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DISSERTATION IDENTIFYING PARAMETERS FOR ROBUST NETWORK
GROWTH USING ATTACHMENT KERNELS: A CASE STUDY ON DIRECTED AND

UNDIRECTED NETWORKS

By Ahmed Farouk Abdelzaher

A Dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy at Virginia Commonwealth University.

Virginia Commonwealth University, 2016.

Director: Dissertation Preetam Ghosh,
Associate Professor, Department of Computer Science

Network growing mechanisms are used to construct random networks that have

structural behaviors similar to existing networks such as genetic networks, in efforts

of understanding the evolution of complex topologies. Popular mechanisms, such as

preferential attachment, are capable of preserving network features such as the de-

gree distribution. However, little is known about such randomly grown structures

regarding robustness to disturbances (e.g., edge deletions). Moreover, preferential

attachment does not target optimizing the network’s functionality, such as informa-

tion flow. Here, we consider a network to be optimal if it’s natural functionality is

relatively high in addition to possessing some degree of robustness to disturbances.

Specifically, a robust network would continue to (1) transmit information, (2) pre-

serve it’s connectivity and (3) preserve internal clusters post failures. In efforts to

pinpoint features that would possibly replace or collaborate with the degree of a node

as criteria for preferential attachment, we present a case study on both; undirected

and directed networks. For undirected networks, we make a case study on wireless

sensor networks in which we outline a strategy using Support Vector Regression.

For Directed networks, we formulate an Integer Linear Program to gauge the exact

transcriptional regulatory network optimal structures, from there on we can identify

x



variations in structural features post optimization.
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CHAPTER 1

INTRODUCTION

1.1 Complex Networks

The dynamics of complex networks are derived using graph theoretical measure-

ments that are deduced from the topology of the network entities and their relation-

ships. For example, science collaboration networks are portrayed using nodes that

represent scientists or authors, and links that connect pairs of nodes that coauthored

an article [1]. Unlike engineered networks such as wireless sensor networks [2] and air-

line transportation networks [3], science collaboration networks fall under the “small

world” category of complex networks due to their smaller average over the ensemble

of shortest connected paths through a network. Networks subscribing to the same

category, such as the World Wide Web, cell structures networks, protein-protein inter-

action networks, the Internet, and infectious disease networks have all been analyzed

for path lengths, cluster formations, degree distributions, and evolutionary patterns

[1, 4, 5, 6, 7, 8, 9, 10, 11].

Gene regulatory networks (GRNs) also belong to this category. Understanding

the dynamical consequences implied by the architecture of GRNs has been one of the

major goals in systems biology and bioinformatics, as it can provide insights into,

e.g., disease dynamics and drug development [12, 13]. In gene-regulatory networks,

the nodes portray products of genes or transcription factor proteins within a cell, and

a set of directed bonds which each denote pairs of nodes that interact by altering the

activity of the target gene [14] parameterized by the biological processes of transla-

tion and transcription [15]. Unlike engineered communication networks (as in [16]),
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GRNs exhibit a unique withstanding property–a phenomenon known as ”Biological

Robustness” [17, 18], which describes an ability of individual genes to adapt to and

potentially resist disturbances to gene activity based, in part, on their connectivity to

other genes of the network [19]. Such a useful property could be potentially exploited

to design engineered networks with similar communication properties [20, 21, 22, 23].

1.2 Attachment Kernels

One way of understanding the dynamics of such complex networks, is to compare

them with random models of similar properties, like for example: number of nodes

and edges, and the clustering coefficient. Random models can be generated using

preferential attachment schemes and their emergence are well studied [24, 1, 25,

26]. Consider random models vs. an existing complex network (or real), where the

above characteristics have shown to be comparable. Consider the case that when

contrasting the same real network with the generated models, it was observed that

the average shortest path was much smaller in real vs. random. Knowing that both

networks have much in common, one can deduct topological criteria that caused the

differences in connectivity, hence, prove significance attributed to real structures. For

example, insight into the emergence of The Internet was given based on contrasting

the real network with model networks grown at random where few of the nodes were

densely connected representing hubs or servers, and several were loosely connected

representing clients [25, 1].

Preferential attachment schemes are usually governed by a mathematical formu-

lae termed Attachment kernels. Attachment kernels are criteria for growing a network

by which an expansion favors one part of a network (e.g., a node) more than another.

Perhaps the most popular attachment kernel is that of the BA-model [27] which uses

the degree of the node as a criteria, hence the attachment kernel is based on degree.

2



BA was formulated to construct random ”scale-free” networks where rich nodes re-

main rich and poor nodes remain poor after the expansion. A rich node is that of a

high degree, i.e., having degree much higher than the average, while a poor node has

a degree much lower than the average.

The BA-model considers an initial substrate network of one or more nodes. The

network grows in successive iterations where each incoming node can attach with one

or more edge(s) to distinct nodes within the substrate. A candidate node within the

substrate will have a probability of connecting with an incoming node equal to the

ratio of it’s degree to the total degrees of the network. Essentially, this ratio formulates

the attachment kernel.

Network growing models are useful because they provide means for modeling em-

pirical networks as random networks in attempt to study structure and dynamics [25].

Certain models, utilizing preferential attachment [27] and others [28], have succeeded

in preserving the ”scale-free” property as well as small average distances. Other net-

work growing mechanisms were capable of forming structures with intended degree

distributions [29] and clustering coefficients [30] by setting a priori for these metrics.

Moreover, we have recently been able to combine attachment kernels based on in-

and out- degrees to create scale-free directed networks with high motif counts [31].

Perhaps these models are useful, however, they only take topology in considera-

tion. Little work has been done towards utilizing growing mechanism for optimizing

network performance. For example, setting a priori for high clustering coefficient does

not guarantee optimal routing in wireless sensor networks. It would be useful if these

grown networks where tested for function in addition to the structure they intend to

mimic. This fact partially motivates our work in this dissertation where we would

like to identify network features that would optimize information flow.
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1.3 What is Network Robustness?

The term ”Robustness” usually refers to any system preserving a particular per-

formance after suffering from some loss or disturbance. For example the human body

can preserve a performance metric like body temperature even when subject to cold

environments. Many engineered systems try to adopt biological behavior due to that

fact [32, 33, 34]. The term Biological Robustness was first coined by Kitano et al. [17,

18] after exploiting properties of GRNs. The authors observed that these networks

can maintain signaling transductions and gene expressions post external perturbation,

hence they are considered to be ”robust”.

Some of the above have also addressed network robustness. For example the

authors of [27] consider modeling the Internet’s robustness to attacks [24]. To do

this, randomly chosen nodes are deleted, and the network diameter is recorded after

each deletion to form a ’diameter vs. network size plot’. The same is applied to

another arbitrary network of similar number of nodes and edges, and the gradients

of both plots are compared. This scenario is known as random deletions- a way

describing random attacks and failures. Eventually, the authors concluded that the

internet is robust because the diameter’s plot rises at a relatively low gradient post

node failures. This essentially means that ”the Internet will not suffer that much

if some terminal or server failed, and packets will eventually find their way to their

destinations within reasonable time”.

But does the random failure scenario suffice for assessing network robustness?

No, there are several aspects to review in the domain of network robustness in addition

to performance (information flow) post failures, and as a result, researchers have

yet to establish a unified quantification for network robustness. For example, many

suggest that robustness should be measured using other metrics. For example [35]
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Fig. 1. Toy example.

suggests that connectivity should be assessed via observing the change in ”network

efficiency” (a variant of the average shortest path) post random nodal deletions (to

simulate errors). Others consider different forms of disturbances; works assessing

modular failures (using deletions) [36], in addition to link fragility (using fractional

deactivation) [37] have been considered.

Consider the toy example given in Figure 1 [38]. Both have similar average

degree, clustering coefficients and degree distributions. The only difference is that

the average path length in (a) and (b) are 2.56 and 2.44 respectively. Topology (a)

can be divided into two components by removing link 3-6, which makes topology (b)

more robust towards link failures. On the other hand, if robustness was evaluated

using strength of ties, e.g., in social networks, topology (a) would be considered more

robust, because it is easier to divide it in two equally sized groups. What if nodes

1 in each network where infected with a virus? Because of links 1-8 in (b), a virus

would spread faster to every node in the network, which makes topology (a) more

robust. How about routing efficiency in case of congestion of link 3-6? In this case

topology (b) will be able to reroute information from groups 1-2-3-4-5 to 6-7-8-9-10

through links 5-9 and 1-8, and vice versa. This makes topology (b) more robust.

It is clear that robustness needs to be understood according to the network’s be-
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havior post disturbance. Some topologies suffer greatly, others sustain their abilities.

However, which metric should you consider? The answer to this question motivates

our research. Here, we examine a collection of metrics: together they cover the (1)

network’s performance, e.g., packet transmission, (2) the network’s connectivity, e.g.,

the average shortest path, and (3) it’s ability to form internal communities, e.g.,

clusters.
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CHAPTER 2

MOTIVATION AND CONTRIBUTIONS

There is no particular formula or attachment kernel that can guarantee randomly

generated networks with optimal performances, connectivity and modularity- in other

words ”robustness”. In order to do so, firstly, structural features that affect the above

should be identified, which can be potential candidates for attachment kernel criteria.

Secondly, Once attachment kernels have been formulated, comprehensive testing of

different random failure scenarios should be applied to grown structures. This dis-

sertation mainly considers the first of which, the testing component is considered for

future works of this research. We present some attachment kernel testing cases for

Wireless Sensor Networks growth in Chapter 6.

Static measures like connectivity and strength of tie formations are universally

applied for any network. However, dynamic performance like signaling flux or packet

transmission would differ according to the nature of the network itself. Therefore, we

explain our strategy for pinpointing those structural features on different networks.

(1) For an undirected network case study, we consider Wireless Sensor Networks,

while the (2) directed network case study, we consider Transcriptional Regulatory

Networks. We use Network Simulator 2 to evaluate routing efficiency for wireless

sensor and transcriptional networks, although, for this research component results for

transcriptional networks will be reported in future works.

It is important to note that the focus of this research is to lay different strate-

gies to pinpointing features for enhancing networks’ performances and/or expansion.

This dissertation provides different methods to consider when tackling this problem
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for undirected and directed networks. Networks considered like Transcriptional reg-

ulatory or wireless sensor networks, are two of many different existing networks that

might have different performance expectations. However, a universal performance

that can be addressed for example, is the ability to transmit information within the

topology given. We will explain later in this dissertation how information transfer

efficiency can be modeled as packets flowing through a wireless sensor network for

both directed and undirected networks.

Because we address network expansion using attachment kernels and we argue

that preferential attachment can depend on more than one parameter, we give two

example algorithms for growing networks. For these algorithms, we have observed

comparable topologies to the real networks, and details are discussed in chapters 3

and 4. The second part of this thesis adopts the same growing schemes, however, we

try to pinpoint different features to consider for preferential attachment. For this we

consider wireless sensor networks and the features are selected. Preliminary testing

cases prove our hypothesis, that it is possible to use attachment kernel with features

other than the degree of the nodes to build random scale-free topologies yet exhibiting

some degree of robustness. The third part of this thesis supports the random model

generation by enhancing a substrate network by re-wiring of the edges. Because

the final grown system depends heavily on the initial substrate [25], this part of the

dissertation is also necessary.

2.1 Motivation for Case Study 1 on Wireless Sensor Networks

Wireless Sensor Networks (WSNs) have many applications that can help human-

ity, however, they are accompanied with many challenges during their emplacement-

mainly attributed to inefficient packet transmission and non-robust structures. Iden-

tifying features that make WSNs robust will enhance their deployment structures. In
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order to motivate the strategy for selecting robustness relevant features for WSNs, we

must first define the different aspects of WSN robustness. These aspects are defined

as follows:

1. Performance: A WSN should maintain reasonable packet transmission rates

post disturbances such as edge deletions and elevated channel noise levels.

2. Connectivity: A WSN should maintain high connectivity post disturbances such

as edge deletions.

3. Internal Communities: A WSN should maintain it’s ability to form internal

clusters post disturbances such as edge deletions

Problem Definition 1. There is no comprehensive strategy that can pinpoint

the structural features necessary for preserving the different aspects of Wireless Sensor

Network robustness.

Having a strategy for selecting robustness features will help identify new attach-

ment kernels for WSN growth and robust WSN design. Such attachment kernels can

help with computational experiments on different WSN structures, and eventually

save costs in terms of labor and time during their physical deployment. For example,

consider a hypothetical WSN structure deployed in the field, and that we need to

determine the most efficient connection for the next 10 sensors to be added to the

network. Network growing algorithms using attachment kernels that considers all

aspects of WSN robustness can computationally determine different structures to be

considered.

2.2 Motivation for Case Study 2 on Transcriptional Regulatory Networks

Our motivation for the transcriptional regulatory network’s case study is two-

fold. The first of which, motivates the use of network growing mechanisms for directed
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networks. The second motivates the necessity for deducing structural feature varia-

tions for optimized performance directed networks.

2.2.1 Motivating Network Growing Mechanisms

Most of the popular network generation algorithms like the BA-, ER-, and the

configuration model are applied to growing undirected substrates, little is applied for

undirected networks. Therefore, a random model generator for directed networks is

required.

Understanding relationships between architectural properties of gene-regulatory

networks (GRNs) has been one of the major goals in Systems Biology and Bioinfor-

matics, as it can provide insights into, e.g., disease dynamics and drug development.

Such GRNs are characterized by their scale-free degree distributions and existence of

network motifs i.e., small-node subgraphs that occur more abundantly in GRNs than

expected from chance alone. Because these transcriptional modules represent build-

ing blocks of complex networks and exhibit a wide range of functional and dynamical

properties, they may contribute to the remarkable robustness and dynamical stability

associated with the whole of GRNs. Here, we developed network-construction mod-

els to better understand this relationship, which produce randomized GRNs by using

transcriptional motifs as the fundamental growth unit in contrast to other methods

that construct similar networks on a node-by-node basis. Because this model pro-

duces networks with a prescribed lower bound on the number of choice transcriptional

motifs (e.g., downlinks, feed-forward loops), its fidelity to the motif distributions ob-

served in model organisms represents an improvement over existing methods, which

we validated by contrasting their resultant motif and degree distributions against ex-

isting network-growth models and data from the model organism of the bacterium

Escherichia coli. These models may therefore serve as novel test-beds for further eluci-
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dating relationships between the topology of transcriptional motifs and network-wide

dynamical properties.

2.2.2 Motivating Optimizing an Undirected Network Performance

We already know that Transcriptional Regulatory Networks exhibit scale-free

topologies which gives them structural robustness [24]. Moreover, WSNs adopting

TRN topologies have shown better performances in-terms of packet transmission,

energy consumption and end-to-end delays [21]. However, a question remains unan-

swered; is whether or not a TRN structure, like that of E. coli, is optimal. And if

not, can this structure be improved? Improving existing TRN topologies will assist in

designing robust networks. For example most network growing mechanism consider

incremental attachments based on existing features of the substrate networks- initial

networks before the attachments. Having an optimal substrate will serve better down

the attachment process as compared with the case of beginning with a non-optimal

substrate.

Given any arbitrary directed network, an optimal performance topology should

minimize the overall distances from transmitter to receiver nodes (nodes with no

out-degree). One metric that can capture this performance is the average shortest

path [24, 1]. However, in order to achieve optimal robustness the degree distributions

(in- and out-degrees) should also be preserved. The above serves as basis for our

problem definition and motivation.

Problem Definition 2. Given an undirected network with a particular in-

degree, out-degree distributions, and an average shortest path among pairs of trans-

mitter and receiver nodes, an algorithm that can preserve the distributions provided

having the average shortest path a minimum is required.
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2.3 Research Contributions

Contributions of this work can be summarized in the following points:

1. Constructing different schemes for incremental network expansions using com-

binations of attachment kernels; one scenario describes single node attachments

(Chapter 3) and the other described motif-based attachments (Chapter 4).

2. Presenting a scenario for evaluating network robustness via random edge dele-

tions, in addition to providing proof for bio-inspired network robustness (chap-

ter 6).

3. Providing a machine learning strategy using support vector regression for identi-

fying robustness features in both; bio-inspired and randomly generated wireless

sensor networks, thereby providing an undirected network case study (Chap-

ter 7).

4. Providing an integer linear programming formulation that can be a tool for

detecting variations in structural features of transcriptional regulatory networks

evolving from there original state to an optimal structure, thereby providing a

directed network case study (Chapter 8).

5. Discuss how selected features can be utilized as preferential attachment kernels

in the context of future works (chapter 9).

Furthermore, literature reviews on bio-inspired wireless sensor networks and the dif-

ferent topologies considered are given in chapters 5 and 6.1 respectively.
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CHAPTER 3

GROWING DIRECTED NETWORKS USING SINGLE NODE

ATTACHMENT KERNELS

The material of this chapter was published in [31]. Here we construct random di-

rected scale-free networks which exhibit similar structural distributions of that of the

TRN of the bacterium E. coli. Using the transcriptional network of the bacterium

Escherichia coli, we investigate motif connectivity by reconstructing the distribution

of genes participating in feed-forward loop motifs from its largest connected network

component. We contrast these motif participation distributions with those obtained

from model networks built using the preferential attachment mechanism employed by

many biological and man-made networks. We report that, although some of these

model networks support a motif participation distribution that appears qualitatively

similar to that obtained from the bacterium E. coli, the probability for a node to

support a feed-forward loop motif may instead be strongly influenced by only a few

master transcriptional regulators within the network. From these analyses we con-

clude that such master regulators may be a crucial ingredient to describe coupling

among feed-forward loop motifs in transcriptional regulatory networks.

3.1 Motifs

It was discovered that genetic networks host repeating patterns of smaller sub-

networks, termed motifs [39], that occur far more frequently than would be expected

in randomized networks with the same degree sequence. These patterns are thought

to be the basic building blocks of complex networks [40]. While much attention has
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been directed toward the study of their individual functions, both experimentally

(e.g., autoregulatory motifs [41]) and theoretically [42], much less is known relating

their coupling and positions within the network to its robustness.

Feed-forward loops are one of the most common motifs in genetic networks and

are well studied in a variety of biological contexts. In a genetic network, if one gene

is linked to another, then it may either enhance or repress the expression level of

the target gene, respectively termed up- and down-regulation. A feed-forward loop

consists of three genes or nodes, the first of which regulates a second, and both of

these co-regulate a third (Figure 11). Recently, Alon and collaborators [42] discovered

that individual feed-forward loops possess interesting dynamical properties, such as

signal delay and pulse generation. Although it is not generally clear how coupling

among these motifs affects the overall network function, several groups are beginning

to move in this direction. For example, exhaustive experiments with the bacterium E.

coli, in which 598 gene promoters were altered to rewire its genetic network, showed

that most of these new connections are tolerated by the bacteria [43]. Mathematical

modeling of gene transcription and translation has also been used to investigate the

relationship between coupling and function among differing motif configurations [44,

45, 41]. However, a requisite for using these results to understand complex features

at the network level, such as robustness, is a more basic understanding of how motifs

are coupled together and distributed throughout such transcriptional networks.

3.2 Participation of Genes in Motifs Distributed Throughout a Network

Here we consider the transcriptional regulatory network of the bacterium E.

coli as a prototypical genetic network, by which we mean that genes interact with

one another when transcription products affect the trans-activation of other target

genes by interacting with their promoter regions. Not only are all connections among
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genes in E. coli ’s genetic network well validated by experiments (e.g., [39]), but

these data are also easily sampled using the software tool GeneNetWeaver [46], first

introduced to aid the development of more accurate gene regulatory network inference

algorithms. E. coli ’s genetic network supports 23 disjoint subnetworks that together

form a network of 1565 genes and 3758 links, and it is not completely connected.

Based on this observation we restrict our analyses to its largest connected component

(LCC), which is sparse, supporting 1477 genes and 3671 directed links.

For each gene in the LCC of this genetic network, we count how many feed-

forward loop motifs a gene participates in as one of its three elements, illustrated

as nodes i, j, or k in Figure 11. A Java module was developed here to identify

feed-forward patterns in the network, independent of whether one gene up- or down-

regulates another. So we did not distinguish between, for example, coherent and

incoherent feed-forward loops in the counting procedure. Motifs were compared to

one another to ensure that they were only counted once for each gene. These steps

were repeated for the model networks built from procedures described below.

3.3 Degree Distributions for Growing Networks

Because E. coli ’s LCC is a directed network, it supports two distinct distribu-

tions that together describe the total-degree distribution. For a network of n nodes,

these are (i) the fraction of the network hosting K-many outgoing links, p(K,R, n),

termed the out-degree distribution, and (ii) the fraction of the network hosting R-

many incoming links, q(K,R, n), termed the in-degree distribution.

The growth of several man-made or technological networks, such as citation, in-

ternet, actor, and scientific co-authorship networks has been measured before [26],

and their growth was modeled by a scheme that adds links to new nodes in a way

that depends on the degree of a candidate node of the existing network- a mechanism
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for network evolution termed preferential attachment [25]. Although these man-made

networks have been observed to grow according to preferential attachment, gene net-

works in E. coli and other organisms may instead evolve in response to environmental

stressors realized as horizontal gene transfers or gene duplication events [47]. While

these and other mechanisms may indeed drive transcriptional network growth, it re-

mains unclear what role they play in the creation and persistence of genetic motifs.

Because preferential attachment offers a simplified view of network growth and has

been relatively well studied, we employ it here to develop formulas for the creation of

directed networks, wherein the network evolution is determined by an attachment ker-

nel taking one of several forms explained below, either linear, power-law, or sigmoid

types.

Consider a network of n nodes, wherein each of its nodes labeled by the subscript

i = 1, 2, ..., n hosts Ki outgoing links and Ri incoming links. A randomized network

is grown by adding nodes one at a time, increasing its size by exactly one node

during each round of attachment (also termed a simulation step). These new nodes

are attached to the existing network by an average of m directed links to candidate

nodes of the network, chosen with equal probability among all existing network nodes.

The probability for an edge to link a candidate node i with the new one directed from

the candidate to the new one is generally given by A(Ki, Ri), wherein Ki and Ri label

the out- and in-degrees of the candidate node, respectively. The probability for a link

to be drawn from the new node to a candidate node i is similarly given by B(Ki, Ri).

These probabilities are normalized against all nodes of the existing network, and are

termed attachment kernels [48].

The expected number of K degree nodes that will have a new bond added in the

next iteration can be written as np(K,n)mA(K), wherein p and A are assumed to be

independent of the nodes in-degree R. Using this expression, a master equation may
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Table 1. Normalized attachment kernels used to create the model networks.

Functional Type Attachment Kernel (e.g., A = a/Z)

a z =
∑

i ai b z =
∑

i bi

Linear K
∑

K Kp(K) R
∑

K Kp(K)

Power-law (γ = 0.8) Kγ
∑

K K
γp(K) Rγ

∑
K K

γp(K)

Sigmoid K/(K +R)
∑

K

∑
R
Kp(K)q(R)

K+R
R/(K +R)

∑
K

∑
R
Rp(K)q(R)
K+R

be written that describes the evolution of this out-degree distribution:

(n+ 1)p(K,n+ 1)− np(K,n) = np(K − 1, n)mA(K − 1)− np(K,n)mA(K), (3.1)

Equation 3.1 holds for all cases except K = m, which describes the links extend-

ing from the new node to the existing network. For this case we have

(n+ 1)p(m,n+ 1)− np(m,n) = 1− np(m,n)mA(m). (3.2)

Equations 3.1 and 3.2 are difficult to solve exactly. In light of this difficulty we

instead simulated the growth algorithm directly using computational means using

attachment kernels listed in Table 1, and described by the algorithm given below.

Nevertheless, by using suitable approximations for Eqs 3.1 and 3.2, we can infer a

general form for the degree distribution; however, the exact relationship reflecting

the frequency of degrees observed for network nodes depends strongly on the specific

form of the attachment kernel, as demonstrated here.

By taking an approximation valid for very large networks, n→∞, we can solve

for the degree distribution near this limiting value. Here we label p(K,∞) = p(K),

so that (n+ 1)p(K,n+ 1)− np(K,n) ∼ p(K). Then, Eqs 3.1 and 3.2 become [49]
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p(K) = np(K − 1)mA(K − 1)− np(K)mA(K), and (3.3)

p(m) = 1− np(m)mA(m). (3.4)

Equations 3.3 and 3.4 can be solved to give

p(K) =
1

nmA(K)
e
∑K
i=m 1/nmA(i), (3.5)

wherein the attachment kernel is small, i.e., for A(K) > 1/nm. Equation 3.5 can be

further reduced when the actual dependence of A (or B) on the out- or in- degrees is

known. For more details, Please refer to [31] and Appendix B.

3.4 Algorithm to Generate Model Networks

Synthetic networks are grown step-wise according to the following protocol.

First, a candidate node, denoted by subscript i here, is chosen randomly with equi-

probability from the existing network of size n. Next, a link directed from the can-

didate node to the new one is drawn if a number selected at random from an equi-

probable distribution on the interval d ∈ (0, 1) generally satisfies d ≤ A(Ki, Ri). This

process is then repeated for a link to be drawn from the new node to the candidate,

wherein a newly drawn random number from this same distribution instead gener-

ally satisfies d ≤ B(Ki, Ri). These steps were repeated mi − 1 times, wherein mi is

another number drawn at random, and the final sequence of such numbers after S

growth steps {ml : l = 1, 2, ..., S} satisfies the following exponential distribution:

ρ(mi) =
(
f 1/(1−m0)−1

)
f−mi/(1−m0) (3.6)

Parameters here are chosen so that ρ(mi = m0)/ρ(mi = 1) = f , with the values
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f = 1/4 and m0 varied for creation of the model networks between 2, 3, and 4, which

skews the distribution toward larger values of average mi. The average number of

links chosen per growth step, m, is given in terms of these parameters as

m =
∞∑

mi=1

miρ(mi) =
1

1− f 1/(m0−1)
(3.7)

So, in view of this expression the average number of links supported by model networks

built using mi = 2, 3, and 4 is approximately m = 1.33, 2, and 2.7, respectively.

The form of this distribution of link enumerations, Eq. 3.6, was chosen partly

because the majority of E. coli ’s genes support only 1 or 2 links, rather than many

more. Computer experiments using other link distributions, such as mi = constant,

generated motif participation distributions in greater variance with the E. coli dis-

tributions than generated using Eq. 3.6 (data not shown here). We note that model

networks were built over a seed network of eight nodes fully connected supporting 42

links. This ensures that early in the growth process, when the network is small, it

is much less likely for values of mi to force the creation of duplicate links. That is,

more than one link of the same direction connecting two nodes is not permitted.

3.5 Maximum Likelihood Estimation of Cumulative Distribution Func-

tions

Many features of interest in biology when subjected to repeated measurement

show a cumulative probability distribution that follows power-law type mathematical

relationship [50]. For reasons discussed above, the in-, out-, or total-degree distri-

butions of a network may support a power-law type tail depending on the form of

the attachment kernel used to build it (e.g., 3.5). However if there are no a priori

theoretical considerations to predict whether experimental data should best fit to a
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particular distribution, then curve-fitting methodologies are commonly used to justify

empirical relationships among features in these data. It is known, for example, that

using a least squares based optimization algorithm does not accurately determine

whether the data are power-law distributed Hoogenboom et al., [50, 51].

Addressing this problem, Hoogenboom et al. [51] presented a maximum likelihood

estimation based approach that determines whether data are power-law distributed or

not. For illustration, let p(k; γ) be an out-degree distribution function that depends

on a parameter γ, such as p(K; γ) ∼ K−γ. A likelihood function is then defined from

this distribution so that L(γ) =
∏
Kp(K; γ). To find the parameter that best fits the

experimental data, this likelihood function is maximized with respect to it. To carry

out these analyses on the motif participation and degree distributions extracted from

the experimental and synthetic networks described above, we employed MATLAB

implementations of the maximum likelihood estimation method of Hoogenboom et

al. as described by Clauset et al. [50].

3.6 Results and Discussion

3.6.1 Cumulative Degree Distributions

Figure 2 illustrates the cumulative degree distributions of one representative

network generated computationally using the attachment kernels listed in Table 1

for varying distributions of the link enumeration as given by Eq. 3.6, contrasted

against the associated distributions arising from the E. coli network (black circles).

Straight lines are the result of the maximum likelihood estimation of the validity of

a power-law fit to these cumulative distributions, p(degree ≥ K), which measures,

for example, the probability that observation of the out-degree for any network node

is greater than K. The cumulative distribution is related to the degree distribution,
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Fig. 2. Cumulative degree distributions for synthetic networks created using linear

attachment kernels (A-C), power-law kernels (D-F), and sigmoidal type kernels

(G-I).

p(K), by the equation

p(degree ≥ K) =
∞∑
i=K

p(i) (3.8)
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Table 2. Scaling exponents α, defined for cumulative distribution functions

p(feature ≥ x) ∼ x−α, identified using the maximum likelihood fitting proce-

dure explained in the section Materials and Methods for the degree and motif

participation distributions illustrated in Figures 2 and 3

Distributions Features

In-degree Out-degree Total-degree Motif

Model Networks Linear 2.768 2.697 2.976 1.828

Power-law 2.745 2.538 2.737 1.848

Sigmoid 2.746 2.863 2.995 1.886

Experimental network E. coli 1.871 3.492 2.407 2.008

Data are collected here for networks with m0 = 2

Similar equations exist relating in and total-degree distributions to their associated

cumulative distributions.

In, out, and total cumulative degree distributions arising from the linear at-

tachment kernel are displayed here in Figures 2 A-C. Notably, scaling exponents for

power-law type equations fit to these distributions, such as p(degree ≥ K) ∼ Kα,

do not differ greatly between m0 = 2, 3, or 4; exponents are collected for m0 = 2

networks (cyan in Figure 2) into Table 2. A point-wise inspection of the cumulative

total-degree distribution over its whole domain K+R, however, closely resembles that

for E. coli (Figure 2 C), while the cumulative in- and out-degree distributions do not

match qualitatively with E. coli very well. This observation is consistent with power-

law (Figures 2 D-F) and sigmoidal (Figures 2 G-I) attachment kernel constructed

networks.

As expected, when more links are added (e.g., m0 = 4) the distributions il-

lustrated in Figure 2 are shifted more toward the right, demonstrating that nodes
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Fig. 3. Cumulative distribution functions measuring the probability that a measure-

ment made on a network node gives a number of motifs greater than µ, for

each of three model networks built using (A) linear attachment kernels, (B)

power-law kernels, and (C) sigmoidal kernels.

of such networks support larger degrees merely because the density of links has in-

creased. The form of these distributions remains similar, however, appearing to be

mostly independent of the choice of m0. For example, in networks built using the

linear (Figures 2 A-C) and power-law (Figures 2 D-F) attachment kernels, a plateau

arises in the cumulative distribution that persists across a decade or so in each degree
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type. This plateau describes a region in the degree (i.e., x-axes of Figure 2) for which

there is constant probability that a measurement of a node’s degree gives a greater

value than the considered one. Given the definition of the cumulative distribution,

Eq. 3.8, the existence of the plateaus mean the degree distributions for the model

power-law networks are bimodal, with a longer plateau indicative of a longer span in

the degree between maxima of the degree distribution.

The cumulative total-degree distribution for E. coli, illustrated by black circles

Figures 2 C,F,I, begins to moderately vary from the power-law fit obtained from the

maximum likelihood estimation method (black line) at approximately K + R = 20,

lasting until approximately K + R = 200. This variance is not strictly indicative

of a plateau, but does hint that power-law-type factors may be ingredients in the

evolutionary pressures leading to the shape of the final transcriptional network dis-

tribution. Interestingly, preferential attachment mechanisms have indeed been sug-

gested for this purpose yielding scale-free protein-interaction networks (see, e.g., [4]).

It was also shown that highly connected genes evolve more slowly (and are there-

fore older) than their loosely connected peers and that co-expressed genes evolve at

similar rates ([52]). (There are, however, exceptions to this conclusion in the case of

protein-interaction networks, e.g., [53]) These data suggest preferential attachment

contributes to transcriptional network evolution, lending weight to our conclusion

that a moderate departure from scale-free topology observed in the E. coli (Figures

2 C,F,I) cumulative total-degree distribution data is consistent with a power-law-

type preferential attachment growth mechanism. However, the reason even minor

bimodality should present in the E. coli transcriptional network topology remains

unknown.
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3.6.2 Participation of E. coli Genes in Feed-Forward Loop Motifs

Participation of E. coli genes in Feed-forward loops (FFLs) is another distribution

which illustrates how many genes are part of one FFL, and how many genes are part

of two FFLs, and so on till the maximum number of FFL participation. Figure 3

illustrates the cumulative motif participation distributions for networks constructed

using each of the three attachment kernels: linear (Figure 3 A), power-law (Figure 3

B), and sigmoid (Figure 3 C). As with the distributions of Figure 2, scaling exponents

for these motif participation distributions are also collected into Table 2.

As the number of motifs associated with a node, µ, increases, the probability that

a node will host a greater number of such motifs decreases for all networks (Figures

3 A-C) - a result consistent with the E. coli data (depicted with black circles). As

expected, when more links are added on average per growth step (i.e., increasing

m0), or more generally as the network density increases, feed-forward loop motifs

are more likely to be created by the attachment procedure. This is the reason these

cumulative motif participation distributions mostly shift toward the right in Figures

3 A-C with increasing m0. While differences between the cumulative distribution

scaling exponents for these representative networks built using m0 = 2 and E. coli ’s

motif participation distribution are the largest of any m0 values considered here,

these m0 = 2 networks nevertheless more closely resemble the overall E. coli motif

distribution. Of these, the m0 = 2 network of Figure 3 A provides the closest match

to the E. coli data for the kernels considered here.
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CHAPTER 4

GROWING DIRECTED NETWORKS USING MULTIPLE NODE

ATTACHMENT KERNELS

We have seen in chapter 3 that the combined probabilities of the attachment kernels

can be used to give random networks with comparable distributions to the original.

The attachment kernels were based on nodal properties (e.g., in- and out degrees),

the number of linking edges to the substrate were derived from a random probability

distribution 3.7, and nodes were attached one at a time. Here we take a different

approach, where we consider smaller structural attachments (generally, of sizes = 1,

2, and 3 nodes) at a time. These smaller structures are referred to as ”downlinks”,

and considered structural motifs within E. coli [39].

In the supplementary materials of [40], the authors enumerate all possible 3-6

node transcriptional motifs. Among the most common transcriptional motifs ob-

served in GRNs of the model bacterium Escherichia coli (herein E. coli) and the

baker’s yeast Saccharomyces cerevisiae (herein labeled Yeast), are feed-forward loops

(FFLs) and bifans (BFs), which can be observed natively in Figures 4 a and b. An

FFL is hierarchically composed of three genes, a top-level “parent” gene which reg-

ulates two “child” genes, wherein one of the child genes regulates the other. This

specific topology allows for interesting dynamical consequences, such as pulses, signal

delays, and irreversible speed-ups [42]. In contrast, BFs constitute four genes, two

of which simultaneously regulate the other two; these motifs have been reported as

constituents of dense overlapping regulons in the GRN “backbone” responsible for

vital life functions, such as nutrient metabolism and bio-synthesis [54].
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Fig. 4. Embedded within sample GRN subgraphs of E. coli, the topological represen-

tation of (a) bifans. Here transcription factors arcA amd glcC coregulate glcD

and glcG. On the other hand (b) the feed-forward loop constitutes a tran-

scription factor (such as metJ) that regulates both a gene (metE) and another

transcription factor (metR). The regulated transcription factor co-regulates the

same gene (metR → metE).

It is notable to point out that many motifs are a product of the coupling be-

tween the subnetworks illustrated in Figure 5: the uplink, the downlink, and the

three chain. For instance, a BF can be viewed as two downlinks coupled by sharing

both child genes, while an FFL can be viewed as an uplink or a downlink sharing all
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Fig. 5. The three-node two-edge motif substructures.

three genes with a three-chain. Moreover, we have conducted computational analysis

to estimate the percentages of the gene-regulatory interactions that participate in

these components for an E. coli GRN. We observed that 54.7% of interactions are

involved with FFLs, 82% with BFs, 99.4% by downlinks, 83.9% by uplinks and 78.3%

by three-chains. Given these data for E. coli, we hypothesize that downlinks represent

a primary component in the evolution of GRN topology. Despite that the impacts of

motif-coupling on the functionality of GRNs remains largely mysterious, some results

have been reported in this particular area. For example, investigations of gene cou-

pling for different motif patterns have been conducted using mathematical modeling

of transcription and translation in order to reveal substructure functionalities [44, 45,

41]. Additionally, experiments have revealed that bacteria can endure a great deal of

regulatory interaction rewiring via manipulation of protein-binding DNA sequences

[43].

In this dissertation, we extend the prior algorithm of Chapter 3 based on the

following two criteria:

1. Our modified preferential attachment algorithm was oblivious to the distinc-

tion of the two different types of nodes in transcriptional networks: genes and

transcription factors (TFs). Since transcriptional networks only allow TF-to-

TF and TF-to-gene edges, a distinction between these biological classes that

restricts allowed bonds may improve fidelity of the “grown” networks to that
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from E. coli or other GRNs.

2. The previous algorithm considered attachment of one node at a time to the

substrate network for growth following the general premise of preferential at-

tachment. However, this failed to generate the correct FFL motif distribution

of the nodes in the grown network as compared to the GRN of E. coli. In

this dissertation, we consider the attachment of an entire downlink motif at a

time using a preferential attachment methodology. One or more of the three

nodes of the incoming downlink may be shared with selected nodes in the sub-

strate network resulting in the growth of the network by one (if two vertices are

shared between the incoming downlink and substrate network) or two nodes (if

one vertex is shared between the incoming downlink and substrate network) or

zero nodes (if all three vertices of the incoming downlink is shared with cor-

responding three vertices in the substrate) at a time. The motivation for a

downlink-based preferential attachment model stems from an observation that

99.4% of the nodes in the GRN of E. coli participate in downlinks.

The algorithm produces more comparable results for different subnetworks of E. coli,

and the results are illustrated in terms of the maximum likelihood estimation (chap-

ter 3.5). Furthermore, the algorithm discussed in this chapter was published in [55].

4.1 Transcriptional Network Datasets

To evaluate the fidelity of artificially constructed networks, we sampled subnet-

works from the entire body of the E. coli transcriptional network, herein referred to

as “target networks.” As mentioned above, we defined two types of nodes arranged

hierarchically in these GRNs, classified as either (a) genes or (b) transcription fac-

tors, and defined such that genes reflect a regulatory terminus wherein they do not
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regulate other nodes (i.e. have no outgoing links), and transcription factors are nodes

that regulate genes. Consequently, there are three possibilities for the class of nodes

that constitute a downlink motif:

1. three transcription factors (herein TTT);

2. a transcription factor regulating two genes (herein TGG); or

3. a transcription factor which regulates another transcription factor and a gene

(herein TTG).

All transcriptional interactions of E. coli GRNs have been validated experi-

mentally [39], and target networks have been rendered using GeneNetWeaver [46].

GeneNetWeaver provides options for sampling subnetworks from the GRNs of both

E. coli and S. cerevisiae. For simplicity, we have removed them from the target

networks considered here.

4.2 Vertex-based motif networks and downlink coupling

Conventional preferential attachment models estimate the attachment probabil-

ity from the degree of single candidate nodes in the target networks. However, to

conceptualize a downlink-based preferential attachment method, which is a collection

of nodes, we must first identify a way to express a downlink motif from the substrate

network into a single, effective “lumped” node.

To achieve this we propose to apply a network transformation to the E. coli

LCC, defined so that each node of the transformed network represents a downlink

derived from the LCC; downlink “nodes” are connected to others with edges weighted

by the number of nodes shared between the two downlink motifs. For example, two

downlink motifs that share a single node would equate with two nodes connected
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Fig. 6. The steps for forming the VMN from a GRN: (Step 1) An initial GRN is

considered. (Step 2) A list of the downlink structures is derived from the

GRN giving each downlink structure it’s unique id. (Step 3) Each downlink’s

constituent nodes are contrasted with every other downlink’s nodes. Downlinks

form topological interactions in the VMN if they have at least one common

node. The strength of the interaction is equivalent to the number of shared

nodes between the corresponding downlinks.

by a single link of unit weight. Herein we term such a resultant network, a vertex-

based motif network (VMN). An illustration of this graph transformation is shown in

Figure 6. VMNs are therefore manifestly undirected networks. Although E. coli is

sparse ([56]), its equivalent VMN contains many more nodes due to the approximately

278,000 downlinks supported in the network, most of which share nodes due to the

hierarchical nature of the E. coli GRN. Therefore, its VMN is dense

Figure 7 contrasts differences in the total degree distributions of three sample
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Fig. 7. A plot of the number of nodes (vertical axis) vs. the cumulative degrees (hor-

izontal axis) of VMNs (left) as compared to their respective GRNs (right).

GRN subnetworks of sizes n = 500 (right panels) with their corresponding VMNs

(left panels). Some VMNs reached as much as 400-fold the number of nodes as their

original subnetwork. Finally, we note that degree distributions exhibited by VMNs

indicate an absence of correlation in the abundance of shared vertices among downlink

motifs.

4.3 Data Representation

Computationally, we have represented GRNs and VMNs using square matrices,

respectively labeled G and V . A GRN link from node j and incident on node k is

represented by Gjk = 1, and the absence of such connection is represented by Gjk = 0,

similar to an adjacency matrix. Because GRN links carry no weight, the matrix G

may only hold values of 0 and 1. In G of size n, the downlink count SDL can be
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determined mathematically using the equation:

SDL =
1

2

n∑
a=1

n∑
b=1

n∑
c=1

[Gab ∩Gac] . (4.1)

However, V differs from G in that it is symmetric with elements given by the weights

0, 1, 2 and 3, depending on the number of vertex overlaps between one downlink and

another. Therefore, Vlm = Vml = 0 if downlinks l and m do not share any nodes,

Vlm = Vml = 1 if downlinks l and m share one node, and so on.

4.4 Algorithm for Network Growth

A subnetwork of a target network, termed a “substrate,” accumulates one down-

link per attachment step. Table 3 illustrates possible downlink-to-downlink attach-

ments, as based on the number of vertices shared between a candidate and incoming

downlink motif (DLs). In order to determine the appropriate attachment, the follow-

ing steps are considered.

4.4.1 Step 1 - Determine candidate downlink type

In order to select an existing downlink from the substrate network as a candidate

for attachment, its type needs to be specified. We denote the sums of the three

downlink types as NTGG, NTTG and NTTT , such that

SDL = NTGG +NTTG +NTTT . (4.2)

Using Eq. 4.2, the probability that a selected candidate downlink is of type TGG,

TTG, or TTT is determined by, PTGG = NTGG
SDL

, PTTG = NTTG
SDL

, and PTTT = NTTT
SDL

in that order. These probabilities are later used as selection kernels to determine

the type of candidate downlink. A random number, r1, is generated with uniform

probability on the interval r1 ∈ [0, 1]. If 0 ≤ r1 < PTGG, a TGG downlink is considered
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Table 3. Every type of potential downlink-to-downlink attachment.

Category Pattern id Pattern graph Attachment description
Applicable DL-DL

combinations

One node
attachment P1 Root TF coupling.

TGG-TGG, TTG-TGG,
TTT-TGG, TGG-TTG,
TTG-TTG, TTT-TTG,
TGG-TTT, TTG-TTT,

TTT-TTT

P2 leaf TF to root TF coupling.

TTG-TGG, TTT-TGG,
TGG-TTG, TTG-TTG,
TTT-TTG, TGG-TTT,
TTG-TTT, TTT-TTT

P3 leaf gene coupling.

TGG-TGG, TTG-TGG,
TGG-TTG, TTG-TTG,
TTT-TTG, TTG-TTT,

TTT-TTT

Two node
attachment P4

(1) Root TF coupling,
and (2) one leaf gene coupling.

TGG-TGG, TTG-TGG
TGG-TTG, TTG-TTG,
TTT-TTG, TTG-TTT,

TTT-TTT

P5
(1) Root TF couples with leaf TF,

and (2) one leaf TF couples with root TF.
TGG-TTG, TTG-TTG,

TTT-TTT

P6
(1) Leaf TF couples with root TF,

and (2) one leaf gene couples with leaf node.

TTG-TGG, TGG-TTG,
TTG-TTG, TTT-TTG,

TTT-TTT

P7
(1) Leaf gene couples with leaf gene,

and (2) one leaf gene couples with leaf gene.

TGG-TGG,
TTG-TTG,
TTT-TTT

Three node
attachment P8

(1) Root TF couples with leaf TF,
and (2) one leaf TF couples with root TF,

and (3) one leaf gene couples with leaf gene.
TTG-TTG,
TTT-TTT

Transcription factors are red, and genes are blue.

as a candidate for attachment. If PTGG ≤ r1 < PTGG + PTTG, a TTG downlink is

considered. Otherwise a TTT is considered for attachment.

4.4.2 Step 2 - Selection of candidate downlink

A VMN is created from the downlinks subscribing to the type selected in Step 1

and the preferential attachment mechanism is employed ([25]). A random downlink l
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is picked with uniform probability, and it’s degree centrality is calculated as follows:

Cl =

∑t−1
a=1 Vla∑t

a=1

∑t
b=1 Vab

, (4.3)

wherein t represents the total number of downlinks in the VMN. Next, a random

number 0 ≤ r2 ≤ 1, is compared with Cl such that if r2 < Cl, l is selected as a

candidate downlink. On the other hand, if the condition is not satisfied another

downlink is picked at random and the process is repeated.

4.4.3 Step 3 - The type of incoming downlink

Incoming downlinks may be either of the three downlink types, generated at

random with uniform probability.

4.4.4 Step 4 - The number of shared nodes

A similar strategy to that of Step 1 is implemented, except that the probability

distribution depends on the number of shared nodes between pairs of downlinks and

not the number of each type of downlink. There are Spair = SDL(SDL − 1)/2 total

cases of downlink pairs sharing nodes, each of which can share 0,1, 2, or 3 nodes.

Since our model does not account for disjoint components, we ignore the cases where

downlink pairs share no nodes. We denote the number of pairs sharing 1, 2 and

3 nodes as Ns1, Ns2, and Ns3 respectively. Consequently the probabilities for node

sharing can be determined by Ps1 = Ns1
SDL

, Ps2 = Ns2
SDL

, and Ps3 = Ns3
SDL

. Next a third

random variable 0 ≤ r3 ≤ 1 will be compared with the ranges (0, Ps1), (Ps1, Ps1 +Ps2)

and (Ps1 +Ps2, Ps1 +Ps2 +Ps3) respectively to determine the number of shared nodes

as was done in Step 1.
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Table 4. Applicable Downlink to Downlink attachments for a given candidate down-

link, incoming downlink and number of vertex overlaps.
DL-DL

combination
Applicable
patterns

DL-DL
combination

Applicable
patterns

DL-DL
combination

Applicable
patterns

One node TGG - TGG {P1, P3} TTG-TGG {P1, P2, P3} TTT-TGG {P1, P2}

attachment TGG - TTG {P1, P2, P3} TTG-TTG {P1, P2, P3} TTT-TTG {P1, P2, P3}

TGG - TTT {P1, P2} TTG-TTT {P1, P2, P3} TTT-TTT {P1, P2, P3}

Two node TGG - TGG {P4, P7} TTG-TGG {P4, P6} TTT-TGG NA

attachment TGG - TTG {P4, P5, P6} TTG-TTG {P4, P5, P6, P7} TTT-TTG {P4, P6}

TGG - TTT NA TTG-TTT {P4} TTT-TTT {P4, P5, P6, P7}

Three node TGG - TGG NA TTG-TGG TTT-TGG NA

attachment TGG - TTG NA TTG-TTG {P8} TTT-TTG NA

TGG - TTT NA TTG-TTT TTT-TTT {P8}

4.4.5 Step 5 - The attachment pattern

Knowing the candidate downlink, the type of incoming downlink and the number

of nodes to be shared (or overlapped), we can use Table 4 to proceed with an attach-

ment. For example, having selected a candidate TGG, an incoming TTG, that will

share two nodes, from Table 4 we are only allowed to proceed with three attachment

patterns {P4, P5, P6}. Each pattern is given an equal probability of being chosen

(here 1/3). A process similar to the random number generated in Steps 1 and 4 is

used to determine which pattern will be chosen.

4.5 Results and Discussion

4.5.1 Fidelity of the downlink-based preferential attachment mechanism

We extracted 5 different target networks of 100 nodes from the E. coli LCC

using the GeneNetWeaver software in the manner explained above. We extracted

substrate subnetworks upon which to “grow” new networks from these target networks

of relative sizes equal to 10, 20, 30, and 40 nodes. We sampled 5 substrates of each
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size, resulting in a total of 20 substrate subnetworks per target network derived from

the E. coli LCC. Each substrate network was grown to a size of 100 nodes using

two algorithms: (i) the attachment kernel (linear, power-law and sigmoidal) method

as presented in [31]; and, (ii) the downlink based attachment mechanism explained

above.

For networks generated using the downlink based preferential attachment mech-

anism we calculated the 3 types of downlink attachment probabilities in two ways.

In the first method, termed “target attachment,” values for the fraction of downlinks

of each type, PTGG, PTTG, PTTT , and fractions of downlinks that share one (Ps1) two

(Ps2), and three (Ps3) vertices were all calculated from the target networks derived

from the E. coli LCC. This method is biased, given that we must use the structure of

the biological networks to inform that of the “grown” networks. The second method,

termed “substrate attachment,” calculates the same probabilities as the first method,

but iteratively from the current state of the grown network. This method is unbiased,

in the sense that it is ignorant of the final topology of the target network.

Degree distributions of the “grown” networks were fitted to the data using a

power-law equation, and each of the two methods was compared individually to the

fitted exponents of the biological networks as a measure of their fidelity. Exponents,

γ, were estimated for in-, out-, total degree distributions (Table 5), but also for

distributions relating the participation of nodes in downlink substructures (Table 6).

A lower value for the difference in fitted exponents suggests a higher fidelity of the

attachment model to the properties of the “target” biological network. As can be seen

from Table 5, fidelity of the degree distributions between grown and target networks

is higher for downlink-based attachment mechanisms as compared to the attachment

kernel method of [31].

Error bounds for the distribution of nodes participating in downlink substruc-
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tures show similar traits to that observed for the degree distributions. Out of the five

substrates, the fifth network had marginally better distributions when grown with

single node attachments for the same reasons explained above. Additionally, using

the probabilities calculated from the target network (i.e., “target attachment, Tables

5 and 6) does not always lead to higher fidelity, as can be seen in the fourth and fifth

networks. This is again because quite a few nodes do not participate in downlink

structures and hence the probability distributions from the goal network make the

counts skewed.

4.5.2 Evolutionary mechanisms and downlink-based network growth

Preferential attachment mechanisms have been suggested, sometimes in addition

to other mechanisms (e.g., duplication events), as models of evolutionary formation of

gene-regulatory ([57]), protein interaction ([58]), and metabolic networks ([59]). For

gene-regulatory networks, mutations to DNA bases may alter the affinity of DNA-

binding proteins or cis-regulatory modules to result in rewiring or admission of novel

regulatory interactions ([60]). It is plausible that evolutionary mutations to DNA

sequences result in creation of whole downlink transcriptional modules over a single

generation, given the local nature of cis-regulatory mutation mechanisms and the po-

tential for gene duplication events. For example, base-pair mutations can alter the

availability of new binding sites, which manipulates the “distance” between interact-

ing sites via insertion or deletion of cis-regulatory modules or sub-functionalization

due to regional duplications, among others ([60]). At the system level, correlations

between mutations over successive generations may be needed to consistently evolve

new cis-regulatory modules and gene-regulatory interactions. However, even a node-

by-node attachment mechanism (i.e., DNA sequence mutations that result in a single

novel gene-regulatory interaction) holds potential for multiple novel gene-regulatory

38



interactions formed over a single generation ([57]), which may explain the fewer nodes

in the GRN observed to not participate in downlink modules. This can be linked to

the error bounds generated for the fifth substrate, where results are marginally better

for single node attachments; in this network only approximately 80% of the nodes

participated in downlink motifs as opposed to ≥90% for networks labeled 1-4.

It is currently difficult to directly test hypotheses regarding network ’growth’

mechanisms due to experimental difficulties in manipulating the evolution of tran-

scriptional networks in microorganisms such as bacteria. An attempt to experimen-

tally emulate the “bottom up” approach employed in many attachment or duplication

based network growth mechanisms, such as the motif-based attachment method pro-

posed in this paper, may be therefore impractical with current technologies. One

alternative might be to reverse the growth process. Transcriptional regulatory net-

works, such as the E. coli network dataset analyzed here, serve as target states of

the growth mechanisms; beginning with these fully formed networks and sequentially

“deactivating” regulatory interactions between genes and transcription factors may

provide valuable insight into the processes that formed them. For example, protein

production could be suppressed with RNAi tailored to specific mRNA, thereby elim-

inating a regulatory interaction by preventing protein proliferation; another strategy

could be to target a transcription factor’s activated state, perhaps by interfering with

phosphorylation/dephosphorylation reactions through crosstalk ([61]), thus modulat-

ing its binding affinity to the correct DNA sequence and preventing gene activation.

As a proof of principle, some experimental efforts have already succeeded in exten-

sively “rewiring” E. coli ’s transcriptional regulatory network ([43]). Even so, future

work is needed to predict dynamical consequences of adding or removing regulatory

interactions specific to the attachment mechanism (in our case, regulatory interac-

tions associated with downlink motifs), which could be evaluated using these or other
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experimental methods.

Recent developments in “in vitro” circuit design using microfluidic cell-free sys-

tems for the rapid prototyping of synthetic genetic networks as a “biomolecular bread-

board” for molecular programming ([62]) is another promising avenue for experi-

mentally validating the network growth principles proposed here. The biomolecular

breadboards project has successfully synthesized different types of feed-forward loop

motifs ([63]) and can be extended to design coupled FFL circuits. Similarly, such

synthetic biology circuits of coupled downlink motifs can experimentally validate the

dynamical consequences of our proposed network growth method thereby creating new

hypotheses on whether coupled downlinks exhibit any preferences in natural selection.

Currently however, this can only be achieved at a smaller scale by synthesizing small

networks of connected downlinks.
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Table 5. Statistics for the difference between power-law exponents of candidate and

target network’s degree distributions resulting from either the Attachment

Kernel method reported in ([31]), or from the Downlink Attachment method

reported here.

Networks

1 2 3 4 5

Attachment Probability In Out Tot. In Out Tot. In Out Tot. In Out Tot. In Out Tot.

Attachment Kernel Method

Linear 0.91 0.94 0.81 0.25 0.55 0.18 0.86 0.74 0.63 1.18 0.87 0.75 0.8 1.92 0.21

±0.6±0.6±0.6±0.3±0.2±0.1±0.4±0.3±0.6±0.5±0.4±0.7±0.5±0.2±0.3

Power-law 1.09 1.08 0.99 0.23 0.57 0.16 0.8 0.71 0.73 1.09 0.99 0.46 0.88 1.91 0.19

±0.5±0.5±0.7±0.2±0.2±0.1±0.4±0.4±0.7±0.5±0.2±0.6±0.6±0.2±0.4

Sigmoidal 0.92 0.98 0.97 0.42 0.63 0.15 1.01 0.66 0.82 1.25 0.65 1.09 0.62 1.91 0.3

±0.6±0.5±0.7±0.3±0.1±0.1±0.5±0.3±0.6±0.5±0.4±0.6±0.5±0.2±0.2

Downlink Attachment Method

Target Attachment 0.08 0.96 0.13 0.38 0.21 0.07 0.62 0.12 0.1 0.22 0.44 0.07 1.89 1.9 0.35

±0.1±0.6±0.1±0.0±0.3±0.1±0.5±0.1±0.0±0.2±0.3±0.0±0.0±0.0±0.3

Substrate Attachment 0.16 1.4 0.61 0.37 0.69 0.02 0.38 0.9 0.36 0.48 0.94 0.37 1.9 1.9 0.41

±0.1±0.2±0.4±0.0±0.2±0.0±0.0±0.0±0.6±0.7±0.2±0.3±0.0±0.0±0.4
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Table 6. Statistics or the difference between fitted power-law exponent for candidate

and target networks’ distributions of genes participating in downlinks.

Networks

Attachment Probability 1 2 3 4 5

Attachment Kernel Method

Linear 1.17 1.19 0.79 1.32 0.33

±0.5±0.5±0.4±0.4±0.3

Power-law 0.9 1.27 0.72 1.07 0.51

±0.5±0.6±0.1±0.5±0.2

Sigmoidal 1.43 1.1 0.86 1.56 0.15

±0.0±0.3±0.1±0.1±0.1

Downlink Attachment Method

Target Attachment 0.67 0.43 0.34 0.75 0.63

±0.2±0.1±0.0±0.4±0.6

Substrate Attachment 0.75 1.2 0.34 0.69 0.62

±0.3±0.5±0.0±0.4±0.6

42



CHAPTER 5

APPLICATIONS: BIO-INSPIRED WIRELESS SENSOR NETWORKS

Wireless Sensor Network (WSN) simulations constitute a big portion of this research

because they are used to determine In-Silico network routing efficiency. This chapter

serves as a motivation for considering WSNs adopting bio-topologies vs other networks

as well as shed light on ”Biological Robustness”. Moreover the mapping from In-Silico

to WSN is provided.

5.1 Biological Robustness and Applications

A biological network is a graphical representation of a system of interacting

organic components such as cells, tissues, organs, etc. For example two proteins

binding are represented with two nodes (the proteins) and a bidirectional link (the

interaction) in a protein-protein interaction network [64]. Principles such as swarm

intelligence [65], artificial immune systems [66], cellular signaling networks and many

others [32] have existed for millions of years. Hence, their evolution resulted in de-

veloping captivating features such as robustness to internal component failures, ac-

climating to external changes, self organization and efficient signaling, collaborative

tasking and their ability to evolve through learning [32, 33, 34].

All the above conceptualize what is known as ’Biological Robustness’ [17]- a

distinctive quality mainly attributed to their bio-topologies [18]. As a result, many

research has been directed towards adopting these topologies to solve networking

related problems. For example, ’Ant Colony Optimization’ is used in ’swarm intelli-

gence’ to enhance routing protocols in WSNs and techniques for distributed search
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and optimization [65]. A proposed self organizing WSN, i.e adopting cellular signaling

network schemes, exhibits optimal topologies post nodal failure, thereby guaranteeing

optimal packet transmission [67]. Moreover, WSNs can be mapped to an artificial

immune system, where B-cells can be viewed as sensor nodes, antibodies as sensor

data, T-cells as rate control parameter, antigen as estimation distortion and natural

extinction as packet loss [68]. Many other bio-inspired networking applications can

be found in [34].

5.2 Biological vs. Exponential topologies

Precisely what makes such bio-topologies optimal? ”Sparseness” or ”loose connected-

ness” [56]. Biological networks degree distributions can be viewed using a power law,

p(k) ∼ k−γ [69]. In a log-log plot of the different nodal degrees (in- out- and cumula-

tive) vs. the nodes that have such degrees, p(k) will results in a steep negative slope.

Therefore, the bulk of the nodes have degrees much lower than the average degree,

〈k〉, while few nodes have degrees much higher than 〈k〉 (i.e hubs) [24]. This for-

mation results in loosely connected components. Prime examples of such graphs are

the transcriptional networks of E. coli and Saccharomyces Cerevisiae (herein Yeast),

where most genes have no outgoing edges and single incoming edges.

Most biological networks including E. coli ’s and Yeast’s transcriptional regula-

tory networks (TRNs) have 2 < γ < 3 [69]- a property which classifies a network as

’scale-free’ (SF) [24]. Having multiple low degrees to few hubs formations creates an

increased probability of having random attacks targeting lower degree nodes, which

therefore results in loss of insignificant number of links [36]. Similarly with edge

rewiring, the relative damage to the whole network will not be afflictive. However

targeted hub attacks can be costly and result in disjointing the network [70].

Other topological classifications belong to two other major categories, namely

44



Erdö-Rényi (ER) [71] and small-world (SW) [28] networks. ER considers graphs

extracted out of a complete network with a prescribed number of nodes and edges,

provided the edges are selected with equal probability. SW networks are inclined

towards minimizing the number of hops between pairs of nodes during their growth.

In contrast with SF networks, interconnections grow adopting ’the rich get richer and

the poor get poorer’ criterion. ER and SW networks typically have tightly connected

components, which is different from that of scale-free networks. The probability of a

selected node of a particular degree is p(k) ∼ 〈k〉, therefore making random attacks

as equally costly as targeted attacks [24].

5.3 Mapping Transcriptional Regulatory into Wireless Sensor Networks

Similarities between TRNs and WSNs are explained through an activity named

transcription. During transcription, genes process signals from nearby neighbors in

the form of transcription factors, proteins of antithetic degrees that stimulate/inhibit

genes to/from generating mRNA molecules, which encrypt a chemical to be synthe-

sized at the receptor gene [23]. Therefore TRN nodes communicate and alter one

another decisions through sending signals (transcription factors), which are in return

processed into output signals (mRNAs), a process which is similar to WSNs were

sensors receive packets from nearby neighbors with packet forwarding instructions to

other nigh destination points (sensors). As a result, any node in a network (TRN and

WSN) can affect the decision of every other node and the overall performance of the

grid in instances of nodal collapse.

A single transcription factor can regulate other transcription factors and genes

per unit time, while genes can never regulate other nodes. These molecules having

half-lives T1/2 = ln (2)/k [72], were k represents the decay rate constant, are subject to

degradation. Similarly in the case of WSNs, packets are forwarded from source nodes
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to sink nodes are dropped if they exceed the queue length. Therefore, genes can be

considered as sink nodes and transcription factors as source nodes. On that account,

we describe one measure of robustness in WSNs that adopt biological topology as the

ability for each node in the network to deliver information to their local sink nodes

with minimal packet loss.

Furthermore, WSNs adopting TRN topologies have proven to perform better

in terms of packet transmission than randomly generated networks both; in small-

[73] and large-scale [21] networks. Because of such reasons, we incorporate WSNs

adopting transcriptional network graphs to aid in selecting topological features that

promote efficient packet receival rates.

Here WSN Transmission scenarios were evaluated using NS-2 simulations [74].

A duplex-link is established between the nodes (based on input files) that have edges

in TRNs. A bandwidth of 1 Mb is assigned for each link in this simulation, with a

packet interval of 1 ms. Ten simulations are executed for every category of observation

using a flooding routing protocol. Information is transmitted at periodic intervals and

the packet receipt rate at the sink node is recorded. A packet-loss model is used to

evaluate the performance of each network of fixed size, in which packet-loss of 0 -

50% is considered.

A note on the packet loss model. The loss model percentage defines the

level of channel noise along the paths for which packets traverse a WSN, i.e. every

link in the network. Packets transmitted in a 0% loss model will experience no drop

along the transmission links, while a 100% channel noise (loss) will guarantee a failed

transmission. The loss model is a function of the individual links where each link has

the exact noise level.
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CHAPTER 6

EVALUATING NETWORK ROBUSTNESS IN WIRELESS SENSOR

NETWORKS

As mentioned in section 1.3, the main aspects of network robustness are namely

performance, connectivity and tie formations. In this section we discuss metrics that

capture these phenomena in WSNs. Moreover, we analyze the networks ability to

preserve such characteristics post disruptions. Here we consider consecutive random

edge deletions as disruptions. A similar approach was used for connectivity analysis

in [24] for which the authors have concluded that scale-free networks are more robust

than exponential (or random) networks as their diameters suffer at a lesser rate post

random node deletions.

Random failure analysis are conducted for WSNs adopting E. coli ’s scale-free

topologies vs. WSNs adopting exponential topologies generated at random of similar

sizes (i.e., nodes and links). Networks of node sizes = 100, 200, .., 600 were generated

for this study. Each network starts with an initial number of links and undergoes a

single random edge deletion, then it’s metrics are recorded (e.g clustering coefficient)-

this process is repeated for 60% the number of link.

6.1 Types of Networks And Data Representation

In this section we explain the process of acquiring the different types of networks,

namely; transcriptional regulatory, scale-free, and random networks.
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6.1.1 Transcriptional Regulatory Networks

TRNs are represented using a digraph G(V,E), where each node in V represents

a gene and arcs in E represent a regulation of one gene to another. In this study

we limit our research to the topology of TRNs and do not consider the regulation

types, i.e whether or not a regulation is stimulatory or inhibitory. Furthermore, a

TRN is composed of two types of proteins: (1) transcription factors (or TFs) and

(2) regulated genes, where a transcription factor can regulate other TFs and genes,

however, genes do not regulate others. This is not to be confused with gene regulatory

networks (GRNs) where gene-gene edges are possible.

All our sample networks are derived from the TRNs. A sample TRN is needed

as input for generating SF networks (section 6.1.2), while it’s dimensions (nodes

and edges) are required for ER networks (section 6.1.3). TRN subnetworks of user

defined sizes are rendered using GeneNetWeaver [46] tool- originally developed as an

application to help researchers in evaluating network inference algorithms.

The skeletons which embodies all TRN extracted subnetworks are that of the

complete TRNs of E. coli and Yeast, both available on GeneNetWeaver tool. Both

networks are considered scale-free (section 5.2) and are completely mapped. E. coli

is composed of 23 disjoint components together forming 1565 nodes and 3758 edges,

while Yeast is a single network of 4441 nodes 12873 edges. Depth First Searches (DFS)

are used to ensure that extracted subnetworks have no isolated nodes. Furthermore,

self loops associated with regulatory TFs capable of up/down regulating themselves

are deleted to avoid computational overheads- though crucial for TRN functionality,

they do not contribute to WSN performances.
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6.1.2 Scale-free Networks

SF networks are products of randomizing the extracted TRNs (section 6.1.1).

Network randomization is done using the method of ”switches” [40], which preserves

the degrees of the nodes. The TRN remains SF, however, it is an entirely different

network. The randomization starts with four distinct nodes A, B, C and D, where an

edge is incident from A unto B and another from C unto D. Both edges are split in

half and rewired such that A becomes incident on D and C becomes incident on B.

This process is repeated a minimum of |E| times. The end result is a network having

the same γ, however, substructural counts like for instance a three chain loop (e.g.,

A→B→C→A), will not be the same- also referred to as a ”randomized network”.

Note, these substructures are termed motifs and are explained in section 7.1.5.

6.1.3 Random Networks

For several of the TRNs extracted from E. coli and Yeast, random networks of

similar dimensions are generated using a variant of the ER model [71]. The process

starts by prescribing a number of nodes n and edges m. Next, m edges are selected

with equal probability from the completely connected n-node graph. The resulting

network is checked for connected-ness using DFS, if the network contains any iso-

lated components the selection process is repeated, otherwise the resulting network

suffices. An example of the different types of networks is given in Figure 8. Note,

this algorithm is exactly the same as the ER model, however, ER considers disjoint

network sampling. In our case, we disregard a network if the random sample contains

disconnected components.
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Fig. 8. A sample 200 node (a) transcriptional subnetwork of E. coli (regulation type

not shown), (b) a scale-free randomization of similar degree sequences, and (c)

a random network of similar dimensions (|V | and |E|).

6.1.4 Network Representation

Our generated sample networks are represented using a directed graph G(V,E).

V is composed of a set of source genes u ∈ V , and destination genes v ∈ V , while

E contains the set of edges e(u, v) ∈ E : where gene u regulates gene v. G is stored

in a |V | × |V | adjacency matrix A, where ∀e(u, v) : Auv = 1 and Auv = 0 otherwise.

The undirected adaptation of G, G′(V, L), where |L| ≤ |E|, is composed of the same

vertices, however l(u, v) denotes a bidirectional link between u and v. A |V | × |V |

matrix M stores G′, where ∀l(u, v) : Muv = Mvu = 1 and 0 otherwise. In this regard,

M is symmetric and A is not, however A may contain more information about a

network. Simplifying to an undirected case is necessary for simpler computations like

for example calculating the global clustering coefficient.

6.2 Performance: Packet Transmission

For this study the NS-2 setup considered utilizes topologies where the node with

the largest degree is a sink, and every other node is a transmitter. It’s imperative

that a WSN is capable of re-routing packets to destination nodes post link failures,
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which happens often due to line-of-sight obstructions [75]. Although, it is expected

that received packets are reduced after eliminating edges, the performance reduction

rate should be kept at a minimum for robust topologies. Therefore, we consider the

average packet loss in packets per edge knockout. Moreover, a robust network should

maintain performances when subject to elevated loss model percentages.

The mean loss in packets for different loss models of 0, 20, 35 and 50% are

recorded in Table 7. For each network and loss model, the initial packet receival rate

was recorded and the successive rates where also recorded post each edge deletion in a

vector fashion. These values are then normalized with respect to the initial transmis-

sion rate (current transmission divided by initial transmission), and the differences

between successive packet transmission rates are stored in another vector. The means

of the resulting vectors for each network and loss models are recorded in Table 7.

Almost every case in E. coli performed better than Random as their percentage

mean packet losses are less. Furthermore, E.coli shows more robustness towards

elevated channel noises. For example, the 300 node case in E. coli maintains the

same average packet loss throughout the different channel noises, while in the random

network cases; the average packet loss almost goes to double of it’s initial loss value.

For these two observations we conclude that bio-inspired networks are more robust

than ER networks in terms of WSN transmission efficiency.

6.3 Connectivity: Average Shortest Path

The average shortest path measures the average number of hops it takes to travel

along the shortest paths between pairs of nodes in the network. Many consider the

metric to be the most universal measure for assessing information transport effi-

ciency [27]. Others adapt variations of the shortest path for assessing connectivity

such as network efficiency (inverse) [76], or the diameter (maximum) [24]. We denote
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Table 7. Normalized percentage mean packet transmission loss vs. loss model percent-

ages for Bio- and random modules.

E. coli Random

|V | 0% 20% 35% 50% 0% 20% 35% 50%

100 0.128 0.131 0.135 0.137 0.177 0.185 0.204 0.246

200 0.057 0.082 0.085 0.072 0.064 0.1 0.1 0.174

300 0.064 0.064 0.064 0.064 0.064 0.088 0.099 0.123

400 0.04 0.037 0.037 0.04 0.04 0.04 0.04 0.05

500 0.024 0.024 0.025 0.025 0.02 0.028 0.03 0.033

600 0.03 0.031 0.031 0.031 0.035 0.038 0.04 0.041

the average shortest path,

〈d〉 =
2

n(n− 1)

|V |∑
i=1

|V |∑
j=1

dij, dij 6=∞, (6.1)

where dij is the shortest path between nodes i and j.

Values of 〈d〉 are plotted against |L| for different values of |V | in Figure 9. For all

the sample networks, 〈d〉 rises at a higher rate in the random networks as compared

to E. coli ’s networks. While these are similar cases to the nodal knockout experiment

mentioned in [24] using the diameter as a performance metric, we observe that this

phenomena is repeated for edge knockouts as well. This suggests that robustness of

SF networks extend beyond the effects of nodal disconnection from their immediate

neighbors since nodal knockout can vary in terms of edge deletions, however single

edge deletions are constant for both TRN and ER topologies.

Furthermore, the graph of |V | = 600 suggests that the random network goes

through a series of disconnections close to the end of the edge deletion process which
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Fig. 9. Edge knockout analysis for E. coli subnetworks (blue) vs. randomly generated

(red) networks of similar |V | and |L|. The plots depicts the performance of

the average shortest paths, 〈d〉 vs. the fraction of the edges remaining in the

networks.

explains the sudden drop in 〈d〉. Essentially, 〈d〉 gets recorded for the surviving largest

component. Due to the above, and because 〈d〉 is sustained in E. coli as compared to

random networks, we conclude bio-inspired networks are more robust than random

networks in terms of connectivity.

6.4 Tie formations: Global Clustering Coefficient

The global clustering coefficient, CG, measures the tendency for a network to

form internal communities. Scale-free biological topologies exhibit high clustering

coefficients and small average shortest paths [77, 78]. Moreover, evidence provided

in [28] show that real-world networks such as collaboration and micro organism neural

networks create denser ties than ER networks, and are more resilient to edge re-wiring.

CG; computed using the formula [(3×number of triangles)/number of connected triplets],
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or computationally,

CG =

|V |∑
i=1

|V |∑
i=1

|V |∑
i=1

Mij ∧Mjk ∧Mjk

(Mij ∧Mjk) ∨ (Mij ∧Mik) ∨ (Mjk ∧Mik)
, (6.2)

in an undirected graph. In general, a network with relatively high CG is considered

to have densely connected ties, or in other words, nodes form larger aggregates with

their immediate neighbors.

In WSNs, clustering is a prominent area of research as it can be utilized for

enhancing their efficiency. For example, experimenting with cluster sizes can be useful

for avoiding the ”hotspot” problem [79], where some nodes gather more load during

operation and die faster. Using clusters, local nodes curate data for cluster heads,

which in return can relay packets to base (or sink). Several works have been produced

for experimentation with clusters and cluster heads in both, heterogeneous [80, 81]

and homogeneous [79, 81, 82, 83] WSN orientations.

Though it is already established that biological networks exhibit internal commu-

nities more than that of random networks [28], our analysis show how well can these

networks sustain their initial clustering coefficient, herein CG
0 . During edge failures

the clustering fluctuates, therefore proves irrelevant to robustness (not like 〈d〉 where

almost each knockout show a vivid increase). For this reason we are more interested

in the absolute difference |CG
0 − CG| to indicate how far did the clustering deviate

from the original. Figure 10, presents the mean and the maximum of this quantity.

The chart shows that for |V | ≥ 200, E. coli modules are capable of sustaining their

clustering better than that of the random networks, However, random networks out-

performs E. coli for |V | = 100. This is common because for smaller SF samples it

is sometime the case that subnetworks exhibit exponential traits [84]. In most cases

however, we observe that E. coli ’s clustering is more robust to change.
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and generated ER networks of similar dimensions. Define a vector V that

holds the quantities |CG
0 − CG| calculated post every edge elimination. The

mean (blue) and max (maroon) for V are given.
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CHAPTER 7

CASE STUDY 1: METHODOLOGY FOR SELECTING ROBUSTNESS

FEATURES IN WIRELESS SENSOR NETWORKS

In this chapter we describe the methodology for ranking network features that in-

fluence packet transmission in WSNs. Ranking is achieved via feature coefficient

weights of the SVR prediction hyperplanes. 3590 graphs of 50 ≤ |V | ≤ 1450 were

considered as separate data points for SVR learning, out of which 1590 networks were

TRNs extracted from E. coli and Yeast using GeneNetWeaver tool. The remaining

2000 networks were SF derived from 1000 TRN subnetworks using the methodology

outlined in sections 6.1.2. Note, the SVR is used as basis for ranking features that

influence WSN robustness using the normalized weights for linear models methods

outlined in [85]. The prediction phase (section 7.2.3) is used for the sole purpose of

establishing a reliable model.

7.1 Feature Selection

Our premise is that the graph theoretical properties influence the packet trans-

mission efficiency using the WSN simulation scheme described in Section 5.3. Fea-

tures are calculated from the sample networks matrix using both directed (G) and

their undirected (G′) adaptations depending on the feature considered. In addition

to features mentioned, 〈k〉, 〈d〉 and CG, all sample features have been determined

computationally; their concepts are described in the following.
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7.1.1 The Degree Index

Consider vector K, which holds the degrees for nodes in an undirected network.

The Degree Index is defined as the ratio of the average nodal degree, Kavg, to the

highest degree, Kmax as follows;

DI =
Kavg

Kmax

. (7.1)

The packet transmission performance depends heavily upon the degree of the sink

node selected [86, 73, 21]; specifically hub nodes, having relatively larger degrees

than the average, usually exhibit better packet receipt rates when selected as sink

nodes. Furthermore, the average packet receipt rates does not monotonically increase

with the selection of sinks having higher degrees, however, the highest degree node

almost always gives best performance.

Based on this observation, we hypothesize that the Degree Index is a suitable

metric that can characterize packet transmission efficiency. As DI → 1, the network

becomes more tightly connected, such that the nodes would gain less significance in

comparison to one another to act as sinks (i.e., the network does not rely heavily

on fewer potential sink nodes). Furthermore, as DI increases for any particular sub-

graph, the percentage of packets received decrease making the benefits of sink node

selection (having highest degree) largely redundant.

7.1.2 Hub Node Density

The density of the hub nodes measures the territorial occupation of the adjacency

matrix grid by the higher degree nodes as a fraction of the total number of edges. We

hypothesize that the hub nodes are the hot spot traffic management zones as they

have more packets hopping through them. We can determine this quantity as follows:
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HND =
1

|L|

nh∑
i

[
2

ng∑
j=gi

Aij +

nh∑
j=hi

Aij

]
(7.2)

were nh is the number of hub nodes, ng is the number of genes (receivers), gi is the

index of nodes outside the set of hub nodes, and hi is the index of the hub nodes.

7.1.3 Sink coverage

The sink coverage measures the percentage of nodes that have a direct link to

the sink node,

SC =
Kmax

|V |
(7.3)

When node a tries to send packets to node b through node c lying along the path

Pab, packets are queued at c before they get forwarded to b, which in return can be

dropped if packets exceed the queue length at c. However, if c did not exist in Pab,

packets will not be discarded due to multi-hops; SC is a feature that captures such

scenarios.

7.1.4 Network Density

The Network Density is traditionally a measure of the territorial occupation of a

communication network, calculated as the ratio of the sum of the edge lengths to the

surface area occupied by the network grid [87]. Since our simulations do not account

for edge weights, we simplistically consider the nodes to be equidistant, having unit

lengths of one. Our measure accounts for how many links occupy the M grid and

determine the Network Density as follows:

ND =
2|L|

|V |(|V | − 1)
(7.4)
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where, ND ranges between (n − 1)/n2 for a Star configuration (with a single hub,

provided every other node is solely connected to the hub with one edge) or a tree,

and 1− (1/n) for a fully connected sub-graph excluding the self-loops.

Previous work [86] suggests that tightly connected graphs does not necessarily

have higher packet receipt rates. For example, complete networks generate more in-

terference than star topologies. The performance of the networks having the same

ND are comparable because the properties of the sink nodes selected after the ran-

domizations are still preserved in the sub-graphs. Moreover, trees (low ND), do not

necessarily exhibit high packet transmission. For example, a bus topology subjects

packets to multi-hops, which in return increases the chances of packet drops.

7.1.5 The Motif Densities

The repetitive ”motif” substructures have significant contributions to WSN per-

formance and functionality (as we have shown earlier in [22, 21]), as well as affecting

robustness in biological networks [18]. Although various types of motifs have been

identified previously in biological networks, we consider the ”most significant” ones

for our model: the Feed-Forward Loop (FFL) and the Bi-fan [40]. These two motifs

significantly outnumber similar sub-structures when mined from the TRN of E. coli

(or Yeast) in comparison to other randomized networks, and hence they are believed

to have a significance in biological networks in general.

In addition to statistical significance, motifs are known to exhibit peculiar func-

tions. For example, FFLs are notable for their ability to deliver vital functions such as

delay responses times in genes, irreversible speed up, or create pulses [42]. BFs are the

building blocks of dense overlapping regulons, which are considered to be the back-

bone for gene regulatory networks, sharing global functions such as: stress response,

nutrient metabolism, or bio-synthesis of key classes of cellular components [54].
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Fig. 11. Structures of significant motifs; the FFL and BF.

Figure 11 shows the FFL and bi-fans structures as mentioned above, for which

we hypothesize that their relative abundance in the network should make an impor-

tant feature to consider in our regression model. We propose a way of identifying a

networks motif density; their counts divided by their possible occurrences. In this

regard we can define both the FFL and bi-fan densities as,

FFLD =
1(|V |
3

) |V |∑
i=1

|V |∑
j=1

|V |∑
k=1

[
(Aij ∧ Ajk ∧ Aik)

∧ ¬(Aji ∧ Akj ∧ Aik)
]
,

(7.5)

and,

BFD =
1(|V |
4

) |V |∑
i=1

|V |∑
j=1

|V |∑
k=1

|V |∑
l=1

[
(Aij ∧ Aik ∧ Alj ∧ Alk)

∧ ¬(Aji ∧ Aki ∧ Ajl ∧ Akl)
]
,

(7.6)

in that order.

7.1.6 Average Closeness Centrality

The closeness centrality ci measures the relative closeness of node i to every

other node in the network. A close node is capable of delivering information quicker
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to other nodes [88]. Central nodes in biological networks are crucial because they play

the roles of ’organizational hubs’ [89]. The closeness centrality of a node is computed

by,

ci =
n− 1∑|V |
i=1 dij

, dij 6=∞, (7.7)

having values (0, 1], with 0 meaning i is disconnected from the network, and 1 meaning

node i has a direct link to every node.

An increase in ci signifies an increase in communicative efficiency, however, it

does not guarantee robustness to random attacks. For example, if all nodes have

ci = 1, i.e a complete graph, a random attack on any node would cost the network

|V | − 1 links. For the entire network we compute the average closeness as,

〈c〉 =
n− 1∑|V |
i=1 dij

, dij 6=∞. (7.8)

7.1.7 Average Local Clustering Coefficient

The average local clustering coefficient, 〈CL〉, formally defined as

〈CL〉 =
1

|V |

|V |∑
i=1

∑|V |
j=1Aij

Si(Si − 1)
, (7.9)

where S is a vector holding the number of surrounding neighbors for each vertex

i. The metric measures the number of edges connecting the nodes as a fraction of

the number of possible edges that could exist in their local communities. At the

individual node level, this metric can be used to quantify relative nodal participation

in embedded clusters.
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7.2 Regression Model

To summarize, we consider 11 features: 〈k〉, DI, SC, ND, HND, 〈c〉, 〈CL〉, CG,

〈d〉, FFLD and BFD. In the next subsections we discuss the next steps towards gen-

erating the regressor and ranking our features. Those steps include pre-processing

of the features generated, training and validating the SVR.

7.2.1 Pre-processing

In order to check for feature relevancy, pair-wise correlations were considered.

Pearson product-moment correlation coefficient is used to measure trend similarities

(or correlations) between any two feature vectors F1 and F2 as follows,

ρ(F1, F2) =
1

n− 1

n∑
i=1

(
F1i − µF1

σF1

)(
F2i − µF2

σF2

)
, (7.10)

where n is the size of F , µ... the mean and σ... the standard deviation. Features

are considered highly correlated if ρ(F1, F2) ≥ 0.94 or ρ(F1, F2) ≤ −0.94. Because

correlated features add computational overheads to SVR learning and performance,

one of each correlated feature vector pairs is eliminated. For example, the average in-,

out-degree and the diameter where eliminated because their effects are compensated

for via the average cumulative degree and shortest path. The remaining features are

correlated with ρ values shown in the grey-scale map of Figure 12 where ρ(F1, F2)

values are given by,

R =

(
1 ρ(F1, F2)

ρ(F2, F1) 1

)
. (7.11)

Additional, eliminations are considered for outliers. Data points having packet

transmission values that fall outside the range of mean± [3×standard deviation] were
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Fig. 12. Grey-scale showing correlations of feature pairs and their values. Con-

sider Equation 7.10, with F1 and F2 values for features 1 and 2;

−1.0 ≤ ρ(F1, F2) ≤ 1.0. Numbers in the color map are due to R, where

1.0 correspond to strong positive correlation (black), −1.0 strong negative

correlation (white) and 0 for no correlation (gray).

removed. Furthermore, features are scaled by subtracting them from their means and

dividing them by their standard deviations to enhance the learning process.

7.2.2 Training

After generating the packet transmission rates, the values of the loss models were

stored in a y vector of s× 1 dimension for s subgraphs. If X is a s× 11 matrix, then

we can denote X(s) as the sth row of X, which holds the values of the training data

(or topological features) of the sth training sample (or network). X and y are used as

input parameters for generating the model’s weights vector (w) and the bias (b) using

LibSVM[90]. Once the model is generated, any approximation Oi can be predicted

with any input Xi, using Oi = Xiw + b, and the influences of the different features

on the models output are ranked by analyzing the magnitudes of their corresponding
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weights. Other parameters include setting the svm type to an epsilon-SVR with a

linear kernel. The training was repeated several times with varying values of the

hyper parameters; C (the quadratic optimization constraint) and ε (± error range).

The model produced by the parameters which yields the minimum cross-validation

error was used as basis for feature ranking and selection. Furthermore, as we observe

that the values recorded from the different loss models are exactly the same for a

queue length of 1, there was no need to account for any difference in the loss models.

The model set-up and results with varying queue lengths in the NS-2 simulations will

be discussed elsewhere.

7.2.3 Validation

The SVR is validated using a 10 k-fold cross validation error, for which training is

assumed 10 times at random on 90% of the sample space and prediction is performed

on the remaining 10% during each iteration. The error percentage of the difference

between the desired average packet receipt rates and the predicted values is calculated

by,

error = 100× |y − yapx|
|y|

(7.12)

were yapx represents the model’s approximated (predicted) values. The error is accu-

mulated after each iteration and then averaged across the 10 folds to give us the cross

validation error. Using the same parameters, training is performed across the whole

sample space and prediction was again performed on the whole data set to calculate

the data set error (or total error). The SVR errors for the different loss models are

given in Table 8.
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Table 8. Support vector regression accuracy for the different data sets and packet

transmission loss model.

TRN SF ER Combined

Loss model(%) Cross(%) Total(%) Cross(%) Total(%) Cross(%) Total(%) Cross(%) Total(%)

0 1.5 0.1 2.0 0.2 1.2 0.1 1.9 0.5

20 1.9 0.7 2.2 1.0 1.4 0.3 2.1 1.1

35 2.3 0.1 2.3 1.1 1.7 0.8 2.5 4.7

50 3.0 4.7 2.5 0.2 2.2 4.7 3.2 8.8

7.3 Feature Ranking in Wireless Sensor Networks

The relative importance of the network features are identified from w, which

holds the coefficients of the regressor’s hyper-plane. Because these coefficient values

differ according to feature space and type, it is relevant to rank them relative to the

most influential, |w|max. In this regard, a feature rank is considered based on the

magnitude of,

ranki =
wi
|w|max

, (7.13)

where i is the index of the coefficient (feature weight). Furthermore a coefficient can

be either positive or negative, meaning it can raise or lower the linear hyper-plane

(SVR).

Feature influence is depicted in Figure 13. In general, We have observed (results

not shown) that the relative importance of the features used in our model can be

ranked in descending order as follows: DI, 〈d〉, ND, CG, HND, SC, 〈k〉, 〈CL〉, 〈c〉,

FFLD, and BFD. DI has maximum influence, while BFD has the least. Out of

the 11 features; 〈k〉, SC, HND, and 〈CL〉 raise the SVR, the remaining cause it to

descend.
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Fig. 13. Consider the maximum of the weight coefficients wmax, which is DI in this

case. Feature relevance to the maximum is the ratio of it’s coefficient wi to

the magnitude of the maximum |w|max.

Several observations can be deduced from Figure 13 via pair wise comparisons. In

regards to the degree distribution, the fact that 〈k〉 is relatively medium positive, and

DI is at maximum negative, suggests that although the degree should be balanced,

the sink node should have a far larger degree than every other node. The value of

the average degree should be mainly compensated for by the maximum degree. In

agreement with these two, SC is at a relatively high positive suggesting that the sink

should have a direct link to large number of nodes, while the rest of the links should

be distributed among the nodes themselves.

Regarding the network’s tightness of connectivity, we observe that a less dense

network is better for transmission, as explained due to the negative-ness of ND,

FFLD and BFD. In contrast with these three, HND is shown to be relatively

high positive, which suggests that the network should be dense among the hub nodes
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and loose among the rest. This can be explained using hierarchal cascades of star

formations, where the network enclosed by the hub nodes is eventually dense as

compared to that enclosed by the others (like in Figures 8 (a) and (b)).

Furthermore, CG is shown to be negative while 〈CL〉 is shown to be positive,

meaning that ”although there should be a decrease in the number of cliques, there

should be an increase at which neighbors of nodes connect to one another”. While the

first part of the statement suggests that the network should be tightly connected, the

second part suggests that these cliques should not overwhelm the network. Combining

both statements, suggests that there should be a distributed local star formations

across the network.

For connectivity, in terms of link hops: the negative 〈d〉 and 〈c〉 show that it

is best for nodes to be as far as possible from one another. However, SC suggests

that these nodes should be closer to the sink. In order to achieve both criteria, the

network should be sparse and densely connected among the hub node regions.

7.4 Example: Testing Attachment Kernels

From Figure 13, the two most influential features affecting the packet transmis-

sions are; DI and SC. The negative DI suggests that Kmax should be much higher

than Kavg, which is a characteristic of scale-free topologies. To accomplish scale-free

random growth, we use BA as part of the attachment kernel. The probability of a

incoming node attaching to an existing node a within the substrate network is given

by,

kernel(BA) =
Ka

nsub∑
i=1

Ki

(7.14)

, where K.. is the degree of a node and nsub the size of the substrate network.

On the other hand, a positive SC suggest that the sink should have relatively
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Fig. 14. Robustness comparisons for packet transmission. Scatter plot of the normal-

ized packet transmission efficiency vs. the normalized size of the network.

Here, P represents the packet receipt post nodal additions, and P0 the initial

performance.

high number of connections. Based on this observation, we hypothesize that the

shortest path to the sink should be a criteria for attachment. In this case, the kernel

should have a reverse effect, where a higher probability of attachment is given to

nodes that are closer to the sink and lower probability is assigned to distant ones- in

other words, using closeness centrality. The shortest path to sink kernel is given by,

kernel(SPS) =
1/(d(s)a + 1)

nsub∑
i=1

1/(d(s)i + 1)

(7.15)

, where d(s).. is the shortest path from a given node to the sink, i.e. the highest

degree node within the substrate.

For simplicity, combining both kernel effects during the growth process, can be

achieved by assigning both probabilities equal weights. Though extensive experiment-

ing is required for acquiring the necessary features and their assigned weights, this

example is intended to give the reader an initial idea of how the kernels can be uti-
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domly grown networks using BA and the proposed attachment kernels; SPS

and combined. The plot depicts the performance of the normalized average

shortest path, 〈d〉/〈d〉0, vs. the normalized number of links in the network,
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Fig. 16. Robustness comparisons for modularity. The deviation of the global clustering

coefficient CG from the original network’s CG
0 plotted against different network

sizes |V | for BA, SPS and combined kernel grown networks.

lized. For more information on the subject, please refer to our previous works in [31,

55]. In this regard, we denote the combined kernel as,
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kernel(Combined) =
1

2

[
Ka

nsub∑
i=1

Ki

+
1/(d(s)a + 1)

nsub∑
i=1

1/(d(s)i + 1)

]
. (7.16)

Results for packet transmission, connectivity and modularity are depicted in Fig-

ures 14,15 and 16 in that order. In this experiment an initial E. coli subnetwork of

50 nodes is grown using all three kernels.

For packet transmission, the improvement for all three approaches are compara-

ble, however the average improvement for SPS and combined are higher than that of

BA. Moreover, Figure 15 shows that all three approaches have comparable increases

in 〈d〉 per edge knockout, however the combined and SPS approaches sustain a singly

connected component past the breaking point of that of BA. Additionally, BA out-

performs the other kernels in terms of sustaining the clustering coefficient deviation

as depicted in Figure 16.
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CHAPTER 8

CASE STUDY 2 - METHODOLOGY FOR SELECTING ROBUSTNESS

FEATURES IN TRANSCRIPTIONAL REGULATORY NETWORKS

In this chapter we describe the methodology for pinpointing the structural features

that affect TRN robustness. Sample TRN and exponential subnetworks of similar

dimensions (|V | and |E|) are considered for optimization using ILP which returns

different subnetworks with similar degree distributions but smaller average shortest

paths (optimized network). Optimal structures will have variations in feature mag-

nitudes. Features which show significant change are considered as candidates for

attachment kernel criteria. Moreover, an Integer Linear Program is given, which

serves as a solution to the problem stated in the motivation of section 2.2.2, which

answers the question of whether or not the TRN of E. coli ; is an optimal network.

And if it is not, how can we make it so?

8.1 Methods

Here we introduce our performance metric, the average shortest path and other

related network features. Their utilization in determining an optimal network using

integer linear programming is explained in the following subsections.

8.1.1 Metrics and criteria for optimal topology

We adopt a version of the average shortest path, 〈d〉, as a measure for network

robustness, which has been widely used as a robustness metric for many complex

systems [1]. In this dissertation, 〈d〉 is defined as the distance, in number of “hops”
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Fig. 17. (a) An exemplary random network and (b) it’s post-optimization output from

the integer linear programming algorithm. The in- and out-degrees of each

node in both are identical, and the existence of routes from the TFs (nodes

1-5) to their target regulated gene (node 6) have been preserved. In this

example, the optimized network (b) exhibits a smaller average shortest path,

〈d〉, than the exemplary network (a).

(i.e., single movements between adjacent nodes) required to connect a transcription-

factor node to a regulated gene, and averaged over all such pairs in a network. We

restrict our analyses to the connected paths from transcription factors to genes. With

these conditions, 〈d〉 can be expressed by the equation:

〈d〉 =
1

p

nt∑
i

ng∑
j

dij, with dij <∞, (8.1)

wherein dij denotes the shortest path between nodes i and j, p the number of con-

nected TF-gene pairs, nt the number of TFs, and ng the number of genes in the

network. The type of the regulatory interaction, either up- or down-regulating, was

not considered in Eq. (8.1).

We note that 〈d〉 is slightly different from other definitions of the average shortest

path, wherein p has been taken as the number of connected pairs without regard for

their type. However, the p of 8.1 is distinct from these by its consideration of biology,
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that it reflects consideration of only a subset of the total number of possible paths

by eliminating any contributions to 〈d〉 between regulated genes. For a detailed

derivation, please refer to Appendix A.

An optimal topology is one wherein a metric of the topology is at an extremum.

As explained in the next section, this criteria is the average shortest path, 〈d〉, for

a given network G(V,E), wherein V is the set of all networked nodes (TFs and

regulated genes) and E denotes the set of edges connecting them. An output of the

integer linear programming algorithm (explained below) is an “optimized” version of

G, G0(V,E0), which hosts an identical set of vertices, number of edges, |E| = |E0|,

identical degree distribution as G, and the same number (and type) of feed-forward

loop transcriptional network motifs, but with potentially different average shortest

path, 〈d0〉. To determine whether the topology of G is optimal, we compare 〈d〉 to

that of its optimized counterpart, 〈d0〉, using the following metric, δ:

δ =
|〈d〉 − 〈d0〉|
〈d〉

, (8.2)

Therefore, δ = 0 corresponds to the result that G exhibits a perfectly optimal topol-

ogy.

8.1.2 Optimizing Topology with Integer Linear Programming

Finding a network with optimal topology is a challenging problem. On the

one hand, a brute-force search approach is intractable due to an exponentially large

search space on the order of O(2|V |
2
)-many different graphs. On the other hand, meta-

heuristic methods, such as Simulated Annealing [91] and Genetic Programming [92,

16], cannot guarantee an optimal solution. To address this problem, we propose a

new approach to finding an optimal graph topologies for small and moderate size

networks based on integer linear programming (ILP).
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Many graph-theoretical problems are solvable using integer linear programming [93],

such as the shortest path, vertex coverage, maximum flow, and minimum cost-flow

problems. This is possible, because these problems can be expressed in terms of linear

relationships which together form a polytope enclosed by their intersections. From

this polytope, it is possible to identify an extremum of a cost function. Moreover, ILP

can be useful to identify cases wherein solutions are not feasible with other methods,

and their implementation can be facilitated using freely available academic software,

such as IBM ILOG CPLEX optimizer [94].

We consider a linear program which identifies a new graph G0 with minimum

〈d0〉 based on an input G, subject to the following constraints:

1. Connectivity between a TF and a regulated gene “target’ must be preserved

from G, which ensures invariance of the overall paths, but not necessarily the

path-lengths;

2. Degree distributions between G and G0 are identical;

3. The number of feed-forward loop transcriptional network motifs does not exceed

that of G, despite any variance in topology.

In particular, we hold the number of feed-forward loops below a threshold during the

optimization process, because we have previously identified that path-length metrics

may be significantly affected if feed-forward loop transcriptional motifs are “added”

to the network topology [95]. The detailed equations for the linear constraints are

discussed below.

An example of an “optimized” 6-node network is given in Figure 17. The optimal

solution (Fig. 17(b)) preserves connections between TF-gene pairs, in- and out-

degrees for each node, and the number of feed-forward loop transcriptional motifs,

but exhibits a 〈d〉 smaller by approximately 11%.
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Fig. 18. A representation of the shortest path between nodes s and t. Since edge i→ j

does not exist, then i → j is not included in the shortest path from s to t,

and indicator Z l
ij = 0. However, the shortest path goes through i → a and

a → j, hence Z l
ia = Z l

aj = 1. Here, l references the connected pairs s and t,

where l = 1..f (number of connected pairs, |P |).

8.2 Integer Linear Programming Formulation

Given a TRN network abstracted as a directed graph G = (V,E) where V =

{v1, v2, ..., vn} and E = {e1, e2, ..., em}, where n = |V | and m = |E|. Let dini and douti

be the in- and out-degree of node i for i = 1..n. Let NG = {vi | douti = 0} be the set

of gene nodes, NTF ≡ V −NG be the set of transcription factor (TF) nodes.

Define P = {(si, ti) | si ∈ NTF, ti ∈ NG, provided there exists a path from si to

ti}. Denote by d(u, v) the minimum distance, i.e the length of the shortest path from

u to v. Therefore, the average shortest path

avg(P ) =
1

|P |

|P |∑
i=1

d(si, ti) (8.3)

among the pairs indexed by i. We want to verify that: ”Among the networks with

same in- and out-degree distributions of similar or less FFL abundances, the TRN

network’s avg(P ) is among the smallest”.

Problem definition: the Optimal Topology Design (ODT) problem is defined

as, ”given a network G of an in-degree distribution Din = {din1 , din2 , ..., dinn }, Dout =

{dout1 , dout2 , ..., doutn }, an embedded motif abundance M(G), and a an average shortest
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path avg(P ) among pairs of P, obtain an optimal network G0, such that Din
0 = Din,

Dout
0 = Dout, M(G0) ≤M(G), and avg(P ) is a minimum.”

ILP formulation: consider P = {(s1, t1), (s2, t2), ..., (sf , tf ) where f = |P |.

Denote objective term Z l = {0, 1} for some index l. The ILP is formulated as follows;

∀i = 1..n, ∀j = 1..n and ∀l = 1..f consider,
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Min.

f∑
l=1

n∑
i 6=j

Z l
ij (O1)

S.t. Z l
ij ≤ xij (C1)

n∑
i=1

Z l
ij −

n∑
j=1

Z l
ji =

{ 1 if i = sl

−1 if i = tl

0 otherwise

(C2)

xii = 0 ∀i = 1..n (C3)

n∑
j=1

xij = douti ∀i = 1..n (C4)

n∑
j=1

xji = dini ∀i = 1..n (C5)

∑
i 6=j 6=k

yijk ≤M(G) (C6)

xij + xjk + xik ≤ 2 + yijk (C7)

xij ≥ yijk

xjk ≥ yijk

xik ≥ yijk

}
∀i 6= j 6= k (C8)

xij, yijk, Z
l
ij ∈ {0, 1} (C9)
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Z l
ij (O1-C2) is an indicator variable suggesting that edge(i, j) is part of the

shortest path between a source node s and a destination node t; defined as follows,

Z l
ij =

{
1 edge i→ j is within a shortest path

0 otherwise
. (8.4)

The objective to minimize the expression
∑n

i 6=j Z
l
ij of (O1), together with constraint

(C2) and excluding the indicator l, illustrate the standard linear programming formula

for capturing the shortest path from a given s to an existing t [96]. Based on Eq. 8.3,

we would like the ILP to capture the average shortest path between pairs of P . This

is achieved in (O1) using the summation
∑f

l=1 .. which guarantees ILP operation for

all pairs(s, t).

For the degree distribution: let xij ∈ {0, 1} be the indicator

xij =

{
1 if there is an edge from i→ j

0 otherwise
. (8.5)

Because self loops do not constitute significance in this study, the ILP avoids creating

them using constraint (C3), which sets x = 0 for all node indicators. The out- and

in- degree distributions are maintained using constraints (C4) and (C5) in this order.

Furthermore, we would like to guarantee that if nodes i and j are part of the

shortest path between s and t,and if edge does not exist between nodes i and j and,

Zij will not be included within the shortest path (Figure 18). The above is explained

in lemma 8.2.1.

Lemma 8.2.1. If there is no edge(i, j), then Zij can not be on the shortest path from

i to j.

Proof. If xij = 1, then by constraint (C1) Z1
ij ≤ 1.

If xij = 0, then by constraint (C1) Z1
ij ≤ ∞.
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Fig. 19. A representation of the Feed-forward loop motif. Indicators xij, xjk and xik

designate the existence of edges i → j, j → k and i → k in this order.Yijk

designate a single FFL formed due to the intersection of the edges.

yijk =

{
1 if (i, j, k) is an FFL

0 otherwise
. (8.6)

The condition FFL count ≤M(G) can be formulated using constraints (C6-C8). (C6)

guarantees that the summation of all FFL indicators should not exceed that of the

original FFL count M(G). Furthermore, constraints (C7 and C8) guarantee an FFL

structure to be an intersection between the edges i → j, j → k and i → k as shown

in Figure 19. The above can be proved using lemma 8.2.2.

Lemma 8.2.2. yijk = 1 if and only if xij = xjk = xik = 1

Proof. If yijk = 1, then xij +xjk+xik = 3, and by (C8) and (C9) xij = xjk = xik = 1.

If xij = xjk = xik = 1, then by (C7) yijk = 1

Theorem 8.2.3. The ILP returns an optimal solution for the OTD problem.

Furthermore, the ILP collectively comprised of 5[n(n−1)(n−2)]+2n(n−1)+3n+1

constraints, where n is the size of the network.
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Fig. 20. A representation of a possible switch; a → b with c → d. All nodes retain

their original degrees post switching.

8.3 Algorithms

In this section, we discuss two heuristic methods for approximating the output of

the ILP: a (1) Local search, and a (2) Simulated annealing approach. Our goal is to be

able to computationally optimize a given G of sizes n > 100 within reasonable time.

Solutions produced exhibit δ values not too far off from that of optimal G0(V,E0)

structures assembled using the ILP.

8.3.1 Local Search Approach

Algorithm 1 uses an input G graph and P pairs to produce an approximated op-

timized output graph G0. Instruction 2 uses exhaustive search among pairs of edges

within the graph to identify edge pair candidates for a ’good switch’. In addition

to having a possible switch that preserves the degree distribution, as shown in Fig-

ure 8.3.1, a good switch must reduce or maintain the avg(P ). In this effect a good

switch is characterized by;

• having the degree distributions; in- and out-degrees, of the nodes involved are

preserved,

• avg(P ) decreases or remains the same,

• the motif abundance remains less than or equal to M(G) after the switching.
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If a good switch is determined, the edges will be swapped as illustrated in instructions

2 and 3. In order to determine the eligibility of a switch, avg(P ) is calculated post

switching an edge pair. In cases where avg(P ) increases, the edges will be reverted to

their original positions, and the output of the condition in instruction 2 will be false.

Furthermore, the run-time for O[|V |2|E|2(|V |3/2 +Ntf (|E|+V log|V |))], where Ntf is

the number of transcription factors.

Input: Original network, G; P

Output: Optimized network, G0

1: for all pairs of edges (e1, e2) do

2: if if (e1, e2) is a good switch then

3: switch e1 and e2

4: end if

5: end for

Algorithm 1: Optimizing a directed network using Local Search.

8.3.2 Simulated Annealing Approach

An improvement over the local search is considered using simulated annealing-

given in Algorithm 2. The algorithm uses an input G graph, P pairs, small scalar

ε and the number of possible switches to produce an approximation G0- generally

1 × 10−5 ≤ ε ≤ 1 × 10−7. Other factors affecting the performance of the algorithm

like the temperature T , which can allow instances of a ”bad switch” as illustrated

in instruction 7. A bad switch will cause an increase in avg(P ) after the edge swap.

Therefore a bad switch is characterized by;

81



• having the degree distributions; in- and out-degrees, of the nodes involved are

preserved,

• avg(P ) increases,

• the motif abundance remains less than or equal to M(G) after the switching.

If a bad switch is determined (instructions 6-8), the swap will be considered if a

random variable r = [0, 1] satisfies the condition r ≤ α. Moreover, the algorithm

run-time is O[T |V |2|E|2(|V |3/2 +Ntf (|E|+ V log|V |))].

Input: Original network, G; ε > 0; P ; possible switches

Output: Optimized network, G0

1: T ← 2/possible switches

2: repeat

3: for all pairs of edges (e1, e2) do

4: if if (e1, e2) is a good switch then

5: switch e1 and e2

6: else

7: switch e1 and e2

8: switch e1 and e2 with a probability, α = T
avg(P )before switch

avg(P )after switch

9: end if

10: end for

11: until

Algorithm 2: Optimizing a directed network using Simulated Annealing.

Figure 8.3.2 illustrates results of the integer linear programming (ILP), local
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Fig. 21. Mean δ (Eq. (8.2)) evaluated using the integer linear programming (ILP),

local search (LS) and simulated annealing (SA) methods, for transcription-

al-regulatory subnetworks sampled from E. coli of size n = 5, 10, 15, 20, 25,

and 30, compared against optimal solutions found from randomized versions

of these networks. If the input network is optimal, then δ = 0.

search and simulated annealing based optimizations of sampled TRNs and their ran-

domly generated networks of similar |V | and |E|. The mean of the δ’s (Eq. 8.2) are

plotted for the different network sizes, while the standard deviation error bars are

ignored to avoid obscurity. We find that the SA algorithm gives more reliable δ than

that of the LS method, i.e. SA gives δ values closer to that of the ILP.

8.4 Demonstrating Transcriptional Network Connectivity

From the ILP results of Figure 8.3.2, we observe that very few of the subnetworks

sampled from E. coli, of any size, exhibit an average path length in their optimized

topologies that is smaller than already supported by these networks (green plot). This

result should be contrasted by our attempts to optimize randomized networks (ma-

genta), which demonstrate that average shortest path lengths computed for optimized

83



topologies were significantly reduced over their non-optimized input network.

Moreover, the same comparison should be applied for larger subnetworks that

undergo SA based optimization, which can be shown in Figure 8.4. Again, E. coli

subnetworks prove to supersede the optimality of their random network versions.

Although δ can reach up to 7%, it is a far better performance than that of random

structures, which can have δ ≥ 40%.

These results indicates that E. coli network topologies are already well-suited to

minimize the average shortest path between transcription factors and their regulated

genes. There may be plausible reasons why an evolved transcriptional-regulatory

network may experience pressure to minimize the number of regulatory interactions

between the regulating proteins and the terminal genes. Common modes of genetic

evolution, such as gene duplication and divergence, alters the degree and connectivity

of networked protein-coding genes; while these are manifestly local topological alter-

ations, the path-length encompasses regulatory interactions that transcend a gene’s

local neighborhood, suggesting that network dynamics manifest with system-level

properties might play a role in whether an organism’s progeny survives. Although

dynamics may play a role in correlating topological characteristics at network scales,

there is evidence that node-degrees in both biological and non-biological networks

are correlated by a geodesic distance of approximately three steps [97]; however, it is

as-yet unclear what general mechanism underlies such a correlative relationship.

8.5 Feature Selection

Going back to the previous motivation, which stated that TRNs exhibit robust

topologies and therefore have many useful applications like in Bio-inspired wireless

sensor networks. The ILP discussed provides experimental evidence that such net-

works’ performances in terms of minimizing distances from transmitter to receiver
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Fig. 22. Mean δ (Eq. (8.2)) evaluated using the simulated annealing algorithm, for

transcriptional-regulatory subnetworks sampled from E. coli (light grey boxes)

of size n = 100, 200, 300, 400, 500, and 600, compared against optimal solutions

found from randomized versions of these networks (dark grey).

nodes, can be improved. The initial TRNs preserve their degree distributions, hence,

their power-law exponent (maintained scale-free property)- determined by the max-

imum likelihood estimation. This begs the question; what changed to make avg(P )

smaller.

We select features based on metrics increase/decrease in value due to the net-

works’ optimizations. We report the average gain in feature values in Table 9. As

expected from the ILP, the farness of the nodes (or sum of distances from other nodes)

decreased as depicted by the diameter’s decrease and the average closeness’s increases

in the average gain.

Interestingly, the average local clustering was almost not changed while the global

clustering decreases. This means that nodes keep their neighbors and lost some of

the the cliques they originally participated in. This means that nodes preserved their

regulations, however, some of the co-regulations were lost to minimize the distances
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Table 9. Average gain in structural features of Transcriptional Regulatory networks

networks.

Percentage gain per network Size (%)

Measure 100 200 300 400 500

Diameter -0.165 -0.193 -0.273 -0.225 -0.122

〈c〉 0.02 0.025 0.143 0.071 0.122

〈CL〉 0.001 -0.007 0 0 0

CG -0.035 -0.079 -0.096 -0.23 -0.266

Note: Denote the original Feature vector by F and
optimized by F ′ for a sample set of networks. The
average gain would be

[∑f
i (F ′i − Fi)/Fi

]
/f , where f

is the size of the vector.

to their recipients.

Additional analysis of the different re-wired canonical clique motifs is given in Ta-

ble 10. Only two motifs were significantly affected by the switching: the feed forward

loop (FFL), and the Uplinked mutual dyed (UMD). This means that avg(P ) can be

minimized by re-wiring FFLs and UMDs, which in return would minimize distances

between transcription factors and their intended genes. Although an optimal TRN

would increase the speed of transcription, other parameters affect gene expression

optimality such as minimizing irreversible speedups and creating redundant regula-

tions achieved by motifs such as FFL and UMD. In other words, in order to achieve

structural robustness, it will be achieved at the expense of functional robustness and

vice versa. Therefore, we conclude that these structures are necessary features for

both functional and structural robustness.

In light of this discovery, we additionally conclude that attachment kernels for

optimal TRNs should minimize the creation of FFLs and UMDs per simulation steps.

This is the opposite effect of what the random models of chapters 3 and 4 have
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illustrated, where increased participation of genes in motif structures is necessary.

Could these structures (FFL and UMD) have evolved over time in order to pre-

serve bio-functionalities? We will address this question in the next section.

8.6 Insight into the Evolution of Transcriptional Regulatory Networks

Escherichia coli is a specie commonly found in the lower intestine of warm-

blooded organisms, generally considered the most studied prokaryotic organism. E.

coli K-12 is the most studied strain, hence, used as our model organism to form

our hypothesis on evolution. Prokaryotes exhibit high levels of gene diversity due to

species and strain evolution throughout the course of their emergence to life- over 3

billions years ago [98]. Genomic evolution are mainly due to the processes of mutation,

horizontal gene transfer [99], gene duplication [100], Genome reduction [101].

Little is known regarding whether or not acquiring new genes can affect the

networks average shortest path. We hypothesize that evolutionary older genes are

part of a lower average shortest path compared to genes that were more recently

acquired. To test this hypothesis a network of core genome of 56 fully sequenced

E. coli is used to detect for older genes. Genes that are core, i.e., present in all

tested genomes, are known to have existed for a long period of time, while non-core

genes might have been recently acquired. A comparison between two E.coli strains

estimated their divergence to about 5 million years ago [102].

TRN interactions were downloaded from the latest version of regulonDB [103]- an

E. coli K-12 Database. Core genome was produced via MicroScope [104] using all 56

E. coli isolates from their databases with 50% identity and 80% coverage match. The

core genome for the K-12 strain was then obtained and matched to the the genes from

regulonDBs interaction list. This list, as well as the entire set of E. coli ’s interactions

were used as separate data-set candidates for optimization using the ILP.
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When comparing both sets: E. coli vs. E. coli core network, there was a sig-

nificant difference in the number of genes/interactions that were switched, as given

in Table 11. In the E. coli ’s network, there were 2766 (69%) interactions that were

switched while the E. coli ’s core only 1331 (50%). Despite core having 69% of the

number of interactions in the non-core, it has 65 more un-switched nodes. In this

effect we form a hypothesis that the core genome could have been optimal in terms

of the average shortest path, however, it lost its optimality as it evolved over time

(i.e., acquired more genes).

In order to arrive at a more conclusive finding regarding the effect of evolution on

the average shortest path, more sample TRNs should be considered as well. The same

analysis should be employed using core networks at the genus level of E. coli along

with the genera diverged from the most common ancestor; Salmonella and Shigella,

which is thought to have happened about 150 million years ago [105]. To take the

set of genes even further back in evolutionary history, we intend to get the core genes

of the family level of E. coli, Enterobacteriaceae which are thought to have evolved

from a common ancestor more than 300 million years ago [106]. Furthermore, for all

the above, random samples from E. coli ’s network of similar number of interactions

will be generated for comparison. .
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Table 10. Mean percentage of re-wired edges from candidate transcriptional network

clique motif structures, due to edge switching from Algorithm 2.

Candidate TRN sizes

Motif Edge 100 200 300 400 500

i→ j 0.12 0.19 0.5 0.32 0.54

j → k 0.09 0.19 0.45 0.34 0.5

i→ k 0.05 0.2 0.43 0.39 0.47

No change

j → i 0.12 0.12 0.61 0.38 0.55

j → k 0.09 0.18 0.48 0.16 0.56

k → j 0.09 0.12 0.29 0.19 0.48

k → i 0.12 0.26 0.62 0.41 0.63

No change

No significant change

No significant change

No change

Note: nodes i, j, and k considered, are similar to that of Figure 19.89



Table 11. Switched vs un-switched (Unchanged) edges in E. coli ’s complete and core

TRN.

E. coli (all regulonDB) E. coli ’s core

Total Unchanged Switched Total Unchanged Switched

Interactions 4029 1263 2766 2659 1331 1328

Transcription Factors 286 129 157 244 131 113

Genes 2294 993 1301 1524 826 698
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CHAPTER 9

CONCLUSIONS AND FUTURE WORKS

The initial premise for the BA-model (i.e., the rich gets richer) is that a nodes degree

is the sole contributor to it’s evolving linkages within a growing network. Here we

support the claim that a rich node indeed gets richer, however, a node’s riches is not

solely attributed to it’s degree. Other factors like nodes closeness and internal com-

munity participation can affect the node’s evolution as well. One question presented

is, how can you grow random networks such that these networks preserve certain

aspects of robustness, like it’s performance, connectivity and internal clustering? To

answer this question, a case on wireless sensor networks was presented, where support

vector regressions have selected necessary features to consider. A network growing

mechanism will eventually combine two or more of these features.

Attachment kernels are useful in terms of generating random networks with spe-

cific structural properties (e.g., degree distributions). These networks can then be

used as matching candidates for existing real networks (e.g., Internet and social net-

works), which helps in giving insight in the dynamics of existing systems. Most

growing mechanisms and studies involve undirected networks. Here we provide two

different attachment kernel based growing mechanisms for directed networks (Chap-

ters 3 and 4). The first (Ch. 3) uses a preferential attachment scheme based on nodes

and in- and out- degree probability distributions, and gives random networks with

comparable node-motif participation distributions. The Second (Ch. 4) uses a prefer-

ential attachment scheme based on downlink pattern counts probability distributions

with comparable in-, out-, cumulative distributions. Both of these algorithms present
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comprehensive cases for combining attachment kernels.

The directed transcriptional network growing algorithm of Ch. 4 uses the con-

cept of motif-based preferential attachment, which allows for several new genes and

regulatory interactions to be accumulated per step in the network evolution. While

many existing algorithms in this area grow undirected networks using the preferential

attachment model, or directed networks using the modified preferential attachment

scheme with various attachment kernels, they fail to generate networks with high

fidelity of motif distributions when contrasted with real-world biological networks.

We have proposed using entire transcriptional motifs, which some view as “building

blocks of complex networks”, as the fundamental unit of network evolution, rather

than the accumulation of single genes and regulatory interactions at each potential

growth opportunity. Our resulting networks built using this method exhibit higher

fidelity to E. coli transcriptional networks, both in terms of degree distributions and

downlink distributions.

Our algorithm accounts not only for the abundance of downlink motifs, which

seem to cover most of the nodes and edges from the E. coli transcription regulatory

network, but also accounts for two classes of nodes in gene-regulatory networks: genes

and transcription factors. One interesting line of future work will be to understand

how other transcriptional motifs and types of coupling may contribute to the overall

properties of an evolved network model. Another possibility is to consider various

centrality measures based on a network renormalized using VMN-based graph trans-

formations. Nevertheless, realistic models of gene-regulatory network evolution will

serve to aid future investigations into diverse phenomena, from dynamical signal-

ing over transcriptional-regulatory networks to efforts relating network topology with

biological function.

For wireless sensor networks, we observe that degree distribution is not the sole
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contributor to optimized routing. SC proves that considering the average shortest

path to the sink would be necessary. A network growing mechanism that combines

both degree distribution and the average shortest path should be implemented. Com-

prehensive failure scenarios and ns-2 simulations analysis should be performed for op-

timal probability distributions among the attachment kernel parameters. Moreover,

there are several parameters to consider for attachment kernels such as the density of

the hub nodes and the average clustering coefficient. In general, we consider the fea-

ture selection process in WSNs completed and ready for the next step (experimenting

with attachment kernels).

An example for growing WSNs was presented where we considered an additional

feature of a node (additional to it’s degree)- it’s shortest path to the sink node (or

SPS). This feature was coined from Figure 13 due to it’s positive Sink Coverage

feature. Using this, the sink is considered to be the most influential node in the

network followed by it’s immediate neighbors, followed by it’s second immediate,

and so on. Networks were grown using three different mechanism: BA, SPS and a

combination of BA and SPS, where for the dual feature case, each feature maintained

equal probabilities during each simulation step. SPS gave best results for packet

transmission robustness, the dual Combined BA and SPS gave best results in terms of

connectivity robustness, while BA gave best results in terms of modularity robustness.

Although these insights are not conclusive, it supports our claim that different features

should be considered when having robust network generation.

For transcriptional regulatory networks, we consider these networks as robust but

not optimal. Meaning, the degree distributions give them resistance towards random

nodal/edge deletions, aid in preserving their connectivity post such disturbances,

however, degree distributions do not have minimum distance between transmitter

and receiver nodes. To address this problem, an integer linear program (ILP) was
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presented that reduces the average shortests distance to a minimum by rewiring the

edges of the network, thereby preserve the degree distributions. The ILP experiences

significant difficulties when analyzing larger networks, because the relatively large

number of constraints required by this method makes it in-feasible. For example, the

largest reported example we are aware of involved a 150 node network with over 106

constraints [107], which leads to an excessive convergence time.

Two heuristic algorithms were provided which give solutions (or graphs) near

the optimal solution of the ILP. These heuristics can converge within reasonable time

for larger networks. Different TRN’s were subject to the heuristic, from which we

were able to conclude that the only substructures that were significantly affected are

the feed forward loop (FFL) and the uplinked mutual dyed (UMD). Other 3-node

structures were either not affected at all or slightly reduced, while general topological

metrics like the average local clustering remained the same due to the preservation of

the degree distributions. Therefore, FFL and UMD are considered relevant features

for optimal TRNs. The fact that these two motifs disappear more often than the

others may lead to a faster heuristic to find the optimal network. For future works,

examining of the switches that are part of these motifs should be prioritized.
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Appendix A

AVERAGE SHORTEST PATH LENGTH IN TRANSCRIPTIONAL

REGULATORY NETWORKS

The conventional average shortest path formula for a connected undirected graph is

given by,

〈d〉 =
2

n(n− 1)

n∑
i=1

n∑
j=1

dij (A.0.1)

for all shortest paths d from nodes i to j. In a transcriptional regulatory network,

nodes can be either of two types; transcription factors (TF) and genes making the

number of nodes,

n = nt + ng (A.0.2)

where nt and ng are the numbers of transcription factors and genes respectively. By

substituting Eq. A.0.2 into Eq. A.0.1

〈d〉 =
2

n(n− 1)

[ nt∑
i=1

nt∑
j=1

dij +
nt∑
i=1

nt+ng∑
j=nt+1

dij+

nt+ng∑
i=nt+1

nt∑
j=1

dij +

nt+ng∑
i=nt+1

nt+ng∑
j=nt+1

dij

] (A.0.3)

The expression
∑nt

i=1

∑nt
j=1 dij sums the TF-TF shortest paths, which by definition in

Section 3, they are considered obsolete. Both the expressions
∑nt+ng

i=nt+1

∑nt
j=1 dij and∑nt+ng

i=nt+1

∑nt+ng
j=nt+1 dij are equated to zero because they sum the gene-TF and gene-gene

shortest paths respectively. These cannot exist because gene nodes have no outgoing

edges. Therefore, Eq. A.0.3 can be reduced to,

〈d〉 =
2

n(n− 1)

nt∑
i=1

nt+ng∑
j=nt+1

dij (A.0.4)
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. The quantity 2
n(n−1) is the number of possible pairs in a network, i.e. the number

of shortest paths between pairs of nodes in a connected undirected graph. However,

in a directed network the number of shortest paths and pairs of nodes are different.

Hence, the average shortest path is given by,

〈d〉 =
1

|P |

nt∑
i=1

nt+ng∑
j=nt+1

dij (A.0.5)

, where |P | is the number of shortest path pairs, such that the source node of each

path is a TF and the destination is a gene.
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Appendix B

IN- AND OUT-DEGREE DISTRIBUTION

Here we find a solution for the out-degree distribution as given by Eqs 3.3 and 3.4.

The derivation to obtain a formula for the in-degree distribution is exactly the same,

assuming that the in-degree attachment kernel is independent of a nodes out-degree.

Therefore, we restrict ourselves to solving only Eqs 3.3 and 3.4. Note that this

derivation follows one provided in detail by [49].

Master equations are given for the out-degree distribution approximated for very

large networks (Eqs 3.3 and 3.4):

p(K) = np(K − 1)mA(K − 1)− np(K)mA(K), and (B.0.1)

p(m) = 1− np(m)mA(m) (B.0.2)

Equation B.0.1 can be written as a recursion between out-degrees K and K − 1:

p(K) =
nmA(k − 1)

1 + nmA(K)
p(K − 1) (B.0.3)

Iterating this recursive relationship, and including Eq. B.0.2, gives

p(k) =
1

nmA(K)

k∏
i=m

[
1 +

1

nmA(i)

]−1
(B.0.4)

Now, using the fact that x = elnx, Eq. B.0.4 can be rewritten as

p(K) =
1

nmA(K)
e−

∑K
i=m ln[1+1/nmA(i)] (B.0.5)
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Equation B.0.5 may be further reduced. By assuming the quantity 1/nmA(i) is

small (i.e., A(K) > 1/nm), we may expand ln[1 + 1/nmA(i)] about 1/nmA(i) = 0 in

a Taylor series: ln[1 + 1/nmA(i)] = 1/nmA(i)− [1/nmA(i)]2/2 + ... .

Keeping the leading order term and putting this back into (B.0.5) gives:

p(K) =
1

nmA(K)
e−

∑K
i=m 1/nmA(i) (B.0.6)

Depending on the relationship between A and K, the summation in Eq. B.0.6

may either be exact or further approximated. Because Jeong et al. [26] measured

γ = 0.8 for many real-world networks, we have used this distribution as a choice

of synthetic network in the main text. This special case of nA(K) = Kγ/z for

1/2 < γ < 1 [with normalization condition z =
∑
Kγp(K)] was solved along with

other cases in Krapivsky et al. [108]; see also Newman [49]:

p(K) ∼ K−γe−zK
1−γ/m(1−γ). (B.0.7)
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Appendix C
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ABBREVIATIONS, TERMS AND SYMBOLS

Abbreviations and Terms

ER Erdös - Rényi

E. coli Escherichia coli

GRN Gene regulatory network

ILP Integer Linear Program

NS-2 Network Simulator 2

SF Scale-free

SW Small-world

SVR Support vector regression

TF Transcription factor

TRN Transcriptional Regulatory Network

WSN Wireless Sensor Network

Yeast Saccharomyces Cerevisiae

Symbols

k Degree or Degree of a node

γ Coefficient of the scale-free power law

G Directed graph

V Set of nodes forming a graph

E Set of Edges forming a directed graph G

G′ Undirected graph

L Set of links forming an undirected graph G′

A Adjacency matrix storing a directed graph G

M Adjacency matrix storing an undirected graph G′
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d A shortest path from an arbitrary node i to an arbitrary node j

CG Global clustering coefficient

K The degree vector

DI Degree Index

HND Hub nodes density

SC Sink coverage

ND Network density

FFLD Feed-forward loop density

BFD Bifan density

〈c〉 Average closeness centrality

〈CL〉 Average local clustering coefficient

ρ Pearson product-moment correlation coefficient for any two feature vectors

R Matrix holding ρ for different pairs of F

F Some feature vector

s Number of samples or data points for regressor training

X Feature matrix

w weight vector (coefficients) for regressor hyperplane

b bias for regressor hyperplane

O Output vector for regressor’s prediction

δ Metric for determining optimized networks using ILP

NTF Number of transcription factor

NG Number of genes

P Set of all connected transcription factor and gene pairs

avg(P ) average shortest path between pairs of transcription factors and genes
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M(G) Embedded FFL count within G

Z Integer linear program objective parameter
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[24] Réka Albert, Hawoong Jeong, and Albert-László Barabási. “Error and Attack
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