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Abstract: The focused signal obtained by the time-reversal or the cross-correlation techniques of
ultrasonic guided waves in plates changes when the medium is subject to strain, which can be used
to monitor the medium strain level. In this paper, the sensitivity to strain of cross-correlated signals is
enhanced by a post-processing filtering procedure aiming to preserve only strain-sensitive spectrum
components. Two different strategies were adopted, based on the phase of either the Fourier trans-
form or the short-time Fourier transform. Both use prior knowledge of the system impulse response
at some strain level. The technique was evaluated in an aluminum plate, effectively providing up to
twice higher sensitivity to strain. The sensitivity increase depends on a phase threshold parameter
used in the filtering process. Its performance was assessed based on the sensitivity gain, the loss of
energy concentration capability, and the value of the foreknown strain. Signals synthesized with the
time–frequency representation, through the short-time Fourier transform, provided a better tradeoff
between sensitivity gain and loss of energy concentration.

Keywords: strain monitoring; ultrasonic guided waves signals; time-reversal; cross-correlation;
filtering; time–frequency analysis

1. Introduction

Mechanical strain measurement and monitoring are vital in several areas of engineer-
ing [1–3]. Ultrasonic waves can be used for monitoring strain by measuring the time-shift of
received signals [4] since the propagation speed of an ultrasonic wave is proportional to the
stress level of the medium, according to the acoustoelastic theory [5,6]. Ultrasonic guided
waves are generally dispersive and multimodal but are widely used in the non-destructive
evaluation and structural health monitoring since they can propagate long distances and
inspect a large area [7]. The influence of strain on ultrasonic guided waves is, however,
more complex than on bulk waves: each guided wave mode presents different sensitivity
to strain, which also depends on the frequency [8–13]. That is, at each frequency, the
time-shift that each mode may experience is different. Experimental strain measurement
with ultrasonic guided waves is usually performed by observing the time-shift of a single
guided wave mode [8,14–16]. This, however, requires very accurate time-shift measuring
and single-mode excitation, which may not be straightforwardly achievable in different
types of structure.

A wideband excitation in a plate can, in principle, generate several guided wave
modes and thus identification of individual time-shifts can be complicated. If the medium
presents features that allow scattering [17] and mode conversion [18,19] the received
signals can be even more complex. The time-reversal technique can be used to compensate
this complex behavior creating a focused signal. If the received signal, which may be
composed of several modes and scattered waves, is reversed in time and retransmitted,
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then propagation related phenomena, such as scattering and dispersion, are compensated
producing a sharp peak in the next received signal [20]. Several researchers used the
time-reversal technique on guided waves in order to identify the presence of defects in
plates [21–26].

In previous work, the time-reversal signal processing, either physically or numerically
implemented via cross-correlation, was applied to evaluate the variation of the longitudinal
tensile stress in plates [27]. The main principle of the technique lies in exploiting the com-
plex propagating behavior, in which several wave modes distributed over a wide frequency
range are excited. These several components potentially present different sensitivity to
strain, therefore mismatching the system transfer function due to the presence of stress,
which reduces the focusing capability of the process and, in turn, decreases the peak of
the final signal, being therefore easily observable. A similar procedure was applied to
concrete pillars [28] showing that different time-intervals of the received signal present
different sensitivity to strain. Quiroga et al. [29] excited several guided wave modes in a
rod and pipe subjected to axial and bending stress, respectively. It has been observed that,
due to the different speed variation for the several modes presented in the received signal,
stress evaluation through speed measurements was indeed a complex task. They adopted
a principal component analysis in order to monitor stress.

When several wideband modes propagate, the received signal may be quite complex to
analyze since the individual signals from each mode may be distributed over time and with
different frequency content. Thus, identification of individual wave packets in either time
or frequency domains is usually not possible. However, they can be better distinguished
through time–frequency representations [30–33] such as the short-time Fourier transform
(STFT). Time–frequency analysis was applied to ultrasonic guided waves before, to increase
the detectability of defects in plates [34,35] and pipes [36,37].

In this paper, we modify the original cross-correlation strain monitoring procedure [27]
aiming to investigate whether the sensitivity to strain could be increased. It is modified
by using a new signal as reference which is synthesized relying on the system impulse
response at some foreknown strain level. The new reference signal is obtained by means of
a post-processing filter based on the phase of either the Fourier transform or the short-time
Fourier transform. The latter allows one to analyze how several signal components are
affected by strain in both the time and frequency domains, being therefore suitable to cases
where several wave modes arrive distributed over time and at different frequencies, such
as wideband guided waves. The idea of using synthesized signals for strain monitoring
through the phase of the Fourier transform was briefly proposed by Martinho et al. [38].
Here, it is comprehensively extended by comparing it to the short-time Fourier transform
and assessing the effectiveness of the technique with regards to the foreknown strain level
and on the loss of energy concentration capability.

The rest of the paper is organized as follows. Section 2 explains the strain effect on
ultrasonic guided waves and the original procedure for strain monitoring. Section 3 devises
the modified procedure using the information of the phase of the Fourier and short-time
Fourier transforms. Section 4 presents the results with experimental signals and Section 5
draws the conclusions.

2. Theoretical Background
2.1. Strain Effect on Guided Waves

According to the acoustoelastic effect, the propagation speed of ultrasonic waves
changes as a function of the medium stress state [5]. The speed variation for bulk waves
depends not only on the stress intensity but on its direction and is different for longitudinal
and shear wave modes. In addition, there may be a geometric change in the medium, due
to stress, which alters the propagation path. Thus, due to the change of the wave speed and
propagation path, the propagation time of an ultrasonic wave changes with strain. This
principle allows for measuring the strain level.



Appl. Sci. 2021, 11, 2582 3 of 15

Plates support the propagation of guided waves. In an isotropic plate, there are two
families of guided waves, namely Lamb and SH waves [39]. For each of them, there exist,
in principle, infinite propagating modes: the number of propagating modes increases with
the frequency. These guided waves modes are generally dispersive which means that their
phase and group speeds change with frequency. The dependence on strain for guided
waves is more complex than for bulk waves [8–10,13]. Each guided wave mode presents
different speed variation which also depends on the frequency. For instance, the A0 Lamb
wave mode presents either positive or negative speed variation depending on the frequency
for uniaxial stress applied along the propagation direction [8]. It has also been observed
that close to a mode’s cut-off frequency the speed variation can be very intense [9].

When a broadband pulse is applied to an ultrasonic transducer in a plate, potentially
several dispersive guided wave modes may be generated. Due to this dispersive and
multimodal behavior, it may be complicated to interpret the received signal, which may be
composed by the interference of these several waves. The signal is yet more complex when
there are scattering from features in the plate, such as reflections from the plate’s end. In
this scenario, if the plate is subjected to stress, each mode presents a different time-shift,
and, due to the aforementioned nature of the received signal, quantitative identification of
the stress effect in such a complex signal is impractical without resorting to some signal
analysis technique [27–29]. In the next subsection, a strain monitoring approach that
exploits the aforementioned complex behavior is summarized.

2.2. Strain Monitoring through Cross-Correlation or Time-Reversal Signals

In a plate-like structure, the time-reversal technique is a process that compensates
for the multimodal and dispersive behavior, allowing all the propagating modes to arrive
synchronously at the reception point, producing a focused and recompressed signal [20].
This process is numerically equivalent to the cross-correlation of the system impulse
response, as shown previously [27]. In this paper, the numerical approach is used. It can be
summarized as follows.

Consider a plate with two ultrasonic transducers positioned on its surface; one is used
as a transmitter and the other as a receiver, where transmitter and receiver are separated
by a predefined distance. First, an impulse-like signal is sent from the transmitter. This
produces a response signal in the receiver, say h(t). This signal can be considered as the
impulse response of the system that includes both transmitter and receiver acoustoelectric
responses and all wave propagation related phenomena, such as dispersion, multimodal
behavior, scattering and mode conversion. The signal h(t) obtained in this step is the
reference signal for the remaining steps. In the next step, h(t) is convolved with its time-
reversed version, h(−t), yielding

y(t) = h(−t) ∗ h(t) , (1)

where the symbol ∗ means convolution. Note that the signal y(t) is the cross-correlation of
the system impulse response, h(t), with itself.

The signal y(t) is numerically equivalent to the time-reversal focused signal, obtained
by exciting the transmitter with h(−t), in which the dispersion and multimodal behavior
are compensated [20,27], making y(t) to be maximum at its focusing instant where it
presents a high amplitude main peak. To quantify the focusing capability, time-reversal
energy efficiency (TREF), introduced in [27], can be used. It is defined as the ratio of the
energy in the central peak to the energy of the whole signal, as stated by Equation (2):

TREF{y(t)} =
∫ t2

t1
y2(t)dt∫ ∞

−∞ y2(t)dt
. (2)

The central peak is defined as the signal between the first zero-crossing immediately before
and after the main positive peak, t1 and t2 in Equation (2). The higher is the TREF, the more
concentrated is the signal’s energy in the central peak.
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When strain is imposed on the plate and the same reference signal remains, the
focusing capability decreases with the strain level. This fact can be used as a way to
monitor strain changes in the medium [27]. This can be understood by assuming that the
transfer functions in the first and second steps are no longer the same due to the change
in each mode’s speed, according to the acoustoelastic theory [8–10], and propagating
path. Considering that the first step is performed under no strain and the second step is
performed under longitudinal strain, Equation (1) becomes the cross-correlation of both
impulse responses:

y(ε, t) = h(0,−t) ∗ h(ε, t), (3)

where h(0, t) is the reference signal under zero-strain and h(ε, t) is the impulse response
of the system when the plate is subjected to strain ε. This process is summarized in
Figure 1. Comparing Equations (1) and (3), one can conclude that strain changes the
system from h(0, t) to h(ε, t), thus introducing a mismatch to the system response signal
and consequently decreasing the main peak of y(ε, t), compared to y(t). Thus, the complex
propagating behavior of the medium allows strain variation to be easily monitored by
observing the changes on the main peak. The peak reduction is however subtle. In the next
section, a procedure that provides a new reference signal, to be used instead of h(0, t), that
increases the sensitivity to strain on y(ε, t) is presented.

h(0,t)

δ(t) h(0,t)

reference1st step:

h( ,t)

h( ,t)

2nd step:

δ(t)

      y( ,t)=

h(0,-t)∗h(ε,t)

Tx Rx

Tx Rx

Figure 1. Schematic of the strain monitoring process. In the first step, an impulse-like signal, δ(t), is
sent from the transmitting transducer, Tx, and the impulse response of the signal, h(t), is received at
the receiver transducer, Rx, which is the reference for the next step. In the second step, the medium is
subject to strain, ε, and a new impulse response is obtained. Finally, the impulse responses at both
steps, h(0, t) and h(ε, t), are cross-correlated.

2.3. Fourier and Short-Time Fourier Transforms

The filtering techniques developed in this paper use two transforms in order to analyze
the signals’ frequency content, namely the Fourier transform (FT) and the short time Fourier
transform (STFT) [40]. They are defined, respectively, as follow:

F{y(t)} = Y( f ) =
∫ ∞

−∞
y(t)e−j2π f tdt, (4)

SF{y(t)} = Y(τ, f ) =
∫ ∞

−∞
y(t)w(t− τ)e−j2π f tdt, (5)

where w(t) is a window function. Here, a Blackman window function is used, which is
defined by:

w(t) =

{
0.42 + 0.5 cos

( 2πt
T
)
+ 0.08 cos

(
4πt
T

)
, − T

2 ≤ t ≤ T
2

0, otherwise
, (6)

with T being the length of the window. For the signals treated here, as presented in
Section 4, the temporal length of the window, T, and the overlap length of consecutive
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windows were set to 50µs and 93% of the window length, respectively, since these values
showed good compromise between time and frequency resolution.

These transforms provide information on the frequency content of the acquired signal.
In the latter, the frequency content is analyzed as a function of time, τ, since only the
content inside the time window, w(t− τ), centered at the time instant τ, is considered. The
signal in the time domain can be recovered by the inverse Fourier and short-time Fourier
transforms [40].

3. Filtering Procedure for Synthesis of a New Reference Signal

In this work, the aforementioned strain monitoring process is modified to increase
the strain sensitivity of the signal y(ε, t) in Equation (3). This is accomplished by using a
modified reference signal which is synthesized through a phase filter that relies on the prior
knowledge of the system response at some non-zero strain state. The filtering technique is
performed as follows.

First, the impulse response signal under null strain, h(0, t), and under some non-zero
strain, ε̃ , h(ε̃, t), are acquired and addressed in the frequency domain, through one of the
transforms described in Section 2.3, here generically represented as T {·}:

H(0, χ) = T {h(0, t)} (7)

and

H(ε̃, χ) = T {h(ε̃, t)}, (8)

respectively, where χ is the transform variable, i.e., either χ = f for FT or χ = (τ, f ) for
STFT. Then, these two signals are cross-correlated, which is performed by multiplying
them in the transform domain:

Sε̃(χ) = H∗(0, χ)H(ε̃, χ), (9)

where the asterisk superscript means complex conjugate. Note that the phase of Sε̃(χ)
represents the phase shift between the two impulse responses, h(0, t) and h(ε̃, t), as a
function of χ. Considering that the strain-induced speed and path changes mainly affect
the phase of the received wave packets, and assuming that the major difference between
h(0, t) and h(ε̃, t) is caused by strain, it is interesting to analyze the phase of Sε̃(χ), which
presents high absolute values for the spectral components that are more affected by strain,
i.e., the more sensitive components. Based on this principle, one can define the φ-sensitive
coefficients as the ones whose phase of Sε̃(χ) is greater than φ. Therefore, a zero-one
function, Mφ,ε̃(χ), is built, accordingly:

Mφ,ε̃(χ) =

{
1, |∠Sε̃(χ)| ≥ φ

0, |∠Sε̃(χ)| < φ
. (10)

The actual filtering step consists of multiplying Mφ,ε̃(χ) by the spectrum of the original
reference signal under null strain:

Hφ,ε̃(χ) = Mφ,ε̃(χ)H(0, χ). (11)

This process creates a new signal, Hφ,ε̃(χ), in which the coefficients that were deemed
unfit, i.e., with low sensitivity, are eliminated. Lastly, Hφ,ε̃(χ) is transformed back to the
time-domain, by the inverse of the chosen transform:

hφ,ε̃(t) = T −1{Hφ,ε̃(χ)}. (12)
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The filtering process is summarized in Figure 2. This new time-domain signal is
used as reference for the original monitoring procedure, as explained in Section 2.1. More
precisely, hφ,ε̃(t) should be used instead of h(0, t) in Equation (3), which becomes:

yφ(ε, t) = hφ,ε̃(−t) ∗ h(ε, t). (13)

It is worth highlighting that the present method considers that the main cause of
phase-shifting is strain. However, temperature variation can also induce phase variations
since it changes the wave speed and propagation path [41,42]. In this paper, temperature
is assumed constant. Alternatively, the present method can, in principle, be applied in
scenarios where one intends to select the most temperature-sensitive components when
strain remains constant.

(a)

(b)

Figure 2. Schematic of the filtering procedure used to obtain the new φ-sensitive reference signal
based on the impulse response at some known strain ε̃: the overall procedure (a); and a detailed
diagram of the filter block (b).

Observing Equation (10), one can see that, when φ = 0◦, the original signal remains
unaltered, i.e., it is not filtered and Equation (13) is equivalent to Equation (3), whereas,
when φ = 180◦, all of the original signal is filtered out, thus Hφ,ε̃(χ) is nullified. That is,
the higher is the value of φ in Mφ,ε̃(χ) in Equation (10), the more sensitive to strain is the
focused signal, yφ(ε, t) in Equation (13). The choice for an adequate value of φ depends
on the system under study. Another parameter that affects the sensitivity of the technique
is the choice of the foreknown strain value, ε̃. If ε̃ is low, then the effect of strain on the
ultrasonic wave is less intense and the signal h(ε, t) is not too different from h(0, t). Thus,
if one takes two values of ε̃, namely low and high values, for the same threshold angle, φ,
the former would, ideally, provide a filtered signal, hφ,ε̃(t), that is more sensitive to strain,
since the selected components present a phase shift of at least φ with low strain. In the next
section, results obtained with FT and STFT techniques for several threshold angles and
different foreknown strain are shown.

4. Results and Discussion

Experiments were performed with a pair of piezocomposite transducers in a 3-mm-
thick, 800-mm-long and 100-mm-wide aluminum plate where transmitter and receiver
were placed close to each end of the plate, separated by 700 mm. The plate is mounted
over a bridge structure where variable tensile stress along the plate’s length can be applied,
as schematically shown in Figure 3, following the setup used in [27]. Piezocomposite trans-
ducers were used due to their wider bandwidth, compared to conventional piezoelectric
ceramics. They were prepared following the standard dice and fill procedure [43] with a
0.65 mm thick PZ37 ceramic from Ferroperm [44] and widths of element and polymer of
0.1 and 0.04 mm, respectively, and 0.14 mm pitch. One ultrasonic transducer was used as
transmitter and the opposite as receiver.
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Figure 3. Experimental setup: (A,B) the transducers; (C) the fixing screws; (D) the threaded rod; (E)
the hex nut; and (F) the mounting frame.

An initial broadband pulse excites the transmitter generating several wave modes in
the plate which propagate until being received by the opposite transducer. Here, reflections
from the plate’s ends were received, due to the transducer positioning, which, to some
extent, increase the number of wave packets that arrive at the receiver. Figure 4 shows the
reference signal, h(0, t), acquired due to the first propagating step, its Fourier and short-
time Fourier transforms. The complex wave propagating phenomenon can be verified
in Figure 4a, as multiple wave packets arrive at different time instants, with different
frequency components. The cross-correlated focused signal under null strain, y(t), obtained
through Equation (3), is shown in Figure 5. As can be seen, it has a high main peak, which
concentrates a significant amount of the signal’s energy.
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Figure 4. Unfiltered reference signal, h(0, t), obtained in the time-domain (a); its FT (b); and its STFT (c).
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Figure 5. Unfiltered focused signal, y(t).

4.1. Fourier Transform Filter Implementation

The filtering technique is applied to the reference signal using initially the Fourier
transform. That is, the transform T is the Fourier transform and the transform variable χ is
the frequency. The function Mφ,ε̃( f ) is calculated with a reference strain value, ε̃, of about
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150 µε (where the unit µε is a short notation for a strain of µm/m) as per Equation (10),
and then used to compute the new reference, Hφ,ε̃( f ), according to Equation (11) and
Figure 2. To illustrate the influence of the angle threshold, φ, Figure 6 shows the Mφ,ε̃( f )
function calculated with two values of φ, namely φ = 15◦ and φ = 30◦. One can see that
they assume values zero or one, and, comparing their shapes, the Mφ,ε̃( f ) function with
φ = 30◦ (Figure 6b) is sparser around the unit because more frequency components are
nullified than the one obtained with φ = 15◦ (Figure 6a). This holds because there are fewer
components that are φ-sensitive to strain with a higher and more restrictive threshold.
Figure 7 shows the respective reference signals obtained with these two Mφ,ε̃( f ) functions
where amplitude is normalized with respect to the original signal, h(0, t). One can see that,
with a higher value of φ, more frequency components are filtered out by Mφ,ε̃( f ) according
to Figure 6. Consequently, the time-domain signal of the latter is less similar to the original
reference signal h(0, t), shown in Figures 4a and 7b, for the sake of comparison.
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Figure 6. Mφ,ε̃( f ) with φ = 15◦ (a) and φ = 30◦ (b) over a narrower frequency band. Note that it
assumes values zero or one, according to the phase difference between H(0, f ) and H(ε̃, f ).
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Figure 7. FT−filtered reference signals in the frequency domain, Hφ,ε̃( f ) (a,c,e) and in time domain
hφ,ε̃( f ) (b,d,f), with φ = 0◦ (a,b), φ = 15◦ (c,d), and φ = 30◦ (e,f). Amplitude is normalized with
respect to h(0, t).

The focused signals after filtering, yφ(0, t), with φ = 15◦ and φ = 30◦, are shown
in Figure 8b,c, respectively. Their amplitudes were normalized with respect to y(0, t)
(Figure 8a). One can see that their shapes were changed due to the filtering procedure
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when compared to the original focused signal, y(0, t). Furthermore, the focused signal
obtained with φ = 30◦ is clearly more altered than the one obtained with φ = 15◦, due
to the removal of more frequency components, as shown in Figure 7; those frequency
components were the ones recognized by Mφ,ε̃( f ) as low-sensitive with the corresponding
threshold φ. One can also notice that the signal level away from the focus instant is more
intense with φ = 30◦ than with φ = 15◦. That is, the former has a lower TREF.

-1
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[a
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.]

 = 0°
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0
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 = 15°
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.]
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(a)

(b)

(c)

Figure 8. FT−filtered focused signals with: (a) no filter; (b) φ = 15◦; and (c) φ = 30◦. Amplitude is
normalized with respect to yφ(0, t).

Figure 9 shows the behavior of peak amplitude decrease, in percent, as a function of
strain for the original and filtered procedure for one realization of a loading experiment. In
the former, the reference signal is h(0, t) (blue dots), whereas, in the latter, it is hφ,ε̃(t) with
φ = 30◦ (red dots). As can be seen, the filtering procedure made the focus peak amplitude
to decrease more as strain is imposed in the plate. To quantify the sensitivity, the angular
coefficient of a linear fit of the experimental peak decrease was calculated and is shown as
the continuous lines in Figure 9. These values are reported in Table 1, where the first row,
referred to φ = 0◦, presents the results obtained without any filtering. The sensitivity is
reported through the mean and standard deviation (std.) of the angular coefficient. These
values were calculated considering four loading experiment, where each one contains at
least five acquisitions for each evaluated strain value. The TREF values, in percent, for the
focused signal at null strain, shown in Figure 8, are also reported in Table 1. As can be seen,
the increase of sensitivity comes at a price, as the energy focusing efficiency decreased,
i.e., lower TREF was obtained. It is worth noting that the TREF values in Table 1 were
computed considering the whole acquisition window shown in Figures 5 and 8 to calculate
the energy in the denominator of Equation (2). This time window encompasses almost all
the non-negligible amplitude. If a narrower acquisition window around the peak were
used, higher values would be found, but the same overall behavior with the increase of φ
would be obtained.
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Figure 9. Peak decrease as a function of strain for FT and STFT filtering. Symbols are experimental
measure and lines are their linear fit. Error bar stands for at least five repeated experimental
acquisitions at each strain level. Blue symbols and line indicate measurements without filtering
(φ = 0◦), red symbols and line indicate reference signal obtained with FT−filtering, and green
symbols and line indicate reference signal obtained with STFT−filtering. Both filtering methods were
calculated with φ = 30◦.

Table 1. Sensitivity and TREF for FT and STFT filtering.

φ
(deg.)

FT−Filtering STFT−Filtering

TREF
(%)

Peak Sensitivity
TREF

(%)

Peak Sensitivity

Mean
(%/µε)

Std.
(%/µε)

Mean
(%/µε)

Std.
(%/µε)

0◦ 11.96 0.1261 0.0009 11.96 0.1261 0.0009

15◦ 7.67 0.1345 0.0011 8.46 0.1369 0.0010

30◦ 4.69 0.1635 0.0016 6.28 0.2363 0.0020

60◦ 2.11 0.5064 0.0044 2.26 0.5074 0.0048

The amplitude sensitivity and the TREF behavior as a function of the threshold angle φ
are shown in Figure 10 by the continuous lines. One can see that, as φ increases, sensitivity
increases, until about 70◦ where it reaches about 0.6%/µε, approximately fivefold the
original value. However, TREF tends to decrease almost monotonically. At about 70◦,
TREF is just 1.25%, an extremely low value, meaning that the reference signal is so altered
that it no longer correlates with the system’s impulse response. Signals with very poor
energy concentration compromise monitoring through peak observation since it may not
produce a clearly identifiable main peak.
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Figure 10. Peak sensitivity (a) and TREF (b) as a function of φ for FT and STFT −filtering.
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4.2. Short-Time Fourier Transform Implementation

The filtering technique with the short-time Fourier transform is evaluated. Now, the
transform, T , is STFT and, consequently, the transform variable, χ, is the pair frequency
and window time instant. The received signal is composed of several dispersive waves
distributed over time and in the frequency spectrum, as shown in Figure 4c. Since each
wave packet may have different sensitivity to strain, a time–frequency representation, such
as the short-time Fourier transform, should better identify different sensitivities

Initially, the Mφ,ε̃(τ, f ) function is computed. Figure 11 shows it for φ = 15◦ and
φ = 30◦, where the white and black colors mean values zero and one, respectively. As φ
increases, fewer components are kept unfiltered (white spots), preserving only the ones
that present high sensitivity to strain. The same principle as the FT-based filter holds
here; the difference is that the components are identified in both frequency and time. The
original signal is then filtered with the zero-one function, Mφ,ε̃(τ, f ), in order to eliminate
the components that present low phase shift, resulting in the spectrum shown in Figure 12.
The filtering technique has clearly altered the signal’s spectrum and, consequently, the
time-domain signal.
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Figure 11. Time–frequency representation of Mφ,ε̃(τ, f ) at: (a) φ = 15◦; and (b) φ = 30◦. Black and
white spots represent values zero and one, respectively.

Figure 12. STFT−filtered reference signals in time–frequency domain Hφ,ε̃(τ, f ) (a–c) and in the time
domain hφ,ε̃(t) (d–f), with φ = 0◦ (a,d), φ = 15◦ (b,e), and φ = 30◦ (c,f). Amplitude is normalized
with respect to h(0, t).

Figure 13b,c shows the new focused signal, yφ(0, t), obtained with the STFT-based
filter. Comparing it with Figure 8, one can see that the signal’s shape is altered differently
than with the Fourier transform filter, due to the different nature of both filtering procedures.
The one based on STFT is able to discriminate different wave packets that share the same
frequency. As a consequence, with the same value of φ, more components can be selected
with the STFT-based filter compared to the FT-based filter. This also suggests that the
TREF should be higher since more components can participate in the focusing. One can
see that the signal level away from focus is indeed more intense when yφ(0, t) is obtained
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with FT-based filter than with the STFT one. Table 1 summarizes the TREF for several
values of φ.
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Figure 13. STFT−filtered focused signals at: (a) no filter; (b) φ = 15◦; and (c) φ = 30◦. Amplitude is
normalized related to yφ(0, t)

Figure 9 shows the amplitude reduction as a function of strain with STFT-based
filtering for φ = 30◦ (green dots). Table 1 summarizes the sensitivity for the same threshold
angle as in the FT case. The STFT-filter technique presents better results than the FT-
filter one because it provides higher TREF and sensitivity for the same threshold angles.
Figure 10 shows the behavior of the peak reduction sensitivity and TREF as a function
of φ with dashed lines. As can be seen, the TREF with STFT approach is greater than or
equal to the FT approach, and the sensitivity is higher within the interval of φ from 20◦

to 60◦, which is a region where TREF has not decreased severely, and thus a more useful
region. At φ = 30◦, the sensitivity with the STFT-based filter was 44.5% higher than with
the FT-based one, the greatest relative difference between the techniques in this interval
and about twice the sensitivity of the original procedure. In addition, the STFT technique
presents a much smoother TREF and sensitivity behavior than the FT one.

It is worth highlighting that common structural components are usually less simplistic
than the experimental setup used here, presenting bolts, rivets, and welds, among other
features. Those features increase the complexity of the wave propagation causing scat-
tering [17] and mode conversion [18,19], for instance, which consequently increases the
number of wave packets in the received signal with possibly different sensitivities to strain,
which in turn can potentially increase the effectiveness of the technique.

4.3. Dependence on the Reference Strain Level, ε̃

Up to this point, the presented results used the foreknown strain value, ε̃, as the
maximum available strain from the experiments, i.e., ε̃ = εmax ≈ 150µε. The proposed
technique can, however, use any foreknown strain level. In this section, the effect of taking
a different reference strain is evaluated by using a lower value: ε̃ = εmin ≈ 20µε.

Figure 14 exemplifies the Mφ,ε̃(τ, f ) function for the STFT-based filter with ε̃ = εmin
and ε̃ = εmax, where the phase threshold in all cases is φ = 10◦. As can be seen, many fewer
components were kept with ε̃ = εmin. This happens because the φ-sensitive components
with lower foreknown strain are actually more sensitive than with a higher reference strain
since they present the same amount of phase shifting but relative to a lower strain value.
As a consequence, the focused signals yφ(ε, t) obtained with ε̃ = εmin are expected to be
more affected by strain, i.e., more sensitive, than the ones obtained with greater reference
strain state. However, as more components are nullified, TREF should decrease more. This
behavior can be verified in Figure 15 where the peak sensitivity and TREF as a function
of φ for the STFT-based filter with ε̃ = εmin and ε̃ = εmax are compared. Clearly, the peak
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sensitivity increases more rapidly with ε̃ = εmin, while TREF becomes virtually zero from
about φ = 20◦, which only happens with ε̃ = εmax from about φ = 70◦.
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Figure 14. Time–frequency representation of Mφ,ε̃(τ, f ), with (a) ε̃ = εmax and ε̃ = εmin (b), at
φ = 10◦. Black and white spots represent values zero and one, respectively.
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Figure 15. Peak sensitivity (a) and TREF (b) as a function of φ with ε̃ = εmin, continuous lines, and
ε̃ = εmax, dashed lines, for the STFT−based filter.

5. Conclusions

It was possible to identify the frequency components in the reference signal that
are most affected by strain through their phase shift compared to a foreknown impulse
response under non-zero strain. Then, a filtering procedure was proposed to create a
new reference signal without the components that are less sensitive to strain, based on
either the Fourier or short-time Fourier transforms. The former analyzes the phase of
each frequency component considering the whole signal, whereas the latter considers the
phase shift within time-windows. Both filtering techniques implemented in this study
were able to increase the sensitivity to strain on the cross-correlated signal. However, an
important tradeoff is the decrease of the energy concentration due to the use of the new
reference signal.

The STFT-based filter provides a lower decrease of the focusing capability and the
sensitivity increased up to about fivefold considering all φ range or twice within an interval
that does not produce poorly focused signals. The better performance of the time–frequency
implementation was due to the ability to distinguish wave packets that arrive at different
time instants and share the same frequency, typically found at multimodal and reverberant
media, such as the one adopted here. The proposed technique can use in principle any
foreknown strain state, ε̃. Here, two values were analyzed, namely low and high strain
values. If ε̃ is low, then, for the same threshold angle, the synthesized signal is more
sensitive and can produce very low TREF values. Thus, whenever available, a higher strain
state should be used since a higher ε̃ makes the technique depend less abruptly on φ. It is
worth highlighting that the need for a foreknown strain state is an intrinsic drawback of the
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proposed technique. However, the main objective here is to assess whether the sensitivity
of the focused signal could be altered and how the proposed procedure is affected by the
choice of the parameters and nature of the adopted transform.

The results presented in this paper show that, in reverberant multimodal media, the
phase of the signal retains much of the information on the medium strain and that a time–
frequency representation is a more suitable analysis tool due to the nature of the signal,
which is composed of several waves affected differently by strain and arriving over time
with different frequency. The present technique could alternatively be used to analyze the
influence of other phase-shifting factors, such as temperature, on the signal components,
provided that there are no other relevant sources for phase variation.
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