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Decoupling between SARS‑CoV‑2 
transmissibility and population 
mobility associated with increasing 
immunity from vaccination 
and infection in South America
Marcelo Fiori  1*, Gonzalo Bello2, Nicolás Wschebor3, Federico Lecumberry4, 
Andrés Ferragut5 & Ernesto Mordecki6

All South American countries from the Southern cone (Argentina, Brazil, Chile, Paraguay and 
Uruguay) experienced severe COVID-19 epidemic waves during early 2021 driven by the expansion of 
variants Gamma and Lambda, however, there was an improvement in different epidemic indicators 
since June 2021. To investigate the impact of national vaccination programs and natural infection on 
viral transmission in those South American countries, we analyzed the coupling between population 
mobility and the viral effective reproduction number R

t
 . Our analyses reveal that population mobility 

was highly correlated with viral R
t
 from January to May 2021 in all countries analyzed; but a clear 

decoupling occurred since May–June 2021, when the rate of viral spread started to be lower than 
expected from the levels of social interactions. These findings support that populations from the 
South American Southern cone probably achieved the conditional herd immunity threshold to contain 
the spread of regional SARS-CoV-2 variants circulating at that time.

Countries from the South America Southern cone experienced large COVID-19 epidemic waves during the 
first months of 2021 driven by the lack of stringent mitigation measures along with the emergence and regional 
spread of the Variant of Concern (VOC) Gamma and the Variant of Interest (VOI) Lambda1. The VOC Gamma 
was the predominant viral variant in Brazil, Paraguay and Uruguay; while both Gamma and Lambda circulated 
at similar prevalence in Argentina and Chile2–5.

Changes in different epidemic indicators from mid-June to end of August, including declining numbers of 
new SARS-CoV-2 cases and deaths and viral effective reproduction number ( Rt ) below one, support a relative 
control of the COVID-19 epidemic in all five countries1. The drivers of such epidemic control remained unclear 
as SARS-CoV-2 transmission could be influenced by several factors including extent of non-pharmaceutical 
interventions (NPIs), level of social distancing, adherence to self-care measures, transmissibility of circulating 
viral variants and the proportion of susceptible host6.

Several studies demonstrate that during the pre-vaccination phase and in a context of large community 
transmission of the virus, when other factors as contact tracing strategies are not effective, changes in population 
mobility could be predictive of changes in epidemic trends and viral Rt7–13. More specifically, the mobility of the 
population tends to be in correspondence with the amount of social interactions, which in turn influences the 
infection rate and the viral Rt , that is, the average number of secondary cases per infectious case in a population 
made up of both susceptible and non-susceptible hosts.

When the viral community transmission is high, the population mobility captures the behaviour of infected 
population and we thus expect to see a correlation between mobility and viral Rt . Hence, in this context, a 
decoupling between population mobility and viral transmissions could be used as a surrogate marker of herd 

OPEN

1Instituto de Matemática y Estadística “Rafael Laguardia”, Facultad de Ingeniería, Universidad de la República, 
Montevideo, Uruguay. 2Laboratorio de AIDS e Imunologia Molecular. Instituto Oswaldo Cruz, FIOCRUZ, 
Rio de Janeiro, Brazil. 3Instituto de Física, Facultad de Ingeniería, Universidad de la República, Montevideo, 
Uruguay. 4Instituto de Ingeniería Eléctrica, Facultad de Ingeniería, Universidad de la República, Montevideo, 
Uruguay. 5Facultad de Ingeniería, Universidad ORT, Montevideo, Uruguay. 6Centro de Matemática, Facultad de 
Ciencias, Universidad de la República, Montevideo, Uruguay. *email: mfiori@fing.edu.uy

https://orcid.org/0000-0002-3732-1778
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-10896-4&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2022) 12:6874  | https://doi.org/10.1038/s41598-022-10896-4

www.nature.com/scientificreports/

immunity achieved either through high vaccination and/or natural infection rates. Data from countries with 
advanced vaccination like Israel and the United Kingdom support this notion as in a certain time SARS-CoV-2 
incidence display sustained declines despite easing of lockdown restrictions, discontinuation of face mask use 
in open spaces and increase in population mobility14,15.

In the present article, we estimate the coupling between population mobility and the Rt of SARS-CoV-2 in 
the five South American countries from the Southern cone. Our analyses support that mobility data was highly 
correlated with the viral Rt in all South American countries analyzed between January and May, 2021; however, 
a clear decoupling between both was evident since May–June 2021. The mean estimated threshold of immune 
individuals (fully vaccinated pondered by vaccine effectiveness plus natural infected) necessary to produce such 
decoupling varies along the five countries from 29 to 45% and a discussion trying to understand these differ-
ences is provided.

Results
To analyze the potential correlation between social mobility and the spread of the SARS-CoV-2, we used mobility 
information provided by Google16 to estimate a candidate of proxy for the viral Rt , denoted as R̂t , during a time 
period of high viral transmission in every country (see “Estimation of the viral effective reproduction number 
and decoupling time” section). The resulting R̂t estimator was then correlated with the observed Rt estimated 
from the incidence data available in the Our World in Data (OWID) data base1. We refer the reader to Appendix 
A.2.1 for a brief description on how this reproduction number is estimated. The correlation between R̂t and Rt 
provides a measure of the value of social mobility as a predictor of viral transmissions in each country, while 
the ratio R̂t/Rt provides a measure of the coupling between both indicators. When the predicted value of the 
reproductive number estimated from mobility indicators (i.e. R̂t ), is very close to the value of the reproductive 
number computed from daily infections data (i.e. Rt ), the coupling ratio R̂t/Rt is close to one.

In all five South American countries analyzed (Argentina, Brazil, Chile, Paraguay and Uruguay) we observed 
that during the first months of 2021, the estimated R̂t was highly correlated ( ρ2 between 0.83 y 0.94) with the 
observed Rt about 1-2 weeks later and the ratio R̂t/Rt was close to one (0.90–1.10) during the pre-vaccination 
and initial vaccination phases (Fig. 1). We observed a high correlation between both indicators not only dur-
ing the estimation period, but also during the beginning of the vaccination roll-out. These findings confirm 
that population mobility was a relevant driver of viral transmissions during early 2021 in all South American 
countries analyzed and revealed that, under a context of high community transmission, researchers can use the 
observed population mobility at a given time to infer the viral transmission dynamics without the typical lag 
of the observed Rt.

When we extended the estimation of the R̂t during the vaccination roll-out period (with the same computed 
initial parameters), we observed a clear increase of the ratio R̂t/Rt in all South American countries analyzed since 
late May and early June 2021, indicating that at a certain time the rate of spread of the virus started to be lower 
than expected from the levels of social interactions (Fig. 1). We interpret such decoupling between population 
mobility and viral spread as a surrogate marker of conditional herd immunity, i.e. the achieved herd immunity 
conditioned to the social distancing policies and the circulating viral variants in each country. In order to test our 
method, we conducted a similar analysis in Israel, the first country to attain conditional vaccine-induced herd 
immunity, and Italy, one of the most severely affected countries in Western Europe. Our findings confirm that 
after a period of clear coupling between population mobility and viral transmission, a decisive increase of the 
ratio R̂t/Rt was also observed at a certain time during vaccination roll-out both in Israel and Italy (Figure A.1). 
The decoupling time, defined as the moment when the ratio R̂t/Rt finally overcomes (i.e. the last time it crosses) 
the value 1.10, preceded the last peak of weekly reported cases and roughly coincides with the last day when the 
Rt = 1 in each country (Fig. 1), indicating that the decoupling time was an early indicator of epidemic control.

The proportion of immunized population at the decoupling time could give us an idea of the conditional Herd 
Immunity Threshold (cHIT). In order to estimate the proportion of immune individuals around the decoupling 
time, we summed the estimated number of vaccine-immunized plus natural-immunized individuals. The propor-
tion of vaccine-immunized individuals was estimated from the number of fully vaccinated individuals adjusted 
by the estimated vaccine effectiveness (VE) in South America17,18, see also19. The number of infected people that 
acquired immunity through previous infection (cumulative infection) was estimated from the cumulative number 
of deaths assuming a constant (age adjusted) infection fatality rate (IFR) for each country (see “Data and code 
availability” section and Table 1). The mean estimated cHIT at the decoupling time varies along the countries 
from 29% in Argentina to 33% in Uruguay, 36% in Paraguay, 43% in Chile and 45% in Brazil, although confidence 
intervals were very large due to uncertainties in the IFR estimates (Table 1 and Figure 2). The cHIT was reached 
in each country by different proportions of natural infections and vaccination (Table 1). The estimated propor-
tion of individuals that acquired immunity through vaccination (taking into account the VE) at the decoupling 
time was relatively high in Chile (29%) and Uruguay (24%), but very low in Brazil (9%), Argentina (5%) and 
Paraguay (1%). The estimated cHIT in countries with widespread use of the inactivated vaccine Coronavac like 
Chile (43%) and Uruguay (33%) was similar to that estimated in Israel (42%) and Italy (31%) that only or mostly 
used the BNT162b2 (mRNA-based) vaccine (Figure A.2).

Discussion
All countries from the South America Southern cone (Argentina, Brazil, Chile, Paraguay and Uruguay) witnessed 
pronounced increases in daily SARS-CoV-2 cases and deaths during the firsts months of 2021 and a clear drop 
in relevant epidemic metrics (cases, deaths and Rt ) from mid-20211. This study demonstrates that such epidemic 
control was preceded by a clear decoupling of viral transmissions from population mobility, consistent with the 
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Figure 1.   Temporal variation of viral effective reproduction number estimated from daily SARS-CoV-2 
incidence data ( Rt ) and population mobility data ( ̂Rt ). Background colors indicate the following time periods: 
in blue, the time period used to fit the linear model (see “Estimation of the viral effective reproduction number 
and decoupling time” section), in yellow, the period after the fitting, but before the decoupling time, and in red 
after the decoupling point. The black dot corresponds to the last time the Rt was above one. The correlation 
corresponds to the period used to fit the model. The delay indicated is the time-shift between R̂t and Rt in order 
to maximize their correlation in the linear regression.

Table 1.   IFR: infection fatality rate; VIN: percentage of virus inactivated vaccines; ADV: percentage of 
adenovirus vaccines; RNA: percentage of RNA vaccines20–25; TD : decoupling time; % Nat-Inf: percentage 
of population naturally infected at TD ; % Vac: percentage of the population fully vaccinated at TD ; cHIT 
(conditional herd immunity threshold): percentage of immunized population due to vaccines and natural 
infections at TD . The vaccine effectiveness (VE) against SARS-CoV-2 infections was adjusted to 66% for VIN, 
73% for ADV and 93% for RNA17,18.

Country IFR (VIN, ADV, RNA) TD % Nat-Inf % Vac cHIT (%)

Argentina 0.67 (0.36-1.30) (31.1, 64.7, 04.2) Jun. 02 26 (13-48) 06 29 (17-52)

Brazil 0.59 (0.32-1.17) (34.4, 48.1, 17.5) Jun. 23 40 (20-74) 11 45 (25-79)

Chile 0.73 (0.40-1.43) (71.1, 06.9, 22.0) May 22 20 (10-37) 40 43 (34-60)

Paraguay 0.41 (0.23-0.83) (11.6, 26.6, 61.8) Jun. 11 35 (18-64) 02 36 (19-64)

Uruguay 0.90 (0.49-1.56) (59.8, 01.6, 38.6) May 29 13 (8-24) 29 33 (27-44)

Israel 0.65 (0.35-1.27) (0,0,100) Feb. 28 10 (5-19) 39 42 (37-51)

Italy 1.38 (0.73-2.60) (0,14.3,85.7) Apr. 29 22 (11-32) 10 31 (17-38)
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notion that those South American countries probably attained the cHIT against SARS-CoV-2 variants Gamma 
and Lambda prevalent in the region, given some level of social distancing restrictions.

At the start of the pandemic, thresholds of 60-70% were given as estimates of herd immunity for SARS-
CoV-226. Despite confidence intervals of estimates of percentage of immune people were very large, mostly due 
to uncertainties in the IFR estimates, our analyses support that the cHIT for SARS-CoV variants Gamma and 
Lambda in South America would be lower than 50% , ranging from 29% in Argentina to 45% in Brazil. A recent 
modeling study conducted in Stockholm, Sweden, also supports that this country reached the cHIT against 
the original and Alpha variants of SARS-CoV-2 at 23% and 33% of seroprevalence, respectively27. The authors 
conclude that cHIT for SARS-CoV-2, given limited social distancing restrictions, could be lower than initially 
estimated and that phenomena could be explained by population heterogeneity. By fitting epidemiological models 
that allow for heterogeneity in susceptibility or exposure to SARS-CoV-2 and given a basic reproduction number 
R0 between 2.5 and 3, a recent study estimates that the cHIT declines from over 60% to less than 10% as the 
coefficient of variation increases28. Another study estimates that in an age-structured community with mixing 
rates fitted to social activity, the cHIT can be 43% if R0 is 2.529.

Figure 2.   Coupling ratio R̂t/Rt plotted with respect to the estimated percentage of immune population. During 
the first months of 2021 the coupling ratio varies around 1, which corresponds to the periods where the Rt 
and R̂t are in concordance in Fig. 1. Immune population includes immunity achieved by vaccination (taking 
into account its effectiveness) and natural infection (see “Estimation of the IFR and immune population” 
section). The percentage of people fully vaccinated is described as well. The coupling ratio crosses the threshold 
(decoupling point) at percentages of immune population that varies along the five countries from 29% in 
Argentina to 33% in Uruguay, 37% in Paraguay, 43% in Chile and 45% in Brazil. Confidence intervals are shown 
in horizontal black lines. They inherit the large uncertainty in the IFR estimation (see Table 1).
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Our findings also support that the cHIT for SARS-CoV-2 in South America was attained through both natural 
and vaccinal immunity, with different relative proportions across countries. The extremely low proportion of 
vaccine-immune individuals in Paraguay (1%), Argentina (5%) and Brazil (9%) at decoupling time, suggest that 
conditional herd immunity in those countries was mostly attained by natural infections. Few studies estimated 
the proportion of infected individuals in South America after the large Gamma and Lambda epidemics in 2021, 
but some evidence from seroprevalence data support our estimations. A randomized study conducted in Paraguay 
between March to June 2021 gave a seroprevalence of 23.1% in Asunción and of 26.9% in the central region of 
the country30 and a recent seroprevalence survey among adult individuals living in the largest Brazilian city of 
Sao Paulo also estimate a high proportion (45%: 39-51%) of individuals infected by SARS-CoV-231.

At the other extreme, the relative proportion of vaccinal immunity at decoupling was highest in Chile (29%) 
and Uruguay (24%). CoronaVac accounted for most of vaccinations in Chile (75%)32 and Uruguay (66%)24 at 
decoupling time and the high incidence of SARS-CoV-2 in those countries during first months of vaccination 
roll-out raise concerns about the effectiveness of inactivated virus vaccines to control SARS-CoV-2 transmis-
sions. Our results support that the widespread use of inactivated virus vaccines contributed to containing the 
spread of SARS-CoV-2 in Chile and Uruguay, despite abundant circulation of VOCs/VOIs and weak mitigation 
measures. Remarkably, the cHIT at decoupling point in Chile (43%) and Uruguay (33%) was similar to the one 
estimated for Israel (42%), that mostly controlled the virus expansion through vaccination with BNT162b2. 
These findings are consistent with recent studies of vaccine effectiveness (VE) in Chile17, Brazil18 and Bahrain33 
that conclude that immunization with inactivated vaccines (CoronaVac and Sinopharm) was an effective strategy 
at mitigating the risk for transmissions of SARS-CoV-2 VOCs, although the performance of BNT162b2 and 
adenovirus-based vaccines was superior.

The mean estimated cHIT varied across South American countries and several factors may explain such vari-
ability. cHIT will move upwards when more transmissible SARS-CoV-2 variants circulates in a population, but 
differences in the circulating SARS-CoV-2 variants do not explain variations among South American countries. 
Differences in the mean cHIT were observed between countries where Gamma was the most prevalent variant 
like Brazil (45%), Paraguay (36%) and Uruguay (33%), and also between countries where Gamma and Lambda 
co-circulated at high prevalence like Chile (43%) and Argentina (29%)2–5. Differences in vaccine platforms 
deployed in each country might also modulate the cHIT at the decoupling time. Although we corrected the 
proportion of immune individuals according to the estimated VE and the proportion of each vaccine, we only 
considered immunity associated with fully vaccinated individuals. Previous studies, however, demonstrate some 
level of reduction of SARS-CoV-2 transmission after one dose of mRNA-based (46-58%), adenovirus-based 
(35%) and inactivated virus (16%) vaccines17,18,34,35. Thus, we should expect that countries that used a higher 
proportion of mRNA-based and/or adenovirus-based vaccines like Argentina (69%) reached conditional herd 
immunity at apparent lower thresholds that those that mostly used inactivated virus vaccines. Moreover, it should 
be stressed that Argentina had a very large proportion of individuals with a single dose at the decoupling point 
when compared to other countries in the region where second doses were administrated in a shorter period after 
first dose1. Notably, although Brazil also used an overall high proportion of mRNA-based and/or adenovirus-
based vaccines (66%), most vaccinations during first months were of inactivated vaccines18.

Reduction of SARS-CoV-2 transmission will also depend on the vaccination strategy (who is vaccinated and 
when). Vaccinations programs usually begin by elderly people and go on by gradually protecting the younger 
population36. Simulation studies indicate that prioritize vaccinating of high-risk groups will minimize the num-
ber of COVID-19-related hospitalizations and deaths in the short term, but vaccination of main transmission 
drivers (i.e. highly mobile working age groups) would be more effective at reducing the spread of the SARS-
CoV-237,38. Given enough vaccine supplies, vaccinating the adult population uniformly at random would thus 
be ideal to both prevent death and severe illness in high risk groups and to curb SARS-CoV-2 transmissions 
in the whole population. Uruguay developed an interesting vaccination strategy that prioritized vaccination of 
elderly populations ( ≥ 70 years of age) with the BNT162b2 vaccine while highly mobile working age groups were 
simultaneously vaccinated with CoronaVac. This more homogeneous vaccination strategy across different age 
groups in Uruguay might partially explain the relative low cHIT observed in this country. This may be related 
to the fact that, the decoupling effect due to vaccinations programs that we observe between mobility and the 
reproductive number is reached more abruptly than what could be expected from SIR-like models where all the 
population is treated homogeneously.

Our results support that proportion of immune individuals in South American populations attained a thresh-
old enough to decoupling people mobility and viral dissemination and those countries could thus implement 
progressive relaxing of mitigation measures with relative safety. Such conditional herd immunity, however, was 
attained while maintaining moderate mitigation measures (social distancing, school closed, mask-wearing and 
other self-care behaviors). None of the countries analyzed have returned to the pre-pandemic levels of activity 
and it is unclear if current population immunity will halt the viral spread after removal of all mitigation measures. 
Furthermore, long-term herd immunity could be also challenged by waning immunity and dissemination of more 
infectious SARS-CoV-2 variants39. Both factors seems to have shaped the third epidemic wave in Israel40–43 Our 
study supports that after a transient period of decoupling in Israel, population mobility and viral transmissions 
were coupled again as Delta variant spread in both unvaccinated and fully-vaccinated individuals.

The same phenomena, however, was not observed in South America after introduction of Delta. Despite 
Delta progressively replaced the other SARS-CoV-2 variants between July and November 2021, the total number 
of SARS-CoV-2 cases in South America remained relatively constant, supporting a regional conditional herd 
immunity against Delta [1]. Several factors may explained such observation. First, herd immunity through 
natural infection seems to be less susceptible to waning immunity than by vaccination44–47 and South American 
countries with a high natural immunity wall might be better prepared to limit the expansion of Delta variant 
than those with a large vaccine immunity wall. Second, hybrid immunity (natural infection plus vaccination) 
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might provide longer lasting and stronger protection against infection than vaccine-induced immunity48–50 and 
a high proportion of partial or fully vaccinated individuals in South America may be in that condition. Third, 
some South American countries like Chile and Uruguay started the administration of a vaccine booster around 
early August 2021, soon after first detection of Delta variant.

Our study has some important limitations: (i) difficulty to estimate precisely the IFR and consequently to 
have a precise estimate of the cumulative number of naturally infected people at decoupling point in each coun-
try; (ii) sub-reporting of SARS-CoV-2 deaths might underestimate the cumulative number of infections and 
thus the cHIT; (iii) the assumption that partially vaccinated people did not greatly contribute to reduce viral 
transmissions might have also underestimate the number of vaccine-immune individuals and the actual cHIT; 
(iv) on the other hand, although we assumed some overlap between vaccinal immunity and natural immunity, 
the precise fraction of fully vaccinated individuals that were previously infected is unknown. Because of these 
limitations, the precise cHIT estimated here should be interpreted with caution and should not be considered 
as general reference values for other countries.

In summary, our study supports that populations from the South American Southern cone probably achieved 
the cHIT to contain the further spread of SARS-CoV-2 variants Gamma and Lambda at around mid-2021. Pre-
sumed herd immunity was probably mostly attained by natural infection in Argentina, Brazil and Paraguay, and 
by a mixture of natural infections and vaccination in Chile and Uruguay. The widespread used of the Coronavac 
inactive viral vaccine in South America was not only effective to prevent the severe forms of COVID-19 disease 
but also has the potential to contain the community spread of highly transmissible SARS-CoV-2 regional variants. 
Inactivated SARS-CoV-2 vaccines, combined with other vaccines and mitigation measures, may thus represent 
a relevant tool to control the COVID-19 pandemic especially under the severe limitation of vaccine supplies 
faced by many countries around the world. Our findings stress that the conditional herd immunity status might 
be rapidly lost if vaccine-induce neutralizing antibodies decrease over time and/or immune escape SARS-CoV-2 
variants are either introduced from abroad or evolved locally.

Methods
Data and code availability.  The SARS-CoV-2 incidence data, viral effective reproduction number Rt (also 
indicated as reproduction rate), confirmed deaths, vaccinated people, and other epidemiological indicators were 
retrieved from Our World in Data (OWID)1. Missing values in the time series were filled by linear interpola-
tion. Mobility index was estimated from the six indicators categories (retail and recreation, grocery and phar-
macy, parks, transit stations, workplaces, and residential) provided by Google COVID-19 Community Mobility 
Reports51. For the sake of reproducible research, the code used to obtain all the results and figures is available at 
https://​github.​com/​marfi​ori/​covid​19-​decou​pling.

Estimation of the viral effective reproduction number and decoupling time.  As the correlations 
between the six different possible regressors are large, we construct indices that are more robust along time and 
different countries, to avoid overfitting. In order to do this, we choose for each country the three categories that 
give the best fit among all possible combinations. Although the categories may vary, the obtained fit quality is 
relatively robust over different time intervals. The six mobility time series were smoothed by averaging over a 14 
days sliding window.

For each country, we selected a time period consisting of 75 days before the start of the vaccination campaign, 
and 55 days after, ending up with a 130-days period to carry out the estimation. Given a set of three mobility 
categories, we fitted a linear regression model to the viral effective reproduction number Rt , lagged a certain time 
period. This time shift was chosen as the lag that maximizes the correlation of the regression. This procedure was 
repeated for each combination of three categories among the six mobility measures provided by Google, and the 
combination achieving the best regression result was kept. It should be noted that, since the six categories are 
highly correlated, other combinations of three categories achieve similar fitting results, and therefore the chosen 
categories are not necessarily informative by themselves.

Using the coefficients obtained in this 130-days period, and rest of the mobility time series, we computed 
the predicted viral reproduction number R̂t . The procedure was tested using periods of different lengths for the 
estimation, and the results in the cHIT are robust along the different experiments.

When population mobility and viral transmission are coupled, the coupling ratio R̂t/Rt oscillates around one 
(0.90-1.10). Departing from a certain moment, the R̂t becomes much higher than the Rt , revealing the decoupling 
between population mobility and viral spread resulted. We defined the decoupling time Dt as the moment when 
the coupling ratio R̂t/Rt definitely exceeds the value 1.10, i.e. the last crossing over 1.10.

Estimation of the IFR and immune population.  As it is well known, the estimation of the infection 
fatality rate has been a hard task during all the pandemic. The cryptic circulation of the virus (due to asympto-
matic infections) and different variants made that in fact this quantity varies along time and populations. Here 
we took into account the most relevant variable to compute it, that is the age structure of the population. We 
then took IFR by age taken from52 and adjusted to the population pyramid of each of the considered countries53. 
Confidence intervals were calculated by considering the (very large) confidence intervals available from52 and 
estimating the interval for the whole population as the weighted average of the positions for the maximum or 
minimum of the age-classes intervals. Only one exception was introduced: in the Uruguayan case, the confi-
dence interval can be reduced because the IFR must be smaller than the Case Fatality Rate (CFR). Imposing this 
constraint the maximum possible value in the Uruguayan case is reduced (we obtained the CFR corresponding 
to July 31 from1) the other countries being unaffected. This IFR estimation was confirmed using an alternative 

https://github.com/marfiori/covid19-decoupling
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methodology for the case of Uruguay, following54, which led to similar results, but with slightly larger confidence 
intervals.

The percentage of immune population was computed considering the immunity achieved by vaccination 
(including its effectiveness), and natural infection. However, many people who gained immunity by natural infec-
tion, might have gotten vaccinated as well. In order to avoid the over estimation resulting from counting twice 
those subjects, we subtracted the intersection of these fractions, under the assumption that they are independent. 
Observe that this assumptions gives us a lower bound on the estimation of immune population.

For a given country, let us denote by FV the proportion of fully vaccinated people, by NI the proportion of 
people with immunity by natural infection, and by VE the vaccine effectiveness of the country, computed by 
combining the effectiveness of each vaccine type (VIN, ADV, RNA) using the proportion of vaccines used in the 
country (see Table 1). We assumed a perfect immunization due to natural infection. That is, we neglected in the 
present analysis the number of re-infections. Furthermore, let us denote by IM the estimation of the proportion 
of immunized population. Then, the computation described above is as follows:

Here the product FV · NI accounts for the intersection of the populations, which is subtracted from the vac-
cinated population before the effectiveness factor is applied. As described through the text, the proportion of 
people with immunity by natural infection is inferred from the confirmed deaths, using the estimated IFR.

Observe that due to the vaccine effectiveness, the percentage of fully vaccinated people may by greater than 
the percentage of immunized population.

Received: 29 September 2021; Accepted: 14 April 2022
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