
Peer-to-Peer Scheduling in the Czech National Grid and Beyond

Šimon Tóth1

1 CESNET, Prague, Czech Republic

emails: simon@cesnet.cz

Keywords: torque, grid scheduling, distributed scheduling

1. Introduction

In this work, we will present our advancements in the Torque Batch System fork used

in the Czech National Grid MetaCentrum. While the major focus was stabilizing the

numerous experimental features implemented during previous years, we have also advanced

our feature set noticeably. Our custom scheduler has gone through several architectural

changes. We will also touch upon features that have finally entered production, and describe

how they had to be changed since first introduced [3].

2. Resource Management and Enforcement

One of the notable features of the Czech National Grid was always exclusive resource

allocation. Each job was assigned a static allocation of resources with the expectation that

the job will not consume more than requested. This was however, for a long time, not

enforced. This led to many unfortunate cases of jobs clashing with each other, or even in

extreme cases, crashing entire nodes.

To address this issue, we have implemented a configurable support for notifying users

and terminating offending jobs. Current support is implemented inside the Torque node

daemon pbs_mom and includes checking for CPU cores, physical and virtual memory

violations. Jobs requesting entire nodes, or running alone on a particular node can be

excluded from these checks. After a transitional period, when the system was running in

warning-only mode, we are now terminating any offending jobs, thus avoiding most of the

job clashing issues.

3. Changes Entering Production

One feature that went through multiple iterations before finally entering the production

environment is the Peer-to-Peer scheduling support [1][2][3]. This feature provides support

for global queues, a model that allows jobs from one server to be executed on any other

server sharing that particular queue. If remotely executed, the job leaves a copy of itself on

the original server in a special

state. Global queues can span

across multiple servers and jobs

always follow policies of the

server they are executed on.

Second big feature is

support for so called on-demand

clusters [2]. Using this feature,

we are able to switch our infra-

structure into a more dynamic

environment. When a job re-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/51296949?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

quirements cannot be immediately satisfied, the scheduler will also try to consider a reboot

of a free node into a suitable configuration. Using this support we can provide a wide range

of software configurations without the need to lock particular nodes into such (possibly rare)

setups.

4. Scheduler Improvements

While we are continuously improving our scheduler with new features, there are two

changes that deserve special attention. First change involves the switch to a client-server

model. Originally Torque used a server-server model for communication between the

scheduler and server. Communication was always initiated by the server, notifying the

scheduler of an important event. While this approach was definitely efficient, the scheduler

lacked the ability to easily connect to specific server when needed. Such support was

required for the final version of the Peer-to-Peer scheduling support. This is also the first

step toward a fully client-based scheduler, running under user UNIX privileges.

Second change is also architectural. Since the very first version of our fork, our

scheduler worked with a simple two-value model when determining whether a particular job

can, or cannot be currently executed. Unfortunately this led us to an issue where the

scheduler was unable to make a distinction between jobs that could not be run temporarily

and jobs that could never run. Such jobs would then still trigger anti-starving and other

measures, which can result in poor machine utilization levels. Our change switched the

model from two values into three values: available now, not available, not possible. Jobs

that can never run are now correctly marked as such, skipped and their users notified.

5. Conclusions and Future Work

This paper describes some of the changes implemented into the Torque Batch System

fork maintained by MetaCentrum. Our fork is continuing to prove as a valid alternative to

the commercial PBS Pro while providing good scalability and stability.

Our future efforts will be concentrated in two main areas, firstly we are working on a

large set of scheduler improvements that are aimed at improving machine utilization

(backfill, smarter anti-starvation measures, improved software licenses handling, etc.).

Second large effort is concentrated on merging our fork with the current version of Torque,

which should further improve scalability of our solution.

Source code for our fork is available at http://cesnet.github.io/torque/. RPM packages

for various distributions are available at:

https://build.opensuse.org/project/show?project=home:Let_Me_Be.

Acknowledgments. The work presented in this paper was conducted under the programme "Projects of

Large Infrastructure for Research, Development, and Innovations" LM2010005 funded by the Ministry

of Education, Youth and Sports of the Czech Republic.

References

1. Š. Tóth, M. Ruda and L. Matyska: Towards Peer-to-Peer Scheduling Architecture for the Czech
National Grid. In Proc. Cracow'10 Grid Workshop, 2011, pp. 92-101

2. Š. Tóth and M. Ruda: Practical Experiences with Torque Meta-Scheduling in The Czech

National Grid. Computer Science, 13 (2):33-45, 2012
3. L. Matyska, M. Ruda and Š. Tóth: Peer-to-Peer Cooperative Scheduling Architecture for

National Grid Infrastructure. Data Driven e-Science, 2011, pp. 105-118

http://cesnet.github.io/torque/
https://build.opensuse.org/project/show?project=home:Let_Me_Be

