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Abstract

We solve optimal stopping problems for an oscillating Brownian motion, i.e. a diffusion
with positive piecewise constant volatility changing at the point x = 0. Let σ1 and
σ2 denote the volatilities on the negative and positive half-lines, respectively. Our
main result is that continuation region of the optimal stopping problem with reward
((1 + x)+)2 can be disconnected for some values of the discount rate when 2σ2

1 < σ2
2 .

Based on the fact that the skew Brownian motion in natural scale is an oscillating
Brownian motion, the obtained results are translated into corresponding results for
the skew Brownian motion.
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1 Introduction

The optimal stopping problems of diffusions with exceptional points have attracted
interest in recent years. These include cases where the underlying diffusion has sticky
points, skew points, or discontinuities in the diffusion coefficients. One of the first
findings is that in the presence of sticky points the classical smooth fit principle does
not necessarily hold, even for differentiable payoff functions (as found in Crocce and
Mordecki [4] and Salminen and Ta [19]). A second finding is that if the diffusion has a
skew point, it can be the case that this point is in the continuation region for all discount
values, as found by Alvarez and Salminen [1] and Presman [16]. A third one is that the
continuation region in these cases can be disconnected, as observed in [1] for the skew
Brownian motion, and also found recently by Mordecki and Salminen [12] for a diffusion
with discontinuous drift and payoff function (1 + x)+. General verification results for
diffusions with discontinuous coefficients were obtained by Rüschendorf and Urusov [17].
An exposition of the general theory of optimal stopping (including historical comments)
can be found in Shiryaev [20] and Peskir and Shiryaev [15].

In this paper the focus is on the case when the underlying diffusion has discontinuous
infinitesimal variance. We then consider the optimal stopping problem for the oscillating
Brownian motion (OBM), a diffusion with positive piecewise constant volatility changing
at the origin. For details and further results on OBM, see Keilson and Wellner [7],
Lejay and Pigato [10], and the references therein. Our main results are the following:

*Universidad de la Repúbica, Facultad de Ciencias, Centro de Matemática, Iguá 4225, 11400, Montevideo,
Uruguay. E-mail: mordecki@cmat.edu.uy

†Åbo Akademi University, Faculty of Science and Engineering, FIN-20500 Åbo, Finland. E-mail: phsalmin@
abo.fi

https://doi.org/10.1214/19-ECP250
http://www.imstat.org/ecp/
mailto:mordecki@cmat.edu.uy
mailto:phsalmin@abo.fi
mailto:phsalmin@abo.fi


Optimal stopping of oscillating Brownian motion

Firstly, for the payoff (1 + x)+ the solution of the optimal stopping problem for the
OBM is one sided for all values of the parameters, but for the payoff ((1 + x)+)2 the
continuation region is disconnected for some values of the parameters. Hence, this
latter situation is similar to the one in [12]. Secondly, based on the fact that the skew
Brownian motion (SBM) in natural scale is an OBM, we obtain a result that connects the
solutions of the respective optimal stopping problems for SBM and OBM, finding that
the non-differentiability of the scale function of SBM at the origin plays a key role in
understanding some of the phenomena that appear in the solutions of these problems.

2 Diffusions and optimal stopping

Consider a conservative and regular one-dimensional (or linear) diffusion X = (Xt)t≥0
taking values in R, in the sense of Itô and McKean [6] (see also Borodin and Salminen
[2]). Let Px and Ex denote the probability and the expectation associated with X when
starting from x, respectively; m denotes the speed measure and S the scale function.
For r ≥ 0 let ϕr (ψr) be the decreasing (increasing) positive fundamental solution of the
generalized ODE

d

dm

d

dS
u = ru, (2.1)

satisfying the appropriate boundary conditions (see [2] II.10 p. 18). Denote byM the
set of all stopping times in the filtration (Ft)t≥0, the usual augmentation of the natural
filtration generated by X. Given a continuous reward function g : R → [0,∞) and a
discount factor r ≥ 0, consider the optimal stopping problem consisting in finding a
function Vr and a stopping time τ∗ ∈M, such that

Vr(x) = Ex[e−rτ
∗
g(Xτ∗)] = sup

τ∈M
Ex[e−rτg(Xτ )], (2.2)

where on the set {τ =∞}

e−rτg(Xτ ) := lim sup
t→∞

e−rtg(Xt).

The value function Vr and the optimal stopping time τ∗ constitute the solution of the
problem. The optimal stopping time τ∗ in (2.2), can be characterized (see Theorem 3,
Section 3.3 in [20]) as the first entrance time into the stopping region

Γr := {x : Vr(x) = g(x)}. (2.3)

The set Cr := R \ Γr is called the continuation region.

Our main tools to solve the optimal stopping problem for OBM are the representation
theory for excessive functions, and the following two results from the theory of optimal
stopping. The first one (Theorem 2.1) — formulated here for a left boundary point of the
stopping region — is the smooth fit theorem, proof of which can be found in [18] or [14];
the second one (Proposition 2.2) is a verification result, for the proof see Corollary on p.
124 in [20].

Theorem 2.1. Let z be a left boundary point of Γr, i.e., [z, z+ε1) ⊂ Γr and (z−ε2, z) ⊂ Cr
for some positive ε1 and ε2. Assume that the reward function g and the fundamental
solutions ϕr and ψr are differentiable at z. Then the value function Vr in (2.2) is
differentiable at z and it holds V ′r (z) = g′(z).

Proposition 2.2. Let A ⊂ R be a nonempty Borel subset of R and

HA := inf{t : Xt ∈ A}.
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Optimal stopping of oscillating Brownian motion

Assume that the function
V̂ (x) := Ex

[
e−r HAg(XHA

)
]

is r-excessive and dominates g. Then V̂ coincides with the value function of OSP (2.2)
and HA is an optimal stopping time.

3 Oscillating Brownian motion

Consider the diffusion satisfying the stochastic differential equation

Xt = x+

∫ t

0

σ(Xs)dWs,

where

σ(x) =

{
σ1, x < 0,

σ2, x ≥ 0,

σ1 > 0, σ2 > 0, and (Wt)t≥0 is a standard Brownian motion. The diffusion X is called an
oscillating Brownian motion (OBM). Notice that this process is in natural scale, i.e. the
scale function is S(x) = x, and the speed measure is

m(dx) =

{
(2/σ2

1)dx, x < 0,

(2/σ2
2)dx, x > 0.

(by definition there is no mass at x = 0). Let

λ±1 = ±
√

2r

σ1
, λ±2 = ±

√
2r

σ2
.

The decreasing fundamental solution is

ϕr(x) =

{
A1 exp(λ−1 x) +A2 exp(λ+1 x), x < 0,

exp(λ−2 x), x ≥ 0,
(3.1)

where the constants A1 and A2 are determined so that ϕr is continuous and differentiable
at 0. Hence,

A1 =
λ+1 − λ

−
2

λ+1 − λ
−
1

=
1 + σ1/σ2

2
, A2 =

λ−2 − λ
−
1

λ+1 − λ
−
1

=
1− σ1/σ2

2
.

Analogously, the increasing solution is

ψr(x) =

{
exp(λ+1 x), x < 0,

B1 exp(λ+2 x) +B2 exp(λ−2 x), x ≥ 0,
(3.2)

with

B1 =
λ+1 − λ

−
2

λ+2 − λ
−
2

=
1 + σ2/σ1

2
, B2 =

λ+2 − λ
+
1

λ+2 − λ
−
2

=
1− σ2/σ1

2
.

4 Optimal stopping of OBM

We first analyze the optimal stopping problem (2.2) for the diffusion introduced above
and the reward function

g1(x) =

{
0, x ≤ −1,

1 + x, x > −1.

The following result shows that the solution of this problem is one sided.
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Optimal stopping of oscillating Brownian motion

Proposition 4.1. Consider the OSP problem (2.2) with payoff g1. For all values of r > 0,
σ1 and σ2 the continuation region is given by

Cr = (−∞, c),

where c = c(r) > −1 is the unique solution of the equation

ψ′r(x)(1 + x)− ψr(x) = 0. (4.1)

Furthermore
2r S σ2

1 ⇒ c(r) T 0. (4.2)

Proof. To prove the first statement, consider for x > −1 the functions (cf. [18])

H−(x) := ψ′r(x)g(x)− ψr(x)g′(x) = ψ′r(x)(1 + x)− ψr(x), (4.3)

H+(x) := ϕr(x)g′(x)− ϕ′r(x)g(x) = ϕr(x)− ϕ′r(x)(1 + x), (4.4)

and their derivatives which for x 6= 0 can be expressed as

H ′−(x) = m(x)
d

dm
H−(x) = m(x)ψr(x)

(
r(1 + x)− d

dm

d

dx
(1 + x)

)
= m(x)ψr(x)r(1 + x),

where m is the density of the speed measure, and, similarly,

H ′+(x) = −m(x)ϕr(x)r(1 + x),

where it is used that ϕr and ψr solve (2.1). Observe now that the function H− in (4.3)
has a unique positive root, since for x > −1 the derivative is strictly positive, H−(−1) =

−ψr(−1) < 0, and H−(x)→∞ as x→∞. Therefore, equation (4.1) has a unique solution
as claimed. The rest of the proof is standard, see for instance [18] or the detailed proof
of Proposition 4.2 below. Statement (4.2) follows since H−(0) =

√
2r/σ1 − 1.

A key rôle in the construction of the solution to the OSP is played by the sign of
the derivative of the function H− in (4.3). For a general payoff g, the derivative of the
corresponding function H has the same sign as the function

x 7→ rg(x)− d

dm

d

dS
g(x). (4.5)

We remark that this function appears in the expression for the density of the representing
measure of the smallest r-excessive majorant of g both in the Martin kernel approach (see
Proposition 3.3 in [18]) and in the Green kernel approach (see (5.11) in [12] or (4) in [3]).
It is also worth noting that this density can be traced back to formula (8.30) in [5], for
the cases when the limit therein can be interchanged with the integral. The monotonicity
of the function in (4.5) usually ensures a one-sided solution to the considered OSP. Since
we are interested in problems for which the solution is not one-sided, i.e., the stopping
set is unconnected, we focus on OSP with the payoff function

g2(x) =

{
(1 + x)2, x > −1,

0, x ≤ −1.
(4.6)

The sign of the function in (4.5) with this g2 can be seen from Figure 1. Possible
applications of these type of rewards include the pricing of perpetual power options.
There is a large literature on optimal stopping for power-like and polynomial rewards.
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Optimal stopping of oscillating Brownian motion

First contributions to this type of payoffs, for random walks and Lévy process where
given in [13] and [8], respectively.

We turn now to study the OSP (2.2) for OBM with 0 < σ1 ≤ σ2 and the reward
function g2 given in (4.6). In this situation it is seen that, for some specific values of
the parameters, the continuation region is disconnected. The approach to analyze this
problem is similar to the one in [12]. Let

G−(x) :=ψ′r(x)g2(x)− ψr(x)g′2(x)

=(1 + x) (ψ′r(x)(1 + x)− 2ψr(x)) , (4.7)

G+(x) :=ϕr(x)g′2(x)− ϕ′r(x)g2(x)

=2ϕr(x)(1 + x)− ϕ′r(x)(1 + x)2. (4.8)

These functions are used below to verify the excessivity of the proposed value function.
The derivatives for x > −1 and x 6= 0 are

G′−(x) = m(x)ψr(x)

{
r(1 + x)2 − σ2

1 , x < 0,

r(1 + x)2 − σ2
2 , x > 0,

(4.9)

G′+(x) = m(x)ϕr(x)

{
σ2
1 − r(1 + x)2, x < 0,

σ2
2 − r(1 + x)2, x > 0.

(4.10)
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Figure 1: The sign of the derivative G′− is ruled by the above depicted function r(1 +

x)2 − σ(x)2. Here the parameters are r = 1.5, σ1 = 1, σ2 = 2.

Proposition 4.2. In case 0 < r ≤ σ2
1 ≤ σ2

2 the continuation region for OSP (2.2) is given
by

Cr = (−∞, c),

where c = c(r) is the unique positive solution of the equation

ψ′r(x)(1 + x)− 2ψr(x) = 0, x ≥ −1. (4.11)

Proof. We show first that equation (4.11) has a unique positive solution. To this end,
consider for x > −1 the function G− defined in (4.7). The claim is equivalent with the
statement that G− has a unique positive zero. In fact, we claim a bit more; namely
that the function G− attains the global minimum at x0 := σ2/

√
r − 1 > 0, is negative

and decreasing for x ≤ x0, is increasing for x > x0, and has, therefore, a unique zero.
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Optimal stopping of oscillating Brownian motion

Analyzing G′− as given in (4.9), it is straightforward to deduce, since 0 < r ≤ σ2
1 ≤ σ2

2,
the claimed properties of G−.

Let

Hc := inf{t : Xt ≥ c},

where c is the unique solution of (4.11), and define

V̂ (x) := Ex
[
e−rHcg2(XHc

)
]

=


ψr(x)

ψr(c)
g2(c), x ≤ c,

g2(x), x ≥ c.
(4.12)

If V̂ is an r-excessive majorant of g2 it follows from Proposition 2.2 that V̂ is the value
function of OSP (2.2). The excessivity can be checked with the method based on the
representation theory of excessive functions (cf. [18] Section 3). This boils down to study
for x 6= −1 the functions

IV (x) := ψ′r(x)V̂ (x)− ψr(x)V̂ ′(x),

DV (x) := ϕr(x)V̂ ′(x)− V̂ (x)ϕ′r(x).

Clearly, IV (x) = 0 for x ≤ c and increasing for x > c. Notice that IV = G− on [c,+∞).
Studying the derivative (w.r.t. the speed measure) of DV it is easily seen that DV is
positive and decreasing to 0 on [c,+∞). Consequently, IV and DV induce a (probability)
measure which represents V̂ proving that V̂ is r-excessive. To prove that V̂ is a majorant
of g2 consider for −1 < x < c

V̂ (x) ≥ g2(x) ⇔ ψr(x)

g2(x)
≥ ψr(c)

g2(c)
.

The inequality on the right hand side holds since the derivative of ψr/g2 is G−(x) which
is negative for −1 < x < c, as is shown above.

If the volatilities are close enough the problem is one sided for all discount values.
This is made precise in the next result.

Proposition 4.3. In case 0 < σ2
1 ≤ σ2

2 ≤ 2σ2
1 the continuation region for the OSP (2.2) is

given by

Cr = (−∞, c),

where c = c(r) is the unique solution of equation (4.11). As r increases from 0 to +∞,
c(r) decreases monotonically from +∞ to −1. In particular, c(r) = 0 for r = 2σ2

1 .

Proof. If r ≤ σ2
1 the statement is the same as in Proposition 4.2. We assume next that

r ≥ σ2
2 . The proof in this case is very similar to the proof of Proposition 4.2. It can be seen

that G− attains the global minimum at x1 := σ1/
√
r − 1 < 0, is negative and decreasing

for x ≤ x1, is increasing for x > x1, and has, therefore, a unique zero. Consequently, this
root can be taken to be an optimal stopping point c = c(r) and the analogous function V̂
as in (4.12) can be proved to be the value of OSP (2.2). Finally, assume σ2

1 < r < σ2
2 ≤ 2σ2

1

In this case, G− has a local maximum at 0, which is negative since

G−(0) = ψ′r(0)− 2ψr(0) = λ+1 − 2 =

√
2r

σ1
− 2 ≤ 0. (4.13)

Clearly, G−(0) = 0 (and then c(r) = 0) when r = 2σ2
1. Hence, equation (4.11) has a

unique positive root and the proof can be completed as in the previous cases.
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Optimal stopping of oscillating Brownian motion

Proposition 4.4. Assume 0 < 2σ2
1 < σ2

2. For r ≥ 2σ2
1 there exist A and B such that the

function

F (x) :=

{
A exp(λ+1 x) +B exp(λ−1 x), x ≤ 0,

(1 + x)2, x ≥ 0,
(4.14)

satisfies the principle of smooth fit at 0, i.e., F ′(0−) = F ′(0+) = 2. The function F is
r-harmonic (and positive) on (−∞, 0) but not r-excessive if r < σ2

2. For r < 2σ2
1 the

coefficient B is negative and the function F (x)→ −∞ as x→ −∞ (and the function is
not r-excessive).

Proof. We study only the case r = r0 := 2σ2
1 and leave the details of the other cases to

the reader. In this case λ+1 =
√

2r/σ1 = 2, and, obviously,

F (x) :=

{
e2x, x ≤ 0,

(1 + x)2, x ≥ 0,

satisfies smooth fit at 0. Consequently, F is r0-harmonic (and positive) on (−∞, 0) and it
remains to prove that F is not r0-excessive. For this, consider the representing function
(this corresponds G− in (4.7))

x 7→ ψ′r0(x)F (x)− ψr0(x)F ′(x).

The claim is that this function is not non-decreasing. Indeed, differentiate w.r.t. the
speed measure to obtain

d

dm

(
ψ′r0(x)F (x)− ψr0(x)F ′(x)

)
= F (x)

d

dm

d

dx
ψr0(x)− ψr0(x)

d

dm

d

dx
F (x)

= ψr0(x)

{
0, x < 0,

r0(1 + x)2 − σ2
2 , x > 0.

Since r0 = 2σ2
1 < σ2

2 this derivative is negative, e.g., for small positive x-values; therefore,
F is not r0-excessive.

For the theorem to follow, which can be seen as our main result concerning OSP (2.2),
we need the following technical result.

Lemma 4.5. Consider a family {hr : R → [0,∞) ; r ∈ I} such that for each r ∈ I ⊂ R
the function hr is r-excessive. Assume that this family is dominated by a function ĥ (i.e.
hr ≤ ĥ) such that Ex(ĥ(Xt)) <∞ for all t ≥ 0 and x ∈ R. Then, if for some r0 the limit

lim
r→r0

hr(x)→ h0(x)

exists for all x ∈ R, the function h0 is r0-excessive.

Proof. Consider

Ex
[
e−r0th0(Xt)

]
= Ex

[
lim
r→r0

e−rthr(Xt)
]

= lim
r→r0

Ex
[
e−rthr(Xt)

]
≤ lim
r→r0

hr(x) = h0(x),

where in the second step we use the dominated convergence theorem which is applicable
since e−rthr(Xt) ≤ ĥ(Xt).
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Optimal stopping of oscillating Brownian motion

The theorem below states that if r ∈ (2σ2
1 , σ

2
2) but is close enough to σ2

2 then Cr has
a bubble (i.e. an isolated bounded interval in the continuation region). However, the
bubble disappears when r becomes larger than σ2

2 or tends to 2σ2
1.

Theorem 4.6. In case 0 < 2σ2
1 < σ2

2 there exists r0 ∈ (2σ2
1 , σ

2
2) with the following

properties:

(a) If r ∈ [r0, σ
2
2) the continuation region is given by

Cr = (−∞, c1) ∪ (c2, c3),

where ci = ci(r), i = 1, 2, 3, are such that −1 < c1 ≤ c2 ≤ 0 < c3. In particular, for
r = r0 it holds c1 = c2 < 0.

(b) If r ≥ σ2
2 the continuation region is explicitly given by

Cr = (−∞, c−),

where

c− = c−(r) =
2σ1√

2r
− 1 < 0,

i.e. c− is the unique solution of (4.11).

(c) If r < r0 the continuation region is given by

Cr = (−∞, c+),

where c+ = c+(r) > 0 is the unique solution of (4.11).

Proof. The proof of (b) is as the proof of Proposition 4.3 when r ≥ σ2
2. Notice, however,

that in the present case c(r) < 0 for all r ≥ σ2
2.

We consider next (c) in case r ≤ 2σ2
1. Studying G′− and G−(0) in (4.9) and (4.13)

respectively, it is seen, as in the proof of Proposition 4.2, that equation G−(x) = 0 has
for r < 2σ2

1 one (and only one) root ρ = ρ(r) > σ2/
√
r − 1 > 0. In case r = 2σ2

1 there are
two roots ρ1 = 0 and ρ2 > σ2/(

√
2σ1)− 1 > 0. Proceeding as in the proof of Proposition

4.2 it is seen that the stopping region is as claimed with c+ = ρ if r < 2σ2
1 and c+ = ρ2 if

r = 2σ2
1.

Finally we consider (a). Assume now that there does not exist a bubble for any
r ∈ [2σ2

1 , σ
2
2 ]. Then for all r ∈ [2σ2

1 , σ
2
2 ] we can find c = c(r) such that Γr = [c,+∞).

Knowing that c(r) > 0 for r = 2σ2
1 and c(r) < 0 for r = σ2

2 we remark first that there
does not exists r such that c(r) = 0. Indeed, by Theorem 2.1, the value should satisfy
the smooth fit principle at 0 but from Proposition 4.4 we know that such functions are
not r-excessive. Next, using Γr1 ⊆ Γr2 for r1 < r2 (cf. Proposition 1 in [12]) it is seen
that r 7→ c(r) is non-increasing, and has, hence, left and right limits. Consquently, there
exists a unique point r0 such that

ĉ+ := lim
r↑r0

c(r) > 0 and ĉ− := lim
r↓r0

c(r) < 0.

Under the assumption that there is no bubble the value function is of the form given in
(4.12), i.e.,

Vr(x) =

{
ψr(x) (1+c(r))2

ψr(c(r))
, x ≤ c(r),

(1 + x)2, x ≥ c(r).
(4.15)

= Ex
(
e−rHc (1 +XHc

)2
)
,
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Optimal stopping of oscillating Brownian motion

where Hc := inf{y : Xt ≥ c(r)}. For r̂ small enough, there exists an excessive majorant
hr̂, so that we can apply Proposition 4.5 with ĥ := hr̂, since Exe−r̂thr̂(Xt) ≤ hr̂(x) <∞.
Then, letting in (4.15) r ↑ r0 yields an r0-excessive function which by Proposition 2.2 is
the value of the corresponding OSP (2.2). Similarly, letting r ↓ r0 yields an r0-excessive
function which should also be the value of the same OSP. However, the functions are
clearly different and since the value is unique we have reached a contradiction showing
that there exists at least one bubble, i.e. a bounded open interval (x1, x2) ⊆ Cr with
endpoints x1 and x2 in the stopping set (see [12]). Proceeding similarly as in Proposition
6 in [12], it can be seen that if there is a bubble, there is at most one bubble, and this
contains the origin or the origin is its left end point. This completes the proof.

We end this section by considering the case σ2
1 ≥ σ2

2 with quadratic reward (4.6), and
show that the stopping region in this case is always one sided.

Proposition 4.7. Consider the OSP problem (2.2) for OBM with σ2
1 ≥ σ2

2, r > 0 and
g2(x) as given in (4.6). For all values of r > 0, the continuation region is given by

Cr = (−∞, c),

where c = c(r) > −1 is the unique solution of the equation (4.11). Furthermore

r S 2σ2
1 ⇒ c(r) T 0.

Proof. The proof follows the general lines of [18] developed in the previous proofs of
Propositions 4.1 and 4.2. Consider then the functions defined in (4.7) and (4.8), with
their respective derivatives in (4.9) and (4.10). As σ2

1 ≥ σ2
2 , the derivative G′−(x) changes

sign only once, from negative to positive. Hence, equation (4.11) has only one root
c(r) > −1, and the first claim is proved. For the second claim, notice that the root c(r)
equals 0 when r = 2σ2

1, the result then follows from the monotonicity of the function
c(r).

5 OSP for skew Brownian motion

Consider a skew Brownian motion (SBM) (X̂t)t≥0 with index β ∈ (0, 1) starting at
x̂ ∈ R (see [6], [22], [9]). This diffusion can be characterized by scale function

Ŝ(x) =

{
x/(2(1− β)), x < 0,

x/(2β), x ≥ 0,

and speed measure

m(dx) =

{
4(1− β)dx, x < 0,

4βdx, x ≥ 0.

It is known (see e.g. [10]) that (Ŝ(X̂t))t≥0
d
= (Xt)t≥0, i.e., the composition of SBM with

its scale function, has the same law as OBM with σ1 = 1/(2(1− β)) and σ2 = 1/(2β) and
starting point x = Ŝ(x̂). In other words, we can say that SBM in natural scale is OBM.
We use this relationship to obtain conclusions about the OSP problem (2.2). Given a
payoff function g : R→ [0,∞) we introduce the payoff function

ĝ(x) = (g ◦ Ŝ)(x). (5.1)

Due to the fact that Ŝ is not differentiable at the origin, both functions g and ĝ can not
be differentiable at the origin. The next result connects the optimal stopping problems
for OBM and SBM.
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Proposition 5.1. For β ∈ (0, 1) the optimal stopping problem (2.2) for OBM X with
parameters σ1 = 1/(2(1− β)), σ2 = 1/(2β) and continuous reward g has value function
V (x) and stopping region Γ if and only if the optimal stopping problem for SBM X̂ with
index β ∈ (0, 1) and reward ĝ in (5.1) has stopping region Γ̂ = Ŝ−1(Γ) and value function
V̂ (y) = V (Ŝ(y)).

Proof. It holds

V (x) = sup
τ
Ex
(
e−rτg(Xτ )

)
= sup

τ
Ex

(
e−rτ ĝ(Ŝ−1(Xτ ))

)
= sup

τ
EŜ−1(x)

(
e−rτ ĝ(X̂τ )

)
= V̂ (Ŝ−1(x)),

and this yields V̂ (y) = V (Ŝ(y)). Let Γ̂ = {y : ĝ(y) = V̂ (y)}, and consider

Ŝ(Γ̂) = {x : ∃y ∈ Γ̂ such that x = Ŝ(y)}

= {x : ĝ(Ŝ−1(x)) = V̂ (Ŝ−1(x))}
= {x : g(x) = V (x)} = Γ.

This concludes the proof.

From this proposition it follows that 0 /∈ Γ if and only if 0 /∈ Γ̂, because Ŝ(0) = 0.
Furthermore, Γ is disconnected if and only if Γ̂ is disconnected, as the function Ŝ is
strictly increasing and continuous.

Example 5.2. Consider the problem (2.2) for SBM with β > 1/2 and reward ĝ(x) =

(1 + x)+ (cf. [1]). The corresponding OSP for OBM has σ1 = 1/(2(1 − β)), σ2 = 1/(2β),
and reward

g(x) =

{
(1 + 2(1− β)x)+, x < 0,

1 + 2βx, x ≥ 0.
(5.2)

Notice that g′(0−) = 2(1− β) < 2β = g′(0+) (see Figure 2). As the scale function of OBM
is S(x) = x, any r-excessive function h satisfies (see p. 93 in [18])

h′(x−) ≥ h′(x+), for all x ∈ R. (5.3)

If 0 ∈ Γ for some r ≥ 0, then V (0) = g(0), hence V ′(0−) < V ′(0+) violating condition
(5.3). We conclude that 0 /∈ Γ for any value of r, hence 0 /∈ Γ̂ for any value of r for the
SBM problem. This is a particular case of the result obtained in Proposition 1 in [1].

6 Conclusions

In this paper we consider the optimal stopping problem for the oscillating Brownian
motion having a larger infinitesimal variance on the positive side than on the negative
side. Our main findings are that for the classical payoff

g1(x) = (1 + x)+

the solution is one-sided, that is, there exists an optimal threshold that can be determined
using different classical methods. Here we rely on equation (4.1), but, e.g., the principle
of smooth pasting can also be applied.

More interesting, when the reward is quadratic, i.e. has the form

g2(x) = ((1 + x)+)2,
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Figure 2: The reward g in (5.2) for OBM, with σ1 = 2 and σ2 = 2/3 (β = 3/4).

then for some values of the volatilities and the discount the optimal stopping region
becomes disconnected. Such results have previously been recorded in [1] for a skew
Brownian motion and in [12] for a diffusion with a piecewise constant drift changing at
zero.

A key rôle in the analysis is played by the representation theory of excessive functions
as discussed in [18]. This boils down to study the sign of a function that is the candidate
for the density of the representing measure of the r-excessive value of the problem.
This function involves the infinitesimal generator of the process. Since the generator
is a second order differential operator without a first order term the discontinuity of
the infinitesimal variance is not noticed in case of a linear payoff and the solution is
one-sided.

Our analysis also suggests that the phenomenon of the one-sided solution happens
only when the second derivative of the payoff vanishes at the discontinuity point. Con-
sequently, e.g., for a general power payoff gα(x) = ((1 + x)+)α, α 6= 1, a disconnected
stopping region can arise similarly as in the quadratic case.

The results in the present paper and in [12] show that if the drift and/or the diffusion
coefficient of a diffusion have discontinuities the stopping region could be disconnected
even for nice monotonic payoff functions, and special care should be taken when calcu-
lating optimal stopping rules. Such considerations may have also economical relevance
when applying the real options theory.

The concrete optimal stopping problem for diffusions with several discontinuities
both in the drift and the diffusion coefficient is technically challenging but, undoubtedly,
important. It is our hope that the joint analysis of the results obtained in [12] and in the
present paper would provide some necessary tools for further research.
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