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Abstract: 
 

Approximately 175,000 to 250,000 of the returning veterans from the 1991 Persian Gulf 

War exhibit chronic multi-symptom illnesses that includes neurologic co-morbidities such as 

depression, anxiety and cognitive impairments. Amongst a host of causative factors, exposure to 

low levels of the nerve agent Sarin has been strongly implicated for expression of Gulf War 

Illness (GWI). Nerve agents similar to pesticides are organophosphate (OP) compounds. There is 

evidence from civilian population that exposure to OPs such as in agricultural workers and nerve 

agents such as the survivors and first-responders of the Tokyo subway Sarin gas attack suffer 

from chronic neurological problems similar to GWI symptoms. Given this unique chemical 

profile, OPs are ideal to study the effects of nerve agents and develop models of GWI in civilian 

laboratories. In this study, we used repeated low-dose exposure to OP agent diisopropyl 

fluorophosphate (DFP) over a 5-day period to approximate the duration and level of Sarin 

exposure during the Persian Gulf War. We tested the rats at 3-months post DFP exposure. Using 

a battery of behavioral assays, we observed the presence of symptoms of chronic depression, 

anxiety and memory problems as characterized by increased immobility time in the Forced Swim 

Test, anhedonia in the Sucrose Preference Test, anxiety in the Elevated Plus Maze, and spatial 

memory impairments in the Object Location Test, respectively. Chronic low dose DFP exposure 

was also associated with hippocampal neuronal damage as characterized by the presence of 

Fluoro-Jade staining. Given that OP exposure is considered a leading cause of GWI related 

morbidities, this animal model will be ideally suited to study underlying molecular mechanisms 

for the expression of GWI neurological symptoms and identify drugs for the effective treatment 

of GWIs. 

Keywords: Gulf War Illness, Organophosphate, DFP, depression, anxiety, memory impairments
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Introduction 

 About 25-35% of the deployed soldier population from 1991 Gulf War suffer from a 

constellation of inexplicable symptoms referred to as Gulf War Illness (GWI). According to the 

Institute of Medicine’s report, GWI also known as chronic multi-symptom illness is defined as 

the presence of a spectrum of chronic symptoms experienced for 6 months or longer in at least 

two of six categories: development of fatigue, mood and cognitive changes, musculoskeletal 

changes, gastrointestinal symptoms, respiratory difficulty, and neurologic abnormalities 

including major co-morbidities such as depression and anxiety (Institute of Medicine: Board on 

the Health of Select Populations, 2013). There are several confounding factors attributed to 

development of GWI, including exposure to depleted uranium from tanks and body armor, 

prophylactic use of pyridostigmine bromide (PB) tablets, heavy use of insect repellants such as 

DEET and permethrin, smoke from oil-well fires, and dust particulate matter among others 

(Friedl et al., 2009; Steele et al., 2012; Wolfe et al., 2002). Interestingly, GWI symptoms have 

not been reported in veterans returning from other military conflicts suggesting that deployment-

related stress is not a major factor in the expression of these multi-symptom illnesses (Haley, 

1997). Newly assembled epidemiological, meteorological and intelligence data now indicate 

soldiers were exposed to organophosphate (OP) nerve agents Sarin and Cyclosarin from fallout 

released from demolitions of the ammunition dump at Khamisiyah, Iraq (Couzin, 2004; Haley 

and Tuite, 2013; Special Assistant to the Secretary of Defense for Gulf War Illnesses, 2001; 

Tuite and Haley, 2013). After reviewing all the available data, the Research Advisory Committee 

on Gulf War Veterans’ Illnesses has strongly implicated exposure to OPs as one of the leading 

cause for GWI (Couzin, 2004; U.S. Department of Veterans Affairs, 2008, White et al., 2015). 

Animal studies using various combinations of GW agents particularly combinations of PB with 
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insecticides have reported expression of GWI related symptoms in rodents (Hattiangady et al., 

2014; Ojo et al., 2014; Parihar et al., 2013; Zakirova et al., 2015). However, the consequences of 

a repeated low-level OP agent exposure on the development of neurological morbidities as 

observed in GWI have not been clearly documented (White et al., 2015).  

 Diisopropyl fluorophosphate (DFP) is an OP compound that is used in civilian 

laboratories as a surrogate nerve gas agent (Deshpande et al., 2010; Li et al., 2011b; O'Callaghan 

et al., 2015; Terry et al., 2012). Similar to Sarin, DFP is also an irreversible inhibitor of the 

enzyme acetylcholinesterase (AChE). Significant inhibition of AChE such as observed during 

lethal OP exposures leads to rapid buildup of the neurotransmitter acetylcholine at the synapses 

precipitating a “cholinergic crisis” as characterized by miosis, salivation, bradycardia, seizures 

and ultimately death, if left untreated (Bajgar, 2004). There is also evidence from the civilian 

population that repeated exposure to insecticides (Rosenstock et al., 1991; Savage et al., 1988; 

Steenland et al., 1994; Wesseling et al., 2002) or exposure to nerve agents (Brown and Brix, 

1998) as seen in the survivors and first responders of the Tokyo subway and Matsumoto Sarin 

gas attacks in Japan (Hood, 2001; Nishiwaki et al., 2001) can lead to the development of chronic 

neurological morbidities. Animal studies have also reported neuropsychiatric morbidities 

following high levels of OP exposures or chronic exposures to insecticides (Abdel-Rahman et 

al., 2004a; Deshpande et al., 2014b; Henderson et al., 2002; Johnson et al., 2009). For example, 

stress and combined exposure to low doses of PB and insecticides permethrin and DEET have 

been reported to produce chronic neuropathology and neurobehavioral deficits (Abdel-Rahman 

et al., 2004b; Hattiangady et al., 2014). Studies have also shown that repeated administration of 

low-dose chlorpyrifos in rats produced chronic memory impairments in the radial-arm maze task 

(Terry et al., 2012). Repeated exposure to DFP (0.5 mg/kg every other day for 30-days) in rats 
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has also been reported to produce cognitive deficits in the water-maze test (Terry et al., 2011) 

and persistent impairments of inhibitory response control in a 5-Choice Serial Reaction Time 

Task (Terry et al., 2014). In an attempt to develop an OP based rodent model of GWI, we used 

Sarin surrogate DFP to mimic a low-level OP exposure corresponding to the 4-5 day period 

when soldiers were exposed to nerve agents during the 1991 Persian Gulf War. Behavioral 

assays for determination of neurological morbidities were then carried out 3-months following 

DFP exposure. 

 
Materials and methods 

 
Animals 

All animal use procedures were in strict accordance with the National Institute of Health 

Guide for the Care and Use of Laboratory Animals and approved by Virginia Commonwealth 

University’s Institutional Animal Care and Use Committee. Male Sprague-Dawley rats (Harlan, 

Indianapolis, IN) weighing ~300 g and 8 weeks of age were used in this study. Animals were 

housed two per cage at 20-22o C with a 12 hour light-dark cycle (lights on 0600-01800 h) and 

given free access to food and water.  

 
Chemicals 

 All the chemicals were obtained from Sigma Aldrich Company (St. Louis, MO, USA) 

unless otherwise noted.  

 
DFP exposure  

 DFP (catalog # D0879) was prepared fresh daily by dissolving in ice-cold phosphate 

buffered saline just before the exposure. Rats were injected with DFP (400 g/kg, s.c.) once-
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daily for 5-days, while control rats received DFP vehicle injections for the same period. Animal 

health including weight measurements were assessed every day during the exposure and for the 

next seven days following the end of chronic DFP injections.  

 
Assessment of depression and memory  

All behavioral assays were carried out 3-months following DFP exposure. Testing was 

carried out in a quiet, dimly lit room between 0800 to 1400 hrs. Behavioral testing moved from 

the least stressful to most stressful tasks. Thus, rats were first subjected to sucrose preference test 

followed by object location test, then elevated plus maze and finally forced swim test. No two 

tests were carried out on the same day. These tests are described below.  

 
Forced Swim Test (FST)  

Porsolt’s modified FST was used to assess behavioral despair (Castagne et al., 2011; 

Deshpande et al., 2014b; Overstreet, 2012). Briefly, animals were forced to swim by being 

placed in a glass cylindrical chamber (46cm H x 30cm D) filled with water (30 cm height, 25°C). 

Two swimming sessions were carried out with an initial 15 min ‘pre-test’ followed by a 5 min 

‘test’ after 24 h. Swimming sessions were recorded for off-line analysis. Active (swimming, 

climbing, diving) and passive (immobility) behavior was evaluated by 2 reviewers blinded to the 

treatment conditions. Immobility (primary outcome) was defined as the period during which the 

animal floats in the water making only those movements necessary to keep its head above water. 

The tank was emptied and thoroughly cleaned for every rat to be tested in a session. 

Sucrose Preference Test (SPT)  

This test measures hedonia (pleasure-seeking) or lack of it (anhedonia) by monitoring a 

rat’s preference to sucrose-laced water (Deshpande et al., 2014b; Overstreet, 2012). Briefly, rats 
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were habituated to having two bottles in the cage lid for three days. The bottles were fitted with 

ball-bearing sipper tubes that prevented fluids from leaking. Following this acclimation, rats had 

the free choice of either drinking the 1% sucrose solution or plain water for a period of 2 days. 

Water and sucrose solution intake was measured daily, and the positions of two bottles were 

switched daily to reduce any confounding effects produced by a side bias. Sucrose preference 

was calculated as a percentage of the volume of sucrose intake over the total volume of fluid 

intake and averaged over the 2 days of testing. Reviewers were blinded to treatment conditions. 

A spill-cage without rat was also employed using bottles and sipper tubes from the same batch as 

test cages. Measurement errors were ± 2 ml. 

 
Elevated Plus Maze (EPM) 

 This test assesses anxiety by taking into account the innate behavior of rats to prefer dark 

enclosed spaces over bright open spaces (Deshpande et al., 2014b; Walf and Frye, 2007). The 

maze (Med Associates Inc., St. Albans, VT) was made of black polyvinyl chloride and consisted 

of four arms, 50 cm long x 10 cm wide, connected by a central square, 10 x 10 cm: two open 

without walls and two closed by 31-cm-high walls. All arms were attached to sturdy metal legs; 

the maze was elevated 55 cm above the floor level and was set in a dimly lit room. A video 

camera was suspended above the maze to record the rat movements for analysis. A video-

tracking system (Noldus Ethovision XT 11) was used to automatically collect behavioral data. 

The procedure consisted of placing the rats at the junction of the open and closed arms, the 

center of the maze, facing the open arm opposite to where the experimenter was. The video-

tracking system was started after the animal was placed in the maze so that the behavior of each 

animal was consistently recorded for 5 min. At the end of the 5 min test session, the rat was 

removed from the plus maze and returned to its home cage. The maze was cleaned with 70% 
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ethanol and air-dried to remove any scent traces and allowed to dry completely before 

introducing the next animal in the arena. Time spent and entries made in the various arms of 

EPM were calculated. 

 
Object Location Test (OLT) 

This test assess place recognition memory (spatial memory) by calculating the preference 

of the rat to explore an object that has been moved to a new location. Briefly, rats were placed in 

black Perspex box 90 x 60 x 50 cm in a dimly illuminated and quiet animal behavior testing 

room. Rats were habituated individually, by allowing them to explore the empty box for 10-min 

per session for 2 days. The arena was cleaned with a 70% ethanol solution and dried completely 

in between each subject so as to eliminate any potential odor cues left by previous subjects. On 

the third day, in the sample phase, two identical objects were placed in opposite corners of the 

box, 20 cm from the wall. A rat was allowed to explore for 3-min, and then it was removed from 

the box and returned to its home cage. In the choice phase (1-h later), one of the object was 

moved to a novel location, and the rat was allowed to explore for 2-min. Objects were similar in 

size and emotionally neutral. A video-tracking system (Noldus Ethovision XT 11) was used to 

automatically collect behavioral data.  Direct contacts included any contact with mouth, nose or 

paw and did not include contacts that were accidental (backing or bumping into the object). Also, 

standing, sitting or leaning on the object was not scored as object interaction. A rat is considered 

to be exploring an object when its nose is within 2 cm of the object. Time spent exploring the 

object at novel location versus the object remaining in the familiar location was calculated for 

each group. A place discrimination index was calculated as the percentage of time spent with the 

object at novel location/the total time spent in exploring both the objects.  (Barker and 

Warburton, 2011; Deshpande et al., 2014b; Hattiangady et al., 2014).  
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Fluoro-Jade staining   

Rats were sacrificed 48-h following the last injection of DFP exposure regimen for 

Fluoro-Jade staining. Briefly, deep anesthesia was induced in rats with ketamine/xylazine 

(75mg/kg/7.5mg/kg i.p.) mixture. Anesthetized animals were flushed transcardially with saline 

and perfused with 4% paraformaldehyde in a 100 mM sodium phosphate buffer (pH 7.4). Fixed 

brains were removed and post-fixed in 4% paraformaldehyde/phosphate buffer overnight, 

cryoprotected  in 30% sucrose/phosphate buffer (pH 7.4) (48 h), flash frozen in isopentane and 

stored at -80C until used for sectioning.  Coronal sections (40 µm) were cut on a cryostat (Leica 

Microsystems, Wetzlar, Germany) and mounted onto microscope slides (Trubond 380; Tru 

Scientific LLC, Bellingham, WA). Slides were dried in a desiccant chamber at 55C for 30 min 

prior to staining. Slides were first incubated in a solution of 1% NaOH in 80% ethanol for 5 

minutes followed by hydration in a 70% ethanol and then ddH2O for 2 minutes each.  Slides 

were then incubated in a 0.06% KMnO4 solution for 10 min followed by washing in ddH2O for 2 

min. Slides were then stained in a 0.0004% Fluoro-Jade C (FJC) solution in 0.1% acetic acid for 

20 min (Deshpande et al., 2014a; Li et al., 2011b). Stained slides underwent 3x washes in ddH2O 

for 2 min each and then dried in a desiccant chamber at 55C for 30 min.  Stained slides were 

then cleared with xylene for 5 min and cover slipped with DPX mounting agent.  Stained 

sections were evaluated with a fluorescent IX-70 inverted microscope with a 20X (UApo 340, 

0.7 n.a., water) objective (Olympus America, Center Valley, PA) and excitation/emission filters 

for visualization of FITC.  Greyscale digital images (1324x1024, 16-bit, 1x1 binning) of FJC 

staining for hippocampus were acquired with a Hamamatsu ORCA-ER camera (Hamamatsu 

Photonics, Japan).   
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Data analysis 

Data were analyzed and graphs plotted using the SigmaPlot 12.5 software (SPSS Inc, 

Chicago, IL). All the data that passed the normality test was further subjected to t-test. A value of 

p<0.05 was considered significant for all data analyses. Analysis of digital images to count FJC 

positive cell staining was carried out with ImageJ  (U. S. National Institutes of Health, Bethesda, 

MD) by thresholding for specific stain and obtaining positive cell counts using the particle 

analysis component (size range in pixel: 25-1000). All parameters for digital acquisition and 

analysis of staining remained constant throughout.  Representative digital images were processed 

with Adobe Photoshop (Adobe Systems Inc., San Jose, CA). 

 
Results 

DFP exposure 

 Rats were injected with DFP (400 g/kg, s.c.) for a 5-day period which corresponds to 

the approximate time period for OP nerve gas exposure during the First Gulf War. No signs of 

cholinergic crisis were observed for the first 4-days of exposures. Few rats displayed lacrimation 

and mild tremors on the fifth day of exposure but these symptoms were resolved without any 

intervention by the end of the day. No significant differences were observed in the weight gain 

dynamics between the controls and DFP-exposed rats post-exposure period. A transient loss in 

weight in the DFP-exposed rats was observed on the 5th day of DFP injection. This brief loss in 

the weight lasted for couple of days and the DFP-exposed rats quickly regained their pre-

exposure weights and maintained weight-gain trajectory similar to the control rats (Fig. 1). No 

significant weight differences were observed between the control and DFP-exposed rats at 3-

months post-exposure when the behavioral tests were conducted (Table 1). There were no visual 

signs of pain and discomfort such as hunched posture, poor grooming, porphyrin around eyes or 
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nose in DFP exposed rats. DFP exposure (400 g/kg, s.c.) for 1-day did not exhibit any 

behavioral abnormalities in the various screening tests at 3-months post exposure (data not 

shown). 

 
Performance on FST 

The FST was an effective test in evaluating the presence of a despair-like state in the 

chronic DFP exposed rats. DFP rats subjected to the modified FST exhibited increased 

immobility time (79.7 ± 11.5 s) that was significantly higher compared to the immobility time 

(37.7 ± 6.5 s) in age matched control rats (p<0.01, n= 15, Fig. 2).  

 
Performance on SPT 

 Chronic DFP exposed rats also displayed absence of preferential sucrose consumption on 

SPT. DFP rats consumed 53.2 ±4.8 % sucrose-laced water and 46.8 ± 5.2% of non-sweetened 

water. In contrast, age-matched control rats overwhelmingly preferred sucrose water (74.1 ± 4.1 

%) over non-sweetened water (25.9 ± 5.2%). This indicates presence of anhedonia in the low-

dose DFP rats (p<0.01, n= 15, Fig. 3A). No differences were found between total fluid 

consumption and fluid consumed on right vs. left-side amongst the two groups (p>0.5, n= 15, 

Fig. 3B). 

 
Performance on EPM 

 Chronic DFP exposed rats displayed significant anxiety-like behavior compared to age-

matched control rats. DFP rats spent significantly less time (9.4 ± 2.2 % vs. 29.3 ± 3.7%) and 

made significantly less entries (12.2 ± 4.8% vs. 37.1 ± 4.5%) in the open-arm of EPM compared 

to age-matched control rats (p<0.05, n= 15, Figs. 4A, B). To investigate whether these 

differences in open-arm behavior were not due to global differences in exploratory or locomotor 
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activity, we also measured the distance travelled and total arm entries. No significant differences 

were observed in these two parameters between the rats in the two groups (p>0.5, n= 15, Figs. 

4C, D).  

 
Performance on OLT  

 In the test phase of OLT, age-matched control rats spent more time exploring the object 

at the new location (B) versus the object at the old place (A) (70.87% vs 29.13%, respectively, 

Fig. 4A), indicating that these rats remembered the earlier location. In contrast, chronic DFP 

exposed rats showed little preference when the object was at novel location (B) and spent almost 

equal time exploring object at both locations (48.7% vs 51.3%, respectively, Fig. 5A), indicating 

that these rats displayed spatial memory impairments. Calculating the place discrimination index 

revealed impaired place recognition memory in the DFP exposed rats (p<0.01, n= 15, Fig. 5B). 

No significant differences were observed between distance travelled and mean velocity amongst 

the two groups (p>0.5, n= 15, Fig. 5C, D). 

 
Neuronal injury associated with DFP exposure 

 To assess neuronal injury brain sections from animals injected with DFP or vehicle were 

labeled with FJC (Deshpande et al., 2014a; Li et al., 2011b). Across all brain regions examined, 

there was negligible FJC labeling in brain sections obtained from vehicle controls. In contrast, all 

the DFP exposed rats exhibited hippocampal damage as characterized by presence of FJC-

positive staining in the polymorphic layer and along the hilus/granule cell border of the dentate 

gyrus (Fig. 6). Quantitative analysis revealed presence of 2.1 ± 0.22 FJC positive cells/ 100 M2 

area in DFP exposed rats (n= 7 rats). 
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Discussion 

 After the end of 1991 Gulf War the returning military soldiers started reporting health 

problems including psychiatric impairments that could not be adequately explained by existing 

medical knowledge (U.S. Department of Veterans Affairs, 2008). Following detailed factor-

based analysis (Haley et al., 1997) and exhaustive studies by Center for Disease Control (Fukuda 

et al., 1998) and Institute of Medicine a cluster of symptoms were identified in Persian Gulf War 

veterans which included musculoskeletal, gastrointestinal and central nervous system deficits to 

constitute GWI syndrome or Chronic Multi-symptom Illnesses (Institute of Medicine: Board on 

the Health of Select Populations, 2013). Studies on the causative factors revealed a number of 

possible agents that were present during the Iraqi theater (U.S. Department of Veterans Affairs, 

2008). Chief among them was the detonation of bunkers that housed Iraqi chemical weapon 

rockets. Destruction of these bunkers generated a toxic plume of nerve gas and exposed the 

troops in the surrounding area to low-levels of nerve agents (Directorate for Deployment Health 

Support, Khamisiyah ammunition point case narrative, 2002). Taking into account the satellite 

data, meteorological conditions at that time, dispersal characteristics of nerve agents, and 

intelligence information (Tuite and Haley, 2013) it is estimated that this low-level exposure 

lasted for a 4-day period from March 10-13’1991. While there are no correct estimates available 

for levels of nerve gas exposure (United States General Accounting Office, 2004) , it is believed 

that there were no troops in the vicinity of “first-noticeable effect” zone. The majority of plume 

exposed soldiers were in “low-level hazard” zone (Directorate for Deployment Health Support, 

Khamisiyah ammunition point case narrative, 2002). In an attempt to develop an OP-based 

rodent model of GWI neurological morbidities, we used DFP dose that was less than 1/5th the 

LD50 estimates (Misik et al., 2015) to mimic low-level GW nerve agent exposures over a 5-day 
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period. These exposures did not produce any symptoms of overt cholinergic stimulation, when 

tested 3-months following the end of OP exposure period these rats exhibited significant 

psychiatric impairments including chronic depression-like symptoms, anxiety, and cognitive 

deficits similar to those reported by GW veterans (Black et al., 2004; Blore et al., 2015; Odegard 

et al., 2013;  Institute of Medicine: Board on the Health of Select Populations, 2013). While the 

inhalational DFP exposure would have been an ideal route of exposure, this route has unique 

dose administration challenges (Wong et al., 2013). In an actual exposure scenario, affected 

casualties would come into contact with varying concentrations of toxicant for varying periods of 

time. The exposure dose will also vary depending upon the exposure methodology such as 

whole-body, nose-only, lung-only, etc. This makes modelling difficult since the exposure dose is 

not a toxicokinetically relevant dose (Wong et al., 2013). Under such scenario, other exposure 

routes provide a greater degree of dose control. Amongst these routes, we have previously tested 

dose, solvent, and route of administration conditions for DFP exposure (Deshpande et al., 2010). 

Based on these studies, we found the subcutaneous route provided a stable, controlled response 

for DFP exposure. 

Depression is a complex psychological phenomenon and as such is difficult to analyze 

using a single test (Overstreet, 2012). For identifying depressive symptoms we used the Forced 

Swim Test (FST) that models despair along with the Sucrose Preference Test (SPT) that signifies 

anhedonia. Anxiety was tested using Elevated Plus Maze (EPM) paradigm. DFP exposed rats 

showed significantly higher immobility time in FST, did not show higher preference towards 

sweetened water in SPT and preferred the dark-closed arms in EPM. Taken together, the 

helplessness, despair, anxiety, and lack of feeling pleasure were reflective of the symptoms of 

depression-like state in DFP exposed rats.  
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Similar to depression, assessment of memory is also a complex behavioral task. We 

assessed hippocampus-dependent spatial memory using the OLT paradigm. Compared to the 

water-maze test, OLT is relatively stress-free and reliably predicts place-recognition memory 

functioning. We observed that DFP exposed rats had difficulties in OLT and they spend less time 

with the object in a novel place than the object in the familiar place. Age-matched control rats 

spent more time in exploring the moved object to the new location than when the object that 

remained in the same position. Histological analysis revealed neuronal damage within the 

hippocampus characterized by FJC-positive staining in the polymorphic layer and along the 

hilus/granule cell border of the dentate gyrus, possibly underlying the spatial memory 

impairments. Indeed, the hippocampus is essential in memory functioning (Battaglia et al., 2011) 

and plays a major role in pathophysiology of depression (Campbell and Macqueen, 2004). 

Studies have shown hippocampal dysfunction in Gulf War veterans using both imaging and 

neuropsychological testing (Chao et al., 2011; Chao et al., 2010; Menon et al., 2004; Odegard et 

al., 2013). Chronic hippocampal perfusion dysfunction (Li et al., 2011a) and smaller 

hippocampal volume (Apfel et al., 2011) has been observed in GW veterans. Reduced gray 

matter, white matter and hippocampal subfields have also been reported in GW veterans 

suspected with Sarin and Cyclosarin exposure (Chao et al., 2011; Chao et al., 2010; Chao et al., 

2015). Animal models of GWI have also demonstrated hippocampal neuronal loss, reduced 

neurogenesis, inflammation, and reduced synaptic transmission underlying the expression of 

anxiety, depression, mood and memory deficits (Abdel-Rahman et al., 2004a; Abdullah et al., 

2012; Hattiangady et al., 2014; O'Callaghan et al., 2015; Parihar et al., 2013; Speed et al., 2012; 

Torres-Altoro et al., 2011). It will be interesting to investigate if other critical brain areas such as 

amygdala, thalamus, and piriform cortex demonstrate neuronal damage in this animal model. 
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Using GWI associated chemicals and conditions (PB, permethrin, DEET, stress), 

Hattiangady and colleagues showed the presence of neurological deficits and neuronal damage 

similar to the findings reported here (Hattiangady et al., 2014). PB which was used as 

prophylactic against nerve-agent during the First Gulf War does not normally cross the blood-

brain barrier. However, in the presence of stress and insecticides, the blood-brain barrier is 

compromised and PB can enter the brain (Abdel-Rahman et al., 2002). PB is a reversible 

inhibitor of AChE, while permethrin and DEET are known sodium channel activators. 

Application of these agents in combination with PB will cause cholinergic activation, neuronal 

excitation and downstream glutamatergic stimulation leading to neuropathology and 

neurotoxicity in GWI rodents (Abou-Donia et al., 1996, Hattiangady et al., 2014). In this study, 

we sought to establish if OP exposure by itself could lead to the development of GWI-related 

psychiatric deficits. We hypothesize that the low-grade, sustained cholinergic stimulation 

following DFP-induced AChE inhibition would recruit the glutamatergic system, activating the 

signaling mechanisms which would lead to excitotoxic neuronal damage and precipitate the 

behavioral deficits observed in our study. Indeed, we have previously reported that DFP 

intoxication produced N-methyl-D-aspartate (NMDA) receptor-mediated elevations in 

hippocampal neuronal calcium levels that lasted for weeks after the initial OP exposure 

(Deshpande et al., 2010). These sustained hippocampal calcium elevations could underlie 

neuronal toxicity and some of the long-term plasticity changes associated with OP exposure 

(Deshpande et al., 2014a; Deshpande et al., 2014b). Future studies will explore hippocampal 

calcium dynamics in this GWI model. The work by Hattiangady and colleagues also found 

reduced neurogenesis in their non-OP GWI rodent model (Hattiangady et al., 2014). It will be 

very interesting to investigate if such a response is also observed in our OP-based GWI model 
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system. Thus, while these two studies used different agents to induce GWI related symptoms, the 

underlying mechanism for neuronal damage likely remains the same and may explain for the 

similar outcomes. 

In conclusion, our study demonstrates that repeated low-dose exposure to OP DFP 

produces neuronal damage and exhibits chronic behavioral and cognitive morbidities similar to 

those commonly reported in GW veterans. Given that OP exposure is considered a leading cause 

of GWI related morbidities, this animal model will be ideally suited to study underlying 

molecular mechanisms for the expression of GWI neurological symptoms and identify drugs for 

the effective treatment of GWIs. 
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Table 1 Body weight changes during the study 

Experimental Group Weight before OP exposure (g) Weight 12-weeks post OP exposure (g)

Control 301.5 ± 7.5 516.4 ± 16.5 
DFP exposed 304.4 ± 6.5 521.6 ± 18.5 

Data presented as mean ± SD (n= 15 rats, p=0.3, t-test)   
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Figure Legends 

Figure 1. Body weight changes before, during, and after DFP exposure. A transient loss in the 

weights of the DFP-exposed rats was observed on the 5th day of DFP injection, which lasted for 

couple of days. No significant differences were observed in the weight gain dynamics between 

the controls and DFP-exposed rats in the post-exposure period. Data expressed as mean ± SEM, 

*p<0.05, t-test, n= 15 rats. 

 
Figure 2. Increased immobility time in DFP exposed rats during FST. The immobility time in 

DFP exposed rats was significantly higher compared to age matched control rats. Data expressed 

as mean ± SEM, *p<0.05, t-test, n= 15 rats. 

 
Figure 3. Loss of sucrose consumption preference in DFP exposed rats on SPT. Control rats 

overwhelmingly consumed sucrose water over regular water, whereas DFP exposed rats did not 

exhibit any such preference indicating anhedonia-like condition.  Data expressed as mean ± 

SEM, *p<0.05, t-test, n= 15 rats. 

 
Figure 4. Increased anxiety in DFP exposed rats on EPM test. DFP exposed rats displayed 

significantly lower open arm time (A) and open arm entries (B) compared to age-matched 

control rats. No differences were observed in the distance travelled (C) and total arm entries (D) 

between the two-groups. Data expressed as mean ± SEM, *p<0.05, t-test, n= 15 rats. 

 
Figure 5. Impaired spatial memory in DFP exposed rats on OL test. (A, B) DFP exposed rats 

showed no preference for when the object was moved to new location-B indicative of impaired 

spatial memory that was significantly lower compared to the time spent by age matched control 

rats at the new location. No significant differences were observed in the distance travelled (C) 



26 
 

and mean velocity (D) during the test session between the two groups. Data expressed as mean ± 

SEM, *p<0.05, t-test, n= 15 rats. 

 
Figure 6. Low dose DFP induced neuronal injury. A representative photomicrographs of Fluoro-

Jade C (FJC) staining in the dentate gyrus-hilus region from (A) control and (B) DFP exposed 

rat. Scale bar, 200 μm. 
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