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Power analysis is becoming standard in inference based research proposals and is 

used to support the proposed design and sample size. The choice of an appropriate power 

analysis depends on the choice of the research question, measurement procedures, design, 

and analysis plan. The "best" power analysis, however, will have many features of a 

sound data analysis. First, it addresses the study hypothesis, and second, it yields a 

credible answer. 

Power calculations for standard statistical hypotheses based on normal theory have 

been defined for t-tests through the univariate and multivariate general linear models. For 

these statistical methods, the approaches to power calculations have been presented based 

on the exact or approximate distributions of the test statistics in question. Through the 

methods proposed by O'Brien and Muller (1993), the noncentrality parameter for the 

noncentral distribution of the test statistics for the univariate and multivariate general linear 

models is expressed in terms of its distinct components. This in tum leads to methods for 

calculating power which are efficient and easy to implement. 
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As more complex research questions are studied, more involved methods have been 

proposed to analyze data. One such method includes the mixed linear model. This 

research extends the approach to power calculation used for the general linear model to the 

mixed linear model. Power calculations for the mixed linear model will be based on the 

approximate F statistic for testing the mixed model's fixed effects proposed by Helms 

(1992). The noncentrality parameter of the approximate noncentral F for the mixed model 

will be written in terms of its distinct components so that a useful and efficient method for 

calculating power in the mixed model setting will be achieved. In this research, it has been 

found that the rewriting of the noncentrality parameter varies depending on study design. 

Thus, the noncentrality parameter for three specific cases of study design are derived. 



1.1 Introduction 

Chapter 1 

Introduction 

The proper planning of an experiment should always include a power analysis. It is 

becoming a standard addition for inference based research proposals to include power 

analyses to support the proposed design and sample size (O'Brien and Muller, 1993). 

Many reviewers of research proposals are now requiring that power analyses be performed 

before they will recommend funding. The choice of an appropriate power analysis depends 

on the choice of the research question, measurement procedures, design, and analysis plan. 

The "best" power analysis, however, will have many features of a sound data analysis. 

First, it addresses the study hypothesis, and second, it yields a credible answer. 

Overestimating or underestimating power can occur when power is computed using 

approximations of the study design and test statistic rather than the methods for the 

appropriate design and test. Therefore, the power analysis and statistical analysis must be 

aligned (Muller et al., 1992). Otherwise, one can commit a type III error. This type of 

error was termed by Kimball (1957). It is an error which provides the right answer to the 

wrong question. For example, if an ANOVA is planned and the power is computed for a t

test instead of the power of the ANOV A, then a type III error has been committed. 

Performing a power analysis ensures the interaction of statisticians with the 

researchers. Statisticians who perform a power analysis are more likely to thoroughly 

familiarized themselves with the proposed design, assess issues regarding data collection 
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and management, and develop a sound plan for the data analysis. Power calculations can 

also suggest the need for changes in the proposed study design. Through a power 

analysis, evaluation of the tradeoffs among type I error rate, type II error rate, choice of 

variables, choice of analysis, and choice of tests can be made. 

Power calculations for standard statistical hypotheses based on normal theory have 

been defined for t-tests through the univariate and multivariate general linear models. 

O'Brien and Muller (1993) propose a unified method of power analysis for the t-test 

through the multivariate hypothesis. Even though power analysis based on many methods 

is available, O'Brien and Muller present their method because they develop strong parallels 

between ordinary data analysis and power analysis. Instead of focusing on power of 

traditional tests, their method allows for the calculation of power for statistical hypotheses 

that are geared toward more specific research questions. Their approach to power 

calculation also forces researchers to give specific conjectures or estimates for the relevant 

parameters to be used in the statistical analysis. These parameters may include population 

means and standard deviations. Therefore, the results of the power analysis will be 

improved. 

Many of the common test statistics have nonnull distributions that can easily be 

characterized by either exact or approximate noncentral distributions. The concepts 

developed by O'Brien and Muller can be applied to all of the cases of the univariate and 

multivariate general linear models. The basis of their unified approach to power analysis is 

understanding noncentrality in general linear model testing and knowing how to perform 

the calculations easily. This leads to expressing the noncentrality parameter in terms of its 

distinct components. 

As more complex research questions are studied, methods of statistical analysis 

have changed, and consequently, more involved methods have been proposed to analyze 

data. One such model includes the mixed linear model. The goal of this research is to 
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extend O'Brien and Muller's work in the univariate and multivariate general linear model to 

the mixed linear model. For this research, power based on hypothesis testing of the mixed 

model's fixed effects will be considered. Therefore, the noncentrality parameter based on 

the approximate F statistic for testing the mixed model's fixed effects, as described by 

Helms (1991), will be written in terms of its distinct components. Through this, an 

approach that is useful and efficient for calculating power in the mixed linear model setting 

will be illustrated. 

1.2 Prospectus 

Chapter 2 begins with a review of power calculations for the t-test, the uni variate 

general linear model, and the multivariate general linear model. These methods discuss 

O'Brien and Muller's unified approach and the rewriting of the noncentrality parameter. 

Following the discussion of power, an example will be presented for each statistical 

method. In Chapter 3, a review of the mixed linear model will be presented. The chapter 

begins by briefly discussing the general linear model. Next, mixed linear model 

methodology including estimation and inference is discussed. The chapter ends by 

discussing applications of the mixed linear model. Chapter 4 presents the approach for 

calculating power extended to the mixed linear model setting. The chapter first introduces 

power for the mixed linear model, in general. The remaining sections of the chapter 

discuss the rewriting of the noncentrality parameter for three specific cases. These cases 

arise due to the different study designs that the mixed linear model may be used to analyze. 

Chapter 5 contains applications of the results from Chapter 4. For each noncentrality case, 

two examples are presented. (Appendix A contains the programs used to calculate power 

for each example.) Chapter 6 contains simulation study results concerning the effect of 

misspecification and underspecification of the mixed linear model's covariance structure. 

(Appendix B contains the program used for the simulation study.) Chapter 7 focuses on 



summary comments and future research ideas concerning power for the mixed linear 

model. 
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Chapter 2 

Performing a Power Analysis 

2.1 What is Power? 

Power analyses are now becoming a common requirement for hypothesis-based 

research proposals. What exactly is power? First, hypothesis testing needs to be 

understood. A hypothesis is a statement about a population. The goal of a hypothesis test 

is to determine, based on a sample from the population, which of two hypotheses stated are 

true. The first hypothesis stated is called the null hypothesis, denoted as H0 . In classical 

hypothesis testing, the null hypothesis is a statement of "no effect" or "no difference" that 

one is willing to assume. The second hypothesis is the alternative hypothesis, denoted as 

H
1

• The alternative hypothesis is a statement one hopes or suspects is true instead of H
0 

and is considered as the negation of the null hypothesis. A hypothesis test is then a rule 

that specifies a) for which sample values the decision is made to accept H0 as true and b) 

for which sample values H0 is rejected and H, is accepted as true (Casella and Berger, 

1990). 

When performing a hypothesis test, two decisions can be drawn from the observed 

data. Each of these decisions can be either correct or incorrect depending on the true 

situation. Usually, hypothesis tests are evaluated and compared through the probabilities 

of making errors or incorrect decisions (Casella and Berger, 1990). The following figure 

describes the decisions that can be drawn in hypothesis testing and their corresponding 

probabilities. 

5 
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orrect Decision 
I-a 

Type II error 

Decision 
Reject 

Ho 
Type I error 
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Correct Decision 
'Power= 1-
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Figure 2.1: Types of Decisions and Their Probabilities in Statistical Hypothesis Testing 

The first of the two errors one can commit is a type I error and has probability a, 

This error is committed when the hypothesis test incorrectly rejects H
0

, A type II error is 

when the hypothesis test incorrectly fails to reject H0 and has probability �, On the other 

hand, one can correctly reject H0, The probability of this is 1-� and is called power. 

Therefore, power is the probability of rejecting H0 (or claiming H, is true) given H, is in 

fact true. 

The remaining sections of this chapter will review calculating power for various 

tests of statistical hypotheses. Section 2,2 will review power for the t-test comparing two 

independent means. Both directional and nondirectional hypotheses will be reviewed. 

Section 2.3 will discuss power for the univariate general linear model. Both of these 

sections are based on O'Brien and Muller's (1993) unified discussion of power. Power for 

the multivariate general linear model will be reviewed in Section 2.4. After power is 

discussed in each section, an example will be presented using the method discussed. 

2.2 Power of t-tests 

Common t-tests are probably the most frequently used statistical method. When 

comparing the population means from two independent groups, the null hypothesis of 

interest is 



Ho:µ, = µ,. 

The alternative hypothesis can be either directional, 

H, : µ, > µ
2 

or H, : µ, < µ
2 

or nondirectional 

The test statistic for detecting a difference between the sample means is 

where 

µ; is the sample mean for group i, 

n; is the sample size for group i, 

and 

& is the pooled sample standard deviation. 

7 

(2.2.1) 

(2.2.2) 

If N = n
1 
+ n

2
, then W; = n;/N is the proportion of the total sample size in group i. Using 

these terms, the t statistic given in 2.2.2 can be rewritten as 

(2.2.3) 



The term µ, -:: µ2 is known as the effect size. 
cr 

When H0 is true, and the observations are independent and follow a normal 

distribution, then the test statistic, t, has an exact t-distribution with N-2 degrees of 

freedom. This central t-distribution is denoted as t(N-2). When H
1 

is true, t follows a 

noncentral t-distribution with N-2 degrees of freedom and noncentrality parameter 8, 

denoted as t(N-2, 8) where 

8 

(2.2.4) 

Power of the directional test, using H
1 

: µ, > µ
2
, is 

Il=P[t(N-2, 8) ;e: ta] (2.2.5) 

where tcx is the upper-tail critical value satisfying 

a=P[t(N-2) :e: tcxl 

and a is the type I error rate. In other words, a is the probability that the random t-variate 

with N-2 degrees of freedom will exceed the critical value, ta, given 8=0, and power is the 

probability that t exceeds ta but given the noncentrality parameter in 2.2.4 which is a value 

greater than zero. If H, : µ, < µ
2 

is being tested, then -ta would be used in place of tcx in 

the above statements. 

Nondirectional tests, i.e., H, : µ, * µ
2

, use tan and -tcx12- It is, however, more 

straightforward to use the fact that Fa= t�
2 , so that the split rejection region of the central t-



distribution is unified into the upper tail of the central F-distribution (O'Brien and Muller, 

1993). Therefore, H0 can be tested by using the test statistic F=t2. Under H0 , F follows 

a central F-distribution with a single numerator degree of freedom and N-2 denominator 

degrees of freedom. This central F is denoted as F(l, N-2). Under H., F follows a 

noncentral F-distribution with a single numerator degree of freedom, N-2 denominator 

degrees of freedom, and noncentrality parameter, A. This noncentral F is denoted as 

F( I, N-2, A) where A=o2. Power for the nondirectional (two-tailed) t -test is then 

9 

IT=P[F(l ,  N-2, A)� Fa] (2.2.6) 

where Fa is the upper tail critical value satisfying 

a=P[F(l, N-2) � Fa] 

and a is the type I error rate. In other words, a is the probability that the random F-variate 

with I numerator degree of freedom and N-2 denominator degrees of freedom will exceed 

the critical value Fa given A=O, and power is the probability that F exceeds Fa but given 

the particular 11.>0. 

2.2.1 Illustration of t-test Power 

To illustrate these methods, suppose a surgeon is planning a study in which he 

wants to compare the mean number of days a patient remains in the hospital following one 

of two surgical procedures. Even though he has no pilot data, he is willing to assume that 

the first procedure has a mean of 9 days and he believes the effect of the second procedure 

is a 33% reduction or a mean of 6 days. He is also willing to assume a common within 
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group standard deviation as small as 4 days and as large as 5.5 days. He is planning a 

balanced design, i.e., equal sample sizes or w1=w2=0.5. For testing the alternative 

hypothesis, H, : µ, > µ
2

, he is interested in powers for the two standard deviations of 4 

and 5.5 at a=.05. Since he performs approximately 40 such surgical procedures a year, he 

is hoping he will have sufficient power by studying a total of N=40 subjects, and 

consequently, finish the study in one year. 

The following plot shows the power curves for the two standard deviations of 4 

and 5.5. 

0.9 

0.8 

0.7 

0.6 

:;; 
� 0.5 

0.4 

0.3 

0.2 

0.1 

0 
0 20 40 60 80 100 120 140 160 

Total Sample Size 

Figure 2.2: Plot of Power Curves for t-test Example 
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From the plot, one can see that the surgeon will need a total of 46 subjects or 23 subjects 

per group to achieve a power of 0.80 with a standard deviation of 4. He will need a total of 

86 subjects or 43 subjects per group with a standard deviation of 5.5 to achieve the same 

power of 0.80. The surgeon is not sure if he can get the total of 46 subjects in one year. 

He would still like to use only 40 subjects, so he has decided to rethink his assumptions 

and return to the statistician at a later date. 

2.3 Power for the Univariate General Linear Model 

where 

and 

Consider the general linear model 

y =XfJ+e 

y is the Nxl vector of responses, 

X is the Nxp known full-rank fixed effects design matrix, 

f3 is the px I unknown vector of fixed effects parameters, 

e is the Nxl vector of random errors. 

For tests on /J, it will be assumed that the elements of e are independent N(O, cr2) random 

variables. The usual estimates for /J and cr2 are 

P= (X'Xr'X'y 

and 

(y-xfJ) (y-xfJ) 
N-p 

Assume that testing the general linear hypothesis, 



H
0 

:L'P=O 

H, :L'P>"-0, 

12 

(2.3.1) 

is of interest. In 2.3.1, Lis a pxl ,with rank(L)=I ::::p, matrix of contrasts. These contrasts 

are the combinations of the population means that are of interest. The test statistic for 

testing H
0 

is 

_ (L'.8) [L'(X'Xf'Lr'(L'.8) 
F-

A2 
• 

l · (J 
(2.3.2) 

The term in the numerator of the F statistic is known as the sum of squares for the 

hypothesis. Under H0 , the F statistic has an exact F-distribution with I numerator degrees 

of freedom and N-p denominator degrees of freedom, denoted as F(I, N-p). Under H,, F 

follows a noncentral F-distribution with I numerator degrees of freedom, N-p denominator 

degrees of freedom, and noncentrality parameter, A. The noncentral Fis denoted as 

F(l, N-p, 1c) where 

(2.3.3) 

Power for the above hypothesis is then 

Il=P[F(I, N-p, 1c) � Fa] (2.3.4) 

where Fa is the upper tail critical value satisfying 
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a=P[F(l, N-p) � Fa]. 

The noncentrality parameter, 'J,., as given in 2.3.2, can be expressed in terms of its 
distinct components as discussed in O'Brien and Muller (1993). Let X be the nxp essence 
model matrix formed by assembling the n unique rows of X. That is, X contains the 
unique design points for the study of interest. Let W be the nxn diagonal matrix with 
elements wi where O<wj <I and L.Wj=l. The elements, Wj, are the proportion of the total 
sample size associated with the jth row of X. In other words, X has Nwj rows identical to 
the jth row of X. Therefore, NW holds the n sample sizes. Since 

X'X = N{X'WX), 

the noncentrality parameter can now be written as 

'J,., = (L' p)' [ L'(X'Xf' L r'(L' /J) 
(J2 

= (L'/J),[L'(NX'WXf'Lf (L'/J) 
(J2 

= N(L'P),[L'(X'W:Xf'Lf (L'/J) 
(J2 

where 'J,.,* is called the primary noncentrality parameter. It is seen that 'J,.,* is not based on N, 
the total sample size. It is based solely on the design points to be used ( X ), the sample 
weightings of those points (W), and the conjectured values for P and cr2. Thus, when 
calculating power for various total sample sizes, the primary noncentrality only needs to be 
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calculated once. Therefore, instead of calculating A each time the total sample size differs, 

using A• is a computationally more efficient way of calculating power. 

2.3.1 Illustration of Univariate Power 

By way of an example, suppose a pharmaceutical company will be sponsoring a 

two center clinical trial. The goal of the experiment is to test two levels of the treatment, an 

antihypertensive drug (10 mg and 20 mg) versus a placebo. The response of interest is 

diastolic blood pressure from moderately hypertensive patients. Using data from a 

previous study, the clinician expects to see, from the first center, post treatment means of 

98, 88, and 82 from placebo, 10 mg, and 20 mg groups, respectively. She also expects 

that the means for the second center will be 10% lower. Therefore, the means assumed for 

the second center will be 88.2, 79.0, and 73.8. Using the mean square error from the 

previous study, an estimate of the variance is assumed to be cr2=142.3. A cell means 

model of the form 

Y;i' = µu + i,:;i, i=l,2,3 j=l,2 k=l,2, ... ,n 

will be fit. In this model, 

and 

Yijk is the response of the k1h subject from the jth treatment level from the jlh center, 

µii is the mean response from the ith treatment level at the jlh center, 

Eijk is the random error term for the k1h subject from the ith treatment level from the 

jlh center. 

Therefore, in general linear model form, the essence matrix, X, has the form 



I 0 0 0 0 0 

0 I 0 0 0 0 

X= 
0 0 I 0 0 0 

0 0 0 0 0 

0 0 0 0 I 0 

0 0 0 0 0 

and {3 is 

/3= [98 88 82 88.2 79.2 73.8]. 

In X and p, the first three columns correspond to the first center placebo, 10 mg, and 20 

mg dose levels, respectively, and the last three columns correspond to the second center 

placebo, 10 mg, and 20 mg dose levels. The clinician wants equal weightings for each 

treatment center combination, therefore, 

X 0 0 0 0 0 

0 X 0 0 0 0 

0 0 X 0 0 0 
W= 

0 0 0 X 0 0 

0 0 0 0 X 0 

0 0 0 0 0 X 

Since the pharmaceutical company is interested in testing treatment effect, the contrast of 

interest is 
, -[I -I O I -I OJ 

L - I O -I I O -I . 
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The first row of the contrast compares the placebo effect to the effect of the 10 mg dose 

level from each center and the second row of the contrast compares the placebo effect to the 
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effect of the 20 mg dose level from each center. Using X, /3, W, cr2, and Las defined 

above, the primary noncentrality is 11,*=0.2762. 

The clinician is hoping she can perform the experiment with 10 or fewer patients 

per cell and still achieve an adequate power. Upon further consideration, she also thinks 

that the variance may be inflated by 25% or l .25x142.3=177.8. The primary noncentrality 

for this variance is ).*=0.2211. Notice that with the larger variance, the value of the 

primary noncentrality parameter decreases. The power curves for both variances at a=0.05 

are shown in the following plot. 
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Figure 2.3: Plot of Power Curves for Univariate GLM Example 
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From the plot, one can see that the clinician, for 80% power, will need 7 subjects per center 

per treatment or a total of 42 subjects when a variance of 142.3 is assumed. If the 25% 

inflation of the variance is assumed, she will need 8 subjects per center per treatment or a 

total of 48 subjects. If she is willing to use the maximum of 10 patients per center per 

treatment, she will have power closer to 90% assuming the larger variance. 

2.4 Power for the Multivariate Linear Model 

The standard multivariate linear model has the form 

where 

and 

Y=X/J+E 

Y = [ y 
I 

y 2 • • • y 
P 
J is the Nxp matrix of the responses for the p dependent 

variables and y; is a Nx 1 vector of responses for the i1h dependent variable, 

X is the Nxr known full-rank fixed effects design matrix, as in the univariate case, 
/J = [ /J. {J, · · · /J

P 
J is the rxp matrix of unknown fixed effects parameters and 

each /J. is a rx 1 vector, 

E=[£i e, E
P 
J is the Nxp matrix of random errors and each £, is a Nx 1 

vector. 

The rows of E are assumed to be independent p variate normal random vectors with mean 
Opxl and covariance matrix I:, where I: is a pxp positive definite matrix. Under the 

conditions specified above, the usual estimates are 

p = (X'Xf I X'Y 

and 
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i= (Y-xp) (Y-xp) 
N-r 

The multi variate general linear hypothesis is 

(2.4.1) 

where C is a known, full rank, cxr matrix with c:S:r and U is a known, full rank, pxu 

matrix with u:S:p. Consequently, the degrees of freedom for Ho are equal to cu. 

The matrix C is used to compare the r design effects, i.e., it controls contrasts on 

the rows of /J. Each row of C can be referred to as a between-subject contrast. The matrix 

U is used to compare the p responses, i.e., it controls contrasts on the columns of /J. Each 

row of U can be referred to as a within-subject contrast. The matrix U also corresponds to 

a transformation of the responses. The transformed responses can be written as Y = YU 

and yield the following model 

YU=X/JU+d.J 

Y =XfJ+e 

The rows of e are independent u-variate normal random vectors with mean O and 

covariance matrix l: = U'�U. The null hypothesis of interest then becomes 

If u = 1, then the multivariate general linear model on Y becomes a univariate general linear 

model on Y = YU and the methods of Section 2.3 apply directly. 



When u > I, the sums of squares for the hypothesis from the univariate general 

linear model generalizes to 

sH =(cf3u) [c(x'xf'cr'(cf3u) 
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= N( cpu), [c(X'WXf Cr ( cpu) (2.4.2) 

=N·S�. 

where X and Ware as defined in Section 2.3, and S� is the essence sums of squares and 

cross-products matrix for the hypothesis. Thus, SH is the overall uxu sums of squares and 

cross-products matrix for the hypothesis. 

The variance term, cl in the univariate general linear model, generalizes to 

U'ID = SE/(N - r), where 

SE
= U'(Y - xfJ) (Y - xfJ)u. (2.4.3) 

SE follows a central Wishart distribution with N-r degrees of freedom. Under the null 

hypothesis, SH follows a central Wishart with c degrees of freedom. 

The usual multivariate test statistics can be defined as functions of the eigenvalues 

of SHS�1
, of which at most s=min(c, u) are positive. It is also common to express the 

statistics in terms of the s positive eigenvalues of SH (SH +SEf1, which are the generalized, 

squared canonical correlations. By expressing the multivariate test statistics as functions of 

the canonical correlations, multivariate power analysis can be explained in terms of the 

corresponding univariate results (Muller, et al., 1992). In the univariate case, u= 1 and the 

test statistic considered can be written in terms of the squared multiple correlation, p2
, as 



F= p2/(df model) 
(1-p2 )/(df error) 
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(2.4.4) 

Thus, the multivariate test statistics can similarly be expressed as functions of the measure 

of multivariate association, ft, and are 

F= fi/(cu) 
(1-ft)/u 

(2.4.5) 

where u is the denominator degrees of freedom. The measure of multivariate association is 

a function of the multivariate test statistic of interest which is a function of the generalized 

canonical correlations. 

The four most common multivariate test statistics are Roy's largest root (RLR), 

Wilk's likelihood ratio statistic (WLR), Pillai-Bartlett trace (PBT), and Hotelling-Lawly 

trace (HL T). The last three statistics use all s of the eigenvalues of S"S�1 but RLR uses 

only the largest eigenvalue. All four statistics provide a size a test, but they are equivalent 

only if s=min(c, u)=l .  Even though the statistics are easy to compute, the associated p

values are not. There are no general exact formulas for the distribution functions under the 

null hypothesis. However, WLR, PBT, and HLT can all be converted into approximate F 

statistics. 

The Wilk's likelihood ratio statistic is the determinant of S
E

(S
H + sEf1 or 

WLR= lsE(S" + sEf11- Rao's transformation converts this to an F statistic with cu 

numerator degrees of freedom and UwLR denominator degrees of freedom, 

(2.4.6) 



where 

and 

{l 
g= y, [(cV-4)!(c2 +u2 -5)]' 

cu s::;3 
cu�4 

UwLR = g[N -r-(u-c + l)/2]-(cu-2)/2. 
The multivariate measure of association based on WLR is 

TlwLR = 1-WLRX . 

Substituting TlwLR and UwLR into equation 2.4.5 leads to equation 2.4.6. 
The Pillai-Bartlett trace statistic is based on the trace of S

H
(S

H 
+ Ser' or 
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(2.4. 7) 

PBT = tr[s
H

(S
H 

+ Sef']. The transformation of this into an F statistic with cu numerator 
degrees of freedom and UpeT denominator degrees of freedom is 

F
PBT = U

PeT · ( PBT ) /cu s-PBT /' 

where uPBT 
= s[N -r -u - s]. For PBT, the multivariate measure of association is 

, PBT T]PBT = --. s 

(2.4.8) 

(2.4.9) 

Upon substituting TlPeT and Up8y in equation 2.4.5 and simplifying, leads to equation 
2.4.8. 

The Hotelling-Lawly trace statistic is based on the trace of S
H
s;;' or 

HLT = tr[S
H

S;;' ]. The transformation of this into an F statistic with cu numerator degrees 
of freedom and uHLT denominator degrees of freedom is 
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(2.4.10) 

where UHLT 
= s[N - r -u -1] + 2. The multivariate measure of association based on HLT 

is 

• HLT/s 
TIHLT = 1 + (HLT/s)' 

Substituting f\HLT 
and uHLT into equation 2.4.5, it is easy to show that 

F - TlHLT/(c·u) 
HLT - ( • )/ 1-T]HLT UHLT 

(2.4.11) 

Power calculations in testing the multivariate general linear hypothesis have 

presented difficult problems. These problems arise from the fact that exact general 

formulas are not available for any of the four common multivariate test statistics in the null 

case, and therefore, closed form expressions are not available for distributions of the 

multivariate test statistics under the alternative hypothesis. However, practical asymptotic 

approximations based on mixtures of noncentral chi-squares have been available since the 

early 1970's for WLR, PBT, and HLT. Sugiura and Fujikoski (1969) provided a general 

approximation for noncentral probabilities for WLR. Lee (1971) presented general 

approximations for WLR, PBT, and HLT . These approximations involve asymptotic 

approximation of the characteristic function, followed by inversion, which yields a mixture 

of noncentral chi-squares . Approximately ten chi-square terms with complicated 

coefficients are needed to define the approximation. Power calculations are then based on 



23 

the trace of the noncentrality matrix and traces of its higher powers such as the square of 

the noncentrality matrix. 

The chi-square approximation methods are very complex. Using a generalization of 

computing power for the univariate general linear hypothesis, Muller and Peterson (1984) 

suggest noncentral F approximations considering the expressions for the above central F 

approximations (2.4.6, 2.4.8, 2.4.10). Their F approximations are simpler to implement 

and simpler to understand. Muller and Peterson suggest that under H,, the above F 

statistics follow an approximate noncentral F with cu numerator degrees of freedom, u; 

denominator degrees of freedom, and noncentrality parameter co;. For these statistics, U; is 

the corresponding denominator degrees of freedom for WLR, PBT, and HL T and 

CO;= cu · FA(i). FA(i) is the F that would be observed if one obtained {J= J3 and i = l:, 

i.e., if one obtained the true values, for the corresponding test statistic WLR, PBT, and 

HLT. Thus, approximate power for a given test statistic is 

Il=P[F(cu, U;, CO;)<". Fa] (2.4.12) 

where F()( is the upper tail critical value satisfying 

The F approximation method of power approximation yields sufficiently accurate 

results. Muller and Peterson found that the chi-square approximations for WLR, PBT, and 

HL T lead to nearly three digits of accuracy in computing power. Their F approximations 

for WLR, PBT, and HLT provide nearly 2 digits of accuracy in computing power which 

they deem sufficient for almost any practical situation. A general, practical power 

approximation for Roy's largest root does not exist because even its null distribution is 
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difficult to characterize as an approximate F. With the F approximation method, a primary 

noncentrality parameter cannot be defined. O'Brien and Muller (1993), however, mention 

that O'Brien and Shieh (under review) have proposed a modification to this method that 

defines a primary noncentrality and may give more accurate results. 

2.4.1 Illustration of Multivariate Power 

To illustrate the methods presented in this section, suppose a psychologist is 

interested in comparing the psychological distress between patients who accept enrollment 

into a drug treatment program and those patients who reject enrollment into the program. It 

has been seen that those who enroll suffer greater distress and want the help to better 

themselves. In this study, patients will be administered a written test that will measure four 

psychological symptoms. Therefore, each subject will have four dependent responses. 

These responses include the scores for each of the following factors: depression, anxiety, 

hostility, and phobia. A profile analysis, which is a one-way MANOVA in which the 

profiles for the two groups will be compared, is planned. In a profile analysis, there are 

three hypotheses of interest. The first is a test of parallelism. Parallelism corresponds to 

the lack of a responsexgroup interaction. The other two hypotheses are coincidence of 

profiles (equivalence of groups) and constancy of profiles (equivalence of responses). Due 

to budget restraints at this time, the psychologist would like to get by with a total sample 

size of no more than 90 subjects. 

Using data from a current study being done by the Center for Perinatal Addiction, 

Division of Substance Abuse Medicine from the Medical College of Virginia, the 

psychologist gets estimates for the mean scores for each of the psychological factors. 

Subjects who enroll into the drug treatment program have mean scores of 63, 57, 55, and 

57 for depression, anxiety, hostility, and phobia, respectively. The subjects who reject 
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enrollment have mean scores of 58, 50, 55, and 48 for depression, anxiety, hostility, and 

phobia, respectively. Thus, /3 has the form 

Dep 

[
63 

/3= 

58 

Anx 
57 
50 

Hos 
55 
55 

Phob 
57

] 48 
Acceptors 
Rejectors 

Using the data from the above study, an estimate of the variance-covariance is assumed to 

be 

Dep Anx Hos Phob 

l" 
77 56 

"1 
Dep 

77 152 71 87 Anx 
I= 

56 71 143 40 Hos 
53 87 40 140 Phob. 

The main hypotheses of interest for the psychologist's research question are the 

hypotheses of parallelism and coincidence of the profiles. The hypothesis of constancy of 

equivalence of the responses is not of interest. The null hypothesis of H0 : C/JU = 0 for 

both tests, parallelism and coincidence, use the following C matrix 

C=[l -1] 

For the test of parallelism or the responsexgroup interaction, the U matrix used is 

-l-� 0 �1 u. - 0 -I 0 

0 0 -1 
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The test of coincidence or group effect uses the U matrix 

� � �j 0 I 0 

0 0 I 

Since the number of rows of C equals I and therefore, s=min(c, u)=min(l,(3 or 4))=1, all 

of the multivariate tests are equivalent. Therefore, the powers will be calculated with the 

Wilk's Likelihood Ratio statistic only. 

The psychologist hopes to have twice as many subjects enroll into the drug 

treatment program than reject enrollment. Figure 2.4 and Figure 2.5 contain the plots of 

the power curves for each hypothesis. The first plot assumes an equal sample size per 

group and the second plot assumes sample sizes with the 2: 1 ratio. 

From the plot in Figure 2.4, a total sample size of 90 subjects or 45 subjects per 

group yield powers of 0.72 and 0.91 for the test of the responsexgroup interaction and 

group effect, respectively. After much consideration, the psychologist is sure she will be 

getting twice as many subjects enrolling into the treatment program rather than rejecting the 

treatment program. Therefore, for a total sample size of 90 subjects or 60 subjects 

enrolling and 30 subjects rejecting, powers are only 0.66 and 0.87 for parallelism and 

coincidence, respectively as seen in Figure 2.5. 
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The psychologist, however, is bothered by the low powers for the responsexgroup 
interaction test. In order to have a power of at least 0.80 for this test, she will need to 
increase her total sample size to 110 subjects or 55 subjects per group for equal sample size 
or increase her total sample size to 120 subjects or 80 subjects enrolled and 40 subjects 
rejecting. At these total sample sizes, powers for the group effect increase greatly. The 
psychologist is now going to see if she can find additional funding so that she may sample 
the total of 120 subjects since she is certain that she will sample twice as many subjects 
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enrolling into the program than rejecting enrollment. She does realize that if she would be 

able to sample an equal number of subjects from each group, she would have larger 

powers. For example, if 120 total subjects are sampled, powers are 0.85 for parallelism 

and 0.97 for coincidence when equal sample sizes are taken but the powers are only 0.81 

for parallelism and 0.95 for coincidence when samples are taken in a 2 to 1 ratio. 



Chapter 3 

The Mixed Linear Model 

3.1 The General Linear Model: A Brief Review 

A statistical model is a mathematical description of the mechanism that generates a 

set of data (Wolfinger, 1992). The most common statistical model is the general linear 

model (GLM) which has the form: 

where 

and 

y=X{J+e 

y is a Nx I vector of the observed responses, 

X is a Nxp known design matrix of the fixed effects with rank(X)=p, 

and without loss of generality, Xis assumed to be full rank, 

fJ is a pxl unknown vector of the fixed effect parameters, 

e is a nxl unknown vector of random errors. 

(3.1.1) 

It is assumed that the components of e i.e., the elements E;, are independent and normally 

distributed with mean O and common variance c;2
• 

The general linear model allows for the modelling of the mean of y by using the 

fixed effects, /J, which are estimated. One method used to estimate /J is the method of 

least squares. This method finds the value of fJ that minimizes 

30 
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(y - X/J) (y - X/1) 

which is the sum of squares of the residuals. This method requires only that the vector E 

of random errors has mean O and variance c,21. To minimize this expression as a function 

of /J, differentiate the above expression with respect to /J, set the derivative equal to zero, 

and the resulting equation, the normal equation, 

X'XP=X'y (3.1.2) 

is then solved for jJ . The least squares estimate is then 

P=(X'Xf 1X'y. 

This estimate is the best linear unbiased estimator (BLUE) for /J. Also, jJ can be shown to 

be the maximum likelihood estimate of /J. The maximum likelihood estimate for /J is 

found by maximizing the likelihood function which is defined to be the joint density of the 

random errors. In this case, it is further assumed that the random errors are independently 

normally distributed. Thus, the joint density is the product of the marginals and the 

likelihood function is 
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Since E = y - X/J, f E,2 = E' E = (y-X/J/ (y-X/J'J. Substituting this quantity into the 
l•I 

previous equation, the likelihood function becomes 

Taking the natural logarithm of each side and simplifying leads to 

To maximize equation 3.1.3 with respect to /J, ln(L) is differentiated with respect to /J, set 

equal to zero, and solved for /J. The only term that contains /J is the third term of the 

above expression and this is equivalent to the term that was used in the least squares 

setting. Therefore, given the assumptions on E, fJ is found to be the minimum variance 

unbiased estimator (MVUE) of /J and fJ is normally distributed with mean /J and variance 

a2(X'Xf'. Since a2 is usually unknown, it can be estimated using maximum likelihood 

techniques. By differentiating equation 3.1.3 with respect to 0'2
, setting the result equal to 

zero, and solving yields the maximum likelihood estimate 

82 = 

(y-xiJ) (y-xiJ). 

Adjusted for bias, the maximum likelihood estimate of 0'2 is 
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&
2 
= (y-xp) (y-xfJ) 

N-rank(X) 

and is preferred over the biased estimate. This term is known as the residual mean square 

error. 

Inferences can be made on the general linear model by forming linear combinations 

of /J that are of interest and then using the sampling distribution to form hypothesis tests. 

Consider estimable linear combinations of the form L' /J where L is a known, full rank, 

estimable coefficient matrix. The best linear unbiased estimator under least squares for 

L' /J is L' P where P is the least squares estimator for /J. L' /J has an estimated variance 

of a2L'(X'Xf1 L since the estimate of the variance of pis a2(X'Xf1
. 

If L is of rank 1, the t-statistic used for testing 

is of the form: 

L'P 

Under the assumed normality of e, t has an exact t-distribution with v degrees of freedom 

where v=N-rank(X). 

If L has rank greater than 1, then a F-statistic is used for testing the above 

hypothesis and has the form: 
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This F-statistic has an exact F-distribution with numerator degrees of freedom rank(L) and 

v denominator degrees of freedom when E is assumed to be normally distributed. For a 

complete discussion of the general linear model, see Searle (1971). 

3.2 Mixed Linear Model Methodology 

The mixed linear model is an extension of the general linear model. Written in 

Henderson's (1984) notation, the mixed model is: 

where 

and 

y=XP+ZU+e 

y is a Nxl vector of measured responses, 

X is a Nxp known design matrix for the fixed effects with rank X = p 

where p::; N, 

pis a pxl vector of the unknown fixed effect parameters, 

Z is a Nxq known design matrix for the random effects, 

U is a qxl vector of unknown random effects, 

e is a Nxl vector of random errors. 

The assumptions made on U are 

E[U] = O
qxi 

and Var[U] = G 

where G is a full rank qxq matrix. The assumptions made on E are 

(3.2.1) 

(3.2.2) 



E[ £]= ON xi and Var(£]= R 

where R is a full rank NxN matrix. U and £ are assumed to be uncorrelated or 

Cov(U, £) = oqxN 

which implies 
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(3.2.3) 

Therefore, using the expectation and variance of U and £, the expected value and variance 

of y are 

E[y] = X/J and Var[y] = ZGZ' + R = :E. (3.2.4) 

One can see that when R=cr2I and Z=O, the mixed linear model reduces to the standard 

general linear model as given in equation 3.1.1. 

3.3 Estimation in the Mixed Linear Model 

Estimation in the mixed model setting is more complicated than in the general linear 

model. Besides the unknown parameters in /J, there are unknown parameters in U, G, 

and R. Therefore, the usual least squares is not the best method for estimation. 

Generalized least squares (GLS) may be used to obtain the best linear unbiased 

estimator of /J. GLS minimizes 

(y - X/J) r' (y - X/J) (3.3.1) 
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where :E is the variance of y. However, knowledge of G and R is needed. Without 

known G and R, an estimated GLS approach may be employed by using estimates for G 

and R. 

The most common approach for finding estimates for G and R are likelihood based 

methods. Under the assumption that U and E are normally distributed, two likelihood 

based methods may be employed: maximum likelihood and restricted maximum likelihood. 

These methods will be discussed later in Section 3.5. 

The normal equations from the generalized least squares in equation 3.3. l are 

and have solution 

b = (x'r1xf x'r1y. (3.3.2) 

In equation 3.3.2, 1: -1 or i:-1
, depending on whether :E is known or not, must be 

calculated. The matrix, r1
, has order equal to the total number of observations, which at 

times can be very large. Therefore, calculating 1: -1 is not an easy task. Henderson et al. 

( 1959), however, showed that a set of equations that do not involve 1: -1 can be 

established. These equations are now known as Henderson's mixed model equations. 

Henderson et al. (1959) showed that the mixed model equations are found by 

maximizing the joint density function of y and U with respect to /3 and U. Under the 

assumption that U and E are normally distributed i.e., U - N(O, G) and E - N(O, R), the 

joint density function of y and U is: 
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(3.3.3) 

where C is a constant. Differentiating the natural logarithm of equation 3.3.3 with respect 

to /J and U, the resulting derivatives are 

and 

Equating the derivatives to zero yields the equations, 

X'R-1X[J+ X'R-1ZU = X'R-1

y 

Z'R-1X[J+ (Z'R-1Z + G-1 )D = Z'R-1

y 

which can be written in matrix form as 

(3.3.4) 

Once the estimates, G and R, are found, Henderson's mixed model equations 

(3.3.4) are solved to get estimates of /J and U. These estimates can be written as: 



P= (x'i:-'xf x'i:-'y 
fJ = GZ'i:-'(y-xp) 
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(3.3.5) 
(3.3.6) 

where i: = ZGZ' + R. The solution of /3 from Henderson's mixed model equations 
shown in equation 3.3.5 is equivalent to generalized least squares estimate given in 
equation 3.3.2. 

When G and R are known, /3 given in 3.3.5 is the best linear unbiased estimator 
(BLUE) of /J and U given in 3.3.6 is the best linear unbiased predictor (BLUP) of U. If 
G and Rare estimated, then /3 and U are no longer BLUE and BLUP, respectively. The 
word empirical is often added to indicate this approximation. Therefore, /3 and U are then 
denoted as EBLUE and EBLUP (Littell et al., 1996). However, as i: approaches (in 
probability) :r., /3 approaches (in probability) BLUE of /J and U approaches (in 
probability) BLUP of U (Henderson, 1984). The term BLUP for the random effects will 
be discussed in more detail following a discussion of the BLUE estimation of the fixed 
effects, /J. 

The BLUE is the estimator of all linear unbiased estimators which has the minimum 
sampling variance. Suppose one is interested in the estimable function k' /J. The BLUE of 
k' /J is k' jJ and the sampling variance of k' {J is 

Var[ k' fJ] = Var[ k'( X'r'Xf X'r'y] 
= k'(x-:r.-1xf x'r1:r.r1x(x'r1xfk 
= k'(X'r1xf x-:r.- 1x(x'r1Xf k 

= k'(X'r'Xfk. 
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Let e be a g-inverse of the coefficient matrix of the mixed model equations (3.3.4). 

Then e is written as 

where, as given in McLean and Sanders (1988), 

and 

e11 =[X'R-1X-(X'R-1Z)(Z'R-1Z+G-'f'z'R-1Xr 
=(X'r'xr 

e12 =-e11 (X'R-1Z)(Z'R-1Z+G-1f' 

Using equation 3.3.8, the variance of k' jJ can be written as 

where e
11 

is the pxp upper submatrix of e. 

(3.3.7) 

(3.3.8) 

(3.3.9) 

(3.3.10) 

(3.3.11) 

Next, the prediction of the random variables in U will be considered. For this 

situation, the prediction of a random variable can also be looked at as the estimation of the 

realized values of the random variables. This technique has been called BLUP by 

Henderson (1984). Robinson (1991) summarized the terminology of BLUP as follows: 
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BLUP estimates of the realized values of the random variables, U are: 

1) Linear in the sense that they are linear functions of the data, y; 
2) Unbiased in the sense that the average value of the estimate is equal to the 

average value of the quantity being estimated; 
3) Best in the sense that they have minimum mean square error within the 

class of linear unbiased estimators; and 
4) Predictors to distinguish them from estimators of fixed effects. 

It is also of interest to note that U, the BLUP of U, is also an estimator of the 
conditional mean of U given y. From 3.3.6, U = GZ'r'(y-Xfi). From 3.2.1 and 

3.2.2, it can be seen that Cov(U, y') = GZ'. Then, assuming normality and using 3.2.2 
and 3.2.4, 

E[U I y] = E[U]+Cov(U, y')[Var(y)r'[y-E[y]] 
= 0 + (GZ')(l:f'[y-XJ3] 
=GZ'l:-'[y-XJ3]. 

Thus, E[U I y]= GZ'r'[y-Xfi] = U. Finally, the following BLUP properties were 

derived by Henderson (1975). 

1) U is unique 
2) Cov(k'fi, fr)= 0 
3) Cov(k'fi, U' -u) = k'C,2 

4) Var(u)=Cov(u,U)=G-C
22 

5) Var(U -u) = C22 
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3.4 Inference in the Mixed Linear Model 

The covariance matrix of jJ and U is the g-inverse of the coefficient matrix of the 
mixed model equations which is given in equation 3.3.7. But when G and R are 
substituted into C in equation 3.3.7 to obtain C, everything becomes approximate. 
Consequently, hypothesis tests of interest are based on asymptotic t- and F-distributions. 

For inference, estimable linear combinations of the form 

L'[i] 

are considered. Only the estimability of /J is of concern since any linear combination of 
U, the random effects, is estimable. For any estimable L matrix, L'[ i}s estimated by 
L'[ g] and its approximate variance is L'CL 

If L is of rank 1, then the t-statistic for testing the hypothesis 

(3.4.1) 

is of the form 

t = L'[ gJ . 
"'1L'CL 

(3.4.2) 

Under the assumed normality of U and e, t has an approximate t-distribution whose 
degrees of freedom must be approximated. The degrees of freedom are denoted as v. 

If L has of rank greater than 1, then a F statistic of the form 
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FJt] L(L'CLrL'[t] 
rank(L) 

(3.4.3) 

is constructed for testing the hypothesis in 3.4.1. This F statistic has an approximate F

distribution with rank(L) numerator degrees of freedom and v denominator degrees of 

freedom. 

A simple approach to approximating the degrees of freedom for the above test 

statistics is called the containment method. This method searches the random effect list for 

the effects that contain the fixed effect of interest. Among those, the rank contribution to 

the [X Z] matrix is computed and v is the smallest of the rank contributions. If no 

effects are found, v is approximated by N - rank[X Z]. More advanced and 

computationally intensive methods are discussed in McLean and Sanders (1988). In these 

methods, the denominator degrees of freedom are approximated using the Satterthwaite 

procedure as discussed by Jeske and Harville (1988). Using the Jeske and Harville 

procedure, McLean and Sanders found that in the unbalanced case the denominator degrees 

of freedom decrease about one for each missing cell. 

These test statistics treat C as if it was the true C. Therefore, inference may not be 

highly accurate. Kacker and Harville ( 1984) showed that the prediction error variance, 

L'CL, tends to be under estimated when the estimates, G and R, made from the data are 

substituted into L'CL. They propose the use of a correction term that decreases the bias in 

the estimated variance of L'[ �l McLean and Sanders (1988) showed that additional 

inflation of the variances may be required for inferences to be more accurate. The effect of 

using the correction to inflate the variance is noticeable when inference about specific 
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random effects is of interest. However, if inference about the random effects is not of 

interest and emphasis is placed only on the fixed effects, then the substitution of C for C 

has little effect on the accuracy of the inference. If the substitution of C for C causes 

unreliable or biased results, Wolfinger (1992) suggests a strategy of using smaller values 

of v to be more conservative. 

When testing hypotheses regarding the mixed model, inference on the random 

effects may not be important. Many times the random effects are treated as nuisance 

parameters and included in the model chiefly for the reduction of the error term (Hicks, 

1973). Therefore, it is not recommended to treat the random effects as fixed effects 

because the resulting analysis is likely to underestimate the variances of the estimated fixed 

effect means (Hsuan, 1993). 

3.5 Variance Components 

The mixed model allows for not only the modelling of the mean of y but also the 

variance of y. The modelling of the variance is accomplished by specifying the structure of 

G and R. The flexibility in the specification of G and R has changed over the years in 

mixed model theory. In the model specified by Hartley and Rao (1967), the variance of U 

was given by cr21 and the variance of e was given by cr;I. In 1978, Harville assumed that 

the variance of e was given by cr;I and that the variance of U was given by cr;D where D 

is a symmetric nonnegative definite matrix. The model specified by Jennrich and Schlueter 

in 1986 allowed G, the variance of U, to take on any structure. However, R, the variance 

of e, was still specified by cr21. Before this in 1982, Laird and Ware were some of the 

earliest to consider a practical application of the general formulation of G and R. Although 

they stated that R could take on any form, their applications still set R=cr21 and used the G 

matrix to model variability. 
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The classical mixed model is defined with R=cr2I and G being a diagonal matrix 

containing variance components (Wolfinger, 1993). This model and all of the above model 

specifications are special cases of the general mixed model that permits arbitrary 

parameterized covariance structures in both G and R. Defined below, for a 4x4 matrix, are 

some of the possible variance structures for G and R. 

Simple 
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As indicated in Section 3.3, G and Rare not usually known and must be estimated. 
The two likelihood methods used most often in the estimation of variance components are 
maximum likelihood (ML) and restricted maximum likelihood (REML). Hartley and Rao 
(1967) initially developed the procedure for the maximum likelihood estimation of the 
unknown constants and variances included in the general mixed analysis of variance model. 
Patterson and Thompson ( 1971) proposed a general from of restricted maximum likelihood 
estimation. The likelihoods that are to be maximized for each of these methods can be 
reduced to problems including the parameters in G and R only. The log-likelihoods can be 
written as follows: 

ML: 

REML: 

I N N ll{G, R) = --logll:1--log(d'r'd)--[1 + log(21t/N)j 2 2 2 

II REML(G. R) = _..!..1ogll:l-.!.1oglX'r'xl 
2 2 

- N � P log(d'r'd)-N � P {1 + log[21t/(N -p)l} 

where d = y-X(X'�-'X)- X'�-'y and p is the rank of X. Because closed form solutions 
for G and R do not exist, the likelihoods can be maximized over the unknown parameters 
in G and Rand solved iteratively using a Newton-Raphson procedure to find optimal 
G and R. In using the Newton-Raphson procedure, the following system of equations 
are solved 

�=D(y)=O 
a r 
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where "( is the vector of unknown parameters in G and R. The algorithm for the Newton-
Raphson consists of the following steps. 

Step 1: Let y0 be an initial estimate of 'Y. 
Step 2: Compute both D( y0) which is � evaluated at y0 and a 'Y 

V
r 

= r' ( y0) which is the inverse of the information matrix evaluated at 
"(o • 

Step 3: The refined solution then becomes y' = y0 + V
r

D( y0). 

Step 4: If [[Y0 

- y' II < /:;. where /:;. is a small positive number, then stop. Otherwise, 
set y0 = y' and repeat steps 2, 3, and 4. 

When ffy
0 

-

y' II < /:;. is satisfied, then y' can be used as the optimal values for the 
parameters in G and R and lead to the optimal G and R. 

The choice of ML or REML is determined by one's preference. Both method's 
have their advantages and disadvantages. One problem with both methods is that they are 
derived under the assumption of normality. Harville (1977), however, argued that the 
maximum likelihood estimators derived on the basis of normality may be suitable even 
when the form of the distribution is not specified. A problem with ML for the estimation of 
variance components is that it does not take account of the degrees of freedom used for 
estimating the model's fixed effects, whereas, REML does. ML, however, has the merit of 
simultaneously providing ML estimators of both fixed effects and variance components. 
On the other hand, REML variance component estimates are unaffected by the fixed effects. 
Finally, both ML and REML can be used for estimating variance components from 
unbalanced data with any mixed model. 
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3.6 Applications of the Mixed Linear Model 

Mixed linear models serve as the basis for a variety of testing and estimation 

procedures. These procedures have been applied in many types of data including biological 

and agricultural data. The mixed model simplifies and unifies many common statistical 

analyses. It has been applied in many areas including repeated measures, random effects, 

split plot designs, random coefficients, and heterogeneous variances (Wolfinger, 1992). 

For example, the mixed model is useful for analyzing repeated measures or 

longitudinal data. Given the general structure for the mixed model, the R matrix becomes 

an ideal place to model the covariance structure of the correlated data within a subject. 

There are two differences, however, between analyzing repeated measures data with the 

general linear model and the mixed model. When using the mixed model, all of the data 

that is known is used in constructing the likelihood. In contrast, the traditional multivariate 

general linear model works only with balanced data. In this model, subjects with missing 

data are deleted from the construction of the likelihood. Besides allowing subjects to have 

an unequal number of observation, the mixed model also allows for these observations to 

be taken at different time points for different subjects (Sherrull et al., 1994). 

The second difference is in hypothesis testing. With the general linear model, two 

sets of tests of within subject effects can be produced, multivariate and univariate. The 

results of the multivariate F- tests are similar to those performed in the mixed model where 

R is an unstructured covariance matrix. These tests differ by a constant multiplier and may 

have different degrees of freedom. The univariate F tests are the same as the mixed model 

with a compound symmetry covariance structure. Again, the degrees of freedom may 

differ. These differences in degrees of freedom are not very critical since the F-statistics 

for the mixed model only have approximate F-distributions (Wolfinger, 1992). 
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The mixed model is not limited to unstructured or compound symmetry covariance 

structures when analyzing repeated measures data. Therefore, the mixed model may be 

preferred over the general linear model because of its flexibility with defining any 

covariance structure. The mixed model is highly advantageous especially when the number 

of time points becomes numerous. Multivariate models use fully parameterized covariance 

matrices and as the number of time points increase, the number of covariance parameters 

increase. As the covariance matrix becomes large, many of the covariance parameters 

become poorly estimated. Therefore, the covariance matrix can be modelled with the mixed 

model assuming various other structures that require fewer estimated parameters. 

Grady and Helms ( 1995) discuss model selection techniques of the covariance 

matrix for incomplete longitudinal data. They discuss the basic structural covariance 

matrices: compound symmetry, autoregressive, and unstructured used for longitudinal 

studies, along with more complicated extensions of these covariances. When choosing the 

best covariance structure, they claim that it is up to the investigator to decide whether fitting 

models other than those provided automatically by standard software is worth the effort or 

if the basic covariance structures are sufficient for their data. If interest lies mostly on the 

fixed effects part of the model, then a basic covariance may be sufficient. Choosing a basic 

covariance is also sufficient if the choice of covariance structure has little effect on the fixed 

effects. However, if there is interest in the structure of the covariance matrix and/or the 

dependence of the responses over time, the alternative models offer information about the 

covariance that is not always available from the basic structural models. Laird and Ware 

(1982) also discuss the use of various covariance matrices for analyzing unbalanced 

repeated measures data. 

The mixed model also allows for the inclusion of any random effects of interest. 

By including a random effect for subject, the correlation due to repeated observations on 

the same subject is taken into account, and thereby modelling the covariance matrix leads to 



a better understanding of the data. In a study by Drum and McCullagh (1993), it was 

found that the inclusion of a random subject effect reduced the variability of the fixed 

effects by attributing that variability to the variability between subjects. The use of 

longitudinal random effects models is also discussed further in Jennrich and Schlueter 

(1986). 
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In the mixed model, the fixed effects provide estimates of the average responses in 

the population while the random effects account for the natural heterogeneity in the 

responses of different individuals and allow for the estimation of responses for each 

individual in the study (Pearson et al., 1994). Thus, in repeated measures analyses when 

there is a significant natural heterogeneity in the population and when individual level 

estimates are of interest, the mixed model may be preferred over the general linear model. 

Pearson et al. (1994) describe several analyses that would not have been possible 

without the advances in longitudinal statistical methodology by using the mixed linear 

model. Since there are numerous types of biomedical research that involve the analysis of 

repeated measures, they state that the mixed model will become "an increasingly valuable 

tool in the studies because of their ability to test hypotheses, describe population average 

responses, and to provide individual-level responses". They also claim that the flexibility 

of the mixed effects regression models will make an important vehicle for advancing 

knowledge of the natural history of aging and disease. 

For the mixed model, cr21 is the most common form of R assumed. These cases 

include the randomized block design, split plot design, and random coefficients analysis. 

However, there are combination mixed models where both G and R are modelled non

trivially. These models are appropriate with time-series cross sectional data and 

multivariate repeated measures data. The combination mixed model is also appropriate in 

the case where R is diagonal but not constant i.e., a heterogeneous variance model. The 

simplest example of a heterogeneous variance model is when the different variances are 



classified into groups. Wolfinger (1992) discusses more detailed examples of 

heterogeneous variance models. 
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Multivariate mixed models are also used for analyzing data. Henderson (1984), 

Meyer (1985), and Schaeffer and Wilton (1978) discuss multi-trait mixed models which 

can be considered multivariate mixed models since there is more than one response 

variable. In the multivariate setting, the R matrix handles the various covariances and 

variances for the various response variables. The G matrix is structured to handle the 

relationship among the random effects. The modelling of G and R leads to a strong 

parametric foundation (McLean, Sanders, and Stroup, 1991). Strong parametric 

procedures require fewer sampling units than conventional multivariate procedures. Also, 

as before with general univariate models, most multivariate procedures require complete 

records of data, whereas incomplete records can be used in the multivariate mixed model 

procedures. 



Chapter 4 

Power for the Mixed Linear Model 

4.1 Introduction to Mixed Linear Model Power 

Recall from Section 3.2 that the mixed linear model can be written in the following 

form 

where 

and 

y = X/J+ZU+e=[X zi[i]+e (4.1.1) 

y is a Nxl vector of measured res ponses, 

X is a Nxp known design matrix for the fixed effects with rank X = p where 

p�N. 

pis a pxl vector of the unknown fixed effect parameters, 

Z is a Nxq known design matrix for the random effects, 

U is a qxl vector of unknown random effects, 

e is a Nxl vector of random errors. 

Remember also that Var[U]=Gsxs and Var[e]=RNxN
. Once the estimates, G and R, 

are found, the estimates of p and U are 
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where i: = ZGZ' + R. 

P= (x'k1xr X'E1
y 

iJ = GZ'k1 (y-xp) 

In Section 3.4, the F statistic for testing the null hypothesis 

was shown to be 

F J gJ L(L'CLrL'[ gJ. rank(L) 
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Suppose now it is of interest only to test the fixed effects portion of the mixed linear model. 

The null hypothesis becomes 

H
0 : K'/J=O. 

The matrix, K, contains the contrasts of the fixed effects that are of interest. When K has 

a rank greater than 1, then the test statistic associated with H
1 

: K' /J * 0 is 

where 

F= 
JrK(K'C11Kf K'P 

rank(K) 
( 4.1.2) 



<'\=[x'(ZGZ'+Rrxr. 

This F statistic has an approximate F-distribution with rank(K) numerator degrees of 

freedom and u denominator degrees of freedom. The denominator degrees of freedom 

may be estimated by the same methods described in Section 3.4. 
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Using the same reasoning as Muller and Peterson (1984) did for noncentral F 

approximations of the central F approximations in the multivariate case, the test statistic 

given in 4.1.2 follows an approximate noncentral F-distribution with numerator degrees of 

freedom, rank(K), and denominator degrees of freedom, u, and noncentrality parameter, 

A, under the alternative hypothesis. The noncentrality parameter, as shown in Muller and 

Peterson, takes on the form of A=(df model)FA where FA is the F that would be observed if 

one obtained jJ = p, G = G, and R = R. Therefore, the noncentrality parameter may be 

expressed as 

ffK{K'[X'(ZGZ' + Rf'xrK}K'P 
A = rank(K) 

( ) rank K 

= ffK{K'[X'(ZGZ' + Rf'XrKr K'P 

= /fK(K'C
11
Kf'K'P. 

(4.1.3) 

Simulations by Helms and McCarroll (1991) also show that the distribution of the 

test statistic given in 4.1.2 is closely approximated by the noncentral F distribution with 

rank(K) numerator degrees of freedom and u =N-rank (X Z) denominator degrees of 

freedom, and noncentrality parameter A. Therefore, 4.1.2 is an appropriate test statistic for 

the hypotheses of the fixed effects. Since an accurate approximation of the statistic's small 

sample noncentral distribution has been shown, power calculations for the tests of fixed 
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effects are feasible and are based on the approximate noncentral distribution of the test 

statistic. Therefore, the power of a size a test for the test statistic based on its approximate 

noncentral distribution is then given by 

IT( a, l:,P) = 1-F(Fcrit, 'A, rank(K), u) (4.1.4) 

where Fcrit=F-1(1-a, rank(K), u) and F(.) is the cdf of the noncentral F described above 

evaluated at Fcrit· 

In Section 2.3, it was discussed how the noncentrality parameter, for the noncentral 

F used in hypothesis testing for the univariate GLM, could be expressed in terms of its 

distinct components. O'Brien and Muller (1993) showed that when the noncentrality was 

expressed as its distinct components, the noncentrality parameter could be written as the 

product of the total sample size and a primary noncentrality parameter. This primary 

noncentrality parameter was found not to be based on the total sample size but only the 

design points to be used, the weights of those points, and the conjectured values for the 

unknown parameters. Thus, a computationally more efficient method of computing power 

was gained by using the primary noncentrality parameter. 

As in the univariate GLM case, the noncentrality parameter, 'A (4.1.3), can be 

expressed more efficiently by writing the C, 1 portion in terms of its distinct components. 

For this presentation, three cases will be considered: Case I assumes that the column space 

for the random effects is fixed on the addition of another observation, Case II allows for 

the column space for the random effects to vary on the addition of another observation, and 

Case III allows for the column space for the random effects to vary as in Case II but it also 

allows for the row space for the fixed and random effects to vary from subject to subject or 

"experimental unit". The motivation behind the discussion of the three cases lies in the fact 

that the form of the noncentrality parameter varies from case to case. 
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As an example of Case I, suppose a multi-center clinical trial in which multiple 

treatments are to be studied will be performed. Treatments are considered as fixed effects 

and centers are to be taken as random effects. The center by treatment interactions will also 

be of interest, and therefore, they will also be considered random effects since center is a 

random effect. This is an example of Case I because the number of centers (and 

consequently, the column space of Z) is fixed. 

A situation in which Case II is applicable is when a balanced and complete 

longitudinal study that involves a fixed number of treatments is considered. Each treatment 

will be evaluated on multiple occasions and be considered fixed. Subject will be 

considered as the random effect. When computing power, the number of subjects are 

added incrementally until the desired power is obtained. Therefore, since subject is the 

random effect, the column space of Z increases with the addition of another subject. 

An example of Case III would be a multiple year clinical trial in which enrollment is 

permitted through the entire length of the trial. In this trial, subjects are randomized to 

various treatment groups. Subjects enrolled toward the end of the trial will not have 

complete data. Each treatment, which is considered as the fixed effect, is evaluated at the 

time of enrollment and until completion or termination of the study. Therefore, the row 

space of both X and Z vary from subject to subject depending on when they were entered 

into the study. Subject will again be considered as the random effect and therefore, the 

column space of Z will increase as each subject enters the clinical trial. 

4.2 Noncentrality Parameter for Case I 

Let [X Z] be the N.x(p+q) essence fixed/random design matrix formed by 

assembling the N. unique rows of [X Z]. That is, [X Z]is the collection of unique 

design points for the proposed study. Suppose [X Z] has Nwi rows identical to the j'h 
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row of [X ZJ, with O < wi < 1 and I,wi = 1. Allowing W to be the N.xN. diagonal 

matrix having elements wi' NW holds the N. sample sizes. Next, the essence matrix, 

[X ZJ, is partitioned into the separate essence fixed and essence random design matrices, 

denoted X (N.xp) and Z (N.xq), respectively. 

For Case I, it is assumed that the column space for the random effects is fixed. 

That is, the column space of Z does not depend on the addition of another observation. 

Therefore, the number of columns of Z is equal to the number of columns of Z which is 

equal to q. Note that these individual essence matrices are not necessarily composed of 

unique rows and can be written in the form 

and 

.. r
z

· 
Z=l 

z· 

(4.2.1) 

t I(m)@z' . 

z·J 
(4.2.2) 

In 4.2.1, X' is a r x p unique matrix and in 4.2.2, z• is the corresponding r x c unique 

matrix. The matrices x· and z' are replicated in a stack or block diagonal form, 

respectively, m times. The number of X' and z•, m, is determined by the number of 

levels of the main random effects that are common to all random effects. Therefore, 

N.=rnr and q=mc. 

Going back to the clinical trial example, suppose there are three centers which are 

considered random and two treatments which are considered fixed. Also, the random 
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treatment by center interactions are considered. The fixed effect parameters for treatment 1 

and 2, respectively, are /31 and /32 and the random effect parameters for the j'h center and 

the if" treatment by center interactions (i=l ,2 and j=l ,2,3) are u1, u11, u21, u2, u12, u22, 

u3, u13, and u23. The essence matrix, [X z], is 

1 0 1 0 0 0 0 0 0 0 
0 1 1 0 1 0 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 
0 1 0 0 0 1 0 1 0 0 0 

0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 

x and z are then given by 

1 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 

X= 
1 0 

Z= 
0 0 0 1 0 0 0 0 

and 
0 1 0 0 0 1 0 1 0 0 0 
1 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 

The number of unique X' and z' matrices corresponds to the number of centers which is 

three. This is found by noting that the random effects are center and the center by treatment 

interactions. Center is the main random effect that is common to all random effects and 

there are three levels of center. Since N. = 6 and q=9, r must be 2 = N0/m and c is 

3 = q/m . Hence, X' has dimension 2x2 and z• has dimension 2x3 and they are 

X = and Z = 

, 
[ 

I O
J 

, 
[
I I O

J 0 I I O I 



Therefore, the essence matrices are 

.. [1 OJ .. [1 1 
o

1
]· X = 13 ® 0 1 

and Z = 1(3) ® 1 0 
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An initial step in finding the alternative form of the Case I noncentrality parameter is 

to show the following relationships 

and 

x'R-'X = NX'WR-1:X: 

x'R-'z =; NX'WR-'z 

Z'R-'X = NZ'WR.-1:X: 

(4.2.3) 

(4.2.4) 

(4.2.5) 

(4.2.6) 

In order to prove the above statements, notation and rules of Kronecker products must first 

be established. The overall fixed effects design matrix, X, can be written in the following 

form 

(4.2.7) 

and the overall random effects design matrix, Z, can be written as 



Let G have the form 

ll,, @Z' 
1 @Z' 

ZNxq = 

r, 

G=l(m)@G' 

where G' is a cxc matrix. The weight matrix, W, has the form 

Also, let R be of the form 

.!t_ I(r) N 

R=I(f)@R' 

.&1(r) 
N 

fm I(r) 
N 
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(4.2.8) 

(4.2.9) 

(4.2.10) 

(4.2.11) 

where R' is a r x r matrix and f = f
1 
+ f

2 
+ · · · + f

m
. The essence random error variance 

matrix can be written as 

R=I(m)@R'. (4.2.12) 
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Without loss of generality, assuming R,_, exists and using the theorem regarding the 
inverse of a Kronecker product that states {A 18) Br' = A-I 18) B-1, the inverses of Rand R 
are 

(4.2.13) 
and 

(4.2.14) 

Finally, using equations 4.2.7-4.2.14 and the preceding assumptions, the proofs of 
equations 4.2.3-4.2.6 are 

Proof of Equality 4.2.3: X'R-'X = NX'WR-':X 

rl,, ®X'j 
1 ®X' r, 

1 ®X' 
fm 

= (1,, ® x·)' (I(f,) ® R,-, )(1,, ® x') +(1,, ® x·)' (1(r2) ® R,-, )(1,, ® x') + ... 
+(1,. ®X'), (I(fm)®R'-')(1,. ®X') 

= f,X-'R·-•x· +f
2
X.' R'-'x• +· .. +fmx•' R'-'x• 

l(f.)@R•' j 



.!i_I(r) N 

End of Proof for 4.2.3 
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Proof of Equality 4.2.4: x'R-'Z = NX'WR-'Z 

rl(fi)®R·-• 

= [(tr, ® x·/ (tr, ® x·/ · · · (tr. ® x·/] 

[

tr, ®Z
' tr, @z· 

1 tr .. ®Z' 

=[A, A2 
••• A

m
] where A; =(tr, @x·)'(I(f;)@R·-•)(tr, @z•) 

= [ f,x•' R.-, z• f
2

X.' R.-, z• · · · fmX.' R.-, z• J 

=[Nx.' .!i_R•-'z• NX.' fLR•-'z• ··· NX.' fm R'-'z•J N N N 

cN[x:ta·' x:ta··• --- x:;ja·f. z· . __ ,.] 
rR•-• l[z' 1 cN[x:t x:; . . .  x:'.:;] a•' 

a

··J 
z
• 

z
· 
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I(f.)@R'' J 



r

z

· 

z

· 

.!i_ I(r) N 

End of Proof for 4.2.4 

.&1(r) N 
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A similar proof can be shown for Equality 4.2.5 ( Z'R-'X = NZ'WR-'X) and the proof of 

the final statement is given by 

Proof of Equality 4.2.6: z'R-'Z = NZ'WR-'Z 

1 
'®z· 

r, 

I(f2) 181 R.-, . . . . 

r, 
lr, ® z• jl1 

®z· 

I(fm) 181 R,-, ,,.J 



f 
A, J whore A + '@z'}(<.)@R'')(t,, @z') 

=N 

=N 
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, 
z· , 

=N 
z· 

rz
· 

l 
z
· 

=NZ'WR-'Z 

z· 

.!i_ I(r) N 

z· 

End of Proof for 4.2.6 

.!._ I(r) N R''j 

Recall the goal has been to write the e, 
1 

portion of the noncentrality parameter in 

terms of its distinct components where ell is given by [ X'(ZGZ' + Rf' X r. Given the 

proofs of statements 4.2.3-4.2.6 and invoking the equality stated in Rao (1973), 

the portion of ell that is inverted is then 

X'(ZGZ' + Rf'X 

= X'R-'X-(X'R-'Z)(Z'R-'Z + G-1 f'Z'R-1X 

=NX'WR-1:X.-(NX'WR-1Z)(NZ'WR-1Z+G-1 f'NZ'WR.-1:x. 

= N:X.'w[ R.-1 
- NR.-1Z(NZ'WR.-1Z + G-1 r' Z'WR-1 ]x 

=NX'W[R-1w-1 w-R.-1w-1 w.JNz(z'.JNWR-1 w-1 w.JNZ+G-f 

z' .JNwR-1w-1w ]x 
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=NX'w{(wRf'-(wRfw.JNz[z'.JNw(wRfw.JNz+G-1 r 

z'.JNw(wRf}wx 

= NX'w{wR + (w.JNz)G(z' .JNw)f'wx 

= NX'W { w-'[ WR+ (w.JNz)G(Z' .JNw) Jr' X 

= NX'W{NZGZ'W + Rrx 
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(4.2.15) 

Therefore, using the equality in 4.2.15, the Case I noncentrality parameter is shown to be 

It was hoped that t..;, the primary noncentrality for Case I, could be written so that it is not 

related to N. This will occur if (a) Z=O (i.e., no random effects) or if (b) G=O, neither of 

which are interesting simplifications. For now, however, there still exists a more 

computationally efficient version of A since matrices of smaller dimension are being 

inverted and all pieces of t..; are fixed except N, the total sample size. 

4.3 Noncentrality Parameter for Case II 

Assume the case where the column space for the random effects is not fixed. This 

occurs when each subject has its own vector of random effects. This situation is common 
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to repeated measures models. The overall design matrices, X and Z, may be represented 

as 

(4.3.1) 

and 

I{f
2
) ® zo 

(4.3.2) 

where Xt is a r x p matrix and Z
0 

is a r x c matrix. Also, each Xt is a unique fixed effects 

design matrix for a given subject and Z
0 

is the corresponding random effects design 

matrix. Notice that the corresponding matrix for each Xt is the same matrix, Z
0

• The 

design of the study specifies that the set of observations represented by Xt and Z
0 

are 

replicated ft times. The essence matrices are 

(4.3.3) 

and 

.. lz
o 

zo 
Z

=
l 

t I(T)®Z
0 

z0J 
(4.3.4) 
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where X is a Ne x p matrix and Z is a Ne x (cT) matrix. Note that the number of columns 

of Z do not equal the number of columns of Z . 

Returning to the longitudinal study example, suppose a two treatment study 

evaluated on three occasions is to be performed. It is assumed that the dependent variable 

of interest varies linearly with time and a separate regression will be fit for each treatment. 

Thus, the fixed effect parameters are given by /3
01

, 
/3

1
, 
/3

02
, and /32 where /30; and /3; are the 

intercept and slope parameters for the i'h treatment. Each subject has its own random effect 

parameter Uj. The three fixed time points are given by x,, x2, and x3 . The essence matrices 

are then 

and 

1 X3 0 0 
X- - -
.. -[x']- -----------

x, 0 0 

0 0 

Z= = 
.. [z0 ] 

z
o 

For Case II, the general form of R is 

:o 

:o 
I 

,o 
__ 1 __ 

0 : 1 

0 : 1 

0 : 1 

R= I(f)®R* 

x, 

x, 

(4.3.5) 



where R • is a r x r matrix and f = �); . The essence matrix, R, is 

R=I{T)®R·. 

G has the form 

G=l{f)®G* 

where G • is a c x c matrix. The essence matrix, G, is 

G=l{T)®G*. 

The weight matrix, W, has the form 

W= 

.!i_ I{r) N 
.&1{r) 
N 

!r.1{r) N 
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(4.3.6) 

(4.3.7) 

(4.3.8) 

(4.3.9) 

Thus for Case II, it can shown, by using equations 4.3.1-4.3.9, that the inverted 
portion of C

11 
can be written in its distinct components as 

X'(ZGZ' + Rf1 X = NX'W( ZGZ' +Rf' X (4.3.10) 
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Proof of Equality 4.3.10 

First, working with the inner piece of X'(ZGZ' + Rf1X leads to 

(ZGZ' +R) 

·[

I(f,)@Z' 

• 
[ 
A, ·. J where A,• (I{r,) ® z')(I(f,) ® G')( I(f,)® z:) +(I(f,) ® R') 

• r ( I(f,) ® Z
0

G'z} (I(f,) ® R') 

(I{f,)®(Z0G'Z: +R')) 

This piece inverted is then, 



(1(f1)®(Z
0

G'Z.' +R·r) 

{ZGZ'+Rf1 = 

So, 

X'(ZGZ' +Rf1X 

=[1;, ®x; ... 1;T ®x;J 
(*1)®( Z

0

G'Z.' +R'r) 

= (1;, ®x;)(I(f1)®( Z
0

G'z-' + R' f }11, ® x1)+··· 

+(1;
T 
®x;)(I(fT)®( Z

0G'Z.' +R·r)11T ®X
T) 

= (1;,1(f1)l1, ®x;( Z
0

G0Z.' +R·rx1 )+···+(1;
T
I{fT)l1

T 
®x;( Z

0

G0Z.' +R·rxT) 

=(fl ®x;( Z
0G0Z.' +R·rx1)+···+ (fT ®x{ Z

0

G0Z.' +R·rxT) 

=f1x;( Z
0G0Z.' +R·rxl +···+fTx;( Z

0G0Z.' +R'f xT 

( ' )-1 
f ( ' )-1 

=NX;� Z
0

G0Z
0 

+R' X
1 +···+Nx;� Z

0

G0Z
0 

+R' X
T 
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=N[X; ··· X'
T] [

�I(r) 

.!t_ I(r) N =N[x; ··· X\] 

= NX'W(ZGZ' + Rf'x 
End of Proof for 4.3.10 

Therefore, using the equality stated in 4.3.10, the noncentrality parameter for Case II is 

').., = ffK{ K'[ X'(ZGZ' + Rf1 X rK r K' /J 

= ffK{ K'[Nx'W(ZGZ' + Rf'xr Kr K'/J 

{ 
J }-1 

=N/fK K'[x'w(ZGZ'+Rfxr K K'/3 
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Note here that t..;" the primary noncentrality for Case II, is not related to N. It is also of 

importance to note that N stands for the total number of observed responses. Assuming a 

complete and balanced design, the total sample size necessary is determined by dividing N 

by the number of occasions per subject which is r. 

4.4 Noncentrality Parameter for Case III 

A third case is similar to the situation in Case II but it allows for each Xt, and 

therefore, each corresponding Z1 (i= l ... T), to have differing numbers of rows. This case 

has been described in Helms (1992); however, he assumes Var[ e] = R = cr2
1. For this 

presentation, R will be allowed to take on any block diagonal form. 

The overall fixed effects design matrix, X, and the essence matrix, X , can be 

written as they are in Case II, equations 4.3.1 and 4.3.3, respectively, with the exception 

that the X1 (t=l...T) are rt x p matrices. The overall random effect matrix, Z, now has the 

form 

z
. rl(f,) ® z, 

(4.4.1) 

where Zt is a rt x c matrix. Again, each Xt is a unique fixed effects design matrix for a 

given subject and Z1 is the corresponding random effects design matrix. However in this 

case, the Zt matrices differ when ri * fj, and the Zi matrices are subsets of the Zj matrices 

when ri > ri . The design of the study again specifies that the set of observations 

represented by Xt and Zt are replicated f1 times. The essence matrix, Z, is now 
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(4.4.2) 

where Z is a Ne x (cT) matrix. Note that the number of columns of Z do not equal the 

number of columns of Z as in Case II. 

Returning to the Case ill clinical trial example, suppose the trial of interest will last 

four years and observations will be taken yearly. Enrollment of subjects into the two 

treatment arms, standard treatment and new treatment, will occur during the first three years 

of the study only. Therefore, subjects entering within the first year of the study will have 

three years of evaluation. Those entering after the first year will have Jess than three years 

of follow-up. It will again be assumed that the dependent variable of interest varies linearly 

with time and a separate regression will be fit for each treatment. The fixed effect 

parameters are given by /301
, /3

1 , /3
02

, and /3
2 

where /3
0

, and /3, are the intercept and slope 

parameters for the standard treatment and the new treatment, respectively. The four times 

of data collection are denoted x,, x2 , x3, and x4 . Allowing each subject their own random 

effect parameter Uj, the essence matrices are 



and 

z, 

z, 

�.!. 

�.!. 

X= �2. 

�.!. 

�.!. 
X, 

z, 

z. 

z, 

1 x, 0 0 
x, 0 0 
x, 0 0 
x, 0 0 

---------

0 0 
0 0 
0 0 

x, 
x, 
x, 

0 0 I x, 
---------

x O 0 

1 x, 0 0 

�- x, _ _? __ � 
0 0 I x, 
0 0 I x, 

�--�-!- x, 
I x, 0 0 

�- x, _ _? __ � 
0 0 I x, 
0 0 1 x, 

0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 

I O O O O 0 
------------· 

0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 I 0 0 0 0 ------------· 
0 0 I 0 0 0 
0 0 I 0 0 0 
0 0 I 0 0 0 
------------· 

0 0 0 I 0 0 
0 0 0 1 0 0 
0 0 0 1 0 0 ------------· 
0 0 0 0 I 0 
0 0 0 0 I 0 ------------· 
0 0 0 0 0 I 
0 0 0 0 0 I 
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In Case II, R = I{f) © R' where R' is a r x r matrix. Now that the r; vary between 

subjects in Case III, there is not a general R'. It will now be assumed that R is 

(4.4.3) 

The Diag operator diagonalizes the matrices I( f,) © R; for t= 1... T. Let R� be the M x M 
matrix for the maximum ft. For ft less than the maximum ft, R; is formed by using the 
appropriate rows and columns of R�. Additionally, R; = R; when r; = ri. The essence 

matrix, R, is 

R = Diag(R:, R;, ···R� ). (4.4.4) 

G and G remain unchanged from Case II, equation 4.3.7 and 4.3.8, respectively. The 
weight matrix, W, now has the form 

W= !._ I( r2) N ( 4.4.5) 

Thus for Case III, it can be shown that the inverted portion of C11 can be written in 
its distinct components as 

X'(ZGZ' +Rf' X = NX'W( ZGZ' +Rf' X ( 4.4.6) 



The proof is the similar to the one given in Case II but the z· are now replaced by their corresponding Zt 's and the R''s are now replaced by their corresponding R;· s. 
Proof of Equality 4.4.6 

First, working with the inner piece of X'(ZGZ' + Rf1 X leads to 
(ZGZ' +R) 
{(f,)®Z, 

c [ A, ·. .J where A, 0 (I(f,) ® z,)(I(f;) ® G")(I(f,)® z;) +(I(f;) ® R:) 
= [(I(f,) ® Z,G'Z;) + (I(f,) ® R;) . 

. . 

l (I(fT) ® ZTG'z�) + (I(fT) ® R�) =[(I(f,)@(z,G'z; +R;)) · . . 1 (I(fT) ® (ZTG'Z� + R� )) 
This piece inverted is then given by, 
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So that, 

X'(ZGZ' +Rr'x 

[
(I(fi)@(Z,G'z; +R;r') 

= [1;, ® x; . .. 1;T ® x�] 

[1,, 
�

x, 
l 

1,T (8) XT 

= (1;, ® x;)(1(f,) ® (z,G'z; + R;f' )(1,, ® x,) + ... 

+ (1;T ® x� )( I(fT) ® (zTG'z� + &; r')(1,T ® xT) 

= (1;, I{f,)1,, ® x;(z,G'z; + R;f'x,) + ... + (1;T I(fT )1,T ® x�(ZTG'z� + R; f'xT) 

= (f, ® x;(z,G'z; +R;f'x,)+···+(fT ® x�(zTG'z� + R; f'xT) 

= f,x;(z,G'z; +R;f'x, +··· +fTX�(ZTG'z� +R; f'xT 

= Nx; !t_(z,G'z; +R;f'x, +···+ NX� fT (zTG'z� +R;)-'xT 
N N 
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=N[X; ··· X'
T]r

�
I(r,) 

[
(Z,G'z; +R;f' 

· .. 
!r_ I( rT) N 

(0G·z; + a; r1 J:] 
fT I( rT) N 

j[z,G'z; +R; 

0G·z; + Jt: l 
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1 
IL1(r,) 

•N[X; ··· X',l N ·. 

= NX'W(ZGZ' + Rf'x 
End of Proof for 4.4.6 

Therefore, the noncentrality parameter for Case III can be written as 'Jc= N'Jc;11 where '}.,;11 is 
not related to N. Analogous to Case II, N stands for the total number of observed 
responses. 

4.5 Summary of Noncentrality Findings 

As stated in 4.1.3, the noncentrality parameter for the approximate noncentral F 
used for the testing of hypotheses regarding the fixed effects of the mixed linear model is 

In Section 4.2, it was shown that the noncentrality parameter for a study design that 
follows Case I can be rewritten as 

'Jc= NffK{ K'[X'W(NZGZ'W + Rf'xr' Kr K'/J 
=Nt.;. 
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In Sections 4.3 and 4.4, it was shown that the noncentrality parameter for a study design 

that follows Case II or Case III can be rewritten as 

{ 
J }-I A=N/JK K'[X'W(ZGZ'+R(xr K K'/J 

=N11,;1 
or 

=NA;II . 

Therefore, a primary noncentrality parameter can be defined for each of the three cases 

discussed. However, the primary noncentrality does not depend on N, the total number of 

observed responses, for only Cases II and III. For these cases, the primary noncentrality 

is based solely on the design points to be used ( X and Z ), the weights for those points 

(W), and the conjectured values for /3, G, and R. These primary noncentrality parameters 

only need to be calculated once for determining power with different sample sizes. Even 

though the primary noncentrality parameter for Case I is not independent of N, there is still 

a benefit to calculating the primary noncentrality parameter. The primary noncentrality for 

Case I is a more computationally efficient version of A since the matrices being inverted 

have smaller dimension and all pieces of 11,; are fixed except for N. 

The following chapter includes examples of calculating power using the results 

from this chapter. A simulation study based on mixed linear model power is presented in 

Chapter 6. 



Chapter 5 

Applications of Mixed Linear Model Power 

5.1 Introduction 

In this chapter, applications of the methods derived in Chapter 4 for calculating 

power for the mixed linear model are illustrated. Based on the approximate F, the power of 

a size a test of the fixed effects is given by Il=P[F(rank(K), N-rank(X Z), A)�cxl- The 

noncentrality parameter, A, needed for calculating power can be written in its distinct 

components yielding computationally efficient versions of A. The form of the primary 

noncentrality parameter varies depending on the design of the study. Thus, three cases are 

considered and their primary noncentrality parameters are found to be 

Case I 

{ I }� A;=/JK K'[x'W(NZGZ'W+R(xr K K'/3 

The remaining sections of this chapter contain examples for each of the three cases. 

The parameter estimates of /J, G, and R for most of the examples are based on 

hypothetical situations. It is noted when real data are used for the parameter estimates, 

however, the situations of interest are still hypothetical. The programs used to calculate the 
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primary noncentrality parameter and then powers for each of the examples can be found in 
Appendix A. 

5.2 Case I Examples 

Case I consists of situations where the column space for the random effects or the z 

matrix remains fixed upon the addition of another subject. In order to calculate power at 
various sample sizes, one needs to specify the unique design points, X and Z ; the 
weighting of these points, W; the estimates for /J, G, and R; the contrast matrix of 
interest, K; and the type I error, a. 

Example 5.2.1 
Let's return to the three center clinical trial example first described in Section 4.2. 

In this example, two fixed treatments are going to be studied and the random effects are 
center and the center by treatment interactions. Thus, the essence model matrices are 

1 0 1 0 0 0 0 0 0 0 

0 1 0 1 0 0 0 0 0 0 

X= 
1 0 

Z= 
0 0 0 0 0 0 0 and 

0 0 0 0 I 0 0 0 0 

1 0 0 0 0 0 0 0 l 0 

0 0 0 0 0 0 0 0 

The response of interest has treatment means of 50.95 and 51.96 for treatment 1 and 
treatment 2, respectively. Therefore, /J has the form 

= [50.95]· /J 51.96 
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Based on data from a previous clinical trial that studied similar treatments and centers, it 

will be assumed that the overall error variance is cr2=0.0485. The variance contribution of 

center is cr! = 0.1073 and the center by treatment interaction is cr!, = 0.0510 . These values 

come from the estimates of center mean square and the interaction mean square from the 

previous study. Therefore, 

R = cr2I{6) 

and [cr2 
G= 1(6)® 

�
' 

0 

0 

In order to compare the two treatment means, the contrast is 

K'=[l -1]. 

Assuming equal weighting of the 6 cells, the weight matrix is 

W = tI{6). 

For the case of equal weightings, each time a subject is added to one treatment a subject is 

added to the other treatment. So the total sample size will be divisible by 6. 

Figure 5.1 contains the power curves for a=0.05 and 0.01. From Figure 5.1, 12 

total subjects need to be sampled to achieve a power of at least 0.80 when a=0.05. This 

corresponds to 2 subjects for each treatment at each center and has an actual power of 

0.961. If a=0.01, 18 total subjects are needed to achieve a power of at least 0.80. This 
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corresponds to sampling 3 subjects for each treatment at each center. The actual power for 

this situation is 0.934. 

0.9 
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Figure 5.1: Plot of Power Curves for Case I Example 1 

Example 5.2.2 

A toxicologist would like to study the purity of a substance used in his lab 

experiments. This substance is purchased from three different suppliers. From each 

supplier, he will select four random batches and within each batch he will randomly select 

samples. Therefore, the random effects are the nested batches within each of the suppliers 



85 and are given by u11, u21, u31, u12, u22, u32, u13, u23, u33, u14, U24, and u34 where Uij is the random effect for the jth batch from the ith supplier. The essence matrices are 
I 0 0 I 0 0 0 0 0 0 0 0 0 0 0 

0 I 0 0 I 0 0 0 0 0 0 0 0 0 0 

0 0 I 0 0 I 0 0 0 0 0 0 0 0 0 

I 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 I 0 0 0 0 0 I 0 0 0 0 0 0 0 

X= 
0 0 I 

Z= 
0 0 0 0 0 I 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

0 0 and 0 0 0 0 0 0 0 1 0 0 0 0 

0 0 I 0 0 0 0 0 0 0 0 I 0 0 0 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 

The toxicologist is willing to assume, from prior knowledge, purities of 10.31, 16.09, and 19.37 from Suppliers I, 2, and 3, respectively. Therefore, 

[
10.31

] /3= 16.09 . 19.37 
He wants to perform a balanced and complete experiment, so W = ( rr )1(12). For the R matrix, a simple variance structure of R = 3.3 · 1(12) will be assumed. The toxicologist feels that the variance among batches varies from supplier to supplier and assumes 

[
0.42 

Gt =1(4)® � 

The contrast matrix, 

0 26.7 0 
0 

l 0 56.94 
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will be used to compare the purity of the substance from the three suppliers. He would like 

to see what kind of power he will have under this situation. On a whim, he would also like 

to see what the power would be if he assumed incorrectly homogeneity of the variances. In 

this case, the matrix G2 = 26.8 · 1(12) is assumed. The following plot contains the power 

curves under each of these situations. 
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Figure 5.2: Plot of Power Curves for Case I Example 2 
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From Figure 5.2, the toxicologist can see that he will need to take 7 samples of each 

batch from each supplier to have a power of 0.805 when he assumes the heteroscedastic 

variances ( G,). If the homoscedastic variance is assumed ( G2), he would only have a 

power of 0.578 if he took 7 samples of each batch from each supplier. Even if the 

toxicologist took 40 samples of each batch from each supplier, he would only have a power 

of 0.600. 

This example brings about an interesting question. Why do the two power curves 

asymptote to values other than one? Recall that for Case I, A; depends on N. So when A; 

is multiplied by N to get A, a portion of the effect of N is absorbed by the N that is 

contained in A;. Thus, A; asymptotes. Upon further investigation, it is seen that for G,, 

A = 10.5397. Also as N � oo, Fa approaches a value near 2.9975. Thus, as N � oo, 
N-+-

Fa=2.9975, A.=10.5397, rank(K)=2, and N-rank[X Z]�00, power approaches a value of 

0.836. Similarly, it is seen for G2 that N�- = 6.28112. So for G2 , power approaches a 

value of 0.605. 

5.3 Case II Examples 

Case II consists of situations where the column space for the random effects 

increases with the addition of another subject. In order to calculate power for various 

sample sizes, one needs to specify the unique design points which are given by X and Z ; 

the weighting of these points, W; the estimates for /J, G, and R; the contrast matrix of 

interest, K; and the type I error, a. 

Example 5.3.1 

Suppose the longitudinal study described in Section 4.3 is going to be carried out 

by an investigator. The essence model matrices are 
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-1 0 0 0 0 0 

X= 
I I 0 0 

Z= ----------- and 0 0 -1 0 0 0 0 0 
Assuming that the dependent variable varies linearly with time, a separate regression will be fit for each treatment. From a pilot study, the estimates for the fixed effects are estimated as 21.2, 1.4, 20.3, and .95 which correspond to the intercept and slope for treatment I and treatment 2, respectively. Thus, 

l21.2j 1.4 /J = 20.3 . . 95 
It is assumed that there is a homogeneous variance structure for each subject so that 

Again from the pilot study, the investigator found that an unstructured covariance best described each subject's block contribution to the R matrix. Therefore using those estimates he will assume, 
[ 2.4 -0.2 R = 1(2)@ -0.2 1.2 0.9 0.01 0.91 

0.01 3.5 
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The investigator does not think he will have trouble enrolling subjects into his clinical trial, 

so he will assume equal sample sizes for each treatment and 

W=tI(6). 

The focus of his research is to compare both the intercepts and the slopes of the two 

treatments. Thus, 

K'=[l O -1 O
J· 

0 0 -1 

Therefore, the primary noncentrality has a value of .0320459. Figure 5.3 contains the 

power curves for a=0.05 and 0.01. 

From the plot in Figure 5.3, a total of 104 subjects or 52 subjects per treatment are 

needed to achieve an actual power of 0.811 when a=0.05. At a=0.01, one would have to 

sample 74 subjects per treatment to achieve a power of 0.807 at a=0.01. The investigator 

is quite pleased with these findings. He doesn't think he will have any problem with 

sampling the 52 subjects per treatment. His grant has also been renewed so he may even 

try to sample more subjects per treatment so that his power will be closer to 0.90. 
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Figure 5.3: Plot of Power Curves for Case IT Example 1 

Example 5.3.2 

Suppose a study comparing two blood pressure cuffs is planned. Three repeated 

measurements with each of two cuffs (new and standard) will be taken on each subject. 

Blood pressure "cuff' type is the fixed effect and the parameters are designated as 13New and 

13std· The random effect is subjectxcuff so each subject has random effect parameters u;N 

and u;s- The essence model matrices are 



0 0 

0 0 

X= 
I 0 

Z= 
I 0 

and 
0 0 

0 0 

0 0 

The error matrix, R, will be modelled to allow for a different variance for each cuff: 

O'�ew 0 0 0 0 0 

0 (J'�ew 0 0 0 0 

R= 
0 0 cr�ew 0 0 0 

0 0 0 cr�,d 0 0 

0 0 0 0 O'�td 0 

0 0 0 0 0 cr�,d 

The random effects error matrix, G, will be modelled with an unstructured covariance 

matrix: 
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Medical investigators from the School of Nursing at the Medical College of Virginia 

performed a similar study in which they compared the Johnson blood pressure cuff to the 

standard blood pressure cuff. The new experiment will be using a "modified" Johnson 

cuff. It is anticipated that the parameter estimates from the previous study will be close to 

the data from the new study except for an increase of 2% in the new cuff mean from the 

Johnson blood pressure cuff mean. Therefore, the estimates that will be used are 



�New=121.06xl.02=123.5, �Std=120.47, 
crt.w=42.36, cr�,d=42.31, 
0"�=325.33, cr;=321.32, and cr

12
=328.58. 
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Since each subject will have three measurements from each of the blood pressure cuffs, the 
weight matrix is W = t I( 6) . In order to compare the means of the two cuffs, 
K' = [1 -1]. The primary noncentrality based on these matrices has a value of 

0.0863841. The following plot shows the power curves for a=0.05 and 0.01. 
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Figure 5.4: Plot of Power Curves for Case II Example 2 



From Figure 5.4, one can see that 16 subjects need to be sampled at a=0.05 and 

24 subjects need to be sampled at a=0.01 in order to achieve a power of at least 0.80. 

These values correspond to approximate powers of 0.81333 and 0.81854, respectively. 

5.4 Case III Examples 
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Case III consists of situations where the column space for the random effects 

increases with the addition of another subject as in Case II. Unlike Case II, Case III will 

allow for the row space for the fixed and random effects to vary from subject to subject. 

As in Case II, one needs to specify the unique design points which are given by X and Z; 

the weighting of these points, W; the estimates for {J, G, and R; the contrast matrix of 

interest, K; and the type I error, a to calculate power for various sample size. 

Example 5.4.1 

An investigator wants to perform the clinical trial discussed in Section 4.4. 

Enrollment of subjects into either the standard treatment or the new treatment will occur 

during the first three years of the four years planned for the study. Observations will be 

taken once each year from enrollment to study completion. It is assumed that the dependent 

variable varies linearly with time and a separate regression will be fit for each treatment. 

With subject as the random effect, the essence model matrices are 



I 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 

3 0 0 0 0 0 0 0 

I 4 0 0 I 0 0 0 0 0 
-------- ------------· 

0 0 I I 0 0 0 0 0 

0 0 2 0 0 0 0 0 

0 0 3 0 0 0 0 0 

0 0 I 4 0 I 0 0 0 0 
-------- ------------· 

X= 
0 0 

Z= 
0 0 I 0 0 0 

1 2 0 0 0 0 I 0 0 0 

1 3 0 0 0 0 I 0 0 0 
-------- ------------· 

0 0 0 0 0 l 0 0 

0 0 1 2 0 0 0 1 0 0 

0 0 1 3 and 0 0 0 1 0 0 
-------- ------------· 

1 1 0 0 0 0 0 0 I 0 

I 2 0 0 0 0 0 0 1 0 
-------- ------------· 

0 0 0 0 0 0 0 

0 0 1 2 0 0 0 0 0 I 

The estimates for the intercept and slope for each treatment are assumed to be -5, 55.5, 

-4.5, and 52.3, respectively. Thus, 

Homogeneity between subjects is also assumed so that 

G = 0.39 · I( 6). 
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Assuming an autoregressive structure for the blocks of the R matrix and using data from a 

previous study, the largest block ( corresponding to the block for a subject with all four 

measurements) is 



r
l
9

0
5 

, 20.8 
R = 4 0.23 

0.002 

20.8 

1905 

20.8 

0.23 

95 

0.23 
o
=j 

20.8 0.23 

1905 20.8 

20.8 1905 

The block for a subject with three years of observations is denoted by R; and is made from 

the first three rows and three columns of R:. In a similar fashion, the block for a subject 

with two years of observations is denoted by R;. Using R:, R;, and R;, the form of R 

is 

R= 

R' 
4 

R' 
4 

R' 
J 

R' 
J 

R' 
2 

R' 
2 

The contrast matrix is constructed to compare both the intercepts and slopes for each 

treatment where the contrast matrix K is 

K' = [ol O -1 0] 

0 -1 . 

Two sampling schemes have been suggested for this clinical trial. First, suppose that 50% 

of the subjects are enrolled during the first year, 33 t% of the subjects are enrolled during 

the second year, and 16 j % of the subjects are enrolled during the third year. Second, an 

alternative case of equal recruitment for each of the 4 study years has also been suggested. 

The weight matrices for each of these cases are 



for equal weighting of subjects across each of the three years that enrollment is allowed, 

and [;fu-1(8) 0 0 l 
w

2 
= o .tI(6) o 

0 0 -./o-1(4) 
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for the unequal weighting plan. The primary noncentrality has a value of 0.0063749 when 

using W 1 and has a value of 0.007249 when using Wz. The following plot contains the 

power curves for each of the weight matrices. 
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Figure 5.5: Plot of Power Curves for Case III Example I 
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The horizontal axis in Figure 5.5 corresponds to the total number of observations 

necessary to achieve the corresponding power. In order to determine the number of 

subjects needed each year for each treatment, one needs to multiply this value by the weight 

matrix. Thus, to achieve a power of 0.80 when one assumes an equal number of subjects 

enrolling per year, a total of 1530 observations are necessary. This corresponds to 85 

subjects per year per treatment (derived from 1530xW 1). When one wants 50% of the 

subjects from year 1, 33 t% of the subjects from year 2, and 16t% of the subjects from 

year 3, a total of 1360 observations are necessary to achieve a power of 0.80. This 

corresponds to 102 subjects per treatment in year 1, 68 subjects per treatment in year 2, and 

34 subjects per treatment in year 3 (derived from 1360xW2). 

Example 5.4.2 

Suppose one is interested in studying a drug at two dose levels and a placebo. The 

objective will be to show that the doses of the drug have a different outcome trend than the 

placebo. The study will run for five continuous weeks. In order to save on the cost of the 

treatment, and hopefully, cut back on the number of subject missing a week, some subjects 

will be evaluated each week and some subjects will be evaluated only during the first, third 

and fifth weeks of the study. It will be assumed that the dependent variable of interest 

varies linearly with time and a separate regression will be fit for each dose level. The 

essence model matrices are 
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-2 0 0 0 0 -2: 0 0 :o 0 :o 0 :o 0 :o 0 

-1 0 0 0 0 -1: 0 0 :o 0 :o 0 :o 0 :o 0 
I I I I I 

0 0 0 0 0 0 :o 0 :o 0 IQ I 0 :o 0 :o 0 

0 0 0 0 1 :o 0 :o 0 :o 0 :o 0 :o 0 

1 2 0 0 0 0 1 2 :o 0 
I 
,o 0 :o 0 :o 0 :o 0 

--------------- ----,-----�----�-----�----+----

0 0 -2 0 0 0 0 : 1 -2: 0 0 :o 0 :o 0 :o 0 

0 0 -1 0 0 0 0 : 1 -1: 0 0 :o 0 :o 0 :o 0 

0 0 0 0 0 0 0 
I 
I 1 0 

I 
,o 0 :o 0 :o 0 

I 
,o 0 I I I I I 

0 0 0 0 0 0 : 1 1 :o 0 :o 0 :o 0 :o 0 

0 0 1 2 0 0 0 0 : 1 2 :o 0 :o 0 :o 0 :o 0 
--------------- ----,-----r----,-----r----T----

0 0 0 0 -2 Q Q I Q Q I 1 -2 I Q Q I Q Q I Q Q 
I I I I I 

X= 
0 0 0 0 -1 

Z= 
0 0 :o 0 : 1 -1: 0 0 :o 0 :o 0 

0 0 0 0 0 0 0 :o 0 : 1 0 :o 0 :o 0 :o 0 
I I I I I 

0 0 0 0 I 0 0 ,o 0 , 1 1 ,o 0 ,o 0 ,o 0 I I I I I 
0 0 0 0 1 2 0 0 10 0 1 1 2 1 0 0 1 0 O '0 O 
--------------- ____ J _____ L ____ J _____ L ____ i ____ 

-2 0 0 0 0 () 0 :o 0 :o 0 : 1 -2: 0 0 :o 0 

0 0 
I 

0 
I I I I 

1 0 0 0 0 0 ,o ,o 0 1 ] 0 ,o 0 ,o 0 I I I I 
1 2 0 0 0 0 0 0 1 0 0 1 0 0 1 1 2 1 0 0 1 0 0 
--------------- ____ J _____ L ____ J _____ L ____ i ____ 

0 0 -2 0 0 0 0 :o 0 :o 0 :o 0 : 1 -2: 0 0 
I 

0 
I I I I 

0 0 0 0 0 and 0 0 ,o ,o 0 ,o 0 , 1 0 ,o 0 I I I I I 
0 0 1 2 0 0 0 0 1 0 0 10 0 1 0 0 1 1 2 1 0 0 
--------------- ____ J _____ L----�-----L ____ l ____ 

0 0 0 0 -2 0 0 :o 0 :o 0 :o 0 :o 0 : I -2 
I I I I I 

0 0 0 0 0 0 0 ,o 0 ,o 0 ,o 0 ,o 0 , 1 0 I I I I I 
0 0 0 0 2 0 0 :o 0 :o 0 :o 0 :o 0 : I 2 

The parameter estimates being used for the power analysis are based on the investigator's 

previous experience with the highest dose level of the drug. The estimates for the low dose 

level have been linearly interpolated from the placebo and high dose level values. 

Therefore, the intercept and slope estimates are assumed to be -1.39 and -0.035 for 

placebo, -2.39 and -0.176 for Dose 1, and -3.38 and -0.318 for Dose 2, so that 

' 

/1=[-1.39 -0.025 -2.39 -0.176 -3.38 -0.318]. 

An unstructured covariance is assumed for each subject's random effects or 



G = l(6)®[ 1.15 0.163] 0.163 0.039 ' 
and a simple covariance is assumed for the blocks of R or 

R = [0.125. 1(15) ]· 0.125 · 1(9) 

The contrast to compare the slope of the placebo to the slope of each dose level is 
K' = [O 1 0 -1 0 0 ] 0 1 0 0 0 -1 . 

Powers when an equal number of subjects are sampled for each of the two evaluation 
schemes and when 25% of the subjects are evaluated all five times and 75% are evaluated 
only during the first, third, and fifth weeks will be calculated. The weight matrices for 
these cases are 

and 
[-b1(15) 0 ] w

2 = o M(9)' 

99 

respectively. The primary noncentrality has a value of 0.0629176 when using W 1 and has 
a value of 0.0708338 when using W 2· The following plot contains the power curves for 
each of the weight matrices. 
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Figure 5.6: Plot of Power Curves for Case III Example 2 
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From Figure 5.6, to achieve a power of at least 0.80, a total of 168 observations are 

necessary when one assumes an equal number of subjects for each evaluation scheme. 

This corresponds to 7 subjects per evaluation scheme per dose level and has an actual 

power of 0.830. When one wants 25% of the subjects to be evaluated 5 times and 75% of 

the subjects to be evaluated only 3 times, a total of 168 observations are needed. This 

corresponds to 4 subjects per dose evaluated all 5 weeks and 12 subjects per dose evaluated 

during weeks 1, 3, and 5 and has an actual power of 0.873. 



6.1 Introduction 

Chapter 6 

Simulation Study 

A simulation study is conducted to accomplish two objectives. The first is to 

determine the effect on power when misspecification of the model's covariance structure 

occurs. As an example of misspecification, suppose the power analysis assumes a 

compound symmetry covariance when the sampled data actually follows an autoregressive 

covariance structure. For this example, the same number of parameters are assumed in the 

covariance matrix (2 parameters), however, the structure is incorrect. The second objective 

is to investigate whether sufficient power is achieved when the power analysis assumes a 

covariance structure with fewer parameters than the true covariance of the sampled data. 

This will be referred to as underspecification of the covariance. As an example of 

underspecification, suppose the power analysis assumes a compound symmetry covariance 

(2 parameters) and the true covariance of the sampled data has an unstructured covariance 

(p(p+ 1 )/2 parameters). 

A model based on a longitudinal study of two treatment groups is considered with 

this simulation. At each step of the simulation, the hypothesis is tested that the two 

treatment groups have differing trends over four measured occasions. A separate 

regression will be fit for each group, so the comparison of the two treatment group slopes 

is a test of the trends. This design follows a Case II situation discussed in Chapter 4. The 

program for the simulation study is written in SAS using Proc IML and Proc Mixed. 
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6.2 Data Generation 

A primary focus of this research is the mixed linear model and its modelling with 
various covariance structures. As stated in Section 3.6, the mixed model is a useful tool 
for analyzing repeated measures or longitudinal data. For this simulation study, the R 
matrix will be used to model the covariance structure of a subject's data. Therefore, 
random normal data are generated with mean XfJ and variance R where 

2 

3 
I 4 

X= 
0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

2 

3 
4 

/31 R' 0 

rp.,1 ' pc 
� 

' �d R c [ 0 R' l 

and /30, and /3, are the intercept and slope parameters for a subject in the ith group, and R' 
is a 4x4 covariance m<)trix for a subject from either group. 

To generate random normal data with mean XfJ and variance R, first generate 
random numbers having a normal distribution with mean O and variance 1 using the 
NORMAL function in SAS. In order to generate data for n subjects per group, this is done 
with the following SAS statement, 

z=NORMAL(REPEAT(seed, n, 8)); 
The result of this statement is a nx8 matrix whose elements are normally distributed with 
mean O and variance 1. Next, the SAS statement, 

y=z*ROOT(R) + J(n,l,l)*(X*beta)'; 
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is used to obtain the random normal data with mean xp and variance R. The SAS 

function ROOT(matrix) performs the Cholesky decomposition of a symmetric, positive 

definite matrix. The resulting matrix, y, is nx8. Each row of this matrix corresponds to 

responses of one subject from group 1 and of one subject from group 2. The first four 

columns of this matrix correspond to the four responses of a subject from group 1 and the 

last four columns correspond to the four responses for a subject from group 2. 

Several factors of interest are varied through the simulation. These factors are 

chosen because the nature of data analysis depends on which parameters have the most 

effect on power and are known with the least certainty. In turn, these values will help to 

address the objectives of the simulation. Therefore, the effects of varying I) sample size, 

2) the true difference, and 3) variance, the three components of the noncentrality parameter, 

are usually examined. The first factor of consideration for the simulation is sample size per 

group, n. Simulated values of n include n=IO, n=20, and n=40. The second factor of 

interest is the difference between the slope parameters. The differences used are O (no 

difference), 0.2 (small difference), and 0.45 (medium/large difference). The first value of 

no difference is used for validation since when there is no difference in the slope 

parameters the power of the test should be equal to the alpha level which is 0.05. The 

small and medium/large difference values were chosen so that powers of interest could be 

achieved. The third factor considered is the variance structure assumed for R'. The three 

covariance structures used to generate the data include unstructured, compound symmetry, 

and autoregressive. The final factor varied in the simulation is the level of correlation. The 

levels of correlation considered are small (p=O. l ), medium (p=0.5), and large (p=0.9). 

Only positive correlations are considered because for most repeated measurement 

situations, negative correlations are not expected (Chinchilli, 1996). Since the hypothesis 

of interest tests the slopes of the two groups; the values of the intercept parameters are not 



very important, and thus are fixed at/301 = 4.2 and /302 = 4.95. In order to achieve the 

differences in the slopes described above, the slope values given in Table 6.1 are used. 

and 

Table 6.1 

Values for Slope Parameters 

Difference 

No (0) 

Small (0.2) 

Med/Large (0.45) 

1.25 

1.25 

1.25 

1.25 

1.45 

1.7 

The covariance structures used for R' have the following forms: 

Unstructured (UN) 

(JJJ (Jl2 CJ13 

"" j 
CJ21 CJ22 CJ23 CJ24 

CJ31 CJ32 CJ33 CJ34 

CJ41 CJ42 CJ43 CJ 44 

Compound Symmetry (CS) 

a'[ 
p p 

�j 
p 

p 

p p 
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Autoregressive (AR) 
a
f 

p p
2 

p3 

p p
2 

p
2 

p p 

p
3 

p
2 

p 

For compound symmetry and autoregressive, a value of <J2=1.5 is assumed for the variance term. For a given correlation, R" is then formed using this value and the correlation value (p=0.1, 0.5, 0.9) assumed. For the unstructured covariance structure, values of 0"
11 

= 1, 0"22 = 1.33, 0"
33 

= 1.66, and 0"
44 

= 2 are assumed. In order to have positive definite matrices with the correlations varied in the simulation, the following matrices are used 
UN p=0.1 

r 1:, .115 .129 1411 1.33 .149 .163 .129 .149 1.66 .182 .141 .163 .182 2 UN p=0.5 
r,:, .577 .644 7

ITT1 1.33 .743 .815 .644 .743 1.66 .911 .707 .815 .911 2 UN p=0.9 
r,�, .967 1.16 

12

7
1 

1.33 1.34 1.47 1.16 1.34 1.66 1.64 . 1.27 1.47 1.64 2 
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With the three different values for n, three differences of the two slopes, three 

covariance structures assumed for R", and three values of correlation, the resulting 

simulation study will consider 3x3x3x3=81 total cases. In each of these cases, 1000 

repetitions are simulated and done as 10 runs of 100 sets. Due to time and computer 

restraints, it was decided that 1000 simulated data sets would be sufficient for drawing 

conclusions. In performing simulation studies, most statisticians do not go below 500 

simulated data sets (Chinchilli, 1996). The 1000 data sets were done as 10 runs of 100 

sets so that means and standard deviations could be calculated. For each of the 100 sets, 

the normal data with mean xp and variance R is generated as described above. This data 

is then transposed into a univariate fashion so that SAS's Proc Mixed can be used for 

analysis. Next, the dataset is analyzed three times with Proc Mixed. Each run assumes 

one of the three covariance structures and the F statistic for the hypothesis of equal slopes 

is calculated. For each run, the number of times the hypothesis is rejected for each 

covariance structure is counted and the empirical power is then calculated by dividing this 

number by 100. Ten empirical powers for each of the three covariance structures result for 

each case. Thus, powers assuming the "correct" covariance structure and assuming two 

"incorrect" covariance structures are calculated. Finally, the mean, median, and confidence 

intervals about the mean are calculated for each of the ten empirical powers. Plots of the 

means are used to investigate the misspecification and underspecification of the covariance 

structure. 

6.3 Simulation Analysis and Results 

The results of the simulation are given in Tables 6.2 - 6.10. Each table provides the 

three different values of correlation (p) and the three different covariance structures 

assumed to generate the data. Tables 6.2 - 6.4 contain the results for n=lO and no 

difference, small difference, and medium/large difference, respectively. Tables 6.5 - 6.7 
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contain the results for n=20 and no difference, small difference, and medium/large 

difference, respectively. Tables 6.8 - 6.10 contain the results for n=40 and no difference, 

small difference, and medium/large difference, respectively. For each of the covariance 

structures, the tables include (I) the mean of the empirical power, (2) a 95% confidence 

interval about this mean, (3) the median of the empirical power, and (4) the minimum and 

maximum values of the empirical power. The bold values in these tables represent the 

results when the data was analyzed with the covariance structure under which the data was 

actually simulated. Plots of the mean values are contained in Figures 6.1-6.9. It should be 

noted that these plots are not all on the same scale, so interpretation across plots must be 

done carefully. 

When there is no difference in the slope parameters, as n and p increase, powers 

approach the value of 0.05 in a decreasing fashion. See Tables 6.2, 6.5 and 6.8, and 

Figures 6.1, 6.4, and 6.7. When the data is generated with an autoregressive covariance 

structure and analyzed with an autoregressive covariance, power is closest to 0.05 for all 

sample sizes and correlations. However, when this data is analyzed with a compound 

symmetry covariance structure, the power inflates as the correlation increases. When 

assuming a compound symmetry covariance, the power is inflated by at least 0.01 at p=O. l 

and increases to more than 0.1 at p=0.9 for all samples sizes. Powers calculated assuming 

an unstructured covariance seem to be slightly inflated even when the data is generated with 

an unstructured covariance. For a sample size of 10, powers found when analyzing the 

data with an unstructured covariance are around 0.1. At n=20, all powers are around 0.06 

and it is not until n=40 and p=0.9 that the power is close to 0.05. Finally, when assuming 

an autoregressive covariance for data generated with an unstructured or compound 

symmetry covariance, power approaches zero as the correlation increases. 

For small differences in the slope parameters (0.2), power increases as n and p 

increase as expected. See Tables 6.3, 6.6, and 6.9, and Figures 6.2, 6.5, and 6.8. When 
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n=20 and p=0.9, powers greater than 0.8 are achieved when analyzing unstructured or 

compound symmetry data with either of those covariance structures. Sufficient power for 

autoregressive data is not reached until n=40 and p=0.9. As n and p increase, powers for 

analyzing unstructured data with a compound symmetry covariance get closer to the powers 

found when analyzed with the true unstructured covariance. As in the case when there is 

no difference in the slope parameters, powers are inflated as p increases when analyzing 

autoregressive data with a compound symmetry covariance. The inflation of power ranges 

from 0.02 when p=O. l to as much as 0.2 when p=0.9 across all sample sizes. When 

analyzed with the unstructured covariance, the powers are fairly close to those of the true 

autoregressive powers especially, as n and p increase. The difference in power when 

assuming the unstructured covariance for autoregressive data is at most 0.065, and this 

occurs with the smallest sample size per group. At lower levels of correlation (p=O. l and 

0.5), there is essentially no difference in powers between the three covariance structures 

when the data is generated with an autoregressive covariance structure. This difference 

does increase some when the data is generated with an unstructured covariance. 

For a medium/large difference in the slope parameters (0.45), as n increases, the 

difference in power for the different levels of correlation decreases for all generated and 

analyzed covariance structures. See Tables 6.4, 6.7, and 6.10, and Figures 6.3, 6.6, and 

6.9. When n=IO, the maximum difference in power is 0.3 and this occurs when analyzing 

unstructured data with an autoregressive covariance at p=0.5. The maximum difference in 

power decreases to 0.15, and this is under the same situation except n=20. For n=40, 

powers greater than 0.95 are achieved with all levels of correlation. Even with a sample 

size of ten subjects per group, powers greater than 0.9 are achieved when analyzing data 

with the generated covariance structure. There is little difference between compound 

symmetry and unstructured powers even when the data is generated with a unstructured 
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covariance matrix. The largest difference in power is 0.075, and this occurs when n=lO. 

The average difference in power is only .015. Analyzing autoregressive data with a 

compound symmetry structure still inflates power but this inflation of power is less as n 

increases. 
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Table 6.2 

Simulation Results for n=l O and No Difference in Slope Parameters 

Basis 

for: Simulation 

UN cs AR 

Analysis p=O.l 
UN (1) .100 .103 .JOO 

(2) (.037, .162) (.036, .170) (.034, .166) 
(3) .100 .105 .09 
(4) .06, .14 .02, .14 .07, .17 

cs (I) .053 .066 .061 
(2) (.007, .099) (.018, .114) (.008, .114) 
(3) .05 .06 .06 
(4) .03, .09 .04, .11 .03, .12 
(I) .039 .044 .048 
(2) (.005, .073) (0.0, .091) (0.0, .102) 
(3) .04 .04 .04 
(4) .01, .06 .01, .09 .02, .11 

=0.5 
UN (1) .100 .105 .102 

(2) (.026, .174) (.038, .172) (.060, .144) 
(3) .105 .105 .095 
(4) .04, .14 .05, .15 .07, .13 

cs (1) .051 .064 .125 
(2) (0.0, .105) (.021, .107) (.044, .206) 
(3) .05 .07 .125 
(4) .02, .09 .02, .09 .07, .21 

AR (I) .007 .012 .044 
(2) (0.0, .028) (0.0, .030) (.019, .069) 
(3) 0.0 .015 .04 

(4) 0.0, .03 0.0, .02 .03, .07 

=0.9 
UN (I) .095 .102 .085 

(2) (.042, .148) (.052, .152) (.022, .149) 
(3) .095 .105 .09 
(4) .OS, .13 .06, .14 .03, .13 

cs (I) .049 .051 .168 
(2) (.008, .090) (.015, .087) (.078, .258) 
(3) .05 .055 .17 
(4) .02, .09 .01, .07 .07, .24 

AR (I) .002 .002 .054 
(2) (0.0, .010) (0.0, .010) (0.0, .115) 
(3) 0.0 0.0 .055 

(4) 0.0, .01 0.0, .01 .01, .11 
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Table 6.3 

Simulation Results for n=lO and Small Difference in Slope Parameters 

Basis 

for: Simulation 

UN cs AR 

Anall'.sis e=O.l 
UN (1) .213 .195 .188 

(2) (.158, .268) (.133, .257) (.113, .263) 
(3) .21 .19 .185 
(4) .17, .26 .17, .27 .13, .24 

cs (1) .151 .140 .142 
(2) (.094, .208) (.049, .231) (.066, .218) 
(3) .14 .135 .14 
(4) .II, .20 .06, .24 .07, .21 

AR (I) .127 .118 .122 
(2) (.064, .190) (.034, .2020 (.057, .187) 
(3) .125 .12 .125 

(4) .08, .18 .04, .19 .08, .17 

=0.5 
UN (I) .243 .283 .190 

(2) (.173, .313) (.192, .374) (.148, .232) 
(3) .240 .265 .195 
(4) .18, .29 .24, .39 .14, .21 

cs (1) .205 .20 4 .244 
(2) (.112, .298) (.097, .311) (.161, .3270 
(3) .2 .20 .255 
(4) .12, .27 .11, .30 .16, .31 

AR (I) .074 .067 .139 
(2) (.034, .114) (.016, .118) (.089, .189) 
(3) .075 .06 .1 4 

(4) 0.0, .II .02, .12 .08, .17 

=0.9 
UN (1) .609 .745 .385 

(2) (.510, .708) (.671, .819) (.305, .465) 
(3) .615 .745 .39 
(4) .54, .68 .67, .79 .33, .44 

cs (I) .608 . 733 .541 
(2) (.561, .655) (.630, .836) (.467, .615) 
(3) .605 . 7 4  .525 
(4) .57, .65 .65, .83 .50, .60 

AR (I) .178 .193 .325 
(2) (.128, .228) (.120, .266) (.245, .405) 
(3) .17 .19 .315 

(4) .14, .21 .15, .27 .25, .39 
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Table 6.4 

Simulation Results for n=lO and Med/Large Difference in Slope Parameters 

Basis 

for: Simulation 

UN cs AR 

Analysis p=O.l 
UN (1) .534 .519 .482 

(2) (.444, .624) (.429, .609) (.389, .575) 
(3) .525 .535 .465 
(4) .49, .63 .45, .58 .44, .60 

cs (1) .472 .44 4  .480 
(2) (.317, .627) (.361, .527) (.363, .597) 
(3) .445 .4 5 .465 
(4) .39, .65 .35, .50 .41, .61 

AR (I) .429 .396 .454 
(2) (.285, .573) (.332, .460) (.340, .568) 
(3) .415 .395 .43 5  

(4) .36, .60 .33, .45 .39, .59 

=0.5 
UN (I) . 74 2 .761 .524 

(2) (.638, .846) (.675, .847) (.413, .635) 
(3) . 750 .755 .50 
(4) .65, .83 .69, .82 .47, .65 

cs (I) .704 . 730 .613 
(2) (.589, .819) (.606, .854) (.519, .707) 
(3) .710 .725 .61 
(4) .58, .78 .63, .81 .54, .70 

AR (1) .443 .446 .4 88 
(2) (.321, .656) (.382, .510) (.397, .579) 
(3) .410 .435 .4 7 

(4) .38, .54 .41, .51 .43, .57 

=0.9 
UN (1) .996 I.DO .917 

(2) (.986, 1.00) (1.00, 1.00) (.852, .982) 
(3) 1.00 I.DO .915 
(4) .99, 1.00 1.00, I.DO .87, .97 

cs (1) .998 1.00 .972 
(2) (.989, 1.00) (1.00, 1.00) (.933, 1.00) 
(3) I.DO 1.00 .98 
(4) .99, I.OD 1.00, 1.00 .94, I.DO 

AR (1) .929 .986 .917 
(2) (.881, .977) (.956, 1.00) (.850, .984) 
(3) .93 .99 .925 

(4) .87, .96 .96, I.OD .85, .96 
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Table 6.5 

Simulation Results for n=20 and No Difference in Slope Parameters 

Basis 

for: Simulation 

UN cs AR 

Analysis p=O.l 
UN (I) .086 .088 .063 

(2) (.028, 144) (.026, .150) (.005, .121) 
(3) .08 .09 .065 
(4) .05, .13 .04, .14 .03, .I I 

cs (I) .054 .065 .061 
(2) (.007, .JOO) (.017, .113) (0.0, .124) 
(3) .05 .065 .065 
(4) .02, .JO .03, .10 .02, .II 

AR (I) .034 .047 .050 
(2) (0.0, .069) (.Oll, .082) (0.0, .112) 
(3) .035 .045 .045 
(4) 0.0, .06 .02, .07 .01, .10 

=0.5 
UN (I) .069 .067 .074 

(2) (.026, .112) (.016, .118) (.012, .136) 
(3) .07  .065 .075 
(4) .04, .11 .03, .12 .03, .12 

cs (I) .060 .045 .121 
(2) (.008, .112) (.009, .081) (.049, .193) 
(3) .055 .045 .12 
(4) .02, .12 ·.02, .07 .05, .18 

AR (I) .001 .006 .048 
(2) (0.0, .007) (0.0, .025) (0.0, .103) 
(3) 0.0 0.0 .045 

(4) 0.0, .OJ 0.0, .03 .01, .09 

=0.9 
UN (I) .063 .065 .071 

(2) (.024, .102) (.029, .IOI) (.023, .119) 
(3) .065 .06 .07 
(4) .02, .09 .04, .JO .04, .II 

cs (I) .059 .056 .158 
(2) (.029, .089) (.011, .101) (.085, .231) 
(3) .055 .055 .15 
(4) .04, .09 .02, .08 .12, .23 

AR (I) .003 .001 .042 
(2) (0.0, .012) (0.0, .007) (0.0, .091) 
(3) 0.0 0.0 .05 

(4) 0.0, .OJ 0.0, .OJ .01, .08 



Table 6.6 

Simulation Results for n=20 and Small Difference in Slope Parameters 

Basis 

for: 

Analysis 
UN (1) 

(2) 
(3) 
(4) 

CS (1) 
(2) 
(3) 
(4) 

AR (1) 

UN 

cs 

AR 

UN 

cs 

AR 

(2) 
(3) 
(4) 

(I) 
(2) 
(3) 
(4) 
(1) 
(2) 
(3) 
(4) 
(I) 
(2) 
(3) 

(4) 

(I) 
(2) 
(3) 
(4) 
(1) 
(2) 
(3) 
(4) 
(1) 
(2) 
(3) 

(4) 

UN 

.264 
(.051, .164) 

.26 
.19, .35 

.240 
(.121, .359) 

.24 
.13, .35 

.196 
(.093, .299) 

.19 
.12, .31 

.417 
(.336, .498) 

.42 
.35, .45 

.386 
(.294, .478) 

.39 
.29, .45 

.147 
(.093, .201) 

.145 
.09, .18 

.863 
(.822, .904) 

.855 
.83, .90 

.877 
(.838, .916) 

.88 
.84, .90 

.466 
(.389, .542) 

.475 
.41, .53 

Simulation 

cs 

p=O.I 
.234 

(.129, .339) 
.23 

.13, .32 
.230 

(.130, .330) 
.225 

.15, .31 
.199 

(.100, .298) 
.205, 

.13, .28 

=0.5 
.386 

(.275, .497) 
.385 

.30, .45 
.363 

(.289, .437) 
. 36 

.28, .42 
.149 

(.090, .208) 
.15 

.10, .19 

=0.9 
.961 

(.928, .994) 
.965 

.93, .99 
.960 

(.928, .992) 
.955 

.94, .98 
.597 

(.532, .662) 
.595 

.55, .67 

AR 

.233 
(.148, .318) 

.245 
.15, .29 

.245 
(.164, .326) 

.25 
.17, .31 

.213 
(.132, .294) 

.21 
.15, .31 

.249 
(.102, .396) 

.245 
.17, .43 

.337 
(.210, .464) 

.33 
.27, .48 

.225 
(.108, .342) 

.21 
.15, .35 

.548 
(.482, .615) 

.56 
.48, .58 

.740 
(.661, .819) 

.745 
.67, .81 

.54 4 
(.485, .603) 

.55 
.47, .58 
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Table 6.7 

Simulation Results for n=20 and Med/Large Difference in Slope Parameters 

Basis 

for: Simulation 

UN cs AR 

Analtsis e=O.l 
UN (I) . 799 .789 .745 

(2) (.733, .865) (.729, .849) (.622, .868) 
(3) . 8 0  .79 .735 
(4) .75, .87 .73, .83 .64, .89 

cs (1) .763 . 773 .747 
(2) (.671, .854) (.700, .846) (.627, .867) 
(3) .765 . 76 .75 
(4) .66, .78 .73, .83 .64, .88 

AR (1) .717 .726 . 713 
(2) (.628, .806) (.654, .798) (.589, .837) 
(3) .725 .72 . 705 
(4) .66, .78 .67, .80 .60, .85 

=0.5 
UN (1) .945 .949 .756 

(2) (.903, .987) (.883, 1.02) (.645, .867) 
(3) .94 .95 .75 
(4) .92, .99 .88, .99 .67, .82 

cs (1) .953 .958 .827 
(2) (.913, .992) (.904, 1.00) (.734, .921) 
(3) .955 .97 .84 
(4) .92, .99 .90, .98 .73, .89 

AR (1) .798 .825 . 739 
(2) (.690, .906) (.714, .936) (.637, .841) 
(3) .80 .825 .72  
(4) .71, .89 .74, .89 .67, .82 

=0.9 
UN (I) 1.00 1.00 .999 

(2) (1.00, 1.00) (1.00, 1.00) (.993, 1.00) 
(3) 1.00 1.00 1.00 
(4) 1.00, 1.00 1.00, 1.00 .99, 1.00 

cs (1) 1.00 1.00 .999 
(2) (1.00, 1.00) (1.00, 1.00) (.993, 1.00) 
(3) 1.00 1.00 1.00 
(4) 1.00, 1.00 1.00, 1.00 .99, 1.00 

AR (1) 1.00 1.00 .999 
(2) (1.00, 1.00) (1.00, 1.00) (.993, 1.00) 
(3) 1.00 1.00 1.00 
(4) 1.00, 1.00 1.00, 1.00 .99, 1.00 
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Table 6.8 

Simulation Results for n=40 and No Difference in Slope Parameters 

Basis 

for: Simulation 

UN cs AR 

Analysis p=O.l 
UN (I) .08 3  .068 .066 

(2) ( .023, .143) (.018, .118) (.013, .119) 
(3) .075 .07 .06 
(4) .02, .12 .03, .12 .03, .13 

cs (I) .068 .056 .069 
(2) (.008, .128) (.012, .010) (.024, .Il4) 
(3) .07 .055 .065 
(4) .01, .12 .03, .10 .03, .IO 

AR (I) .046 .037 .059 
(2) (.002, .090) (.007, .066) (.019, .099) 
(3) .045 .045 .065 
(4) .01, .09 .02, .05 .03, .09 

=0.5 
UN (I) .070 .072 .058 

(2) (.023, .117) (.032, .112) (.014, .102) 
(3) .06 .065 .06 
(4) .04, .12 .05, .II .03, .09 

cs (I) .070 .058 .102 
(2) (.042, .098) (.015, .101) (.061, .143) 
(3) .07 .06 .IO 
(4) .05, .IO .02, .10 .07, .14 

AR (I) .019 .015 .044 
(2) (.002, .036) (-.004, .034) (0.0, .094) 
(3) .02 .02 .045 
(4) 0.0, .03 0.0, .03 .01, .08 

=0.9 
UN (I) .058 .058 .055 

(2) (.031, .085) (.010, .106) (.017, .093) 
(3) .06 .055 .06 
(4) .03 , .08 .02, .IO .02, .08 

cs (I} .067 .051 .155 
(2) (.030, .104) (.001, .101) (. 104, .206) 
(3) .065 .05 .155 
(4) .04, .II .01, .IO .12, .20 

AR (I) .005 0.0 .044 
(2) (0.0, .019) (0.0, 0.0) (.001, .087) 

(3) 0.0 0.0 .045 
(4) 0.0, .02 0.0, 0.0 .02, .08 
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Table 6.9 

Simulation Results for n=40 and Small Difference in Slope Parameters 

Basis 

for: Simulation 

UN cs AR 

Analysis p=O.l 
UN (1) .454 .412 .354 

(2) (.361, .547) (.334, .490) (.261, .447) 
(3) . 45 .40 .345 
(4) .39, .55 .35, .50 .28, .45 

cs (1) .417 .397 .378 
(2) (.317, .516) (.308, .486) (.281, .475) 
(3) .405 .39 .385 
(4) .36, .54 .33, .49 .28, .44 

AR (1) .372 .349 .35 0 
(2) (.284, .460) (.274, .424) (. 243, .457) 
(3) .365 .345 .345 

(4) .33, .49 .29, .43 .26, .43 

=0.5 
UN (1) .643 .652 .371 

(2) (.546, . 740) (.515, .789) (.255, .487) 
(3) . 66 .66 .37 
(4) .54, . 7 0  .55, .79 .29, .47 

cs (I) .633 . 639 .528 
(2) (.546, . 720) (.511, .767) (.448, .608) 
(3) .645 .63 .515 
(4) .55, .69 .56, .79 .47, .60 

AR (1) .341 .342 .379 
(2) (.261, .421) (.249, .435) (.256, .502) 
(3) .33 .335 .36 

(4) .28, .41 .28, .42 .27, .47 

=0.9 

UN (1) . 989 .999 .829 
(2) (.971, 1. 00) (.993, 1.00) (.767, .891) 
(3) .99 1.00 .825 
(4) .98, 1.00 .99, 1.00 .79, .89 

cs (1) .992 . 999 .935 
(2) (.980, 1.00) (.993, 1.00) (.899, .971) 
(3) .99 1.00 .935 
(4) .98, 1.00 .99, 1.00 .91, .96 

AR (I) .861 .948 .8 21 
(2) (.787, .935) (.918, .978) (.757 ,  .885) 

(3) .87 .945 .815 

(4) .80, .91 .93, .98 .78, .88 
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Table 6.10 

Simulation Results for n=40 and Med/Large Difference in Slope Parameters 

Basis 

for: Simulation 

UN cs AR 

Anali:sis �=0.1 
UN (I) .975 .971 .955 

(2) (.950, 1.00) (.923, 1.00) (.909, 1.00) 
(3) .98 .975 .96 
(4) .95, .99 .92, 1.00 .92, .99 

cs (I) .974 .972 .965 
(2) (.949, .999) (.942, 1.00) (.915, 1.00) 
(3) .975 .98 .975 
(4) .95, .99 .95, .99 .92, .99 

AR (I) .956 .965 .962 
(2) (.916, .996) (.927, 1.00) (.914, 1.00) 
(3) .955 .97 .97 

(4) .92, .99 .93, .99 .92, .99 

=0.5 
UN (I) 1.00 1.00 .971 

(2) (1.00, 1.00) (1.00, 1.00) (.948, .994) 
(3) 1.00 1.00 .97 
(4) 1.00, 1.00 1.00, 1.00 .95, .99 

cs (I} 1.00 .999 .986 
(2) (1.00, 1.00) (.993, 1.00) (.964, 1.00) 
(3) 1.00 1.00 .98 
(4) 1.00, 1.00 .99, 1.00 .97, 1.00 

AR (I) .994 .995 .974 
(2) (.975, 1.00) (.985, 1.00) (.940, 1.00) 
(3) 1.00 .995 .98 

(4) .97, 1.00 .99, 1.00 .93, .99 

=0.9 
UN (I} 1.00 1.00 1.00 

(2) (1.00, 1.00) (1.00, 1.00) (1.00, 1.00) 
(3) 1.00 1.00 1.00 
(4) 1.00, 1.00 1.00, 1.00 1.00, 1.00 

cs (I} 1.00 1.00 1.00 
(2) (1.00, 1.00) (1.00, 1.00) (1.00, 1.00) 
(3) 1.00 1.00 1.00 
(4) 1.00, 1.00 1.00, 1.00 1.00, 1.00 

AR (I) 1.00 1.00 1.00 
(2) (1.00, 1.00) (1.00, 1.00) (1.00, 1.00) 
(3) 1.00 1.00 1.00 

(4) 1.00, 1.00 1.00, 1.00 1.00, 1.00 
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6.4 Simulation Conclusions 

The effect on power when misspecification of the covariance structure occurs is 

most noticeable when the true covariance structure is autoregressive i.e., power is inflated 

when assuming a covariance structure other than autoregressive. Also, misspecification by 

choosing an autoregressive covariance when the data does not follow an autoregressive 

covariance consistently underestimates the power. Power is greatly underestimated at 

higher levels of correlation. The only exception to the misspecification problem with 

autoregressive data is when modelling an unstructured covariance. Power estimates are 

close to those obtained assuming an autoregressive structure that has a high level of 

correlation; however, more parameters than necessary are being estimated with the 

unstructured covariance. 

As the difference in slope parameters and sample sizes increase, misspecification of 

the covariance has a minimal effect on the power of the test of the fixed effects . At the 

largest levels of these combinations, powers greater that 0.95 are achieved for all tested 

covariance structures. It is conjectured that this relative stability in power is due to a ceiling 

effect, i.e., power must be less than or equal to 1. 

Having discussed the effect of misspecification, attention is now turned toward the 

effects of underspecification. From the simulation study, adequate powers are obtained by 

assuming a compound symmetry covariance for unstructured data. In other words, there is 

essentially no difference between the power obtained for unstructured data when assuming 

a compound symmetry covariance as compared to the power that would be obtained with 

an unstructured covariance. For these cases, the compound symmetry power is slightly 

lower than the unstructured power but this difference decreases with an increase in sample 

size and correlation. However, the power of the test of fixed effects, when the data has an 

unstructured covariance, is greatly underestimated when assuming an autoregressive 
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covariance structure. Therefore, when assuming a covariance structure with fewer 

estimated parameters than the unstructured covariance, there appears to be only a small 

effect on the power when using a compound symmetry covariance, but when assuming an 

autoregressive covariance structure there is a large unwanted effect on power. 

Based on this simulation, the following can be recommended when planning a 

power analysis for a longitudinal / repeated measures study in which testing of the fixed 

effects is the main interest. An autoregressive covariance structure should be used when 

the data is known to have an autoregressive structure. If it is known that the data does not 

follow an autoregressive covariance structure, then assuming a compound symmetry 

covariance may be sufficient. This fact is especially useful because many times estimates 

for all of the parameters of the unstructured covariance are not known. It is not 

recommended, however, to assume an autoregressive covariance structure when the data is 

actually unstructured. 

From this simulation study, the objectives stated in Section 6.1 have been 

addressed. The first objective was to determine the effect of misspecification of the 

model's covariance structure on power. By seeing that an unwanted effect on power 

occurs when assuming a covariance structure other than autoregressive for autoregressive 

data, the first objective was addressed. The second objective was to investigate the effect 

of underspecification of the covariance structure. This objective was addressed by seeing 

that a compound symmetry, but not autoregressive structure, may be assumed for 

unstructured data. 

Three concluding remarks are appropriate at this point. First, it must be 

remembered that the simulation focused on tests of the fixed effects only. None of these 

conclusions apply to situations when tests of the random effects or the variance parameters 

are also of interest. 
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Second, the covariance structures chosen for this simulation are considered as the 

three basic structured covariance models for longitudinal data (Grady and Helms, 1995). 

These structures may be adequate for some data analyses but may not be the best fitting for 

all data sets. Grady and Helms discuss some extensions of these basic covariance 

structures and how to determine which structure is best for the given data. They also state 

that if interest is mainly in the testing of the fixed effects, as it has been assumed here, then 

the basic covariance structures may be sufficient. 

Finally, it should also be noted that these conclusions hold for longitudinal data 

which follow a Case II situation described in Chapter 4. It is reasonable to believe that if 

any other type of model, such as a Case I or III situation, was investigated, the conclusions 

may be different. 



Chapter 7 

Summary Comments and Future Works 

7 .1 Summary Comments 

The primary focus of this research has been the development of a useful and 

efficient method to calculate power for the mixed linear model. The proposed method is an 

extension of the work done for the univariate and multivariate general linear models by 

O'Brien and Muller (1993). For the mixed linear model, power calculations are based on 

the approximate F test about the fixed effects proposed by Helms (1992). It is feasible to 

use this approximate F test to calculate power due to the test statistic's small sample 

properties (Helms and McCarroll, 1987 and 1991). 

In Chapter 4, the noncentrality parameter is derived for three different cases. These 

cases are motivated by the different types of study designs used with the mixed linear 

model. Work by Helms (1992) is similar to the Case ill situation described in Section 4.4; 

however, Helms makes the restrictive assumption that R = cr21. In this dissertation, the 

variance of the random error is allowed to take on any covariance structure and not just the 

simple covariance structure. In fact, no restriction is placed on the form of the covariance 

of the random effects or the random error for any of the three cases. 

Even though the basic theory of the mixed linear model existed as early as 

Henderson's work in the early 1960's, the methods have not been widely applied. 

Reasons for the mixed model's relative obscurity are because interest has been mostly in 

the agriculture sciences and because of the lack of computing software. Within the last 

131 



132 

decade, the mixed model has been used with increasing frequency. First, the mixed model 

has experienced wide spread attention across a broad spectrum of the statistical literature, in 

part due to the work by Laird and Ware (1982). Also, the availability of software such as 

Proc Mixed in SAS (SAS Institute, 1991) to implement mixed model methodology has led 

to an increased application. Included in this dissertation are the programs written in 

SAS/IML (SAS Institute, 1990) used for the calculating of mixed model power for each of 

the three cases discussed. These programs are easy to interpret and should be a useful tool 

for any statistician. They can also be used in conjunction with the data analysis in Proc 

Mixed. Power analysis, for a study in which the testing of the mixed model's fixed effects 

is the main research question, can be done using the programs listed in Appendix A. 

7 .2 Future Works 

During the course of this research, several interesting ideas arose that warrant 

further investigation. In this dissertation, an approach to calculate power is developed for 

only the fixed effects portion of the mixed model. Random effects are typically treated as 

nuisance parameters; however, one is occasionally interested in testing hypotheses about 

the random effects. Examples for which tests of the random effects are common are 

studies which involve genetic and animal breeding applications (Henderson, 1984). 

Therefore, it may be useful to extend the method described in Chapter 4 to include a 

method for calculating power that includes random effects. 

Secondly, there are some critics of the mixed model who suggest not using the 

mixed model when only the fixed effects are to be tested. As discussed in Chapter 3, one 

reason random effects are modelled is to allow for a reduction in the error variability. For 

these situations, it may be fruitful to determine if there is a level at which the variability 

being explained by the mixed model's random effects does not provide additional power 
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than one would have using the general linear model where the random effects are 

considered fixed. 

As discussed in Section 6.4, the simulation only studied the three basic structured 

covariances used for longitudinal data. It may be of interest to repeat the simulation study 

and include extensions of these covariance structures that can be used to describe 

longitudinal data. The simulation can also be redone assuming a different study design, 

such as a Case I or Case ill situation. The proposed simulation would determine if the 

conclusions drawn in Section 6.4 hold for all study designs or just for a balanced complete 

longitudinal study design. 

Finally, throughout this dissertation, power for the mixed linear model was studied. 

Recently, nonlinear mixed effect models have been discussed in the literature (Pearson et 

al., 1994, Chinchilli, 1996, and Vonesh et al., 1996). Since the nonlinear mixed model is 

being used with increased frequency, it would be of further interest to extend the results 

found for the mixed linear model to include calculating power for the nonlinear mixed 

model. 
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************************************************************************ 
This program in Proc IML of SAS conducts a mixed model power analysis for a Case I 
design. 

The user must construct the following matrices and scalar values: 
x_e the (Ne x p) fixed effects essence matrix 
z_e the (Ne x q) random effects essence matrix 
w the (Ne x Ne) weight matrix 
g the (q x q) random effects variance covariance matrix 
r_e the (Ne x Ne) random error variance covariance essence matrix 
beta the (p x 1) fixed effects parameter estimates 
kprime the (k x p) contrast matrix of the fixed effects that is of interest 
rankxz the rank of the [X ZJ matrix 
alpha the probability of type I error 
_il_, _12_, and _by_ the starting, stopping and by values for N, the total sample 

size used for calculating power. Note: (_ii_> rankxz). 

A dataset containing N and its corresponding power can be created from the matrix matp 
which is made in the IML function. 
***********************************************************************· 

proc iml; 

start power I; 
kpbeta=kprime*beta; 
df_n=nrow(kprime ); 
_xpw_=x_e'*w; 
_zgzpw_=z_e*g*z_e'*w; 
do _n_ = _i 1_ to _i2_ by _by_; 

inv l=inv(_n_#_zgzpw_ + r_e); 
inv2=inv(_xpw _ *invl *x_e); 
inv3=inv(kprime*inv2*kprime '); 
lambda_s=kpbeta' *inv3 *kpbeta; 
lambda= _n_#lambda_s; 
df_d= _n_ - rankxz; 
fcrit=finv(l-alpha, df_n, df_d, 0); 
power= 1-probf(fcrit,df_n, df_d, lambda); 

' 



end; 
finish power!; 

outp= _n_ II power; 
matp=matp // outp; 

*** Matrices defined for Case I Example 1 ***; 
x_e={l 0, 

01 , 
1 0, 
01, 
1 0, 
0 l }; 

zstar={ 1 1 0, 
1 0 1 }; 

z_e=I(3)@zstar; 

gstar={.1073 .0510 .0510}; 
gstar=Diag(gstar); 
g=I(3)@gstar; 

rstar=.048 5#!(2); 
r_e=I(3)@rstar; 

beta={50.9 5 ,  
51.96}; 

kprime={ 1 -1}; 

w=(l/ 6)#!(6); 

rankxz=6; 

_il_=8; _i2_= 42; _by_=2; 

alpha=.05; 
run power!; 
coin= { 'N' , ' Power'}; 
create powera from matp[colname=coln]; 
append from matp; 
free outp matp; 

alpha= .01; 
run powerl; 
coln={'N', 'Power'}; 
create powerb from matp[colname=coln]; 
append from matp; 

proc print noobs data=powera; 
title2'Casel Exl '; 
title3'Power for alpha= .05'; 
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proc print noobs data=powerb; 
title2'Case l  Exl'; 
title3'Power for alpha=.01'; 

endsas; 

*** Matrices defined for Case I Example 2 ***; 
xstar=I(3); 
x_ e=xstar//xstar//xstar//xstar; 

z_e=I(l2); 

r_e=3.3#I(12); 

w=(l/12)#!(12); 

beta={ 10.31, 
16.09, 
19.37}; 

kprime={ 1 -1 0, 
1 0 -1 }; 

alpha=.05; 

rankxz=12; 

_il_=24; _i2_=480; _by_=12; 

gstar={ .42 26.7 56.94}; 
gstar=Diag(gstar); 
g=I(4)@gstar; 

run powerl ;  
coin= { 'N', 'Power'}; 
create powera from matp[colname=coln]; 
append from matp; 
free outp matp; 

g=26.8#I(12); 

run powerl ;  
coin= { 'N', 'Power'}; 
create powerb from matp[colname=coln]; 
append from matp; 

proc print noobs data=powera; 
title2'Casel Ex2'; 
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title3'Power for Un(l) G'; 

proc print noobs data=powerb; 
title2'Casel Ex2'; 
title3'Power for Simple G'; 
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************************************************************************ 

This program in Proc IML of SAS conducts a mixed model power analysis for a Case II or 
III design. 

The user must construct the following matrices and scalar values: 
x_e the (Ne x p) fixed effects essence matrix 
z_e the (Ne x cT) random effects essence matrix 
w the (Ne x Ne) weight matrix 
g_e the (cT x cT) random effects variance covariance essence matrix 
r_e the (Ne x Ne) random error variance covariance essence matrix 
beta the (p x 1) fixed effects parameter estimates 
kprime the (k x p) contrast matrix of the fixed effects that is of interest 
rankxz the rank of the [X Z] matrix 
alpha the probability of type I error 
_il_, _12_, and _by_ the starting, stopping and by values for N, the total number 

of observations used for calculating power. Note: (_il _  > rankxz). 

A dataset containing N, the total number of observations, and its corresponding power can 
be created from the matrix matp which is made in the IML function. 
***********************************************************************· 

proc irnl; 

start power2_3; 
kpbeta=kprime*beta; 
df_n=nrow(kprime ); 
invl=inv(z_e*

g_e*z_e' + r_e); 
inv2=inv(x_e'*w*invl *x_e); 
inv3=inv(kprime*inv2*kprime '); 
Jambda_s=kpbeta' *inv3*kpbeta; 
do _n_ = _i 1_ to _i2_ by _by_; 

lambda= _n_#lambda_s; 
df_d= _n_ - rankxz; 
fcrit=finv(l-alpha, df_n, df_d, O); 
power=l-probf(fcrit,df_n, df_d, lambda); 
outp= _n_ II power; 
matp=matp // outp; 

end; 
finish power2_3; 

**** Matrices defined for Case2 Example!****; 
x_e={l-10 0, 

1 0 0 0, 
1 1 0 0, 
0 0 1 -1, 
0 0 1 0, 
0 0 1 1 }; 

z_e={l 0, 
1 0, 

, 



1 0, 
0 1, 
0 1, 
0 1 }; 

w=(l/6)#1(6); 

gstar={3.0}; 
g_e=I(2)@gstar; 

rstar={2.4 -.2 .9, 
-.2 1.2 .01, 
.9 .01 3.5); 

r_e=I(2)@rstar; 

kprime={ 1 0 -1 0, 
0 1 0 -1 }; 

beta= { 21.2, 
1.4, 
20.3, 

.95); 

rankxz=4; 

_il _=12; _i2_=900; _by_=12; 

alpha=.05; 
run power2_3; 
coln={'N', 'Power'}; 
create powera from matp[colname=coln]; 
append from matp; 
free outp matp; 

alpha=.01; 
run power2_3; 
coln={'N', 'Power'}; 
create powerb from matp[colnarne=coln]; 
append from matp; 

proc print noobs data=powera; 
titlel'Case2 Exl'; 
title2'Power for alpha=.05'; 
title3'N=total number of observations'; 
title4'number of subjects is N/3'; 

proc print noobs data=powerb; 
titlel'Case2 Exl'; 
titie2'Power for alpha=.01'; 
title3'N=total number of observations'; 
title4'number of subjects is N/3'; 
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endsas; 

****Matrices defined for Case2 Example2 ****; 
x_e={l 0, 

1 0, 
1 0, 
0 1, 
0 1, 
0 1 }; 

z_e=x_e; 

w=(l /6)#1(6); 

gstar={325.33 328.58, 
328.58 321.32); 

g_e=gstar; 

rstar={ 42.36 42.36 42.36 42.31 42.31 42.31}; 
rstar=diag(rstar); 
r_e=rstar; 

kprime={ 1 -1 }; 

beta={ 123.5, 
120.47); 

rankxz=2; 

_i1_=6; _i2_=510; _by_=l2; 

alpha=.05; 
run power2_3; 
coln={'N', 'Power'}; 
create powera from matp[colname=coln]; 
append from matp; 
free outp matp; 

alpha=.01; 
run power2_3; 
coin= { 'N', 'Power'}; 
create powerb from matp[colname=coln]; 
append from matp; 

proc print noobs data=powera; 
title 1 'Case2 Ex2'; 
title2'Power for alpha=.05'; 
title3'N=total number of observations'; 
title4'number of subjects is N/6'; 
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proc print noobs data=powerb; 

endsas; 

titlel'Case2 Ex2'; 
title2'Power for alpha= .01'; 
title3'N=total number of observations'; 
title4 'number of subjects is N/6 '; 

****Matrices defined for Case3 Example!****; 
x_e={ I IO 0, 

I 2 00, 
I 3 0 0, 
14 0 0, 
0 0 1 1, 
0 0 1 2, 
00 I 3, 
0 0 14, 
I IO 0, 
12 0 0, 
13 00, 
0 0 1 1, 
0 0 1 2, 
0 0 13 , 
1 IO 0, 
I 2 00, 
0 0 I I, 
00 1 2}; 

z4={ I ,  1,l,1}; 
z3={ 1,1,1 }; 
z2={ 1,1,); 
z_e=Block(z4 , z4, z3 , z3, z2, z2); 

gstar= { .3 9}; 
g _e=l(6)@gstar; 

rstarm={ 1905 20.8 .23 .002, 
20.8 1905 20.8 .23 , 
.23 20.8 1905 20.8, 
.002 .23 20.8 1905); 

rstar3=rstarm[ { I 2 3} . { 1 2 3}]; 
rstar2=rstarm[ { I 2} . { 1 2} ]; 
r_e=Block(rstarm, rstarm , rstar3, rstar3, rstar2, rstar2); 

kprime={ IO -1 0, 
0 10-1); 

beta=(-5, 
5 5 . 5, 
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-4.5, 
52. 3); 

rankx2=8; 

alpha=.05; 

_i1_=18; _i2_=3690; _by_=36; 

w4 =(1/18)#I(4 ); 
w3=( 1/18)#!(3); 
w2=( 1/18)#!(2); 
w=B1ock(w4 , w4 , w3, w3, w2, w2); 

run power2_3; 
coln={ 'N', 'Power'}; 
create powera from matp[colname=coln); 
append from matp; 
free outp matp; 

w4 =(3/40)#I(4 ); 
w3=(2/40)#I(3); 
w2=(1/40)#I(2); 
w=B1ock(w4 , w4 , w3, w3, w2, w2); 

run power2_3; 
coin= { 'N', 'Power'}; 
create powerb from matp[colname=coln]; 
append from matp; 

proc print noobs data=powera; 
titlel'Case3 Exl'; 
title2'Power for Equal SS'; 
title3'N=total number of observations'; 

proc print noobs data=powerb; 
titlel 'Case3 Exl'; 
title2'Power for 3:2: 1 '; 
title3'N=total number of observations'; 

endsas; 

****Matrices defined for Case3 Example2****; 
xl={ 1 -2 0 0 0 0, 

1-10000, 
1 0 0 0 0 0, 
1 100 0 0, 
1 20000); 

x2={00 1-2 00, 
0 0 1 -1 0 0, 
0 0 1 0 0 0, 
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0 0 1 1 0 0, 
001 200); 

x3={0 0 0 0 1 -2 , 
00001-1, 
0 0 0 0 1 0, 
00001 1, 
00001 2}; 

x4={1 -2 0 0 0 0, 
1 0 0 0 0 0, 
1 20000); 

x5={0 0 1 -2 0 0, 
0 0 1 0 00, 
001 200); 

x6={00001- 2 ,  
0 0 0 0 1 0, 
00001 2}; 

x_e=xl//x2//x3//x4//x5//x6; 

zl={ 1 -2, 
1 -1, 
1 0, 
1 1, 
1 2}; 

z2=zl; 
z3=zl; 
z4={ 1 -2, 

1 0, 
1 2}; 

z5=z4; 
z6=z4; 
z_e=Block(zl, z2, z3, z4, z5, z6); 

g_star={ 1.15 .163, 
.163 .039); 

g_e=l(6)@g_star; 

r_e= .1255#1(24); 

kprime={O 10-100, 
01000-1); 

beta=(-1.39, 
-.035, 
-2. 39, 
-.176, 
-3.38, 

-. 318 }; 

rankxz=12; 

alpha=.05; 
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_i1_=24; _i2_=600; _by_=6; 

w=(l/24)#1(24); 

run power2_3; 
coin= { 'N', 'Power'}; 
create powera from matp[colname=coln]; 
append from matp; 
free outp matp; 

wl=(l/42)#I(15); 
w2=(3/42)#I(9); 
w=Block(wl, w2); 

run power2_3; 
coln={'N', 'Power'}; 
create powerb from matp[colname=coln]; 
append from matp; 

proc print noobs data=powera; 
titlel 'Case3 Ex2'; 
title2'Power for Equal SS'; 
title3'N=total number of observations'; 

proc print noobs data=powerb; 
titlel'Case3 Ex2'; 
title2'Power for 1 :4'; 
title3'N=total number of observations'; 

endsas; 
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*********************************************************************** 

This program simulates Normal (XB,R) data, analyzes the data in Proc Mixed, performs 
the contrast of interest, determines whether the hypothesis is rejected and then calculates the 
empirical power for each of the three variance-covariance structures being tested. 

For each case being simulated, the following must be supplied: 
in the Proc IML statement, n- the number of subjects per group, 

sigma_pt- the R matrix for an individual, and 
beta- in the form int 1 slope 1 int2 slope2 

in the data two statement, total- the number of subjects per group and 
Title statements desribing the case being simulated 

***********************************************************************· 

options ls=80 ps=56 nonotes; 
title3'Simulation for#### total subjects per group'; 
title4' with#### difference in the slope parameters'; 
title5'Assuming #### var-cov structure with correlation of####'; 

%macro simu; 
proc iml; 

n=lO; *n=20; *n=40; 
z=normal(repeat(O,n,8)); 
*print z; 

sigma_pt={ 1.5 .15 .15 .15, 
.15 1.5 .15 .15, 
.15 .15 1.5 .15, 
.15 .15 .15 1.5); 

sigma_pt=( 1.5 .75 .75 .75, 
.75 1.5 .75 .75, 
.75 .75 1.5 .75, 
.75 .75 .75 1.5}; 

sigma_pt={ 1.5 1.35 1.35 1.35, 

/*number subjects per group*/ 

/*V ar-cov for CS and correlation=. I*/ 

/*Var-cov for CS and correlation=.5*/ 



1.35 1.5 1.35 1.35, 
1.35 1.35 1.5 1.35, 
1.35 1.35 1.35 1.5}; /*Var-cov for CS and correlation=.9*/ 

sigma_pt={l.5 .15 .015 .0015, 
.15 1.5 .15 .015, 

.015 .15 1.5 .15, 
.0015 .015 .15 1.5); /*Var-cov for AR and correlation=.!*/ 

sigma_pt={ 1.5 .75 .375 .1875, 
.75 1.5 .75 .375, 

.375 .75 1.5 .75, 
.1875 .375 .75 1.5); /*Var-cov for AR and correlation=.5*/ 

sigma_pt={ 1.5 1.35 1.215 1.0935, 
1.35 1.5 1.35 1.215, 

1.215 1.35 1.5 1.35, 
1.0935 1.215 1.35 1.5); /*Var-cov for AR and correlation=.9*/ 

sigma_pt={ 1 .115 .129 .141, 
.115 1.33 .149 .163, 
.129 .149 1.66 .182, 
.141 .163 .182 2}; /*V a r -cov for UN and correlation=.1 * / 

sigma_pt={ 1 .577 .644 .707, 
.577 1.33 .743 .815, 
.644 .743 1.66 .911, 
.707 .815 .911 2 }; /*Var-covforUNand correlation=.5*/ 

sigma_pt={ 1 .967 1.16 1.27, 
.967 1.33 1.34 1.47, 
1.16 1.34 1.66 1.64, 
1.27 1.47 1.64 2}; /*Var-cov for UN and correlation=.9*/ 

sigma=Block(sigma_pt, sigma_pt); 
shalf=root( sigma); 

beta={4.2, 1.25, 4.95, 1.25} 
beta={4.2, 1.25, 4.95, 1.45} 
beta={4.2, 1.25, 4.95, 1.70) 

x={ 1 1 0 0, 
1 2 0  0, 
1 3 0  0, 
1 4 0  0, 
0 0 1 1, 
0 0 1 2, 
0 0 1 3, 
0 0 1 4); 

xbeta=X*beta; 

/*for equal slopes*/ 
/*for small difference in slopes*/ 
/*for med/large difference in slope*/; 
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*print xbeta; 
j=j(n,1,1); 
y=z*shalf + j*xbeta'; 
*print y; 

person=l:n; 

c=('person', 'yll', 'y12', 'y13', 'y14', 'y21', 'y22', 'y23','y24'}; 

sim=person'lly; 
create simu from sim[colname=c]; 
append from sim; 

data two; 
set simu; 
total=lO; total=20; total=40; /*number of subjects per group*/ 
y=yl 1; time=l; group=l; output; 
y=y12; time=2; group=l; output; 
y=y13; time=3; group=l; output; 
y=y14; time=4; group=l; output; 
y=y21; time= 1; group=2; person=person+total; output; 
y=y22; time=2; group=2; person=person; output; 
y=y23; time=3; group=2; person=person; output; 
y=y24; time=4; group=2; person=person; output; 
drop total yl 1 y12 y13 y14 y21 y22 y23 y24; 

*proc print data=two; 

%global _disk_; 
%let _disk_=on; 
%global _print_; 
%let _print_ =off; 

proc mixed data=two; 
class person group; 
model y=group time*group/noint; 
repeated/ type=un subject=person; 
contrast 'Slope test un' time*group 1 -1; 
make 'Contrast' out=test_un(rename=(P _F=p_un)); 

proc mixed data=two; 
class person group; 
model y=group time*group/noint; 
repeated/ type=cs subject=person; 
contrast 'Slope test cs' time*group 1 -1; 
make 'Contrast' out=test_cs(rename=(P _F=p_cs)); 

proc mixed data=two; 
class person group; 
model y=group time*group/noint; 
repeated/ type=ar(l) subject=person; 
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contrast 'Slope test ar' time*group 1 -1; 
make 'Contrast' out=test_ar(rename =(P _F=p_ar)); 

data tests (drop=source ndf ddf f); 
merge test_un test_cs test_ar; 

proc datasets nolist; 
delete simu two test_un test_cs test_ar; 

%mend; 

%macro set(s); 
data total; 

%do _i_=l %to &s; 
%simu; 

%end; 

data total; 
set total; 

data total; 
set total tests; 
proc datasets nolist; 
delete tests; 

if _n_=l then delete; 
rject_un=O; rject_cs=O; rject_ar=O; 
if p _un < .05 then rject_un=l ;  
if p_cs < .05 then rject_cs= 1; 
f p _ar < .05 then rject_ar= 1; 

*proc print data=total; 

proc means mean data=total noprint; 
var rject_un rject_cs rject_ar; 
output out=pow mean=power_un power_cs power_ar; 

proc datasets nolist; 
delete total; 

*proc print data=pow; 
%mend; 

%macro runs(r); 
data power; 

%do _r_ =1 %to &r; 
%set(100); 
data power; 
set power pow; 

%end; 

data power; 
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set power; 
if _n_=l then delete; 

proc print data=power; 

proc means data=power; 
var power_un power_cs power_ar; 

proc univariate plot data=power; 
var power_un power_cs power_ar; 

proc datasets nolist kill; 
%mend; 

%runs(l0); 
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