
Privacy-Preserving Distance Computation
and Proximity Testing on Earth, Done Right

Jaroslav Šeděnka∗
Dept. of Mathematics and Statistics

Masaryk University
Kotlářská 2, 61137 Brno, Czech Republic

sedenka@mail.muni.cz

Paolo Gasti
School of Engineering and Computing Sciences

New York Institute of Technology
1855 Broadway, New York, NY 10023, USA

pgasti@nyit.edu

ABSTRACT
In recent years, the availability of GPS-enabled smartphones
have made location-based services extremely popular. A
multitude of applications rely on location information to
provide a wide range of services. Location information is,
however, extremely sensitive and can be easily abused. In this
paper, we introduce the first protocols for secure computation
of distance and for proximity testing over a sphere. Our
secure distance protocols allow two parties, Alice and Bob,
to determine their mutual distance without disclosing any
additional information about their location. Through our
secure proximity testing protocols, Alice only learns if Bob is
in close proximity, i.e., within some arbitrary distance.

Our techniques rely on three different representations of
Earth, which provide different trade-offs between accuracy
and performance. We show, via experiments on a prototype
implementation, that our protocols are practical on resource-
constrained smartphone devices. Our distance computation
protocols runs, in fact, in 54 to 78 ms on a commodity
Android smartphone. Similarly, our proximity tests require
between 1.2 s and 2.8 s on the same platform. The imprecision
introduced by our protocols is very small, i.e., between 0.1%
and 3% on average, depending on the distance.

Categories and Subject Descriptors
K.4.1 [COMPUTERS AND SOCIETY]: Public Policy
Issues—Privacy ; E.3 [DATA ENCRYPTION]

1. INTRODUCTION
Since the introduction of the first popular GPS-enabled

smartphones, location-aware services have been growing in
popularity. Users have now access to a wide array of location-
based applications, including social networks [21], directories
of restaurants and hotels [49, 44], taxi pick-up schedulers [5],

∗Part of this work was done while visiting the New York
Institute of Technology

http://dx.doi.org/10.1145/2590296.2590307.

on-line publishing of geo-tagged photos and videos [11], lo-
cal deals [17], lost/stolen phone locators [20], and “friend
finders” [16, 1, 4, 34].

These services often raise severe privacy concerns. By
disclosing location data to third parties (e.g., application
developers, cellphone manufacturers, friends), user can be
easily tracked, usually against their will. Although most users
might be comfortable with (or unaware of) being tracked by
cellphone carriers, they may be more reluctant to share loca-
tion information with third parties of unknown reputation.
The dangers of incautious location sharing have been shown
to be very real with documented cases of location data being
actively used by stalkers [47]. Privacy is not only an issue
for the party disclosing its location: service providers may,
in fact, be unwilling to learn the whereabouts of their users,
for fear of bad press and lawsuits [46].

As of today, revealing location information is, in practice,
an all-or-nothing proposition. Mobile devices usually im-
plement coarse-grained “privacy settings”, that allow users
to turn off location services for specific applications – often
preventing location-based applications from working at all.

In recent years, researchers have investigated a suitable
middle ground between full disclosure and no disclosure of
location information. This effort has resulted in the intro-
duction of various techniques such as location cloaking [30],
noisy distance computation [18], and privacy-preserving dis-
tance [36] and proximity protocols [50]. However, existing
approaches either provide privacy at the expense of accuracy,
or rely on assumptions that restricts their usefulness. In
particular, cloaking and noisy techniques introduce artificial
“measurement errors” in the original location, perturbing
the result of the distance computation. Existing protocols
for computing distances in the encrypted domain, on the
other hand, offer accurate results only over small distances,
since they work on either coarse approximations of Earth, or
on small projections of Earth on Euclidean planes. When
multiple small projections are used, parties must privately
determine if their respective coordinates fall within the same
projection. If they do not, and the protocols do not ac-
count for it, distance computation will return meaningless
results. Finally, existing work does not address the problem
of defining a suitable projection for distance computation.
This makes comparison of accuracy between existing tech-
niques difficult, since the choice of the projection affects the
performance of the protocols.

Contributions. In this paper we introduce novel privacy-
preserving protocols for reliably computing distances and

99

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ASIA CCS’14, June 4–6, 2014, Kyoto, Japan.

Copyright 2014 ACM 978-1-4503-2800-5/14/06 ...$15.00.

proximity between two arbitrary points on Earth. With our
protocols, the two parties – henceforth, “Alice” and “Bob” –
are not required to disclose their location. However, at the
end of our distance protocols, Alice learns how far she is
located from Bob, while Bob learns nothing.

Using our secure proximity testing protocols, Alice only
learns whether Bob is within a certain distance. Moreover,
Bob can return an unconditional positive (i.e., the distance
between Alice and Bob always appear to be smaller than the
threshold) or unconditional negative (the distance between
Alice and Bob is always larger than the threshold) response
to proximity queries from Alice, in order to provide him with
an extra layer of privacy.

An important difference between two of our protocols and
the current state of the art is the ability of our protocols
to accurately compute distance between two parties located
in arbitrary locations on earth. To achieve this, the two
protocols do not make use of projections of small parts of
Earth’s surface.

Our Protocols. The first protocol, PP-UTM, is a concrete
instantiation of Euclidean distance over a projection of Earth.
The projection we use, called UTM, maps Earth over set of
planes. As discussed in Section 3, this technique provides
accurate results if the two parties are located within the same
UTM zone. For this reason, we consider this protocol as a
baseline for assessing the performance of our contribution.
To the best of our knowledge, this is the first instantiation
of an Euclidean-distance-based privacy-preserving protocol
that considers a real projection. This, in turn, allows us to
evaluate, for the first time, the real-world error introduced
by a privacy-preserving distance computation protocol and
secure proximity testing protocol.

The second protocol, PP-ECEF, allows Alice to calculate
distances in the Earth-Centered, Earth-Fixed (ECEF, also
known as Earth Centered Rotational, or ECR) coordinate
system. This protocol provides very accurate results (less
than 0.1% error) when the two parties are within 14,000 km
(roughly 8,700 miles), and reasonably accurate results (less
than 1% error) for greater distances.

Our third protocol, PP-HS, is based on the haversine for-
mula [42], which is a trigonometric formula used to compute
distances on a sphere. Although slightly less efficient than
the previous two protocols, PP-HS is very accurate regardless
of the position of Alice and Bob. The protocol introduces
very small error (below 0.1%) when the two parties are more
than 14,000 km apart.

Organization. The rest of the paper is organized as follows.
In Section 2 we review the related literature. Section 3 dis-
cusses several techniques for computing distances on various
approximations of Earth. In Section 4 we introduce our
security model and the cryptographic tools used in our proto-
cols. Section 5 presents our protocols for privacy-preserving
distance computation. We provide a security analysis of the
protocols in Section 6, and evaluate accuracy and perfor-
mance in Section 7. We conclude in Section 8.

2. RELATED WORK
Related work on location privacy can be divided in three

classes: (1) work that aims at quantifying location privacy
(or lack thereof); (2) techniques that anonymize user location
information, and possibly add location obfuscation; and

(3) privacy-preserving protocols based on secure multiparty
computation (SMC).

Quantifying Location Privacy. In [40] Shokri et al. de-
velop a formal framework for the analysis of location-privacy
protection mechanisms. This framework captures adversary’s
prior information, and models various attacks. They intro-
duce metrics for attacker’s performance, such as accuracy,
certainty and success.

Shokri et al. [41] classify location exposure into continuous
(i.e., the adversary can track users over time and space) and
sporadic (the adversary’s focus is on localizing users data
specific point in time). Their work addresses the case of
sporadic location exposure, formalizing location privacy. In
their framework, the authors also perform localization attacks
using Bayesian inference for Hidden Markov Processes on
anonymized traces.

Location Anonymization and Obfuscation. Gruteser
et al. [18] design a middleware architecture, used by a location
broker service to anonymize user locations and still allow
them to receive the intended service. This technique provide
a median resolution of 125 meters, and does not protect
users’ privacy against the location broker. Several papers
have followed the work of Grueteser et al. (see, e.g., [2, 24,
32, 39]).

Duckham et at. [9] introduced a formal model for location
obfuscation techniques. The authors argue that location
inaccuracy (lack of correspondence between information and
reality), imprecision (lack of specificity of information), and
vagueness (existence of boundary cases in information) pro-
vide an feasible way for implementing location privacy. In
particular, they argue that their model provides a generic
mechanism for balancing quality of information with privacy.

Krumm’s work [30] shows that spatial cloaking, Gaussian
noise and reduced location resolution can degrade the iden-
tification success of the adversary. Gruteser et al. [18] use
k-anonymity, implemented via spatial and temporal cloaking,
to increase the adversary’s uncertainty.

In general, techniques belonging to this class provide only
limited accuracy. Moreover, as has been shown by Golle et
at. [15], Beresford et al. [2], Hoh et al. [19] and many others,
the highly identifying nature of location information often
makes proper anonymization difficult, if not impossible. This
makes location anonymization not suitable for a large array
of location-based services, including social networks.

Privacy-Preserving Protocols. More related to our work,
there has been a large amount of research on SMC proto-
cols for privacy-preserving proximity testing and privacy-
preserving distance computation between two points or a
point and a curve.

Zhong et al. [50] introduced Louis, Lester and Pierre, three
privacy-preserving protocols for proximity testing. The Louis
protocol requires a semi-trusted third party that does not
learn any location information. Lester, the second protocol,
does not require a third party, but one of the participants
might learn the location of the other even if they are no
longer close. Finally, the Pierre protocol provides better
security, at the cost of reduced accuracy.

Narayanan et al. [36] show how to reduce proximity testing
to equality testing. Their approach is based on dividing
the Euclidean space into a grid system; the position of each
user is defined as a set of adjacent triangles on the grid. If
two users are within a certain range, they must share at

100

least one grid component. Proximity is therefore computed
through a simple and efficient privacy-preserving protocol.
The authors extend the protocol to work on Earth by slicing
it into thin one-degree strips. This instantiation of their
technique introduces three classes of error: (1) even though
the strips are relatively thin, the curvature of Earth still
leads to errors for points at different latitudes; (2) grids
from different strips do not align at the strip boundary, and
therefore the parties must belong to the same strip for best
accuracy; and (3) since the basic unit for the tessellation
is a triangle, the perimeter of an area which represent the
user location is not a circle, and therefore there may be
false positives or false negatives across the boundaries of a
user’s zone. Classes (1) and (2) limit the applicability of this
approach to relatively small distances.

Mascetti et al. [33] present Longitude, a privacy-aware cen-
tralized technique for determining the distance of two points.
The proposed protocol implements Euclidean distance, and
the result is obliviously compared with a threshold. This
way, one of the parties only learns whether the other protocol
participant’s input is within a certain distance.

Li et al. [26] design a suite of privacy-preserving protocols
that allows two parties to share information about their lo-
cation with fine-grained access control. Users can specify a
condition and match all users that satisfy such condition. Al-
ternatively, their protocols rely on attribute-based encryption
and homomorphic encryption.

To the best of our knowledge, [36] is the only work that
addresses distances in a non-Euclidean space. However, the
authors do not discuss how mapping a grid on a curved
surfaces affects the accuracy of the protocol.

3. DISTANCE COMPUTATION BETWEEN
TWO POINTS ON EARTH

Although Earth is usually considered a sphere, its shape
is closer to an oblate spheroid, or ellipsoid [43]. The exact
shape, called geoid, is defined as the global mean sea level.
However, for simplicity and efficiency, geodetic computations
are usually performed over an approximation of Earth’s shape
– a sphere or one of the various standard ellipsoids. In this
paper, we consider the spherical approximation with radius
6,371 km (which is the radius for a sphere with the same
surface area as the Earth’s ellipsoid) and the World Geodetic
System 84 (WGS84).

The WGS84 geoid is used in the Global Positioning System
(GPS), and is thus a major source of coordinates available
today. As this paper focuses mainly on location privacy,
and not on geodesy, we refer the reader to [43] for proper
treatment of this topic and introduce only the required notion
below.

The position of any point on Earth can be described as
geodesic data based on different reference system. A datum in
WGS84 consists of two angles, expressed in degrees, denoted
latitude and longitude. Latitude describes the north-south
position of a point as the angle between the equatorial plane
(i.e., the plane that intersects Earth through the equator) and
the line between the point and Earth’s center. The value of
latitude is between −90◦ (South pole) and 90◦ (North pole).
Longitude describes the east-west position of a point as the
angle between the plane containing the Prime Meridian and
the line between the point and the Earth’s center. The Prime

0%

50%

100%

0 100 200 300

Bearing

R
e
la

ti
v
e
 e

rr
o
r

Mercator Equidistant Mollweide

Figure 1: Average distance measurement error over
the Mercator, Equidistant Cylindrical and Moll-
weide projections. One party is located at a random
location with latitude 65◦, while the other is 10 km
away, at different bearings.

Meridian has longitude 0◦, the values range from −180◦ to
180◦ with negative values to the west of Prime Meridian.

The shortest path between two points on a sphere or an
ellipsoid is along the great circle, i.e., the intersection between
a sphere and a plane which passes through the center of the
sphere. When viewed on a projection, the shortest distance
may appear as a curve – this is why the airplanes trajectories
usually appear as arcs on in-flight maps. Distance between
two points on the Earth ellipsoid can be computed using
Vincenty’s formula [45], or Karney’s algorithm [27]. The
error introduced be these techniques is less than 1 mm [45]
and 15 nm [27] respectively.

Faster – although less accurate – methods for distance
computation exist. We describe three of these methods next.

3.1 Distances over UTM Projection
A straightforward approach to computing distances on

Earth is to transform the problem into computing distances
on a plane. This is done by selecting a projection (e.g., a
map) of Earth’s surface, or part of it. Two points are then
mapped to the projection, where Euclidean distance can be
computed. Although simple, this approach has at least two
important drawbacks. First, two parties willing to measure
their distance must agree on the same projection in order to
properly map their locations. Second, and more importantly,
it introduces errors.

Different projections (and projection sizes) have different
properties, and lead to different distance measurement errors.
Figure 1 illustrates measurement errors on the Mercator,
Equidistant Cylindrical and Mollweide whole Earth projec-
tions, compared to the “exact” distance, computed over the
WGS84 ellipsoid using Vincenty’s formula. All three whole
Earth projections introduce very high average error on the
measured distance. To limit this problem, projections are
usually computed from small slices of Earth, instead of the

101

whole surface. Universal Transversal Mercator (UTM) [8] is
one such projections.

UTM divides Earth’s surface in 60 longitudinal areas,
called zones. The width of each zone is 6◦, with no zone
covering the polar regions. Position of a point is given by
the zone number and its (northing , easting) coordinate pair,
expressed in meters. Northing of a point is the distance on
the projection of the point from the equator, while easting is
the distance of the point from the zone’s central meridian.
For navigational purposes, negative coordinates are avoided
by adding large constants to northing and easting. These
constants are called “false northing” (which corresponds to
10,000 km) and “false easting” (500 km). Negative values do
not pose any problem for distance computation, so we ignore
false northing and false easting in the rest of the paper.

Once two points CA = (xA, yA), CB = (xB , yB) have
been mapped to the same UTM zone, their distance can be
computed as:

DUTM(CA, CB) =
√

(xA − xB)2 + (yA − yB)2

This approach can only be used if both points lay in the
same zone. Therefore, as mentioned in Section 1, UTM
distance should be considered as a baseline for accuracy and
performance.

3.2 Distances over ECEF Coordinate System
The Earth-Centered Earth-Fixed coordinate system uses

cartesian coordinates to describe the position of any point
on Earth. Each location is described using a triplet (x, y, z),
where (0, 0, 0) is the center of Earth’s mass (hence, Earth-
Centered). All coordinates are expressed in meters.

The x, y axes lay on the plane going through the Equator,
with the x axis “pointing” towards the Prime Meridian and
the y axis is oriented to make the system right-handed. The
z axis is oriented towards North Pole. In order to prevent
coordinates on Earth to change with time, the x and y axes
(and thus the whole coordinate system) rotate together with
Earth (hence, Earth-Fixed). Spherical (lat , lon) coordinates
from WGS84, or any other coordinate system, can be easily
converted to ECEF coordinates.

Distance DECEF(CA, CB) between two points CA =
(xA, yA, zA) and CB = (xB , yB , zB) on the great circle can
be computed as:

a =
(xA − xB)2 + (yA − yB)2 + (zA − zB)2

4R2

c =2 atan
(√

a/(1− a)
)

d =Rc

where DECEF(CA, CB) = d.
Value a is the squared Euclidean distance between points

CA and CB (divided by a constant) in three-dimensional
space, i.e., the distance between CA and CB over a straight
line that cuts through Earth. Therefore, in order to compute
the distance on the surface, we derive the central angle c
between CA, Earth’s center, and CB . Finally, the length of
the arc between the two points, represented as d, corresponds
to the distance over the surface. For the angle and arc length
computation, we use a spherical approximation of Earth with
radius R.

3.3 Distances on a Sphere Using Haversine
According to [42], angular distance between two points

(represented as (latitude, longitude) pairs) on a sphere has
been traditionally expressed using the cosine formula. Let
CA = (latA, lonA) and CB = (latB , lonB) denote the spher-
ical coordinates of Alice and Bob, respectively. Distance
between CA and CB is computed using the cosine formula
as:

c = cos−1(sin(latA) sin(latB)

+ cos(latA) cos(latB) cos(lonA − lonB))

where c is central angle between CA and CB . When used
in conjunction with limited precision arithmetics (e.g., in
privacy-preserving protocols, where precision affects per-
formance), the cosine formula may introduce significant
measurement error when two points are in close proxim-
ity. As an example, when Alice and Bob are one kilometer
apart, both on the equator, lonA − lonB ≈ 0.083◦, and
cos(lonA − lonB) ≈ 0.9999999894. Approximating cos(α) to
8 significant digits, the resulting distance between Alice and
Bob is zero.

The haversine formula [42] is often used as a replacement
for the cosine formula in order to reduce measurement errors
introduced by cosine of small angles. Haversine, i.e., half the
versed sine, is defined as hav(θ) = (1− cos(θ))/2.

Let R be the radius of Earth. The haversine formula allows
us to compute the distance DHS(CA, CB) as follows:

a =hav(latA − latB)

+ cos(latA) cos(latB)hav(lonA − lonB)

c =2 atan
(√

a/(1− a)
)

d =Rc

where DHS(CA, CB) = d. (The meaning of a, c and d is the
same as that in the ECEF formula from Section 3.2.)

Given the trigonometric identity hav(θ) = sin2(θ/2), we
can rewrite the haversine formula in such a way that latA −
latB and lonA − lonB are not used as arguments for cosine:

a = sin2((latA − latB)/2)

+ cos(latA) cos(latB) sin2((lonA − lonB)/2)

c =2 atan
(√

a/(1− a)
)

d =Rc

Therefore, although the cosine and haversine formulas are
mathematically identical, the latter provides better accuracy
with limited machine precision when Alice and Bob are
separated by a small angle.

In the rest of the paper, we use WGS84 as a reference
system for (latitude, longitude) coordinates.

3.4 Proximity Testing
Alice may be interested in determining only if Bob is in

close proximity, i.e., within an arbitrary distance ε. Clearly,
Alice could compute the distance between her and Bob along
Earth’s surface, and then check if it is greater than ε.

For ECEF and haversine distance, however, Alice can use
a simple shortcut; she can convert ε to aε as follows:

aε =
(tan ε

2R
)2

1 + (tan ε
2R

)2

102

This way, aε represents the threshold expressed as straight-
through-Earth distance in the three-dimensional space. Since
the distance between Alice and Bob is a monotonically in-
creasing function of a, we have that a < aε ⇐⇒ d < ε.

4. CRYPTOGRAPHIC PRELIMINARIES
We use the term adversary to refer to insiders, i.e., Alice

and Bob. This includes the case when one of the two parties
is compromised. Outside adversaries, e.g., those who can
eavesdrop on the communication channel, are not considered
since their actions can be mitigated via standard network
security techniques.

Our protocols are secure in the presence of semi-honest
(also known as honest-but-curious or passive) participants.
In this model, while participants follow prescribed protocol
behavior, they might try to learn additional information
beyond that obtained during normal protocol execution. For-
mally [13]:

Definition 1. Let P1 and P2 participate in protocol π
that computes function f(in1, in2) = (out1, out2), where ini
and outi denote Pi’s input and output, respectively. Let
VIEWπ(Pi) denote the view of participant Pi during the ex-
ecution of protocol π. More precisely, Pi’s view is formed
by its input, internal random coin tosses ri, and messages
m1, . . .,mt passed between the parties during protocol execu-
tion: VIEWπ(Pi) = (ini, ri,m1, . . .,mt).

We say that protocol π is secure against semi-honest ad-
versaries if for each party Pi there exists a probabilistic poly-
nomial time simulator Si such that:

{Si(ini, fi(in1, in2))} c≡ {VIEWπ(Pi), outi}

where
c≡ denotes computationally indistinguishability.

Homomorphic Encryption. Our constructions use a se-
mantically secure (public key) additively homomorphic en-
cryption scheme. Let JmK indicate the encryption of message
m using a homomorphic encryption scheme. (To keep no-
tation simple, we omit specifying the public key used for
encryption. All encryptions in our protocols are performed
under Alice’s public key.)

In an additively homomorphic encryption scheme, Jm1K ·
Jm2K = Jm1 +m2K, which also implies that JmKa = Jm · aK.
While any encryption scheme with the above properties (such
as the well known Paillier encryption scheme [37]) suffices for
the purposes of this work, the construction due to Damg̊ard
et al. [7, 6] (DGK hereafter) is of particular interest here
because it is fast and it produces small ciphertexts. In DGK
a public key consists of (1) a (small, possibly prime) integer
u that defines the plaintext space; (2) k-bit RSA modulus
N = p · q such that p and q are k/2-bit primes, vp and
vq are t-bit primes, and uvp|(p − 1) and uvq|(q − 1); and
(3) elements g, h ∈ Z∗N such that g has order uvpvq and h
has order vpvq. Given a message m ∈ Zu, encryption is
performed as JmK = gmhr mod N , where r ← {0, 1}2.5t. We
refer the reader to [7, 6] for any additional information.

Garbled circuit evaluation. Originated in Yao’s work [48],
garbled circuit evaluation allows two parties to securely eval-
uate any function represented as a boolean circuit. The basic
idea is that, given a circuit composed of gates, Bob creates
a garbled circuit by assigning to each wire two randomly
chosen keys. Bob also encodes gate information in a way

that given keys corresponding to the input wires (encoding
specific inputs), the key corresponding to the output of the
gate on those inputs can be recovered. Alice then evaluates
the circuit using keys corresponding to inputs of both Alice
and Bob (without learning anything in the process). At
the end, the result of the computation can be recovered by
linking the output keys to the bits which they encode.

Recent literature provides optimizations that reduce com-
putation and communication overhead associated with circuit
construction and evaluation. Kolesnikov and Schneider [29]
describe an optimization that permits XOR gates to be
evaluated for free, i.e., there is no communication overhead
associated with such gates and their evaluation does no in-
volve cryptographic functions. Pinkas et al. [38] additionally
give a mechanism for reducing communication complexity
of binary gates by 25%: now each gate can be specified
by encoding only three outcomes of the gate instead of all
four. Finally, Kolesnikov et al. [28] improve the complex-
ity of certain commonly used operations such as addition,
multiplication, comparison, etc. by reducing the number
of non-XOR gates: adding two n-bit integers requires 5n
gates, n of which are non-XOR gates; comparing two n-bit
integers requires 4n gates, n of which are non-XOR gates;
and computing the minimum of t n-bit integers (without
the location of the minimum value) requires 7n(t− 1) gates,
2n(t− 1) of which are non-XOR gates.

With the above techniques, evaluating a non-XOR gates
involves one invocation of the hash function. During garbled
circuit evaluation, Alice directly obtains keys corresponding
to the Bob’s inputs from the Bob, and engages in the oblivious
transfer (OT) protocol to obtain keys corresponding to its
own input.

Oblivious Transfer. In 1-out-of-2 Oblivious Transfer, OT 2
1 ,

one party, the sender, has as its input two strings m0,m1

and another party, the receiver, has as its input a bit b. At
the end of the protocol, the receiver learns mb and the sender
learns nothing. Similarly, in 1-out-of-N OT the receiver
obtains one of the N strings held by the sender. There
is a rich body of research literature on OT, and in this
chapter we use its efficient implementation from [35] as well
as techniques from [22] that reduce a large number of OT
protocol executions to κ of them, where κ is the security
parameter.

Discretization. Because our privacy-preserving protocols
are designed to work on integer values, we map each real-
valued protocol input to integers according to the following
formula: discretizee(x) = b10e · x+ 0.5c. The e parameter
controls the shift of the decimal point (the choice of appro-
priate values for e is discussed in Section 7). Therefore, the
higher the e, the more digits after the decimal point are
preserved.

5. OUR PROTOCOLS
In this section, we present our PP-UTM, PP-ECEF and

PP-HS protocols. These protocols privately compute the
distance between two points in the UTM, ECEF and WGS84
coordinate systems, respectively.

5.1 PP-UTM Protocol
Our PP-UTM protocol computes Euclidean distance be-

tween two points laying on the same UTM zone. (Due to this
limitation, and as mentioned earlier, we consider this protocol

103

Input: Alice: her position, expressed as coordinates CA = (xA, yA) with respect to a specific UTM zone; her public/private
keypair. Bob: his position, expressed as coordinates CB = (xB , yB) in the same zone as Alice; Alice’s public key pkA.
Output: Alice learns DUTM(CA, CB), defined as the Euclidean distance between CA and CB .
Protocol steps:

1. Alice computes Jx2A + y2AK, J−2xAK, J−2yAK and sends these ciphertexts to Bob.
2. Bob computes:

JaK = Jx2A + y2AK · J−2xAKxB · J−2yAKyB · Jx2B + y2BK

= J(x2A + x2B − 2xAxB) + (y2A + y2B − 2yAyB)K

= JDUTM(CA, CB)2K

and sends JaK back to Alice.
3. Alice decrypts JaK and outputs DUTM(CA, CB) as

√
a.

Figure 2: PP-UTM Protocol

Input: Alice: her position, expressed as coordinates CA = (xA, yA, zA) in the ECEF coordinate system; her public/private
keypair. Bob: his position, expressed as coordinates CB = (xB , yB , zB) in the same coordinate system; Alice’s public key
pkA.
Output: Alice learns DECEF(CA, CB), defined as the Euclidean distance between CA and CB .
Protocol steps:

1. Alice computes Jx2A + y2A + z2AK, J−2xAK, J−2yAK, J−2zAK and sends these ciphertexts to Bob.
2. Bob computes:

Ja′K = Jx2A + y2A + z2AK · J−2xAKxB · J−2yAKyB · Jx2B + y2B + z2BK · J−2zAKzB

= J(x2A + x2B − 2xAxB) + (y2A + y2B − 2yAyB) + (z2A + z2B − 2zAzB)K

and sends Ja′K back to Alice.

3. Alice decrypts Ja′K, computes a = a′/4R2 and outputs DECEF(CA, CB) as 2R atan
(√

a/(1− a)
)

.

Figure 3: PP-ECEF Protocol

as a baseline for evaluating both accuracy and performance
of our PP-ECEF and PP-HS protocols.)

Alice and Bob must determine whether their coordinates
lay on the same zone, prior to running the PP-UTM protocol.
To do so, they can assign a unique identifier to each zone, and
then compare their respective identifiers using any protocol
that implements private equality test. As an example, they
can use the following simple algorithm:

Let zA represent Alice’s zone, and zB – Bob’s
zone. Alice sends JzAK to Bob, who computes
JdK = (JzAK · J−zBK)r = Jr · (zA − zB)K, where
r is a random value uniformly chosen from the
message space. JdK is sent back to Alice, who
decrypts it. If Alice and Bob belong to the same
zone (i.e., zA = zB), then d = 0. Otherwise,
d is uniformly distributed in the message space,
and does not reveal any additional information
about zB .

Even if Alice and Bob are not in the same zone, Alice may
still participate in the UTM protocol – although the result of
the computation will be unrelated to their correct distance.
This will prevent Bob from learning the output of the private
equality test.

Alice and Bob discretize their coordinates, as discussed in
Section 4, prior to using them in the protocol. The PP-UTM
protocol is shown in Figure 2.

5.2 PP-ECEF Protocol
Our PP-ECEF protocol computes the distance between

Alice and Bob in the ECEF coordinate system. Computation
of distance is divided in two phases:

1. Alice and Bob interact to privately compute the straight-
line (Euclidean) distance between their respective in-

puts; only Alice learns the results (i.e., variable a in
Section 3.2).

2. Then Alice converts this straight-line distance to the
corresponding distance on Earth’s surface (i.e., variable
d in Section 3.2).

Since Earth is represented as a sphere, step 2. is independent
from the absolute locations of Alice and Bob, and therefore
does not require any private input from the parties.

Similarly to the PP-UTM protocol, Alice and Bob’s coordi-
nates are discretized as discussed in Section 4. The PP-ECEF
is detailed in Figure 3.

5.3 PP-HS Protocol
The PP-HS protocol involves private computation of haver-

sine formula over Alice and Bob’s private input. However, if
the formula is used as is for the construction of a privacy-
preserving protocol, it requires Alice and Bob to interactively
compute sin2((latA − latB)/2) and sin2((lonA − lonB)/2).
While both can be computed within a privacy-preserving
framework (e.g., by implementing Taylor series expansion as
shown in [31]), the cost of the resulting protocol would be
prohibitive, especially on resource-constrained devices such
as smartphones and tablets.

However, this can be avoided by simply using the following
well-known trigonometric identity:

sin(ϕ− ψ) = sin(ϕ) cos(ψ)− cos(ϕ) sin(ψ).

After we apply this identity to the haversine formula from
Section 3.3, we can rewrite a as:

a =(sin(latA/2) cos(latB/2)− cos(latA/2) sin(latB/2))2

+ cos(latA) cos(latB)

· (sin(lonA/2) cos(lonB/2)− cos(lonA/2) sin(lonB/2))2

104

Input: Alice: her position, expressed as coordinates CA = (latA, lonA) as defined in Section 3 and her public/private
keypair; Bob: his position, expressed as coordinates CB = (latB , lonB) and Alice’s public key.
Output: Alice learns DHS(CA, CB) as defined in Section 3.
Protocol steps:

1. Let α, . . . , µ defined as in Section 3. Alice computes:

Jα2K, J−2αγK, Jγ2K, Jζηθ2λ2K, J−2ζηθλK, JζηK

and sends the ciphertexts to Bob.
2. Bob computes:

JaK = Jα2Kβ
2

· J−2αγKβδ · Jγ2Kδ
2

· Jζηθ2λ2K · J−2ζηθλKµν · JζηKµ
2ν2

= Jα2β2 − 2αβγδ + γ2δ2 + ζηθ2λ2 − 2ζηθλµν + ζηµ2ν2K

3. Bob sends JaK to Alice, which decrypts it and outputs DHS(CA, CB) as 2R atan
(√

a/(1− a)
)

.

Figure 4: PP-HS Protocol

Let us denote the cosine/sine values with greek letters, for
more concise notation, as:

α = cos(latA/2) η = cos(latB)
β = sin(latB/2) θ = sin(lonA/2)
γ = sin(latA/2) λ = cos(lonB/2)
δ = cos(latB/2) µ = cos(lonA/2)
ζ = cos(latA) ν = sin(lonB/2)

We can then rewrite and expand a as:

a = α2β2 − 2αβγδ + γ2δ2 + ζηθ2λ2 − 2ζηθλµν + ζηµ2ν2

With this formulation, computing a does not involve joint
evaluation of any trigonometric function on private input. In
fact, each party can separately compute their share of the
formula, and combine their shares using only operations over
encrypted data.

Similarly to the PP-ECEF protocol, computing the dis-
tance between Alice and Bob given a does not require any
private input from either party. (Moreover, a can be easily
reconstructed from the distance between the protocol partic-
ipants.) For this reason, our PP-HS protocol allows Alice to
learn a, and to subsequently convert it to the actual distance
on Earth’s surface – in the unencrypted domain.

Instead of discretizing their coordinates, Alice and Bob
discretize values α, . . . , ν. The protocol is illustrated in
Figure 4.

5.4 Privacy-Preserving Proximity Testing
with Unconditional Response

We extend the protocols presented in sections 5.1-5.3 to
perform privacy-preserving proximity testing (PPPT). PPPT
reveals a single bit of information to Alice, which represents:

PPPTD(·,·)(CA, CB , ε) ,

(
D(CA, CB)

?
< ε

)
where D(·, ·) is a distance function (in our case, D is either
DUTM(·, ·), DECEF(·, ·), or DHS(·, ·)), CA and CB are Alice’s
and Bob’s coordinates, and ε is an arbitrary distance below
which Alice and Bob are considered to be in close proximity.

Additionally, Bob can decide whether to faithfully partici-
pate in the PPPT protocol, allowing Alice to compute the
correct results, or to defect, forcing Alice to compute a bit
of his choice. This may be preferable to Bob than simply
opting out of the protocol. In fact, by not interacting with
Alice, Bob may reveal information about his location.

In order to provide different performance tradeoffs, we
implemented PPPT using two different privacy-preserving
comparison techniques: (1) the privacy-preserving homomor-
phic comparison protocol of Erkin et al. [10], and (2) the
garbled circuits of Kolesnikov et al. [28].

Homomorphic Comparison of [10]. This protocol is
based on the observation that a < aε is true iff the l + 1-th
bit of w = 2l + a − aε, denoted wl from now on, is 0 (for
2l > a− aε). Given JaK, JaεK, encryption of w is computed
by Bob as JwK = J2lK · JaK · JaεK−1. Encryption of the l-th bit
of w is then computed as JwlK = J2−l · (w − (w mod 2l))K.
Value w is available to Bob only in encrypted form, and
computing w mod 2l in the encrypted domain requires inter-
action between Alice and Bob: Bob “masks” JwK by selecting
a random value r and computing Jw′K = JwK · JrK. Then,
Bob sends Jw′K to Alice, who decrypts it and returns the
encryption of c = w′ mod 2l to Alice. Next, Bob “unmasks”
JcK by computing JcK · JrK−1 = Jw mod 2lK. We refer the
reader to [10] for additional details.

After Bob computes JaK in our distance protocols (Ja′K
for PP-ECEF), he does not return it to Alice. Instead, he
computes – with Alice’s help – value Jw − (w mod 2l)K, which
is 0 if and only if D(CA, CB) < ε. This value is then sent
to Alice, who decrypts it and outputs the corresponding
plaintext. Since Bob operates on both a and aε in encrypted
form, Alice can choose not to reveal the threshold to Bob
during the protocol.

Comparison Based on [28]. In order to reduce the cost of
the integer comparison circuit, Kolesnikov et al. [28] minimize
the use of non-XOR gates. The result is a circuit that uses
4n gates, out of which n are non-XOR, to compare two
unsigned n-bit integers: the comparison circuit contains n
1-bit comparators with carry, which use three XOR gates and
one AND gate (see figures 5 and 6 of [28]). The advantage of
this technique is that a significant part of the computation
can be performed offline by Alice and Bob, resulting in faster
on-line computation.

After Bob computes JaK (Ja′K for PP-ECEF) using our
distance protocols, he selects a random value s← {0, 1}κ+l
where κ is the security parameter and l is the number of bits
used to represent location information. Bob then blinds a as
JaK = Ja+ sK and returns JaK to Alice. s is uniformly selected
from {0, 1}κ+l instead of the message space of DGK for
efficiency reasons. This allows us to achieve statistical hiding
for a, instead of unconditional hiding, since the blinding
value is κ bits longer that the value it protects [3].

105

Alice and Bob then perform circuit evaluation, where
Alice’s input is a and Bob’s input is aε + s. At the end of
the circuit evaluation, Alice learns the correct result, since
a < aε ⇐⇒ a < aε + s.

Unconditional Response. In order to return an uncondi-
tional positive to Alice, when using homomorphic comparison
Bob discards JaK and JaεK and replaces them with JaK and
JaεK, for two arbitrary values a and aε such that a < aε.
Analogously, an unconditional negative can be returned by
selecting a > aε.

When using the garbled circuit for comparison, Bob’s
input to the circuit is 0 for unconditional negative (0 < a
holds with overwhelming probability), and s+ amax + 1 for
unconditional positive, where amax is the largest value that
a (a′ for PP-ECEF) can assume. (s+ amax + 1 > a always
holds.)

The security of the comparison protocols guarantees that
Alice cannot distinguish between a correct result and an
unconditional response.

6. SECURITY ANALYSIS
Security of our protocols relies on the security of the un-

derlying building blocks. In particular, we need to assume
that the underlying homomorphic encryption scheme is se-
mantically secure.

We instantiate J · K using the DGK encryption scheme,
which has been shown to be semantically secure under a
hardness assumption that uses subgroups of an RSA mod-
ulus [7, 6]. The privacy-preserving comparison protocol of
Erkin et al. was shown to be secure in [10], and therefore we
do not include it in our analysis.

To show the security of the protocols, we informally sketch
how to simulate the view of each party using its inputs and
outputs alone. If such simulation is indistinguishable from
the real execution of the protocol, for semi-honest parties
this implies that the protocols do not reveal any unintended
information to the participants (i.e., they learn only the
output and what can be deduced from their respective inputs
and outputs).

Security of PP-UTM. Alice’s view of the protocols con-
sists of the encryption and decryption keys for J · K, and
ciphertext JaK from Bob. Alice’s output is

√
a. Simulator SA

provides Alice with decryption key for J · K as input. It then
encrypts the protocol output as J(

√
a)2K = JaK and sends

it to Alice. Since JaK is properly distributed, Alice cannot
distinguish between the simulation and a real execution of
the protocol. Therefore, the protocol is secure against a
curious Alice.

Bob’s view of the protocol consists in Alice’s public key,
and three ciphertexts from Alice, namely Jx2A + y2AK, J−2xAK,
J−2yAK. Bob has no output. Simulator SB selects a ran-
dom pair (x̄A, ȳA) and sends Jx̄2A + ȳ2AK, J−2x̄AK and J−2ȳAK
to Bob. The semantic security of J · K prevents Bob from
determining that x̄2A + ȳ2A, −2x̄A and −2ȳA are not dis-
tributed properly. Therefore, no PPT algorithm can distin-
guish Jx̄2A + ȳ2AK, J−2x̄AK and J−2ȳAK from the encryption of
properly distributed values. For this reason, Bob cannot dis-
tinguish between interaction with the SB and with a honest
Alice. Hence the protocol is secure against a curious Bob.

Security of PP-ECEF. Alice’s view of the protocols con-
sists of the encryption and decryption keys for J · K, and ci-

phertext JaK from Bob. Alice’s output is 2R atan(
√
a/(1− a)).

Simulator SA provides Alice with decryption key for J · K
as input. It then computes a from the protocol output and
sends JaK to Alice. Since JaK is properly distributed, Alice
cannot distinguish between the simulation and a real execu-
tion of the protocol. Therefore, the protocol is secure against
a curious Alice.

Bob’s view of the protocol consists in Alice’s public key,
and four ciphertexts from Alice, namely Jx2A + y2A + z2AK,
J−2xAK, J−2yAK, and J−2zAK. Bob has no output. Sim-
ulator SB selects a random set of coordinates (x̄A, ȳA, z̄A)
and sends Jx̄2A + ȳ2A + z̄2AK, J−2x̄AK, J−2ȳAK, J−2z̄AK to Bob.
The semantic security of J · K prevents Bob from determin-
ing that x̄2A + ȳ2A + z̄2A, −2x̄A, −2ȳA and −2z̄A are not dis-
tributed properly. Therefore, no PPT algorithm can dis-
tinguish Jx̄2A + ȳ2A + z̄2AK, J−2x̄AK, J−2ȳAK and J−2z̄AK from
the encryption of properly distributed values. For this reason,
Bob cannot distinguish between interaction with the SB and
with a honest Alice. Hence the protocol is secure against a
curious Bob.

Security of PP-HS. Alice’s view of the protocols consists
of the encryption and decryption keys for J · K, and cipher-

text JaK from Bob. Alice’s output is 2R atan(
√
a/(1− a)).

Simulator SA provides Alice with decryption key for J · K
as input. It then computes a from the protocol output, en-
crypts it as JaK, and sends it to Alice. Since JaK is properly
distributed, Alice cannot distinguish between the simulation
and a real execution of the protocol. Therefore, the protocol
is secure against a curious Alice.

Bob’s view of the protocol consists in Alice’s public key,
and six ciphertexts from Alice, namely Jα2K, J−2αγK, Jγ2K,
Jζηθ2λ2K, J−2ζηθλK and JζηK. Bob has no output. Simula-
tor SB selects six random values s1, . . . , s6 from the message
space of J · K, encrypts them and sends Js1K, . . . , Js6K to Bob.
The semantic security of J · K prevents Bob from distinguish-
ing Js1K, . . . , Js6K from the encryption of properly distributed
values. For this reason, Bob cannot distinguish between
interaction with the SB and with a honest Alice. Hence the
protocol is secure against a curious Bob.

Security of Comparison with Garbled Circuit of [28].
It is well known that Garbled Circuits can be used to im-
plement secure two party computation in the honest but
curious model [14, 28]. When using it as a building block,
we have to show that combining our distance protocol with
the comparison circuit of [28] does not affect security.

Before the circuit execution, Bob reveals JaK = Ja+ sK to
Alice, where a ∈ {0, 1}l is a representation of the distance
between the two parties and s ← {0, 1}κ+l is chosen uni-
formly at random. We argue that a computationally-bound
adversary does not learn information about a from a, since
s provides statistical hiding. (Unconditional hiding can be
obtained selecting s from s← {0, 1}l and performing modulo
subtraction within the circuit. However, this could negatively
affect performance since it would add complexity to the com-
parison circuit.) More specifically, the success probability of
the adversary decreases exponentially in κ.

Bob’s view does not include any unencrypted values, so
the security of the combined protocol simply relies on the
security of its building blocks.

Remark on Location Triangulation. A potential secu-
rity weakness inherent in distance computation is the ability
of a set of three or more colluding parties, acting as Alice, to

106

0.0%

0.5%

1.0%

0 100 200 300

Distance in km

R
e
la

ti
v
e
 e

rr
o
r

PP−HS

PP−ECEF

PP−UTM

(a)

0.0%

0.5%

1.0%

0 5,000 10,000 15,000 20,000

Distance in km

R
e
la

ti
v
e
 e

rr
o
r

PP−HS

PP−ECEF

(b)

Figure 5: Comparison of PP-UTM, PP-ECEF and PP-HS accuracy for short (a) and long (b) distances. Dis-
cretization is performed with 1-meter accuracy for PP-UTM and PP-ECEF and roughly equivalent accuracy
(9 digits) for PP-HS. Relative error is plotted from the 2 km distance.

precisely determine the location of Bob through triangulation.
This is not an issue specific to our protocol, but rather to the
functionality that our protocol implements. Any protocol
implementing the same functionality has the same issue. Sim-
ilarly, proximity testing allows multiple colluding parties to
determine Bob’s exact location – although with significantly
higher cost. We do not discuss this issue any further, since
this is a limitation of the underlying functionality rather
than of our protocols.

7. EVALUATION
We now present our protocol evaluation. We assess the

proposed protocols in terms of accuracy and performance.
For accuracy, we compare the exact distance with the out-
put of the specific distance function (i.e., haversine formula,
ECEF arc, Euclidean distance on UTM), after performing
input discretization. To assess performance, we measure
protocol execution time and bandwidth requirements. For
garbled circuits, the time is divided into the precomputation,
which can be done before knowing the input of either party,
and execution. Both precomputation and execution require
interaction between the protocol participants.

Our tests are performed on a prototype implementation,
detailed below. For generality’s sake, all tests were run
on both a regular desktop computer and on a commodity
Android device.

7.1 Accuracy
To evaluate the accuracy of our protocols, we use WGS84

as the reference shape of Earth. We select random pairs of
coordinates and compute the reference distance on WGS84.
This distance is then compared with the output of the proto-
cols on the same coordinates. We report errors as a fraction
of the WGS84 distance.

There are two main sources of imprecision in our protocols:
(1) the distance computation methods we consider are inher-
ently inaccurate, as they use a spherical approximation or a
projection instead of the actual shape of Earth; (2) compu-
tation in the encrypted domain is performed on discretized
values, i.e., over the integers; for efficiency reasons, the num-

ber of digits used for discretization is limited – this introduce
approximation errors.

The effect of coordinate discretization on PP-UTM and
PP-ECEF is that all points are mapped on a grid with
fixed-size cells. Additions and subtractions of discretized
values performed in the encrypted domain do not introduce
further errors. Square root and trigonometric functions are
computed in the unencrypted domain, and can therefore be
performed with arbitrary precision. In our tests, we used
64-bit IEEE 754 floating point variables (i.e., double in Java).
We evaluated cells of size 1 m and 100 m (i.e., discretizee(·)
with e = 0 and e = −2 respectively). Let u denote the
cell size. Errors introduced in the encrypted domain are
bounded by

√
2 · u for PP-UTM and approximately

√
3 · u

for PP-ECEF.
This does not apply to PP-HS. In fact, the discretization

is performed on the output of trigonometric functions com-
puted over Alice and Bob’s coordinates. As the number of
digits increases, the error caused by discretization decreases
exponentially. In all our experiments, we used e = 9, that
is, 9 significant decimal digits. This value showed, in fact, a
reasonable trade-off between cost and accuracy. Moreover,
by further increasing e the impact on accuracy was negligible.

The relative error of our protocols is shown in figures 5(a)
and 5(b), for short and long distances respectively. The error
on UTM projection is shown in Figure 5(a) only, since it is
not meaningful to compare distances between coordinates
laying on different zones (any two random points separated
by over 300 km would likely fall in different zones).

PP-ECEF is better suited when the distance between the
two parties is below 12,000 km. As a generic distance function
(i.e., when there is no a-priory knowledge of the range of
distances involved), both PP-HS and PP-ECEF provide
accurate results. We compare the PP-ECEF protocol with
existing protocols in Table 1.

Our prototype relies on the Java Geodesy Library [12] to
compute distances on WGS84. The JScience library [25] is
used to project WGS84 coordinates to UTM and ECEF, while
the Java Map Projection Library [23] – to project spherical
coordinates to the Mercator, Equidistant Cylindrical and
Mollweide projections.

107

PP-ECEF Narayanan et. al. [36] Louis [50] Lester [50] Pierre [50]

Suitable for proximity testing yes yes yes yes yes
Suitable for distance computation yes no w/ small changes w/ small changes no
Location resolution independent yes no yes yes no
of threshold
Error characterization linear with linear with linear with linear with linear with

resolution threshold/resolution resolution resolution threshold/resolution
Max. error for ≈ 3 m > 135% of ε ≈ 2 m ≈ 2 m > 180% of ε
threshold ε < 100 km (with 1 m resolution) (with 1 m resolution) (with 1 m resolution)
Requires third party no no yes yes no

Table 1: Comparison of our PP-ECEF protocol to related work. For protocols that allow independent choice
of resolution, 1m resolution was chosen for the 100m proximity test.

7.2 Performance
Protocol performance was evaluated on a desktop computer

(Intel Xeon E5420 2.5 GHz CPU, 16GB RAM) and on an
Android smartphone (LG Nexus 4, Quad-core 1.5 GHz Krait
CPU, 2 GB RAM). Both the distance computation protocol
and the protocol for proximity testing were implemented in
Java using the BigInteger API. For simplicity, the prototype
implementation was single-threaded.

In this section we report time measurements only for com-
putation; communication overhead is instead expressed in
terms of amount of data exchanged between the parties
during protocol execution. We ignore additional overhead
necessary for establishing a secure channel between the Alice
and Bob (e.g., via TLS).

In our experiments, we use 1024-bit modulus, 160-bit sub-
group size for DGK cryptosystem. Plaintext space for the
distance computation protocols and proximity testing based
on homomorphic comparison was 48 bits for PP-UTM, 65
bits for PP-HS, PP-ECEF, and 165 bits for proximity testing
with garbled circuits. The security parameter κ for garbled
circuits was set to 80 in all of our experiments. Average exe-
cution time and bandwidth usage for distance computation
is reported in Table 2, for proximity testing in Table 3.

Our experiments show that all protocols are practical on
both our desktop setup and on a regular smartphone. Dis-
tance computation, regardless of the protocol, requires up
to 41 ms on the desktop computer, and 78 ms on the smart-
phone. Small amount of computation, in conjunction with
negligible bandwidth usage (below 1 kB) make our proto-
cols suitable for resource-constrained devices. For distance
computation, discretization parameters have no impact on
bandwidth usage and negligible effects on computation time.
Therefore, we show results for 1-meter discretization for PP-
UTM and PP-ECEF, and roughly equivalent accuracy for
PP-HS.

While PP-UTM is the fastest of our protocols, both PP-HS
and PP-ECEF offer better accuracy for longer and shorter
distances, respectively. Moreover, the cost increase over
PP-UTM is small.

Proximity testing is significantly slower (and requires higher
bandwidth) than simple distance computation. We perform
tests using different discretization parameters, which impact
computation and communication cost for both the homomor-
phic comparison protocol and garbled circuits.

On the desktop, comparison with garbled circuits takes 0.5
to 0.6 seconds, compared to 0.7 to 1.7 seconds with Erkin’s
protocol. The time and bandwidth for precomputation and
protocol execution are listed separately in Table 3. On the
other hand, bandwidth requirements for garbled circuits is

between 37.5 and 41.0 kB, more than twice as much as the 7
to 14 kB required for Erkin’s protocol.

Unlike the Erkin’s comparison protocol, garbled circuits
allow part of the computation to be done without providing
any user input. This precomputation can be done in advance
(e.g., while charging the smartphone or during extended peri-
ods of inactivity), but still requires communication between
protocol participants. Without precomputation, comparison
using garbled circuits takes 2.4 to 2.8 s, while the Erkin’s
protocol is faster with 1.2 to 2.8 seconds, depending on dis-
cretization and distance function. With precomputation,
however, protocol execution time and bandwidth usage is
reduced to 1.2-1.6 s.

Time Communication
Desktop
PP-HS 41.3 ms 896 B
PP-ECEF 34.9 ms 640 B
PP-UTM 26.5 ms 512 B
Smartphone
PP-HS 78.0 ms 896 B
PP-ECEF 66.7 ms 640 B
PP-UTM 53.5 ms 512 B

Table 2: Cost of our privacy-preserving distance
measurement protocols. Discretization is performed
with 1-meter accuracy for PP-UTM and PP-ECEF
and roughly equivalent accuracy (9 digits) for PP-
HS.

8. CONCLUSION
In this paper we introduced PP-UTM, PP-ECEF and PP-

HS, three privacy-preserving protocols for secure distance
computation and secure proximity testing. In contrast with
previous work, our PP-ECEF and PP-HS protocols compute
distances over a spherical surface instead of a plane. This
allows us to provide significantly more accurate results over
long distances, while incurring in very small overhead.

We rely on different techniques for distance computation –
namely, Euclidean distance on a plane (which we use as a
baseline) and distance on the surface of a sphere – in order
to offer different trade-offs between accuracy and cost.

To the best of our knowledge, this is the first work that
provides a thorough characterization of the geometrical error
and the approximation introduced by input discretization on
distances computed using privacy-preserving protocols.

We evaluated the cost of our protocols on a commodity
Android device and on a desktop computer via a prototype
implementation. Our analysis shows that our protocols are

108

With Homomorphic Comparison With Garbled Circuit
Proximity testing Time Comm. Precomp. Comm. Exec. Comm.
Desktop
PP-HS (9 decimal digits) 1.7 s 17 kB 409 ms 22.1 kB 124 ms 18.9 kB
PP-ECEF (1 m discretization) 1.3 s 14 kB 404 ms 22.1 kB 109 ms 17.7 kB
PP-ECEF (100 m discretization) 1.0 s 10 kB 404 ms 22.1 kB 105 ms 16.6 kB
PP-UTM (1 m discretization) 1.1 s 10 kB 401 ms 22.1 kB 102 ms 16.6 kB
PP-UTM (100 m discretization) 0.7 s 7 kB 401 ms 22.1 kB 104 ms 15.4 kB
Smartphone
PP-HS (9 decimal digits) 2.8 s 17 kB 1.2 s 18.1 kB 1.6 s 16.4 kB
PP-ECEF (1 m discretization) 2.2 s 14 kB 1.2 s 18.1 kB 1.4 s 15.2 kB
PP-ECEF (100 m discretization) 1.6 s 10 kB 1.2 s 18.1 kB 1.3 s 14.1 kB
PP-UTM (1 m discretization) 1.8 s 10 kB 1.2 s 18.1 kB 1.3 s 14.1 kB
PP-UTM (100 m discretization) 1.2 s 7 kB 1.2 s 18.1 kB 1.2 s 12.9 kB

Table 3: Cost of proximity testing protocols with Homomorphic Comparison and Garbled Circuits.

practical and can be run efficiently on standard smartphones.
Finally, we analyzed the security of our protocols under
standard assumptions.

9. ACKNOWLEDGEMENTS
Jaroslav Šeděnka kindly acknowledges the support by the

ESF Project CZ.1.07/2.3.00/20.0051 Algebraic Methods in
Quantum Logic of the Masaryk University. Supported by

10. REFERENCES
[1] Find my Friends. http://www.apple.com/icloud/

features/find-my-friends.html.

[2] A. Beresford and F. Stajano. Location Privacy in
Pervasive Computing. Pervasive, 2(1), 2003.

[3] M. Blanton and P. Gasti. Secure and efficient protocols
for iris and fingerprint identification. In ESORICS,
2011.

[4] Boost Mobile Loopt.
http://www.boostmobile.com/boostloopt/how.html.

[5] Cab4me. http://www.cab4me.com.

[6] I. Damg̊ard, M. Geisler, and M. Krøig̊ard. A correction
to efficient and secure comparison for on-line auctions.
Cryptology ePrint Archive, Report 2008/321, 2008.

[7] I. Damg̊ard, M. Geisler, and M. Krøig̊ard.
Homomorphic encryption and secure comparison.
IJACT, 2008.

[8] Defense Mapping Agency, Hydrographic/Topographic
Center. The universal grids: Universal transverse
mercator (UTM) and universal polar stereographic
(UPS). Technical Report TM8358.2, 1989.

[9] M. Duckham and L. Kulik. A formal model of
obfuscation and negotiation for location privacy. In
Pervasive, 2005.

[10] Z. Erkin, M. Franz, J. Guajardo, S. Katzenbeisser,
I. Lagendijk, and T. Toft. Privacy-preserving face
recognition. In PETS, 2009.

[11] Flickr. http://www.flickr.com.

[12] Java geodesy library.
http://www.gavaghan.org/blog/free-source-code/

geodesy-library-vincentys-formula-java/.

[13] O. Goldreich. Foundations of Cryptography: Volume 2,
Basic Applications. Cambridge University Press, 2004.

[14] O. Goldreich, S. Micali, and A. Wigderson. How to
play any mental game or a completeness theorem for
protocols with honest majority. In ACM Symposium on
Theory of Computing (STOC), pages 218–229, 1987.

[15] P. Golle and K. Partridge. On the anonymity of
home/work location pairs. In Pervasive, 2009.

[16] Google Latitude. http://www.google.com/latitude.

[17] Groupon Local. http://www.groupon.com.

[18] M. Gruteser and D. Grunwald. Anonymous usage of
location-based services through spatial and temporal
cloaking. In MobiSys, 2003.

[19] B. Hoh, T. Iwuchukwu, Q. Jacobson, D. Work,
A. Bayen, R. Herring, J. Herrera, M. Gruteser,
M. Annavaram, and J. Ban. Enhancing privacy and
accuracy in probe vehicle-based traffic monitoring via
virtual trip lines. TMC, 11(5), 2012.

[20] Find my iPhone - iCloud. http://www.icloud.com.

[21] Instagram. http://instagram.com.

[22] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank.
Extending oblivious tranfers efficiently. In Advances in
Cryptology – CRYPTO, 2003.

[23] Java map projection library.
http://www.jhlabs.com/java/maps/proj/.

[24] T. Jiang, H. Wang, and Y.-C. Hu. Preserving location
privacy in wireless lans. In MobiSys, 2007.

[25] Jscience library. http://jscience.org/.

[26] T. Jung and X.-Y. Li. Search me if you can:
Privacy-preserving location query service. CoRR,
abs/1208.0107, 2012.

[27] C. Karney. Algorithms for geodesics. Journal of
Geodesy, 87(1), Jan. 2013.

[28] V. Kolesnikov, A.-R. Sadeghi, and T. Schneider.
Improved garbled circuit building blocks and
applications to auctions and computing minima. In
Cryptology and Network Security (CANS), 2009.

[29] V. Kolesnikov and T. Schneider. Improved garbled
circuit: Free XOR gates and applications. In
International Colloquium on Automata, Languages and
Programming (ICALP), 2008.

[30] J. Krumm. Inference attacks on location tracks. In
Pervasive, 2007.

109

[31] P. Lory. Enhancing the efficiency in privacy preserving
learning of decision trees in partitioned databases. In
PSD, 2012.

[32] J. Manweiler, R. Scudellari, Z. Cancio, and L. Cox. We
saw each other on the subway: secure, anonymous
proximity-based missed connections. In HotMobile,
2009.

[33] S. Mascetti, C. Bettini, and D. Freni. Longitude:
Centralized privacy-preserving computation of users’
proximity. In SDM, 2009.

[34] MIT iFIND Project.
http://web.mit.edu/newsoffice/2006/ifind.html.

[35] M. Naor and B. Pinkas. Efficient oblivious transfer
protocols. In ACM-SIAM Symposium On Discrete
Algorithms (SODA), 2001.

[36] A. Narayanan, N. Thiagarajan, M. Lakhani,
M. Hamburg, and D. Boneh. Location privacy via
private proximity testing. In NDSS, 2011.

[37] P. Paillier. Public-key cryptosystems based on
composite degree residuosity classes. In EUROCRYPT,
1999.

[38] B. Pinkas, T. Schneider, N. Smart, and S. Williams.
Secure two-party computation is practical. In Advances
in Cryptology – ASIACRYPT, volume 5912 of LNCS,
2009.

[39] P. Shankar, V. Ganapathy, and L. Iftode. Privately
querying location-based services with sybilquery. In
UbiComp, 2009.

[40] R. Shokri, G. Theodorakopoulos, J. Boudec, and
J. Hubaux. Quantifying location privacy. In SP, 2011.

[41] R. Shokri, G. Theodorakopoulos, G. Danezis, J.-P.
Hubaux, and J.-Y. Boudec. Quantifying location
privacy: The case of sporadic location exposure. In
PETS, 2011.

[42] R. Sinnott. Virtues of the haversine. Sky and Telescope,
68(2), 1984.

[43] W. Torge. Geodesy. De Gruyter, 2001.

[44] TripAdvisor. http://www.tripadvisor.com.

[45] T. Vincenty. Direct and inverse solutions of geodesics
on the ellipsoid with application of nested equations.
Survey Review, 22(176), 1975.

[46] Apple Pays Out $946 in Locationgate Settlement.
http://www.wired.com/gadgetlab/2011/07/

apple-locationgate-settlement/.

[47] Stalkers Exploit Cellphone GPS.
http://online.wsj.com/article/

SB10001424052748703467304575383522318244234.

html.

[48] A. Yao. How to generate and exchange secrets. In
FOCS, 1986.

[49] Yelp. http://www.yelp.com.

[50] G. Zhong, I. Goldberg, and U. Hengartner. Louis,
Lester and Pierre: Three protocols for location privacy.
In PET, 2007.

110

