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1. Introduction 

In this work, we will present our advancements in the Torque Batch System fork used 

in the Czech National Grid MetaCentrum. While the major focus was stabilizing the 

numerous experimental features implemented during previous years, we have also advanced 

our feature set noticeably. Our custom scheduler has gone through several architectural 

changes. We will also touch upon features that have finally entered production, and describe 

how they had to be changed since first introduced [3]. 

2. Resource Management and Enforcement 

One of the notable features of the Czech National Grid was always exclusive resource 

allocation. Each job was assigned a static allocation of resources with the expectation that 

the job will not consume more than requested. This was however, for a long time, not 

enforced. This led to many unfortunate cases of jobs clashing with each other, or even in 

extreme cases, crashing entire nodes. 

To address this issue, we have implemented a configurable support for notifying users 

and terminating offending jobs. Current support is implemented inside the Torque node 

daemon pbs_mom and includes checking for CPU cores, physical and virtual memory 

violations. Jobs requesting entire nodes, or running alone on a particular node can be 

excluded from these checks. After a transitional period, when the system was running in 

warning-only mode, we are now terminating any offending jobs, thus avoiding most of the 

job clashing issues. 

3. Changes Entering Production 

One feature that went through multiple iterations before finally entering the production 

environment is the Peer-to-Peer scheduling support [1][2][3]. This feature provides support 

for global queues, a model that allows jobs from one server to be executed on any other 

server sharing that particular queue. If remotely executed, the job leaves a copy of itself on 

the original server in a special 

state. Global queues can span 

across multiple servers and jobs 

always follow policies of the 

server they are executed on. 

Second big feature is 

support for so called on-demand 

clusters [2]. Using this feature, 

we are able to switch our infra-

structure into a more dynamic 

environment. When a job re-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/51296949?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


quirements cannot be immediately satisfied, the scheduler will also try to consider a reboot 

of a free node into a suitable configuration. Using this support we can provide a wide range 

of software configurations without the need to lock particular nodes into such (possibly rare) 

setups. 

4. Scheduler Improvements 

While we are continuously improving our scheduler with new features, there are two 

changes that deserve special attention. First change involves the switch to a client-server 

model. Originally Torque used a server-server model for communication between the 

scheduler and server. Communication was always initiated by the server, notifying the 

scheduler of an important event. While this approach was definitely efficient, the scheduler 

lacked the ability to easily connect to specific server when needed. Such support was 

required for the final version of the Peer-to-Peer scheduling support. This is also the first 

step toward a fully client-based scheduler, running under user UNIX privileges. 

Second change is also architectural. Since the very first version of our fork, our 

scheduler worked with a simple two-value model when determining whether a particular job 

can, or cannot be currently executed. Unfortunately this led us to an issue where the 

scheduler was unable to make a distinction between jobs that could not be run temporarily 

and jobs that could never run. Such jobs would then still trigger anti-starving and other 

measures, which can result in poor machine utilization levels. Our change switched the 

model from two values into three values: available now, not available, not possible. Jobs 

that can never run are now correctly marked as such, skipped and their users notified. 

5. Conclusions and Future Work 

This paper describes some of the changes implemented into the Torque Batch System 

fork maintained by MetaCentrum. Our fork is continuing to prove as a valid alternative to 

the commercial PBS Pro while providing good scalability and stability. 

Our future efforts will be concentrated in two main areas, firstly we are working on a 

large set of scheduler improvements that are aimed at improving machine utilization 

(backfill, smarter anti-starvation measures, improved software licenses handling, etc.). 

Second large effort is concentrated on merging our fork with the current version of Torque, 

which should further improve scalability of our solution. 

Source code for our fork is available at http://cesnet.github.io/torque/. RPM packages 

for various distributions are available at:  

https://build.opensuse.org/project/show?project=home:Let_Me_Be. 
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