9.54(1)

longitudinal 2852.2 10.00(1)

torsional 1689.0 9.79

(1) Poisson’s ratio considered 0.18 for calculations.

Table 5.3: Results of P-wave speed tests and calculation of dynamic shear modulus
G.

Transducers Speed (m/s) G (GPa)

54 kHz 3908 11.81(1)

150 kHz 3926 11.91(1)

(1) Poisson’s ratio considered 0.18 for calculations.

control S-wave speed VT,(C), collected during Test 1, where air temperature

measurements have been superimposed. In that figure it is observed that

both magnitudes, V0,T and VT,(C) are overlapping and they both lag from the

temperature curve; where wave speed decreases as temperature increases. Note

also that the V0,T measurements are plotted against the left y-axis and the

VT,(C) against the right y-axis. These axes are not synchronized on purpose

(to allow the magnitudes to overlap) and show that their scale only differs by

linear shifts. This shows, qualitatively, that a linear transformation between

these magnitudes is sufficient to account for the long term thermal effects on

S-wave speed. This trend is better depicted in Figure 5.6b which shows the

relationship between these magnitudes.

Figure 5.6b shows the V0,T plotted with respect to control data VT,(C), in

terms of the square of their increments. These sets of data were used to apply

the linear regression given by equation (5.5), to find the coefficients mT and

nT . The linear regression yielded a coefficient of determination R2 equal to

0.99 and the obtained best fit coefficients are mT = 1.1745 and nT = −0.1753.

5.3.3. Results of Test 2: Peak Load and Long-term

Monitoring

Figure 5.7 presents the results of S-wave collected during Test 2. The top

graph contains the uncorrected results and the bottom graph the temperature-
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Figure 5.6: Test 1 results. (a) S-wave speed increments on the testing specimen
(plotted against left axis) and on the control specimen (plotted against right axis)
with respect to time and the overlapped green graph indicates air temperature with
respect to time. (b) Squared S-wave speed increments of: testing specimen with
respect to control specimen, with time in color code. Continuous black line is the
best-fit line.

corrected results. These are the S-wave speeds that would have been collected

if air temperature had been kept constant at T0 =17.6 oC. During Test 2, air

temperature stayed between 16 oC and 20 oC, similarly as during the calibra-

tion Test 1.

In Figure 5.7, the first notable feature is the effect of temperature that

makes wave speed vary with a period of approximately 24 hours. This effect

is present in the top graph, and disappears in the bottom graph due to the

successful application of the temperature correction procedure.

Moreover, S-wave speed has a steep spike of approximately 3 m/s incre-

ment (0.13 %) between hour 91 and 92, time in which the testing specimen

was submitted to 4.5 MPa of uniaxial compression (this is observed in both

uncorrected and corrected data). Note in the top graph, that wave speed vari-

ations due to temperature are of the same order of magnitude as those due

to applied stress. This behavior is depicted in the zoomed graph, where it

becomes evident that S-wave speed follows the same trend of increment as the

applied compression. However, it can be observed that during the unloading,

as stress goes back to zero, S-wave speed reaches a level approximately 2 m/s

lower than the starting speed (note the difference of S-wave speed between

times 91.6 h and 91.8 h).

As the specimen is left at rest, with 0 stress, S-wave speed starts to gradu-
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Figure 5.7: Top graphic shows results of S-wave speed Vε,T uncorrected for tem-
perature (subindex 21 omitted even though it corresponds to mode 21) along time
(blue curve), with air temperature superimposed (green curve). Bottom graphic
shows results of S-wave speed Vε,T0 corrected for temperature (subindex 21 omitted
even though it corresponds to mode 21) along time. In both plots, continuous black
horizontal line indicates the starting S-wave speed. Zoomed plot details the loading
stage of Test 2, where the level of compression has been incorporated in orange.

ally recover, reaching its initial level around time 110 h. This could be a slow

dynamics softening/recovery effect, most likely activated by the quasistatic

loading/unloading, which softens or “conditions” the material, and, from these

observations, seems to take around 18 hours to fully “recover”. Similar behav-

ior has been observed in concrete materials submitted to high energy impacts

[83, 84].

5.3.4. Results of Test 3: Acoustoelastic Test

Figure 5.8 contains the uniaxial compressive stresses and strains measured

during the test expressed as a function of time. As compressive stresses in-

crease, compressive strains increase too. As expected, the strain measurements

follow a very similar trend as the applied uniaxial stress. The same data is

plotted in Figure 5.9 but depicting compressive stresses as a function of com-

pressive strains, where the four loading cycles are identified with the color
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code. There it can be seen, even though there is minor hysteresis, that all

cycles overlap and at the end there is a remnant strain of 4×10−6.
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Figure 5.8: Results of compressive stresses, plotted against the left y-axis, and
compressive strains, plotted against the right y-axis, expressed as a function of
time. Loading cycles 1, 2, 3 and 4 are also identified.
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Figure 5.9: Compressive stress as a function of compressive strain during Test 3.
Loading and unloading cycles in color code.

Figure 5.10 presents the results of squared S-wave speed with respect to

the uniaxial compressive stress, and to the uniaxial strain, for the four loading
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cycles. According to the proposed theory, this relationship should be linear,

see equation (2.38). The focus was on the behavior between 1 to 3 MPa of

compression from which to compute βG. In this range of stresses, Figure 5.10

shows very good repeatability as all cycles overlap. As compressive stress (and

strain) increases, squared S-wave speed increases too. This relationship is fairly

linear during the first four load steps, between 1 to 2.5 MPa, and it flattens

down at 3 MPa, meaning that if the behavior was purely acoustoelastic, S-wave

speed at 3 MPa should have been higher.
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Figure 5.10: Square of temperature-corrected S-wave speed Vε,T0 (subindex 21
omitted even though it corresponds to mode 21) with respect to uniaxial compressive
stress at left plot and with respect to uniaxial compressive strain at right plot.

Moreover, in Figure 5.10 it is clear that during the loading stage of cycle

1, S-wave speed behaves in different manner than in the other cycles. During

this cycle, as load is increasing, S-wave speed decreases between 0 to 1 MPa

and then, after 1 MPa, starts to increase. Similar “erratic” behavior has been

observed by some researchers when carrying out similar tests; in some cases

the effect is more prominent and in some others very minor [56, 69, 70]; thus,

it does not seem to exist a complete explanation for it yet. However, the

S-wave speed at the end of cycle 4, with 0 stress, is 0.09 % lower than the

initial stress at the beginning of the test, with 0 stress too. This is a similar

behavior to the wave speed drop observed in Test 2, that occurred before and

after the application of the load, which then took 18 hours to recover; thus,

both drops are probably due to the conditioning effect of the quasistatic load
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which softens the material. It is therefore likely that the “erratic” effect in

cycle 1 could be due to the competing effects of acoustoelasticity, a stiffening

effect which makes S-wave speed increase as compression increases, and the

slow dynamics conditioning effect, which softens the material during that first

load, and if the loading is maintained, the material continues to behave in a

conditioned state.

Figure 5.11 presents the temperature-corrected S-wave speed results, and

stresses, in terms of the measured compressive strains, but separated among

the different loading and unloading cycles. In this figure it becomes clear that

within each loading cycle, stress-strain curves show minor hysteresis. There

are also some minor viscoelastic effects in which strains keep increasing during

the load steps where stresses are kept constant. The stress-strain curves are

almost linear, even though they display a slight positive curvature (stiffening

effect).
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Figure 5.11: Top row plots: Compressive stress with respect to compressive strain,
distinguished per cycle. Bottom row plots: temperature-corrected S-wave speed
Vε,T0 (subindex 21 omitted even though it corresponds to mode 21) with respect to
uniaxial compressive strain, distinguished per cycle.

Figure 5.12 and Table 5.4 contain the results of βG computed from the

temperature-corrected S-wave speed measurements for each loading/unloading

stage of each cycle. Results of βG vary between -91.9 and -96.8 among cycles.
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Their average βG result equals -94.8 with a CV equal to 2.1 %. The fact of

obtaining such a narrow range of βG results confirms the good repeatability

among cycles.

Table 5.4: Results of βG computed from the temperature-corrected S-wave speed
measurements for each loading/unloading stage of each cycle.

Cycle Stage βG
1 Loading N/A
1 Unloading -95.6
2 Loading -91.9
2 Unloading -93.0
3 Loading -96.4
3 Unloading -95.1
4 Loading -96.8
4 Unloading N/A

Average -94.8
CV (%) -2.1
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Figure 5.12: Results of βG obtained from temperature-corrected S-wave speed
measurements among loading/unloading stages of the four cycles of Test 3.

Figure 5.13 shows the results of squared fundamental torsional frequency of

vibration with respect to compressive strain, measured during the four load-

ing/unloading cycles of Test 3. In contrast to S-wave speed measurements,
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which were collected continuously as load was increasing/decreasing, the fre-

quency measurements were collected during the load steps, where stresses were

set constant. Thus, the continuous lines connecting the markers are merely

descriptive. The dashed lines indicate the loading-increasing stage of cycle 1

and the unloading stage of cycle 4 but do not represent the actual frequency

vs. stress (and strain) trends.
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Figure 5.13: Results of the square of the fundamental torsional frequency of vi-
bration, (f1)2, with respect to compressive strain during the four cycles of Test 3.
Dashed lines indicate loading-increasing stage of cycle 1 and unloading of cycle 4.

Figure 5.13 shows that there is a clear positive correlation between the

squared torsional frequency and compressive strain. The curves overlap, so

there is good repeatability among cycles. In loading-increasing stage of cycle

1, the behavior does not show an initial frequency reduction between 0 to 1

MPa, as the S-wave speed did. However, the frequency obtained at the end

of cycle 4, with 0 stress, was a 0.7 % lower than the staring frequency at

the beginning of cycle 1 with 0 stress. This behavior, where frequency drops

between the start and the end of Test 3, was also observed with the S-wave

speed measurements. However, frequency dropped approximately ten times

more than S-wave speed did, in terms of percent difference.

Figure 5.14 presents the fundamental torsional frequency of vibration mea-

surements with respect to compressive strain, separated among cycles. It be-

comes clear that within each cycle, the loading and unloading stages match
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very well. The frequency (and squared frequency) vs. strain behavior is linear,

yielding best fit lines with coefficients of determination varying between 0.981

and 0.993 (frequency data at 0 stress not included for trendlines calculations)
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Figure 5.14: Results of fundamental torsional frequency of vibration, f1, with
respect to uniaxial compressive strain for each cycle.

One important difference between the S-wave speed vs. strain behavior and

the frequency vs. strain behavior is the “S” shape displayed by the former,

which is definitely not seen in the latter. In the latter case, the frequency

data measured at the last step, at 3 MPa, align well with the frequency data

obtained during steps 1 to 2.5 MPa, which is a result that adjusts well to the

theory of acoustoelasticity.

Figure 5.15 and Table 5.5 presents the results of βG obtained from the

fundamental torsional frequency of vibration data for each loading/unloading

stage and cycle. These are shown by the solid triangles. The unfilled circular

markers correspond to the βG results obtained using the S-wave technique,

here shown again to ease comparison between both techniques.

The vibration βG results, the triangles, vary between -345 and -387, their

average is -363.8 and CV of 4.2 %. The data displays a slight increment of

βG (in absolute value) as loading/unloading cycles advance. The most re-

markable observation from Figure 5.15 is the great difference of βG results

yielded between techniques. The vibration technique yielded a βG almost four
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Table 5.5: Results of βG computed from the torsional resonance frequency mea-
surements for each loading/unloading stage of each cycle.

Cycle Stage βG
1 Loading N/A
1 Unloading -358.5
2 Loading -344.8
2 Unloading -372.2
3 Loading -353.0
3 Unloading -387.4
4 Loading -367.2
4 Unloading N/A

Average -363.8
CV (%) -4.2
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Figure 5.15: Triangular markers showing the results of βG obtained from torsional
vibration measurements among loading/unloading stages of the four cycles of Test
3. Circular markers are βG data repeated as in Figure 5.12.

times higher than the S-wave technique. This is, of course not explained by

the theory of acoustoelasticity, which in fact, predicts equal values of βG, as

demonstrated analytically and numerically in Chapter 3. Such a big difference

cannot be justified by minor numerical approximations or minor experimental
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deviations from theory. This means that the wave propagation technique is

“seeing” the solid less nonlinear than the torsional vibration technique.

5.4. Posing a Nonlinear Viscoelastic Model

One important difference between these techniques is the frequency in

which material particles vibrate. In this research’s experiments, propagating

S-waves make particles vibrate at a range of frequencies centered at 150 kHz,

whereas in resonance (fundamental torsional vibration) particles vibrate at 1.6

kHz approximately. This is two orders of magnitude difference between the two

dynamic phenomena. If the tested material had indeed a frequency-dependent

response to dynamic events, this could be the factor causing the difference

between βG values of both techniques. The use of a nonlinear viscoelastic solid

material, instead of a nonlinear elastic material, would be capable of explaining

these findings.

Before continuing with the posed description, the reader should note that

there exist other possible influencing factors that could affect or even fully

explain the observed results. One of these, is the fact that for the NDE

characterization, Poisson’s ratio was considered constant in order to calcu-

late dynamic G values from dynamic E values; this fact is discussed and can

be reasonable neglected. Another influencing factor is the strain range depen-

dence of the frequency of vibration of nonlinear materials [72, 83]; the observed

frequency decreases as the dynamic strain range of vibration increases. The

dynamic strain ranges of wave propagation are orders of magnitude lower than

the vibration, so this fact is potentially an influencing factor. In these tests,

vibration was carried out by applying low energy impacts to minimize this

effect, but specific tests to actually prove this fact is not affecting were not

carried out. With these considerations, the objective of this section is to pose

a possible theoretical description which could potentially explain, either fully

or partially, the experimental results. It follows a basic and heuristic analy-

sis, which involves taking various hypotheses; thus, the following description

does not provide definitive results or conclusions, but it rather opens a very

interesting window for further and deeper research.

Figure 5.16 presents a possible viscoelastic model composed of a pair of

nonlinear (strain-dependent) springs of elastic moduli Gv(ε) and Ga(ε), which

model the solid’s elasticity, and one damper of constant ηG which models the
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solid’s viscosity. A similar model was considered by Fan et al. [76] to propose a

unified description capable of explaining the experimental differences between

quasistatic and dynamic elastic moduli of hardened mortar specimens.

��

�� �

�� �

Figure 5.16: Diagram of the three-piece viscoelastic solid model with nonlinear
springs.

To be in accordance with the theory developed in this Thesis, let us expand

Ga and Gv only to the first power of ε. Thus,

Ga(ε) = Ga0 +Ga1ε, (5.7)

with Ga0 and Ga1 being the two strain-independent coefficients that control

Ga, and

Gv(ε) = Gv0 +Gv1ε. (5.8)

with Gv0 and Gv1 being the two strain-independent coefficients that control

Gv.

From the model, we see that for very high loading frequencies the “auxil-

iary” spring (Ga) will dominate because the damper will prevent the “Voigt”

spring (Gv) from affecting. For very low loading frequencies the system will

vibrate with an equivalent constant of the two springs in series, because the

damper would not affect.

Let us also consider that the nonlinear behavior is activated only when a

quasistatic load is applied. Note that we have already adopted this hypothesis

in Chapter 3, and Fan et al. [76] also adopt it. Thus, the dynamic behavior

is linear, and it is only affected by the quasistatic pre-load which modifies

the effective elastic parameters of the springs. Therefore, the system has a

different dynamic behavior depending on the pre-load.

Analogously as it occurs in a standard linear viscoelastic solid [85] (see

Appendix 1), the constitutive equation of our nonlinear viscoelastic solid is

[76]
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(Gv +Ga)σ + ηG
∂σ

∂t
= ηGGa

∂ε

∂t
GvGaε. (5.9)

Note that when the pre-load is null (ε = 0), we only need to substitute Ga

and Gv by Ga0 and Gv0, respectively, and the model exactly represents the

standard linear viscoelastic solid.

In a standard linear viscoelastic solid, the material behaves partially elas-

tic and partially viscous. This behavior is mathematically described by the

solid’s complex modulus G∗, which corresponds to the ratio of applied stress

to observed strain. The existence of non-null viscosity generates a time-lag

between stress and strain, which does not exist in a purely elastic solid. This

behavior is described by considering

G∗ = G′ + iG′′, (5.10)

where i is the imaginary unit, G′ is the storage modulus and G′′ is the loss

modulus. The storage modulus of a viscoelastic material can be interpreted

as the “part” of the solid capable of allocating elastic energy, and therefore,

behaving more elastically. Thus, when we carry out experiments on real ma-

terial solid bodies, and we estimate the elastic moduli from these experiments,

if the material has a slight viscosity, we are actually estimating the storage

modulus G′. A deeper analysis of this assertion is given in Appendix 1. On

the other hand, the loss modulus represents the viscosity of the material and

it is associated to the energy loss during a stress-strain cycle.

For a particular pre-load level ε, the storage modulus G′ of our solid is

obtained by dividing the harmonic-time-dependent applied stress into the ob-

served strain and taking the real part; thus

G′ =
GaGv(Ga +Gv) +Gaη

2
Gω

2

(Ga +Gv)2 + η2
Gω

2
, (5.11)

which is again analogous to the storage modulus of a standard linear viscoelas-

tic solid. In equation (5.11), ω corresponds to the angular frequency of the

acting stress that forces the material. Thus, we see that G′ is frequency de-

pendent, so we would expect to find different values of G′ when estimating it

from techniques that force the material particles at different frequencies.

When the pre-load is null (ε = 0), Ga = Ga0 and Gv = Gv0, thus, equation

(5.11) becomes

105



G′0 =
Ga0Gv0(Ga0 +Gv0) +Ga0η

2
Gω

2

(Ga0 +Gv0)2 + η2
Gω

2
, (5.12)

which again it becomes equivalent to the standard linear viscoelastic solid

model.

We can now use the NDT experiments carried out before the acoustoelastic

tests (P and S waves, torsional frequency) and also the quasistatic stress-strain

measurements collected during Test 3, to find estimated G′0 values at different

frequencies ω. These results are presented in Table 5.6.

Table 5.6: Results of storage moduli G′0 estimated from NDT and quasistatic
stress-strain of Test 3 associated to the frequencies in which the material is being
forced to vibrate for each testing technique.

f (Hz) ω (rad/s) G′0 (GPa)
Quasistatic 0.0001 0.000628 8.12

Flexural free
vibration

1214.2 7629.0 9.54

Torsional free
vibration

1689.0 10612.3 9.79

Longitudinal
free vibration

2852.2 17920.9 10.00

P-wave 54 kHz 54000 339292 11.81
P-wave 150 kHz 150000 942478 11.91

Note that some of these techniques yield the Young’s modulus E, so G val-

ues were obtained by considering a Poisson’s ratio of 0.18, but it was observed

that using a range of potential Poisson’s ratios, from 0.15 to 0.22, does not

qualitatively change the results as the obtained G′0 stay close. We can now fit

equation (5.12) to the experimental results of Table 5.6 and find the best-fit

parameters presented in Table 5.7. The best-fit equation and the experimental

data are presented in Figure 5.17.

Table 5.7: Parameters Ga0, Gv0, ηG, result from fitting equation (5.12) to experi-
mental data of table 5.6.

Ga0 11.79 Gpa
Gv0 28.76 Gpa
ηG 2.87 MPa/(rad/s)

Figure 5.17 shows the behavior of the storage modulus G′0, which is the

typical behavior of a standard linear viscoelastic solid. For low frequencies
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Figure 5.17: Analytical equation (5.12) of storage modulus G′0 with respect to an-
gular frequency ω, using the best-fit parameters Ga0 = 11.79 GPa, Gv0 = 28.76 GPa
and ηG = 2.87 MPa/(rad/s). Circular markers indicate the experimental results.

it behaves with a certain storage modulus ∼= Ga0Gv0
Ga0+Gv0

, almost independent

from frequency, but after a certain critical frequency, the system’s behavior

undergoes a sudden change, where the storage modulus has a high frequency

dependency. For even higher frequencies, the system behaves with a high

storage modulus ∼= Ga0, and tends to become frequency independent. The

critical frequency depends only on the value of ηG.

Consider again equation (5.11). Recall that this equation takes the vis-

coelastic parameters Ga, Gv and ηG, and the frequency ω in which the mate-

rial particles are being forced to vibrate, and yields the value of the storage

modulus G′. Therefore, because the parameters Ga and Gv depend on the

solid’s current quasistatic strain ε as per equations (5.7) and (5.8), then G′

also depends on the solid’s current quasistatic strain. We can easily find this

dependency by introducing equations (5.7) and (5.8) into (5.11), which yields a

rather complicated expression of strain dependent G′ (expression not shown).

We can now take that expression and carry out a Taylor expansion of first

order, centered in ε = 0, to get an equation of the form

107



G′(ε) = G′0 +G′1ε, (5.13)

where G′0 is given in equation (5.12) and G′1 is an expression that depends

on Ga0, Ga1, Gv0, Gv1, ηG, and ω (expression not shown). However, note that

equation (5.13) has the same form as the definition of βG in (3.6). Thus, we can

actually define a frequency dependent “storage” nonlinear torsional parameter

β′G obtained by calculating

β′G =
G′1
G′0
. (5.14)

By carrying out the mentioned calculations we obtain

β′G =

(
Ga1η

2
Gω

2 + (Gv0Ga1 +Gv1Ga0)(Gv0 +Ga0) +Gv0Ga0(Gv1 +Ga1)

Ga0η2
Gω

2 +Gv0Ga0(Gv0 +Ga0)
−

2 [Ga0η
2
Gω

2 +Gv0Ga0(Gv0 +Ga0)] (Gv0 +Ga0)(Gv1 +Ga1)

[η2
Gω

2 + (Gv0 +Ga0)2][Ga0η2
Gω

2 +Gv0Ga0(Gv0 +Ga0)]

)
.

(5.15)

During Test 3, two very different βG results were obtained. One of these

results was based on S-wave propagation, βG = -94.8, and another one based

on torsional resonance vibration, βG = -363.8. Moreover, it is possible to use

the quasistatic stresses and strains collected during Test 3 to find the “qua-

sistatic” βE, by fitting a 2nd order polynomial to the experimental data. This

calculation yielded βE = -1687, associated to a very low frequency (quasistatic

test tends to zero frequency). In general, the ratio of βE to βG is around 1.3

(based on the values of l, m and n obtained by Nogueira and Rens [64], for

concrete and for mortar, and also based on Payan et al. [17]). Thus, assuming

that relationship holds here too, the “quasi-static” βG = -1288. These three βG

values are notoriously different, and if the mortar material was purely elastic,

these three values should be equal. However, if we consider that the testing

specimen was slightly viscous and behaves according to the model proposed

in this section, then the βG results previously obtained are actually β′G re-

sults, which are frequency dependent. Table 5.8 presents the three β′G at the

associated testing frequencies.

Using the already calculated parameters Ga0, Gv0, and ηG given in Table

5.7, let us find the coefficients Gv1 and Ga1 that best-fit equation (5.15) to
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Table 5.8: Results β′G associated to each technique and testing frequency.

f (Hz) ω (rad/s) β′G
Quasistatic 0.0001 0.000628 -1288

Torsional free
vibration

1689.0 10612.3 -364

S wave 150000 942478 -95

the β′G results presented in Table 5.8. The best-fit analytical curve and the

experimental β′G results are presented in Figure 5.18. The best-fit parameters

are

Gv1 = 120× 103 GPa,

and

Ga1 = 1100 GPa.
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Figure 5.18: Analytical equation (5.15) of storage nonlinear parameter β′G with
respect to angular frequency ω, using the best-fit parameters Gv1 = 120× 103 GPa
and Ga1 = 1100 GPa. Circular markers indicate the experimental results.

As seen in Figure 5.18, the nonlinear viscoelastic model proposed in this

109



section predicts higher values of β′G for low frequencies, such as in quasistatic

tests, and lower values of β′G for higher frequencies, such as in wave propaga-

tion tests. For these frequency regions, the model shows a very low frequency

dependence of β′G. For intermediate frequencies, there is high frequency depen-

dence of β′G. The parameter ηG has almost exclusive control on determining

the critical frequency; in other words, different values of ηG produce horizontal

shifts on the (red) analytical curve of Figure 5.18. The parameter Ga1 pro-

duces an overall vertical shift of the analytical curve and Gv1 mainly affects

the left branch of the curve by producing vertical shifts.

It is interesting to see that the value ηG was computed during the first

fit of G′0 (equation (5.12)), and when β′G equation was fit (equation (5.15))

only Ga1 and Gv1 were determined to fit the data. Therefore, even though

Ga1 and Gv1 cannot shift the analytical curve horizontally, the value of β′G
for intermediate frequency falls exactly on the analytical curve. This fact

strengthens the proposed model. Finally, it can be seen in Figure 5.18 a

minor range of frequencies, around 2.5×104 rad/s, in which the analytical curve

predicts positive values of β′G. This would mean that for these frequencies the

material would have a softening behavior under uniaxial compression. It is very

likely that this finding is actually an artifact of the model and/or mathematical

assumptions during the analysis instead of a real physical behavior; specialized

tests are needed to confirm or refute this finding.

5.5. Conclusions

In this chapter, a mortar specimen was tested under uniaxial compression

and S-wave speed and torsional frequency of vibration were monitored during

the loading test. The general objective was to study the stress (and strain)

dependence of S-wave speed and torsional frequency of vibration, in order to

advance into the ultimate goal of instrumenting a nondestructive testing tech-

nique capable of determining in-situ current stress level of concrete structures.

This chapter describes the performance of two different experimental tech-

niques, S-wave propagation and torsional vibration for the characterization of

mortar (concrete) nonlinearity based on the theory of acoustoelasticity. The

specific objective was to verify the consistency between techniques; in practice,

to calculate the nonlinear torsional parameter βG using each technique and an-

alyze the results, expecting to find similar values of βG from both techniques.
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Based on the experimental data and analysis described in this chapter, the

following conclusions can be drawn.

Uniaxial compressive stresses (and strains) had a repetitive positive cor-

relation with S-wave speed and with torsional frequency of vibration.

Room temperature variations affected S-wave speed measurements in

the same order of magnitude than the variations of S-wave speed due to

stress (acoustoelastic). A theoretical and experimental tool was success-

fully applied to correct the effect of temperature from the S-wave speed

measurements.

When the specimen was submitted to one loading and unloading cycle,

and then it was left at rest, the S-wave speed increased and decreased

following the loading/unloading, respectively. However, after fully re-

moving the load, the S-wave speed became slightly lower than the initial

wave speed, about 0.09 %, which tended to recover in time. After certain

period of rest (18 hours in this experiment), the S-wave speed recovered

and stayed constant. This behavior is consistent with slow dynamics

conditioning/recovery phenomena. In this case, the actuator would be

conditioning the material when the quasistatic force was being intro-

duced.

The S-wave propagation and torsional vibration techniques were used

to characterize the mortar’s material nonlinearity by calculating the βG

parameter. The former yielded βG = -94.8, and the latter βG = -363.8.

This high difference was not explained by the theory of acoustoelasticity,

which predicted equal βG values from both techniques. This was an

important finding which suggests that, if the theory of acoustoelasticity is

used, the material nonlinear parameters are method dependent (possibly

due to the frequency difference and/or dynamic strain range difference

among methods).

A simple and heuristic analysis was posed to try to explain the βG ex-

perimental results. The analysis consisted of using a viscoelastic solid

material composed of two nonlinear (strain dependent) springs, repre-

senting the material’s elasticity, and a damper to represent its viscosity.

This model allows explaining the slight differences of the dynamic shear

moduli (from different nondestructive testing techniques), and it also ex-

plains the frequency dependence of the βG values. Further research is
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needed to confirm or refute this last finding.

Future work involves carrying out specialized tests to confirm or refute

the possible frequency dependence of the nonlinear parameters, as well

as introducing into the model and tests the effect of the dynamic strain

range on the frequencies of vibration.
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Chapter 6

Case of Study: Internal pressure

monitoring in a post-tensioned

containment building using

operational vibration

6.1. Introduction

Disclaimer: This Chapter corresponds to the published article: Agustin

Spalvier, Jesus Eiras, Gonzalo Cetrangolo, Vincent Garnier and Cédric Payan,

“Internal pressure monitoring in a post-tensioned containment building using

operational vibration”, Journal of Nondestructive Evaluation, 39(71), 2020,

https://doi.org/10.1007/s10921-020-00716-y.

Nuclear power generation requires much attention to safety measurements

to contain the nuclear material during service and to finally dispose of its

residues. Reinforced and prestressed concrete structures, complemented with

other barrier materials, have been the traditional solution to safely contain

nuclear material. These critical structures need to follow strict building, test-

ing, and monitoring codes to ensure their correct behavior without imposing

a hazard to society and environment. Typical tests required by government

regulations and technical codes are based on internal pressure tests, where

structural integrity and fluid-tightness are assessed [86–88]. These quality as-

surance tests take several days, time in which the structure is not operational;

thus, planned and unplanned maintenance/testing stops are avoided as much
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as possible [89].

In addition to the regular need for monitoring nuclear concrete structures,

there is an increasing concern due to the natural aging of concrete material and

the fact that plants are reaching the end of their service lives [89–92]. These

have prompted several research projects focused on studying many aspects

of structural condition assessment and monitoring in order to extend power

plants’ service life [93–97]. The goals are to assess the current state of materials

and structures, and to anticipate future issues by developing new monitoring

techniques, as robust, efficient, and economical as possible.

Nondestructive testing (NDT) and structural health monitoring (SHM)

are testing techniques where the structure under study remains fully unaf-

fected. The collected data can then be used to assess the structure’s intrinsic

properties, for example, to back-calculate material elastic properties, detect

deterioration onset or mechanical stress variations [57, 98–100]. This is a key

condition, highly valued to assess nuclear concrete structures.

Most of the existing research on NDT and SHM applied to nuclear power

plant concrete structures focus on assessing concrete’s quality, damage de-

tection, and durability [101–104]. There are also multiple reports focusing

on general monitoring for long-term mechanical properties characterization,

creep, stress determination, and prestressing tendon losses [89, 105–110].

The specific objective of this research is to develop an NDT/SHM tech-

nique capable of monitoring internal pressure changes and pressure leakage of

nuclear concrete containments, externally (no need of accessing into the struc-

ture’s interior), and without affecting the regular structure’s service. Such a

technique would be useful as a complementary measurement during regularly

planned tightness tests. Moreover, it can become fundamental in case of an

accident or for long-term structural monitoring, for example for nuclear waste

containment, where no other equipment might be available and the access to

the interior is impeded or highly unsafe. Another important application is

when the pre-installed (embedded) sensors, such as strain gauges, thermocou-

ples, etc. have malfunctioned [111]. There are several studies where nuclear

concrete structures are subjected to internal pressure and various monitor-

ing techniques are analyzed [107, 111–113] but none of them purse directly

our goal. In particular, Hu et al. [114] studied the mechanical and material

behavior of a post-tensioned nuclear power concrete container under internal

pressure using a finite element method (FEM) model. They considered similar
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affecting factors as ours but their goal, to estimate the structure’s ultimate

pressure capacity, was different from ours.

To pursue our goal, we have carried out experiments on a mock-up struc-

ture: a post-tensioned concrete double-walled-cylindrical nuclear containment.

The structure was gradually subjected to internal pressure during the experi-

ment in several steps which took 75 hours. Throughout that time, we collected

acceleration signals with two sensors attached to the outer side of the inner

structure. With these, we measured the dynamic response of the structure un-

der different pressure levels. This type of testing technique falls within the field

of “output-only dynamic analysis” or “operational modal analysis”, where the

structure’s dynamic features are computed from the natural vibrations occur-

ring while the structure is operational; i.e. there is no specific dynamic input

prompting the vibration phenomena. Output-only dynamic analysis is a grow-

ing field of study [115–118] whose main advantage is its simpler experimental

implementation, which does not require the use of bulky vibrational apparatus,

it is more economical and does not affect the structure’s regular operations.

Choi et al. [118] carried out experiments in an operating nuclear contain-

ment structure based on operational modal analysis techniques. They were

able to identify frequencies of vibration and extract material/structural prop-

erties, but they did not focus on monitoring pressure or mechanical stresses

variations.

This research’s main originality is the monitoring of a nuclear containment

decennial test and not the method per se. An easy testing setup is success-

fully employed, based on an output-only experimental system, which does not

require bulky instruments nor to embed sensors within the structure. This is

the first study focused on studying the relationship between modal frequencies

of vibration and internal pressure of a large-size nuclear-containing structure,

using output-only methods. This research demonstrates the existence of clear

positive correlations between the structure’s natural frequencies of vibration

and internal pressure. These are promising findings towards developing a ro-

bust NDE/SHM technique capable of monitoring internal pressure variation

in complex nuclear concrete containments.
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6.2. Materials and Methods

6.2.1. Vercors: The Reinforced Concrete Container

Vercors inner structure consists of a post-tensioned reinforced concrete

cylindrical structure of 15 m diameter, capped with a dome-shaped lid. Walls

are 0.40 m thick, and 30 m tall. The structure is founded on a concrete floor

0.70 m thick. Vercors mock-up is a physical model at 1/3 scale of a real nu-

clear confinement building. An outer independent structure protects Vercors

mock-up from external effects, such as wind and drastic temperature varia-

tions. Figure 6.1 presents a photograph of Vercors mock-up from the outside.

Figure 6.1: Photograph of Vercors building mock-up.

Concrete quality control was carried out during its construction using stan-

dard cured companion cylinders. These were tested on day 28 after casting

and provided results of density, compressive strength [119] and modulus of

elasticity [120]. Table 6.1 contains the material characterization results, cor-

responding to the average properties of each concrete batch.

Vercors mock-up comprised a total of 250 t of reinforcing steel, 50 t of

post-tensioning steel and 2500 m3 of concrete.

6.2.2. Experiment Procedure

The experiment consisted of gradually injecting/releasing air into the con-

tainment to increase/decrease its internal pressure. Air pressure and temper-

ature were measured inside the container. The protocol involved six stages,
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Table 6.1: Characterization of concrete using standard cured concrete cylinders at
day 28 after casting.

Average compressive strength fcm,28 48 MPa

Characteristic compressive strength(1) fck,28 42 MPa
Average static Young’s modulus Ecm,28 37 GPa

Average density ρ 2201 kg/m3

(1) fck,28 is the “characteristic” strength which corresponds to the 5th
percentile of the strength data.

starting at stage 1 at ambient pressure (0 bar). The internal pressure was

increased during stages 2 and 4, and decreased during stage 6, at a rate of

approximately 0.2 bar/hour. Stage 3 began when pressure reached 2 bar; at

this point, the pump was turned off for 5 hours approximately, until resuming

pressure-increase of stage 4. Upon reaching approximately 4 bar, the pump

was turned off for 12 hours, until starting the pressure-decrease of stage 6, in

which the valve was opened Figure 6.2 contains the pressure data measured

during the entire experiment.
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Figure 6.2: Internal pressure over time during the experiment.

Two accelerometers model PCB 352A24, with nominal sensitivity of 100

mV/g, were utilized during the experiment. Defining the most appropriate

number of sensors is a trade-off situation. While using more sensors would

improve results, particularly to determine the modal shapes, more costly and
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cumbersome experimental setups would be required. Because the goal of this

research was to focus on the frequencies of vibration and not the shapes, it

was decided to maximize the experimental robustness and easiness, so only

two sensors were employed. These two accelerometers were attached to the

outer face of the structure, both at level 7.5 m and at angles 0 and 36o from

the structure’s angular reference (the bigger circular through-wall hole -hatch

area- is centered at ∼265o). Acceleration signals were acquired every 5 min-

utes. Each of these time-domain signals consisted of 100.002 amplitude data

points sampled at 20 kHz. Thus, every collected time-domain signal lasted

approximately 5 seconds. This signal duration time was selected to guarantee

stationarity and to allow obtaining good quality frequency-domain signals.

6.2.3. Signal Processing

Signal processing was carried out in four steps, signal validation, pre-

processing, processing, and post-processing.

Signal validation

Signal validation consisted of inspecting every raw signal in time and fre-

quency domains, to keep only the signals with useful information. As explained

below, some stages of the experiment did not yield vibrational responses that

could be distinguished from noise. To this end, the total energy of each signal

was calculated by numerically integrating the squared signals in time. An “en-

ergy threshold” of 8×10−6 V2.s was selected for accelerometer 1 and 11×10−6

V2.s for accelerometer 2. Signals with lower energy than the threshold were

discarded during this step. Other signals that exceeded the threshold but had

sudden spikes in time-domain, and showed no clear vibrational behavior in

frequency domain, were also discarded during this step, as recommended by

Brincker and Ventura [115].

Pre-processing

Pre-processing consisted of filtering time-domain signals using a Butter-

worth bandpass filter of 4th order with cutoff frequencies of 3 Hz and 2000

Hz.

Processing

The “processing” step consisted of computing the frequency spectra. The

following processing was applied to each time-domain signal obtained with each

sensor. First, a 2-seconds-long, Blackman moving window was applied, with
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75% overlap. Thus, each 5-seconds-long time domain signal produced seven

2-second-long time domain windowed signals. The election of the type and

length of window was done based on preliminary analyses which supported

those features. Each of the windowed signals were padded with 300000 ze-

ros at their tails. The amplitude-frequency spectrum of each of these seven

windowed-padded signals was computed using the FFT algorithm. Then, the

seven frequency spectra were averaged, obtaining one frequency spectrum per

time domain signal, for each sensor. The corresponding pairs of frequency

spectra, associated to each accelerometer were averaged, obtaining one single

frequency spectra associated to every time of signal collection. Finally, pressure

measurements and collected amplitude-frequency spectra were synchronized.

Postprocessing

The “post-processing” consisted of finding the frequencies of vibration of

the modes of interest. This task was carried out selecting the peaks within

the frequency spectra. The reader should note that there exist more sophisti-

cated methods for frequency tracking [121, 122]. Nevertheless, given the short

duration of the signals (5 seconds) with respect to the rate of pressure change

(0.2 bar/hour), the pressure can be considered constant during the signal, so

it sufficed using the traditional peak picking from the frequency spectra.

6.2.4. Computation of Frequency vs. Pressure Correla-

tion

Prior to computing the correlations of frequency vs. pressure it was nec-

essary to define which frequencies of vibration should be used. Preliminary

analyses detected frequency peaks recurrently observed during the entire test,

while some others, were clearly observed in some signals but disappeared in

many others. Therefore, we selected frequency peaks at around 30 Hz, 68 Hz,

93 Hz, 105 Hz, 142 Hz, and 192 Hz, to compute the regression, which appear

recurrently in most of the signals. Figure 6.3 shows the frequency spectrum

computed for one of the signals collected during stage 6.

In Figure 6.3 we see that there are other peaks besides the ones selected

for the analysis. These were either not recurring throughout the experiment,

meaning that they did not appear in many signals, or it could be the case

of two peaks being very close so their trends could not be successfully distin-

guished independently, so these were not included to compute the frequency
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Figure 6.3: Frequency spectrum of signal collected during stage 6. Arrows indicate
the frequency peaks used for the analysis.

vs. pressure correlations.

Frequency vs. pressure correlations were carried out using the modes cor-

responding to the mentioned frequency peaks. The final step consisted of

computing the correlations between measured frequency peaks and measured

pressure. The procedure for correlation calculation consisted of fitting the data

using a multi-variable linear regression, where each nominal frequency mode

(f30,f68,f93,f105,f142,f192) corresponded to each independent variable. An in-

convenient of using multi-variable correlation is that the size of the dataset

tends to decrease as more independent variables (frequency peaks) are con-

sidered in the model, so there are less signals where all six peaks have been

identified. This issue was overcome by implementing a variant, as explained

below. The multi-variable mathematical model is

P = a0 + a1,30f30 + a1,68f68 + a1,93f93 + a1,105f105 + a1,142f142 + a1,192f192. (6.1)

This mathematical model would require that in order to fit the data, the

six peaks must have been identified. Those signals where one or more peaks

had not been identified would not be considered in the model. Thus, the data

size used for the fit would become drastically reduced -due to the randomness
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of the experimental procedure, many of the signals lack of clear identification

of one frequency peak-. To overcome this inconvenient, a variant was imple-

mented, where every possible multi-variable linear regression between pressure

and any number of existing frequency peaks were computed. Thus, if a certain

signal contains all frequency peaks except for one frequency peak, the pres-

sure prediction would be obtained using the multi-variable model that does

not include that missing frequency-peak value. To limit the extent of possible

results, the developed algorithm was set so that only one or two of the six

frequency peaks could be missing. The correlations procedures were all car-

ried out using the frequency-peaks and pressure data obtained during stage 6

(pressure descending).

Once the pressure vs. frequency-peaks correlation was computed, i.e. the

regression coefficients of equation (6.1) were calculated, we can then use that

correlation to find the “predicted pressure” based on the frequency data. The

goodness of the correlation was evaluated by calculating the adjusted coeffi-

cient of determination R2, and the standard error of the regression, S, defined

as the average of the distances between the regression’s predictions and the

actual observations [123]. The value S is useful because it has the same units

as the predicted magnitude, in this case, bar, and approximately 95 % of the

predictions are within +/− 1.96× S from the observed magnitude.

6.3. Experimental Results and Discussion

During signal validation, it was observed that signals corresponding to

stages 1, 3, and 5 contained no useful information and their total energy was

lower than the energy threshold. These stages corresponded to time periods

where the pump was off (and the valve was closed), where any oscillatory

behavior could not be distinguished from noise. Using operational vibrations,

the vertical resolution of the acquisition device is set to warrant a good SNR

in such a configuration. So outside operational conditions, i.e. during the

time periods where the pump was off (and the valve was closed), without the

possibility to remotely change the vertical resolution, there was no sufficient

vibration amplitude to perform our analyses. From the 1093 acquired signals

with each sensor, only around 520 of them (of each sensor) were validated.

Those signals not validated were excluded from further analyses.
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6.3.1. Frequency-peak Results with Respect to Internal

Pressure

Figure 6.4 contains the obtained frequencies with respect to measured in-

ternal pressures during stages 2, 4 and 6.
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Figure 6.4: Frequency-peak results vs. internal pressure results during stages 2
and 4 (blue circles) and stage 6 (red crosses), for nominal frequency peaks (a) f30,
(b) f68, (c) f93, (d) f105, (e) f142, (f) f192.

The frequency peak results presented in Figure 6.4 show consistent be-

havior during stage 6, depicting a positive correlation between frequency and

internal pressure. This trend has been previously observed by Piacsek et al.

[124] in aluminum spherical containers. It should be noted that the total fre-

quency change, between pressure 0 to 4 bar, is very small, in the order of 0.5

to 1 Hz, depending on the mode. The spectral frequency resolution of 0.05 Hz

(see subsection 2.3) allows observation of meaningful trends between internal

pressure and frequency for such frequency variations. Results of stages 2 and

4 are not as consistent as in stage 6; some of the frequency peaks show odd

behavior, without a clear trend, for example for the modes at ∼142 Hz and
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∼192 Hz (Figures 6.4e and 6.4f). However, a hysteretic behavior becomes ap-

parent. We do not know the precise causes leading to such behavior. While

this hysteretic behavior could be the result of impaired damage to the struc-

ture upon the pressurization, it can be also attributed (in some cases) to the

difficulty of tracking the frequency modes during the experiment which fre-

quently appear coupled. Further tests are needed to elucidate the nature of

these apparently odd observations. Also, there are several pressure levels in

which frequency peaks could not be detected, for example, the frequency peak

f68 (Fig. 6.4b) was not detected at pressures from 0 to 2 bar, i.e. during stage

2. However, f30 (Fig. 6.4a) shows consistent results for all stages 2, 4 and 6.

For these reasons, correlation curves were derived from data of stage 6, and

specific physical behavior hypotheses are discussed based on peak f30 results.

6.3.2. Frequency vs. Pressure Correlation Curves

The multi-variable linear regression coefficients associated to equation

(6.1), with all six frequency peaks being identified, one frequency peak miss-

ing, and two frequency peaks missing, are presented in Tables 6.2, 6.3 and 6.4,

respectively.

Table 6.2: Multi-variable linear regression coefficients between frequency and pres-
sure when all six frequency peaks are clearly distinguished.

missing fNom a0 a1,30 a1,68 a1,93 a1,105 a1,142 a1,192

none -451.8 1.05 0.515 1.088 1.078 0.437 0.564

Table 6.3: Multi-variable linear regression coefficients between frequency and pres-
sure when one of the six frequency peaks has not been identified.

missing fNom a0 a1,30 a1,68 a1,93 a1,105 a1,142 a1,192

30 -458.2 - 0.614 1.104 1.183 0.604 0.541
68 -451.6 1.175 - 1.133 1.178 0.54 0.573
93 -449.7 1.024 0.543 - 1.334 0.753 0.697
105 -426.4 1.414 0.701 1.268 - 0.61 0.686
142 -452 1.224 0.612 1.226 1.243 - 0.669
192 -422.6 1.351 0.59 1.148 1.202 0.761 -

Figure 6.5 presents the graph of predicted pressure with respect to mea-

sured pressure, where the unity line is superimposed. There it is observed that

the scattered data is close to the unity line, which indicates qualitatively that
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Table 6.4: Multi-variable linear regression coefficients between frequency and pres-
sure when two of the six frequency peaks have not been identified.

1st
missing
fNom

2nd
missing
fNom

a0 a1,30 a1,68 a1,93 a1,105 a1,142 a1,192

30 68 -460.2 - - 1.174 1.298 0.787 0.537
30 93 -454.1 - 0.672 1.434 0.935 0.649
30 105 -436.2 - 0.866 1.311 - 0.823 0.726
30 142 -463.9 - 0.754 1.339 1.459 - 0.703
30 192 -434.5 - 0.678 1.13 1.424 0.941 -
68 93 -449.3 1.185 - - 1.482 0.849 0.71
68 105 -422.7 1.69 - 1.384 - - 0.715
68 142 -450.9 1.394 - 1.326 1.424 0.745 0.706
68 192 -420 1.464 - 1.2 1.308 0.889 -
93 105 -419.9 1.465 0.818 - - 1.012 0.916
93 142 -449.3 1.274 0.729 - 1.784 - 0.899
93 192 -414 1.571 0.648 - 1.544 1.127 -
105 142 -420 1.73 0.868 1.557 - - 0.855
105 192 -386.6 1.795 0.777 1.52 - 0.974 -
142 192 -411.2 1.786 0.789 1.466 1.585 - -

the prediction is good. The residual analysis is graphically presented in Figure

6.5b, which shows no clear trend, depicting another good feature of the cor-

relation. The adjusted coefficient of determination was equal to 0.90. Figure

6.5c is another representation of the residuals (errors between the predicted

pressure and measured pressure) expressed as a histogram.

In the histogram of Figure 6.5c, we observe that almost all pressure errors

are within -1 to 1 bar. The histogram is Gaussian-shaped, with approximately

null mean error and a standard deviation of 0.37 bar; around 67 % of the pre-

dicted pressures have an error between -0.37 and 0.37 bar. The standard error

of the regression (S) is another parameter helpful to characterize the goodness

of the regression; it tells how “wrong” the model is on average, in units of

pressure. This regression has an S value of 0.29 bar. Thus, approximately

95 % of the measured pressures fall within +/− 0.57 bar (1.96× S) from the

regression line [123].
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Figure 6.5: (a) Predicted pressure (Ppred) vs. experimentally measured pressure
(Pexp) superimposed with the red dashed unity line, (b) residuals analysis, and (c)
error (residuals) histogram with continuous green line and red dashed lines indicating
mean error and standard deviation.

6.3.3. Pressure Leakage Estimation

Experimental results presented in the previous section show a clear correla-

tion between internal pressure and frequency, where frequency increases with

increasing internal pressure. This trend is very clear during stage 6 (pressure

decreasing) for all six frequencies of vibration (modes) analyzed here, but not

as clear during stages 2 and 4 (pressure increasing). Theoretically, we could

use this correlation to identify pressure drops due to leakages off the container.

In Figure 6.2, we see a clear pressure drop due to leakage during stage 5 when

the pump is off. There, pressure drops from approximately 4.25 bar (last pres-

sure reading of stage 4) to 4.05 bar (first pressure reading of stage 6). This

0.20 bar drop is within the variability (0.37 bar of standard deviation) of our

correlation computed using all six frequency modes so we may not expect to

obtain an accurate predicted pressure drop estimation. We note that correla-

tion was intended to represent the global frequency vs. pressure relationship

throughout the full range of internal pressures. On the other hand, we do see

in Figure 6.4a that the mode f30 is particularly interesting because it showed

higher consistency than the other modes when comparing behaviors of the

stages 2/4 and 6. For these reasons we study the possibility of using the mode

f30 to identify internal pressure leakage. Thus, here we focus the analysis on

the leakage by comparing the f30 results at the end of stage 4 against those at
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the beginning of stage 6.

First, we use the pressure and f30 frequency data collected during stage 6

to compute a linear correlation expressed by the equation

Ppred = (f30 − 30.50 Hz)× 6.236
bar

Hz
. (6.2)

Equation (6.2) can be used to calculate the “predicted pressure” Ppred from

a measured frequency peak f30. Because of the intrinsic variability of the

method, we ought to select a set of signals and work with the set’s mean

value. Now we select a set of nine signals collected during the end of stage 4,

associated to pressures higher than 4 bar, and a set of five signals collected at

the beginning of stage 6 associated to pressures between 3.90 and 4.00 bar.

Figure 6.6a shows the measured internal pressure during time, where the

superimposed red circles indicate the times in which time-domain signals were

acquired. The end of stage 4 and beginning of stage 6 are indicated with the

names: zone S4 and zone S6, respectively. The very end of stage 4, indicated

as zone S4-tip, corresponds to a small period of time where the pump starts

to turn off; it provided poor results, so those signals were discarded. The

mean values of measured pressures in zones S4 and S6 are 4.10 and 4.01 bar,

respectively, indicated with green bars in Figure 6.6c.

In Figure 6.6b we show the groups of frequency peaks that characterize S4

and S6, respectively. We see that the frequency population of S4 is slightly

higher than the frequency population of S6, which is consistent with having a

higher pressure in zone S4 than in S6. In Figure 6.6c we present the results of

predicted pressure Ppred obtained by applying equation (6.2) to the mentioned

frequency data sets. Again, we see an analogous difference between populations

as in Figure 6.6b. The mean values of the predicted pressures in zones S4 and

S6 are 3.91 and 2.87 bar, respectively. These are shown with black bars in

Figure 6.6c. A t-test of hypothesis on the means of the two predicted pressure

distributions was carried out to prove that these mean values are different with

a 95 % confidence. However, the predicted pressure difference, 1.04 bar, is ten

times higher than the actual difference of pressure means, 0.1 bar. It is highly

likely that the structural behavior during stage 6, where pressure is decreasing,

is different than during stage 4, where pressure is increasing. However, this

effect is in fact an indication of pressure leakage so it could actually be used

for this purpose.
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Figure 6.6: (a) Pressure measurements in time. Blue line corresponds to the
pressure data measured with a manometer, red circles are the interpolated pressures
vs. time in which signals were collected, zones S4, S4-tip and S6 indicate the three
groups of signals. (b) Frequency values of mode f30 of zones S4 and S6, respectively.
(c) Blue and red circles are the predicted pressures at zones S4 and S6, respectively;
green bars are the mean values of the pressure readings at zones S4 and S6, and
black bars are the mean values of the predicted pressures at zones S4 and S6.

From this analysis we conclude that the regression made to match the fre-

quency data over a large range of pressures, from 0 to 4 bar, does not have

enough resolution to accurately quantify the amount of pressure leakage dur-

ing stage 5 (with the pump off). To assess the problem of pressure leakage, we

should monitor the frequency variations during the leakage per se. However,

this was not possible during our experiment because no useful data was ac-

quired during stage 5, while the pump was off. To overcome this problem, we

should employ sensors with higher sensitivity or rely on a different dynamic

input, so we could follow the frequencies of vibration while leakage is occurring.

6.4. Physical Behavior Discussion

In this section we use the f30 mode to investigate and discuss possible un-

derlying physical behaviors that may explain the experimental results. The

reader should note that this section is a shallow discussion of potential causes

explaining our experimental findings, and we do not draw definitive conclu-

sions. For instance, we note that material-parameter or modal-shapes could
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no be extracted by fitting our data into a numerical model. The goal of this

section is therefore to aid other engineers, other researchers, and even to our-

selves, from a “lesson learned” standpoint, to face new problems of structural

health monitoring of complex civil infrastructure.

6.4.1. Estimation of Basic Material Parameters

To investigate the experimental findings from a physical standpoint we

used a finite element method (FEM) model using the software COMSOL Mul-

tiphysics. The first step required defining the basic material parameters, den-

sity, Young’s modulus and Poisson’s ratio to feed the model. Because the

collected data was not enough to invert the elastic problem to allow finding all

three basic material parameters, we decided to estimate density and Poisson’s

ratio using engineering criteria and only invert the problem to find Young’s

modulus.

The structure’s mean density was estimated from applying a weighted av-

erage of the concrete’s density and steel’s density, where the amounts of these

were known, as mentioned previously in the Materials and Methods section.

The Poisson’s ratio was 0.20 [23]. Young’s modulus was found by matching

the FEM model frequency of vibration of mode f30 to the experimental fre-

quency with null internal pressure; in other words, the structure’s concrete’s

Young’s modulus was that one in which the FEM model produced a frequency

of vibration of the f30 mode at 30.50 Hz.

Table 6.5 presents the basic material parameters utilized for the FEM model

analysis.

Table 6.5: Density (ρRC), Young’s modulus (ERC) and Poisson’s ratio (νRC) of
the reinforced concrete material used for the FEM model.

ρRC kg/m3 ERC GPa νRC
2287.5 49.8 0.2

With the available data we cannot be fully certain that we have selected

the correct mode of vibration to match the FEM model and experimental fre-

quencies. However, Lott [125] studied this same structure using a different

technique based on wave propagation phenomena, two years before our exper-

iments, and determined this same modal shape vibrating at 27 Hz, very close

to the frequency of vibration result we observed; moreover, the obtained struc-
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ture’s Young’s modulus ERC is consistent with the amounts of the constituent

materials (steel, concrete and post-tensioning steel), their elastic characteris-

tics and the structure’s age.

6.4.2. Linear and Nonlinear Effects

In the FEM model the lower face of the concrete floor was restrained from

displacing and rotating. The internal pressure was applied onto the inner faces

of walls, ceiling and floor. A linear-elastic material was considered, using the

parameters presented in Table 6.5, and geometric nonlinearity was enabled.

Figure 6.7 contains an image of the FEM model geometry and the resulting

mode-shape associated to f30 at null internal pressure.

The internal pressure was increased between 0 and 4 bar in steps of 1 bar

by doing a parametric study in COMSOL. The FEM model and experimental

results of f30 frequency variation with respect to internal pressure are presented

in Figure 6.8.

In Figure 6.8a we see that even though the experiment yielded only one

distinct frequency mode near 30 Hz, the FEM model produced three modes

around that frequency. The frequencies of vibration of these three modes, as

well as the experimental frequency, increase with increasing internal pressure.

This frequency vs. pressure relationship was previously seen by Piacsek et al.

[124] in a thin-wall aluminum container; they founded their results based on

the effect of geometric nonlinearity: the increase of walls’ in-plane tension

affects the vibration phenomena by increasing the frequency of vibration, such

as it occurs in strings under tension. In Figure 6.8, the FEM model mode

with the highest frequency is associated to a torsional vibration mode, and the

other two with a flexural-type mode as depicted in Figures 6.7b and Fig. 6.7c.

These latter modes do not yield the same frequency because of the small non-

symmetric structure’s geometric features. It is noted that as pressure increases

the three modes tend to couple, producing a more complex problem in which

frequency vs. pressure relationship becomes highly nonlinear during a limited

range of pressures. This phenomenon occurs because not all modes are equally

affected by pressure increments.

For the inversion problem of the Young’s modulus explained in Section 4,

we decided to match the average of the two flexural modes to the experimental

frequency; thus, at zero pressure we see in Figure 6.8a the two frequencies of
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(a)

(b) (c)

Figure 6.7: Image of the FEM model of Vercors (a) geometry and f30 mode of
vibration shape at null internal pressure observed from (b) front view and (c) top
view.

each flexural mode, starting at 30.47 Hz and 30.54 Hz, where the experimen-

tal frequency, 30.50 Hz, is their median value. Still analyzing Figure 6.8a, as

pressure increases both the experimental frequency and the FEM model fre-

quency results increase. The frequency increments in the FEM model, where

the material has a linear constitutive relationship, could be associated with

the geometric nonlinearity activated by the applied pressure. However, we see

that the experimental frequency increases twice as much as the FEM model

flexural frequencies. This additional frequency increment cannot be explained,

not even by accepting that our assumed linear-elastic material parameters of

Table 6.5 are not perfectly correct. Some physical causes that could explain
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Figure 6.8: Experimental and FEM model (numerical) results of f30 frequency
variation with respect to internal pressure P. The numerical results include three
modes around 30 Hz. Subfigure (a) corresponds to a linear-elastic material and (b)
for a elastic slightly nonlinear material with softening.

this discrepancy are: (1) the existence of undetected modes coupled with the

experimental f30 mode, (2) concrete material behaving elastically but with

softening nonlinearity as internal pressure increases, (3) pressure-dependent

boundary conditions, or (4) structural stiffening effect due to the compressed

air.

Even though we do not have enough information to elucidate which ones

of these four hypotheses are actually affecting the results and how much is

their influence, we do show that a slight material softening nonlinearity (in

addition to the geometric nonlinearity) yields results compatible with the ex-

perimental f30 behavior. Note that this effect opposes the typical material

stiffening observed in plain concrete (not post-tensioned) under compression

-acoustoelastic effect [16, 17, 64, 70] and findings presented in Chapters 3, 4

and 5 of this Thesis- which could be explained by stating that microcracks

get closed as compression increases, so the material behaves stiffer at higher

compression levels (as long as compression remains below ∼30 % of concrete

compressive strength [17]). If this was the dominant mechanism, increasing

internal pressure should decompress concrete and open the microcracks, and

therefore reduce its stiffness and its frequency of vibration. But results show

the opposite trend: frequency increases as internal pressure increases, imply-

ing therefore a softening behavior. The existence of this softening behavior

131



could be justified because of the post-tensioning force, which is compressing

the concrete material to stress levels in which slight softening nonlinearity is

likely to occur [23, 27]. Thus, we ran the same FEM model but consider-

ing a Murnaghan material with third-order elastic constants l = +3000 GPa,

m = +2000 GPa and n = +1000 GPa. The f30 frequency vs. pressure results

are presented in Figure 6.8b. In that figure, we see that the FEM model flexu-

ral frequency curves and the experimental curve have a very similar behavior.

It should be noted that this apparent consistency does not prove that this is the

actual physical cause governing the problem, but it is useful to guide further

research. In any event, these results confirm that the geometric nonlinearity

alone does not render a full explanation for the observed behavior; nonlinear

elastic behavior should also be considered.

6.5. Conclusions

This study shows the feasibility to monitor the internal pressure of a post-

tensioned concrete containment mock-up (1/3 scale) during a decennial safety

review simulation using operational ambient vibrations. It was possible to

monitor pressure changes by monitoring the structure’s vibration frequency

shifts using a reduced number of accelerometers (two) attached to the outer

side of the inner wall of the structure and without measuring the dynamic

input. This technique falls in the field of the “output-only dynamic analysis” or

“operational modal analysis” which is gaining importance for characterization

and structural health monitoring of large structures. The frequency peaks

associated to different modes of vibration tend to increase as pressure increases

and vice versa. A new variant of a multi-variable correlation was computed to

fit the frequencies vs. pressure data. This correlation, which had an adjusted

coefficient of determination R2 equal to 0.9 and a standard error S of 0.29 bar,

allows to robustly predict the internal pressure. A pressure leakage was clearly

identified during pressure bearings. However, the correlation computed over

a large pressure range (4 bar) was not capable of successfully predicting the

absolute pressure leakage (0.1 bar). An FEM model of the structure was built

and the frequency vs. pressure was studied focusing on the mode around 30

Hz. The FEM model frequency increased with increasing pressure, probably

due to the geometric nonlinearity induced by the internal pressure. However,

the experimental frequency results of the mode around 30 Hz increased twice
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as much as the results yielded by the FEM model with a linear-elastic material.

An FEM model including nonlinear material with softening yielded results that

are in good agreement with the experimental data, but this may not be the

only cause. Other possible causes which may explain this discrepancy include

mode coupling, variable boundary conditions, and/or effect of compressed air.

Further research is needed to elucidate which ones of these are significant. For

future work, we will test higher sensitivity sensors in order to detect structural

vibration during pressure bearing stages, we will use special sensors to measure

the lower frequency modes and an increased number of sensors to improve

identification of the modal shapes.
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Chapter 7

Conclusions

Previous research has proved the existence of minor stiffening in concrete

elements under uniaxial compression, quantified by a 1 to 2 % increment of

the dynamic Young’s modulus of a specimen uniaxially compressed from 0

strain to 100 × 10−6. This behavior makes mechanical wave speed increase

with increasing compressions. This is the acoustoelastic effect, and has been

investigated for stress determination in concrete specimens, so far, with limited

success. The use of resonance vibration techniques for acoustoelastic character-

ization of concrete has been recently studied by other researchers and showed

promising results.

This research’s main objective was to study the use of resonance vibration

for acoustoelastic characterization of concrete materials. This represented the

first step to fulfill the challenging goal of developing a nondestructive testing

method capable of accurately estimating the current stress present in concrete

structural members. The development of such a technique would benefit the

field of civil engineering in many aspects, such as to monitor prestress and

post-tension losses, for structural condition assessment and as a quality control

method.

To pursue these goals, this research included theoretical analytical and nu-

merical studies developed specifically to assess the problem in question, which

included the use of the Theory of Finite Elasticity applied to nonlinear mate-

rials, wave propagation and vibration phenomena. An experimental procedure

based on torsional vibration was developed and tested in order to characterize

concrete nonlinearity, which constitutes the key parameter potentially capable

of being used for current stress determination in structural concrete mem-
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bers. This is the first study to deeply analyze analytically, numerically and

experimentally, the use of a torsional vibration technique for acoustoelastic

characterization of concrete elements. The proposed technique was compared

against the traditional technique for acoustoelastic characterization, based on

wave propagation. Experimental results yielded by both techniques did not

perfectly match, as they should if the theory of acoustoelasticity was fully ap-

plicable; thus, a viscoelastic model was posed which showed good fit with the

experimental results. Finally, a case study was presented, where frequency-

of-vibration tracking was used to monitor the internal pressure in a real size

nuclear containment concrete structure.

Based on the developments and analyses carried out throughout this re-

search, the following specific conclusions can be drawn.

Material nonlinear parameters βE and βG were defined based on 1-

dimensional constitutive equations of elongated prisms (bars). These

nonlinear material parameters are capable of modeling concrete’s acous-

toelastic effect, i.e. the frequency of vibration increments observed when

elongated prisms are uniaxially compressed. The nonlinear parameter βG

corresponds to the rate of change of the shear modulus Gε with respect

to uniaxial strain, and it can be characterized using torsional vibration

nondestructive testing techniques.

The problem of a nonlinear solid elongated prism under quasistatic com-

pression was studied using finite elasticity, and the expressions of βG

and βE were analytically calculated in terms of the third order elastic

constants l, m and n. These expressions were successfully verified nu-

merically by building an FEM model in COMSOL using a nonlinear

Murnaghan solid (nonlinear hyperelastic material).

It was demonstrated analytically that monitoring the variation of the

wave speed mode 21 (V21) with respect to stress should be sufficient to

calculate the nonlinear parameter βG, which would simplify the exper-

imental setup as measuring l, m and n requires monitoring three dis-

tinct modes. Also, this provided a readily method to compare the use

of a torsional technique for acoustoelastic characterization, which yields

βG experimentally, to the traditional acoustoelastic techniques based on

wave propagation, which experimentally yield wave speed increments.

A virtual test was run using MATLAB, involving a column of known
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properties and “unknown” applied quasistatic uniaxial stress (and

strain). Measurements were simulated by considering typical variabil-

ity, and equations were applied to “estimate” (calculate) the “current

applied strain”. A Monte Carlo analysis showed that the resulted “cur-

rent applied strain” was very sensitive to the rest of the involved material

properties and measurements, implying that small measurement devia-

tions may yield large deviations of estimated current strain and stress.

In the proposed virtual test, the assumed standard deviations of the vir-

tual measurements were 0.1, 0.1 Hz and 0.1×10−6 for βG, frequency and

strain, respectively. With these assumed uncertainties, the standard er-

ror of the estimated applied strain was 10%, meaning that approximately

68% of the obtained applied strains from the Monte Carlo analysis had

errors of 10% or less. Such a good accomplishment can be truly ex-

pected only if the experimental measurements are sufficiently accurate,

or their associated errors otherwise reduced, for example by increasing

the number of measurements and tests.

In general terms, in order to use torsional vibration for acoustoelastic

characterization, the effect of non-uniform torsion and geometric non-

linearity should be considered as they are coupled with the acoustoelas-

tic effect. However, they can be neglected for any structural member

of solid-section sufficiently elongated, which are essentially all typical

beam-or-column-like concrete elements. In these cases, the Saint-Venant

torsion term dominates, so the problem can be successfully modeled us-

ing the strain-dependent shear modulus Gε. This fact was verified nu-

merically using an FEM model in COMSOL. The torsional frequency

of vibration of the tested concrete and mortar prisms (Chapter 4 and

5, respectively) showed a positive correlation with the applied uniaxial

quasi-static compression strain and stress level, as predicted by the the-

ory of acoustoelasticity. The influence of the nonlinear material stiffening

dominated over that of geometric nonlinearity (P-δ effect) and possible

material softening.

Boundary conditions could be affected by the applied external load,

which influence the system’s dynamic behavior, yielding results where

this effect is coupled to the acoustoelastic effect. Therefore, the effect

of load-dependent boundary conditions must be somehow characterized

and decoupled from the results in order to characterize material nonlin-
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ear parameters. This was successfully carried out by considering load-

dependent springs (neoprene pads) attached to both ends of the concrete

elements, and carrying out specific tests to characterize these springs. In

this Thesis’ experiments, if the effect of boundary conditions had not

been considered, the nonlinear material parameter βG would have been

overestimated by approximately 20 %. Other experimental configura-

tions or field characteristics may increase or reduce the effect of changing

boundary conditions on the acoustoelastic effect; this characteristic must

be assessed for each situation.

In the first experimental campaign (Chapter 4), the initial loading cycle

of all concrete prisms yielded βG values around -95, that were clearly

lower (in absolute value) than those obtained from subsequent load-

ing/unloading cycles on the same sample, which averaged -125. Thus,

competing stiffening (acoustoelastic) and softening (damage, material

slow dynamics conditioning or other) effects occurred during the first

loading cycle. The obtained values of βG neglecting the first load cy-

cle were consistent among the range of concrete mixtures considered,

even though other mixture parameters such as Young’s modulus and

compressive strength varied significantly. The values of βG obtained nu-

merically from previously published results, which used vibration-based

techniques, are of the same order of magnitude as the ones computed in

Chapter 4. Results of βG computed from previous studies based on wave

propagation techniques yielded values of βG lower than those computed

here, which motivated the studies presented in Chapter 5.

Experiments presented in Chapter 5 involved monitoring both torsional

frequency of vibration and S-wave speed (V21) in mortar prisms, during

several loading/unloading cycles. Room temperature variations affected

S-wave speed measurements in the same order of magnitude than the

variations of S-wave speed due to stress (acoustoelastic). A theoretical

and experimental tool was successfully applied to correct the effect of

temperature from the S-wave speed measurements.

Experiments presented in Chapter 5 showed that when the mortar spec-

imen was submitted to one loading and unloading cycle, and then it was

left at rest, the S-wave speed increased and decreased following the load-

ing/unloading, respectively, with a positive correlation, as per the acous-

toelastic effect. However, after fully removing the load, the S-wave speed
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became slightly lower than the initial wave speed, about 0.09 %, which

then tended to recover in time. After a certain period of rest (18 hours

in this experiment), the S-wave speed recovered and stayed constant.

This behavior is consistent with slow dynamics conditioning/recovery

phenomena. In this case, the actuator could have been conditioning the

material when the quasistatic force was being introduced. It is therefore

presumed that this effect, and not damaging, occasioned the softening

behavior detected in the first loading cycles of the experimental campaign

presented in chapter 4 (which yielded lower βG results than subsequent

loading/unloading cycles).

In Chapter 5, the S-wave propagation and torsional vibration techniques

were used simultaneously to characterize the mortar’s material nonlin-

earity by calculating the βG parameter, individually with each technique.

The former yielded an average βG = -94.8, and the latter βG = -363.8.

This significant difference is not explained by the theory of acoustoe-

lasticity, which predicts equal βG values from both techniques. This

is an important finding which suggests that, if the theory of acoustoe-

lasticty is used, the material nonlinear parameters may be considered

to be method-dependent (possibly frequency-dependent and/or dynamic

strain range-dependent).

A simple and heuristic analysis was posed in Chapter 5 to try to explain

the difference in the βG experimental results. The analysis consisted of

using a viscoelastic solid material composed of two nonlinear (strain de-

pendent) springs, representing the material’s elasticity, and a damper to

represent its viscosity. This model allowed explaining the slight differ-

ences of the dynamic shear moduli (from different nondestructive testing

techniques), and it also explained the frequency dependence of the βG

values. Further research is needed to confirm or refute this finding, as

well as the study of other potential influencing factors, as the dynamic

strain range (amplitudes) of the testing method.

The case study presented in Chapter 6 showed the feasibility to monitor

the internal pressure of a post-tensioned concrete containment mockup

(1/3 scale) during a decennial safety review simulation using operational

ambient vibrations. It was possible to monitor pressure changes by mon-

itoring the structure’s vibration frequency shifts using a reduced num-

ber of accelerometers (two) without measuring the dynamic input. The
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frequency peaks associated to different modes of vibration tended to

increase as pressure increased and vice versa. An FEM model of the

structure was built and the frequency vs. pressure was studied focusing

on the mode around 30 Hz. In the FEM model, frequency increased with

increasing pressure due to the geometric nonlinearity induced by the in-

ternal pressure. However, the experimental frequency results of the mode

around 30 Hz increased twice as much as the results yielded by the FEM

model with a linear-elastic material. An FEM model including nonlinear

material with softening yielded results that were in good agreement with

the experimental data, but this may not be the only cause. Other pos-

sible causes which may explain this discrepancy include mode coupling,

variable boundary conditions, and/or effect of compressed air. Further

research is needed to elucidate which ones of these are significant.

The following topics remain open to investigate in the future.

In this investigation, experimental frequency-of-vibration shifts of the

first fundamental torsional mode were fit into analytical equations to

characterize material nonlinear parameter βG. In a hypothetical test,

if βG is already known, the same procedure could be used for current

stress estimation, but large errors are expected if measurements are not

sufficiently accurate. To improve the estimation’s accuracy, the use of

many modes of vibration could be employed. Experimental results of

frequency and modal shape shifts could be fed into an FEM model in

order to back calculate elastic properties and currently applied stress.

A blind test using an already characterized concrete sample should be

run in order to assess the accuracy of the theoretical and experimental

procedures for current stress determination developed in this Thesis.

This Thesis showed the existence of a frequency-dependence of the non-

linear elastic material parameters. This fact could be explained by con-

sidering the material slightly viscoelastic, but other influencing factors

could partially or fully control this effect. Specialized tests should be car-

ried out to prove this hypothesis. Until this fact is elucidated, we would

not be fully certain of the nature controlling concrete material nonlinear-

ity and care should be taken if different nondestructive testing techniques

are mixed for acoustoelastic characterization or stress estimation.
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Once the experimental observations carried out in mortar and plain con-

crete are in agreement with the posed theory, and current stress can

be successfully determined using a nondestructive testing method, the

behavior of reinforced concrete should be investigated.

Perfect uniaxial stressed elements are scarcely encountered. Structural

members are frequently submitted to at least slight bending moments.

The effect of bending on acoustoelastic measurements should be therefore

investigated.
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[103] Duffó GS, Arva EA, Schulz FM, and Vazquez DR. “Durability of a

reinforced concrete designed for the construction of an intermediate-

level radioactive waste disposal facility”. In: Materials Research Society

Symposium Proceedings 1475.December (2012), pp. 385–390.

[104] Iliopoulos S et al. “Detection and evaluation of cracks in the con-

crete buffer of the Belgian Nuclear Waste container using combined

NDT techniques”. In: Construction and Building Materials 78 (2015),

pp. 369–378.

[105] Maruyama I, Sasano H, Nishioka Y, and Igarashi G. “Strength and

Young’s modulus change in concrete due to long-term drying and heat-

ing up to 90 °c”. In: Cement and Concrete Research 66 (2014), pp. 48–

63.

[106] Trivedi N and Singh RK. “Assessment of in-situ concrete creep: Cylin-

drical specimen and prototype nuclear containment structure”. In: Con-

struction and Building Materials 71 (2014), pp. 16–25.

[107] Li J et al. “Nuclear power plant prestressed concrete containment vessel

structure monitoring during integrated leakage rate testing using fiber

Bragg grating sensors”. In: Applied Sciences (Switzerland) 7.4 (2017).

[108] Perry M, Yan Z, Sun Z, Zhang L, Niewczas P, and Johnston M. “High

stress monitoring of prestressing tendons in nuclear concrete vessels us-

ing fibre-optic sensors”. In: Nuclear Engineering and Design 268 (2014),

pp. 35–40.

150

https://doi.org/10.1007/s10921-019-0614-5


[109] Henault JM et al. “Truly distributed optical fiber sensors for structural

health monitoring: From the telecommunication optical fiber drawling

tower to water leakage detection in dikes and concrete structure strain

monitoring”. In: Advances in Civil Engineering 2010 (2010).

[110] Hermand G, Bethmont S, Landolt M, and Lesoille S. “Optical Fiber

for 3D Imaging of Deformations in Concrete Containers Stacked”. In:

Structural Health Monitoring. Châtenay-Malabry, France, 2017.
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Appendix 1

Analysis of a standard linear

viscoelastic solid model

The linear viscoelastic solid model is composed of two springs (elastic el-

ement) and a damper (viscous element). These can be grouped into a Voigt

description or into a Maxwell description. Both descriptions are depicted in

figure A1.1 and provide equivalent results.
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Figure A1.1: Standard linear viscoelastic solid equivalent models, including mass
m and external force Fext(t).

The equivalence between both sets of parameters is given by

E1M =
E1E2

E1 + E2

, (A1.1)
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E2M =
E2

1

E1 + E2

, (A1.2)

ηM =
E2

1η

(E1 + E2)2
. (A1.3)

Using the Voigt description of the viscoelastic solid, its constitutive equa-

tion is

Fint +
η

E1 + E2

Ḟint =
E1E2

E1 + E2

x+
ηE1

E1 + E2

ẋ, (A1.4)

where x is the displacement from resting position and Fint is the time-

dependent “internal” force, which connects the springs-damper system to the

mass. Thus by applying the 2nd Newton’s Law

Fext − Fint = mẍ. (A1.5)

Thus, by combining equations (A1.4) and (A1.5) we obtain

Fext +
η

E1 + E2

Ḟext =
ηm

E1 + E2

...
x +mẍ+

E1η

E1 + E2

ẋ+
E1E2

E1 + E2

x. (A1.6)

If we force the system at a given amplitude F0 and frequency Ω, that is

Fext(t) = F0e
iΩt, (A1.7)

then the steady-state solution would have the form

x(t) = BeiΩt, (A1.8)

where B is a complex constant, that can be obtained from trying the solution

(equation (A1.8)) into equation (A1.6). Once B is calculated, we get x and

its derivatives in terms of the viscoelastic material constants (E1, E2, and η),

the forcing frequency Ω and time t; and we can also calculate Fint in terms of

those parameters.

Once Fint and x are known, the complex modulus E∗ of the viscoelastic

solid can be computed by carrying out E∗ = Fint/x, thus

E∗ =
E1(E2 + iηΩ)(E1 + E2 − iηΩ)

(E1 + E2)2 + η2Ω2
. (A1.9)
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The complex modulus E∗ is composed by its real part, named storage

modulus E ′, which is related to the elasticity of the solid and its capacity

to store elastic energy, and by its imaginary part, named loss modulus E ′′,

which is related to the viscosity of the solid and its energy losses during the

stress-strain process. Thus,

E∗ = E ′ + iE ′′. (A1.10)

Therefore, by taking the real part of equation (A1.9) we get

E ′ =
E1E2(E1 + E2) + E1η

2Ω2

(E1 + E2)2 + η2Ω2
. (A1.11)

For the case of free vibration, in which Fext(t) = 0, let us follow the deriva-

tion carried out by de Haan and Sluimer [126]. Their derivation uses the

Maxwell description of the standard linear viscoelastic solid, as shown in Fig-

ure A1.1, so here let us use that one too. Thus, let us first define

K =
E1Mm

η2
M

, (A1.12)

M =
η2
M

E2Mm
, (A1.13)

and the dimensionless time variable

τ =
ηM
m
t. (A1.14)

With these definitions, equation (A1.6) becomes

M
d3x

dτ 3
+
d2x

dτ 2
+ (1 +KM)

dx

dτ
+Kx = 0. (A1.15)

By substituting a solution of the form x(τ) = x0e
λτ into equation (A1.15)

we obtain the characteristic polynomial

Mλ3 + λ2 + (1 +KM)λ+K = 0. (A1.16)

The set of solutions that corresponds to an oscillatory movement (because

it is assumed the solid is slightly damped) is given by

λ1 = −(a+ ib),
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λ2 = −(a− ib),

λ3 = −c,

where a, b and c are positive and real. Thus, for a standard linear viscoelastic

slightly damped solid, the solution of equation (A1.6) is

x(τ) = A1e
−aτcos(bτ) + A2e

−cτ , (A1.17)

where A1 and A2 are real constants that depend on the initial conditions, and

the angular frequency of vibration is given by

ωSLS,Free =
bηM
m

=
bη

m

E2
1

(E1 + E2)2
. (A1.18)

where the subindex “SLS,Free” stands for free vibration of the standar linear

viscoelastic solid.

Note that in this derivation the spring constants E1 and E2 could represent

any constants of elasticity of a given one-dimensional model, such as the shear

elastic moduli named Ga0 and Gv0 in Chapter 5. Using the experimental data

of the mortar specimen indicated in Chapter 5, and using the best-fit Ga0

and Gv0, let us calculate the angular frequency of vibration given by equation

(A1.18), which yields

ωSLS,Free = 10133 rad/s.

Let us use the ωSLS,Free value to estimate the storage modulus G′est (“est”

for estimated) by using the traditional linear-elastic equation (2.29) or (3.11),

which yields

G′est = 9.56 GPa.

But we can calculate the actual G′ by introducing the viscoelastic param-

eters obtained in Chapter 4 into equation (A1.11), which yields

G′ = 9.53 GPa.

The estimated storage modulus G′est is only 0.3 % different from the actual

storage modulus G′. This finding means that, given a viscoelastic solid, which

vibrates freely at frequency ωSLS,Free, then it is possible to estimate the storage
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modulus G′(Ω = ωSLS,Free) by calculating it using the traditional formula of

linear-elasticity.
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Appendix 2

Code for analytical derivation of

βE and βG

2.1. Part 1: βE

clear all; clc; close all;

% En este script aplico la tensión cuasistática y ...

% obtengo el estiramiento

% lateral b en funciónd el estiramiento longitudinal a, ...

% dada la condición

% de borde S22=0.

syms a b h u l m n e11 e12 e13 e21 e22 e23 e31 e32 ...

e33 ei11

% e1, e2, deformaciones de Lagrange en direccion 1 y 2.

% h = lambda, primera constante de Lame.

% u = mu, segunda constante de Lame.

% l, m, n = constantes de 3er orden.

%% Tensores F y C

display(’Tensor de estiramientos F:’)

assume(a,’real’);assumeAlso(a>1);assumeAlso(a<2);
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assume(b,’real’);assumeAlso(b>0);assumeAlso(b<1);

assume(h,’real’);assumeAlso(h>1e9);

assume(u,’real’);assumeAlso(u>1e9);

assume(l,’real’);assumeAlso(l<-1e12);

assume(m,’real’);assumeAlso(m<-1e12);

assume(n,’real’);assumeAlso(n<-1e12);

F = [ a 0 0;...

0 b 0;...

0 0 b]

C = F’*F

%% Tensor de Deformaciones de Lagrange E

display(’Tensor de Def. de Lagrange:’)

% E = [ e1 0 0;...

% 0 e2 0;...

% 0 0 e2]

E = (1/2)*(C-eye(3))

Egen = [e11 e12 e13;...

e21 e22 e23;...

e31 e32 e33];

%% Invariantes

display(’Invariantes:’)

I1 = trace(Egen) % 1er Invariante

I2 = simplify( (-1/2)* (trace(Egen^2) - ...

(trace(Egen))^2) ) % 2do Invariante

I3 = simplify( det(Egen) ) % 3er Invariante

%% Energı́a de Deformación

display(’Energia de deformacion:’)

Waux = (1/2)*(h+2*u)*I1^2 - 2*u*I2 + ...

(1/3)*(l+2*m)*I1^3 - 2*m*I1*I2 + n*I3;
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W = simplify(Waux)

%% Tensor de Cosserat S

S11 = simplify(diff(W,e11));

S12 = simplify(diff(W,e12));

S13 = simplify(diff(W,e13));

S21 = simplify(diff(W,e21));

S22 = simplify(diff(W,e22));

S23 = simplify(diff(W,e23));

S31 = simplify(diff(W,e31));

S32 = simplify(diff(W,e32));

S33 = simplify(diff(W,e33));

S11 = subs(S11,[e11 e12 e13 e21 e22 e23 e31 e32 e33],...

[E(1,1) E(1,2) E(1,3) E(2,1) E(2,2) E(2,3) E(3,1) E(3,2) E(3,3)]);

S12 = subs(S12,[e11 e12 e13 e21 e22 e23 e31 e32 e33],...

[E(1,1) E(1,2) E(1,3) E(2,1) E(2,2) E(2,3) E(3,1) E(3,2) E(3,3)]);

S13 = subs(S13,[e11 e12 e13 e21 e22 e23 e31 e32 e33],...

[E(1,1) E(1,2) E(1,3) E(2,1) E(2,2) E(2,3) E(3,1) E(3,2) E(3,3)]);

S21 = subs(S21,[e11 e12 e13 e21 e22 e23 e31 e32 e33],...

[E(1,1) E(1,2) E(1,3) E(2,1) E(2,2) E(2,3) E(3,1) E(3,2) E(3,3)]);

S22 = subs(S22,[e11 e12 e13 e21 e22 e23 e31 e32 e33],...

[E(1,1) E(1,2) E(1,3) E(2,1) E(2,2) E(2,3) E(3,1) E(3,2) E(3,3)]);

S23 = subs(S23,[e11 e12 e13 e21 e22 e23 e31 e32 e33],...

[E(1,1) E(1,2) E(1,3) E(2,1) E(2,2) E(2,3) E(3,1) E(3,2) E(3,3)]);

S31 = subs(S31,[e11 e12 e13 e21 e22 e23 e31 e32 e33],...

[E(1,1) E(1,2) E(1,3) E(2,1) E(2,2) E(2,3) E(3,1) E(3,2) E(3,3)]);

S32 = subs(S32,[e11 e12 e13 e21 e22 e23 e31 e32 e33],...

[E(1,1) E(1,2) E(1,3) E(2,1) E(2,2) E(2,3) E(3,1) E(3,2) E(3,3)]);

S33 = subs(S33,[e11 e12 e13 e21 e22 e23 e31 e32 e33],...

[E(1,1) E(1,2) E(1,3) E(2,1) E(2,2) E(2,3) E(3,1) E(3,2) E(3,3)]);

S = [ S11 S12 S13;...

S21 S22 S33;...

S31 S32 S33];
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%% Condicion de borde para hallar b en funcion de a

b_sol = solve(S22, b); % Impongo S2=0 y despejo b

% hay dos soluciones, elijo la segunda en este caso que es ...

%la que da menor que 1

b_sol_fin = simplify(b_sol(1),’steps’,100)

%% Armo tensor de Cauchy material

J = det(F);

T = F*(J^(-1))*S*(F’);

T11 = T(1,1); % expresado en funcion de a, b, O y demás parámetros

T11_sol = simplify(subs(T11,b,b_sol_fin)) % expresión de S11

%% Beta E

T11_sol_eps = subs(T11_sol,a,ei11+1); % sustituyo el estiramiento...

%a por la deformación de ingenierı́a

T11_sol_t = simplify(taylor(T11_sol_eps,ei11,’Order’,3)) ...

% aplico taylor de "orden 3" para coeficientes en 1, e y e^2.

% Verifico que el coeficiente en eps es igual al módulo elástico Y.

BetaE = simplify( ( ( T11_sol_t - (ei11*u*(3*h + 2*u))/(h + u) ) /...

(ei11^2)) / (u*(3*h + 2*u)/(h + u)) )

BetaE_xE = ( ( T11_sol_t - (ei11*u*(3*h + 2*u))/(h + u) ) / (ei11^2))

return

%% Verificación numérica

Y_num = 42.36e9; % Módulo de Young

v_num = 0.21 ; % Poisson

162



h_num = Y_num*v_num / ((1+v_num)*(1-2*v_num));

u_num = Y_num / (2*(1+v_num));

l_num = -3.01e12;

m_num = -2.28e12;

n_num = -1.81e12;

a_num = 1.001;

%

% double(simplify(subs(b_sol_fin,[h u l m n a],...

[h_num u_num l_num m_num n_num a_num])))

BetaE_num = subs(BetaE,[h u l m n],[h_num u_num l_num m_num n_num])

double(BetaE_num)

BetaE_Matematica = (2*m_num - l_num*(-1+2*v_num )^3 +...

Y_num *(3/2+2*v_num)+ (v_num^2)*(3*n_num-2*m_num*(3+2*v_num )))/Y_num

2.2. Part 2: βG

clc

clear all

close all

% X1: coordenada indeformada 1

% X2: coordenada indeformada 2

% X3: coordenada indeformada 3

% O: barrenado, constante

% a: estiramiento en direccion 1

% b: estiramiento en direccion 2 y 3

syms X1 X2 X3 a b O e11 e12 e13 e21 e22 e23 e31 ...

e32 e33 h u l m n
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assume(a,’real’)

assumeAlso(a>1)

assumeAlso(a<1.5)

assume(b,’real’)

assumeAlso(b>0)

assumeAlso(b<1)

assume(O,’real’)

assumeAlso(O>0)

assumeAlso(O<1)

assume(X1,’real’)

assume(X2,’real’)

assume(X3,’real’)

assume(e11,’real’)

assumeAlso(e11<1)

assume(e12,’real’)

assumeAlso(e12<1)

assume(e13,’real’)

assumeAlso(e13<1)

assume(e22,’real’)

assumeAlso(e22<1)

assume(e23,’real’)

assumeAlso(e23<1)

assume(e33,’real’)

assumeAlso(e33<1)

assume(h,’real’)

assumeAlso(h>1e6)

assume(u,’real’)

assumeAlso(u>1e6)

assume(l,’real’)

assumeAlso(l<-1e9)

assume(m,’real’)

assumeAlso(m<-1e9)

assume(n,’real’)

assumeAlso(n<-1e9)

%% Tensor de deformación X:
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x1 = a*X1;

x2 = cos(a*O*X1)*b*X2 - sin(a*O*X1)*b*X3;

x3 = cos(a*O*X1)*b*X3 + sin(a*O*X1)*b*X2;

X = [x1,x2,x3]’;

%% Tensor F

% F es el gradiente de X

display(’Tensor de estiramientos F:’)

F = [ diff(x1,X1),diff(x1,X2),diff(x1,X3);...

diff(x2,X1),diff(x2,X2),diff(x2,X3);...

diff(x3,X1),diff(x3,X2),diff(x3,X3)]

%% Tensor C

C = F’*F;

%% Tensor E

display(’Tensor de Def. de Lagrange:’)

E = (1/2)*(C-eye(3))

% Tensor de Lagrange genérico:

Egen = [e11 e12 e13;...

e21 e22 e23;...

e31 e32 e33];

%% Invariantes

display(’Invariantes:’)

I1 = trace(Egen) % 1er Invariante generico

I2 = simplify( (-1/2)* (trace(Egen^2) - ...

(trace(Egen))^2) ) % 2do Invariante genérico
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I3 = simplify( det(Egen) ) % 3er Invariante genérico

%% Energı́a de Deformación

% display(’Energia de deformacion:’)

Waux = (1/2)*(h+2*u)*I1^2 - 2*u*I2 + ...

(1/3)*(l+2*m)*I1^3 - 2*m*I1*I2 + n*I3;

W = simplify(Waux);

% Comprobación de los invariantes:

% A = n;

% B = m-n/2;

% C = l-m+n/2;

% W2 = h/2*(trace(E))^2 + u*trace(E^2) + ...

C/3*(trace(E))^3 + B*(trace(E))*trace(E^2) + ...

A/3*trace(E^3)

% simplify(W-W2,’Steps’,20)

% return

%% Tensor de Cosserat S genérico

Sg11 = simplify(diff(W,e11));

Sg12 = simplify(diff(W,e12));

Sg13 = simplify(diff(W,e13));

Sg21 = simplify(diff(W,e21));

Sg22 = simplify(diff(W,e22));

Sg23 = simplify(diff(W,e23));

Sg31 = simplify(diff(W,e31));

Sg32 = simplify(diff(W,e32));

Sg33 = simplify(diff(W,e33));

Sg = [ Sg11 Sg12 Sg13;...

Sg21 Sg22 Sg23;...

Sg31 Sg32 Sg33]; % tensor de Cosserat genérico

% Constuyo tensor de Cosserat S

% (en donde E(2,3) = 0, VERIFICAR!)
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S11 = subs(Sg11,[e11 e12 e13 e21 e22 e23 e31 e32 e33],...

[E(1,1) E(1,2) E(1,3) E(2,1) E(2,2) E(2,3) E(3,1) E(3,2) E(3,3)]);

S12 = subs(Sg12,[e11 e12 e13 e21 e22 e23 e31 e32 e33],...

[E(1,1) E(1,2) E(1,3) E(2,1) E(2,2) E(2,3) E(3,1) E(3,2) E(3,3)]);

S13 = subs(Sg13,[e11 e12 e13 e21 e22 e23 e31 e32 e33],...

[E(1,1) E(1,2) E(1,3) E(2,1) E(2,2) E(2,3) E(3,1) E(3,2) E(3,3)]);

S21 = subs(Sg21,[e11 e12 e13 e21 e22 e23 e31 e32 e33],...

[E(1,1) E(1,2) E(1,3) E(2,1) E(2,2) E(2,3) E(3,1) E(3,2) E(3,3)]);

S22 = subs(Sg22,[e11 e12 e13 e21 e22 e23 e31 e32 e33],...

[E(1,1) E(1,2) E(1,3) E(2,1) E(2,2) E(2,3) E(3,1) E(3,2) E(3,3)]);

S23 = subs(Sg23,[e11 e12 e13 e21 e22 e23 e31 e32 e33],...

[E(1,1) E(1,2) E(1,3) E(2,1) E(2,2) E(2,3) E(3,1) E(3,2) E(3,3)]);

S31 = subs(Sg31,[e11 e12 e13 e21 e22 e23 e31 e32 e33],...

[E(1,1) E(1,2) E(1,3) E(2,1) E(2,2) E(2,3) E(3,1) E(3,2) E(3,3)]);

S32 = subs(Sg32,[e11 e12 e13 e21 e22 e23 e31 e32 e33],...

[E(1,1) E(1,2) E(1,3) E(2,1) E(2,2) E(2,3) E(3,1) E(3,2) E(3,3)]);

S33 = subs(Sg33,[e11 e12 e13 e21 e22 e23 e31 e32 e33],...

[E(1,1) E(1,2) E(1,3) E(2,1) E(2,2) E(2,3) E(3,1) E(3,2) E(3,3)]);

S = [S11 S12 S13;

S12 S22 S23

S13 S23 S33]

%%

% Tensor de tensiones material

J = det(F);

T = F*(J^(-1))*S*(F’);

T12 = T(1,2); % expresado en funcion de a, b, O y demás parámetros

%%

% sustituyo el valor de b hayado anteriormente

% solución 1 de b:

b_sol = (4*h - 12*l - 2*m - n + 4*u + 4*a^2*l - 2*a^2*m + a^2*n - ...

(4*a^4*m^2 - 4*a^4*m*n - 24*l*a^4*m + a^4*n^2 + 8*l*a^4*n - ...
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32*a^2*h*m + 8*a^2*h*n - 8*a^2*m^2 + 8*a^2*m*n - 16*a^2*m*u + ...

48*l*a^2*m - 2*a^2*n^2 + 8*a^2*n*u - 16*l*a^2*n + 32*l*a^2*u + ...

16*h^2 + 32*h*m - 8*h*n + 32*h*u + 4*m^2 - 4*m*n + 16*m*u - ...

24*l*m + n^2 - 8*n*u + 8*l*n + 16*u^2 - 32*l*u)^(1/2))^(1/2)/...

(2*(- 2*l - m)^(1/2));

% solución 2 de b:

% b_sol =(3*(l/3 + (2*m)/3)*(4*h + 4*m - n + 4*u - 4*a^2*m + ...

%a^2*n + (4*a^4*m^2 - 4*a^4*m*n - 24*l*a^4*m + a^4*n^2 + ...

%8*l*a^4*n - ...

%32*a^2*h*m + 8*a^2*h*n - 8*a^2*m^2 + 8*a^2*m*n - 16*a^2*m*u + ...

%48*l*a^2*m - 2*a^2*n^2 + 8*a^2*n*u - 16*l*a^2*n + 32*l*a^2*u + ...

%16*h^2 + 32*h*m - 8*h*n + 32*h*u + 4*m^2 - 4*m*n + 16*m*u - ...

%24*l*m + n^2 - 8*n*u + 8*l*n + 16*u^2 - 32*l*u)^(1/2))^2)/...

%(16*(2*l + m)^2) - 2*m*((4*h - 4*l + 2*m - n + 4*u + 4*a^2*l -...

%2*a^2*m + a^2*n + (4*a^4*m^2 - 4*a^4*m*n - 24*l*a^4*m + ...

%a^4*n^2 + 8*l*a^4*n - 32*a^2*h*m + 8*a^2*h*n - 8*a^2*m^2 + ...

%8*a^2*m*n - 16*a^2*m*u + 48*l*a^2*m - 2*a^2*n^2 + 8*a^2*n*u - ...

%16*l*a^2*n + 32*l*a^2*u + 16*h^2 + 32*h*m - 8*h*n + 32*h*u +...

%4*m^2 - 4*m*n + 16*m*u - 24*l*m + n^2 - 8*n*u + 8*l*n + ...

%16*u^2 - 32*l*u)^(1/2))^2/(64*(2*l + m)^2) - (2*(a^2/2 - ...

%1/2)*(4*h - 4*l + 2*m - n + 4*u + 4*a^2*l - 2*a^2*m + ...

%a^2*n + (4*a^4*m^2 - 4*a^4*m*n - 24*l*a^4*m + a^4*n^2 + ...

%8*l*a^4*n - 32*a^2*h*m + 8*a^2*h*n - 8*a^2*m^2 + 8*a^2*m*n -...

%16*a^2*m*u + 48*l*a^2*m - 2*a^2*n^2 + 8*a^2*n*u -...

%16*l*a^2*n + 32*l*a^2*u + 16*h^2 + 32*h*m - 8*h*n + 32*h*u +...

%4*m^2 - 4*m*n + 16*m*u - 24*l*m + n^2 - 8*n*u + 8*l*n + 16*u^2 -...

%32*l*u)^(1/2)))/(16*l + 8*m)) - ((h/2 + u)*(4*h + 4*m -...

% n + 4*u -...

%4*a^2*m + a^2*n + (4*a^4*m^2 - 4*a^4*m*n - 24*l*a^4*m + a^4*n^2 + ...

%8*l*a^4*n - 32*a^2*h*m + 8*a^2*h*n - 8*a^2*m^2 + 8*a^2*m*n - ...

%16*a^2*m*u + 48*l*a^2*m - 2*a^2*n^2 + 8*a^2*n*u - 16*l*a^2*n +...

%32*l*a^2*u + 16*h^2 + 32*h*m - 8*h*n + 32*h*u + 4*m^2 - 4*m*n +...

%16*m*u - 24*l*m + n^2 - 8*n*u + 8*l*n + 16*u^2 - 32*l*u)^(1/2)))/...

%(4*l + 2*m) + (n*(4*h - 4*l + 2*m - n + 4*u + 4*a^2*l - 2*a^2*m +...

%a^2*n + (4*a^4*m^2 - 4*a^4*m*n - 24*l*a^4*m + a^4*n^2 +...
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% 8*l*a^4*n - ...

%32*a^2*h*m + 8*a^2*h*n - 8*a^2*m^2 + 8*a^2*m*n - 16*a^2*m*u +...

% 48*l*a^2*m - ...

%2*a^2*n^2 + 8*a^2*n*u - 16*l*a^2*n + 32*l*a^2*u + 16*h^2 + 32*h*m - ...

%8*h*n + 32*h*u + 4*m^2 - 4*m*n + 16*m*u - 24*l*m + n^2 -...

% 8*n*u + 8*l*n + ...

%16*u^2 - 32*l*u)^(1/2))^2)/(64*(2*l + m)^2) + (2*u*(4*h - 4*l + 2*m -...

%n + 4*u + 4*a^2*l - 2*a^2*m + a^2*n + (4*a^4*m^2 - 4*a^4*m*n - ...

%24*l*a^4*m + a^4*n^2 + 8*l*a^4*n - 32*a^2*h*m + 8*a^2*h*n -...

% 8*a^2*m^2 +...

%8*a^2*m*n - 16*a^2*m*u + 48*l*a^2*m - 2*a^2*n^2 + ...

%8*a^2*n*u - 16*l*a^2*n +...

%32*l*a^2*u + 16*h^2 + 32*h*m - 8*h*n + 32*h*u + 4*m^2 -...

%4*m*n + 16*m*u -...

%24*l*m + n^2 - 8*n*u + 8*l*n + 16*u^2 - 32*l*u)^(1/2)))/...

%(8*l + 4*m) -...

%(m*(4*h + 4*m - n + 4*u - 4*a^2*m + a^2*n + (4*a^4*m^2 -...

%4*a^4*m*n -...

%24*l*a^4*m + a^4*n^2 + 8*l*a^4*n - 32*a^2*h*m + 8*a^2*h*n -...

%8*a^2*m^2 + ...

%8*a^2*m*n - 16*a^2*m*u + 48*l*a^2*m - 2*a^2*n^2 + 8*a^2*n*u -...

%16*l*a^2*n +...

%32*l*a^2*u + 16*h^2 + 32*h*m - 8*h*n + 32*h*u + 4*m^2 - ...

%4*m*n + 16*m*u - ...

%24*l*m + n^2 - 8*n*u + 8*l*n + 16*u^2 - 32*l*u)^(1/2))*(4*h -...

%4*l + 2*m -...

%n + 4*u + 4*a^2*l - 2*a^2*m + a^2*n + (4*a^4*m^2 - 4*a^4*m*n -...

%24*l*a^4*m + ...

%a^4*n^2 + 8*l*a^4*n - 32*a^2*h*m + 8*a^2*h*n - 8*a^2*m^2 +...

%8*a^2*m*n - ...

%16*a^2*m*u + 48*l*a^2*m - 2*a^2*n^2 + 8*a^2*n*u - 16*l*a^2*n +...

%32*l*a^2*u +...

%16*h^2 + 32*h*m - 8*h*n + 32*h*u + 4*m^2 - 4*m*n + 16*m*u - ...

%24*l*m + n^2 - ...

%8*n*u + 8*l*n + 16*u^2 - 32*l*u)^(1/2)))/(8*(2*l + m)^2)
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T12_s = subs(T12,b,b_sol) % sustityo b

T12_s = simplify(T12_s,’Steps’,100) % LLEVA TIEMPO

%

% T11 = T(1,1);

% T11_s = subs(T11,b,b_sol) % sustityo b

% % % T11_s = simplify(T11_s,’Steps’,100)

% %

% T33 = T(3,3);

% T33_s = subs(T33,b,b_sol) % sustityo b

%

% T22 = T(2,2);

% T22_s = subs(T22,b,b_sol) % sustityo b

%% verificaciones

Y_num = 42.36e9; % Módulo de Young

v_num = 0.21 ; % Poisson

h_num = Y_num*v_num / ((1+v_num)*(1-2*v_num));

u_num = Y_num / (2*(1+v_num));

l_num = -3.01e12;

m_num = -2.28e12;

n_num = -1.81e12;

a_num = 1.001;

O_num = 0.0001;

X1_num = 0.3;

X2_num = 0.15;

X3_num = 0.15;

b_num = -0.000178951+1;

% subs(W,[h u l m n a b O X1 X2 X3],[h_num u_num l_num m_num...

%n_num a_num b_num O_num X1_num X2_num X3_num])

% double(ans)

% subs(T11_s,[h u l m n a O X1 X2 X3],[h_num u_num l_num m_num...

%n_num a_num O_num X1_num X2_num X3_num]);
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% double(ans)

% %

% subs(T33_s,[h u l m n a O X1 X2 X3],[h_num u_num l_num...

%m_num n_num a_num O_num X1_num X2_num X3_num]);

% double(ans)

%

% subs(T22_s,[h u l m n a O X1 X2 X3],[h_num u_num l_num m_num...

%n_num a_num O_num X1_num X2_num X3_num]);

% double(ans)

% subs(T,[h u l m n a O b X1 X2 X3],[h_num u_num l_num m_num...

%n_num a_num O_num b_num X1_num 0.15/sqrt(2) 0.15/sqrt(2)])

%%

T12_s_t = taylor(T12_s,O,0,’Order’,2) % taylor para linealizar en O (tita)

G_eps = T12_s_t / (O*(-X3)) % calculo G_epsilon

syms ei11 % defino epsilon de ingenieria ei11

assume(ei11<1);assumeAlso(ei11>-1);

G_eps_s = subs(G_eps,a,ei11+1)

G_eps_s_t = taylor(G_eps_s,ei11,’Order’,2)

G_eps_s_t = simplify(G_eps_s_t)

% pretty(simplify(subs(G_eps_s_t,ei11,0)))

%%

BetaG = simplify((G_eps_s_t-u)/(u*ei11))

pretty(BetaG)

double(subs(BetaG,[h u l m n],[h_num u_num l_num m_num n_num]))
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BetaG_Matematica = (u_num*(3+v_num)+...

((m_num*(2-4*v_num )+n_num*v_num))/2)/u_num
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Appendix 3

Analysis of the torsional

vibration of a shaft with

torsional springs at each end

Let us consider an elongated solid of of length L with uniform section along

its axis, density ρ, and polar moment of inertia Ip. Consider a differential

volume of length dx and its angle of twist given by θ(x, t), where x is the

coordinate parallel to the axial direction, and t is time. A pair of torsional

moments appear at each end of the volume, as shown in Figure A3.1. These

moments are Mθ and (Mθ + ∂Mθ

∂x
dx).

��
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��

��
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� ��

Figure A3.1: Differential volume with torsional moments at each end.

By applying the 2nd Newton’s Law to the differential volume we get

−Mθ + (Mθ +
∂Mθ

∂x
dx) = ρdxIp

∂2θ

∂t2
⇒
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∂Mθ

∂x
(x, t) = ρIp

∂2θ

∂t2
(x, t). (A3.1)

From the strength of materials, considering the Saint-Venant torsion theory

(small deformations and linear-elastic material) we have that

Mθ(x) = GJ
∂θ

∂x
(x), (A3.2)

where G is the material’s shear modulus of elasticity, and J is the section’s

torsional constant. By combining equations (A3.1) and (A3.2) we obtain the

equation of motion

∂2θ

∂x2
(x, t) =

ρIp
GJ

∂2θ

∂t2
(x, t). (A3.3)

To solve equation (A3.3) let us separate variables and thus consider solu-

tions of the form

θ(x, t) = φx(x)Yt(t). (A3.4)

Thus, by introducing equation (A3.4) into the equation of motion (A3.3) we

obtain

φ′′x(x)

φx(x)
=

1

c2
s

Ÿt(t)

Yt(t)
= −γ2, (A3.5)

where, the quotation marks indicate derivation over position x, the dots imply

derivation over time t, γ is a constant to be calculated, and c2
s = GJ/(ρIp).

Let us observe that each equation in (A3.5) can be analyzed separately and

both are second order ordinary differential equations with constant coefficients.

Thus we can seek solutions of the form

φx(x) = A1 sin(γx) + A2 cos(γx) (A3.6)

Yt(t) = B1 sin(ωt) +B2 cos(ωt), (A3.7)

with ω2 = c2
sγ

2. Their first derivatives are
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φ′x(x) = γA1 cos(γx)− γA2 sin(γx) (A3.8)

Ẏt(t) = ωB1 cos(ωt)− ωB2 sin(ωt). (A3.9)

To find the modes of vibration we need to consider the boundary conditions.

We are analyzing the case with a torsional spring (of constant k1) at the first

end of the bar (at x = 0), and another torsional spring (of constant k2) at the

second end (at x = L). Consider a certain rotation where the first end has a

twist angle θx=0 and the second end has a twist angle θx=L. Then, the springs

will impose corresponding torsional moments given by

Mθ,k1 = k1θx=0

and

Mθ,k2 = k2θx=L,

with directions indicated in Figure A3.2.

Figure A3.2: Elongated solid with torsional moments at each end produced by
torsional springs.

Thus, the boundary conditions at each end are

Mθ(x = 0, t) = Mθ,k1 = k1θ(x = 0, t) (A3.10)

Mθ(x = L, t) = −Mθ,k2 = −k2θ(x = L, t), (A3.11)

By introducing equation (A3.2) into the first boundary condition given by

equation (A3.10) we get

Mθ(0, t) = k1θ(0, t) = GJ
∂θ

∂x
(0, t)⇒
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k1φ(0) = GJφ′(0). (A3.12)

Using the proposed solutions of φ and φ′ given in equations (A3.6) and (A3.8),

at x = 0, and introducing them into equation (A3.12), we get

k1A2 = GJ(γA1)⇒ A1 =
A2k1

γGJ
. (A3.13)

In an analogous manner, by introducing equation (A3.2) into the second

boundary condition given by equation (A3.11) we get

Mθ(L, t) = −k2θ(L, t) = GJ
∂θ

∂x
(L, t)⇒

− k2φ(L) = GJφ′(L). (A3.14)

Using the proposed solutions of φ and φ′ given in equations (A3.6) and (A3.8),

at x = L, and introducing them into equation (A3.14), we get

GJ [γA1 cos(γL)− γA2 sin(γL)] = −k2 [A1 sin(γL) + A2 cos(γL)] . (A3.15)

By introducing equation (A3.13) into equation (A3.15) we get

GJ

[
γk1

γGJ
A2 cos(γL)− γA2 sin(γL)

]
= −k2

[
k1

γGJ
A2 sin(γL) + A2 cos(γL)

]
,

(A3.16)

which simplifies into

(k1 + k2) cos(γL) =

(
GJγ − k1k2

γGJ

)
sin(γL). (A3.17)

Equation (A3.17) can be solved for γ to provide the mode shapes, and

the associated frequencies of vibration ω by considering ω = csγ. To find

the γ solutions of equation (A3.17), let us first consider the possible solutions

in which cos(γL) 6= 0. In this case, we can pass the cosine term in the left

dividing the right term, and thus we get

(k1 + k2)

GJγ − k1k2
GJγ

= tan(γL). (A3.18)
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By considering that k1 = k2 = k, and introducing L in the numerator and

denominator of the left term we obtain

(2kL)

GJγL− k2L2

GJγL

= tan(γL). (A3.19)

Equation (A3.19) can be solved numerically. It can also be graphically

inspected by observing that the solutions of γ are those that make the left-side

function intersect the right-side function, as done in Chapter 3 of this thesis

(there expressed as a function of ω instead of γ).

Going back to equation (A3.17), we still still need to analyze possible

solutions in which cos(γL) = 0, which implies that γL = π/2 + nπ, with

n ∈ {0, 1, 2, ...}. If the left term is null, the right term must be null; but in

this case, sin(γL) 6= 0, so, these γ are solutions only if(
GJγ − k1k2

γGJ

)
= 0⇒

GJγ =
k1k2

γGJ
⇒

(GJ)2γ2 = k2 ⇒

γ =
k

GJ
. (A3.20)

where it was considered that k1 = k2 = k. Thus, we have that the mentioned

γ are solutions only if

k

GJ  L
= γL = π/2 + nπ, (A3.21)

which is highly unlikely since there must be a perfect coincidence between

the different elastic constants and geometric parameters. Nevertheless, let

us inspect equation (A3.21) by assigning typical values of the involved mag-

nitudes. The experiments in this thesis involved concrete specimens of size

0.15× 0.15× 0.6 m3, with J ∼= 6.77× 10−3 m4, L = 0.60 m, G ∼ 17 GPa, and

k ∼ 100 kN.m/rad. Thus, by introducing those values into equation (A3.21)

and considering the smallest value in the right term (n = 0), we get that

k

GJ  L
∼ 0.05 < 1.57 ∼= π/2. (A3.22)
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Therefore, possible solutions to equation (A3.17) for γ, are only those given

by equation (A3.18)—and by equation (A3.19).
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