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In studies of the effects of multiple drug or chemical combinations, one goal may be 

to detect and characterize the interactions between the agents. The techniques currently 

applied to this problem have limitations when the experiments involve more than 2 agents. 

Certain response-surface techniques require an unrealistic number of observations for 

studies involving a large number of agents. Current graphical methods are impossible to 

use in studies of 3 or more agents. In this research two statistical techniques are described 

that can be applied to studies with an unlimited number of agents. In the fIrst approach, 

dose combinations are collected along rays or at fIxed ratios. Using properties of this 

experimental design, an additive model is derived. Comparing the fItted dose-response 

curve along each ray to the curve predicted under additivity, synergistic and antagonistic 



XlI 

interactions between the agents can be detected. Statistical testing procedures are given to 

determine if these are significant interactions, not due to random fluctuations in the data. 

Graphical techniques that enhance the interpretation of the results are described. The 

second approach developed in this research is a point-wise test which determines if the 

agents interact in an nonadditive manner. This test can be applied to each dose combination 

of interest After applying a multiple comparison adjustment to the resulting p-values, 

departures from additivity can then be characterized. These approaches are likely to be 

more economical than current techniques, implying that a larger number of agents can be 

studied in combination for the same experimental effort. 



Chapter 1 

Introduction 

1.1 Motivation and Background 

A goal of studies that examine the effects of combinations of chemicals or drugs is 

to describe how the agents interact. Specifically, based on knowledge of each agent's 

dose-response relationship, an additive response, or the response assuming the agents do 

not interact, can be determined. If the observed response differs from the additive 

response, then the manner in which it differs can be assessed. This type of information 

may be useful in several ways. For example, if it can be determined that the chemicals that 

comprise an insecticide interact to enhance the effect, less of the chemicals in combination 

may be needed to observe the desired response. 

One purpose of this dissertation is to derive statistical and graphical methods for 

detecting and characterizing the interactions in studies that contain a large number of agents. 

While many methods exist for analyzing two agent combinations, not all are applicable to 

studies that involve 3 or more agents. This can possibly be explained by limitations 

inherent in the two agent methods. Certain of these methods are dependent on 2-

dimensional graphical displays which are not generalizable to dimensions higher than 2 or 

3. In addition, while other analytic methods can be applied, at least theoretically, to studies 

that involve any number of agents, the size of the experiment needed to adequately 

determine the results is unreasonably large. Calabrese, (1991, p. 4) has noted, however, 

that "humans are not exposed to single agents; the environment provides exposure to 

1 



complex daily mixture of agents; health standards have long ignored the issue of multiple 

exposures; and this should be an area of high priority". Berenbaum (1989) also gave 

several examples of situations where it is important to study the effects of combinations of 

more than 2 agents, i.e. in the treatment of certain cancers 4 - 6 agents are jointly applied, 

since in combination, they have been shown to be more effective than each agent alone. 

Clearly there is a need for methods that can be applied to studies that involve a large 

number of agents. 

In the following discussion several terms will be used that will only be briefly 

defined in this chapter. These terms and derivations, however, will be thoroughly 

discussed in Chapter 4. In fact, one aim of this dissertation is to unify certain definitions 

that have been used to describe interactions. It has been noted in this field of study that 

there has been a lack of consistency in terminology. Calabrese (1991, p. l3) writes, 

" there are different words describing phenomena that seem to be the same but are often 

employed in totally different ways by different authors. Such lack of communication and 

frequent anarchy creates a high baseline of confusion within the scientific and regulatory 

communities but also the general public". For example, all of the following terms have 

been used to describe an interaction where the response is greater than additive: synergy, 

potentiation, superadditivity, positive interaction. 

2 

While the focus in this research is on combinations of a large number of agents it 

will be useful to review certain methods that have been applied to the study of two agents. 

In general the literature on this subject can be grouped into two broad, not necessarily 

exclusive, categories. The first group is dependent on an assumed knowledge of the 

mechanism of action of the agents considered in the study. As noted by Berenbaum 

(1989), authors who have considered this approach include Bliss (1939), Finney (1952), 

Hewlett and Plackett (1964), Ashford and Smith (1964), and Chou and Talalay (1984). 



An alternative approach, and the approach considered in this dissertation, is 

mechanism-free. The results are based only on the observed effects. In general, it is 

assumed that an underlying dose-response surface exists. By examining the isobols, or 

contours from this surface, the types of interactions between the agents can be described. 

In 1953 Loewe graphically described a 3-dimensional dose-response surface. 

3 

When the agents interacted in an additive manner, the resulting surface was described by 

Loewe as a "tense sail". Loewe noted that an "inflated" sail, or synergism, indicates less of 

the agents in combination are needed to reach a given response. A "sagging sail", or an 

antagonism, implies more is needed. Loewe demonstrated that when isobols, or contours 

from these surfaces for a flxed value of the response, were examined, the resulting 2-

dimensional plot differentiated the types of interactions between the agents. illustrations of 

these surfaces and their associated isobols are shown in Figure 1.1. A plot of the isobol is 

referred to as an isobologram. Note that, assuming additivity, the isobol is a straight line. 

The equation of this line of additivity is given by 

(1.1.1) 

where 7t is the flxed response of interest, Xi is a dose of the ith agent, and EDi (7t) is the 

effective dose of the ith agent, i = 1,2. Berenbaum (1977,1981, 1989) validated the 

usefulness of this approach by demonstrating that (1.1.1) holds for combinations of two 

agents that clearly do not interact: the sham combination of an agent with itself. He also 

derived the interaction index given as 

{:~ 
<1 

Synergism 

Additivity 

Antagonism 

(1.1.2) 
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By applying (1.1.2) at a given dose combination with observed response 7t, the type of 

interaction can be described. Berenbaum noted, however, that "Whether the degree of 

synergy so measured is statistically significant or clinically relevant are matters for 

investigation by appropriate statistical, experimental, and clinical methods" (1978, p.130). 

Hence, the methods of Loewe and Berenbaum can be considered exploratory in nature 

since the conclusions drawn, based on these methods, may be attributable to random 

variability in the data. 

5 

Gessner and Cabana (1970) incorporated statistical techniques when they used 

isobolograms to study the joint effects of chloral hydrate and ethanol. Dose combinations 

were taken at fIxed levels of one agent and varying doses of the other. The loss of righting 

reflex (yes/no) in mice was then observed. Using probit analysis, the dose associated with 

a 50% response was estimated and confIdence intervals placed about the dose combination. 

The results are shown in Figure 1.2. Synergism is suggested at low doses of ethanol and 

high doses of chloral hydrate since the predicted dose combinations fall below the line of 

additivity. Note, however, that while multiple confIdence intervals were derived, no 

multiple testing adjustment in their statistical methods was made. 

The additive expression given in (1.1.1) has been used in several other alternative 

ways. For example, at a flXed value of the response, Tallarida (1992) applied (1.1.1) to 

estimate additive dose combinations. Modeling a probit transformation of the response as a 

function of log(dose), dose-response curves were estimated for each agent alone. An 

expected dose combination under additivity was then determined and compared to the 

observation combination. A statistical test was applied to determine if these values 

significantly differed. 

Under the assumption that each individual agent's dose-response curve is known, 

Berenbaum (1985) also demonstrated that (1.1.1) can be used to determine a response 
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Figure 1.2: Isobologram (1t = 0.5) from Gessner and Cabana's Study (1970) of Chloral 

Hydrate and Ethanol 



under the assumption of additivity at a given dose combination (Xl ,x2). Kelly and Rice 

(1990) applied this method by using a nonparameteric spline-based procedure of curve­

fitting to estimate each curve. Then based on (1.1.1), the expected response under 

additivity was estimated and compared to the observed response. A chi-square test was 

used to determine if the additive response and the observed response differed. Gennings 

and Carter (1995) placed a prediction interval about the derived response under additivity. 

If the observed response is not contained in the resulting interval then a deviation from 

additivity is suggested. It should be noted that the example cited in Gennings' work 

involves ten agents demonstrating this method can, in fact, be applied to studies that 

involve a large number of agents. 

7 

Another group of authors has considered functional forms that can be used to model 

an isobol. Based on (1.1.1), properties of the model can then be determined that satisfy 

additivity. For example, Lam, Pym and Campling, 1991, suggest a model given by 

where the values for ED i (7t), i=I,2 can be estimated by separately modeling each agent's 

individual dose-response curve. It then follows, for a fixed dose combination (XI'X2 ) 

that, if 1C =0 additivity is indicated, and if 1C is greater (less) than 0 synergism (antagonism) 

is suggested. 

Machado and Robinson (1994) have also considered modeling the isobol and then 

generalizing it to describe the dose-response surface. While several possible forms of this 

model are described, one example is given by 
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where 11 = 1 implies additivity. Assuming each individual dose-response curve is given by 

H i (X i ;9), i=1,2 where 9 are the unknown parameters, the effective doses for each agent 

are given by H~I(1t). Then by letting 1t vary, an expression that describes the entire dose­

response relationship is obtained. 

Another group of authors has considered models that directly describe the dose­

response surface. Once it can be determined that the model adequately describes the data, 

isobols can be examined by plotting contours from the fitted model at fixed value of p. 

Carter, et al., in 1988, described a dose-response model for a quanta! response that is given 

by 

(1.1.3) 

This expression was used to model the dose-response surface for the combination of 

chloral hydrate and ethanol. By applying the interaction index given in (1.1.2), Carter, et 

al. derived properties of this model that can be used to describe the types of interactions 

between the agents, i.e. 1312 = 0 indicates additivity and 1312 greater (less) than 0 suggests 

synergism (antagonism). A statistical test was applied to determine if 1312 was, in fact, 

significantly different from O. It was determined, in agreement with the result of Gessner 

and Cabanna, that the agents interact synergistically. Gennings, et al. (1990) also 

illustrated the usefulness of this approach with examples of isobolograms, estimated from a 

fitted model based on (1.1.3), for combinations that were additive, synergistic and 

antagonistic. In addition, Gennings, et al. (1990) demonstrated that by plotting the line 



of additivity in conjunction with a confidence region about an isobol a statistically 

significant nonadditive interaction could be detected graphically. 

An alternative model for the dose-response surface has been suggested by Greco, 

Park and Rustum, (1990). Here each individual agent's dose-response curve is modeled 

according to the Hill model or, equivalently, the median-effect equation of Chou and 

Talalay (1984), given by 

where Xi is the dose of the ith agent, ED j (median) is the dose of the ith agent to yield the 

9 

median response, E is the effect or response, Emax is the maximum possible response, B is 

the background response and mi is referred to as the concentration-effect slope for the ith 

agent. Greco, et al. (1990) then modeled the dose-response surface according to 

where ex. is referred to as the synergism-antagonism parameter. Here ex. = 0 indicates 

additivity and ex. greater (less) than 0 suggests synergism (antagonism). 

Hence, without making assumptions about the mechanism of action for each agent, 

many approaches have been considered for examining the effects of two agents in 
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combination. Little work has been done, however, in extending these methods to 

combinations of three or more agents. For some of the methods just discussed, it is not 

clear how the methodology described can be extended to more than 2 agents. For example, 

neither Lam et al. nor Greco et al. describe forms of their model for a higher dimensional 

study. Theoretically, some of the two agent methods just described could be extended to 

studies of any number of agents. Berenbaum (1978) noted that the interaction index given 

in (1.1.2) can be applied to studies of any number of agents. Carter et al. (1988) describe 

how the response-surface approach can be generalized to more than two agents by 

including the appropriate number of single agent and cross product terms in a dose­

response model. Note, however, that as the number of agents increases the number of 

cross-product terms and, hence, the number of unknown parameters will increase. 

Therefore, the size of the experiment needed to estimate these terms will become so large 

that it may be economically infeasible. For example, consider a possible two agent factorial 

design with 5 levels of each of the two agents with 6 replications at each dose combination. 

Hence a total of 6 * 52 = 150 observations would be collected. Extending this factorial 

design to a study of 4 agents leads to 6 * 54 = 3750 observations and in a study of 8 agents 

over two million observations would be needed. Even if a fractional factorial design is 

considered the size of the experiment will become unreasonable when a large number of 

agents are studied. In this dissertation two methods have been developed that can be 

applied to studies of any number of agents. It will be demonstrated that these methods can 

be applied to much smaller experiments than required in the typical factorial or fraction of a 

factorial design. 

AS previously noted, another purpose of this research is to derive graphical 

methods of examining data in higher dimensions. Graphical techniques play an important 

role in many statistical analyses. In particular, the 2-dimensional graphical isobologram 

was the basis for virtually all of the two agent methods previously discussed. Greshwin 
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and Smith (1973) showed that for three agents the line of additivity generalizes to a 3-

dimensional plane of additivity and that dose combinations below and above the plane were 

indicative of synergism and antagonism, respectively. Berenbaum (1978, p.123) noted, 

however, that it is "physically impossible to plot isobols for combinations of more than 3 

agents". 

In this dissertation several graphical displays will be described that will be shown to 

be useful in statistical analyses based on higher dimensional data. While in Chapters 5 and 

7 these methods will be applied to the study of combinations of any number of agents, in 

Chapter 2 the usefulness of certain higher dimensional plotting techniques in an alternative 

type of statistical analysis will also be demonstrated, i.e., one not necessarily related to the 

study of combinations of drug or chemicals. A plotting method that will be applied in all of 

these chapters involves the use of a parallel axis system. This technique described by 

Inselberg (1985) will be defmed in Chapter 2. Gennings, et al. (1990) demonstrated that 

properties of higher-dimensional isobols could be visualized in a parallel axis system. It 

can also be shown that the parallel axis system is useful in visually detecting properties, 

some of which may be counterintuitive, of other N-dimensional relationships. For 

example, consider the following scenario. Suppose, in 2-dimensions, four circles of 

radius one are drawn, centered each at (-1,1), (1,1), (-1,-1) and (1,-1) as shown in Figure 

1.3(a). An additional circle is then drawn, centered at the origin, that touches each of the 

four circles. Clearly the center circle is enclosed in the square that contains the four circles. 

This construction can now be extended to 3 dimensions so that 8 spheres are drawn which 

are enclosed in a cube. A center sphere is also drawn that touches each of the 8 circles. 

Again by Figure 1.3(b) it is clear that the center sphere lies within the 3-dimensional cube. 

It would seem obvious that in N-dimensions the N-dimensional center sphere would lie 

within the N-dimensional cube. It can be shown, however that when N = 10 the result is 

not true. This is because the radius of the central sphere is given by ..IN -1. Hence, 



Figure 1.3(b): Construction in 2-Dimensions 

~ ....... (-2,2,-2) 

(2,-2,-2) (2,2,-2) 

Figure 1.3(b): Construction in 3-Dimensions 

Figure 1.3: "Conjectures based solely on low-dimensional 
Examples are false in high dimensions", What's Happening in 
Mathematics, p. 25, (1993). 

12 
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when N = 10 this radius is 2.162. Note however that the distance from the origin to the 

side of the cube is 2. Therefore, when N = 10 the center sphere is not enclosed in the 10-

dimensional cube. While it is not possible to graphically visualize this in the usual 

Euclidean plane, it can be shown that a plotting algorithm in the parallel axis system 

demonstrates the result This algorithm, developed by Inselberg and Dimsdale (1987), 

graphically determines if a point is inside or outside of a N-dimensional convex set. The 

point of interest in this case is a point along the edge of the N-dimensional cube, i.e., in 3 

dimensions this point would be (0,0,2). The convex set is the N-dimensional center 

sphere. In Figure 1.4 this algorithm is demonstrated for dimensions, 2, 3, 5, 10 and 20. 

The dark connected line segment in each plot is the parallel axis plot of a point along the 

edge of the cube. The tangent lines to the pair of curves between each pair of axes 

represents a boundary on the range of possible values that a coordinate can assume so that 

the point lies within the sphere. Note that for dimensions 2, 3 and 5 the edge of the cube is 

outside of the sphere. For dimensions 10 and 20, however, the edge of the cube is inside 

the sphere. 

1.2 Prospectus 

In Chapter 2 certain higher dimensional plotting techniques are derived and their 

usefulness illustrated in a repeated measures analysis. Specifically, a mixed modelling 

approach to this type of analysis is considered, where, in addition to specifying the fonn of 

the model, a form for the variance-covariance matrix may be chosen. In this chapter it is 

demonstrated that in a parallel axis plot of the transformed data certain properties of the 

variance-covariance matrix can be visualized. An alternative plotting technique, based on 

the matrix of pairwise plots, or a draftman's display, is also shown to be useful in visually 

detecting correlation patterns in the data. The analyst can use these plots when initially 



N=2 N-3 N-5 

N = 10 

Figure 1.4: Parallel Axis N-Dimensional Representation of Point Interior to 
N-Dimensional Sphere 
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specifying a fonn for the variance-covariance matrix. The parallel axis plotting technique 

as well as the draftman's display will be used again in Chapters 5 and 7. 

15 

In Chapters 3 through 7 methods of detecting and characterizing interactions 

between any number of agents are considered. The focus of this dissertation will be on 

experiments where the response is quanta!. Since the dose-response relationship is often 

sigmodal in shape the logistic model was chosen. In Chapter 3, properties of this logistic 

model are considered. This includes a description of properties of the maximum likelihood 

estimates of the model parameters and certain useful statistical tests that can be applied in 

this context. Several defmitions and derivations are given in Chapter 4 which fonnally 

describe how the agents interact. This chapter concisely summarizes the results and 

assumptions made in an ad hoc manner and inconsistently throughout the literature. In 

Chapter 5, the dose-response modeling technique for detecting and characterizing 

interactions is described. Certain properties of the logistic model are generalized to other 

types of combinations. It is also shown that a matrix of plots of pairwise isobols is 

equivalent to the parallel axis display described by Gennings, et al. (1990). It is then 

shown in Chapter 6 that certain properties of the logistic dose-response surface that were 

derived in Chapter 5 are not applicable when a model is fit in tenns of certain 

transfonnations for the doses. A point-wise test to detect deviations from additivity is then 

derived. In Chapter 7, a method of detecting and characterizing interactions based on dose 

combinations that satisfy fixed ratios is derived. This method will be shown to be 

particularly useful in studies of a large number of agents since it can be applied to far fewer 

observations than needed to fit the parameters in a dose-response model. Lastly, areas of 

future research will be considered in Chapter 8. 



Chapter 2 

Two Graphical Techniques Useful in Detecting Correlation Structure in 

Repeated Measures Data with Fixed Effects 

2.1 Introduction 

In this chapter the usefulness of certain plotting techniques when examining higher 

dimensional data will be demonstrated in an application not related to dose-response 

studies. Specifically, fIxed effects repeated measures data in which a response is measured 

on each observational unit on more than one occasion will be considered. The response is 

assumed to be continuous. This is in contrast to the remainder of this dissertation where 

quanta! responses will be discussed. 

Multivariate modeling techniques have been used successfully in the analysis of 

repeated measures data. Here the p-vector of observations for the ith subject, Yi' is 

commonly assumed to be normally distributed with pxl mean vector and pxp dispersion 

matrix. If the number of time points is large however, the number of parameters in this 

arbitrary dispersion matrix increases and may be poorly estimated (Laird and Ware, 1982). 

The mixed model approach to analyzing repeated measures data has been described 

by several authors including Harville (1977) and Laird and Ware (1982). One advantage of 

this approach is the ability to model the covariance or correlation structure for the repeated 

measurements on a subject where positive correlation is expected. This can result in a 

reduction in the number of parameters in the dispersion matrix to be estimated and can 

therefore improve the effIciency of inferences and estimates made. This is especially true 

16 
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when the data are unbalanced and the number of time points is large relative to the number 

of observations (Ware, 1985). 

Assuming no knowledge about the covariance matrix, the analyst could attempt to 

fit a mixed model with an unspecified structure and use the resulting estimated covariance 

matrix to suggest a better defmed structure. The appropriateness of the more specified 

model can be evaluated. If, however, the number of subjects and/or time points is large, 

algorithms used to attain the initial unspecified estimated structure may not converge. In 

this chapter it will be demonstrated how, without first fitting a model, two different 

graphical techniques can aid the user in determining an initial form of the covariance matrix. 

The two methods considered in the following are the draftman's display and parallel 

axis plots. The well known draftman's display is a two dimensional array of scatter plots 

Xi x X j , i=1,2, ... ,p, j=1,2, ... ,p, i '# j. A p-dimensional data point (Xt>X2, ... ,Xp) can be 

displayed as a series of points (Xi,Xj) i '# j each plotted in the appropriate Xi x Xj coordinate 

system. This technique has been shown to be helpful in detecting clustering and outliers 

(Chambers, et al 1983). 

Plotting in a parallel axis system, as discussed by Inselberg (1985), involves using 

a set of connected line segments to plot a p-dimensional point. P parallel axes are drawn 

one unit apart corresponding to the variables Xl, X2, ... ,Xp. The point (Xl,X2,".,Xp) is 

plotted by drawing lines from the values Xi on the Xi axis to the value xi+l on the adjacent 

X i+1, i=1,2, .. ,p-1 axis. The point (3,7,5,8,2) is shown in Figure 2.l. A complete set of 

data can be plotted by drawing all of the connected line segments on a common set of axes 

in a single graph (see Figure 2.4). Gennings, et al (1990) developed analytical results 

useful in interpreting higher dimensional parallel axis plots of a polynomial model. 

Wegman (1990) demonstrated the usefulness of this plotting technique in observing 

structure and clustering in higher dimensional data. With respect to repeated measures 

data, Weiss and Lazaro (1992) showed by noting trends and patterns in a parallel axis plot 
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Figure 2.1: Five Dimensional Point (3,7,5,8,2) Plotted in a 
Parallel Coordinate System. 
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of the observed residuals that the quality of the fitted model can be assessed. In addition 

unusual observations can be detected. Plots in this system also can be useful in noting 

distributional properties of the multivariate data (Wilkinson, 1992). 
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In Section 2.2 a repeated measures model with fIXed effects is defmed. A centering 

and scaling technique is described in Section 2.3 that retains certain distributional properties 

assumed in the statement of the model. By plotting these transformed data a visulization of 

the dispersion structure can be made without first fitting the model. This information can 

then be used to specify an actual form for the covariance matrix. 

2.2 A Linear Repeated Measures Model with Fixed Effects Based on 

the Mixed Model 

Assume there are t treatment groups with ni subjects in each. While it is also 

assumed that the experiment was designed to take measurements at p well defmed and fIXed 

time points, the actual observed number of observations for the jth individual in the ith 

treatment group is Pij' 0 ~ Pij ~ p, j = 1,2, ... ,ni; i = 1,2, ... ,t. A mixed linear model is 

given as follows. 

where 

Yii = Pij x I vector of responses over time for the jth subject in the ith 

treatment group, 

Xij = Pij x q design matrix of fIXed effects for the jth subject in the ith 

treatment group, 

= q x 1 vector of unknown fixed effect parameters, 
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Zij = Pij x r design matrix of random effects for the jth subject in the ith 

treatment group, 

G = r x r unknown covariance matrix, 

u = r x 1 vector of unknown random effect parameters assumed to be 

H = P x P unknown covariance matrix, 

Hij = Pij x Pij submatrix of H corresponding to the nonmissing times for 

the jth subject in the ith treatment group, 

l;ij = Pij x 1 vector of unobserved random errors assumed to be iid 

N Plj (0, Hij)' 

2.2.1 A Repeated Measures Model with Fixed Effects 

For a repeated measures model which includes just ftxed effects, the only random 

component is associated with the subject Thus, u is an ni x I vector of random effects 

due to the ni subjects in treatment group i and is distributed as N OJ (0, G) . Zij can be 

defined as a Pij x ni matrix of zeroes with a jth column of ones. It follows that Zij u will 
, 

be the Pij x I vector (\)ij' \)ij"', \)ij) = k ij where \)ij is the scalar random effect due to the 

jth subject in the ith treatment group. If it is assumed, as is commonly the case in repeated 

measures studies, that the subject effects are independent and identically distributed, then it 

follows that G = y210 where 10, is the ni x ni identity matrix and Zij,GZ;j' = y2 Jp .. where 
1 I IJ 

J Pij is a Pij x Pij matrix of l's. Letting Eij = kij + l;ij a repeated measures model with ftxed 

effects can be written as 
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j = 1,2, ... ,ni; i=1,2, ... ,t 

where 

1: = P x P unknown covariance matrix, 

1:ij = Pij x Pij submatrix of 1: corresponding to the nonmissing times for 

the ith subject in the jth treatment group, 

Eij = Pij x 1 vector of unobserved random errors assumed to be iid 

N Pij (0, 1:ij ) • 

Furthermore Yij is distributed as N Pij (Xijf', 1:ij ) where 1:ij = Hij + y2 J Pij • 

An implementation of this modeling technique is included in the MIXED procedure 

of the SAS® statistical package. Maximum likelihood or restricted maximum likelihood 

estimators for P and 1: are found based on algorithms developed by several authors 

including Harville (1977), Laird, Lange and Stram (1987) and lennrich and Schluchter 

(1986). In order to fit the model however, the user must first choose a structure for 1: 

from a wide range of choices provided in the procedure (examples are provided in Table 

2.1). Plots of centered and scaled observations can aid the user in determining an 

appropriate form for this dispersion structure. Draftman's plots and parallel axis plots are 

discussed in sections 2.4 and 2.5. Those plots are constructed without first fitting the 

model thereby avoiding the numerical problems associated with fitting a possibly 

misspecified or overparameterized model. The next section describes properties of the 

centered and scaled observations which are useful in a graphical examination of the data 
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Table 2.1 

Covariance Structures 

Unequal Djaeonal Elements 

Unstructured Banded Main Diagnonal 

2 
0' 21 0' 31 0' 41 0'11 0'2 0 0 0 1 

0' 21 
2 

0'32 0'42 0'22 0 0'2 0 0 2 

0'32 
2 

0' 431 0' 31 0'33 0 0 0'2 0 3 

0' 41 0'42 0'43 
0'2 

0 0 0 0'2 44 
4 

EQual DiaeOnal Elements 

Simple Compound Symmetry 

0'2 0 0 0 0'2 + 0'2 
1 

0'2 
1 

0'2 
1 

0'2 
1 

0 0'2 0 0 0'2 
1 

0'2 + 0'2 
1 

0'2 
1 

0'2 
1 

0 0 0'2 0 0'2 
1 

0'2 
1 

0'2 + 0'2 
1 

0'2 
1 

0 0 0 0'2 0'2 
1 

0'2 
1 

0'2 
1 

0'2 + 0'2 
1 

First Order Autoregressive Toeplitz 

1 P p2 p3 1 0'1 0'2 0'3 

P 1 P p2 
0'2 

0'1 1 0'1 0'2 

p2 P 1 P 0'2 0'1 1 0'1 

p3 p2 P 1 0'3 0'2 0'1 1 
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2.3. Properties of the Centered and Scaled Observations 

For the ith treatment group let l:j denote the p x p covariance matrix with kth 

diagonal element CJ~. The associated p x p correlation matrix is given A = Dl:il:Pl:; where 
1 

Dl:i denotes the p x p diagonal matrix with the kth diagonal element (CJ~r2. This 

correlation matrix is estimated by the p x p sample correlation matrix, rio The (st) element 

of ri is given by 

t (YjjS - Y;.s)( Yjjl - Yi.t) 
j=l 

where ni is the number of subjects in the ith treatment group and summation is over the 

nonmissing pairs of observations. Patterns observed in ri can suggest the structure of the 

corresponding correlation matrix. 

In order to graphically visualize correlation properties of the observed data it will be 

useful to fIrst remove the variability in the data associated with differences in the means and 

variances over time. Let nik be the number of nonmissing observations for the ith treatment 

group at time k. For i=1,2, ... ,t, j = 1,2, ... ,nik; and k = 1,2, ... ,p, let 

and 

A* _ ~jjk 
iljjk -

Si.k 
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n it 

LYijk 2 

- J·=1 2 I A··k 
h Y '-"-- and S, .. k = 'J. W ere Lk =-

nik j=1 n ik -1 

Since A~k = 0, the sample correlation matrix based on the centered and scaled 

values is given by 

Therefore the sample correlation structure is retained by the centered and scaled 

observations. 

Other distributional properties associated with the univariate marginal distributions 

at each time point will be shown to be useful in the interpetation of the parallel axis plots of 

these centered and scaled observations. For ease of notation, consider the case of no 

missing values so that Pij = P for all i,j. Let J.l.i denote the p x I vector of mean responses 

for the ith treatment group. When it has been assumed for j = 1,2, ... ,nik that the p x 1 

vectors Yij are iid Np(J.l.i,l:i)' it follows that at each time point, k = 1,2, ... ,p, Yijkis iid 

N(~ik,(J~k). This implies E(Aijk ) = 0 and E(A:jk ) = O. Furthermore, 

Var(Aijk ) = nik -1 O'~k. Since S;'k ~ O'~k and Yj.k --Y Jlile it follows by Slutsky's 
nile 

Th th A - Y Y d Y d A* _ Yjjk YLk d Yjjk - Jl jk eorem at Lljjk - jjk - j .k~ jjk -~ik an Lljjk ----~ 
Si.k Si.k 0' ik 

Hence, when the number of observations in the ith treatment group at the kth time is large, 

Ajjk converges to N(O'O'~k) and A~jk converges to NCO,I). While, in general, the number 

of these observations at each time point within each treatment group may be limited, these 



properties still may be useful in the examination of the plots of these centered and scaled 

data. 

The following describes two graphical techniques that can be used to display 

distributional patterns in the centered and scaled data. 

2.4. Draftman's Display 
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. th .. p(p - I) . . I f th ( A· A.) Assummg ere are p tIme pomts, 2 PaIIWlse pots 0 e lljjr,lljjs ' r,s = 

I,2, .. ,p, r'# s values at all nonmissing distinct combinations of time points can be used to 

view the sample correlation structure. This array of plots given in Figure 2.2 can be 

arranged in a manner similar to the correlation matrix. The diagonal plots correspond to 

the scaled data a ftxed time unit apart The upper left hand plot corresponds to the fIrst and 

second time points and the upper right hand comer plot corresponds to the fIrst and last 

time points. Varying degrees of linearity in each of the plots will be associated with the 

degree of correlation between the corresponding pairs of variables. 

Figure 2.3 shows simulated 4-dimensional normally distributed data sets with 

differing correlation structures. In Figure 2.3(a) the within-subject observations are 

independent which is indicated by the absence of a linear trend in any of the pairwise plots. 

Autoregression is indicated in Figure 2.3(b) by the decrease in correlation as the time 

interval between measurements increases as well as consistency in the correlation for plots 

associated with ftxed differences in time. The similarity of the pairwise plots of Figure 

2.3(c) suggests compound symmetry. 

2.S. Parallel Axis Display 

In a parallel axis display properties of the p univariate distributions can be 

visualized in addition to the correlation structure. In plots of tljjk and tl~jk' the patterns 
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Figure 2.2: Ordering of Scatter Plots in a Draftman's Display to View 
Correlation Structure. 
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Figure 2.3(a): Independence Figure 2.3(b): Autoregression 
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Figure 2.3(c): Compound Symmetry 
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Figure 2.3: Simulated Four Dimensional Normal Data with Various Correlation 
Structures Plotted in a Draftman's Display. 
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fonned by the intersections of the line segments with each axis allows graphical 

assessment of the observed univariate sample distributions at each time point. In the plot of 

the centered and scaled A:jk values the patterns of the line segments between the axis allow 

visualization of the observed correlation between the corresponding pairs of variables. 

If the nonnality assumption is correct, then E(Aijk ) = 0 and Var(Aijk ) = nik -1 a~. 
njk 

This implies when nik is constant, k=I,2, ... ,p, a visual comparison of the a;k values can 

be made in a parallel axis plot of the Aijk values by examining the distribution of the 

intersection points of the line segments with the associated parallel axis. In Figure 2.4(a) 

data simulated from a nonnal distribution with a nonconstant a;k' k=1,2,3,4 are plotted. 

The larger variability associated with the second and fourth measurements is indicated by 

the wider spread in the distribution of the intersection points with these axes. In contrast 

in Figure 2.4(b) where data were simulated from a nonnal distribution with a;k= 1, 

k=I,2,3,4, constant variability is suggested. Of course, in cases when nik is not constant 

for all k, the variability in the plots associated with the nonconstant sample sizes must be 

taken into account. 

Similarly when n ik is large, the distribution of the centered and scaled A~jk 

approximates N( 0,1). Hence in a plot of these values the intersection points along each of 

the axes should be consistently centered at 0 and virtually all between -3 and 3 (Figure 

2.4(b». Deviations in this pattern when nik is not large may not necessarily indicate 

nonnonnality but may warrant further examination. 

In plots of A:jk the patterns of the line segments between the axes are associated 

with the correlation structure. Positive correlation in a parallel axis plot is indicated by a 

pattern of parallel line segments between the axes. In addition if the positively correlated 

data are jointly centered about 0, the slopes of the line segments will be close to zero. As 

the degree of positive correlation diminishes the lines will tend to intersect more often and 
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Figure 2.4 (a): Nonconstant Diagonal Elements 
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Figure 2.4 (b): Nonconstant Diagonal Elements 

Covariance Matrix 
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1.0 0.0 0.0 0.0] 
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0.0 0.0 0.0 1.0 
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Figure 2.4: Comparing the Diagonal Elements of the Covariance Matrix in a 
Parallel Axis System using Simulated Four Dimensional Nonnal Data with Different 
Correlation Structures. 
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the variability in slopes will increase. In contrast, as negative correlation approaches -1.0 

the line segments intersect in a smaller and smaller region. In fact, if there is perfect 

negative correlation the lines all intersect at a single point (Inselberg, 1985). As the degree 

of negative correlation diminishes the common intersection region widens. Figure 2.5 

shows simulated data for various values of both positive and negative p respectively. 

In order to observe correlation patterns between all possible pairs of variables a set 

of parallel axis plots will be needed. Rather than considering p(p - 1) pairwise parallel 
2 

plots, plotting several dimensions on a single set of axes is convenient Wegman (1990) 

has shown that for p variables a minimal number of parallel plots to show all possible 

pairwise combinations is p + 1. The pennutation of the axes using this method results in 
2 

an ordering of the axes that does not reflect the natural order of the measurements by time. 

A more convenient ordering of the axes for this type of data using (p-l) plots is suggested. 

This is illustrated for 4-dimensional simulated normally distributed data with the 3 plots in 

Figure 2.6. Here, the first parallel plot orders the variables naturally so that correlation 

between measurements one time unit apart can be observed. In addition, the user can 

simultaneously observe the centered and scaled observations through time. The second 

parallel plot orders the axes so that correlations between measurement taken two time units 

apart can be observed. Note in this plot the line segments between the axes representing 

times 3 and 2 are not connected since this comparison is not considered in this plot The 

third graph considers values taken 3 time units apart 

Figure 2.7 illustrates this technique for the four data sets previously plotted in the 

Draftman's Display (Figure 2.3). In Figure 2.7(a), there is no indication of positive 

correlation due to the absence of parallel lines between any of the axes. In addition, since 

the regions formed by the intersection of lines between the axes are wide, negative 

correlation is not indicated. Independence is therefore suggested in Figure 2.7(a). A 
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Figure 2.7 (8): Independence 

Correlation Matrix 

[ 

1.0 0.0 0.0 0.0] 
0.0 1.0 0.0 0.0 
0.0 0.0 1.0 0.0 
0.0 0.0 0.0 1.0 

Figure 2.7 (b): Autoregression 

Correlation Matrix 

[

1.0 .90 .81 .73] 
.90 1.0 .90 .81 
.81 .90 1.0 .90 
.73 .81 .90 1.0 

Figure 2.7 (c): Compound Symmetry 

Correlation Matrix 

[

1.0 .90 .90 .90] 
.90 1.0 .90 .90 
.90 .90 1.0 .90 
.90 .90 .90 1.0 

Figure 2.7: Simulated 4-Dimensional Normal Data with Various Correlation 
Structure Plotted in a Parallel Axis System 
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decrease in positive correlation associated with autoregression is indicated in Figure 2.7 (b) 

by the weakening in the pattern of parallel lines as the differences in time between 

measurements increases. Compound symmetry is suggested in Figure 2.7(c) since the line 

patterns between all pairs of variables seems constant 

The following example illustrates the usefulness of both the parallel axis plots and 

the draftman's display at certain stages of a repeated measures analysis. In particular these 

plots will be used, without fIrst fItting a model, to suggest the structure of the dispersion 

matrix. 

2.6. Example 

Koziol and Maxwell (Biometrics, 1981) report a study that was conducted to test 

the efficacy of 3 therapies against colon carcinomas in mice. Thirty mice injected with 

mouse colon carcinoma cells were randomly divided into the 3 treatment groups. The size 

of the resulting tumor was recorded on 11 different occasions, days 

7,11,12,13,14,15,17,18,19,20 and 21. Nine mice died before the end of the experiment 

so that measurements at later time points for these mice are missing. The data appear in 

Table 2.2. A plot of the observed data (Figure 2.8) indicates an increase in tumor size 

over time. The sixth mouse in group 3 is clearly unusual and was eliminated from the 

remainder of this analysis. 

At this point the analyst could examine the estimated dispersion matrix after fItting a 

linear repeated measures model with an unstructured covariance matrix. An attempt to 

perform such an analysis using Proc Mixed in SAS® failed to converge. The graphical 

techniques previously discussed can now be used to provide valuable information which 

will permit the analyst to proceed. 

In order to compare the diagonal elements of the covariance matrix graphically, the centered 

data using the observed means for each of the 3 treatment groups at each of the 11 
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Table 2.2 

Tumor Size (mm3) over course of the Experiment (Koziol) 

Day 

7 11 12 13 14 15 17 18 19 20 21 

1 35.3 157.1 122.5 217.6 340.3 379.0 556.6 661.3 634.8 
2 19.6 152.2 129.6 176.6 213.9 317.9 356.4 580.0 415.2 460.0 520.1 
3 27.0 122.4 196.1 196.1 332.2 388.9 469.3 397.1 505.4 541.5 
4 55.0 95.0 205.9 205.9 270.0 307.3 405.1 726.0 950.4 661.5 798.6 
5 24.6 68.8 135.3 196.0 340.2 340.4 507.3 767.2 820.0 937.5 
6 12.6 85.0 70.1 225.1 225.1 289.0 317.9 529.1 653.4 687.7 750.2 
7 35.2 129.8 180.0 274.7 420.1 340.3 507.2 634.8 714.3 777.6 912.6 
8 29.8 157.0 126.8 202.5 225.0 307.2 320.1 
9 70.0 129.7 196.0 205.8 375.7 419.1 421.2 573.4 701.8 

10 29.5 156.9 176.7 225.0 289.0 372.6 379.2 529.2 573.3 560.1 520.0 

11 48.6 115.3 90.8 176.5 317.9 421.2 529.2 388.8 629.0 
12 66.7 289.0 215.6 268.8 388.8 487.4 551.3 767.1 677.6 846.4 634.9 
13 24.5 143.7 115.0 90.7 194.3 559.6 629.3 573.3 540.0 
14 14.4 84.7 135.2 191.2 176.4 356.4 397.1 551.4 605.0 480.0 634.8 
15 10.8 70.0 80.0 118.3 156.8 215.6 268.8 346.8 551.3 946.4 440.0 
16 11.3 15.0 205 .8 289.0 346.8 529.2 629.2 551.3 714.2 772.6 806.4 
17 18.0 56.7 115.3 96.8 177.5 268.8 320.0 372.6 487.4 573.3 683.6 
18 60.0 166.6 166.7 324.0 420.0 440.0 634.8 500.0 289.0 560.0 748.8 
19 29.4 152.1 122.4 186.3 186.3 274.7 485.1 397.0 
20 41.1 186.2 176.6 274.6 361.0 379.1 440.0 415.2 

21 12.5 108.0 96.8 186.2 202.5 213.8 379.1 379.0 433.2 379.0 500.0 
22 23.4 129.6 176.5 196.6 320.0 397.1 500.0 687.7 767.1 806.4 937.5 
23 22.2 65 .0 176.4 191.3 213.8 274.6 405.0 520.0 796.6 978.7 864.0 
24 11.2 52.9 70.0 129.6 152.1 303.5 415.0 440.0 556.7 812.5 1014 
25 66.6 147.0 260.1 420.0 460.0 653.4 806.4 
26 11.4 115.2 65.1 32.0 10.8 3.2 1.4 0.0 0.0 0.0 0.0 
27 22.1 55.0 115.2 55.0 93.6 118.8 118.3 230.4 217.6 243.2 217.6 
28 40.5 156.8 65.0 84.7 191.2 291.5 400.0 
29 32.0 44.6 108.9 258.8 247.5 405.0 372.6 388.0 451.3 580.0 573.3 
30 10.0 118.3 166.6 176.4 186.2 340.2 361.0 556.6 556.6 268.8 346.8 
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Figure 2.8: Observed Koziol Data Plotted Over Time 
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time points are plotted in Figure 2.9(a). An increase in variability is indicated by the 

widening distribution of the intersections of the line segments with each axis. Since 

covariance structures associated with constant diagonal elements have fewer parameters to 

estimate, a transformation to stabilize this variability is suggested and was considered. A 

plot of the centered In transformed data (Figure 2.9(b» suggest constant diagonal elements 

of the covariance matrix associated with these transformed data. Consequently, the In 

transformation was employed for the remainder of this analysis. 

To assess the consistency of the form of the covariance structure by treatment 

group, the centered In data by treatment group (Figure 2.10) are plotted. Group 3 appears 

to exhibit a slightly larger degree of variability at each time point and groups 1 and 2 show 

a possible decrease in variability over time. Bartlett's test for the homogeneity of the 

covariance matrix (Morrison, p.252) can be applied once it has been determined that there 

is no indication of nonnormality. Mardia's tests for multivariate normality (Mardia, p. 310) 

fail to detect a deviation from normality (skewness: p=O.5836, kurtosis: p=O.9122) and 

significant heterogeneity is not indicated (p=1.000). Homogeneity of the covariance matrix 

by group was therefore concluded. 

Since it has been concluded that the diagonal elements of the covariance matrix are 

likely not different, further refmement of the dispersion structure can be made by 

considering plots of the centered and scaled data. Using the parallel axis system (Figure 

2.11) some positive correlation is indicated especially in the top left plot associated with the 

(i,i+ 1),i=I,2, ... ,10 positions of the sample correlation matrix. This indication of positive 

correlation is not as apparent in the remaining plots. In the draftman's display (Figure 

2.12) the similarity of the scatter plots in the top rows support compound symmetry. 

Along the remaining rows a fIrst order autoregressive pattern with a weakening degree of 

positive correlation is suggested. By examining the scatter plots along the diagonals, 

correlation between measurements at constant differences in time appear equal. Both 



400 

300 

200 

100 

o 
-100 

-200 
-300 

-400 

2 

1 

o 

-1 

7 11 

Figure 2.9(a): Centered Observed Data 

12 13 14 15 

Day 

17 18 

Figure 2.9(b): Centered Ln Data 

19 20 21 

-2 L-__ ~ ____ ~ __ ~ ____ ~ __ ~ __ ~~ __ ~ __ ~ ____ ~ __ ~ 

7 11 12 13 14 15 

Day 

17 18 19 20 21 

Figure 2.9: Centered Observed and Transfonned Koziol Data Plotted in a Parallel 
Axis System. 

38 



39 

Figure 2.10(a): Group 1 
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Figure 2.11: Centered and Scaled Ln Transfonned Koziol Data in a Parallel Axis 
System. The (i,j)th position of the correlation matrix is represented in each plot. The 
sample correlation is shown between each parallel axis. 
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graphical presentations and the sample correlation matrix shown in Figure 2.12 indicate 

compound symmetry or fIrst order autoregression can be considered as possible forms for 

the covariance structure in the model fitting procedure. 

A plot of the observed In transformed data indicates a possible curvilinear increase 

over time (Figure 2.13). This implies a linear repeated measures model with a quadratic 

term may be appropriate. The following defmes the initial model considered for the In data. 

i=1,2,3 j=1,2, ... ,ni t=O,l, ... ,1O 

Table 2.3 summarizes the results of fitting this model using SAS® Proc Mixed and 

assuming compound symmetry and autoregression. A simple model assuming 

independence of the observations within a subject was also run for comparison. In all three 

cases the iterative procedure successfully converged to parameter estimates. A test 

comparing the treatment groups however, results in differing p-values with the simple case 

actually suggesting a difference between the groups. In order to compare the models, the 

Akaike Information Criterion and Schwartz's Bayesian Critera can be examined. These 

statistics can be used as guidelines when comparing models with the same fixed effects but 

with varying covariance structure (SAS®, p.326). Larger values of these statistics suggest 

more appropriate covariance structure. Thus, at this stage of the analysis the first order 

autoregressive structure appears to be the most appropriate for this data set. 

It has therefore been demonstrated that the parallel axis and a draftman's display of 

pair-wise plots can be useful in suggesting an appropriate form for the dispersion matrix 

for a repeated measure experiment with fixed effects. In particular, a centering and scaling 

technique was described so that properties of the covariance structure were retained in the 

scaled data. By plotting these scaled data, properties of the covariance matrix could be 
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Table 2.3 

Preliminary Analysis Results Using Proc Mixed in SAS® 

Covariance Structure 

Compound Auto-
Simple Symmetry regressive 

Akaike Statistic* -179.94 -141.48 -127.64 
Schwartz Statistic* -181.76 -145.12 -131.28 

p-value group 
differences .0652 .1333 .9680 

parameter estimates 

J301 3.42 3.42 3.40 

J3 02 3.23 3.24 3.31 

J3 03 3.07 3.08 3.13 

J311 0.40 0.40 0.41 

J312 0.42 0.41 0.40 
J313 0.42 0.42 0.41 

J321 -0.013 -0.012 -0.014 
J3 22 -0.013 -0.013 -0.012 
J3 23 -0.014 -0.012 -0.013 

* Higher values are associated with models deemed best 
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visualized. In Chapters 5 and 7 both plotting techniques described in this chapter will be 

applied to studies of combinations of a large number of chemicals. 
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Chapter 3 

The Logistic Model 

3.1 Introduction 

As described in Chapter 1 the experiments we are considering are those where the 

response can be classified into one of two possible values; success (Z=I) or failure (Z=O). 

Logistic modeling has been shown to be useful in analyzing these data. A general 

overview of this methodology will now be given. Emphasis will be placed on those results 

that will be useful in the statistical analyses considered in this dissertation. An example will 

be given to illustrate the technique. In the next section the notation to be used will be 

described. Certain distributional and modeling assumptions will also be made. 

3.2 Notation and Model Assumptions 

The experimental design used for the experiment defmes G distinct design points. 

At each of these points ni ~ 0, i=I,2, .. ,G, replications of the experiment will be conducted 

and the response observed. Let 

x· 1 = 1 x (p+l) vector of explanatory variables at the ith observational point = 

[I Xii X i2 ••• x iP ] 

x = G x (p+ 1) full rank matrix of explanatory variables with rows Xi 

Zij = jth response at the ith point of observation; Zij E {O, I}; j= 1 ,2, .. ,ni 

46 



47 
Dj 

Y i = LZjj 
j=! 

I 

Y = [Y! Y2 ... YG] • 

It is assumed for all i=I,2, .. ,G and j=I,2, ... ~ that Zij are independently distributed 

as Bernoulli random variables with unknown parameter 1ti. It therefore follows that the Y i, 

i=I,2, ... ,G are independent and distributed as Binomial random variables with known 

parameter ~ and unknown parameter 1ti. This distribution is denoted by Bin(~,1ti) and its 

probability distribution function given by 

(3.2.1) 

Recall that the exponential family of distributions is given by 

f(Yj;1t) = d(y)exp[a(y)b(1t)+ c(1t)] 

where b( 1t j) is the natural parameter. By rewriting (3.2.1) as 

(3.2.2) 

it can be shown that the binomial distribution is a member of this family with natural 

parameter 

b(1t j) = 109(~J = logit(1tJ. 
I-1tj 



It is assumed that these natural parameters can be modeled as linear functions of the 

explanatory variables in the following way. Let 

where P is a (p+l) x I vector of unknown parameters. It follows from (3.2.3) that 

1t. = 1 = exp(xJI> . 
I 1 + exp( -xiP> 1 + exp(xiP> 

An overall model can also be written as 

1 
1t= , 

1 + exp(-Xp> 

48 

(3.2.3) 

(3.2.4) 

(3.2.5) 

where 7t = (1t11t2 ... 1tG)' and X is the G x (p+l) matrix with rows xi. Hence, in this 

modeling procedure the response, or dependent variable, is the 10git(1ti), where 1ti is the 

unknown parameter from the assumed binomial distribution. Based on the distributional 

assumptions made, 

n· E(Y) = n .1t. = I , 

I I I 1 + exp( -xiP) 
(3.2.6) 

(3.2.7) 
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One advantage of modeling the natural parameter, or 10git(1ti)' is that the associated 

transformed parameter space is unrestricted, i.e., while 1tj E [0,1], 10git(1tj) E R. Since 

there are no restrictions on 10git(1tJ, it can be assumed, in general, that no restrictions 

need be placed on the vector p. Hence P E RP+l. 

However, if 1ti = 0 or 1, the resulting distribution is degenerate. This means all 

possible values ofYi will be concentrated at the single point ~ when 1ti = 1, or at 0 when 

1ti = O. By examining (3.2.3), it is also apparent that when 1ti = 0 or 1, p will contain one 

or more infinite values. Therefore while the distribution itself is well defmed when 1ti = 1 

or 0, it can not be written in the form (3.2.2). In the context of an actual analysis it can be 

assumed that the dose ranges studied are such that 1ti :I; 0 and 1ti :I; 1. If 1ti is near one of 

these values, however, the associated p vector will contain values tending towards ±oo. 

This property should be noted since it may cause convergence problems in the estimation 

procedure discussed in the next section. 

It is also useful at this point to examine the (p+l) x 1 vector p more closely. Since 

Xj = (1 Xii x j2 ... Xjp ), xJJ can be written as ~o + ~l Xii + ~2Xj2 + ... ~pXjp. Therefore, p of 

the parameters are associated with the explanatory variables. A model containing only the 

intercept parameter is given by 1t j = 1 , i=1,2, ... ,G, and is referred to as an 
1 +exp(-~o) 

"intercept only" model. 

In the next section the estimation of the elements of P is described. These estimated 

values can then be used to help evaluate the relationship between the explanatory variables, 

Xi, and the unknown 1ti, i=1,2, ... ,G. 



3.3 Estimation 

Maximum likelihood methods will be used to estimate p. Let y denote a G x 1 

vector of observed values for Y. For this fixed sample, y, the likelihood which is a 

function of 71:, is given by 
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(3.3.1) 

(3.3.2) 

Based on (3.2.3) the likelihood (3.3.2) can be written in terms of P as 

L(P;y) = {IT (n:)} exp{f yjXjP - nj In {I + exp(xJ') }}. 
1=1 YI 1=1 

(3.3.3) 

The goal is to find ~ , the value of P that maximizes the likelihood given in (3.3.3). Since 

the function y=In(x) is a monotonically increasing function, maximizing L(JJ;y) is 

equivalent to maximizing the In of L(JJ;y) given by 

(3.3.4) 

The usual method of maximization involves setting the fllSt derivatives of (3.3.4) 

equal to 0, solving for the parameters of interest and then insuring that the values 

determined are, in fact, associated with the maximum values of I(JJ;y). Here, the fllSt 

derivatives, which are defmed as the Scores, are given by 
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(3.3.5) 

Recall that the underlying distributional assumptions made were that the response 

variable, Y j , is distributed Binomial(nj ,7t) and that the unknown parameter 7tj could be 
1 

modeled by 7t . = . Wedderburn (1976, p.31) showed that under these 
I 1 + exp( -xJ~) 

assumptions and assuming 7t j e (0,1) the maximum likelihood estimate of p, P , exists, 

is finite and unique. 

" In order to actually solve for P iterative procedures must be used. For purposes of 

this dissertation an iteratively reweighted least square algorithm (IRLS) will be used to 

solve the systems of equations given by al~~jY) = 0; j = 0,1,2, ... ,p. This procedure is 

described in McCullagh and NeIder (1989, p.40). In general this method may fail to 

" converge if one or more components of P is infmite. One way this could occur is when 

there is little or no variability in the responses observed over particular values of the 

explanatory variables. For example, consider a drug combination study where all observed 

responses are constant over the full range of doses for one of the agents alone. The 

parameter estimate associated with that agent will tend toward positive or negative infmity if 

the responses are identically 1 or 0, respectively. An adjustment to the X matrix and the 

experiment may be necessary in these cases. This could include increasing the size of the 

experiment by extending dose combinations in a predetermined fashion. Necessary 

adjustments to the analysis may then be needed to account for this change in the 

experimental design. For the remainder of this dissertation, however, it will be assumed 

that no adjustments will be made to the set of observations considered. 

The following section presents a discussion of the statistical properties of these 

estimators. 
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3.4 Distributional Properties 
G 

When the total sample size, L n i ' is large certain properties of the maximum 
i=l , 

likelihood estimators P and the scores U (P) = [ U 0 (P) u 1 (P) ... Up (P)] have been 

derived. A complete discussion of these properties is given in several sources including 

Serfling (1980) and Rao (1973). 

Many of these results involve the (p+ I) x (p+ 1) Fisher Information Matrix, I(P). 

The jkth element of this matrix is given by 

(3.4.1) 

It can be shown that under the distributional assumptions made 

(3.4.2) 

where XiO = 1, i=1,2, ... ,G. I(P) can be consistently estimated by evaluating (3.4.2) with 

P = P . This estimate is denoted by I(P). 

Let Np+ 1 denote the p+ 1 dimensional multivariate normal distribution. Two well 

known approximate distributions are given by 

(3.4.3) 

(3.4.4) 
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" Note that (3.4.4) implies the maximum likelihood estimate, p, js an approximate unbiased 

estimate of the true parameter, p. The covariance matrix for the parameter estimates, p, is 

I(pr1 which can be consistently estimated by taking the inverse of I(P) and is denoted by 

I(~rl . 

Using properties of the multivariate normal distribution it follows from (3.4.3) and 

(3.4.4) that 

(3.4.5) 

(P - ~)'I(P)(P -~) - Xp + 1· (3.4.6) 

In addition, based on (3.4.4), the approximate distribution of the individual maximum 

likelihood estimators can be derived. Let (12 (~j) denote the jth diagonal element of I(pr1
. 

Then for j=O,1 ,2, ... ,p it follows that 

(3.4.7) 

or equivalently 

(3.4.8) 

An estimate for (12(J3j) is given by the jth diagonal element of I(pr1 and is denoted by 

(12(~j ) 

Lastly, an approximate distribution involving the In likelihood is given by 
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2(1(~;y) -1(P;Y») - X 2 • 
p+! 

(3.4.9) 

These approximate distributions can be used to develop various useful tests of hypotheses 

involving the parameters p. One important group of tests that is often applied is goodness 

of fit tests. These will be discussed in the next section. Tests for more general hypotheses 

then follow. 

3.5 Goodness-of-Fit Tests 

In any model fitting procedure an overall measure of the goodness-of-fit is very 

useful. Here the null hypothesis is that the defmed model of interest adequately describes 

the data. A small p-value associated with this test implies that the investigator should 

reexamine the model assumptions. 

Pearson's C2 statistic (Hosmer and Lemeshow, 1989, p. 138) is often used to test 

this type of hypothesis. This statistic is defined as 

(3.5.1) 

where 7t = 1 A, i=I,2, ... ,G. 
I 1 + exp( -xiP) 

Another goodness-of-fit test that has been cited in this context is based on the 

difference of the In likelihoods evaluated at two particular estimates of the parameters. 

Before defining this statistic it is useful to reexamine the maximum of the In likelihood. 

Recall that one goal of these studies is to examine the relationship between the explanatory 

variables and the response values. Therefore, when using the principles of maximum 

likelihood, the value of P that maximized the In likelihood was found. Based on this 
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maximum likelihood estimate, p, the predicted response is given as Xi = 1 A; 
1 + exp( -xJI) 

i=1,2, .. ,G. In general, however, it can be shown that the In likelihood is maximized in 

tenns of 1tj by iti = 21.; i=1,2, ... ,G. Hence it will follow that l(i;y) ~ l(i;y). The fitted 
ni 

model based on it is referred to as the maximal model with the number of parameters equal 

to the number of observational points. In general, these estimators are not useful to the 

investigator since they do not relate the values of the explanatory variables to the response. 

The In likelihood evaluated at it can be used as a standard, however, for comparing 
A 

alternative fitted models. If the estimated model in terms of fI fits well, the difference of In 
A 

likelihoods evaluated at fI and it should be small. This difference, defined as the deviance 

(Hosmer and Lemeshow, 1989, p. 14), is given by 

(3.5.2) 

Depending on the way the sample size becomes large, C2 and D have been shown 

to converge in distribution to the X~-P-l distribution. For the studies considered in this 

dissertation, the sample size can become large in two ways. One way assumes the number 

of unique observational points, G, is fixed and nj, the number of replications at each point 

is large. The other assumes nj will be small but G will be large. The asymptotic results in 

Section 3.4 hold in both cases. When G is large but the data are sparse, i.e., nj is small, 

the use of the X~-P-l distribution as an approximation of the distribution of C2 and D has 

been shown to be problematic (McCullagh and NeIder, 1989, p.121). Therefore, before 

applying these statistics as global measures of goodness of fit, the investigator should 

insure that the experiment conforms to the asymptotic assumptions made. 
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Based on the possible problems associated with the use of D and C2, some 

alternative approaches have been considered. Pregibon (1981) has advocated the use of 

the individual components of D and C2 as indicators of observations poorly accounted for 

by the fitted model. These individual components, for i=I,2, ... ,G are given by 

and 

{

A }1/2 
dj = .J2 l(i;y)-I(f';Yi) ; 

{

A }1I2 -.J2 l(i;y) -l(f';y) ; 

(-2ni 10g(l- ~i)r2; 

(-2n, log(~i ))1/2; 

(3.5.3) 

(3.5.4) 

A large q is indicative of an observation with a large difference between the observed and 

fitted values or a predicted value close to 0 or 1. A large dj implies there is a relatively large 
A 

disagreement in the maximum of the In likelihoods evaluated at I' and i:. Hence at the 

observation in question there is less evidence in support of the maximum likelihood 
A 

estimate, 1'. Therefore, large values of the individual statistics Ci that are not associated 

with predicted iti near 0 or 1, or large dj may be associated with observations where the fit 

of the model may be poor. The analyst can investigate those observations in the usual way 

for problems in data collection or with the study protocol. In some cases the overall model 

assumptions may also have to be reconsidered. 

McCullagh and NeIder (1989, p.122) have also derived an asymptotically nonnal 

distribution for C2 given in (3.5.1) conditional on the value of ~. This conditional 



asymptotic distribution is not dependent on the manner the sample size becomes large. 

Hence 
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(3.5.5) 

where 

and Vii is the ijth element of V = XI(pr1X'. A goodness-of-fit test based on this 

approximate distribution can be applied when G is large and f\ is small but greater than 1. 

For the studies considered in this dissertation it is assumed that in general, ni' the 

number of replications of the experiment at each observation point, will be small but G, the 

number of observation points, will be large. Therefore, a goodness of fit test based on X2 

and the approximate normal distribution defmed in (3.5.5) will be used. An examination of 

the individual components of X2 and D will also be made. This will be particularly helpful 

if the overall goodness-of-fit null hypothesis is rejected. When large values of the of Xi or 

dj are identified the data will be examined to determine if there are problems with data 

coding or the study protocol at these points. IT no problems are found then an adjustment 

to the model may also be examined. In general, the elimination of these problem points 

will not be considered. 
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Once the investigator is satisfied that the fit of the model is adequate, and depending 

on the questions of interest, one or more of the hypothesis test procedures described in the 

next section can be applied. 

3.6 Inference 

Based on the asymptotic results given in Section 3.4 several statistical testing 

procedures can be developed. One important group of hypotheses are of the form 

Ho : P = 'Yo 
Ha : p;t 'Yo 

(3.6.1) 

where 'Yo is a (p+ 1) x 1 vector of constants. Let I( 'Yo) denote the Information matrix 

(3.4.1) evaluated at 'Yo. The following three test statistics can be used to test (3.6.1). 

"" " 
Wald test statistic ('Yo -P),I(PX'Yo -P) (3.6.2) 

(3.6.3) 

(3.6.4) 

In all three cases, assuming the null hypothesis is true, and based on the results (3.4.5), 

(3.4.6) and (3.4.9), the asymptotic distribution of these statistics is X~+l. Extreme values 

of the test statistic lead to rejection of the null hypothesis at the appropriate level of 

significance. Alternatively, the associated observed p-value can be determined using the 

X~+l distribution. If the null hypothesis is rejected the investigator can conclude at least 

one J3 j ;t 'Yoj' j=O,I,2, ... ,p+1. 
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Asymptotically the tests are equivalent since under the null hypothesis, all three test 

statistics converge to the X~+l distribution. Studies comparing the use of these three tests 

under various finite sample sizes have shown that none of the three tests is uniformly 

superior to the others (Madansky, 1989). Hauck and Donner (1977) have demonstrated 

however, that the Wald test has some undesirable characteristics, particularly when at least 
A 

one parameter estimate, ~ j is large. In addition, it has been shown that the Wald test is not 

invariant under transformations of the parameters (Cox and Oates, 1984). The score 

statistic has a computational advantage since it does not require calculation of the maximum 

likelihood estimates. If the maximum likelihood estimates are readily available the 

likelihood ratio statistic is often recommended (Mantel, 1987, Cox and Oates, 1984). 

McCullagh and NeIder (1989, p.473) have stated that the asymptotic distribution 

associated with the likelihood ratio statistic is "quite accurate for small values of n even 

when Normal approximations for parameter estimates are unsatisfactory". 

An example of a useful hypothesis that can be expressed in the form (3.6.1) 

involves testing the dependence of the response variable on at least one of the explanatory , 
variables. This test will be referred to as the intercept-only test. Here 10 = (Yoo 00 ... 0) 

where Yoo denotes the maximum likelihood estimate of the single parameter in an intercept-

only model. This value, shown below, can be determined in a straight forward way by 

maximizing the In likelihood for the intercept-only model with respect to 'Y 00. 



This result implies that under the assumption of an intercept only model, the maximum 
G 

LYi 
likelihood estimate of the constant response is given by 1 A = i~l • The null 

1 + exp(-yoo) Ln
i 

i=1 , 
hypotheses can therefore be written as Ho : p = (Y 00 0 0 ... 0) . Once Yo = (y 00 0 0 ... 0) 
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is determined, all three test statistics given in (3.6.2), (3.6.3) and (3.6.4) can be calculated. 

Note that in the hypothesis given in (3.6.1) the entire vector of parameters is 

specified. Another useful group of hypotheses involves specifying that only a subset of the 

panuneters is equal to zero. Let P = (::::) where P(ll is r x 1 and P'" is s xl and r + s = 

p+ 1. The hypotheses are given by 

Ho : 1J(2) = 0 

Ha : P(2) ¢ O. 
(3.6.5) 

Under the null hypothesis, a reduced or restricted model with r parameters is defmed. Let 

'" denote the r x 1 vector of maximum likelihood estimates under Ro. In contrast, under 
A 

Ha, the full or unrestricted model is considered with maximum likelihood estimates IJ. A 

test statistic that can be used to test these hypotheses is based on the deviance (3.5.1). 

Expressions for the deviances under the respective hypotheses are given by 

Do = -2{IN,;y)-I(i;y)} 

The difference in these deviances is the basis for this Full Model versus Restricted Model 

Likelihood Ratio test and is given by 
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(3.6.6) 

In section 3.5 it was noted that the asymptotic distributions associated with the deviances 

were dependent on the manner the sample size increased. Dobson (1990, p.62) states 

however, that the asymptotic distribution of D,:\ in (3.6.6) is adequately approximated by 

X;. Note that the degrees of freedom for this test are equal to the dimension of the vector 

P (2) . This is equivalent to the difference in the number of parameters in the full model 

(p+ 1) and the reduced model, i.e., (p+ 1)-r = s. Note, for this testing procedure, in order 

to determine p and .. two executions of the IRLS estimating procedure are needed. 

Another application of the test defined by (3.6.5) involves testing the significance 

of only one parameter. If the parameter of interest is J3 j then the hypothesis can be written 

as 

Ho : J3 j = 0 
Ha : J3 j :;t O· 

(3.6.7) 

In terms of (3.6.5) P(2 ) = (J3 j ) and PCI) is the p x I vector of the remaining parameters. 

Now, under the null hypothesis, the maximum likelihood estimates are the p x 1 vector --It. 
As usual, Dais calculated. A p-value based on the X~ distribution then can be determined. 

This same hypothesis (3.6.7) is also commonly tested using a Wald Statistic and is 

based on the asymptotic result given in (3.4.8). Since under Bo, J3 j = 0, the test statistic is 

given by 

Wald test statistic (3.6 .8) 
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where (J2 (~j) is the jth diagonal element of the estimated covariance matrix, I(Pfl. Using 

the observed value of (3.6.8) a p-value based on the X; can be detennined. 

If a large number of these individual tests defmed by (3.6.7) are applied the 

investigator must consider the problems associated with multiple testing. When a large 

number of individual tests are conducted the overall probability of falsely rejecting at least 

one null hypothesis becomes quite large. This will be addressed in more detail in Chapter 

6. 

Another useful statistical tool is the confidence region. In the next section 

confidence regions about the response and about the individual parameters will be 

discussed. 

3.7 Confidence Regions 

The result given in (3.4.7) can be applied in a straightforward manner to estimate the 

endpoints of a confidence region about a given parameter. A 100(1- a)% confidence 

region about f3j is given by 

(3.7.1) 

where t1-a/2;G-p-l is the upper (1-012) percentage point from student t distribution with G­

p-l degrees of freedom and (J2 (~j) is the jth diagonal element of the estimated covariance 

matrix, I(Pfl. 

A confidence region about the response at a single ftxed value of the explanatory 

variables, Xi' can be detennined using (3.7.1) as follows, 
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In general, however, an examination of the confidence regions about the response at 

several levels of the explanatory variables will be considered. Recall the coverage 

probability, 1 - a, associated with a confidence interval is the probability the interval covers 

the true parameter. If the methodology just described is applied repeatedly the overall 

confidence probability will become small. For example, if ten confidence intervals with 

individual coverage probability .95 are constructed based on ten independent samples, the 

overall coverage probability will be .9510 = .5987. The construction of a simultaneous 

confidence region can be used, however, to insure an overall coverage probability of at 

least .95. 

Hauck (1983) developed a conservative simultaneous 100(1 - a)% confidence 

region about the response. Using (3.4.6), a 100(1 - a)% confidence ellipsoid about the 

parameters, p, is based on 

(3.7 .2) 

where X~+l ,l-a is the upper I-a percentage point of the X~+l distribution and I(P) is a 

consistent estimator of I(P). Let w be an arbitrary 1 x (p+ 1) vector of independent 

variables. Applying a form of the Cauchy-Schwartz inequality given by 

(3.7.3) 
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(3.7.2) can be rewritten as 

(3.7.4) 

Simplifying (3.7.4) gives 

(3.7.5) 

Note that (3.7.5) applies to all values ofw. For a specific value ofw, say xi, the 

corresponding probability statement is given by 

(3.7.6) 

A conservative simultaneous confidence interval about Xi~ is therefore given by the interval 

(3.7.7) 

Using (3.2.4), upper and lower bounds on the response at Xi can be determined and are 

given by 

(3.7.8) 
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This interval is considered conservative since the probability statement upon which it is 

based given in (3.7.6) is greater than or equal to 1- <X. rather than equal to it. Note also that 

if this procedure is repeated for several values of Xi, there is no reduction in the overall 

coverage probability, which will consistently be at least 1- <X.. This follows since (3.7.3) is 

true for any w. 

The following section provides an example of an analysis that uses many of the results 

described in this chapter. 

3.8 Example 

Carter, et al. (1988) described in detail a two agent experiment involving thirty-eight 

dose combinations of the chemicals chloral hydrate and ethanoL Six mice were tested at 

each of these 38 combinations. A drug combination was administered and after 30 minutes 

the mouse was evaluated for loss of righting reflex (yes or no). The dose levels and the 

results are summarized in Table 3.1. 

For reasons that will be described in Chapter 5, the model of interest at the ith dose 

combination is given by 

1 
1t = ; i=I,2, ... ,38 

1 1 + exp( -xiP) 

where 

Xi = [1 Xii X i2 X ilX i2 ] , 
P = [130 131 132 1312] 

Xii = dose of chloral hydrate 

X i2 = dose of ethanoL 



An overall model can be written as 

1 
K=-----

l+exp(-X~) 

where 

I 

K = (1t1 1t2 • .. 1t 38 ) 

1 xll X l2 x llx12 

1 X 21 X 22 X 2l X 22 
X = 38 x 4 matrix of explanatory variables = 

1 X 38,1 X 38,2 X38,IX38.2 

The fitted parameters and the various test statistics are listed in Table 3.2. The 

Goodness-of-Fit (3.5.5) p-value of 0.3737 suggests that the model adquately represents 

the data. In Table 3.1 the individual goodness of fit statistics Xi and di are listed. Three 

observations have large Xi values: (900,250), (900,300) and (1600,250). Only the first 
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two of these observations also have relatively large values of di' Since no problems were 

identified with the coding or collecting of the data in this study and since the fit of the 

model is adequate, it is reasonable to proceed with the analysis of the complete dataset 

Both the score and likelihood versions of the intercept-only tests show that at least one 

of the nonintercept terms is significantly different from zero. This implies that at least one 

of the two chemicals has a significant effect on the response. 

In Chapter 5 it will be shown that a test of the hypotheses given by 

Ho: ~12 =0 

Ha : ~12 :;t 0 
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Table 3.1 

Chloral Hydrate and Ethanol Study: Loss of Righting Reflex in Mice 

Data and Goodness of Fit Statistics 

Dose Levels Responses Goodness of Fit 
Chloral % Observed Predicted 

Ethanol Hydrate Dj ;( 7ti Xi di 
0 300 0/6 .000 .120 -.903 -1.236 
0 325 2/6 .333 .350 -.086 -.086 
0 350 4/6 .666 .681 -.076 -.076 
0 375 5/6 .833 .895 -.487 -.454 
0 400 6/6 .667 .971 .423 .593 
0 425 6/6 .667 .994 .212 .299 

200 100 0/6 .000 .000 -.006 -.008 
200 150 0/6 .000 .000 -.024 -.034 
200 200 0/6 .000 .002 -.096 -.136 
200 250 0/6 .000 .023 -.388 -.546 
200 300 3/6 .500 .290 1.133 1.078 
900 100 0/6 .000 .000 -.032 -.045 
900 150 0/6 .000 .003 -.137 -.194 
900 200 0/6 .000 .054 -.588 -.820 
900 250 6/6 1.00 .513 2.385 2.829 
900 300 4/6 .667 .951 -3.218 -2.194 

1600 100 0/6 .000 .005 -.174 -.246 
1600 150 0/6 .000 .094 -.791 -1.090 
1600 200 5/6 .833 .682 .794 .842 
1600 250 5/6 .833 .978 -2.411 -1.563 
1600 300 6/6 1.00 .999 .081 .115 
2300 100 0/6 .000 .130 -.095 -1.290 
2300 150 4/6 .667 .775 -.638 -.609 
2300 200 6/6 1.00 .988 .274 .386 
2300 250 6/6 1.00 .999 .057 .080 
2300 300 6/6 1.00 .999 .012 .017 
3000 100 6/6 1.00 .814 1.171 1.571 
3000 150 6/6 1.00 .991 .229 .323 
3000 200 6/6 1.00 .999 .045 .063 
3000 250 6/6 1.00 .999 .009 .012 
3000 300 6/6 1.00 1.000 .002 .002 
4000 0 2/6 .333 .365 -,159 -.160 
4050 0 2/6 .333 .418 -.421 -.426 
4100 0 2/6 .333 .474 -.688 -.696 
4150 0 3/6 .500 .530 -.145 -.145 
4200 0 4/6 .667 .585 .406 .411 
4250 0 5/6 .833 .638 .994 1.057 
4300 0 4/6 .667 .528 -,115 -.114 



Table 3.2 

Chloral Hydrate and Ethanol Study: Loss of Righting Reflex in Mice 

Analysis Results 

Parameter Estimates 

Parameter Estimate Wald Statistic p-value 

Intercept ~o -18.5314 33.9322 .0001 

Chloral Hydrate ~1 .00449 33.9340 .0001 

Ethanol ~2 .0551 33.0552 .0001 

Interaction ~12 3.382xlO-6 4.1261 .0422 

Estimated Variance-Covariance Matrix: I(~rl 

~o ~1 ~2 ~12 

~o 10.1206 -.00244 -.03022 -8.410 x 10-7 

~1 5.951 x 10-7 7.296 x 10-6 1.651 x 10-10 

~2 9.190 x 10-5 1.427 x 10-9 

~12 2.773 x 10-12 

Overall Goodness of Fit test (3.5.5) 

X2 = 30.9093 E(x21~) = 22.87485 V(X21~)=622.1356 p-value = .3737 

Intercept Only Tests (3 degrees of freedom) 

Score Test statistic = 108.702 p-value = .0001 

Likelihood Test statistic = 178.151 p-value = .0001 

68 
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is particularly interesting. Since the p-value associated with the Wald test applied to this 

single parameter is .0422 it can be concluded that 1312 ~ o. This analysis will be referred to 

and elaborated on throughout the remaining chapters of this dissertation. 

Throughout the next several chapters the logistic modeling technique and the results 

described in this chapter will also be applied to studies involving an arbitary number of 

agents. The interpretation of the parameters in the fitted model in the context of this type of 

study will be considered in detail. 



Chapter 4 

Additivity, Deviations from Additivity, and Isobolograms 

4.1 Introduction 

In the last chapter the logistic modeling technique was described. This model will 

later be used to study the dose response relationship between two or more agents. 

Specifically in the next chapter, it will be shown that properties of the model may be used 

to describe how the agents interact Before these properties can be derived, however, it is 

necessary to first formally define the types of interactions that can be observed. In general 

the approach that has been adopted for this dissertation has been described by Berenbaum 

(e.g. 1981 and 1989). Assuming the dose-response relationship for each agent is known, 

a set of basic defmitions is given that can be used to characterize the single agent dose­

response relationships. Defmitions and properties associated with the combination of two 

agents are then considered. The use of an isobologram is also described. These results are 

then generalized to combinations of any number of agents. 

The defmitions and derivations presented in this chapter are a synthesis of materials 

found in the following sources: Loewe (1953), Berenbaum (1977, 1978, 1981, 1985, 

1989), Hewlett and Placket (1979), Tallarida (1979), Wessinger (1986), Brunden (1988), 

and Calabrese (1991). However, as described in Chapter 1, the literature has not been 

consistent in its use of terminology. When inconsistencies were found, the approach taken 

here was to choose the most commonly used version, or, alternatively, the approach used 

by Berenbaum. 

70 
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4.2 Types of Dose-Response Relationships 

Initially, assume that all single agent dose-response curves are monotone. Non­

monotone dose-response curves will be considered in Section 4.4. Furthennore, assume 

that the background response, at zero doses of all of the agents, is a constant. Let 1t denote 

a flXed response, X the dose of an agent, and P(X) the dose-response curve. 

Examples of single agent dose-response curves defined in this section are illustrated 

in Figure 4.1. Combinations of two agents are shown in Figure 4.2. In each of the plots 

the dose levels are plotted on the X-axis and the response is plotted in the Y-axis. For two 

agent combinations the dose-response curves for both agents are simultaneously plotted in 

the same set of axes. Note that while sigmodal curves are illustrated, the defmitions are 

generalizable to any continuous dose-response curve. 

The following defmitions describe the dose-response curve of each agent alone 

relative to the background rate. 

Defini tion 4.2.1: i) If the dose-response curve is constant for all dose levels, the 

agentis~ 

ii) An agent is ~ if the dose-response curve is nonconstant over 

the dose levels considered. 

It follows that the dose-response curve for an inert agent is simply a horizontal line through 

the background response. 

The dose-response curve associated with a single agent can also be described 

relative to 1t, a fIxed response of interest. 
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Active Inert 

Response Response 

Dose Dose 

Predictive Nonpredictive 

Response Response 

7t -------

7t 

Dose Dose 

Figure 4.1: Single Agent Dose-Respone Curves 
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Definition 4.2.2: Let 7t be a fIxed level of response. 

i) If a fInite, nonzero dose of the agent exists which yields 7t, the agent 

is predictive. 

ii) If no dose of the agent yields the response 7t the agent is 

nonpredictiye. 

In general an inert agent is nonpredictive. 

Certain useful defInitions can also be made about the combination of two agents. 

Definition 4.2.3: i) Two active, predictive agents form a homeri:ic combination. 

ii) A hetereq~ic combination involves a predictive agent and 

non predictive agent. 

iii) Two nonpredictive agents form a coalitive combination. 

Certain properties of these combinations can be noted by examining Figure 4.2. Heterergic 

combinations can include the combination of a predictive and nonpredictive agent or the 

combination of a predictive and an inert agent. Coalitive combinations include the 

combinations of two nonpredictive agents, a nonpredictive agent and an inert agent, and 

two inert agents. Consider now a homergic combination such that the dose-response 

curves associated with both agents are monotone. Since the background response is 

constant it follows that the dose-response curves for both agents must be monotonically 

increasing or both must be monotonically decreasing. 

Defmitions will now be given that describe the type of interactions that can be 

observed when agents are given in combination. 
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Homergic Two Agent Combinations 

Increasing Decreasing 

Heterergic Two Agent Combinations 

7t 

Predictive & Nonpredictive Predictive & Inert 

Coalitive Two Agent Combinations 

7t ---------
7t --------

7t --------- 7t --------

Nonpredictive & Nonpredictive Nonpredictive & Inert 

7t ---------

Inert & Inert 

Figure 4.2: Types of Two Agent Combinations 
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4.3 Types or Interactions 

First, a general defInition which characterizes the types of interactions between two 

agents is given. This defInition fonns the basis for the derivation of more specifIc 

defInitions and results. Let Xl and X2 denote the continuous doses of the two agents 

considered. Further, let (xl>x2) denote an observed dose combination of the two agents, 

and 1t the associated observed response. 

Definition 4.3.1: Assume a dose combination is administered and the response 

observed. Additivity implies the observed response is identical to 

the expected response. 

Definition 4.3.2: Assume a dose combination is administered and the response, 1t, 

observed. Assume all dose-response curves are monotonically 

increasing or all are monotonically decreasing. Let 1tA denote the 

response expected under additivity. The type of interaction 

between the agents is given by 

Single Agent 

Dose-Response 

Curves 1t > 1t
A 

1t < 1t
A 

Increasing Synergism Antagonism 

Decreasing Antagonism Synergism 
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Note that DefInition 4.3.2 is dependent on the determination of~, an expected or additive 

response. In order to derive this expected response under additivity it will be useful to fIrst 

consider homergic combinations. These results are then generalized to the other 

combinations. 

4.3.1 Homergic Combinations 

Assuming the dose-response curves for each single agent is known, two strategies 

are derived for characterizing the types of interactions in a homergic combination of agents. 

To begin, an expression is derived whIch holds when the agents interact in an additive 

manner. Note that while these derivations are dependent on knowing each single agent's 

dose-response curve, they are not dependent on a specifIc form for any of these curves. 

A general formulation for describing additivity at a flXed response can be derived by 

considering a "sham" combination of two agents that clearly will not interact, i.e. a 

combination of an agent with a dilution of itself. The goal is to determine dose 

combinations of these two agents that yield a fIxed response, say 1t = 0.50. Suppose 10 

mg of agent A yields a 50% response. Let agent B be a 40% dilution of agent A so that a 

dose of 25 mg of B will also yield the 50% response. Because these agents do not interact, 

a dose combination of 5 mg of A and 12.5 mg ofB will also yield the response of interest. 

Note that the sum of the ratios of these doses equals 1, i.e. 2. + 12.5 = 1. If (x 1 ,x2) 
10 25 

denotes any dose combination of A and B that yields a response of 50% then ~ + ~ = 1. 
10 25 

This idea can now be generalized as follows. 

Result 4.3.1: Let 1t denote the response observed at the dose combination (XJ,X2). Let 

EDj(1t), i=I,2 denote the effective dose of each agent alone that yields 1t. 
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At the dose combination considered the interaction between the two agents 

is additive if xJ() + X2() = 1. 
EDJ 1t ED2 1t 

Implicit in this derivation is the ability to determine the effective dose of each agent 

alone, i.e., the dose of each agent that yields the fixed response of interest. Since the 

single agent dose-response curves are monotone, unique values for these effective doses 

can be determined. For example, assume for illustrative purposes that each single agent's 

dose response curve is given by 

(4.3.1) 

Then, for a fixed value of the response, 1t, the effective doses are 

ED (X.) = 10git(1t) - Po , i = 1,2. 
I 1 ~i 

If xl and x2 were allowed to vary in the additive equation given in Result 4.3.1, an 

equation of a straight line is defmed. 

Definition 4.3.3: Let 1t denote a fixed response and EDj(1t), i=1,2 the effective dose of 

the ith agent alone that yields 1t. The line of additivity is given by 

{(XI'X2): xJ() + X2() = 1; xl'x2 ~ o}. 
ED) 1t ED21t 

The additive equation given in Result 4.3.1 can also be used at a fixed dose 

combination (xI,x2) to determine the response expected under additivity. 
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Definition 4.3.4: Let (x 1 ,X2) be a homergic dose combination. The expected response 

under additivity, 1t
A

, is given by 

{
A_ X, x 2 _ 1- 0 < A < I} 

1t - (A) + (A) -, - 1t - . ED, 1t ED2 1t 

For example, assuming the dose-response curves for each agent are given by (4.3.1), the 

expected response under additivity is given by 

or 

Assume now that 1t
A is specified. Based on Definition 4.3.2, by comparing 1t

A to 

the observed response 1t, the type of interaction between the agents at (x 1 ,x2) can be 

characterized. This approach will be referred to as the Comparison Method of 

characterizing interaction and is summarized in Table 4.1. For example, assuming the 

single agent dose-response curves are increasing, if 1t > 1t
A then the agents are interacting 

synergistically at (x 1 ,xV· 

Another technique for characterizing the interactions between two agents can also be 

derived after first noting the following property. 
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Table 4.1 

Comparison Method Applied to Homergic Combinations 

Types of Interactions Detected by Comparing the 

Expected Response Under Additivity (1tA) to the Observed Response (1t) 

Single Agent Dose-Response Curves 

Increasing Decreasing 

1t = 1tA Additvity Additivity 

1t > 1tA Synergism Antagonism 

1t < 1tA Anta~onism S~neI"gism 
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Result 4.3.2: Assume both single agent dose-response curves are monotone. Let 1tA 

denote the response expected under additivity and 1t the observed response. 

Furthermore, let ED j (1t) and ED j ( itA) denote the effective doses of the ith 

agent associated with each response, i = 1,2. Then 

Type of Interaction 

Synergism EDj(1t»EDj(1t A
), i=I,2 

Antagonism EDj (1t) < EDj (1tA
), i=I,2 

Proof: 

Assume monotonically increasing dose-response curves. If the agents interact 

synergistically, by Definition 4.3.2, 1t > 1tA
• Since each dose-response curve 

is monotonically increasing it follows EDj(1t) > EDj(1t A
), i = 1,2. If the agents 

interact antagonistically, by Defmition 4.3.2, 1t < 1tA
• Since each dose-

response curve is monotonically increasing it follows EDj (1t) < EDj (1t A
), i = 1,2. 

The proof for monotonically decreasing dose-response curves is similar. 

Assume now, at a given dose combination (xI,xV, with observed response 1t, a 

synergism is observed. Therefore, by Result 4.3.2, EDj(1t) > EDj(1t A
) > 0, i=I,2. Now 

since, by Definition 4.3.4, Xi A) + x( A) = 1 , it follows that 
EDJ 1t ED2 1t 

XJ + X2) < 1. Similarly when an antagonism is observed, 
EDJ(1t) ED2(1t 

EDj(1t A »EDj(1t»0,i=I,2and XJ( )+ X2( »1. 
EDJ 1t ED2 1t 

These results can be summarized as follows. 
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Definition 4.3.5: Let (Xt.x2) denote a dose combination and 1t the observed response. 

The Interaction Index is given by II( xi' x2 ' 1t) = Xl + x2 • 
EDl (1t) ED2 (1t) 

Result 4.3.3: Let (x I ,x2) denote the dose combination of two homergic agents and 1t the 

observed response. The type of interaction between the agents at this dose 

com bination is characterized by 
< 1 ~ synergism 

II(xi'x2,1t) = 1 ~ additivity. 

> 1 ~ antagonsim 

For homergic combinations it has been shown that, given the dose-response curves 

for each single agent, two approaches can be taken to describe the interaction between the 

agents at a given dose combination. The first approach, the Comparison Method, is based 

on determining the expected response under additivity and then comparing it to the 

observed response. This method, summarized in Table 4.1, requires calculation of the 

expected response under additivity. The second approach is based on the Interaction 

Index. This technique, based on Result 4.3.3, does not require the expected response 

under additivity. Rather, the effective doses of each agent alone are used. 

4.3.2 Heterergic Combinations: Predictive & Inert 

Both the Comparison Method and the Interaction Index can be applied to these 

com binations. In order to apply the Comparison Method the expected response under 

additivity, 1t
A

, must be derived. Let Xl denote a dose of the predictive agent and x2 a dose 

of the inert agent. Assume that at the combination (xI,xV the response 1t was observed. 

Since the inert agent alone has no effect on the response, the expected response under 

additivity is determined from the dose response curve of the active agent only. Hence 1t
A 
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is equal to the response predicted at a dose of xl alone. By then comparing 1t to 1tA the 

type of interaction can be determined based on Defmition 4.3.1. 

In order to apply the Interaction Index technique it can be noted that since 1tA is 

equal to the response at the dose of xl alone, ED, (1tA) = XI or X( A) = 1. Now if the 
ED, 1t 

two agents interact in an additive manner, the response will equal the additive response, i.e. 

1tA = 1t, so that X'() = 1. If a synergism is observed, by Result 4.3.2, 
ED, 1t 

ED, (1t) > ED, (1tA). Therefore X'() < 1. In a similar way it can be shown that if an 
ED, 1t 

antagonism is observed XJ() > 1. 
ED, 1t 

Note now that if it is assumed that the effective dose for the inert agent is infmite 

X X X X X ( ) then __ I - = __ I - + _2 = __ I - + __ 2 - = II Xl' x
2

' 1t . Therefore Result 4.3.3 can be 
E,(1t) E,(1t) 00 E,(1t) E2(1t) 

generalized as follows. 

Result 4.3.4: Let (xl,x2) denote a homergic combination or a heterergic combination of 

a predictive and inert agent where the effective dose of the inert agent is 

infmite. Let 1t be the observed response and I I( x, ' x 2 ' 1t) denote the 

interaction at this combination and response. The type of interaction between 

the agents is given by 
< 1 =:::) synergism 

II(xl'x2,1t) = 1 =:::) additivity. 

> 1 =:::) antagonsim 

While it has been shown that the two methods described for homergic combinations 

for characterizing interactions can be applied to heterergic combinations of predictive and 

inert agents neither method can be applied for the following combination. 
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4.3.3 Heterergic Combinations: Predictive & Nonpredictive 

To apply the Interaction Index method of characterizing interactions the effective 

doses of each agent must be determined. Note that for a nonpredictive agent no dose exists 

that yields the fIxed response of interest Furthermore, since the agent is active the 

response as the dose of this agent approaches infInity is known. Therefore, it can not be 

assumed, as for an inert agent, that the effective dose is infInite. The effective dose for the 

active, nonpredictive agent is, therefore, undefmed and the Interaction Index can not be 

applied to these combinations. 

In addition, the Comparison Method of characterizing interactions can not be 

applied for this combination. Recall that the expected response under additivity can 

sometimes be determined at a fIxed dose combination (xI'xV by solving for 7tA in 

x( A) + x( A) = I . In this type of combination, however, there is no common 
ED, 7t ED2 7t 

value of the response that simultaneously satisfIes both dose-response curves (see Figure 

4.2). Since 7t
A can not be determined the Comparison Method is not applicable. 

Note also that, since the nonpredictive agent is active, it may not be reasonable to 

assume that the non predictive agent does not have an effect on the response, even under the 

assumption of additivity. This implies that the argument used to derive 7tA for the 

heterergic combination of a predictive agent and an inert agent can not be applied in this 

case. 

Therefore, since neither of the approaches previously developed to characterize 

interactions can be applied without further assumptions, this combination will not be 

considered further in this dissertation. 
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4.3.4 Coalitive Combinations 

For coalitive combinations the effective doses for a ftxed value of 7t are undefmed 

or infinite for both agents. It therefore follows that the Interaction Index is undefmed for 

these combinations. The Comparison Method, however, can be applied to all types of 

coalitive combinations. 

Consider ftrst the combination of two inert agents. Since both agents alone are 

inert, ~ is simply the constant background response at 0 levels of both agents. When 7t 

differs from the background response an interaction has been detected. Since neither agent 

is active, however, the interaction can not be classifted as synergistic or antagonistic based 

on Deftnition 4.3.2. 

Consider now the combination of two active but nonpredictive agents. Now based 

on Xi A) + x( A) = 1,~, the response expected under additivity can be 
EDl 7t ED2 7t 

determined. The type of interaction between the agents can then be described, based on 

Definition 4.3.2, by comparing 7t to 7tA 
• 

Lastly the combination of a nonpredictive agent and an inert agent can be 

considered. Here 7tA is determined solely from the dose-response curve for the 

nonpredictive but active agent Again, the type of interaction between the agents can then 

be determined by comparing 7t to 7tA • 

4.3.5 Summary 

Two approaches were described in this section for characterizing interactions at a 

given dose combination. Both methods assume each single agent dose-response curve is 

known. For the Comparison Method, an expected response based on additivity, 7tA, is 

determined using Xi A) + x( A) = 1. Based on Defmition 4.3.1 by comparing ~ 
EDl7t ED27t 

to 7t the type of interaction can then be described. This approach was shown to be 
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applicable to all types combinations with the exception of the predictive and nonpredictive 

heterergic combination. The second approach is based on the use of the Interaction Index. 

By determining the effective doses of each agent alone and then comparing the value of 

I I( Xl' x2' 1t) = Xl() + X2() to 1 the type of interaction between the agents can be 
EDI1t ED21t 

determined. This approach was shown to be applicable only to homergic and heterergic 

combinations of predictive and inert agents. 

In the next section non-monotone single agent dose-response curves will be 

considered. 

4.4 Non-monotonic Single Agent Dose-Response Curves 

Throughout the last section it was assumed that the dose-response curve for each 

agent alone was monotone. In general, this assumption is necessary to insure that ED j ( 1t) , 

i=1,2, can be uniquely determined for a given value of 1t. Virtually all of the defmitions 

and results of Section 4.3 were dependent on these values. For example, based on Result 

4.3.3, an interaction is characterized by examining the value of the Interaction Index. If 

one or both of the effective doses, ED j (1t), i=1,2, are not uniquely determined, the 

resulting value of the Interaction Index, and hence the type of interaction at a given dose 

combination, may vary. Alternatively, the Comparison Method of describing interactions 

is dependent on the determination of the response expected under additivity based on 

x( A) + x( A) = 1. Again if one or more of ED j (1tA), i=1,2, are not unique the 
EDI 1t ED2 1t 

value of this additive response, and hence the type of interaction at a given dose 

combination may vary. 

Since it is not possible, without further assumptions, to apply the defmitions and 

results given in Section 4.3 to studies that include agents with non-monotone dose-
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response curves, only monotone single agent dose-response curves will be considered for 

the remainder of this dissertation. 

4.5 Isobolograms 

For a two agent study the dose-response relationship is 3-dimensional. A 2-

dimensional tool that has been shown to be useful in characterizing interactions graphically 

is the isobologram. An isobologram is a plot of the isobol or set of dose combinations that 

yield a fIxed response of interest. When applicable these plots also include the line of 

additivity. 

Consider fIrst a homergic combination of agents. The line of additivity for a 

homergic combination was given in DefInition 4.3.3 as 

{(XI'X2): XI() + X2() = 1; xI'x2 ~ oJ. This line intersects each axis at the 
EDI n ED2 n 

corresponding effective dose for each agent alone. Each point on the line represents a dose 

combination that satisfIes the assumption of additivity at the fIxed response of interest. 

In general the line of additivity divides the XI xX2 plane into two regions. A point 

(Xl'xJ that lies below the line satisfIes XI + x2 < 1 and a point that lies above 
EDI (n) ED2(n) 

the line satisfIes XI + x2 > 1. Therefore based on Result 4.3.4 if the point 
EDI (n) ED2(n) 

associated with a dose combination lies below the line of additivity a synergism is 

indicated. A point that lies above the line of additivity indicates an antagonism. This is 

illustrated in Figure 4.3. By plotting the dose combinations that yield a fIxed response of 

interest in conjunction with the line of additivity the types of interactions between the agents 

at those dose combinations can be graphically assessed. 

Consider now a heterergic combination of a predictive agent and inert agent. 

Assume X2 denotes the dose associated with the inert agent and n is the fIxed response of 



(0, ED 2(1t» 

Dose 
of X 2 

Lj Additivity 

• 

• 
Synergism 

Dose of Xl (ED 1 (1t), 0) 

Figure 4.3: Isobologram for a Two Agent Study 
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interest Recall that for the inert agent ED2 (x) = 00. The line of additivity in this case is 

therefore the vertical straight line through (EDI (x),O). Based on Result 4.3.4, a 

synergism at this dose combination implies Xl < lor equivalently Xl < EDI (x). 
EDI(x) 

Similarly, an antagonism implies Xl > EDI (n). Hence, if the point associated with the 

dose combination lies to the left of the line of additivity, a synergism is found. If the point 

is to the right of the line of additivity, an antagonism is found. A similar derivation can be 

made for this type of combination when Xl denotes the inert agent Here the synergistic 

and antagonistic points wi11lie above or below respectively the line of additivity. (See 

Figure 4.4). 

Recall now for coalitive combinations the effective doses for both agents are 

undefined. This implies the line of additivity does not exist. Therefore, while plots of the 

observed dose combinations that yield a fixed response may be useful, an isobologram can 

not be used to graphically characterize interactions for these combinations. 

For isobolograms that include the line of additivity the magnitude of the deviations 

from additivity can be described using the potentiation coefficient (Gessner and Cabana, 

1970). 

Definition 4.5.1: Consider a vector that intersects the origin and the point associated 

with the dose combination (xI,x2). Let R be the point of intersection of 

the vector with (x I ,xV and S be the point of intersection of the vector 

with the line of additivity. In addition, let RS denote the distance from R 

to S and OS the distance from the origin to S. The potentiation 

coefficient is given by pc( x, Xl' X2 ) = ~~ . 



XI Predictive & Xl Inert 

Line of Additivity 

Antagonism 
• 

Synergism 
• 

~--------~----------Xl 

(FD 1 (n) , 0) 

Xl Predictive & XI Inert 

Antagonism 
• 

1-------------------- Lineof (O,FD 2(n)) Addi· . 

Synergism 
• 

~-------------------- Xl 

tIVlty 

Figure 4.4: Isobolograms for the Heterergic Combination of a Predictive 
Agent and an Inert Agent 
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By examining Figure 4.5 it is clear that synergism implies RS > 0 and OS > 0 so that 

PC(1t,XI,x2) >D. In contrast, for antagonism, RS < 0 so that PC(1t,XI,x2) < O. Assume 

now two dose combinations (xll,x21) and (x12,x22) are found that yield 1t, the fIxed 

response of interest. The values of PC(7t,Xll,x21) and PC(7t,X12,x22) can be used to 

describe the relative magnitudes of the interactions, i.e. if 0 < PC(1t,Xll,x21) < 

PC(1t,X12,x22) a larger degree of synergism is evident at (x12,x22) than at (xU,x21)' 

The joint action ratio described by Hewlett (1969) is closely related to the 

potentiation coeffIcient Referring to Figure 4.5, the joint action ratio is defmed to be 

JA(7t,xl'x2 ) = OS and will be less than 1, equal to 1 or greater than 1 if antagonism, 
OR 

additivity or synergism respectively is indicated. 

Using the vector that intersects the dose combination, (x I ,xV, and the line of 

additivity another property of synergism and antagonism can be derived. Note, fIrst, that 

dose-combinations along this vector satisfy x2 = axl where (l > O. In addition, the total of 

the doses at this combination is given by Xl + x2 = (l + I )Xl = t. Let (Zl' Z2) denote the 

point of intersection of the vector and the line of additivity. Clearly Z2 = (lZI and the total 

of these doses is Zl + Z2 = (l + l)ZI = t A
• By now inspecting Figure 4.6, it follows that 

under synergism Xl < Zl which implies t < tA This implies the total dose at the 

combination considered is less than the total dose under additivity. Hence less of the 

agents in combination are needed to yield the fIxed response of interest under synergism 

than expected under additivity. In a similar way it can be argued that when an antagonism 

is observed more of the agents in combination are needed to yield the fIxed response than 

expected under additivity. 

Before generalizing the defmitions and results discussed in the last two sections to 

studies of more than two agents it will be useful to fust examine alternative defmitions of 

additivity. 
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Synergism 

Antagonism 

Figure 4.5: The Use of the Potentiation Coefficient 
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Figure 4.6: Comparison of Total of Doses at (xl'x 2 ) and (ZI'Z2) 
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4.6 Alternative Definitions of Additivity 

In this section alternative deftnitions for additivity will be briefly described. It will 

be shown that under certain constraints these deftnitions are equivalent to the deftnitions of 

additivity previously assumed. In general, however, these defmitions will be shown to be 

problematic. 

In this chapter the overall approach to characterizing interactions has been to, ftrst, 

defme the response expected under additivity, and then compare the observed response to 

this additive response. No assumptions were made about the mechanism of action of the 

agents considered. In addition, while the results were dependent on knowing the dose­

response curves for each agent, the particular form for these curves was not specifted. 

Virtually all of the results developed in this chapter were dependent on the notation 

that an additive interaction at the dose combination (Xl'X2 ) with response 7t satisftes 

(4.6.1) 

Recall that this expression was derived by determining dose levels of two additive agents 

that in combination yield 7t, a ftxed response of interest Because the process involves 

combining doses to yield a specilled effect, this technique for describing additivity has been 

referred to as dose-addition. Since it was shown that this defmition holds for the sham 

combination of an agent with a dilution of itself, it has an intuitive basis. 

Let Pi (Xi)' i= 1 ,2 denote the response at dose Xi of each agent alone and P(x1, X2 ) 

the response at the combination. The frrst alternative defmition of additivity is referred to 

as effect-addition. Here the response expected under additivity is given by 

(4.6.2) 



When the response is bounded, as is the case with proportions or probabilities, this 

defInition can result in nonsensical results. For example, if the response is a probability 

and PI(XI) = 0.6 and P2 (X2 ) = 0.7 the response expected under additivity would be 1.3. 

Berenbaum (1989) showed however, that for studies with linear dose-response 

curves in the region of interest, i.e. ~ (Xj) = (XjXj, that (4.6.2) and (4.6.1) are in 

agreement In fact, it can be shown that effect-addition holds for a broader set of single 

agent dose-response curves. Suppose that a transformation of the response can be found 

so that 11j(XJ = g[Pi(XJ] = (XiXi' i=I,2 where g-I exists. An example of the type of 

transformation is given by g[Pi(Xi)]=IOg( ~;(~;) ))-~o =logit(pi(XJ)-~o. Let 
I Pi Xi 

11(XI'X2 ) denote the transformed response observed when the agents are given in 

combination. In terms of this transformed effect, effect-addition may be written as 
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(4.6.3) 

Under these constraints effect-addition and (4.6.1) are in agreement For example, by 

(4.6.3) 11(XI,X2 ) = (XIX I + (X2X2 . Alternatively, based on (4.6.1) 

( X;:Va: + ( X, X = 1. which simplifies to n(X;. X,) = a;X; + a,X, . 
11 Xl'X2 11 Xl'X2 

(XI (X2 

From a 

statistical perspective this result is appealing since, under the assumption of no interaction 

between the agents, the transformed response can be written as the sum of the effects of 

each agent, a form commonly assumed in statistical modeling. 

Another defmition for additivity based on the probability notation of independence 

is referred to as multiplication of effects. Here 
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(4.6.4) 

where 0 ~ ~ (X) ~ 1 , i = 1,2. An alternative fonn for this expression can also be derived 

by letting Qj(XJ = 1- Pj(XJ, i=1,2 and Q(Xl'X2) = 1- P(Xl'X2). This implies (4.6.4) 

can be rewritten as 

Q(X1,X2) = 1- P(X1,X2) = 1- P1(X1) - P2(X2) + P1(X1)P2(X2) 

= 1- (1- QI(X1)) - (1- Q2(X2)) + (1- Q1 (X1))(1- Q2(X2)) 

(4.6.5) 

It can be shown that, in general, this deftnition of additivity fails for the sham combination. 

For example, consider, the combination of an agent with itself such that P(d) = 0.4 and 

P(2d) = 0.9. Based on (4.6.4) the predicted dose of combination consisting of d + d is 

given by .4 +.4 - (.4 f = .64. Since this does not equal P(2d) =.9 this multiplication of 

effects approach to defming additivity does not hold for this sham combination. 

Berenbaum (1989) showed, however, that when both single agent dose response 

curves are in the fonn Qj (Xj) = e -IlIX., i=1,2 multiplication of effects and dose-addition are 

equivalent. For example, by (4.6.5) it follows that Q(Xl'X2) = e-lllXl-~X2. Alternatively 

by (4.6.1) [ ~' ~+ [ ~' !J?, = 1 which can be simplified to -In 1- Q Xl'X2 -In 1- Q Xl'X2 
a 1 a 2 

Other methods that have been introduced to defme additivity include the modeling 

technique described by Chou and Talalay (1991). Here the model for each agent is given 

by 
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(4.6.6) 

where 0 ~ Pi (X) ~ 1, i = 1,2. Equation (4.6.6) is referred to as the median-effect equation. 

Since (4.6.6) can be rewritten as log it(Pi (Xi» = mi loge (Xi) - mi loge (EDi (0.5») a 

transformation of the response can be written as a linear function of the log of the dose. 

This is in contrast to the logistic dose-response curve given in (4.3.1) where the 

transformed response, given by log it(Pi (Xi» = J30 + J3iXi' is a linear function of dose. 

The expression for additivity that Chou and Talalay derived is given by 

(4.6.7) 

where a =0 or 1 depending on the mechanisms of action of each agent. If the agents are 

mutually exclusive, i.e. "they share the same binding sites and the occupation of one site by 

one agent excludes its occupation by another" (Berenbaum, 1989, p.l09), a =0. For 

mutually non-exclusive agents which have different binding sites a =1. In contrast to 

(4.6.1) which is based solely on knowledge of each agent's dose-response curve this 

defmition of additivity is dependent on knowledge of each agent's mechanism of action. 

Since this information may not be available for all of the agents studied this approach may 

be difficult to apply without further assumptions. 

One last approach to examining additivity that will be described here involves the 

construction of an additivity envelope (Steel and Peckham, 1979). Here, based on the 

dose-response curves for both agents alone, the authors derive dose combinations that yield 

a fixed value of 1t. Two methods, Mode I and Mode II, are used to achieve this so that two 

sets of dose combinations were determined. Both methods assume first that a dose, say 
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Xl' of the fIrst agent is given and that based on the dose-response curve for this agent the 

response associated with that dose is Xl. For Mode I, the dose of the second agent is 

detennined by ED2 (x -Xl). For Mode IT the dose of the second agent is given by 

ED2(x) - ED2{xJ. In addition, based on dose-addition given in (4.6.1), the dose of the 

second agent that satisfIes additivity is given by x2 = ED2 (x) - ED2 (x) Xl. Since in 
EDI (X) 

general ED2(x -1tl) ¢ ED2(x) - ED:i{xl) ¢ ED2(x) - ED2(X) Xl the calculated dose of 
ED1(1t) 

the second agent can vary for all of these methods Even for the sham combination of an 

agent with itself, i.e. where ED2 (x) = EDI (x) , the dose of the second agent by Mode I, 

ED2 (x - Xl)' will still differ from the other methods. In addition, while it is also assumed 

the agents are given simultaneously and only examined sequentially in this context, the 

combinations detennined by Mode I and Mode IT methods may vary by the order that the 

agents were considered. It can be shown, however, that under the constraint that a 

transfonnation of the response can be found so that 

where g-l exists, then the dose combinations determined by Modes I and II as well as by 

dose-addition agree and that the order that the agents are considered does not effect the 

result. 

Under certain conditions it has been shown that these alternative approaches to 

describing additivity are in agreement with the approach adopted for this dissertation given 

in (4.6.1). It has also been shown that problems are associated with each of these 

alternatives including the inability in some cases to describe the sham combination of an 

agent with itself. The approach adapted in this dissertation is free from assumptions 

concerning the fonn of the individual dose-response curves, does not depend on knowing 



the mechanism of action of the agents, and adequately describes the additive sham 

combination. In the next section the defmitions and results will be generalized to 

experiments that involve any number of agents. 

4.7 Additivity and Deviations from Additivity for Combinations of Any 

Number of Agents 
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Certain definitions, given in Section 4.2, which classified two agent combinations 

can be generalized to studies of N agents as follows. As before each single agent dose­

response curve is assumed to be monotone. 

Definition 4.7.1: i) N active, predictive agents form an N-dimensional homer~ic 

combination. 

ii) An N-dimensional heterergic combination involves N I > 0 predictive 

agents and N2 > 0 nonpredictive agents where NI + N2 = N. 

iii) N nonpredictive agents form a N-dimensional coalitive combination. 

In Section 4.3 general defmitions of additivity, synergism and antagonsim were given 

which did not depend on the number of agents studied. These can therefore be applied to 

combinations of N agents. All of the remaining definitions and results given in Section 4.3 

are easily generalizable and are summarized as follows. 

Result 4.7.1: Consider an N-dimensional homergic combination or an N-dimensional 

heterergic combination of predictive and inert agent Let 1t denote the 

response observed at the dose combination (XI' x2,···, XN). Let ED j (1t), 

i= 1 ,2, ... ,N denote the dose of the ith agent alone that yields the response 1t. 

Assume that the effective dose for each of the inert agents is infmite. The 



interaction between the N agents at the dose combination considered is 
N 

additive if L Xi() = 1. 
i=l EDi 1t 

Based on this result an N-dimensional hyperplane of additivity can be defmed. 
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Definition 4.7.2: Consider an N-dimensional homergic combination or an N­

dimensional heterergic combination of predictive and inert agents. Let 1t 

denote the response observed at the dose combination (X1,X2 ,·· .,xN ). Let 

EDi(1t), i=I,2, ... ,N denote the dose of the ith active agent alone that 

yields a response 1t. Assume that the effective dose for each of the inert 

The additive response can also be derived in this setting. 

Definition 4.7.3: Let (XI'X2 ""XN ) be an N-dimensional homergic combination, or an 

N-dimensional heterergic combination of predictive and inert agents, or an 

N-dimensional coalitive combination. The additive response, 1tA
, is 

Hence 1tA can be determined and then compared to 1t. By Definitions 4.3.1 and 4.3.2, the 

type of interaction between the agents at the dose combination considered can be 

determined. This implies the Comparison Method of characterizing interactions can be 
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generalized to N agent studies. In addition, the Interaction Index approach can be extended 

as follows. 

Consider n-dimensional homergic combinations and N-dimensional heterergic 

combinations of predictive and inert agents. As in the two agent case, it can be assumed 

that all of the active agent dose-response curves are monotonically increasing or all are 

monotonically decreasing. Note that Result 4.3.2 still holds for each of the active agents 

considered. An N-dimensional Interaction Index can therefore be defined as follows. 

Definition 4.7.4: Let (XI'X2,··,XN) denote an N-dimensional dose combination and 1t 

the observed response. The Interaction Index is given by 
N x . 

II(xl'x2 ,···,xo ,1t) = L '() . 
i=l EDi 1t 

The Interaction Index can now be used to classify the types of interactions according to the 

following. 

Result 4.7.3: Let (XI'X2,··,XN ) be an N-dimensional homergic combination, or an N-

dimensional heterergic combination of predictive and inert agents where the 

effective doses of the inert agents are infinite. The type of interaction between 

the agents at this dose combination is characterized by 
< 1 => synergism 

II(x, 1t) = 1 => additivity . 

> 1 => antagonsim 

Therefore, as before, for certain N-agent combinations two methods are available for 

describing the types of interactions. By generalizing the methods described in Section 4.3 

to the combination of N agents it can be seen that the Comparison Method can be applied to 
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all types of combinations with the exception of the N-dimensional heterergic combination 

of predictive agents with active nonpredictive agents. The Interaction Index Method can be 

applied to N-dimensional homergic combinations and N-dimensional heterergic 

combinations of predictive and inert agents. 

In Section 4.4 the Isobologram was defmed and shown to be useful in graphically 

describing the interactions between two agents at a fIxed level of the response. For three 

agents a 3-dimensional hyperplane of additivity can be plotted in conjunction with points 

associated with dose combinations that yield the fIxed response of interest. As argued for 

the two-agent study, if a point is below or above the plane of additivity it is indicative of 

synergism or antagonism, respectively. As demonstrated in Figure 4.7, however, this plot 

may be diffIcult to interpret since the position of a point relative to the hyperplane of 

additivity may be unclear. In addition, since this method is graphical, it is not possible to 

extend the technique, as defmed in the Euclidean plane, to studies that involve more than 3 

agents. In later chapters alternative plots will be shown to be useful in graphically 

assessing the interactions in these higher dimensional studies. 

In the next chapter the defmitions and results derived will be applied in a statistical 

modeling setting. There the variability in the responses will also be considered. 

Hypothesis testing procedures will be developed to determine if the interactions are 

statistically different from random fluctuations in the data 
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Plane of Additivity 

/ 

• I 

;-----~--------~~--------X 2 

Figure 4.7: Three Agent Isobologram 



Chapter 5 

The Dose-Response Surface Approach to Characterizing and Detecting 

Interactions 

5.1 Introduction 

In the previous chapter two methods for characterizing, in a point-wise fashion, the 

interactions between two or more agents in a combination study were described. There the 

dose-response curve for each agent was assumed to be known. In this chapter, based on 

experimental data, a model that describes a dose-response surface will be estimated. This 

response-surface approach, using a logistic dose-response model, was described by Carter, 

et al. in 1988. Based on the properties of the Interaction Index. given in Result 4.3.3, 

Carter et al. derived properties of the logistic model that can be used to characterize the 

types of interactions estimated from the experimental data. In contrast to the point-wise 

results described in the last chapter, these results apply to a range of dose combinations. 

While this approach can be applied to studies that involve any number of agents, it will be 

shown that the applicability of this technique is limited when a large number of agents is 

being considered. 

In this chapter the usefulness of isobolograms in this context will also be discussed. 

Because this graphical tool can not be used for studies that include more than two agents, 

new graphical techniques will be shown to be useful in studies that include an arbitrarily 

large number of agents. Before examining the properties of the dose-response models the 

single agent logistic dose-response curve will be briefly discussed. 
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5.2 A Single Agent Dose-Response Curve 

Let Xi denote a fIxed value of Xi, the dose level for the ith agent, and 1t a flXed 

level of the response. For purposes of this dissertation the logistic function will be used to 

model the dose-response curve as 

(5.2.1) 

where ~o and ~i are the unknown parameters. Equivalently (5.2.1) can be written as 

(5.2.2) 

The baseline response rate associated with a dose of Xi = 0 is given by 

1 
P(o;~o) = -a 

l+e 0 

(5.2.3) 

which implies ~o is the logit of P(O; ~o). ~i is referred to as the slope parameter associated 

with the dose-response curve for the ith agent For an inert agent ~i = O. Certain 

properties of these parameters are listed in the following result 

Result 5.2.1 Let the single agent dose response curve be given by (5.2.1) where ~o is 

the logit of the baseline response and ~i is the slope parameter. 

i) If P(O;~o) <.5 then ~o < 0 

If P(O;~o) =.5 then ~o = 0 
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If P(0;j30) >.5 then 130> O. 

ii) If the dose-response curve is monotonically increasing then j3j >0. 

If the dose-response curve is constant then j3j =0. 

If the dose-response curve is monotonically decreasing then j3j <0. 

Three examples are plotted in Figure 5.1. 

It will now be shown that the logistic model is symmetric about 1t = 0.5. 

Result 5.2.2: Let 130 and 131 be any real constants. The function 

is symmetric about 1t = 0.5. 

Proof: 

Let ~ be such that P(~;j30,j31) = 0.5. Therefore e-(flo+M) = 1. 

Let £ > O. Then 
I I I 

P(~+£'j3 13)- - --~ , 0' 1 - 1+ e-(flo+M+flIE) - 1+ e-(flo+M)e-flIE - 1+ e-fllE 
1 1 1 

P(~ £'13 13) - - ---=--~ - , 0' 1 - 1 + e-(flo+fll~-~E) - 1 + e-(flo+M)efllE - 1 + efllE . 

Let AI =lp(~;j3o,j3J-p(~-£;j3o,j3I~ and A2 =lp(~+£;j30,j31)-P(~;j30,j31)1. Then 

1

1 ~ l! 1 I e-M -1 I-eM 
Al = "2 - p(~ - £;130,131/1 = 12 - 1 + e-flt~ = 2(1 + e-M) = 2(1 + efll~) 

A, = Ip(~ +e;~O'~I) - ~ = II + ~~, - ~I = 2(1~ ee~') . 
Since ~1 = ~2 it follows that P(X;j30,j31) is symmetric about 1t = 0.5. 
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Po = -1 , PI =5 

1 

P(X;P) P(X;P) 

ol-=:::::::::::;~-----.-----r----' 

4 1 2 3 
oT-~~~--~~~ 

1 2 3 4 5 6 
X X 

1 

P(X;P) 

1 234 

X 

Figure 5.1: Examples of Single Agent Logistic Dose-Response Curves 
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For studies that involve a single agent, where the model is asswned to be (5.2.1), 

the unknown parameters, ~o and ~i' can be estimated using the maximwn likelihood 

methods described in Chapter 3. Likelihood ratio, Score, Wald and goodness-of-fit tests 

can be applied to the fitted model to access the adequacy of the fit In the next section 

properties of the model associated with a two agent study will be considered. 

5.3 Two Agent Model with Single Interaction Term 

Assume the active agents dose-response curves are monotonic. For combinations 

that contain two active agents, the dose-response curves for both agents will either be 

increasing or decreasing. Assume the dose-response curve for each agent is given by 

(5.3.1) 

where ~i e (-00,00). A common background response is assumed and is given by (5.2.3). 

A logistic two agent model with a single first order cross product term is given by 

(5.3.2) 

, 
with X = (1 Xl X 2 X IX2 ) and unknown parameters p= (~o ~l ~2 ~12)· 

Equivalently (5.3.2) can be written as 

(5.3.3) 

This model describes a 3-dimensional dose-response surface. Two examples are plotted in 

Figures 5.2. 
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It can be shown that this two agent model agrees with each of the single agent dose-

response curves. For example, when say Xl = 0, the dose-response curve for X2 alone is 

given. This implies the 3-dimensional dose-response surface intersects the 2-dimensional 

X2 x P plane along the dose-response curve for X2. Similarly, when X2 = 0, the surface 

intersects the 2-dimensional X 1 x P plane along the dose-response curve for Xl. In 

addition, when Xl = 0 and X2 = 0 the response predicted is the common background 

response given by (5.2.3). 

Linking the interaction index with the logistic dose-response model, Carter, et al. 

(1988) showed that for homergic combinations the type of interaction between the two 

agents can be characterized by examining the sign of the cross-product parameter, 1312. 

This result is generalized to all combinations in the following result 

Result 5.3.1: Assume a two agent dose-response relationship is given by (5.3.3). 

Furthermore, assume that the dose-response curves associated with each active 

agent alone are monotonic. Then for any dose combination the type of interaction 

between the two agents is determined by the sign of 1312 as shown. 

Single Agent Dose 

Combination Response Curves 1312 = 0 1312 > 0 1312 < 0 

Homer~ic 13; > 0, i = 1,2 Additivity Syner~ism Anta~onism 

13; < 0, i = 1,2 Additivity Anta~onism Syner~ism 

Heterergic 13; > O,l3j = 0 Additivity Synen?ism Anta~onism 

13; < O,l3j = 0 Additivity_ Antagonism Synergism 



Increasing Single Agent Dose-Response Curves 

130 = -10.131 = 5.132 = 2.1312 = 0.5 

7 

o 

Decreasing Single Agent Dose-Response Curves 

130 = 10.131 = -4.132 = -2.5. 1312 = -1 

1 

7 

o 

Figure 5.2: Examples of Two Agent Logistic Dose-Response Surfaces 
I 

P(XI'X2 ;13)= ------------
1 +exp[-(l3o +131X1 + 132X2 + 131~IX 2 )] 
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Coalitive ~i > 0, ~j =0 Additivity Syner~ism Anta~onism 

~i < 0, ~j =0 Additivity Anta~onism Syner~ism 

~i =O'~j =0 Additivity Nonadditivity Nonadditivitv 

Proof: 

Assume each active single agent dose-response curve is monotonically increasing. 

The proof for monotonically decreasing single-dose response curves is similar. 

Case i: Homerergic or heterergic combination of a predictive agent and an inert 

agent. 

Let (XI'X2) denote a fixed dose combination with response 
1 

7t = P(x x .~) = -~:--::-~----::--"' 
l' 2' I + e-(~O+~XI+~2X2+~2XIX2) • 

For the combinations considered in this case at least one agent is predictive. Since 

each single agent dose-response curve is monotonically increasing it follows that 

7t > P(O;~o) where P(O;~o) is given in (5.2.3). Hence logit(7t) > ~o or 

logit(7t) - ~o > O. 

Based on definition (4.3.4) the interaction index is given by 

( ) 
x, x2 

I I 7t, x, ,x2 = () + () . 
ED, 7t ED2 7t 

U · (531) ED ()_10git(7t)-~0 ·=12 smg .. i 7t - ~i ,1, . 

( ) 
~,x, 132x2 

Therefore II 7t,X"X2 = I . ( ) A + 1 . () A Oglt 7t - Po Oglt 7t - Po 
(5.3.4) 

The model in (5.3.3) can also be written as 

13,x, + ~2X2 = 1- 1312X,x2 
logit(7t) - ~o logit(7t) - ~o logit(7t) - ~o 

(5.3.5) 
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The left side of (5.3.4) is identical to II(1t,xp x2) given in (5.3.4). Therefore, 

since Xi > 0, i = 1,2, and 10git(1t) - ~o > 0, if ~12 > 0 then II(1t,xp x2) < 1 which 

by Result 4.7.3 indicates synergism. Similarly, if ~12 < 0 then II(1t,X1,X2) > 1, 

indicating antagonism and if ~12 = 0 additivity is indicated. 

Case ii: Coalitive Combination of an inert and active, nonpredictive agent 

In this case the Comparison Method, described in Section 4.3, can be used to 

compare the response by the full model and the response expected under additivity. 

Let xl denote the fixed dose level associated with the active, nonpredictive agent 

The expected response under additivity, 1tA
, is determined solely by the dose­

response curve associated with the active agent, i.e., 

10git(1tA
) = ~o + ~IXl· (5.3.6) 

The response under the full model is given by 

10git(1t) = ~o + ~IXl + ~12XIX2. (5.3.7) 

By comparing (5.3.6) to (5.3.7), when ~12 > 0, 10git(1t) > logit( 1tA
), which by 

Definition 4.3.2 indicates a synergism. Similarly when ~12 < 0, an antagonism is 

suggested. When ~12 = 0 additivity is indicated. 

Case iii: Coalitive Combination of two inert agents. 

The approach in this case will be similar to Case ii. The response expected under 

additivity is simply the background response, i.e. 

10git(1tA
) = ~o· 

The response determined by the full model is given by 

10git(1t) = ~o + ~12XIX2· 

(5.3.8) 

(5.3.9) 
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By comparing (5.3.8) to (5.3.9), when 1312 * 0 then 10git(7t) * logit( 7tA
) which 

indicates a nonadditive interaction. In this case, however, since both single agent 

dose-response curves are inert, the character of the interaction will be study 

dependent. 

Therefore, when the two agent dose-response relationship is given by (5.3.3) the 

type of interaction between the agents can be determined by simply examining the sign of 

1312. Because the result was dependent on the doses only through the constraint that 

Xi ~ 0, i = 1,2, the result holds for all dose combinations in the dose-space studied. 

Using this result, when 1312 = 0, a response expected under additivity, pA(XIX2 ;P) , 

can be written as 

(5.3.10) 

Note now, that for these types of studies, monotonically decreasing curves can be 

transformed into monotonically increasing curves by redefining the response as Q = 1 - P. 

Hence, for the remainder of this chapter, only monotonically increasing single agent dose 

response curves will be considered. It will be shown, however, that this does not imply 

that the associated dose-response surface will be uniformly increasing. 

Using the experimental data and the maximum likelihood methods described in 

Chapter 3, the unknown parameters for this model (5.3.3) can be estimated. The 

goodness-of-fit procedures described in Section 3.5 can be used to assess the adequacy of 

the fit A Wald Test, defined in Section 3.6, can also be used to test Ho : 1312 = O. This 

Hypothesis of Additivity is equivalent to testing if the data supports a significant 
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nonadditive interaction. When the null hypothesis is rejected the sign of ~12 can be used to 

characterize the type of interaction the data supports. 

An example of this type of analysis is the chloral hydrate (Xl) and ethanol (X 2 ) 

study previously discussed in Section 3.8. The fitted model, given by 

was shown to adequately describe the data A Wald Test was applied to the hypothesis 

Ho : ~12 = 0 with a p-value of .0422. Thus, the data suggest that ~12 '# 0 or equivalently 
A 

that nonadditivity is indicated. Furthermore, since ~12 > 0, a synergistic interaction 

between the two agents has been detected for dose combinations in the range 

{(XI'X2 ): 0::;; Xl::;; 3000, 0::;; X2 ::;; 300}. 

A plot of the fitted dose-response surface for the chloral hydrate and ethanol study 

is given in Figure 5.3. Also shown, for comparison purposes, is the dose-response curve 

under the assumption of additivity, i.e., when ~12 = o. Note that it is difficult to visualize 

any differences in these 3-dimensional plots. In the next section, the isobologram will be 

shown to be useful in visually interpreting the interactions in these two agent studies. 

5.4 Isobolograms Based on the Two Agent Model with Single Interaction 

Term 

Recall that for a fixed value of the response, 1t, an isobol is a plot of the set of dose 

combinations that yields 1t. For a 3-dimensional fitted dose-response surface it follows 

that, in this context, the isobol is a 2-dimensional contour from the fitted surface. Assume 

the fitted model is given by 
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Fun Fitted Model 

400 

Additive Fitted Model 

400 

Figure 5.3: Chloral Hydrate and Ethanol Dose-Response Surface, 
carter (198

8
): full Model versus Model Expected Under Additivity 
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(5.4.1) 

At the fIxed response, 1t, the isobol is given by 

I1t (Xp X 2 ;p) = 

{(XI'XJ: logit(1t) = ~o + ~,X, + ~2X2 + ~'2X,X2; Xl'X2 > OJ. (5.4.2) 

The isobologram is a plot of this contour and the line of additivity given by 

(5.4.3) 

In order to derive properties of the isobologram it will be useful to consider 

homergic two agent combinations first 

5.4.1 Isobolograms for Homergic Two Agent Combinations 

By equating the expression for the line of additivity given in (5.4.3) to that for the 

isobol given in (5.4.2) it can be shown that the line of additivity and the isobol intersect 

. . (IOgit(1t) - ~ J (IOgit(1t) - ~ J . along each axIS at the pomts ~,o ,0 and 0, ~2 o. Other propeI11es 

of the isobologram can be noted by rewriting the isobol equation given in (5.4.2) as 

I1t (Xp X2 ;p) = 

{
(X"X

2
): X

2 
= logit~1t) -A~O - ~,X, ; 0 s X, S logit~1t) - ~O}. 

P2 + P12X, p, 
(5.4.4) 

Similarly the line of additivity given in (5.4.3) can be rewritten as 
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I~(Xl'X2;p) = 

{
(XI'X

2
): X

2 
= 10git(1t):: ~o -~IXl ; 0 ~ Xl ~ 10git~1t) - ~o}. 

~2 ~l 
(5.4.5) 

A 

By comparing (5.4.4) and (5.4.5), under synergism, when ~12 > 0, the set of points that 

satisfy the isobol will lie below the line of additivity. Similarly under antagonism, when 
A 

~1 2 < 0, the isobol is above the line of additivity. This is in agreement with the Figure 4.4 

which demonstrated, for a single dose-combination, that points below or above the line of 

additivity were indicative of synergy or antagonism. Examples of isobols for homergic 

two agent combinations l.ll"e shown in Figures 5.4(a)-(c). For illustrative purposes, the 

dose-response surface associated with each isobol is also shown. 

By examining (5.4.4) it can be determined that the isobol is discontinuous when 

-~ -~ 10git(1t) - ~ A Xl = ~ and 0 < ~ < A o. Since /32 ~ 0 , it follows that this can only occur 
/312 ~12 ~12 
A 

when /312 < 0, or equivalently when there is an antagonistic interaction. An example is 

illustrated in Figure 5.4(c). There it can be noted that for large values of both agents the 

dose-response surface begins to decrease so that at a particular fIxed level of the response, 

the surface may fall below that level in the experimental dose-space considered. 

By examining the fIrst and second derivatives of the equation of the isobol given in 

(5.4.4), an additional property of the continuous isobol can be noted. Here 

(5.4 .6) 

and 



Figure 5.4 (a): Synergism 

130 = -10, 131 = 2, 132 =3, 1312 =0.8 

Figure 5.4 (b): Antagonism 

130 = -10, 131 = 2, 132 = 3, 1312 = -{).4 

Figure 5.4: Homergic Combinations 
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7t = 0.5 

7t = 0.5 



Figure 5.4 (c): Discontinuous Antagonism 

~o = -10, ~l = 2, ~2 = 3, ~12 = -{).7 

Figure 5.4 (continued): Homergic Combinations 
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1t = 0.5 
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a 2x 2 _ 2{~1~2 +(logit(1t)-~O)~12}~12 
ax~ - (~2 + ~!2Xl)3 

(5.4.7) 

Since for 0 ~ Xl ~ IOgit~) - ~O , the continuous isobol decreases as Xl increases it 

follows by (5.4.6) that -~1~2 - (logit(1t) - ~O)~12 < o. Applying this inequality now in 

(5.4.7), it follows that, if ~12 > 0 then a:x22 > 0 and the continuous isobol will be concave 
oXl 

up. Similarly, if ~12 < 0 then a:x22 < 0 and the continuous isobol will be concave down. 
oXl 

This property is illustrated in Figures 5.4(a) and 5.4(b). 

5.4.2 Isobolograms for Heterergic Combination of an Active, Predictive 

Agent and an Inert Agent 
"-

For this combination since the active agent is predictive, 1t > P(o;~o). This implies 

logit(1t) - ~o > O. Assume initially that Xl denotes the doses of the inert agent so that ~l = 

O. The isobol and the line of additivity can be written as 

(5.4.8) 

and 

(5.4.9) 
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By equating (5.4.8) to (5.4.9) it can be shown that the isobol and line of additivity 

intersect only on the X, axis at (0, 10git~) - ~o ). The line of additivity given in (5.4.9) is 

" a horizonta1line. By comparing (5.4.8) and (5.4.9), when (312 > 0 the synergistic isobol is 

below the horizontal line of additivity. When ~12 < 0 the antagonistic isobol above the line 

of additivity. As in the homergic case the isobol is discontinuous when XI = -=~2 and 
~12 

0< -=~2 < logitS7t) - ~o • 
(312 ~12 

It can be shown in a similar way that when X 2 is the inert agent, the line of 

additivity will be a vertical line. Now the isobol will lie to the left (right) of the line of 

additivity when a synergism (antagonism) is indicated. Examples of these isobols are 

shown in Figures 5.5(a) - (d). 

5.4.3 Isobolograms for Coalitive Combinations 

. In this case, since neither agent alone yields the flxed response of interest, the line 

of additivity given in Defmition 4.3.2 does not exist. The isobols, however, can be 

plotted. Several cases are shown in Figures 5.6(a)-(h). These examples indicate that care 

must be taken in interpreting the type of interaction from these plots. For example, the 

isobols in Figure 5.6(a) and Figure 5.6(b) look similar, but one is associated with an 

antagonism and one is associated with a synergism. Hence, it is not recommended that 

isobolograms be used to visually interpret the interactions between the agents for coalitive 

combinations of agents. 

By Result 5.3.1 it was shown that when the model is given by (5.3.3) the type of 

interaction is determined by examining the sign of (312. This interaction is consistent over 

a1llevels of the doses and over a1llevels of the response. Suppose now a combination of 

agents is studied which the investigator feels, at a fixed level of the response, can exhibit 



Figure 5.5 (a): Predictive & Inert - Synergism 

~o = -10, ~l = 0, ~2 = 3, ~12 = 0.5 

1t = 0.5 

Figure 5.5 (b): Predictive & Inert - Antagonism 

~o = -10, ~l = 2, ~2 =0, ~12 = 0.5 

1t = 0.5 

Figure 5.5: Heterergic Combinations 
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Figure 5.5 (c): Predictive & Inert - Antagonism 

~o = -10, ~l = 2, ~2 =0, ~12 = -0.1 

1t = 0.5 

Figure 5.5 (d): Predictive & Inert - Antagonism 

1t = 0.5 

Figure 5.5 (Continued): Heterergic Combinations 
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Figure 5.6 (a): Inert & Inert - Synergism 

~o=-lO, ~1=0, ~2=0, ~12=1 

Figure 5.6 (b): Inert & Inert - Antagonism 

~o = 1, ~l = 0, ~2 = 0, ~12 = -0.5 

Figure 5.6: Coalitive Combinations 
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1t = 0.5 

1t = 0.5 



Figure 5.6 (c): Inert & Inert - Synergism 

~o = 1, ~o = 0, ~o = 0, ~12 = 0.5 

Figure 5.6 (d): Inert & Inert - Antagonism 

~o = -1, ~o = 0, ~o = 0, ~12 = -{l.5 

1t = 0.5 

1t = 0.5 

Figure 5.6 (Continued): Coalitive Combinations 

124 



Figure 5.6 (e): Nonpredictive & Nonpredictive - Synergism 

~o = 1, ~o = 2 ~o = 3, ~12 = 0.5 

7t = 0.5 

Figure 5.6 (0: Nonpredictive & Nonpredictive - Antagonism 

~o = 0.8, ~o = 2 ~o = 3, ~12 = -1.5 

7t = 0.5 

Figure 5.6 (Continued): Coalitive Combinations 
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Figure 5.6 (g): Inert & Nonpredictive - Antagonism 

~o =.8, ~l = 0, ~2 = 3, ~1 2 = -1.5 

Figure 5.6 (h): Inert & Nonpredictive - Antagonism 

~o = 1, ~l = 2, ~2 = 0, ~1 2 = 0.5 

7t = 0.5 

Figure 5.6 (Continued): Coalitive Combinations 
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synergism, antagonism, and additivity in the dose-space studied. In the next section an 

example of a model that can exhibit this pattern of interactions will be given. 

5.5 Two Agent Model with More Than One Interaction Term 

127 

Suppose, for some flxed value of the response, a model is needed for a homergic 

combination that can yield the isobologram given by Figure 5.7. Note that the isobol and 

line of additivity now intersect at three points. As before, assume each single agent dose­

response curve is monotonically increasing. For the fltted model given in (5.4.1), at a 

fixed value of 1t, it was shown the isobol and the line of additivity intersect at two points, 

one on each axis. Hence the form of the model assumed in (5.4.1) can not describe the 

isobol shown in Figure 5.7. While several alternative models have isobols that allow 

regions of synergism and antagonism one example is given by 

.logit[P(X1,X2;P)] = ~o + ~IXl + ~2X2 + ~12XIX2 + ~1l2X:X2; 

O~Xl ~7,0~X2 ~5. (5.5.1) 

Note that this model is consistent with each single agent dose response curve given in 

(5.3.1) and with the common background response given in (5.2.3). The response surface 

associated with this fitted model is shown in Figure 5.7(b). By rewriting this model as 

(5.5.2) 

the types of interactions can be described using the interaction index and Result 4.7.3. If 

~12 = ~1l2 = 0, additivity is indicated. Alternatively, synergism is found if ~12' ~112 > 0 and 

antagonism is indicated if ~12' ~112 < O. However, if the signs of ~12 and ~112 differ, the 



Figure 5.7(a): Isobologram - 7t = 0.5 

5 

4 

3 

2 

1 

1 2 3 4 5 

Figure 5.7(b): Dose-Response Surface 

1.00 

0.67 

0.33 
5.00 

Figure 5.7: Isobologram and Associated Dose-Response Surface with 
Regions of Synergism and Antagonism 
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type of interaction will depend on the levels of the doses considered and can vary as the 

dose levels and the response vary. 
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To show that this model can yield the isobologram given in Figure 5.7(a) note that 

the isobol and the line of additivity for this model are given by 

(5.5.3) 

and 

(5.5.4) 

By equating (5.5.3) and (5.5.4) it can be shown the line of additivity and the isobol 

. ( logit(1t)-f3 J (IOgit(1t)-f3 J . rntersect along the axes at 0, f31 0, f32 0 ,0 and also at the nonaxls 

point 
_R logit(1t) _ R 

. Therefore, if 0 ~ _"'1_2 ~ "'0 , the isobol 
f3112 f31 

will exhibit the pattern shown in Figure 5.7(a). 

In the next section the results discussed thus far in this chapter will be extended to 

studies that include any number of agents. 

5.6 Logistic Dose-Response Models for N Agent Studies 

An N agent logistic model which contains frrst order interactions can be written as 
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N N-I N N-2 N-I N 

10git[P(X,P)] = f30 + Lf3iX i + L Lf3ijX iXj + L L Lf3ijkXiXj Xk + 
i=1 i=1 j= i+1 i=1 j=i+1 k=j+1 

(5.6.1) 

At a fixed value of the response, 7t, this model also can be written as 

The left side of (5.6.2) is the Interaction Index as given in Definition 4.7.4. For an N-

dimensional homergic combinations or an N-dimensional heterergic combination of 

predictive and inert agents, Result 4.7.3 can be applied to determine the types of 

interactions that the model describes. For example, if all of the cross product parameters 

are zero, f .f3;X; f3 =1. Hence, additivity is indicated for all dose levels and all 
;=1 10glt(7t) - 0 

levels of the response. If all of the nonzero cross product parameters have the same sign, 

the type of interaction can also be determined; positive parameters will indicate synergism 

and negative parameters antagonism. If, however, the signs of the cross product terms 

vary, the type of interaction will depend on the values of the dose combinations and the 

value of the fixed level of response considered. 

As in the two agent case, the parameters for this model can be estimated using the 

maximum likelihood methods described in Chapter 3. The goodness-of-fit procedures 

given in Section 3.5 can be applied to access the adequacy of the fit In addition, a 

likelihood ratio test can be used to test the Additivity Hypothesis given by 
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If this hypothesis is rejected nonadditivity is indicated. It has been shown, however, that 

the type of interaction may depend on the dose levels of the agents considered as well as on 

the response. It will now be demonstrated that several approaches can be taken to examine 

more closely the interactions between the N-agents. For each approach, graphical 

techniques will be shown to be useful in visually characterizing the interactions between the 

agents. 

Assume for the following that the fitted model, based on (5.6.1), is given by 

10git[P(X,~)] = ao + ±aiXi + I ±aijXiXj + I I ±aijkXiXjXk + 
i=l i=l j=i+l i=l j=i+l k=j+l 

A 

... + ~123 ... NXIX2··· xN • (5.6.3) 

A fitted model under additivity is also given by 

10git[PA(X,~)] = ao + ±aiXi 
i=l 

(5.6.4) 

5.6.1 Point-Wise Interpretation of the Interactions in an N Agent Model 

Based on the Comparison Method described in Section 4.3, the interactions in this 

N agent model can be described in a point wise fashion. Let x = (Xl' X2,' •. xN ) denote a 

fixed dose combination. At this fixed dose combination, the response predicted by the full 

model P(x,~) can be compared to the response expected under the assumption of 

additivity, pA(X,P). Since it has been assumed each single agent dose-response curve is 

monotonically increasing, based on Definition 4.3.2, if P(x,P) > pA(X,~), synergism is 
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suggested, and if P(x,P) < pA(x,P), there is evidence of an antagonism. Of course the 

differences between P(x,P) and pA(x,P) may be due to random fluctuations. In the next 

chapter a testing procedure will be introduced that can be applied in a point-wise fashion to 

detect significant differences from additivity. Here a graphical procedure will be introduced 

that can be used to determine regions of the N-dimensional dose space where synergism, 

antagonism and additivity are suggested. This graphical technique uses the parallel axis 

system defined in Section 2.5. 

For illustrative purposes assume the 4-dimensional fitted model is given by 

logit[P(X;P)] = -20+ 2X1 + 5X2 +7X3 +4X4 + .75X1X 2 + .8X1X3 

+.65X1X 4 - .3X2X3 + .6X2X 4 - .5X3X4 + .5X1X 2X3 

+.55X1X 2X 4 - .4X1X3X 4 + .45X2X3X4 + .85X1X 2X3X 4 

where 0 ~ Xi ~ 3.0, i=1,2,3,4. The fitted model under additivity is given by 

(5.6.5) 

(5.6.6) 

Two parallel axis plots can be used to determine regions in this dose-space that are 

suggestive of departures from additivity. P(x,P) and pA(X,P) are calculated at points that 

satisfy a grid-like pattern in the dose-range. In Figure 5.8(a) the set of points suggesting 

synergism, i.e., where P(x,P) > pA(X,P), are plotted. No distinct regions in the dose 

space are identified in this case. Alternatively in Figure 5.8(b) the antagonistic points are 

plotted. From this figure a region of antagonism can be identified for low doses of X 1 and 

X2 in combination with high doses of X3 and X4. This is verified in Figure 5.9 where 

only doses in that region were considered. This type of plotting technique can also be used 



Figure 5.8(a): Synergism 

Figure 5.8(b): Antagonism 

Figure 5.8: Regions of Synergism and Antagonism for Model 
Given in (5.6.5) and Xi = 0.5,1.0,1.5,2.0,2.5; i = 1,2,3,4 
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Figure 5.9(a): Synergism 

Figure 5.9(b): Antagonism 

Figure 5.9: Regions of Synergism and Antagonism for Model 
Given in (5.6.5) and Xl = 0.25, X2 = 0.25, X3, X4 = 1, 1.5, 2, 2.5 
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to examine combinations associated with a range of predicted responses, i.e., 

0.4 < f>(x, ~) < 0.6. In either application the investigator may be able to isolate regions of 

the higher dimensional dose-space where synergism and antagonism are suggested. These 

regions in the dose-space may then be studied in more detail in future experiments. 

5.6.2 Interactions in an N Agent Model at Varying Doses of a Single Agent 

This approach to describing the interactions can be considered an extension to the 

point-wise approach just described. In an N agent study, the dose-response relationship 

for a single agent can be examined at fIxed levels of the remaining (N - 1) agents. For 

example, in a 4-agent fItted model based on (5.6.3), suppose Xl was allowed to vary 

when the remaining agents are fIxed at Xj = a j , i = 2,3,4, where lit is in the experiment 

dose space for the ith agent Hence, the fItted model and the model under additivity can be 

written as 

IOgit[ P(XI ,Ii] = ~o + ~2a2 + ~3a3 + ~4a4 + ~23a2a3 + ~24a2a4 + ~234a2a3a4 

+(~l + ~12a2 + ~13a3 + ~14a4 + ~123a2a3 + ~124a2a4 + ~1234a2a3a4 )XI. (5.6.7) 

and 

(5.6.8) 

The type of interaction between the agents when X j = a j , i = 2,3,4, as Xl increases, can be 

assessed by comparing pA(XI,P) to P(Xl'P). By examining (5.6.7) and (5.6.8) it is 

apparent that the type of interaction may change as Xl varies. 
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In order to graphically summarize this, pA (Xl' P) and P(X I , P) can be jointly 

plotted over levels of Xl' For example, in Figure 5.1O(a), X2 = X3 = X4 = 1 in the fitted 

model given in (5.6.5). There synergism is suggested over all levels of Xl' Alternatively 

in Figure 5.1O(b), where X2 = 0.1, X3= 2, and X4=1, the type of interaction changes from 

antagonism to synergism. Hence, using these plots, the effects of increasing levels of a 

single agent, at fixed levels of the other agents, can be visually summarized. This may be 

particularly useful in applications where the goal is to examine the effect of various levels 

of a new agent in combination with another compound. 

5.6.3 Pair-Wise Interactions in an N Agent Model 

Another approach to describing the interactions between the agents in the N agent 

model given in (5.6.3) is in a pair-wise manner. Assume the investigator is interested in 

determining how Xi and Xj interact at various fixed levels of the N - 2 remaining agents. 

Let X k = ak, k = 1,2, ... ,N; k;t i,j where 3t is at fixed dose level in the experimental dose­

range for the kth agent The fitted model in (5.6.3) can then be simplified into an 

expression that involves only Xi and Xj and is given by 

where 

N 

Co = ~o + L~kak 
k=l 
k"i,j 

(5.6 .9) 

N N N-l A 

Ci = ~i + L~ikak + L L~ijkajak + ... 
j=l I=k+l k=l bi I .. i,j b i,j 
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p 

Figure 5.10(a): 0 $; Xl $; 3, X 2 = X3 = X 4 = 1 

- FullModel 
Under Additivity 

~----------.-----------~----------~ Xl 
o 1 2 3 

o 

Figure 5.10(b): 0 $; Xl $; 3, X2 =0.1, X3 = 2, X 4 = 1 

I 2 

Full Model 
Under Additivity 

Figure 5.10: Full Model Versus Model Under Additivity Over Levels of Xl at 
Fixed Levels X2, X 3• and X 4 - Model Given in (5.6.5) 
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A A NAN N-l A 
C j = Pj + LPjkak + L LPjklakal + ... 

k=l l=k+l k=l 
k .. i l"i,j k .. i, j 

A A NAN N-l A 
Cij = Pij + 6Pijkat + l~l 6Pijklatal + .... 

k"i,j l"i,j k"i,j 

Note that (5.6.9) describes a two agent fitted model. Therefore the interactions between Xi 

and Xj at the fixed levels of the other agents can be made based on an examination of the 

sign of Cij . An isobologram can also be used to visually characterize the deviation from 

additivity between Xi and Xj when X t = at, k = 1,2, ... ,N; k * i,j 
By allowing the levels of the other agents to vary and simultaneously plotting the 

resulting Xi, Xj isobols on the same set of axes the pair-wise interaction can be 

summarized graphically over various levels of these other agents. In general, the fixed 

levels of the other agents are chosen to adequately cover the dose space of interest. To 

summarize the interactions described by the entire model, the technique described for the 

Xi, Xj pair of agents can be repeated for all unique pairs of agents. The isobolograms can 

be displayed in the array of pair-wise plots. 

To simplify these plots the lines of additivity are eliminated. Note, however, that 

for homergic combinations the types of interactions between Xi and Xj at the fixed levels of 

the remaining agents can still be described by examining only the isobol. As demonstrated 

in Section 5.4.1 a linear isobol indicates additivity, an isobol that intersects each axis and is 

concave up (down) indicates synergism (antagonism). A discontinuous isobol indicates an 

antagonism. 

In Figure 5.11 this technique is illustrated for the 4-agent fitted model given in 

(5.6.5). Since this fitted model includes both positive and negative interaction terms, the 
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X1 

X3 X4 

X1 X1 

X3 X4 

X2 X2 

X3 

X4 

Figure 5.11: Draftman's Display of Pairwise Isobols (7t = 0.5) 
Model Given in (5.6.5) 
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character of the interaction between pairs of agents may change over fixed levels of the 

remaining two agents. By examining the array of plots, it appears that synergism exists 

between Xl and X2 at all levels of X3 and X4 considered. This is in contrast to the 

interactions between X3 and X4' which at certain levels of Xl and X2 may be synergistic or 

antagonistic. 

Note that if the original model contained cross product terms that included powers 

of Xi and/or Xj the resulting simplilled expression, analogous to (5.6.9), will include 

terms in the form X~. In Chapter 4 it was shown that the type of interactions between the 

agents could not be described when non-monotonic single agent dose-response curves 

were considered. The inclusion of the term X~ in the resulting model implies the resulting 

single agent dose-response under the constraints described may not be monotonic. Hence 

this pair-wise approach to describing interactions will be most useful in cases when the 

model contains strictly first-order cross product terms. 

This array of pair-wise plots can also be shown to be equivalent to a parallel axis 

plotting technique described by Gennings et al. (1990). Here it was shown that the isobol 

from an N-agent logistic model with first-order cross product terms can be represented in a 

parallel axis system by a set of curves. Assume a parallel axis system is embedded in a 

X-Y Cartesian coordinate system. Hence, a point in the parallel axis system can be 

referenced by the appropriate coordinates (x,y). This set of curves is defined as follows. 

For a fixed value of the response, 1t, the relationship between Xi and Xj for fixed levels of 

the other agents given in (5.6.9) can be written as 

(5.6.10) 
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where X; E ( 0, log j t~: - CO). For Xj in this interval, fj (Xi> is discontinuous at one 

point if ~ E 0, A o. Assume, for now, that ~ e: 0, A 0 so that -C . ( 10git(1t)-C) -C . ( 10git(1t)-C) 
Cij Ci Cij Ci 

fi is continuous in this interval. Assuming the Xi and Xj parallel axes are adjacent and 

plotted in the X -Y plane as vertical lines at X = k and X = k + 1 a parallel axis representation 

of fi is given by the curve defmed by 

S(X Y·C) = {(X Y): X = 1 + k Y = fi(X) - Xl(X) X E (0 logit(:r) - Co )}. 
, , , I-f/(X.)' I-f/(X.)' 1 , C. 

I I I I I 

Since 

it follows that 

S(X,Y;C)= 

In the case that ...........-1- E 0, A 0 the parallel axis representation, S X, Y; C , will -c. ( 10git(1t)-C) ( A) 
C ii C i 

consist of S(X, Y;C) = Sl(X,y;C)uS2 (X, Y;C) where Sl(X,Y;C) is the curve derived as 
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above for Xi E O,~ and S2 X, Y;C for Xi E ~, A o. This resulting ( -c. J ( A) (-c. 10git(1t) - C J 
Cij Cjj C j 

pair of curves is similar to a plot of a discontinuous isobol in the usual Cartesian plane (see 

Figure 5.4(c». Note, however, that S(X, Y;C) does not exist when f(X) = 1. 

Therefore, for a ftxed value of the response and when X t = at, 

k = 1,2, ... , N; k ~ i, j, the resulting pair-wise isobol between Xi and Xj can be graphically 

represented in both the Xi x Xj Cartesian plane and in a parallel axis system relative to the 

Xi, Xj adjacent pairs of axes. 

It was also shown by Gennings, et al. (1990) that properties of S(X, Y;C) are 

associated with the sign of the Cij term and hence from deviations from additivity. These 

results are summarized in Table 5.1. For example, if a concave up curve appears between 

the Xj and Xj parallel axes, an antagonism exists between Xj and Xj when Xt = at, 

k = 1,2, ... ,N; k ~ i,j. 

In a manner similar to the pair-wise array of plots all pairs of agents can now be 

considered at various fixed levels of the other agents. A set of curves will be constructed 

for each pair-wise relationship Xj = fi (Xi). An example of this method is shown in Figure 

5.12 for the fitted 4 agent model given in (5.6.5). So that all pair-wise combinations of 

agents can be viewed using a minimal set of axes, the axes are ordered in two parallel plots 

according to an algorithm by Wegman (1990). Since all of the curves between the Xl and 

X3 axes are concave down, a synergism is indicated between these agents at all fixed level 

of X2 and X4 considered. In contrast, the concavity of the curves between the X2 and X3 

axis changes, so that synergism and antagonism is indicated at various ftxed levels of Xl 
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Table 5.1 

Parallel Axis Representation of Xi Xj Isobol 

Horizontal Position in Concavity in Type 

f~(X,) Parallel System ~ij parallel system Interaction 
A 

((X,)~O Between the two ~ij >0 Concave down Synergism 

parallel axes 
A 

(f~(XI )<0) or ~ij <0 Concave up Antagonism 

coincident with the Xj 

axis (f~(XI )=0) 
A 

O~((X i )<1 To the right of ~ij < 0 Concave down Synergism 

(f~(Xi );tQ) or 
A 

coincident with ~ij >0 Concave up Antagonism 

(f~(Xi )=0) the Xi axis 

f'(X )=1 
I I S does not exist 

f'(X »1 I I 
To the left of Xi parallel ~ij <0 Concave up Antagonism 

A 

axis ~ij >0 Concave down Synergism 
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Figure 5.12: Parallel Axis Display of Pairwise Isobols (n = 0.5) 
Model Given in (5.6.5) 
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It can now be shown that with the exception of the points of discontinuity, a 1-1 

correspondence exists between the points on the parallel axis representation, S, and points 

in the usual Cartesian pair-wise plot of the isobol. 

Result 5.3.1: Assume the fitted model for an N agent study is given by (5.6.9) where 

X it = alt, k = 1,2, ... ,N; k * i,j. For 1t a fixed response, let I,,(Xi,Xj;C) denote the 

set of points that satisfy the Xi' Xj isobol, 

Let S( X, y; C) be the set of points in the parallel axis system corresponding the Xi, 

Xj isobol, 

A A 

c.+C .. X . 

A A 

S(X,Y;C)= 
Y _ log it(1t) - Co + CijXiXj . 

- Ci +Cj +Cij(Xi +Xj) , 
(5.6.11) 

OS Xi S logit(~) -Co, Xj = logit(~) -~o -CiXi 
Ci Cj+CijXi 

A 1-1 correspondence exists between a continuous point (X, Y) e S( X, Y ; C) and a 

continuous point (Xi'Xj) e Ilt(Xi'Xj;C). 
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Proof: 

Let (Xi ,Xj) E Ilt(Xi ,Xj;C). Then by defmtion (5.6.11) a unique point 

(X, Y) E S( X, Y; C) is determined. 

Let (X, Y) E S(X, Y;C). By deflnition, (5.6.11) X and Y are uniquely detennined 

from values (Xi'X) such that (Xj>Xj) E IIt(Xi,Xj;C). 

One advantage of using the array of Cartesian coordinate plots is the interpretability of the 

points in this plotting system; a point in these plots represents the dose combination of Xi 

and Xj which together with the flxed levels of the other agents yields the response of 

interest. In the parallel axis system these dose levels are not apparent from the plot, even in 

cases when all of the agents are measured on the same scale. It can be argued, however, 

that the type of deviation from additivity is more apparent in the parallel axis plots. For 

example, in the array of pair-wise plots a small degree of curvature in an isobol could be 

misinterpreted as linear. In the parallel plot the antagonism is clearly indicated. 

In this chapter it has been shown that response-surface techniques are useful in 

detecting and characterizing the interactions between the agents considered. For the two 

agent study it was shown that when the model contained only a single interaction tenn the 

type of interaction between the agents could be characterized by examining the sign of the 
A 

estimated cross-product parameter, ~12. In addition, the isobologram was shown to be 

useful for graphically interpreting these models. When N agents are considered the 

interpretation of the model becomes more difflcult, i.e., when the signs of the parameters 

associated with the cross-product terms vary, the type of interaction that the model suggests 

depends on the level of response and the dose combinations considered. Several graphical 

techniques were shown to be useful in characterizing the interactions that the fltted model 

describes. When applying these techniques to studies that involve a large number of 

agents, however, the number of possible cross product tenns increases. It follows that in 
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order to estimate these parameters adequately the number of dose combinations considered 

must increase. In fact, in Chapter I it was noted that the size of the experiments in these 

type of studes can become economically unfeasible when a large number of agents is 

considered. In Chapter 7 a technique will be introduced that allows the detection and 

characterization of interactions between a large number of agents but with far fewer 

observations. 



Chapter 6 

A Point-Wise Test to Detect Interactions 

6.1 Introduction 

In the last chapter response-surface techniques were used to examine the 

interactions that might exist among the agents in a combination. There the model, 

1 
P(X; fJ) = 1 + exp( - XfJ)' 

was fit to the data where X is a vector of doses and cross-product terms involving the 

doses, and fJ was the vector of unknown parameters. For the two agent logistic model, 

with a single cross product term, it was shown that the type of interaction could be 

determined by simply examining the sign of the estimated parameter associated with the 
A 

cross-product term, Le., ~12. Nonadditivity was also indicated for the N-agent experiment 

when one or more cross-product terms were included in the fitted model. 

It will now be shown that this interpretation of the logistic response-surface model 

does not generalize to the case when the model is fit in terms of an arbitrary transformation 

of the doses. A point-wise testing procedure is therefore developed in this chapter which 

can be used to detect significant nonadditivity. 
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6.2 Characterizing the Interactions When the Response-Surface Model is 

Based on a Transformation of the Doses 

It will be useful to briefly review the arguments applied in the last chapter for a two 

agent homergic combination. Assume the following response-surface model which is a 

function of the doses of both agents: 

(6.2.1) 

For a fixed level of the response, 7t, the interaction index is given by 

(6.2.2) 

At the same fixed level of the response, 7t, the model given in (6.2.1) can also be rewritten 

as 

PIXI + P2X2 = 1- P12XIX2 . 
10git(7t) - Po 10git(7t) - Po 10git(7t) - Po 

(6.2.3) 

By comparing (6.2.2) and (6.2.3) and then applying Result 4.3.4 the type of interaction 

can be determined by examining the sign of P12. 

Suppose, now, that, based on a goodness-of-fit procedure, it is determined that the 

model given in (6.2.1) does not adequately fit the data. An alternative approach could be to 

write the model in terms of a transformation of the doses, e.g., Zi = In(Xi + 1). In 

general, assume Zi = g(Xi) where g-l exists. Now, analogously to (6.2.3), the model 

can be written as 
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~lg(XI) + ~2g(X2) = 1- ~12g(XI)g(X2) 
10git(1t) - ~o 10git(1t) - ~o 10git(1t) - ~o 

(6.2.4) 

The interaction index, which is defmed in terms of doses, can also be written as 

(6.2.5) 

If g-l is a linear function, the expressions given in (6.2.4) and (6.2.5) can be simplified, 

so as before, the type of interaction can be characterized by examining the the sign of ~12. 

In general, however, the expressions given in (6.2.4) and (6.2.5) can not be simplified in 

this manner. Hence, the sign of the cross product parameter can not be used in this case to 

detect and characterize a nonadditive interaction between the agents. 

As a specific example assume that Zj = g(Xj) = In(Xj + 1) so that 

Xj = g-l(Zj) = eZj -1. The model and the interaction index can be written by 

~lln(xl + 1) + ~2In(x2 + 1) = 1- ~12ln(Xl + 1)ln(x2 + 1) . 
10git(1t) - ~o 10git(1t) - ~o 10git(1t) - ~o 

(6.2.6) 

I I(X, 1t;P) = Xl X2 

( IOgit(1t)-~oJ 1+ (IOgit(1t)-~oJ 1· exp - exp -
~l ~2 

(6.2.7) 

Here, it is not possible to simplify these expressions so that the the model in (6.2.6) can be 

written in terms of the interaction index in (6.2.7). 

An alternative approach is to examine, in a point-wise fashion, the value of the 

interaction index. Let x denote a fixed dose combination. Let 1tobs denote the associated 
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observed response at x. Then, by Result 4.3.4, if the interaction index does not equal 1, a 

nonadditve interaction is suggested, with values greater (less) than 1 indicating synergism 

(antagonism). To determine if the difference from 1 is not due to random fluctuations in 

the data, a testing procedure will be developed in the next section. 

6.3 The Interaction Index Test 

Consider now an N-dimensional homergic combination or a N-dimensional 

heterergic combination of predictive and inert agents. Since the interaction index is 

undefmed for coalitive combinations, this approach can not be applied to those 

combinations. Let x = (X1,X2,···,XN) denote a dose combination and 1tobs the observed 

response at that combination. Let Zi = g(X;) so that Xi = g-l(Z;). In general, the 

interaction index can be written by 

(6.3.1) 

where ED i (1tobS ) is the effective dose of the ith agent associated with 1tobs • To estimate the 

effective doses for the agents, the following model, which relies on data for each agent 

alone, can be used. Assuming a common baseline parameter, Po' this model 

simultaneously estimates each single agent's dose response curve. Let 



logit[P(Z;P)] = ZP 

where 

1 Zll 0 0 

1 z12 0 0 

I Zlm. 0 0 0 

1 0 Z21 0 0 

1 0 Z22 0 0 

Z= 
1 0 Z2~ 0 

, 
1 0 0 ZNI ' P = (~o ~1 ~2 ••• ~N ) 
1 0 0 ZN2 

1 0 0 ZNmN 

and mi, i=I,2, ... ,N, is the number of nonzero observations for the ith agent alone. 

Alternatively, this model can be written as 
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(6.3.2) 

Using this model, the effective doses and the interaction index can now be derived and are 

given by 

ED.( )= -l(IOgit(1tObS)-~OJ 
• 1tobs g ~i (6.3.3) 
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(6.3.4) 

Note assuming the ith agent is inert, ~j = 0 and EDj(1tobs) = 00. As described in Chapter 3 

the unknown parameters, p, can be estimated using niaximum likelihood methods and the 

adequacy of the fit of the model can be assessed using a goodness-of-fit test. The 

estimated values of the effective doses and the interaction index can then be determined 
A 

based on p. 

To determine if there is a significant nonadditive interaction at x, conditional on 

1tobs ' the following hypothesis can be tested 

Ho : II(x, 1tobs ;P) = 1 

HA : II(x,1tobs ;fi) # I 

By use of the properties of the maximum likelihood estimates described in Chapter 3, it can 
A 

be shown that P is approximately distributed as 

where r' (P) is the inverse of the (N + 1) x (N + 1) Fisher Information Matrix. Using the 

Delta Method (Agresti, 1990, p. 419), an approximate distribution of n(x, 1tobS;~) is given 

by 
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where 

The value of ~j(P) is estimated by ~j (p) and the value of r1(p) is estimated by rl(p). 

Based on the Wald Test described in Section 3.6, the following test statistic, can be used to 

test Ho : II(x,1tobs ;P) = 1. 

When WI I > X~.l-a ' Ho should be rejected. When Ho is rejected, the values of 

II( x, 1tObs;P) can be used to characterize the interaction; II(x,1tobs ;p) < 1 indicates 

synergism and II( x, 7tobs ; p) > 1 indicates antagonism. 

(6.3 .5) 

This method can now be applied to a set of dose combinations. Let K be the total 

number of dose combinations considered. Because the Interaction Index Test is repeated at 

each of the K dose combinations, the overall probability of incorrectly rejecting the null 

hypothesis will become large. A multiple testing procedure can therefore be applied to 

insure the overall probability of falsely rejecting a null hypothesis for the group of K tests 

is at most ex.. The Bonferroni Correction is used frequently in such situations. Here, the p­

value associated with the ith test is detennined by p - value j = P(WI I > Xi .. l-a); 

i=1,2, ... ,K. If p-valuei < alK then rejection of the associated ith hypothesis is 

appropriate. While it has been shown that the overall probability of falsely rejecting any of 

the K hypotheses is at most ex. it has also been shown that this procedure may be 
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conservative, i.e., it may fail to reject a particular hypothesis when it is false (Weller, 

1992). 

For our applications, a procedure described by Hochberg (1988) will be employed. 

This technique has been shown to be less conservative than the Bonferroni procedure while 

still insuring the overall probability of type I error be at most u. Here the p-values 

associated with each of the K tests are ordered from largest to smallest. These ordered p­

values are denoted by p - value(i)' i=I,2, ... ,K so that p - value(l) denotes the largest value 

and p - value(K) the smallest The associated hypotheses are denoted by H(i)' i= 1 ,2, ... ,K. 

Starting with the largest p-value, if p - value(l) < alK then all K hypotheses are rejected. 

If p - value(l) > alK then H(l) is not rejected and p - value(2) is examined. Now if 

p - value(2) < ~ then H(2),H(3),··,H(k) are rejected. If p - value(2) > ~ this 
k-l k-l 

procedure continues so that, in general, if p - value(i) < ~ then H(i)'H(i+l)'·· ·,H(k) 
k-l+1 

are rejected. This procedure will be illustrated in the next section. 

6.4 Example 

Data from a simulated two agent experiment are shown in Table 6.1. The model 

given in (6.2.1) was initially fit to all 20 observations of this data. The results of this 

" 
analysis are shown in Table 6.2. Since ~12 > 0 there is evidence of a synergism. The p-

value associated with the goodness of fit test, p =1.4xlO-5, indicates, however, that the 

model does not adequately fit the data. 

Alternatively the transformation, Zi = 10glo(Xi + 1), where Xi, i = 1,2, is the dose 

of the ith agent was considered. For illustrative purposes, the model, given in (6.2.1) was 

" fit in terms of the transformed doses. In that case ~12 < o. Hence, if the estimated value 

of this cross product parameter was inappropriately examined to characterize an interaction, 

an antagonism would have been indicated. 
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Table 6.1 

Simulated Two Agent Dose-Response Study Data 

Xi = Dose of ith agent, i=I ,2 

yin = number responding/number replications 

Xl X2 yin Xl X2 ~n Xl X2 yin Xl X2 yIn 

0 0 0/30 5 0 1110 0 5 0110 10 285 5/10 

10 0 2110 0 25 0110 35 260 5/10 

25 0 3/10 0 55 4110 50 215 4/10 

130 0 4/10 0 280 4/10 70 175 3/10 

265 0 7/10 0 565 4/10 90 130 9/10 

670 0 9110 0 1420 7/10 110 85 6/10 

125 40 7/10 



Parameter 

~o 

~1 

~2 

~12 

Table 6.2 

Simulated Two Agent Dose-Response Study 

Analysis Results for Model 

logit[P(X,P)] = ~o + ~IXl + ~2X2 + ~12XIX2 

Parameter Estimates 

Estimate WaId Statistic p-value 

-1.7227 44.0508 .0001 

.00862 17.1761 .0001 

.00204 14.4638 .0001 

.000096 8.3448 .0039 

Overall Goodness of Fit test C3.5.5) 

X2 = 32.1332 E{x2Ip) = 7.5854 V{X2 Ip)=34.5157 p-value = 1.4xlO-5 
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To apply the Interaction Index Test the model defmed in (6.3.2) was fit to the 13 

observations taken only along each axis. The transformation Zj = 10glo(Xj + 1) was used. 

The results of this analysis are shown in Table 6.3. Since the fit appears adequate 

(goodness-of-fit p-value = .2331) the Interaction Index Test can now be derived and then 

applied to each of the 7 dose combinations where nonzero doses of both agents were given. 

The Interaction Index Test Statistic, Wn is given by (6.3.5) where 

(
A) X x I I X,1t ; = I .. + 2 • 

obs ~ log jt ( It..,. )-~o logjt(It ... )-~o 
10 6: -1 10 ~ -1 

and 

<l>o (~) and <l> j (~)' i=I,2, are estimated by <l>o(~) and <l>j(~)' i=I,2 respectively. For each of 

the 7 dose combinations considered, the values of this test statistic and each associated p­

value are shown in Table 6.4. There, two dose combinations were found to have values of 

the interaction index that were different from 1. In each case a synergism was detected. 

For illustrative purposes, pA , the estimated response under additivity for each of 

the combinations, are also shown in Table 6.4. Based on Defmition 4.3.3, these values 

were determined for each (XI' x2) by solving for logit ( itA) in the following expression. 



Parameter 

~o 

~1 

~2 

~O 

~1 

~2 

Table 6.3 

Simulated Two Agent Dose-Response Study 

Analysis Results for Model 

logit[P(X,~)] = ~o + ~lloglO(Xl + I) + ~2Iog10(X2 + 1) 

Parameter Estimates 

Estimate Wald Statistic p-value 

-4.1640 36.3844 .0001 

2.0802 33.4339 .0001 

1.5298 26.6632 .0001 

Estimated Variance-Covariance Matrix: I(~rl 

~o ~1 ~2 

0.47654 -.22213 -.18496 

.12943 .08622 

.08777 

Overall Goodness of Fit test (3.5.5) 

X2 = 8.2897 E(:x21~) = 4.7255 V(:x21~)=23.9305 p-value = .2331 
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Xl X 2 7tobs 

35 260 0.5 

110 85 0.6 

50 215 0.4 

10 285 0.5 

70 175 0.3 

125 40 0.7 

90 130 0.9 

Table 6.4 

Simulated Two Agent Dose-Response Study 

Interaction Test Results 

Wald Test 

itA n( X, 7tobs , j}) Statistic p-value Critical p* 

.4679 .8463 0.32 .5691 .0071 

.5493 .7917 0.62 .4310 .0083 

.4808 1.5460 1.40 .2362 .0100 

.4235 0.6422 1.85 .1734 .0125 

.5058 3.0243 5.29 .0215 .0167 

.5613 .5106 7.03 .0080 .0250 

.5280 .0879 1015.90 .0000 
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Type of 

Interaction 

Synergism 

Synergism 

* Based on Multiple Testing Procedure of Hochberg (1988) Critical p = ~ 
K-l+1 

i=1,2, ... ,K where ex. = 0.5 and K =7. 
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___ x-:,-, -; __ + X 2 • = 1 
logit(~)-~Q 'ogit(~)-~Q • 

10 ~ -1 10 ~ -1 
(6.3.6) 

Since the equation given in (6.3.6) can not be solved explicitly, a root finding procedure 

(Mathematica, 1991) was used to fmdeach value. As expected by Defmition 4.3.1, when 

a significant synergism was indicated, 7tobs > nA 

It has been shown that the Interaction Index Test can be used, in a point-wise 

fashion, to detect deviations from additivity. This was particularly useful when a dose­

response model, in terms of the doses, could not be adequately fit to the data. Another 

advantage of the Interaction Index Test is that it can be applied in a N-agent study to a 

smaller set of observations than needed to fit the entire (N+l)-dimensional dose-response 

surface. While data are needed along each axis to estimate adequately each single agent's 

dose-response curve, as few as one nonaxis combination can be examined for 

nonadditivity. However, since the method is based on a point-wise test, a disadvantage of 

this technique is that the conclusions drawn apply only to the specific dose combinations 

considered. In contrast, the results determined using a dose-response approach apply to a 

range of dose combinations. Another disadvantage of this approach is that the conclusion 

drawn is conditional on the assumption that the response is flXed at the value of 7tobs . In 

the next chapter another approach to detecting and characterizing deviations from additivity 

will be described. It will be demonstrated that this approach requires less data than needed 

for fitting the dose-response surface but provides more global results than the point-wise 

approach described in this chapter. 



Chapter 7 

Detecting and Characterizing Interactions Based on a Ray Designed 

Experiment 

7.1 Introduction 

In Chapter 5 the response surface modelling approach to the study of drug 

interactions was discussed. Several problems associated with this technique were found. 

For example, the size of the experiment needed to adequately model a response can be 

unrealistically large. Even if a fraction of a factorial design is used, the cost of the 

experiment may become prohibitive. It was also shown that as the number of agents 

increased, the number of significant interaction terms in the model can also become large. 

When the goal is to characterize interactions among the agents, the interpretation of the 

model may therefore become difficult. 

In this chapter it will be demonstrated that an analysis based on data collected along 

rays, or at several levels of a fixed ratio, offers several advantages compared with the 

response surface technique. When examining dose combinations along rays, the 

dimensionality of the study is reduced. In an N agent study the fitted model based on a 

response surface approach is an (N+l)-dimensional surface. In contrast, the fitted model 

based on a ray design, defmes a set of2-dimensional dose response curves. 

In the following sections, the model based on a ray design will be defmed and an 

example will be presented. A simultaneous test for assessing deviations from additivity 

will be developed. In cases where a nonadditive interaction is detected, techniques will be 
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developed which characterize the types of interactions, i.e., synergism or antagonism. An 

examination of the isobols estimated from this type of experiment will also be made. 

Graphical techniques will be introduced that will be shown to be useful in the interpretation 

of the fitted model. 

7.2 The Model 

In order to insure that the definitions of additivity derived in Chapter 4 hold it will 

be assumed that all active single agent dose-response curves will monotonically increasing 

or all monotonically decreasing. Under this constraint, all the combinations defined in 

Chapter 4, with the exception of the heterergic combination of a predictive agent and a 

nonpredictive agent, can be studied using the methods derived in this chapter. 

For this analysis data are collected along rays. A ray can be thought of as a straight 

line originating at the origin. It can be shown that dose combinations that lie along a ray 

satisfy a fixed ratio. For example, consider the ray in 2-dimensional Euclidean space 

through the point (2,4). Dose combinations taken along that 2-dimensionalline, or ray, 

satisfy the fixed ratio 1:2. 

Let N denote the number of agents considered in the study. Let M > N denote the 

total number of rays along which dose combinations will be taken. Assume a ray is 

included along each of the N axes. These N rays will be referred to as axis rays. There 

are M - N non-axis rays. The following definitions describe the drug combinations and the 

observed responses for a ray design experiment. In addition to the observations taken 

along each ray, assume observations are also taken at the origin. As in previous chapters, 

s ~ 1 replications of the experiment are conducted at each dose combination and the 

dichotomous response is given by success (Z = 1) or failure (Z = 0). Let 
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mr = number of nonzero dose combinations on the rth ray; r=I,2, ... ,M 

G = total number of distinct dose combinations including the origin; 
M 

G=I+ 1mr 
r=1 

no = number of replications at the origin 

ZOs = response for the sth replication at the origin; s=I,2, ... ,fio 
DO 

Yo = 1zos 
s=1 

nrk = number of replications at the kth combination on the rth ray 

Zrks = response for the sth replication at the kth combination on the rth ray; 

s= 1 ,2, ... ,nrk 
Dn 

Y rk = 1 Zrks = number of responses observed at the kth combination of the 
&=! 

rth ray 

Y r = 1 x mr vector given by (Yr1 Yr2 ... Yrm,), r=I,2, .. ,M; k= 1,2, ... ,mr. 

In order to uniquely identify each of the M rays we can use the property noted 

earlier that the rays are line segments originating at the origin in N-dimensional space. The 

set of N-dimensional points that lie along a given ray satisfy a fixed set of ratios. While 

these ratios can be defined in several ways, for this dissertation, a unique set of ratios for 
N 

the rth ray are given by a r1 : a r2 : ... : a rN where L ari = 1 and 0 ~ ~i ~ 1. For example, 
i=1 

the ratios (0.25, 0.0,0.75) identify the ray through the point (1, 0, 3). 

In general, let the 1 x N vector a r = (ar! ar2 ... arN ) denote the ratios for the rth ray, 

r=1,2, ... ,M. Let A be the M x N matrix with rows 3r. Assume rays 1,2, ... ,N correspond 

to the N axes. For these axis rays the elements of 3r, r=I,2, .. ,N are identically 0 with the 

exception of a 1 in the ith position, i.e., for the Xl axis a1 = (1,0, ... ,0). 
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For a given dose combination along a fIxed ray, a well defmed relationship exists 

between the doses of the N agents and the total of the doses. Consider the rth ray with 

ratio vector Sr. Let XIX = (Xrkl Xrk2 ... xrkN ) denote the 1 x N vector of dose levels for the 

N agents at the kth combination on the rth ray, r = 1,2, ... ,M; k = 1,2, .. ,mr. The total of 

the N individual doses is given by 

N 

trk = L xrkj = X rk IN 
j=l 

(7.2.1) 

where IN is the N x 1 vector of 1 'So Conversely, given the total dose, trk, the individual 

doses of the N agents at the kth observation on the rth ray is given by 

(7.2.2) 

Therefore, for observations along the rth ray uniquely identilled by Sr, no information 

about the doses of the individual agents, xrk, k=1,2, ... ,mr, is lost by examining only the 

total doses, lrK. 

It is assumed that the responses ~ks' s=I,2, ... ,nrk, are independent and identically 

distributed as Bernoulli random variables with unknown parameter 1trk for all r = 1,2, ... ,M 

and k=I,2, ... mr. A similar assumption is made for the observations taken at the origin, 

i.e., Zos' s=I,2, ... ,110 are independent and identically distributed Bernoulli random 

variables with unknown parameter 1to. It follows that Yrk and Yo are independently 

distributed as Bin(nrk,1trk) and Bin(I1o,1to) random variables, respectively. 

Since no information is lost by considering the total of the doses at each 

combination, the unknown parameters can be modeled as functions of the total doses. Let 
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(7.2.3) 

and 

These expressions can be rewritten as 

1 
7to=----

1 +exp(-~o) 
(7.2.5) 

and 

7t Ie = { ( )} k=1,2, .. ,mr; r = 1,2, ... ,M. 
r l+exp - ~o +~rtrle 

1 
(7.2.6) 

A common intercept parameter for all M rays is given by ~o. The slope parameter for the 

rth ray is ~r' r=1,2, ... M. 

An overall model is written as 

1 
7t = ----:--.,-

1 +exp{-Tp} 
(7.2.7) 

where 7t is the G xl vector, T is the G x (M+ 1) design matrix in terms of l:rtc and P is the 

(M + 1) x 1 vector given below. 



'It' = [7to 7tll 7t12 ... 7tlm, 7t21 7t22 ... 7t2m2 ... 7tMI 7tM2 ... 7tMm",] 

1 1 1 1 1 1 1 1 1 1 

0 tll t12 tim 0 0 0 0 0 0 , 
T'= 0 0 0 0 t21 t22 t 2m2 0 0 0 

0 0 0 0 0 0 0 tMI tM2 tMm", 

The maximum likelihood methods described in Chapter 3 can be applied to this 

model to simultaneously estimate~, the (M+l) x I vector of unknown parameters. The 

likelihood and log-likelihood are given by 

l(x;y) = In(no)+ Yo In(~]+ no In(l-7to) + 
Yo 1- 7to 

fr{ln(nrk]+ Yrk In( ~rk ]+ nrk In(I-7trk )}. (7.2.9) 
r=1 k=1 Y rk I 7trk 

Based on (7.2.3) and (7.2.4) the log-likelihood can also be written as 
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l(li;y) = In(~:) + Yof3o - no In(l + exp(f3o)) + 

~ ~ H;:)+ y",(llo + ~,t'k) - n" 1n(1 + exp(~o + ~'t'k))}. (7.2.10) 

The elements of the (M+l) x 1 vector of scores, U(P), are given by 

Uo(li) = al(p;y) = Yo - no + ft{Yrk _ nrk } 
af30 1 + exp( -130) r=1 k=1 1 + exp( -(130 + f3r trk )) 

n M!ffi 
- - 0 + -n 1t 
- Yo 1 + exp(-f3o) ~ k=1 {Yrk rk rk} 

Uj(P) = al(p;y) = f{Yjktjk _ njktjk } 
af3 j k=1 l+exp(-(f3o + f3hk)) 

= f {Yjktjk - njktjk1tjk}; j=I,2, ... ,M. (7.2.11) 
k=1 

The M x M elements of Fisher's Information Matrix, I(P), are defmed by 
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As usual, p, the maximum likelihood estimate for p, found by solving the system 

of equations that results when (7.2.11) is set equal to zero. An iterative approach can be 

used to solve this system. As described in Chapter 3, it follows that 

(7.2.13) 

where I(fit is estimated by I(pf. 

It is interesting to note that expression (7.2.12) implies that the off-diagonal 

elements of I(fi) are zero with the exception of the first row and ftrst column. This does 

not imply, however, that the corresponding elements of I(fit will be zero. Hence, while 

the M slope parameters are associated with distinct rays, the maximum likelihood estimates 

of these slope parameters are correlated. This is due to the presence of the common 

intercept parameter. 

Once a model is ftt, various tests described in Chapter 3 assessing the fit of the 

model can be applied. In the next section a two agent example will be given to illustrate the 

application of these tests. 

7.3 Two Agent Example 

A two agent data set was generated based on the 2-dimensional dose-response 

surface given by 

where Xl and X2 are the dose levels for the agents considered. 



Data were simulated along M = 4 rays at a total of G = 19 distinct dose 

combinations (Figure 7.1). The 4 rays are defined by 

1 0 

0 1 
A= 

.667 .333 

.333 .667 

It can be assumed a range-fmding procedure was used to determine the observed dose 

levels along each ray. The simulated data are shown in Table 7.1 

The model considered for this analysis is given by 

10git(1to) = ~o; 

10git(1trl) = ~o + ~rtrk; 

or equivalently as 

10git(1t) = Til 

where 

1 1 1 1 1 1 1 

0 2 3 4 5 0 0 

T= 0 0 0 0 0 3 4 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

and 

1 1 

0 0 

5 6 

0 0 

0 0 

trk = 0, r=1,2,3,4; k=1,2, ... ,mr 

r=1,2,3,4; k=1,2, ... ,mr 

1 1 1 1 1 1 1 1 1 

0 0 0 0 0 0 0 0 0 

7 8 0 0 0 0 0 0 0 

0 0 2 3 4 5 0 0 0 

0 0 0 0 0 0 2 3 4 

1 

0 

0 

0 

5 
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7 

6 

5 

X2 4 

3 

2 

1 

a4 = (.33 .67) 

a3 = (.67 .33) 

o~----~--~~--~----~--~~--~ 
o 1 2 4 5 

Figure 7.1: Experimental Design for Two-Agent Simulated Data 
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Ray 

origin 

1 

2 

3 

4 

Table 7.1 

Two Agent Simulated Data 

Number of responses from 5 replications 

Total Dose 

0 1 2 3 4 5 

0 

(1 0) 0 3 5 5 

(0 1) 0 0 3 

(.67 .33) 0 2 4 5 

(.33 .67) 0 4 5 5 
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6 7 8 

3 4 5 
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, 

P=[~o ~1 ~2 ~3 ~4]· 

The results from model fitting are shown in Table 7.2. The intercept only 

likelihood ratio and score test results (p=.OOOl) both indicate at least one of the slope 

parameters is nonzero. The result of the overall goodness-of-fit test (p=.5651) indicates 

that this model adequately describes the data Examination of the individual goodness-of­

fit statistics (Table 7.3) shows that none of the observations appear problematic. 

In the next section three different simultaneous tests to detect deviations from 

additivity will be presented. The tests will be applied to this two agent example and to a 

higher dimensional experiment 

7.4 Statistical Tests for Detecting Deviations from Additivity 

Let 1t
A denote an expected response under additivity. Based on the definition of 

additivity given in Result 4.3.1 it follows that the additive dose-response relationship at the 

kth observation on the rth ray is given by 

(7.4.1) 

where EDi(1t~) is the effective dose associated with the ith agent, i = 1,2, ... N. Recall 

along the ith axis, i=1,2, ... ,N the total dose is equal to the dose of the ith agent. 

Therefore, using (7.2.4) the effective doses for each agent alone are given by 



Table 7.2 

Two Agent Simulated Data Analysis Results 

Parameter 

Ray Parameter Estimate Wald Statistic p-value 

origin J30 -9.5663 21.1563 .0001 

1 J31 3.3223 19.9926 .0001 

2 J32 1.7262 20.7768 .0001 

3 J33 2.8937 19.6213 .0001 

4 J34 3.5733 20.2762 .0001 

Estimated Variance-Covariance Matrix: I(~rl 

J30 J31 J32 J33 J34 

J30 4.3256 -.14398 -.7568 0.12722 -1.5200 

J31 .5521 .2519 .4235 .5059 

J32 .1434 .2226 .2659 

J33 .4268 .4470 

J34 .6297 

Overall Goodness of Fit test (3.5.5) 

X2 = 5.9819 E(x21~) = 7.5908 v(x21~)=96.3564 p-value = .5651 

Intercept Only Tests (4 degrees of freedom) 

Score Test statistic 

Likelihood Test statistic 

= 54.253 

= 81.778 

p-value = .0001 

p-value = .0001 
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Table 7.3 

Two Agent Simulated Data 

Observed and Predicted Responses and Goodness-of-Fit Statistics 

A 

Goodness- Goodness-1t 1t 

Total observed predicted of-Fit of-Fit 

Ra): Dose resQonse resQonse Cj D j 

origin 0 0.00 .0001 -.01871 .02647 

1 (1 0) 2 0.00 .0511 -.5189 .7242 

3 0.60 .5989 .0053 .0053 

4 1.00 .9764 .3476 .4886 

5 1.00 .9991 .0660 .0933 

2 (0 1) 3 0.00 .0123 -.2493 .3515 

4 0.00 .0653 -.5910 .8217 

5 0.60 .2819 1.5810 1.4805 

6 0.60 .6881 -.4251 -.4159 

7 0.80 .9254 -1.0664 -.8980 

8 1.00 .9859 .2679 .3776 

3 (.67 .33) 2 0.00 .0222 -.3370 .4740 

3 0.40 .2903 .5402 .5240 

4 0.80 .8805 -.5549 -.5128 

5 1.00 .9925 .1941 .2740 

4 (.33 .67) 2 0.00 .0811 -.6645 .9199 

3 0.80 .7582 .2183 .2230 

4 1.00 .9911 .2119 .2990 

5 1.00 .9998 .0356 .0503 



Therefore, under additivity 

(7.4.2) 

By applying the relationship between total dose and the doses of the N agents given in 

(7.2.2) this expression can also be written as 

log it( 7t~) = f30 + f31 t rka r1 + f32 t rka r2 + ... + f3N trka rN 
N 

= f30 + trk Lf3ia ri 
i=l 

N 

where f3~ = Lf3iari; r = 1,2, ... M. 
i=l 

(7.4.3) 

Recall that the elements of 3r associated with the rth axis ray, are identically zero 
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with the exception of the rth element which is l. It follows then from (7.4.3) that for the 

axis rays 

N 

f3~ = Lf3ia ri 
i=l 

= f3r; r=I,2, ... N. 

Therefore under the assumption of additivity the (M + 1) x 1 parameter vector is 

given by 

, 

taM';~;] 
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with only (N+l) unknown parameters, J30, J31' ... J3N' Thus, the hypothesis of interest can 

be expressed as 

Ho :p=pA 

Ha: p;t pA 
(7.4.4) 

Rejection ofHo implies at least one J3j ;t J3t; j=N+l, ... ,M, or, equivalently, there is a 

nonadditive interaction along at least one of the non-axis rays. Likelihood ratio, Wald and 

Score tests for this hypothesis will now be developed. Asymptotically, all three test 

statistics converge to the same Chi-square distribution. In general, it has been shown that 

none of the three testing approaches is consistently superior to the others (Kotz, et. aI., 

Encyclopedia of Statistics, 1988, Vol 8, p. 307). The likelihood ratio test can be 

considered the most practical since the required likelihood statistics are often incorporated 

in the commonly used computer software packages that fit these models. For illustrative 

purposes all three statistics will be reported for the following two examples. 

7.4.1 Likelihood Ratio Test for Nonadditivity 

In Section 3.6, likelihood ratio tests which compared a restricted and unrestricted 

model were discussed. There it was assumed the unrestricted model contained p 

parameters. The restricted model, defmed in the null hypothesis, was constructed by 

setting r < p of these parameters equal to O. Hence r restrictions were specified. The two 

models were fit and the log-likelihood evaluated at each set of maximum likelihood 

estimates. The difference of these log-likelihoods was then determined. A large difference 

in these log-likelihoods was evidence that the null hypothesis could be rejected. 

In order to test Ho : p = pA a similar approach can be taken. Here, however, rather 

than restricting a subset of the parameters to equal 0, the restrictions are given by 
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N 

J3 j = LajiJ3i; j=N+1,N+2, ... ,M. 
i=1 

"-

There are M - N restrictions corresponding the M - N non-axis rays. Let P denote the 

(M + 1) x 1 vector of maximum likelihood estimates for P in the unrestricted model 

specified in Ha. Let pA denote the maximum likelihood estimates for the restricted model 

under the assumption of additivity. In addition let I(P;y) and l(pA;y) denote the log­

likelihood evaluated at each of these parameter estimates. Serfling (1980, p.158) has 

shown that the approximate distribution of 

(7.4.5) 

is X~-N where the degrees of freedom are associated with the number of restrictions 

defined in Ho. Large values of ')..,A indicate the null hypothesis, Le., additivity, can be 

rejected. 

The unrestricted model can be fit as illustrated in Section 7.3. In order to fit the 

model under additivity recall that the additive model is given by 

log it( 1t~) = J30 + J3~trk = J30 + ( t ariJ3i }rk = J30 + t J3i a ri trk 

N 

= J30 + L~iXrki. 
i=1 

Hence the restricted model can be fit in a straightforward manner in terms of the doses of 

the individual agents as opposed to the total doses. 
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Once the two models are fit the difference in the log-likelihoods can be detennined 

and the hypothesis tested. 

7.4.2 Wald Test for Nonadditivity 

The Wald statistic, W A, for testing for deviations from additivity is based on the 

approximate distribution of the (M+ 1) x 1 vector of maximum likelihood estimates. Recall 

that under the unrestricted model this approximate distribution is given by 

(7.4.6) 

where IcfJr l is the inverse of the infonnation matrix defmed in C7.2.12). 

In this case it is useful to rewrite the null hypothesis as Ho : fJ - fJA = o. This 

hypothesis can be simplified further by noting 

, 
(Ji- JiA) = [130 -130 131 -131 .. ·I3N -I3N I3N+1 -13~+1 I3N+2 -13~+2 . .. 13M -13~] 

, 

=[0 ... 0 \IN+' - taN.,..\l, ... \lM - ~aMi\l,] . 
N 

I3N+l - LaN+1,il3i 
i=1 

Hence the null hypothesis can be written in tenns of only the M-N nontrivial restrictions as 
N 

Ho : fJj - LajiJli = 0; j = N + 1,N + 2, ... ,M . If we now define a (M-N) x (M+l) matrix C 
i=1 

as 

0 -aN+1,1 -aN+1,N 1 0 0 

0 -aN+2,1 -aN+2,N 0 1 0 
C= (7.4.7) 

0 -aMI -aMN 0 0 1 
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the null hypothesis can also be written as Ho : Cp = o. 
"-

Based on the approximate distribution of p- p given in (7.4.6) it follows that 

The Wald Statistic, W A and its approximate distribution are therefore given by 

, 
WA = (c~) (CI(~rlC'rc~ - X~-N. (7.4.8) 

If the observed value of this statistic is large, nonadditivity is indicated on at least one of the 

non-axis rays. 

7.4.3 Score Test for Nonadditivity 

Recall that the scores are the partial derivatives of the log-likelihood with respect to 

p, the unknown parameters. The goal of maximum likelihood estimation is to fmd ~, the 

estimated values of the parameters that maximize this likelihood. This is equivalent to 

simultaneously setting all of the scores equal to 0 and solving for ~. 

In Chapter 3 the scores were used to test the hypothesis Ho: P='Yo where 'Yo is a 

vector of constants. In general, if the scores evaluated at 'Yo are close to 0, it can be 

concluded that the log-likelihood evaluated at 'Yo is close to the maximum. This can be 

especially useful if a subset of the elements of 'Yo are equal to O. If the hypothesis 

Ho: P = 'Yo is not rejected it implies that a subset of the parameters P can be used to model 

the data. 
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In a similar way the scores can be used to test for deviations from additivity. Let 

pA denote the maximum likelihood estimates of the parameters under the assumption of 

additivity. If U(pA), the scores evaluated at pA are close to zero, it can be concluded that 

the assumption of additivity should not be rejected. Conversely, if U(pA) is large, it 

implies the unrestricted model defmed in the alternative hypothesis is the more appropriate 

model. Rao (1973, p. 419) has shown the following statistic and its approximate 

distribution can be used to formally test Ho : p = pA: 

(7.4.9) 

Large values of SA indicate the null hypothesis of additivity should be rejected. 

Once the null hypothesis of additivity has been rejected the investigator can 

conclude nonadditivity is indicated along at least one non-axis ray. In the following section 

techniques are presented to determine the non-axis rays associated with nonadditivity. The 

nature of the departure from additivity will also be described. 

7.5 Characterizing and Testing for Deviations from Additivity Along Each 

Non-axis Ray 

Recall that in Definition 4.3.2, defmtions of synergism and antagonism were given. 

For example, assuming each active single agent dose-response curve is increasing, there is 

evidence of a synergism at the rth observation along the kth ray if the predicted response is 

greater than the response expected under additivity, i.e., 7t:rk > 7t:~. Conversely an 

antagonism is indicated if 7t:rk < 7t:~. A similar argument can be made for decreasing 

dose-response curves. Since logit(7t: rk ) = ~o + ~rtrk and logit(7t:~) = ~o + ~~trk a 
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comparison of ~r and ~~ is equivalent to comparing 7t rlc and 7t~. Thus, for r = 1,2, .. ,M 

the type of interaction suggested by the fitted model is given by the following: 

Active Single Agent 

Dose-Response 

Curves ~r =~~ ~r >~~ ~r <~~ 

Increasing Additivity Synergism Antagonism (7.5.1) 

Decreasing Additivity Antagonism Synergism 

However, for each non-axis ray, it still must be determined if there is a statistically 

significant difference between ~r and ~~. In Section 7.4.2 a Wald statistic, W A was 

used to simultaneously test for nonadditivity along all of the M-N non-axis rays. A similar 

statistic, W: can now be applied to each of these non-axis rays individually. 

For rth non-axis ray, r=N+l, ... ,M the hypothesis of interest is Ho : ~r = ~~ or 

equivalently 

N 

Ho : ~r - Lari~i = O. (7.5.2) 
i=l 

The expression given in the null hypothesis is the (r-N)th, r = N+ 1, ... ,M, element of the 

(M-N)xl vector, Cp where C is given by (7.4.7). Since Cp - NM_N(P'CI(PfIC') the rth 

" row of the vector Cp is also approximately normal, i.e., 
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where (CI(PfIC')r_N.r_N is the (r-N)th diagonal element of (CI(P)-IC'). The Wald Test 

Statistic associated with the rth ray and its approximate distribution are therefore given by 

(

A N A J2 
A n J3r - t;ariJ3i 2. 

Wr = (CI(PfIC') - Xl' r=N+l •...• M. 
r-N.r-N 

(7.5.3) 

For studies which include more than one non-axis ray this procedure will be applied 

(M-N) times. This implies the probability of incorrectly rejecting additivity along at least 

one of the rays. or the probability of a type I error. will be greater than a. In order to 

insure the overall probability of a Type I error is less than or equal to a the multiple 

comparison described in Section 6.3 will be applied. Once an overall additivity test has 

indicated the existence of nonadditivy along at least one of the non-axis rays. these 

individual Wald Tests based on Wr
A can be applied to determine where the deviations 

occur. For the rays where nonadditivity was found the types of interaction can be 

distinguished by applying (7.5.1). 

To illustrate an application of these tests for deviations from additivity the two 

agent simulated data discussed in Section 7.3 will be examined. To also demonstrate the 

technique in higher dimensions, a 4 agent, 19 ray. simulated data set will then be analyzed. 

7.5.1 Two Agent Example 

Consider the two agent simulated data set described in Section 7.3. The results of 

applying the three overall tests for deviations from additivity are listed in the top of Table 

7.4. Clearly there is a significant interaction along at least one of the two non-axis rays. 

Listed in the bottom of Table 7.4 are the estimated slope parameters under the full and 
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Table 7.4 

Two Agent Simulated Data 

Simultaneous Tests for Deviations from Additiyity 

Test df p-value 

Likelihood Ratio Test 

Wald Test 

Score Test 

18.3300 

10.0079 

12.5542 

2 

2 

2 

.0001 

.0067 

.0019 

Test for Deviations from Additiyity A1on~ Each Nonaxis ray 

Wald 
A 

~A 3r P Statistic p-value Critical p* 

.67 .33 2.8937 2.7875 .1359 .7120 .0250 

.33 67 3.5733 2.2560 10.376 .0013 .0500 

Type of 

Interaction 

Synergism 

* Based on Multiple Testing Procedure of Hochberg (1988), Critical p = ~ 
K-l+l 

i=I,2, .. ,K where a. = 0.05 and K = 2 



additive model as well as the individual Wald additivity test results. A synergism is 

indicated along ray 4. No deviation from additivity was found for ray 3. 
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In order to graphically summarize the results of this study the predicted dose 

response relationships under the full and restricted models can be plotted for each ray 

(Figure 7.2). The actual observed values can also be included to allow a graphical 

assessment of the fit of the model. In agreement with the results of the goodness-of-fit test 

shown in Table 7.2 (p=.5651), the fitted model appears to adequately describe the data. 

The response curves predicted under additivity are plotted for the non-axis rays using a 

dotted line. Synergism is indicated when the additive dose response curve is below the 

curve predicted under the unrestricted model. Conversely, when the additive curve is 

above the curve predicted under the unrestricted model there is evidence of an antagonistic 

interaction. In Figure 7.2, both plots associated with the non-axis rays indicate a 

synergism. However, when examining the closeness of the two curves in the plot 

associated with ray 3, it is not surprising that no deviation from additivity was found for 

this ray. 

It can therefore be concluded from this two agent study that for certain regions of 

the 2-dimensional dose space, specifically when the doses are in the .33 : .67 or 1:2 ratio, a 

synergistic interaction occurs between the agents. When the agents are in the .67 : .33 or 

2: I ratio, there is no evidence of deviations from additivity. 

7.5.2 Four Agent Example 

In order to extend the illustration of these techniques to higher dimensions, a four 

agent, 15 ray, data set was simulated based on the 4-dimensional dose-response 

relationship 
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Ray 1 (1: 0) 
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Ray 3 (.667 : .333) 
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Ray 2 (0: 1) 

1 

O~==~~L-------------

Total Dose 

Ray 4 (.333 .667) 

1 • 

O~~~~----------------

Total Dose 

--- Expected Under 
Additivity 

Figure 7.2: Two Agent Simulated Data - Full Model versus Expected Under Additivity 



10git(1t) = -20 + 2X1 + 5X2 + 7X 3 + 4X4 + 

.75X1X2 +.8X1X 3 + .65X\X4 -.3X2X 3 + .6X2X 4 - .5X3X 4 + 

.5X1X2X 3 + .55X1X 2X 4 - .4X1X3X 4 + .45X2X 3X 4 + .85X1X 2X 3X 4 • 
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The simulated data are listed in Table 7.5. The rays run through the center of each of the 

dose subspaces. For example, the ray given by (.5.5 0 0) runs through the center of the 

Xl X2 dose space while (.25 .25 .25 .-25) runs through the center of the 4 agent space. 

Assume that a range fmding procedure was used to determine the total doses along each of 

the rays. The estimated parameters and the statistics associated with the fit of the model 

are shown in Table 7.6. The results of the intercept only tests indicate at least one 

nonintercept parameter is nonzero. The overall goodness-of-fit test (p-value of .7679) 

implies the model adequately describes the data. 

In the top of Table 7.7 the results of the overall tests for nonadditivity are given. 

All three of the tests indicate there is a nonadditive interaction along at least one of the non­

axis rays. The individual Wald tests are shown in the bottom of Table 7.7. According to 

the multiple comparison procedure described in Section 6.3, the results are ordered by the 

size of the observed p-values. Once an observed p-value is less than the adjusted p-value, 

the comparisons stop and rejection of the null hypothesis is concluded for the remaining 

rays. There are clearly regions in the dose space where significant nonadditive interactions 

are found. The type of interaction, however, varies. 

A graphical representation of these results is given in Figure 7.3. In each plot the 

observed responses and predicted response curve are shown. For each non-axis ray the 

additive dose response relationship is also plotted. By examining these plots the following 

conclusions about the interactions between the agents can be drawn. Synergistic 
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Ray 0 2.0 2.5 

origin 0 

1 

2 

3 0 0 

4 

5 

6 

7 

8 0 0 

9 

10 

11 

12 

13 

14 

15 

Table 7.5 

Two Agent Simulated Data 

Number of Responses from 5 replications 

3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 

0 0 

0 0 1 5 5 

4 5 5 

0 1 4 5 5 

1 0 4 5 5 

0 0 4 3 5 5 5 

0 0 2 2 4 

0 2 5 5 5 

0 0 3 5 5 

0 0 0 3 5 

0 0 1 5 5 

0 0 0 1 5 

0 0 0 0 0 0 3 3 3 4 5 5 

0 2 4 5 5 

0 0 4 4 5 
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Ray 

origin 

1 (1000) 

2 (0100) 

3 (0010) 

4 (000 1) 

5 (.5 .5 00) 

6 (.50.50) 

7 (.500.5) 

8 (0.5 .50) 

9 (0.50.5) 

10 (00.5.5) 

11 (.33 .33 .33 0) 

12 (.33 .33 0 .33) 

13 (.33 0 .33 .33) 

14 (0 .33 .33 .33) 

15 (.25 .25 .25 .25) 

Table 7.6 

Four Agent Simulated Data 

Analysis Results 

Parameter Estimate Wald Statistic 

130 -21.9163 90.6856 

131 2.2102 84.6759 

132 5.2972 83.0073 

133 7.6814 82.1227 

134 4.6226 84.6285 

135 4.6123 84.6515 

136 4.3350 84.9695 

137 4.0041 83.7230 

138 6.1888 82.0405 

139 5.5589 83.5148 

1310 4.9324 83.3943 

1311 5.3025 83.0073 

1312 4.7207 82.0842 

1313 3.3830 86.3757 

1314 6.0091 81.8450 

1315 5.5416 83.4791 

Overall Goodness of Fit test (3.5.5) 

p-value 

.0001 

.0001 

.0001 

.0001 

.0001 

.0001 

.0001 

.0001 

.0001 

.0001 

.0001 

.0001 

.0001 

.0001 

.0001 

.0001 

X2 = 45.7393 E{x2Ip) = 65.0893 v{x2 Ip) = 699.2338 p-value = .7679 

Intercept Only Tests (14 degrees of freedom) 

Score Test statistic = 249.715 p-value = .0001 

Likelihood Test statistic = 418.540 p-value = .0001 
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Table 7.7 

Four Agent Simulated Data 

Simultaneous Tests for Deviations from Additiyity 

Test X2 df p-value 

Likelihood Ratio Test 140.474 11 <.0001 

Wald Test 65.9924 11 <.0001 

Score Test 111.9763 11 <.0001 

Test for Deviations from Additivity Alon!: Each Non-axis Ray 

Wald Type of 
" ~A 8r f3 Statistic p-value Critical p* Interaction 

(0 .33 .33 .33) 6.009 5.861 .4360 .5091 .0045 

(0.5 .50) 6.189 6.489 1.595 .2066 .0050 

(.33 .33 0 .33) 5.303 5.058 1.671 .1961 .0056 

(0.50.5) 5.559 4.960 8.552 .0035 .0063 Synergism 

(.25 .25 .25 .25) 5.542 4.953 8.999 .0027 Synergism 

(.50.50) 4.335 4.9456 15.356 <.0001 Antagonism 

(.500.5) 4.004 3.416 16.847 <.0001 Synergism 

(.33 .33 0 .33) 4.721 4.039 17.206 <.0001 Synergism 

(.5 .500) 4.612 3.754 27.606 <.0001 Synergism 

(00.5 .5) 4.932 6.152 45.766 <.0001 Antagonism 

(.33 0 .33 .33) 3.383 4.933 111.815 <.0001 Antagonism 

* Based on Multiple Testing Procedure of Hochberg (1988), Critical p = ~ 
K-l+1 

i=1,2, .. ,K where <X = 0.05 and K = 11 
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Figure 7.3: Four Agent Simulated Data - Full Model versus Expected 
Under Additivity 
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interactions are indicated between the pairs Xl and X2, Xl, and X4 and between X2 and 

X4. In contrast antagonisms are indicated between Xl and X3, and X3 and X4. The 

synergistic interaction between X I and X2is no longer present when an equal dose of X3 is 

added (ray 11). When ~ is added to Xl and X2' however, a synergism is still found. 

The synergistic interaction between Xl and ~ is changed to an antagonism when X3 is 

added. The antagonisms between Xl and X3, and between X3 and X4 are maintained 

when all three agents are combined. When all four agents are combined, however, the 

antagonistic interactions disappear and a synergistic interaction is found. 

In this 4-dimensional example the rays were chosen to span the entire four agent 

dose space. In this way, information about the interactions between the agents taken two at 

time, three at a time, and then all together could be obtained. A different set of non-axis 

rays may be more appropriate, however, if the investigator was primarily interested in 

examining a particular region of the dose space. This example however, clearly illustrates 

the flexibility of the use of a ray design in determining a variety of nonadditive interactions 

throughout a dose space. 

In earlier chapters it was noted that the focus of many studies of this kind was on a 

particular fixed level of the response, i.e., isobols at say p= 0.5. In the next section, 

higher dimensional graphical displays of isobolograms, based on a ray designed 

experiment will be discussed. 

7.6 Isobolograms for an N Agent Ray Designed Experiment 

Recall the two agent isobologram for a fixed response, 1t, is a plot of the line of 

additivity in conjunction with a set of dose combinations that yield the response 1t. If a 

dose combination lies below the line of additivity a synergism is indicated. Conversely, if 

the dose combination lies above the line of additivity there is evidence of an antagonism. 



In order to apply this type of plotting technique in a ray designed experiment the 

effective total doses along the rth ray, denoted by EDTr(7t),r = 1,2, .. ,M, can be 

determined. Based on the model given in (7.2.4) these values are given by 

EDTr(7t) = logit(?t) - ~o ., _ r=I,2, ... ,M. 
J3r 

(7.6.1) 

In a similar way, by applying (7.4.3), the effective total doses under the assumption of 

additivity, EDTrA(7t), can be determined. Using (7.2.2) the dose levels for each agent 

corresponding to this total dose can be determined. 
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For the two-agent simulated experiment discussed, in Section 7.3, an isobologram 

is plotted in the Euclidean plane for 7t = 0.5. The predicted dose combinations that yield 

0.5 are plotted along each ray with dots. As usual, connecting the two effective doses 

associated with each agent alone gives the line of additivity. The stars represent the dose 

combinations predicted under additivity. These points are simply the intersections of the 

rays with the line of additivity. Along both rays synergism is indicated since along each 

ray the predicted dose combinations are below the line of additivity. Along ray 3, 

however, the estimated dose combination is relatively close to the line of additivity. This is 

in agreement with the failure to detect an interaction along this ray. 

An alternative representation of this plot, the parallel isobologram, is shown in 

Figure 7.5. Here each ray is plotted in a parallel fashion. The ratios associated with each 

ray are listed above the ray to indicate where in the dose-space the ray is located. The 

estimated total doses that yield the fIxed response are plotted using dots. The total dose 

predicted under the assumption of additivity are plotted using a star. If the unrestricted 

predicted total dose is below the total dose predicted under additivity, a synergism is 

indicated. Conversely, if the unrestricted predicted point is above the additive predicted 



Ray 2 

Ray 3 

~--------------------~--------l> Ray 1 
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Figure 7.4: Isobologram (1t=O.5) for Two Agent Simulated Data 
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Figure 7.5: Parallel Isobologram (7t=O.5) for Two Agent Simulated Data 
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point, there is evidence of an antagonism. The non-significance of the synergistic 

interaction for Ray 3 is again noted by the closeness of the two points along this ray. 
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This second plotting technique can be extended to studies with any number of 

agents. In Figure 7.6 for 1t = 0.5 the values of EDTr(1t) and EDTrA(1t), r=5,6, ... ,15, are 

plotted for the 4 agent simulated data presented in Section 7.5. In this plot the rays are 

ordered by the obselVed p-values associated with the test for nonadditivity based on Wr
A. 

Alternative orderings of the rays, i.e., by types of interactions, may be more appropriate 

depending on the particular study. For this example, the plot clearly indicates at the 50% 

response level there are areas of the dose space where the agents are interacting 

synergistically and other areas where there is antagonism. 

7.7 Summary 

In this chapter methods for analyzing dose-response experimental data based on a 

ray design were presented. There are several advantages of this approach over an analysis 

based on response surface techniques where data are collected according to a factorial 

design. Here, if the investigator is interested only in a sub region of the N-dimensional 

dose space, data can be collected over as few as one non-axis ray. Alternatively, rays can 

be placed in several disjoint regions of the dose space. In both cases the actual number of 

observations may be much smaller than needed for a factorial design. For example, 426 

observations were used in the simulated 8-dimensional data discussed in Section 7.7. In 

contrast, if a factorial design were used with 3 levels taken for each agent, 38 = 6561 

observations would be taken. Even if a fraction of a factorial design was considered it is 

apparent that the ray design in a higher dimensional experiment may be cost effective. 

It was also demonstrated in Chapter 5 that an isobologram, useful in a two agent 

dose-response surface analysis, is not adaptable to higher dimensional studies. Since the 

independent variable for these experiments is the I-dimensional total dose rather than an 
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N-dimensional vector of doses, several easy to interpret graphical techniques can be 

applied. Plotting the total dose against the fitted and observed data in an array of pairwise 

plots allows a visual assessment of the fit of the model. When the plot of the predicted 

dose-response curve under additivity is also plotted, the types of interactions that the model 

suggests can be visualized. The analyst does not need to study the set of parameter 

estimates in order to determine the character of the interactions. In addition, a parallel 

isobologram for a fixed response can be plotted. Here, along each ray, the predicted 

effective total doses under the fitted model and under additivity can be plotted. Again the 

types of interactions along each ray, at a fixed response of interest, can be easily observed. 



Chapter 8 

Extensions and Summary Comments 

8.1 Extensions 

Several extensions can be made to the methods described in this dissertation for 

detecting and characterizing interactions. The dose-response relationships assumed in 

Chapters 7 were based on the logistic model. Here the dose-response curve along the rth 

ray is expressed as a linear function of the logit of the response, i.e., 

logit[P(t;fJ)] = J30 +J3r t. Recall in Result 5.2.2 it was shown that this function is 

symmetric about 1t = 0.5. This constraint may, in fact, make it difficult to fit certain dose­

response curves. For example, the rate of increase of a particular dose-response curve may 

be smaller for value of t> EDTr (0.5) than for t < EDTr (0.5). The methods described in 

Chapter 7 can, however, be generalized to other transformations of the response besides 

the logit. Based on the generalized linear model (McCullagh and NeIder, 1989), a 

transformation of the response, or link, is written as a linear function of the doses. Various 

forms for this link function, including the logit, can be examined to determine which most 

adequately describes the data. Other forms for the dose-response model, such as the 

median effect equation given in (4.6.6), can be studied as well. 

In order to generalize the methods of Chapter 7, models that account for extra 

variability in the data can also be considered. These models would be applicable when 

certain additional effects, such as litter, need be considered. As noted in Chapter 3, it was 

assumed that the variability in the data at each dose combination could be described by a 

199 



200 

binomial distribution. This can be generalized to a beta-binomial distribution. In addition, 

the Quasi-likelihood approach, which further relaxes the distributional assumptions, can be 

considered. 

Lastly, properties of the ray design can be examined to determine, along each ray, 

optimal levels of the total dose to consider in the experiment. For the examples described 

in this dissertation, it was assumed that the experimenter possessed prior knowledge of the 

dose-response surface sufficient to detennine a range of total doses to examine along a ray. 

The development of two stage experimental designs could be useful in situations where 

there is insufficient prior knowledge. 

8.2 Summary Comments 

The principal goal of this research was to derive methods for detecting and 

characterizing interactions in a study of a large number of agents. Analytic and graphical 

methods were considered. A summary of the new research presented in this dissertation is 

given below. 

In Chapter 2, new plotting techniques useful in higher dimensional spaces were 

described and their usefulness illustrated in a repeated measures analysis. Specifically, it 

was shown that through the use of a parallel axis plotting system as well as a draftman's 

display of pair-wise plots, properties of higher dimensional data could be determined. 

In Chapters 3 through 7, methods of detecting and characterizing interactions 

between any number of agents were considered. Well known properties of the logistic 

model, which was used to describe the dose-response relationships in this dissertation, 

were described in Chapter 3. In order to describe how the agents interact, several 

defmitions and derivations were given in Chapter 4. This chapter summarized the results 

and assumptions previously made in an ad hoc, inconsistent manner throughout the 

literature on the subject In Chapter 5, a technique for detecting and characterizing 
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interactions based on dose-response modeling was described. New graphical methods 

were developed in this chapter which were shown to be useful in interpreting the fitted 

model when a large number of agents are considered. In Chapter 6, it was also shown that 

certain properties of the logistic dose-response surface used in Chapter 5 are not applicable 

when a model is fit in terms of certain transformations for the doses. A new point-wise test 

to detect deviations from additivity was then derived which can be applied to studies of any 

number of agents. Lastly, in this research a method of detecting and characterizing 

interactions based on dose combinations that satisfy fixed ratios was derived and is 

described in Chapter 7. This technique was shown to be applicable to studies of a large 

number of agents. Several new graphical tools were introduced in this Chapter to assist in 

interpreting the fitted model. 
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Parallel Axis Plotting Program 

1*******************************************************************1 
1* *1 
1* This SAS program plots points in two parallel axis plots. *1 
1* The first plot are points that satisify synergism and thesecond plot are points *1 
1* that indicate antagonism. *1 
1* User dermes model and ranges of values they wish to examine in first data step. *1 
1* Uses Proc Greplay to display both parallel axis plots on same page.. *1 
~ ~ 
1******************************************************************1 

%hscsps (figure58"portrait); 

1* format the labels for the parallel axes *1 

proc format; 
value xfmt O='XI' 1='X2' 2='X3' 3='X4'; 

1* generate two data sets: syn and ant, which contain points that satisfy synergism *1 
1* and antagonism respectively. *1 

data syn ant; 
bO=-20; 
bI2=.75; 
b123=.5; 
b1234=.85; 

bl=2; 
b13=.8; 
b124=.55; 

do xl=.5 to 2.5 by .5; 
do x2=.5 to 2.5 by .5; 

do x3=.5 to 2.5 by .5; 

b2=5; 
b14=.65; 
b134=-.4; 

do x4=.5 to 2.5 by .5; 

b3=7; 
b23=-.3; 
b234=.45; 

b4=4; 
b24=.6; b34=-.5; 

Ipa=bO+bl*xl+b2*x2+b3*x3+b4*x4; 
Ip=lpa+b12*xl*x2+b13*xl*x3+b14*xl*x4+b23*x2*x3+ 

b24*x2*x4+b34*x3*x4+b123*xl*x2*x3+ 
b124*xl*x2*x4+b134*xl*x3*x4+b234*x2*x3*x4+ 
b1234*xl*x2*x3*x4; 

if lp>lpa then output syn; 
else if lp<lpa then output ant; 

end; 
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end; 
end; 

end; 

1* draw the line segments in the parallel axis system that represent the higher 
1* dimensional synergistic points. 

data picsyn; 
set syn; 
length function $ 8.; xsys='2'; ysys='2'; 
function='move' ;y=x 1 ;x=O;output; 
function='draw';y=x2;x=1 ; output; 
function='draw';y=x3;x=2;output; 
function='draw';y=x4;x=3;output; 

1* draw the line segments in the parallel axis system that represent the higher 
1* dimensional antagonistic points. 

data picant; 
set ant; 
length function $ 8.; xsys='2'; ysys='2'; 
function='move';y=x I ;x=O;output; 
function='draw';y=x2;x=1 ; output; 
function='draw';y=x3;x=2;output; 
function=' draw' ;y=x4 ;x=3 ; output; 
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*1 
*1 

*1 
*1 

1* Sets up a frame in which to draw the parallel axes. x=O to 3 for the four *1 
1* dimensional parallel axes. y=O to 2.5 are possible values that each xl,x2,x3,x4 *1 
1* can assume. *1 

data frame; 
do x=O to 3; 

do y=O to 2.5; 
output; 

end; 
end; 
format x xfmt.; 

axisllabel=none value=(height=.5 in) order=O to 3 by 1 minor=none major=none; 
axis2 order=O to 2.5 by .5 minor=none major=none label=none value=none; 
titlel ' '; 

proc gplot data=frame annotate=picsyn gout=fig; 
plot y*xIhaxis=axisl href=O 1 234 vaxis=axis2; 

proc gplot data=frame annotate=picant gout=fig; 
plot y*xIhaxis=axisl href=O 1 234 vaxis=axis2; 

proc greplay nofs; 
igout fig; 
tc template; 
tdef t2x1 11 llx=20 ulx=20 lrx=80 urx=80 



lly=55 uly=80 lry=55 ury=80; 
tdef t2xl '2J llx=20 ulx=20 lrx=80 urx=80 

lly=20 uly=45 lry=20 ury=45; 
tempate t2xl; 
tplay l: 1 2:2; 
quit; 
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Interaction Index Test 

1*******************************************************************1 
1* *1 
1* This SAS program calculates the statistics used in the Interaction Index Test. *1 
1* User inputs the data and programs any transfonnations of the doses needed. *1 
1* User must also determine and program the functions defmed by the Delta *1 
1* Method. Analysis is described in Chapter 6. *1 
1* *1 
1******************************************************************1 

title 'loglO (dose+l)'; 
data rawdat; 

input xl x2 r n; 
pobs=r/n; 
lx1=loglO(x1 + 1); 
lx2=loglO(x2+1); 

cards; 
o o 030 

110 
210 
310 
410 
710 
9lO 
OlO 
OlO 
4lO 
4lO 
4lO 
7lO 
510 
510 
4lO 
3lO 
9lO 
6lO 
7lO 

5 
10 
25 
130 
265 
670 
o 
o 
o 
o 
o 
o 
10 
35 
50 
70 
90 
110 
125 

o 
o 
o 
o 
o 
o 
5 
25 
55 
280 
565 
1420 
285 
260 
215 
175 
130 
85 
40 
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proc print data=rawdat; 
title2 'Observed Data'; 
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1* data set which contains the combination points (combo) and another data set which *1 
1* contains the axes data *1 

data combo axes; 
set rawdat; 
if xl=O or x2=O then output axes; 
else output combo; 

1* determine the common intercept parameter and the slope parameters for each single *1 
1* agent dose-response curve. use the covout option to create a data set that contains *1 
1* the parameter estimates and the var-cov matrix for these estimates. *1 

proc logistic data=axes covout out=varcov; 
model r/n=Ix 1 1x2/covb; 
output out=pred p=phat; 

proc print data=pred; 
title2 'Predicted Values'; 

1* create data sets that contain the parameter estimates and the var-cov matrix for *1 
1* the parameter estimates from output from proc logistic. *1 

data betas varcov; 
set varcov; 
if _n_ =1 then output betas; 
else output varcov; 
drop _link __ type __ name __ lnlike_; 

proc iml; 
start main; 

use betas; 
read all into beta; 
bO=beta[1,I]; bl=beta[1,2]; b2=beta[I,3]; 

use varcov; 
read all into varcov; 

use combo; 
read all var {Ix 1 Ix2} into Ix; 

ten=j(nrow(lx),ncol(lx), 10); 
one=j(nrow(lx),I,I); 
log 1 O=j(nrow(Ix), 1 ,logO 0»; 

x=( ten##lx)-I; 

read all var {pobs} into pobs; 



Ipobs=log(pobS/(I-pobs)); 
ed 1 =ten[, 1 ]##((lpobs-bO)/b 1 )-1; 
ed2=ten[, 1 ]##((lpobs-bO)/b2)-I; 

ii=x[,I]/edl + x[,2]/ed2; 

phiO=logI0#«(edl+one)#x[,I])/(bl#edl##2)+«ed2+one)#X[,2])/(b2#ed2##2)); 
phil=logI0#«(edl+one)#x[,I]#lx[,I])/(bl#edl##2)); 
phi2=log 10#( « ed2+one )#x[,2]#lx[,2])/(b2#ed2##2)); 
phi=phiOllphi Il1phi2; 

vars=diag(phi *varcov*T(phi))[, +]; 
wald=(1-ii)#(1-ii)/(vars); 
pVal= I-probchi(wald, 1); 

n=j(nrow(x),I,nrow(x)); 

ans=xllpobslledlI1ed2I1iillwaldllpvallln; 
c= { 'x I ','x2','pobs' ,'ed 1 ','ed2' ,'ii' ,'wald' ,'pval','n'}; 
create ans from ans[colname=c]; 
append from ans; 
fmishmain; 
run main; 

proc sort data=ans; 
by descending pval; 
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/* print results using Hochberg (1988) method for adjusting for multiple testing */ 

data ans; 
set ans; 
retain j done 1; 
length intact $10.; 
cut=.05/(n-j+ 1)*done; 
if ii<I then intact='Synergism'; 
else if ii>1 then intact='Antagonism'; 
else intact='Additivity'; 
j=j+l; 

proc print; 
var xl x2 pobs edl ed2 ii intact wald pval cut; 

title2 'Analysis Results'; 
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Appendix C 

Ray Design Analysis 

1**********************************************************************1 
1* *1 
1* This program performs the analysis of the ray designed data. The example is *1 
1* described in Section 7.5. *1 
1* User must input the ratios for each ray included in the study as well as the observed *1 
1* data along each ray. This program then deteremines the maximum likelihood *1 
1* estimates for the parameters, as well as a goodness-of-fit test *1 
1* Likelihood ratio, Wald and Score tests are used to determine if nonadditivity is *1 
1* indicated along at least one nonaxis ray. Individual tests for nonadditivity are also *1 
1* conducted along each nonaxis ray. A multiple testing adjustment is made using *1 
1* Hochberg's procedure. *1 
1* *1 
1* Assume there are M rays, N agents, G observations in form r and n where n is *1 
1* is the number of replications and r is the number of successes. *1 
1* *1 
1**********************************************************************1 

libname save 'UD$VPH:[DAWSON.CHAPTER7),; 

titlel '15 Ray - 4 Agent Analysis'; 

1* input the ratios, which sum to 1 which define each ray including the axis rays 

data design; 
input ray al a2 a3 a4; 

cards; 
1 1000 
2 0100 
3 0010 
4 0001 
5.5 .500 
6.50.50 
7 .500.5 
8 0.5.50 
9 0.50.5 
1000.5.5 
11 .333 .333 .333 0 
12 .333 .333 0 .333 



13 .333 0 .333 .333 
14 0 .333 .333 .333 
15 .25 .25 .25 .25 

/* data set contains x 1 x2 x3 x4 ray r n 

proc print data=save.data4; 
title2 'Observed Data'; 

/* generate input for proc logistic 
/* N+ 1 columns of total doses and last two columns rand n 
/* Grows - one for each unique dose combination including origin 

data raydat; 
set save.data4; 
total=x 1 +x2+x3+x4; 
rO=1; rl=O; r2=O; r3=O; r4=O; r5=O; r6=O; r7=O; r8=O; r9=O; 
rlO=O; rll=O; rl2=O; rl3=O; r14=O; rl5=O; 
if ray=1 then rl=total; 
else if ray=2 then r2=total; 
else if ray=3 then r3=total; 
else if ray=4 then r4=total; 
else if ray=5 then r5=total; 
else if ray=6 then r6=total; 
else if ray=7 then r7=total; 
else if ray=8 then r8=total; 
else if ray=9 then r9=total; 
else if ray=lO then rlO=total; 
else if ray=l1 then rll=total; 
else if ray=12 then rI2=total; 
else if ray=13 then r13=total; 
else if ray=14 then rI4=total; 
else if ray=15 then rl5=total; 

keep rO rl r2 r3 r4 r5 r6 r7 r8 r9 rlO rll rl2 rl3 rl4 r15 r n total ray; 

proc logistic out=varcov data=raydat covout maxiter=100; 
model r/n=r1 r2 r3 r4 r5 r6 r7 r8 r9 rlO rl1 r12 rl3 rl4 r15; 
output out=pred p=phat; 

/* total dose matrix 

data x; 
set pred; 
drop r n phat total ray; 

data beta varcov; 
set varcov; 
if _n_ = 1 then output beta; 
else output varcov; 
drop _link __ type __ name __ lnlike_; 

*/ 

*/ 
*/ 
*/ 

*/ 
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1* calculate overall Wald test for nonadditivity 
1* calculate Wald Statistics to test for nonadditivity along each nonaxis ray. 

title3 Wald Statistics'; 

proc iml; 
start main; 

use beta; 
read all into temp; 
beta=T(temp); 
m=nrow(beta)-1 ; 

use design; 
read all into temp2; 
design=temp2[,2:ncol(temp2)]; 
n=ncol(design); 

use varcov; 
read all into varcov; 

c=j(m-n,m+l,O); 
c[,2:n+ 1]=( -1)#design[n+ 1 :m,]; 
c[,n+2:m+ 1]=I(m-n); 

restrict=c*beta; 
wald=t(restrict)*(inv(c*varcov*t(c)))*(restrict); 
df=m-n; 
pval= I-probchi( wald,df); 
print 'Overall Wald Test for Nonadditivity: ' wald' df: 'df' p-value: 'pval; 

start loop; 
do i=1 to m-n; 

ray=n+i; 
waldi=(restrict[i, 1] * *2)*(inv( c*varcov*t( c)) )[i,i]; 
pval= I-probchi(waldi, 1); 
betai=beta[n+ 1 +i,I]; 
betaai=betai -restrict[i, 1]; 
outtemp=rayllm-nl lbetail lbetaai I Iwaldillpval; 
outx=outxllouttemp; 

end; 
finish loop; 
run loop; 
c={ 'ray','num','beta' ,'betaa','wald','pval'}; 
create waldrays from outx[colname=c]; 
append from outx; 
fmishmain; 
run; 
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/* Use Hochberg multiple testing correction. 

proc sort data=waldrays; 
by descending pval; 

title4 Wald Test on Each Ray'; 
data waldrays; 

set waldrays; 
retainj 1; 
length intact $10.; 
cut=.OS/(num-j+ 1)*done; 
if beta>betaa then intact='Synergism'; 
else intact='Antagonism'; 
j=j+1; 

proc print; 
var ray beta betaa intact wald pval cut; 

/* Goodness-of-fit test described in Chapter 3 

title3 'Goodness-of-Fit'; 
proc imI; 

start main; 

use x; 
read all into x; 

G=nrow(x); 
/* pp 1 = number of parameters 

pp 1 =ncol(x); 

use pred; 
read all var {phat r n} into phat; 

use varcov; 
read all into iinv; 

V =x*iinv*T(x); 

t1=O; t2=O; t3=O; t4=O; 
chisq=O; 
start loop; 

do i=l to g; 
phati=phat[i,1]; yi=phat[i,2]; ni=phat[i,3]; 
chisq=chisq+(yi-ni*phati)**2/ 

(ni*phati*(1-phati»; 
t1=t1 +(1-6*phati*(1-phati»*V[i,i]; 
t3=t3+(ni-1)/ni; 
start loop2; 

doj=i to g; 
phatj=phat[j,1]; 
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*/ 

*/ 

*/ 



t2=t2+ ni*phati*(1-phati)*(1-2*phati)* 
v[i,i] *v[i,j] *( 1-2 *phatj); 

t4=t4+(1-2*phati)*(1-2*phatj)*v[i,j] ; 
end; 

fmish loop2; 
run loop2; 

end; 
ex=g-ppl-.5*tl +.5*t2; 
vx=(1-ppl/g)*(2*t3+t4); 
z=(chisq-ex)/sqrt(vx); 
pval=l-probnorm(z); 
df=g-ppl; 
pvalold=l-probchi(chisq,df); 

finish loop; 
run loop; 
fmishmain; 
run main; 
print 'Goodness-of-fit: McCullagh and NeIder, p.122'; 
print chisq df ex vx z pval; 
print 'Usual Pearson goodness-of-fit 'pvalold; 

1* individual goodness-of-fit statistics by observation 

data goodfit; 
set pred; 
chisqi=(r-n *phat)/sqrt(n*phat*( I-phat»; 
ifr=O then 

di=sqrt( -2*n*log(1-phat»; 
else if r=n then 

di=sqrt( -2*n*log(phat»; 
else do; 

pi=r/n; 
Ipi=log(pi/(1-pi»; 
Iphat=log(phatl(1-phat) ); 
di= sqrt( -r*lphat-n*log(1-phat) + r*lpi+n*log(1-pi»; 
if pi<phat then di=-sqrt(2)*di; 
else di=sqrt(2)*di; 

end; 
keep r n phat chisqi di; 

proc print; 
title3 'By Observation Goodness of Fit'; 
run; 

1* Overall Score test for nonadditivity 

title2 'Scores'; 

data rawadd; 
set save.data4; 
xO=I; 
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keep xO xl x2 x3 x4 r n; 
proc logistic out=varcov2 data=rawadd covout maxiter=l00; 

model r/n=xO x I x2 x3 x4/noint; 
output out=pred2 p=phata; 

datax2; 
set pred2; 
drop r n phata; 

data beta2; 
set varcov2; 
if _n_ =1; 
drop _Iink __ type __ name __ lnlike_; 

data varcov2; 
set varcov2; 
if _n_ >1; 
drop _link __ type __ name __ lnlike_; 

run; 

proc iml; 

start; 
use beta2; 
read all into betas; 

. bO=betas[l,l]; 

use pred2; 
read all var {r} into r; 
read all var {n} into ni; 
read all var {phata} into phat; 

use x; 
read all into x; 

1* t is the g x m matrix of total doses 
t=x[1 :nrow(x),2:ncol(x)]; 

g=nrow(t); 
m=ncol(t); 
n=ncol(betas )-1; 

temp=r-ni#phat; 
temp2=j(nrow(t),ncol(t),0); 
start loop; 
do i=l to ncol(t); 

temp2[,i]=temp; 
end; 
fmish loop; 
run loop; 

scores=j(m+ 1,1,0); 
scores[2:m+ 1,1]=T«t#temp2)[ +,]); 
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scores[1 ,1]=scores[ +,1]; 

temp=ni#phat#(1-phat); 
. temp2=j(nrow(t),ncol(t),0); 

start loop2; 
do i=1 to ncol(t); 

temp2[,i]=temp; 
end; 
fmish loop2; 
run loop2; 

ioj=(t#temp2)[ +,]; 
ijj=(t#t#temp2)[+,]; 

i=j(m+l,m+l,O); 
i[ 1, 1]=exp( -bO)/«1 +exp( -bO»**2); 
i[1 ,2:m+ 1]=ioj; 
i[2:m+ 1,1]=T(ioj); 
i[2:m+ 1,2:m+ 1]=diag(ijj); 

iinv=inv(i); 

s=T(scores)*Inv(i)*scores; 
df=m-n; 
pval=l-probchi(s,df); 
print 'Score Statistic's' df: ' df' pval: ' Pya!; 
finish; 
run; 
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