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ABSTRACT
LTL to Büchi automata (BA) translators are traditionally
optimized to produce automata with a small number of
states or a small number of non-deterministic states. In
this paper, we search for properties of Büchi automata that
really influence the performance of explicit model checkers.
We do that by manual analysis of several automata and by
experiments with common LTL-to-BA translators and re-
alistic verification tasks. As a result of these experiences,
we gain a better insight into the characteristics of automata
that work well with Spin.

Categories and Subject Descriptors
F.4.1 [Mathematical Logic and Formal Languages]:
Mathematical Logic—temporal logic; D.2.4 [Software En-
gineering]: Software/Program Verification—formal meth-
ods, model checking

General Terms
Theory, Algorithms, Verification

Keywords
Linear temporal logic, Büchi automata, explicit model
checking

1. INTRODUCTION
The automata-theoretic approach to explicit model check-

ing of Linear-time Temporal Logic (LTL) [25] can be bro-
ken down into four steps: (1) build the state space, i.e.,
an automaton S representing all the possible executions of
the system to be verified, (2) translate an LTL formula ϕ
representing a desired property of the system into a Büchi
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Automaton (BA) A¬ϕ that accepts all words violating ϕ,
(3) build the synchronous product S ⊗ A¬ϕ of these two
systems, and finally (4) check this product for emptiness. If
S ⊗A¬ϕ accepts a word, it is an execution of S that invali-
dates ϕ, i.e., a counterexample.

In a typical explicit model checker, the construction of
the state space S and its synchronous product with A¬ϕ are
done one-the-fly, driven by needs of an emptiness check pro-
cedure. This ensures that only the part of the state space
that is compatible with A¬ϕ will be constructed. Further,
the whole construction can be stopped as soon as the empti-
ness check finds a counterexample, i.e., a reachable cycle
containing an accepting state.

Here we focus on the influence of a property automaton
A¬ϕ on the steps (3) and (4) of a model checking procedure.
There are many algorithms and tools for translating an LTL
formula into a Büchi automaton, yet they produce various
language equivalent automata. For instance, Figure 4 shows
several Büchi automata for the LTL formula GFa ∧ GFb.
Should one be preferred over the others?

The intuition that a smaller A¬ϕ produces a smaller syn-
chronous product S ⊗ A¬ϕ is not always correct. More im-
portantly, it is not quite relevant: ultimately, only the part
of the product that is explored by the emptiness check does
matter. Some authors of automata optimizations or LTL-to-
BA translation improvements (e.g., Etessami and Holzmann
[10] and Dax et al. [5]) provide also running times of a se-
lected emptiness check executed on the product of obtained
automata and either random state spaces or few realistic
systems. Etessami and Holzmann [10] even complained that
the relation between the size of A¬ϕ and the running time
of the model checking procedure was difficult to predict, es-
pecially in the presence of a counterexample.

In order to select an ideal automaton for expressing a
formula, one should be aware of the inner workings of the
emptiness check procedure that will be used. Among the
various existing emptiness checks, we have decided to fo-
cus on the standard emptiness check of Spin, which is a
sequential algorithm based on a Nested Depth-First Search
(NDFS) [17].

We look at concrete examples of how formulae are trans-
lated differently by existing tools to gain a better insight
into the characteristics of automata that work well with
Spin. Our results should stimulate LTL-to-BA translation
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researchers to focus on another aspects of produced au-
tomata: not only their size and determinism.

The paper is organized as follows. The next section mo-
tivates our research by experimental results quantifying the
influence of property automata on the performance of the ex-
plicit model checker Spin. Section 3 describes standard ap-
proaches to automata optimization motivated by reduction
of the product size. In Section 4, we discuss how property
automata can affect the performance of the NDFS-based
emptiness check of Spin.

We assume familiarity with LTL and Büchi automata [3].

2. MOTIVATION BY EMPIRICAL DATA
First of all, we present experimental results showing how

important the impact of Büchi automata on Spin’s perfor-
mance can be. We use the following benchmark, software,
and hardware.

Benchmark. The considered benchmark set is based on
the set of realistic model checking tasks BEEM [19]. In
addition to the original 769 pairs of a model in Promela and a
corresponding specification formula we added, to each model
describing some mutual exclusion algorithm (altogether 23
instances of parametric models called anderson, peterson,
and bakery), three specification formulae:

1. GF(P0@CS) → GF(P0@NCS) meaning that if a pro-
cess P0 spends infinitely many steps in a critical sec-
tion, then it also spends infinitely many steps in a non-
critical section,

2. GF(P0@NCS) → GF(P0@CS) meaning that if a pro-
cess P0 spends infinitely many steps in a non-critical
section, then it also spends infinitely many steps in a
critical section,

3. FG¬
(
(P0@CS∧P1@CS)∨(P0@CS∧P2@CS)∨(P1@CS∧

P2@CS)
)

meaning that after finitely many steps, it
never happens that two of the processes P0, P1, and
P2 are in a critical section at the same time.

To sum up, we consider 769 + 3 · 23 = 838 verification
tasks. All the benchmarks and measurements presented in
this section are available at http://fi.muni.cz/~xstrejc/
publications/spin2014.tar.gz.

Software. We use five LTL-to-BA translators presented
in Table 1: Spin and LTL2BA are well established and popu-
lar translators, MoDeLLa was the first translator focusing on
determinism of produced automata, and LTL3BA and Spot
represent contemporary translators. The last two transla-
tors are used in several settings: the settings denoted by
LTL3BA (det) and Spot (det) aim to produce more deter-
ministic automata, while the setting called Spot (no jump)
is explained in Section 4. The same version of Spin (with
its default settings and the maximal search depth set to
100 000 000) is also used in all our experiments to perform all
model checking steps except the LTL-to-BA translation. In
particular, the partial-order reduction, which severely limits
the exploration of the state-space, is enabled.

Hardware. All computations are performed on an HP
DL980 G7 server with 8 eight-core 64-bit processors Intel
Xeon X7560 2.26GHz and 448 GiB DDR3 RAM. Each ex-
ecution of Spin has been restricted by 30 minutes timeout
and a memory limit of 20GiB.

Table 1: Considered LTL-to-BA translators, for ref-
erence.

tool version command

Spin [10, 16] 6.2.5 spin -f

LTL2BA [12] 1.1 ltl2ba -f

MoDeLLa [21] 1.5.9 mod2spin -f

LTL3BA [1] 1.0.2 ltl3ba -S -f

LTL3BA (det) ltl3ba -S -M -f

Spot [7] 1.2.4 ltl2tgba -s

Spot (det) ltl2tgba -s -D

Spot (no jump) ltl2tgba -s -x degen-lskip=0

Originally, we have measured the impact of Büchi au-
tomata on Spin by its running time. Unfortunately, our
computation server is shared with other users and its vari-
able workload has led to enormous dispersion of measured
running times. We have observed a running time difference
of over 300% on the same input. Hence, instead on running
times, we focus on the count of visited transitions, which is
a stable statistic produced directly by Spin. The number
of visited transitions accumulates the numbers of product
transitions explored in depth-first searches executed during
a run of the NDFS algorithm (see Section 4 for a brief de-
scription of NDFS). Hence, the number of visited transitions
should be proportional to the running time on a dedicated
machine.

For each of the 838 considered verification tasks, we trans-
late the negation of the formula by all the mentioned trans-
lators and we run Spin on the model with each of the ob-
tained automata. Translation of the negated formula to an
automaton is instantaneous (it takes less than 0.1s) in nearly
all cases: there is only one formula for which the translator
built in Spin needs a couple of seconds to finish. For 823
tasks, Spin successfully finishes the computation within the
given limits for at least two automata obtained by different
translation tools. For each such verification task, we find
the maximal and the minimal numbers of visited transitions
and we compute their ratio. Intuitively, the ratio represents
how many times slower Spin can be if we choose the worst
of the produced automata compared to the best of those.

Out of the 823 tasks, the ratio is exactly 1 only in 35
cases. In other words, in more than 95% of the considered
verification tasks, the choice of an LTL-to-BA translator has
an influence on running time of Spin.

In fact, the ratios significantly differ for verification tasks
where the model satisfies a given formula and for those with
a counterexample. Out of the 823 tasks, 731 tasks contain
counterexamples while 92 tasks do not. The ratios for these
two sets are presented by box-plots in Figure 1. One can
clearly see that the selection of a Büchi automaton has a
bigger impact on the verification tasks with counterexam-
ples (median ratio is over 5.6) than on the tasks without
counterexamples (median ratio is 1.4). Both sets contain
extreme cases where the ratios exceed 106.

Spin also provides statistics for stored states, which is the
total count of constructed and stored product states and
should be proportional to the memory consumed by Spin.
If we compute ratios of maximal and minimal numbers of
stored states, we get the ratio 1 in 68 out of the 823 tasks.

http://fi.muni.cz/~xstrejc/publications/spin2014.tar.gz
http://fi.muni.cz/~xstrejc/publications/spin2014.tar.gz
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Figure 1: Impact of the Büchi automata on model
checking. For each verification task, we compute ra-
tios between the maximum and minimum number
of transitions (or unique states) visited by Spin us-
ing all available Büchi automata. In each column, a
box spans between the first and third quartiles, and
is split by the median (whose value is given). The
whiskers show the range of ratios below the first and
above the third quartile that are not further away
from the quartiles than 1.5 times the interquartile
range. Other values are shown as outliers using cir-
cles.

On Figure 1 one can see that the situation is analogous to
ratios of visited transitions, but the ratios of stored states
are slightly lower.

To sum up, the choice of a Büchi automaton is an im-
portant issue substantially affecting both running time and
memory needed for the explicit model checking process im-
plemented in Spin.

3. STANDARD APPROACH TO OPTIMI-
ZATION: HELPING THE PRODUCT

Most of the work on optimizing the translation of LTL
formulae to Büchi automata has focused on building Büchi
automata with the smallest possible number of states [e.g.
4, 12, 22, 15, 24]. This is motivated by the observation that
the synchronous product of a Büchi automaton A with a
state space S can have the same number of states as their
Cartesian product in the worst case: |S ⊗ A| ≤ |S| × |A|.
Therefore, decreasing |A| lowers the upper bound on |S⊗A|.

However it is possible to build contrived examples where
a smaller |A| yield a larger product. For instance, removing
one state in the automaton A1 of Figure 2 doubles the size
of its product with the state space S of the same figure from
3 to 6 states. Of course, if S was a similar cycle of 2 states,
the smaller automaton A2 would give a smaller product.

Hence, one cannot hope to build an optimal property au-
tomaton A without a priori knowledge of the system S.

With the introduction of LBTT [23], a tool that checks the
output of different LTL-to-BA translators by doing many
cross-comparisons, including some products with random

>
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āā
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>a

ā
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a

a

a

(S)

Figure 2: Two BA for GFa and a state space. A1⊗S
has 3 states whereas A2⊗S has 6. Note that edges in
the automata are labelled by Boolean formulae over
atomic propositions, where ā means ¬a, > stands
for true, and ab̄ used later means a ∧ ¬b. Formally,
an edge labelled with a formula ρ represents all
the transitions that are labelled with a subset M
of atomic propositions such that M |= ρ.

state spaces, tool designers started to evaluate not only the
size of the produced automata, but also the size of their
products with random state spaces [e.g. 21, 8]. A recent
clone of LBTT called ltlcross [6] computes multiple prod-
ucts with random state spaces to lessen the luck factor. Se-
bastiani and Tonetta [21] used this “product with a ran-
dom state space” measurement to benchmark their trans-
lator MoDeLLa against other available translators to sup-
port the claim that producing “more deterministic” Büchi
automata might be more important than producing small
Büchi automata.

Benchmarks based on the size of products may look like
Table 2. The table shows that MoDeLLa generates au-
tomata that are slightly bigger than LTL2BA (its competitor
in 2003) but when looking at the product, MoDeLLa causes
fewer transitions to be built. If the number of transitions is
proportional to the running time of a model checker and the
number of states is proportional to its memory consumption,
MoDeLLa has effectively traded memory for speed.

MoDeLLa’s results do not appear to hold today: more re-
cent translators such as LTL3BA or the translator of Spot
can produce automata that are significantly smaller and
yield smaller products with random state spaces. These
translators also have options to produce more deterministic
automata, but the resulting products are not always better.

The right part of Table 2 compares the translators by
the sizes of products of produced automata with a fixed set
of random systems. For instance, one can observe that even
though Spot (6) produces the lowest accumulated number of
product transitions in this benchmark, there are 30 formulae
where the generated products have more transitions than
those obtained by LTL3BA (det) (5). Conversely, automata
from LTL3BA (det) produce products with more transitions
than those of Spot for 76 formulae.

It should be noted that optimizing A to minimize |S ⊗A|
is not equivalent to optimizing A for the model checking
procedure, because the product S ⊗ A is constructed on-
the-fly by most emptiness check algorithms. An emptiness
check may explore a part of the product, and may explore
it several times. Ultimately, any change to A should really
be measured only by its effect on the model checker used.
Such an evaluation was done for instance by Dax et al. [5]:
in addition to explaining how to build minimal weak de-
terministic Büchi automata (WDBA) for a subclass of LTL,



Table 2: Translation of 178 formulae from the literature [9, 22, 11] using different LTL-to-BA translators,
with a timeout of 60 seconds. Column n indicates how many translations are successful within the allocated
time. The automata columns show accumulated values of standard automata characteristics for all success-
ful translations. Column ndst gives the number of non-deterministic states in the automata. All produced
automata are synchronized with the same 100 random systems, and the median number of states and transi-
tions of these products is kept. The products columns represent the medians accumulated over all successful
translations. The right-most part of the table counts the number of formulae for which the translator on the
row produces an automaton with higher median number of transitions in the products that the translator of
the column.

automata products cases with product trans bigger than...

n states ndst edges trans states trans (1) (2) (3) (4) (5) (6) (7) (8)

(1) Spin 161 1739 1474 9318 46252 260934 8892105 0 102 143 107 150 150 150 146
(2) LTL2BA 178 1003 802 3360 30159 191668 5556159 5 0 137 49 161 157 156 142
(3) MoDeLLa 178 1297 647 4311 23874 216938 4193567 15 33 0 41 110 116 114 91
(4) LTL3BA 178 795 595 2209 21240 151373 4273646 0 23 126 0 149 153 152 140
(5) LTL3BA (det) 178 830 326 2405 14414 155716 2901474 0 0 10 5 0 76 75 63
(6) Spot 178 657 94 1615 10304 127792 2326271 1 6 15 5 30 0 1 1
(7) Spot (det) 178 662 88 1639 10414 128178 2328422 1 7 17 6 33 4 0 0
(8) Spot (no jump) 178 785 104 1874 12273 152592 2719360 12 28 40 27 70 61 57 0

they showed that their minimal WDBA are smaller than the
non-deterministic BA produced by other translators. They
also show that they improved the running times of Spin on
a few verification tasks.1

We study how Spin’s emptiness check can be helped by
changing A in the next section. Improving the size of the
product is one way to improve the performance of Spin (as
the example of Section 4.5 illustrates), but there are also
other aspects. For example, the location of accepting states
have an influence too.

4. ANOTHER VIEW TO OPTIMIZATION:
HELPING THE EMPTINESS CHECK

4.1 Emptiness Checks with Nested DFS
To check the emptiness of S ⊗A¬ϕ, one should search for

a cycle that is reachable from the initial state and that con-
tains at least one accepting state. The emptiness check pro-
cedure used in Spin by default is based on two nested depth-
first searches [17]: the main DFS, which we shall call blue,
explores the product (on-the-fly) and every time it would
backtrack from an accepting state s (i.e., all successors of
s have been explored by the blue DFS) it starts a second,
red DFS from s. If the red DFS reaches any state on the
blue DFS search stack then a reachable and accepting cycle
is found (since s is reachable from all states on the blue DFS
search stack) and the algorithm reports it as a counterexam-
ple. Otherwise, the red DFS terminates and the blue DFS
can continue. The two DFS always ignore states that have
been completely explored by an instance of the red DFS, so
a state is never visited more than twice.

As an extra optimization, if the blue DFS hits its own
search stack by following a transition that is either going to
or coming from an accepting state [13, 20], then an accepting

1We omitted their tool from our benchmark because (1) it
only supports a subset of LTL, and (2) their optimization is
implemented in Spot and both tools would therefore return
the same automata. Besides, the subset of LTL does not
include the formulae studied in Sections 4.3 and 4.5.

a ā

ā(B1)

a ā

ā(B2)

Figure 3: Automata for a ∧ G(a → X(ā ∧ X(ā ∧ Xa))).
B1 is inherently weak, B2 is weak.

cycle can be reported without even starting any red DFS.
This can be effectively applied only on products with an
accepting cycle.

When a counterexample exists in the product, the empti-
ness check may report it more or less rapidly depending on
the order in which it has explored the transitions of the
product. With any luck, the first transition selected at each
step of the DFS will lead to an accepting cycle. Conversely,
the first transitions followed might lead to a huge compo-
nent of the product that just turns out to be a dead-end,
and from which the emptiness check has to backtrack before
finding the counterexample. As the selected transition order
in S ⊗ A¬ϕ depends on the order of the transitions in the
property automaton A¬ϕ, this explains some of the huge dif-
ferences noticed in Figure 1. Note that previous attempts to
explore reordering of the transitions of A to help the empti-
ness check have been inconclusive [14], so we did not pursue
this direction. (Furthermore the swarming techniques [18]
used nowadays makes this topic even less attractive: in these
approaches several threads compete to find a counterexam-
ple in S⊗A¬ϕ using a different, random transition order for
A¬ϕ.)

4.2 Weak Automata
The optimization we just described, where the blue DFS

can detect an accepting cycle without running a red DFS if
it hits its own stack on (or from) an accepting state, suggests
that of the two automata of Figure 3, B2 should be preferred.
Indeed when the blue DFS reaches a state of its search stack
in the product S⊗B2, it is guaranteed to come from (and go
to) an accepting state, detecting the accepting cycle without



starting a red DFS. In the product S ⊗B1 we might be less
lucky if we close the cycle with the transition at the bottom
of B1: in that case the product has to be explored a second
time by the red DFS.

This example actually illustrates the distinction between
weak automata and inherently weak automata. An inher-
ently weak automaton is an automaton in which strongly
connected components (SCCs) cannot mix accepting cycles
with non-accepting cycles. A weak automaton is an inher-
ently weak automaton in which the states of each SCC are ei-
ther all accepting or all non-accepting. Any inherently weak
automaton can evidently be transformed into an equivalent
weak automaton [2].

Having more accepting states is not necessarily good from
the point of view of the NDFS since a red DFS is started
every time the blue DFS backtracks from an accepting state.
However if an entire SCC is non-accepting, the first red DFS
will cover it fully, and each successive red DFS will immedi-
ately return because it attempts to process a state that has
already been seen by a previous red DFS.

4.3 Automata for GFa ∧ GFb

Figure 4 shows six different Büchi automata for the for-
mula GFa∧GFb produced by the considered tools. Note that
if you ignore the exchange of a and b (which have symmetric
purpose in the original formula), automata C4 and C5 differ
only in the initial state and thus cannot be distinguished by
any determinism-based or size-based metrics.

Table 3 captures data about Spin’s runs on a model of the
bakery mutual exclusion protocol taken from BEEM and the
property automata of Figure 4. The propositions a and b
describe situations that (different) pairs of processes are in
the critical section at the same time. The protocol prevents
such situation so neither a nor b is ever true in the model.
We observe that in case of products with automata C5 and C6
(both produced by Spot), Spin explores each product twice
because it triggers the red DFS from the initial state of the
product. This is not the case for the other automata. This
yields the following hypothesis: When we suppose that there
is no accepting cycle in the product, the automaton should
keep its accepting states as far as possible from the initial
state. The further they are, the more chance we have that
the product will never reach the state, and therefore no red
DFS will be triggered.

For instance, if we ignore the renaming of atomic propo-
sitions, the automaton C3 could be obtained from C6 by un-
rolling the accepting cycle by one step, so that the cycle is
entered on a non-accepting state, and the accepting state is
actually the last one visited on the cycle.2 This superfluous
initial state only makes a negligible difference on the prod-
uct, and does not incur any noticeable difference for Spin
compared to C1, C2, or C4.

Similarly, if we do not expect an accepting cycle in the
product, the inherently weak automaton B1 of Figure 3 could
be changed by letting the right-most state be accepting in-
stead of the middle one.

2This is not actually the reason why MoDeLLa produces C3.
Internally, MoDeLLa translates the formula into a Büchi au-
tomaton with labels on states and has to deal with possibly
multiple initial states. When it outputs an automaton, it
always adds an extra initial state with copies of the outgo-
ing transitions of all the original initial states, even if the
original automaton had only one initial state. See also D3

of Figure 6 where s0 and s2 were the original initial states.

4.4 Translation Differences
Most LTL-to-BA translators follow a multi-steps proce-

dure where they first translate a given LTL formula into
a generalized Büchi automaton, often with transition-based
acceptance (TGBA), such as those of Figure 5. Translators
then degeneralize these automata to obtain a BA. Other sim-
plification procedures may be applied to these automata,
but it turns out that the last three automata of Figure 4
were all obtained by degeneralizing G1 in Figure 5, and their
differences are due to choices made in the degeneralization
procedure.

When degeneralizing a TGBA G with m acceptance sets
F1, . . . , Fm (the and on the Figure 5), the structure of
G is cloned m + 1 times. Let us call each of these clones
a level. For each state of level i ≤ m, all transitions that
were originally in Fi have their destination redirected to the
next level, the destination of all transitions in level m + 1
are redirected to level 1. Finally, all the states of the level
m + 1 are made accepting. The initial state can be put on
any level.

This procedure ensures that words accepted by the degen-
eralized automaton correspond to words recognized by runs
of G that visit all acceptance sets infinitely often. Accepting
cycles in products involving these degeneralized automata
will always involve at least m+ 1 states.

The degeneralization applied to G1 with the initial state
on the last level and the acceptance sets ordered as , then

, produces the automaton C6 of Figure 4. Recall that the
edge labelled with > corresponds to the four edges labelled
by āb̄, āb, ab̄, and ab in the original automaton G1.

An optimization introduced by Gastin and Oddoux [12]
consists in jumping levels. If a transition of a level i ≤ m
belongs to Fi ∩ . . . ∩ Fj , its destination can be redirected
directly to the level j+ 1. Similarly, if a transition from the
level m+1 is in F1∩ . . .∩Fj , it can be redirected to the level
j + 1. Implementing this optimization gives automaton C5.

Changing the degeneralization order to , then , and
putting the initial states on the first level would give au-
tomaton C4.

Often (but not in this example), jumping levels is a way
to effectively avoid creating useless copies of some states.
Another side effect of this optimization is that some accept-
ing cycles may be shorter than m+ 1: the change effectively
keeps the automaton as close to the accepting level as possi-
ble. If we are looking for counterexamples, C5 appear better
than C6 because its accepting cycles are shorter on the av-
erage.

We recall that the initial state of a degeneralized automa-
ton can be put on any level. For example, Giannakopoulou
and Lerda [15] noticed that by changing the initial level, they
could sometimes save some states, so they try to use both
the first and the last level and keep the smallest automaton.
In our example, C4 and C5 differ only by the choice of the
initial level (and degeneralization order but this is negligible
as a and b are symmetric in our problem), there is no size
difference, and yet it makes a huge difference in the running
time of Spin, as discussed in the previous section.

Another translation difference evidently comes from the
difference between the generalized automata obtained from
the LTL formula. In our case C4, C5, and C6 were obtained
from G1 while C1 and C2 were obtained from G2. (The differ-
ence with Spin (C1) is that it does no level jumping from the
accepting state.) The difference between G1 and G2 is caused
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āb

b̄ ā
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Figure 4: Automata for GFa ∧ GFb generated by different tools and options.

Table 3: Statistics about generated automata and Spin’s run on model bakery.7.pm and formula GFa ∧ GFb
where neither a nor b ever occurs in the model. The corresponding automata are shown in Fig. 4.

automaton size statistics from Spin’s execution

states ndst edges trans stored states visited trans time

C1 Spin 3 2 6 17 27531713 95071k 88s
C2 LTL2BA & LTL3BA 3 3 8 20 27531713 95071k 99s
C3 MoDeLLa 4 0 6 16 27531714 95071k 109s
C4 LTL3BA (det) 3 0 8 12 27531713 95071k 101s
C5 Spot & Spot (det) 3 0 8 12 27531714 190143k 211s
C6 Spot (no jump) 3 0 5 12 27531714 190143k 191s

ab̄

āb̄

ab

āb
(G1)

a

>

ab

b
(G2)

Figure 5: Two TGBA for GFa∧GFb. Accepting runs
must visit and infinitely often.

by choices made during the translation to favor determinis-
tic states in the case of G1. In our example of Table 3, this
improved determinism makes no difference since a and b are
never true in the model.

4.5 Automata for ¬(GFa→ GFb)

We now focus on another concrete case: ¬(GFa → GFb)
on mutex protocols. The formula without negation describes
that if some process visits infinitely often the critical section,
it infinitely often leaves it—this property holds in model
peterson.4.pm and therefore Spin has to build the whole
product to find that it contains no accepting cycle.

Table 4 shows a series of experiments of verification of the
model peterson.4.pm against this formula, using different
tools to obtain a Büchi automaton.

In this case, each tool produces a different automaton, as
shown in the first part of Figure 6. Note again that automata
D2 and D4 cannot be distinguished only by determinism and
size metrics (see Table 4). They differ only in the target of
the outgoing edge of s0, yet we observe a significant differ-
ence in Spin’s behaviors.

We actually use 12 different automata for this formula.
The first seven of the table are generated by the considered
tools. The other are handwritten by modifying the previous
automata to explore which aspects of the automata make a
significant difference in Spin’s behavior as described further.
D8 is adapted from D6 by changing the degeneralization

level on which we enter the SCC. D9 keeps the strong initial

guard of D6 but then uses the accepting SCC of D2. D10 is
a mix of D6 and D2 to observe the influence of the guards
āb̄ compared to b̄. D11 is a version of D2 in which the SCC
is made deterministic as in D6. Finally, D12 fixes D5 by
removing the spurious si.

Based on Table 4 we can group these automata in three
categories, listed from the best to the worst with respect
to Spin’s performance. Before we discuss these categories,
it is important to notice that in a model where a means
the process is in the critical section and b means the process
leaves the critical section, we can expect most of the state
space to be labelled by āb̄.

D6,D7,D8,D9 Automata with the smallest number of tran-
sitions. Note that the no jump version (D7) and the
one with a non-deterministic SCC (D9) both yields a
few more states and transitions in the product, but the
difference is not significant. The key property of these
automata is that they can leave state s0 only by read-
ing ab̄, whereas other automata are more permissive.

D1,D2,D3,D10,D11 All these automata exhibit more non-
determinism on state s0 and will enter the accepting
SCC even after reading āb̄. However when this hap-
pens, they do not reach the accepting state before ab̄
is read, so this limits the number of red DFS.

D4,D5,D12 These automata go from s0 to the accepting
state s1 each time they read āb̄. This both makes the
product unnecessarily large, but it also forces many
calls to the red DFS every time a product state with
property automaton state s1 is backtracked. The non-
determinism in accepting SCC of D4 causes it to visits
only slightly more states than the other two automata.

A comparison of automata D6 and D11 and their im-
pact on Spin’s performance show that the hypothesis of Sec-
tion 4.3 cannot be used alone to select the best automaton.
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āb̄

ab̄
b̄

b̄

s0

s1

s2

(D4) LTL3BA

>

b̄

ab̄

b̄ab̄

b̄

si

s0

s1

s2

(D5) LTL3BA (det)

> >

b̄

ab̄
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āb̄ab̄
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Figure 6: Automata for the formula ¬(GFa→ GFb).

Table 4: Statistics about generated automata and Spin’s run on the empty product between model peter-

son.4.pm and formula ¬(GFa→ GFb). The corresponding automata are shown in Fig. 6.

automaton size statistics from Spin’s execution

states ndst edges trans stored states visited trans time

D1 Spin 3 2 6 12 1577846 7680k 6.04s
D2 LTL2BA 3 3 6 12 1577440 7684k 5.95s
D3 MoDeLLa 5 2 8 18 1580893 7670k 6.13s
D4 LTL3BA 3 3 6 12 2299250 15583k 12.10s
D5 LTL3BA (det) 4 1 7 14 2297625 15561k 12.00s
D6 Spot 3 1 6 9 848641 2853k 2.26s
D7 Spot (no jump) 3 1 5 9 852094 2863k 2.34s

D8 3 1 6 9 848641 2853k 2.43s
D9 3 3 6 11 852094 2878k 2.43s
D10 3 1 7 10 1575844 7658k 7.38s
D11 3 1 6 10 1577440 7657k 7.07s
D12 3 1 6 10 2297625 15561k 12.30s



Indeed, D6 outperforms D11 even if the distance from the
initial to the accepting state is shorter in D6. Here the more
restrictive label of transition (s0, s1) in D6 plays an impor-
tant role as well.

To sum up, if we suppose that there is no accepting cycle
in the product, the automaton should

1. keep accepting states as far as possible from the initial
state (compare D11 to D12) and

2. use more restrictive labels (compare D6 to D12)

in order to make the accepting states as hard to reach as
possible. Moreover, making use of more restrictive labels
can also help to reduce the product.

An appropriate metric taking these two factors into ac-
count, as well as an LTL-to-BA translation reflecting these
hypotheses, are topics for our future research.

5. CONCLUSION
LTL-to-BA translators have several degrees of freedom

when producing automata. Some of these choices have ef-
fects on the product with a system to be verified and also to
the emptiness check of the product. However, these effects
are difficult to predict. So far, most authors of LTL-to-BA
translation tools have measured the performance of their
tools by looking at the size of the output, sometimes also by
looking at the size of products with random state spaces.

While building a small product generally helps the empti-
ness check, we have provided evidence that the size of A¬ϕ

and even the size of S ⊗ A¬ϕ does not always correlate to
the performance of the emptiness check of S ⊗ A¬ϕ. For
instance, as Spin uses a Nested DFS, the locations of ac-
cepting states of A¬ϕ can have a dramatic impact to Spin’s
running time.

When a system S satisfies ϕ, i.e., S ⊗ A¬ϕ contains no
accepting cycle, the best automaton for Spin to verify it
should have accepting states that are hard to reach from
the initial state, as it will lessen the chance that a red DFS
is started. We observed that such a choice can be made
during the degeneralization procedure, or by unrolling some
accepting cycles.

On the contrary, if S ⊗ A¬ϕ contains an accepting cycle,
Spin can find it faster if the accepting states of A¬ϕ are
easy to reach from the initial state and the accepting cycles
are short. Furthermore, the emptiness check can use an
optimization if the automaton is weak.

We plan to examine these suggestions and potentially in-
tegrate them in future versions of our translators. Further-
more, we plan to devise a set of heuristics to select the best
automaton of a given set of candidates. Clearly, LTL-to-BA
translators should tune their output according to the pur-
posed use of the BA: a BA used for bug finding need not to
be the same as a BA used to prove correctness. Here we fo-
cused on the Nested DFS implementation of Spin, but many
other emptiness checks exist. For instance, some emptiness
checks based on the enumeration of SCCs are insensible to
the location of accepting states on a cycle, so our suggestions
should not be generalized blindly.

Another point that can be influenced by the property au-
tomaton is the size of the counterexample generated. The
question of finding an automaton that is optimal from this
point of view is left open by Gastin et al. [13].
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