
Draft Genome Sequence of the UV-Resistant Antarctic
Bacterium Sphingomonas sp. Strain UV9

Juan J. Marizcurrena,a Danilo Morales,a Pablo Smircich,b,c Susana Castro-Sowinskia,d

aSection Biochemistry, Faculty of Sciences, Universidad de la República, Iguá, Montevideo, Uruguay
bLaboratory of Molecular Interactions, Faculty of Sciences, Universidad de la República, Iguá, Montevideo, Uruguay
cDepartment of Genomics, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Montevideo, Uruguay
dMolecular Microbiology, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Montevideo, Uruguay

ABSTRACT We report the draft genome sequence of the Antarctic UV-resistant bac-
terium Sphingomonas sp. strain UV9. The strain has a genome size of 4.25 Mb, a
65.62% GC content, and 3,879 protein-coding sequences. Among others, genes en-
coding the resolving of the DNA damage produced by the UV irradiation were iden-
tified.

Bacteria from the genus Sphingomonas are Alphaproteobacteria (family Sphingomon-
adaceae) with 127 described species. They are found in a broad range of environ-

ments, such as soils, fresh and marine waters, and plants, and in humans acting as
opportunistic pathogens (1–6). Sphingomonas strains also colonize extreme environ-
ments, including Antarctica, volcano lakes, contaminated soils, and highly UV-irradiated
places (6–8). They are Gram-negative, rod-shaped, chemoheterotrophic, strictly aerobic,
and non-spore-forming bacteria (9).

This work reports the draft genome sequence of the UV-resistant bacterium Sphingomo-
nas sp. strain UV9. The isolation and growth conditions for UV9 were previously described
(7). Total DNA was extracted using the fungal/bacterial DNA miniprep purification kit (Zymo
Research, catalog number D6005). The library preparation was performed using the Accel-
NGS 2S PCR-free DNA library kit (Swift Biosciences, MI) and was sequenced at Macrogen
using the HiSeq 2000/2500 technology platform with 101-bp paired-end read strategy. At
least 13.7 million reads were obtained. Their quality was evaluated with FastQC (https://
www.bioinformatics.babraham.ac.uk/projects/fastqc/) and assembled de novo using
SPAdes (http://cab.spbu.ru/software/spades/) with the repeat resolution and mismatch
correction settings enabled. The draft genome consists of ca. 4.25 Mb, including 62
contigs of above 1,000 bp, with a GC content of 65.62% and an N50 contig length
of 1.26 Mb (L50 of 2 Mb) and 40� final coverage. The genome was annotated and
the functions of genes were predicted and compared using the Rapid Annotations
using Subsystems Technology (RAST) (10) and NCBI Prokaryotic Genome Annota-
tion Pipeline (PGAP) servers. The predicted genes were functionally categorized
using the SEED subsystems (11) at the RAST server. Proteins that conserve func-
tional domains were identified using the NCBI conserved domain search service
(CD-Search) (12).

The genome was predicted to have at least 3,879 protein-coding sequences (CDS)
(1,274 were considered hypothetical, and 1,750 CDSs were classified into 209 subsys-
tems), 50 tRNAs, 1 copy each of 23S rRNA-, 16S rRNA-, and 5S rRNA-encoding genes,
and 86 pseudogenes. UV9 has the genomic information for the production of three
photolyases, enzymes responsible for photorepairing the DNA damage caused by UV
irradiation (13). These include two photolyases that repair the cyclobutane pyrimidine
dimers (CPD-photolyase) and one that repairs 6,4 photoproducts (6,4-photolyase); both
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photoproducts halt RNA polymerase II during transcription or DNA polymerase during
replication (14). These enzymes may have different functional antenna chromophores,
8-hydroxy-7,8-didemethyl-5-deazariboflavin (MTHF) and/or 6,7-dimethyl-8-ribityllumazine
(DMRL), as the biosynthetic pathways were found. UV9 also shows a UvrABC system (14)
(excinuclease ABC), as is found in the gamma radiation-resistant Hymenobacter seden-
tarius (15) and Deinococcus swuensis (16) bacteria, and an ATP-dependent DNA helicase
UvrD/PcrA (essential during replication, recombination, and repair of UV damage) (17).
It also contains a copy of the radA gene (which fills a gap using the information from
the undamaged DNA strand) and the DNA mismatch repair proteins MutL/MutS (which
identify and correct errors made during the replication). UV9 has genetic information
for the synthesis of bacteriorhodopsin, a light-driven proton pump. Finally, UV9 harbors
heavy metal resistance genes, including those for cobalt, zinc, cadmium, chromium,
and arsenic, and employs the toxin-antitoxin system (RelEB and VapC), including
specific proteases such as Lon, ClpXP, or ClpAP that commonly degrade the antidote
(18). Thus, strain UV9 could be a model for studying bacterial UV resistance.

Data availability. This whole-genome shotgun project has been deposited at
DDBJ/ENA/GenBank under the accession number SCIN00000000. The version described
in this paper is version SCIN01000000.
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