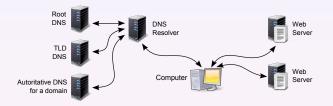
Detection of DNS Traffic Anomalies in Large Networks

Milan Čermák, Pavel Čeleda, Jan Vykopal


{cermak|celeda|vykopal}@ics.muni.cz

20th Eunice Open European Summer School and Conference 2014 1-5 September 2014, Rennes, France

Part I

Introduction

DNS Traffic Monitoring Benefits

- DNS packets are not encrypted.
- Knowledge of a queried domain can extend capabilities of current anomaly detection methods.
- Possibility to detect anomalies in a DNS traffic itself.

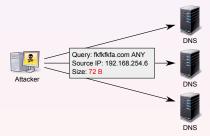
DNS Traffic Attacks and Anomalies

Malicious domains queries

- Botnet C&C (domain-flux and fast-flux domains),
- Malware spread,

• ...

- Amplification DDoS attacks
- And many others ...

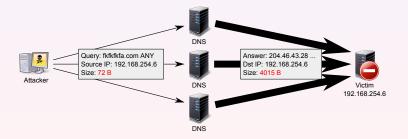

DNS Traffic Attacks and Anomalies

Malicious domains queries

- Botnet C&C (domain-flux and fast-flux domains),
- Malware spread,

• . . .

- Amplification DDoS attacks
- And many others ...


DNS Traffic Attacks and Anomalies

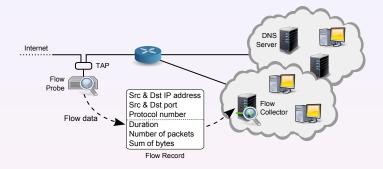
Malicious domains queries

- Botnet C&C (domain-flux and fast-flux domains),
- Malware spread,

• . . .

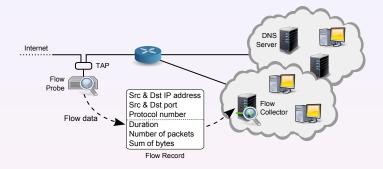
- Amplification DDoS attacks
- And many others ...

I How can DNS traffic be effectively analysed in large networks?


- I How can DNS traffic be effectively analysed in large networks?
- What are the differences in the analysis of DNS traffic using standard and extended flow records?

- I How can DNS traffic be effectively analysed in large networks?
- What are the differences in the analysis of DNS traffic using standard and extended flow records?
- 3 What are the advantages of combinating DNS traffic information with flow records for network anomaly detection?

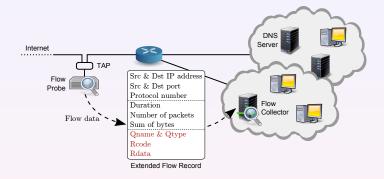
Part II


DNS Traffic Monitoring

Detection of DNS Traffic Anomalies in Large Networks

Standard Flow Record

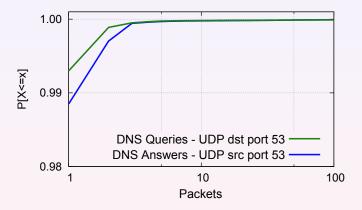
 $F = (IP_{src}, IP_{dst}, P_{src}, P_{dst}, Prot, T_{start}, T_{dur}, Pckts, Octs, Flags)$



Standard Flow Record

 $F = (IP_{src}, IP_{dst}, P_{src}, P_{dst}, Prot, T_{start}, T_{dur}, Pckts, Octs, Flags)$

DNS Flow Record


 $F_{DNS} = (Qname, Qtype, Rcode, Rdata)$

Extended Flow Record

 $F_{ext} = F \cdot F_{DNS} = (IP_{src}, IP_{dst}, P_{src}, P_{dst}, Prot, T_{start}, T_{dur}, Pckts, Octs, Flags, Qname, Qtype, Rcode, Rdata)$

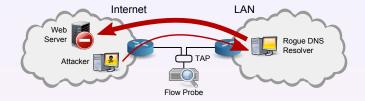
Cumulative Distribution Function of DNS Packets per Flow

Up to 99% of flows with port 53 contain only one packet. \Rightarrow Flow aggregation is not used.

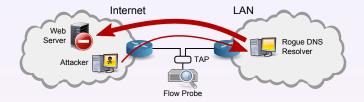
Extended Flow Expiration Algorithm

GenerateExtendedFlow (incoming packet)

- (1) Parse flow information F from incoming packet header.
- 2 Check if incoming packet contains a valid DNS header.
 - 3 Parse DNS packet and create a flow record $F_{ext} = F \cdot F_{DNS}$.
 - **4** Export a flow record F_{ext} without storing in a flow cache.
- 5 Otherwise update flow record F in a flow cache.


Main Contribution

• Significant reduction of flow cache memory occupation due to immediate export of a flow record.

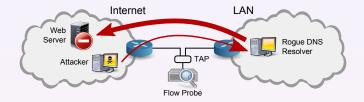

Part III

DNS Traffic Anomaly Detection Using Standard Flows

Detection of DNS Traffic Anomalies in Large Networks

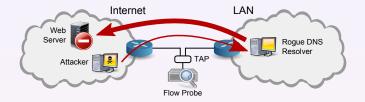
The attack is characterised by a large amount of same queries with spoofed IP address.

The attack is characterised by a large amount of same queries with spoofed IP address.


Detection Method

- Increasing count of flows, with high bytes-per-packet ratio and the source port 53.
- Access control lists reflecting network security policy.
- Usually threshold adjustment is required.

Part IV


DNS Traffic Anomaly Detection Using Extended Flows

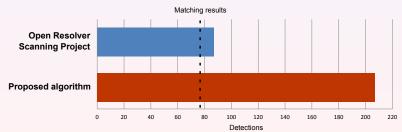
Detection of DNS Traffic Anomalies in Large Networks

Detection Method

 Malware infected device or misconfigured DNS resolver recognition instead of using basic flow statistics.

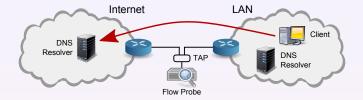
Detection Method

 Malware infected device or misconfigured DNS resolver recognition instead of using basic flow statistics.


 \Rightarrow The problem is to distinguish a regular DNS server responding to a query containing a local domain.

DetectOpenDNSResolver (DNS response)

- **1** Request all information about a domain F_{ext} . *Qname* in the response by ANY query type.
- 2 Check if the result contains at least one IP address from a local network.
 - 3 If yes, then add domain to a whitelist of local domains.
 - **④** Otherwise report F_{ext} . IP_{src} as open DNS resolver.


DetectOpenDNSResolver (DNS response)

- 1 Request all information about a domain F_{ext} . Qname in the response by ANY query type.
- 2 Check if the result contains at least one IP address from a local network.
 - 3 If yes, then add domain to a whitelist of local domains.
 - **④** Otherwise report F_{ext} . IP_{src} as open DNS resolver.

Detection Results

External DNS Resolver Usage Detection

Usage of an external DNS resolver may cause delay and also presents a security risk if the external DNS resolver responds with fraudulent IP addresses.

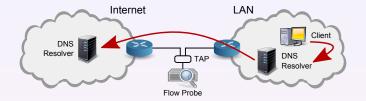
Detection Method

- In well-maintained networks is based on access control lists.
- In not well-maintained networks is a problem to distinguish between a client device and a local DNS resolver.

External DNS Resolver Usage Detection

DetectExternalDNS (DNS response)

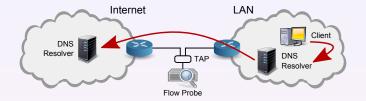
- 1 Get time of the response F_{ext} . T_{start} and IP address of queried domain F_{ext} . Rdata.
- 2 Check if client F_{ext}. IP_{dst} visits queried domain during F_{ext}. T_{start} + 2 sec.
 - If yes, then return client F_{ext}. IP_{dst} as device using external DNS resolver.


External DNS Resolver Usage Detection

DetectExternalDNS (DNS response)

- 1 Get time of the response F_{ext} . T_{start} and IP address of queried domain F_{ext} . Rdata.
- 2 Check if client F_{ext}. IP_{dst} visits queried domain during F_{ext}. T_{start} + 2 sec.
 - ③ If yes, then return client F_{ext}.IP_{dst} as device using external DNS resolver.

Detection Results



DNS queries generated by botnets (command and control center) or domains used for a malware spreading.

Detection Method

• Check all queried domains whether they are occurred in any malware domains blacklist.

DNS queries generated by botnets (command and control center) or domains used for a malware spreading.

Detection Method

• Check all queried domains whether they are occurred in any malware domains blacklist.

 \Rightarrow Testing all queried domains may be very time consuming.

GetMalwareAffectedDevices ()

- Detect device querying the domain F_{ext}. Qname = dns.msftncsi.com.
- 2 Select next N queried domains.
- 3 Exclude domains occurring in the Alexa top domains list.
- 4 Check the rest of domains if they are in blacklists.

GetMalwareAffectedDevices ()

- Detect device querying the domain F_{ext}. Qname = dns.msftncsi.com.
- Select next N queried domains.
- 3 Exclude domains occurring in the Alexa top domains list.
- 4 Check the rest of domains if they are in blacklists.

Detection Results

Domain	Number of blacklists
habble.ru	6
www.softosystem.com	7
cybeitrapp.info	5
telemetry.tanzuki.net	5
cybermindtool.info	4

Part V

Conclusion

- DNS information does not affect the privacy of users.
- IP flows represents optimal choice for a large scale network monitoring.
- Proposed updated DNS flow exporting algorithm saving a flow cache and exporting only necessary DNS packet fields.
- New network anomaly detection algorithms using DNS extended flows.

o https://is.muni.cz/publication/1131184?lang=en

Detection of DNS Traffic Anomalies in Large Networks

Milan Čermák cermak@ics.muni.cz Pavel Čeleda celeda@ics.muni.cz Jan Vykopal vykopal@ics.muni.cz