
Virginia Commonwealth University
VCU Scholars Compass

Theses and Dissertations Graduate School

1999

Examination of Signals Involved in Dexamethasone
Induced Apoptosis in Nb2 Lymphoma Cells
Suhas Badarinath
sbadarinath@gmail.com

Follow this and additional works at: http://scholarscompass.vcu.edu/etd

Part of the Physiology Commons

© The Author

This Thesis is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in Theses
and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact libcompass@vcu.edu.

Downloaded from
http://scholarscompass.vcu.edu/etd/4485

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by VCU Scholars Compass

https://core.ac.uk/display/51295543?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.vcu.edu/?utm_source=scholarscompass.vcu.edu%2Fetd%2F4485&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.vcu.edu/?utm_source=scholarscompass.vcu.edu%2Fetd%2F4485&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu?utm_source=scholarscompass.vcu.edu%2Fetd%2F4485&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F4485&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/gradschool?utm_source=scholarscompass.vcu.edu%2Fetd%2F4485&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F4485&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/69?utm_source=scholarscompass.vcu.edu%2Fetd%2F4485&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/etd/4485?utm_source=scholarscompass.vcu.edu%2Fetd%2F4485&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libcompass@vcu.edu


Virginia Commonwealth University 
School of Medicine 

This is to certify that the thesis prepared by Suhas Badarinath entitled "Examination of 
Signals Involved in Dexamethasone Induced Apoptosis in Nb2 Lymphoma Cells" has 
been approved by his committee as satisfactory completion of the thesis requirement for 

the degree of Master o,f Science. 
I 

Mohammed Kalimi, Ph.D., School of Medicine 

George D. Ford, Ph.D., Assistant Chair 

Hermes A. Kontos, M.D., Ph.D., Vice President for Health Sciences 
• 

and Dean, School of Medicine 

Jack L Haar, Ph.D., Dean, School of Graduate Studies 

Dare� c:ii'.Z /ffj' 



Examination of Signals Involved in Dexamethasone 

Induced Apoptosis in Nb2 Lymphoma Cells 

A thesis submitted in partial fulfillment of the requirements for the degree of Master of 

Science at Virginia Commonwealth University. 

by 

Suhas Badarinath 

B.A. Rutgers University 

New Brunswick, N.J. 1995 

Director: Raphael J. Witorsch, Ph.D. 

Professor 

Department of Physiology 

Virginia Commonwealth University 

Richmond, Virginia 

August, 1999 



11 

DEDICATION 

To my family 



iii 

ACKNOWLEDGEMENTS 

First and foremost, I would like to thank my advisor, Dr. Raphael J. Witorsch, for 

the opportunity to work in this laboratory. His constant encouragement and guidance 

along with his sense of humor have allowed me to strive to become a true scholar and a 

gentleman. I would also like to acknowledge my friends and colleagues, Angelo 

Guanzon, Devang Patel, and Rhodaline Rebano. Furthermore, I would like to thank the 

members of my thesis committee, Dr. Mohammed Kalimi and Dr. Jennifer Stewart for 

their efforts on my behalf. Finally, I would like to thank my family for their unyielding 

love and support. 



iv 

TABLE OF CONTENTS 

Page 

List of Tables ................................................................................................................ . . .. . . . . . vi 

List of Figures ................................................................................................................. . . . .  vii 

List of abbreviations ........................................................................................................ . . . . .  viii 

Abstract ............................................................................................................... . . . . . . . . . . . . . . .  .ix 

1. Chapter 1- Introduction ............................................................................................ . . . . . . . . . .  1 

2. Chapter 2- Materials and Methods ................................................................................ . .... 12 

2.1- Hormones, Anibodies, and Anitigens ............................................................ . . ... 12 

2.2- Maintenance of Nb2 Lymphoma Cells ....................................................... . . . . . . .  13 

2.3- Dexamethasone Cytolytic Assay and Dex-Prl Coincubation Assay ............ . . .... 14 

2.4- Cell Fixation ................................................................................................. . . .... 16 

2.5- Immunocytochemistry ......... . . ..................................................................... . . . . . .. 16 

2.6- Antibody Absorption .................................................................................... . . .... 18 

2.7- Photornicography .................................................................................. . ... . . . . .... 20 

2.8- Data Processing ...................................................................... . . . . ................ . . . . . .. 21 

3. Chapter 3- Results ...................................................................................................... . . . . . .  .23 

3.1 Effect of Dex and Prl on Cell Viability in 
Non-Synchronized Nb2 Lymphoma Cells . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..... 23 



v 

3.2 Effect of Dex on Viability of Synchronized Nb2 Lymphoma Cells . . . . . . . . .. . . .... 23 

3.3 Immunocytochemistry and Antibody Absorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 24 

3.4 Examination of Antibody Staining in Response to 
DMSO and Dex Treatments of Various Time Periods . . . . . . . . . . . . . . . . . . . . . . . . . . .  24 

4. Chapter 4- Discussion ................................................................................................. . . . . .. .43 

5. References ...................................................................................................... . . . . .. . . . . . . . . .. 52 

6. Vita ........................................................................................................................ . . . . . . . .... 60 



vi 

LIST OF TABLES 

Table Page 

1. Response of Synchronized Nb2 Lymohoma Cells to DMSO 
and DEX exposure after 0, 1, 2, 4, 6, and 8 Hour Time Periods ........................ 27 

2. Proportion of Cells Stained for Anti-Pas in ICC Experiments 

in NB2 Lymphoma Cells after DMSO and Dex Treatment of 

Various Time Periods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .28 

3. Proportion of Cells Stained for Anti-Pas Ligand in ICC 
Experiments in NB2 Lymphoma Cells after DMSO and Dex 
Treatment of Various Time Periods .... ..... . . .. . . . . . . . . . . .. . . . . . . . .. . . . . .. . . ..... . . . . ... . 29 

4. Proportion of Cells Stained for Anti-Bcl-2 in ICC Experiments 

in NB2 Lymphoma Cells after DMSO and Dex Treatment 

of Various Time Periods ...................................................................... 30 

5. Proportion of Cells Stained for Anti-Bax in ICC Experiments I 

in NB2 Lymphoma Cells after DMSO and Dex Treatment 

of Various Time Periods ..................................................................... .3 1 

6. Proportion of Cells Stained for Anti-p5 3 in ICC Experiments 
in NB2 Lymphoma Cells after DMSO and Dex Treatment 

of Various Time Periods . . . . . . . . . . . . . . . . . .. . .. ... . . . . ..... . . . . ... . . . . . ............. : ......... .32 



vii 

LIST OF FIGURES 

Figure Page 

1. Apoptotic Pathway Involving Fas, Fas Ligand, Bcl-2, 

Bax, and p53 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... 7 

2. Cell Viability of Non-Synchronized Nb2 Lymphoma Cells 

Following 24 Hour Dex ± Prl co-incubation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 26 

3. Photomicrographs ofFas Antibody Staining and Absorption . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3 3  

4. Photomicrographs of Pas-Ligand Antibody Staining and Absorption . . . . . . . . . . . . . . . . . .  35 

5. Photomicrographs ofBcl-2 Antibody Staining and Absorption . . . . . . . . . . . . . . . . . . . . . . . . . 37 

6. Photomicrographs of Bax Antibody Staining and Absorption . . . . . . . . . . . . . . . . . . . . . . . . . . .  . 39 

7. Photomicrograph ofp53 Antibody Staining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ..41 



Apaf-1 
ABC 
BSA 
oc 

DAB 
Dex 
ddH20 
DMSO 
DNA 
FADD 
FCS 
FM 

FMM 

GR 
GST 
H20 
H202 
HS 
ICC 
IGF1 
kDa 
M 

flg 
f.ll 
rnl 

mM 

ng 
nM 

PBS 
Prl 
RNA 
SEM 
SYN 
TIFF 
TNF 

TUNEL 

LIST OF ABBREVIATIONS 

Apoptosis Activating Factor-1 
A vidin/Biotinylated Peroxidase Complex 
Bovine Serum Albumin 
Degrees Celsius 
Diaminobenzidine 
Dexamethasone 
Double Distilled Water 
Dimethylsulfoxide 
Deoxyribonucleic Acid 
Pas-associating protein with death domain 
Fetal Calf Serum 
Fischer Medium 
Fischer's Maintenance Medium 
Glucocorticoid Receptor 
Glutathione-S-Transferase 
Water 
Hydrogen Peroxide 
Horse Serum 
Immunocytochemistry 
Insulin Like Growth Factor-1 
Kilodalton 
Molar 
Microgram 
Microliter 
Milliliter 
Millimolar 
Nanogram 
Nanomolar 
Phasphate Buffered Saline 
Prolactin 
Ribonucleic Acid 
Standard Error of the Mean 
Synthetic Medium 
Tagged Image File Format 
Tumor Necrosis Factor/ Nerve Growth Factor 
Tdt-Dependent dUTP-biotin Nick End Labeling 

Vlll 



ABSTRACT 

EXAMINATION OF SIGNALS INVOLVED IN DEXAMETHASONE INDUCED 

APOPTOSIS IN NB2 LYMPHOMA CELLS 

By Suhas Badarinath, B.A. 

A thesis submitted in partial fulfillment of the requirements for the degree of Master of 
Science at Virginia Commonwealth University. Virginia Commonwealth University, 

1999. 

Director: Raphael J. Witorsch, Ph.D. 
Professor 

Department of Physiology 

Consistent with previous studies, we demonstrated that dexamethasone (Dex) 

caused cytolysis/apoptosis in log phase Nb2 lymphoma cells, while prolactin (Prl) 

inhibited this effect. The Nb2 model was used to investigate the mechanisms of 

apoptosis control with the aid of immunocytochemistry (ICC). We established with 

absorption the specificity of staining due to Fas, Fas Ligand, Bcl-2, and Bax antibodies 

(the specificity of anti-p53 could not be verified). Dex-induced cytolysis/apoptosis was 

detected in synchronized (GofG1) cells after 6 and 8 hours of Dex exposure. A novel, 

computerized technique was used to quantitate the proportion of cells immunostained for 

the signals of interest in Nb2 cells in log phase and GofG, after up to 8 hours of Dex 

exposure. We observed Fas, Fas Ligand, Bcl-2, Bax, and p53 in high proportions (72%-

86%) of log phase Nb2 cells. Neither synchrony in GofG 1 nor exposure of synchronized 



cells to Dex for up to 8 hours altered the proportion of immunostained cells. This study 

has raised provocative issues regarding the resistance of Nb2 cells to Fas mediated 

apoptosis, the phenotype of the p53 protein in Nb2 cells, and the possible interaction of 

various signals that modulate apoptosis. 

X 



Chapter 1 

Introduction 

Cells mainly die by the processes of apoptosis and necrosis (Kiess and Gallaher, 

1998; Ameisen, 1996; Barinaga, 1996; Lavin and Watters, 1993; Mihich and Schimke, 

1994; Milas et al., 1994; Sen, 1992; Steller, 1995; Thomson, 1995; Tomei and Cope, 

1994). The word apoptosis was used by Wylie in 1980 to describe a stereotyped mode of 

cell death (Gottlieb and Babior, 1997; Wyllie et al., 1980). Currently, 'apoptosis' 

encompasses a distinct set of morphological and biochemical events that characterize a 

specific type of cell death (MacFarlane et al., 1996; Kerr et al., 1972; Wyllie et al., 1984; 

Arends et al., 1990). 

Early morphological changes associated with apoptosis involve compaction of 

chromatin and its movement in segregated masses. The cytoplasm condenses as the cell 

surface and nuclear outline become convoluted (Kiess and Gallaher, 1998; Ameisen, 

1996; Lavin and Watters, 1993; Mihich and Schimke, 1994; Sen, 1992). Next, the 

nucleus fragments while protrusions, or blebs, form on the cell surface. These surface 

convolutions separate from the cell, become enveloped by membrane, and are released 

into the extracellular fluid. The membrane bound vesicles, named apoptotic bodies, 

contain fragmented DNA and intact cytoplasmic organelles. An increase in cell surface 
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phosphatidyl serine and integrin signals digestion of apoptotic bodies by mononuclear 

phagocytes. Ultimately, apoptosis kills the cell while keeping its contents separate from 

adjacent tissues (Gottlieb and Babior, 1997). Many structural changes related to 

apoptosis may be visualized. Nuclear DNA is fragmented into 200 base pair segments 

and appears as a ladder pattern when subjected to gel electrophoresis (Gottlieb and 

Babior, 1997). Although this nucleosomal pattern is common, apoptosis can occur 

devoid of DNA laddering (Gottlieb and Babior, 1997; Schulze-Osthoff et al., 1994). 

Apoptotic bodies may be viewed by light microscopy (Kiess and Gallaher, 1998; Sen, 

1992; Tomei and Cope, 1994), whereas other morphological changes such as the 

condensation of chromatin and the compaction of cytoplasm require electron microscopy 

(Gavrieli et al., 1992). 

Biochemical and molecular changes accompany the morphological changes 

involved in apoptosis. A change inCa 2+ concentration may be necessary for nuclease 

cleavage of DNA (Kiess and Gallaher, 1998; Nicotera and Rossi, 1994). Indeed, a Ca 2+ 

- Mg 2+ sensitive endonuclease was found to cleave double stranded DNA between 

nucleosomes (Kiess and Gallaher, 1998; Galli et al., 1995). The transcription and 

translation of certain genes into proteins is an additional molecular event involved in 

apoptosis (Kiess and Gallaher, 1998; Thompson, 1995; Tomei and Cope, 1994). Certain 

proteins have been shown to modulate elements of the apoptotic pathway in their 

regulation, catalysis, and degradation (Kiess and Gallaher, 1998). In fact, inhibition of 

protein synthesis was seen to halt or delay apoptosis (Kiess and Gallaher, 1998). 

The killing of specific cells by apoptosis is central to many biological processes 



since it allows for cell renewal and histological regulation (Kiess and Gallaher, 1998). 

Embryogenesis, for instance, relies upon targeted cell death for proper development. In 

mammals, apoptosis is crucial for the development of gut mucosa and retina, and for the 

regression of interdigital webs (Kiess and Gallaher, 1998; Haanen and Vermes, 1996). In 

immune tolerance development, B and T lymphocytes recogillzing self-antigen are 

eliminated by apoptosis (Gottlieb and Babior, 1997; Pircher et al., 1992). During aging, 

lowered hormone levels lead to an atrophy of hormone sensitive tissue that is mediated 

by apoptosis (Gottlieb and Babior, 1997; Kiplesund et al, 1988). Cells containing DNA 

damage or viral infection are induced to die by apoptosis, the latter of which may be 

caused by interaction with cytotoxic T lymphocytes (Kiess and Gallaher, 1998; Le Deist 

et al., 1996; Migliorati et al., 1994 ). Finally, autoimmune diabetes and thyroid disease 

may be caused by the improper induction of pancreatic and thyroid cells into apoptosis 

(Kiess and Gallaher, Lavin and Watters, 1993; Mihich and Schimke, 1994; Tomei and 

Cope, 1994). 

Regulation of apoptosis may be environmental or developmental (Desai and 

Gruber, 1999). Environmental agents that elicit apoptosis invariably cause nonspecific 

cellular damage. Examples of such stimuli include chemotherapeutic agents (Gottlieb 

and Babior, 1997; D'Amico and McKenna, 1994), ultraviolet radiation (Gottlieb and 

Babior, 1997; Gillardon et al., 1994), oxidizing agents (Gottlieb and Babior, 1997; 

McConkey et al., 1988), and reperfusion injury (Gottlieb and Babior, 1997, 1994). 

Developmental regulation of cell death involves genes whose protein products govern 

apoptosis and do not elicit an immune reaction. Once transcribed, these proteins may 

3 
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promote cell survival or cause cell death (Desai and Gruber, 1999). 

Cell death may also occur by necrosis. As mentioned earlier, the morphological 

characteristics of apoptosis include cell shrinkage, maintenance of intact organelles, and 

nuclear fragmentation (Thomson, 1998). Necrosis, however, entails the dilation of cells, 

destruction of most organelles, perforation of the plasma membrane, and relatively minor 

nuclear morphological changes (Thomson, 1998; Wyllie, 1981). Necrosis also occurs in 

groups of cells and produces inflammation (Levin, 1998). Whereas apoptosis is affected 

by environmental and physiological elements (Gottlieb and Babior, 1997), necrosis is 

provoked by a variety of non-physiological conditions, such as hypothermia, hypoxia, 

toxins, autolysis, and the inhibition of glycolysis and the tricarboxylic acid cycle (Wyllie, 

1981). 

There are instances where the morphological events of cell death fail to fit into 

the dichotomy of apoptosis and necrosis. Recently, it was suggested that 'oncosis' or 

cytoplasmic swelling and karyolysis, be instituted to characterize cell death. In this 

model, necrosis embodies all cell death and may be 'oncotic necrosis' if cells swell, or 

'apoptotic necrosis' if cells shrink (Levin, 1998; Majno and Joris, 1996). 

The purpose of this study is to examine specific regulatory elements associated 

with apoptosis in the Nb2 cell line by employing a morphological approach that 

implements immunocytochemistry. The Nb2 cell line was shown to be sensitive to both 

pro and anti-apoptotic hormonal signals (Fletcher-Chiappini et al., 1993; Witorsch et al., 

1993; LaVoie and Witorsch, 1995). This property allowed us to study the modulation of 

apoptosis. 
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The Nb2 cell line was obtained from lymphomas generated in estrogen treated 

male Nb rats. The cells were derived from thymocytes at an immature stage of 

development (Fleming et al., 1982). Thus, they share characteristics with the normal rat 

thymus, such as a large nucleus and nucleolus, sparse endoplasmic reticulum and Golgi 

bodies, and a higher volume of log phase cells than stationary cells (Fleming et al., 1982; 

Hwang et al., 1974). Nb2 cells appeared to be double positive (CD4/CD8), since they 

possessed early antigenic determinants of helper T cells and non-helper T cells. (Fleming 

et al., 1982). In T cell maturation, immature thymocytes express both markers, while 

differentiated thymic cells contain either marker. Accordingly, the double positive Nb2 

cells were likely frozen in an early stage of development. 

Nb2 cells are dependent on a lactogenic hormone, such as prolactin, for 

mitogenesis (Noble et al., 1985). Incubation in a lactogen free medium for 24 hours 

synchronizes approximately 90% of cells in GofG, (Lavoie and Witorsch, 1995). 

Administering Prl to synchronized cells restores log phase growth (Krumenacker et al., 

1998; Richards et al., 1982). Nb2 cells were also observed to be sensitive to 

glucocorticoids such as Dex. In the absence of mitogen, Dex caused apoptosis of log 

phase Nb2 cells after 12-24 hours of exposure. In the presence of Prl, Dex was 

antiproliferative although apoptosis did not occur (Fletcher-Chiappini et al., 1993). 

Further studies indicated that Prl inhibited Dex-induced apoptosis in a specific dose 

dependent manner (Fletcher-Chiappini et al., 1993). 

The phenomenon of Dex-induced apoptosis in Nb2 cells and its inhibition by Prl 

provides a model for studying the signaling involved in the regulation of programmed 
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cell death. In 1995, Lavoie and Witorsch detected DNA fragmentation in synchronized 

Nb2 cells after 4 hours of Dex treatment. Recently, the Tdt-dependent dNTP-biotin Nick 

End Labeling (TUNEL) assay was implemented in our laboratory as a morphological, 

rather than a biochemical means to detect DNA fragmentation. Guanzon (1998) detected 

apoptosis after 6 or 8 hours of Dex treatment in synchronized Nb2 cells using the 

TUNEL assay. We intended to identify the signals involved inDex mediated apoptosis 

of synchronized Nb2 cells by examining any changes in the levels or distribution of pro 

and anti-apoptotic proteins in Dex treated cells at time points within this 8 hour time 

interval. The fluctuation in the level of a protein prior to apoptosis would suggest that 

the signal may be involved in mediating cell death. Our experimental design consisted of 

an immunocytochemical examination of specific signals (Fas, Fas Ligand, Bcl-2, Bax, 

and p53) in synchronized Nb2 cells that had been exposed to Dex for a duration ofO, 1, 

2, 4, 6, and 8 hours. 

The cascade of events leading to apoptosis is highly conserved and involves all of 

the signaling proteins under consideration (Figure 1). In mammals, a pivotal event in the 

apoptotic cascade is the release of cytochrome c from the mitochondria. Cytochrome c 

activates apoptosis activating factor-1 (Apaf-1), which subsequently activates and 

recruits caspase-9 (Adams and Cory, 1998). In general terms, caspases are specific 

proteases that either regulate the activity of other caspases or proteins, or directly cause 

apoptosis by cleavage of specific proteins (ie. structural and regulatory proteins). 

Caspase-9 and Caspase-8 are thought to be involved in the regulation of other caspases 

that cause cell death (Thornberry and Lazebnik, 1998). Bcl-2 and Bax effect apoptosis 



by regulating the release of cytochrome c and the activation of Apaf-1 and caspase-9. 

Occupation of the Fas receptor causes apoptosis mainly through its interaction with Fas-

associating protein with death domain (FADD) and with caspase-8 (which appears to be 

independent of the caspase-9 pathway). Lastly, p53 may cause apoptosis by stimulating 

Bax or Fas, and by repressing Bcl-2. Elements of the apoptotic cascade integrate 

opposing pro-apoptotic and anti-apoptotic signals to determine if cell death is required 

(Adams and Cory, 1998). 

p53 

l- + 

BCL-2 <==BAX <== 

l-

CYTOCHROME C 

RELEASE 

l+ 

APAF-1 

l+ 
CASPASE-9 

l+ 
APOPTOSIS 

+ 

<----

p53 FAS 

l+ l+ 

BAX FADD 

l+ 

CASPASE-8 

l+ 
APOPTOSIS 

Figure 1. Apoptotic Pathway Involving Fas, Fas Ligand, Bcl-2, Bax, and p53. 
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Fas and Fas Ligand are involved in the regulation of apoptosis in many cell types. 

Fas, or AP0-1, is a member of the tumor necrosis factor/nerve growth factor receptor 

family (Laytragoon-Lewin, 1998; Ohm et a!., 1992), and is found in the liver, kidney, 

heart, thymocytes, and B lymphocytes. The binding of the Fas receptor to Fas Ligand 

activates Fas, which induces cell death. The Fas protein is comprised of several 

specialized regions including extracellular, intracellular, transmembrane, and 'death' 

domains. The death domain consists of a conserved sequence of amino acids that plays a 

key role in evoking cell death. The initial event in Pas-mediated apoptosis is the 

association between Fas and Fas Ligand. This interaction causes the death domain of Fas 

to self-interact as a result of 'clustering', which enables Fas to activate FADD (Boldin et 

a!., 1995). Subsequently, FADD activates caspase-8, which induces apoptosis (Adams 

and Cory, 1998; Gottlieb and Babior, 1997; Chappell and Restifo, 1998). 

Fas Ligand is a 45kDa glycoprotein, and a member of the TNF family (Gottlieb 

and Babior, 1997). This protein is mainly expressed on activated T cells, natural killer 

cells, Sertoli cells of the testes, and in the eye (Chappell and Restifo, 1998; French et a!., 

1996; Griffith et a!., 1995). In certain instances, mettaloproteases cleave Fas Ligand into 

a 26 kDa soluble form of the protein (Chappell and Restifo, 1998; Kayagaki et a!., 1995; 

Gottlieb and Babior, 1997). 

The binding of Fas Ligand to Fas stimulates apoptosis in various cell types. In 

tolerance development ofT cells, the adherence of an immature T cell receptor with self­

antigen results in increased synthesis of both Fas and Fas ligand, inducing cell death 

(Ogasawara et a!., 1995; Gottlieb and Babior, 1997). Indeed, when either Fas or Fas 
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Ligand is inactivated by mutation in mice, immature T cells are retained and autoimmune 

diseases may develop (Ogasawara et al., 1995). In addition, natural killer cells and 

cytotoxic T lymphocytes display the Fas Ligand and kill virally infected cells expressing 

Fas. Ironically, it is this upregulation of Fas by HIV infected CD4 cells that causes many 

lymphocytes to die, hastening the progression of AIDS (Gottlieb and Babior, 1997; 

Katsikis et al., 1995). Fas and Fas Ligand also evoke apoptosis as downstream effectors 

of other signals like c-Myc and p53 (Chappell and Restifo, 1998; French et al., 1996; 

Green, 1997; Hueber et al., 1997). For instance, cytotoxic drugs and irradiation activate 

p53, which in tum stimulates Fas mediated apoptosis (Chappell and Restifo, 1998; 

Friesen et al., 1996; Reap et al., 1997; Muller et al., 1997). 

Bcl-2 and Bax, homologous members of the Bcl-2 family, also play an interactive 

role in mediating apoptosis. The Bcl-2 family is comprised of several proteins that 

function either as inducers, or as inhibitors of apoptosis (Gottlieb and Babior, 1997). The 

function of each member is dependent upon the conserved amino acid sequence, or 

domain, that they possess (Adams and Cory, 1998). Of the pro-apoptotic Bcl-2 family 

members, the presence of the Bcl-2 homology domain 3 is crucial for evoking cell death 

(Adams and Cory, 1998; Conradt et al., 1998; Chittenden et al., 1995). Anti-apoptotic 

proteins of the Bcl-2 family require the Bcl-2 homology domain 1 and the Bcl-2 

homology domain 2 (Adams and Cory, 1998). The Bcl-2 protein proper is a 26 kDa 

protein associated with mitochondrial membrane, nuclear membrane, and endoplasmic 

reticulum (Gottlieb, et al., 1997). Bcl-2 protects against apoptosis, chiefly in lymphoid 

derived cells (Gottlieb and Babior, 1997). For example, an overexpression of Bcl-2 in 



transgenic mice resulted in increased lymphoid follicles (Gottlieb and Babior, 1997; 

Sentman et al., 1991). 
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Bax is a 21 kDa protein that causes apoptosis (Gottlieb and Babior, 1997). The 

Bax protein is widely distributed throughout the body and exists in higher concentrations 

in cells with rapid turnover rates such as the colonic epithelium (Gottlieb and Babior, 

1997). Upon self-dimerization, Bax induces apoptosis (Gottlieb and Babior, 1997) by 

releasing cytochrome c from the mitochondria (Chappell and Restifo, 1998). Bcl-2, 

however, separates the Bax homodimer and forms a Bcl-2:Bax dimer (Gottlieb and 

Babior, 1997). The Bcl-2 protein is thought to prevent apoptosis by inhibiting caspases 

by means of blocking cytochrome c release or binding to Apaf-1 (Lincz, 1998). The 

relative concentrations of Bax and Bcl-2 determine whether apoptosis is suppressed by 

Bcl-2 or promoted by the Bax homodimer. 

In response to DNA damage, a cell may arrest growth, evoke cell death, or repair 

altered DNA (Evan and Littlewood, 1998). If a cell sustains significant DNA damage, it 

is often prudent to terminate the cell rather than risk its potential for neoplastic growth. 

The p53 protein is responsible for causing apoptosis or growth arrest in cells containing 

DNA damage. Cells with altered p53 genes have a diminished capacity to curtail cell 

growth, and they often proliferate uncontrollably as a neoplastic growth (Jensen et al., 

1997). Hence, the loss of p53 function is associated with a large number of cancers 

(Evan and Littlewood, 1998). 

In order for p53 to regulate cell proliferation, it must first be separated from its 

associated repressor protein, Mdm2. This separation is achieved through the 



phosphorylation of p53 or Mdm-2 by a group of protein kinases (Evan and Littlewood, 

1998). Once separated from Mdrn2, p53 is active and capable of inducing apoptosis or 

growth arrest (Evan and Littlewood, 1998). Depending on the environment, cell type, 

and other signals, either growth arrest or apoptosis is favored (Evan and Littlewood, 

1998). Oftentimes, as in the case of glucocorticoid mediated apoptosis, arrest in the G1 

phase of the cell cycle precedes apoptosis (King and Cidlowski, 1998). 

11 

It is thought that p53 causes apoptosis by repressing the anti-apoptotic protein 

Bcl-2, stimulating pro-apoptotic signals such as Bax and Fas (King and Cidlowski, 1998; 

Miyashita et al., 1994; Owen-Schaub et al., 1995), or by interacting with IGF1 (Evan and 

Littlewood, 1998; Thornberry and Lazebnik, 1998) Alternatively, the process of growth 

arrest involves p53-induced transcription of the cyclin dependent kinase inhibitor p21, 

which arrests cells in the G1 phase (King and Cidlowski, 1998; Dulic et al., 1994; El­

Deiry et al., 1993). 

In summary, the primary objective of this study has been to elucidate the roles of 

specific signaling proteins (Fas, Fas Ligand, Bcl-2, Bax, and p53) in apoptosis using a 

morphophysiological approach. Initially, we attempted to establish the existence and 

specificity of these cellular signals by immunostaining and immunoabsorption. Then, we 

attempted to quantitate these signals over an 8 hour period following Dex exposure. In 

doing so, we hoped to appraise the feasibility of a morphologically based approach for 

examining the physiological control of apoptosis. 



Chapter 2 

Materials And Methods 

2.1 Hormones, Antibodies, and Antigens 

Dexamethasone ( 1,4 pregnadiene-9fluor-16a-methyl-l l �, 17a,21-triol-3,20-dione) 

was acquired from Sigma Chemical Co., St. Louis, MO. The Antibodies for Fas, Fas 

ligand, Bcl-2, Bax, and p53 were obtained from Santa Cruz Biotechnology Inc., Santa 

Cruz, CA. Glutathione agarose, the p53 fusion protein, and antigens corresponding to the 

antibodies for Fas, Fas ligand, Bcl-2, Bax, and p53 were also acquired from Santa Cruz 

Biotechnology Incorporated. Ovine prolactin (oPrl s-15) was donated by the National 

Hormone and Pituitary Program. 

Primary antibodies to Fas, Fas ligand, Bcl-2, Bax, and p53 (N-19) were affinity­

purified polyclonal antibodies raised against a specific region of a protein. Anti-p53 (FL-

393), however, was raised against the entire p53 antigen. According to specifications 

provided by the supplier, the antibodies to Fas Ligand, Bcl-2, Bax, and p53 (FL-393) 

reacted to antigens of rat, mouse, and human origin, whereas anti-Fas reacted to antigens 

of mouse and rat origin, and anti-p53 (N-19) reacted to p53 of human origin. Antibodies 

for the above proteins were diluted in PBS-.1 %BSA to concentrations that exhibited 

optimal staining and absorption. In particular, anti-Fas, anti-Fas ligand, and anti-p53 

12 
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were diluted to 2!J.g/ml, while anti-bax and anti-bcl-2 were diluted to l !J.g/ml. Anti-Fas 

(M-20) is directed against a peptide corresponding to amino acids 308-327 of the carboxy 

terminus of the Fas precursor of mouse origin. Anti-Fas ligand (N-20) was raised against 

a peptide coinciding with amino acids 2-19 at the amino terminus of Fas ligand of rat 

origin. Anti-p53 (FL-393) is directed against a fusion protein corresponding to amino 

acids 1-393 of p53 protein of human origin (the precise location of the immunoreactive 

site is not specified). Anti-p53 (N-19) was raised against a protein coinciding with amino 

acids 2-20 of the amino terminus of p53 protein of human origin. Anti-Bcl-2 (N-19) is 

directed against a peptide corresponding to amino acids 4-21 at the amino terminus of 

Bcl-2 of human origin. Finally, anti Bax (1-19) binds to a protein coinciding with amino 

acids 80-98 at the carboxy terminus of Bax of human origin. (Santa Cruz Biotechnology 

Inc., 1997) 

2.2 Maintenance of Nb2 Lymphoma Cells 

The cultured, prolactin dependent Nb2 cells were obtained from Dr. Robert Adler 

of the McGuire Veteran's Hospital. Dr. Peter Gout of the Department of Cancer 
-

Endocrinology of the British Columbia Cancer Agency was the initial supplier of the 

cells (Nb2 clone U-17). The Nb2 cells were resurrected from storage at -70°C and 

sustained in Fischer's Maintenance Media (FMM), consisting of Fischer's Media 

supplemented with 50 units/ml Penicillin, 50!J.g/ml Streptomycin, .075% NaHC03, 10% 

Horse Serum, 10% Fetal Calf Serum, and O.lmM P-Mercaptoethanol. Culture flasks 
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used in splitting and reculturing cells were Falcon brand 50 rnl. polystyrene flasks with 

0.2um vented blue plug seal caps. �-mercaptoethanol was obtained from the Sigma 

Chemical Company, while the remaining reagents were purchased from Gibco Life 

Technologies, Grand Island, NY. Cultures were incubated in a water-saturated 

atmosphere of 5% COz and 95% room air at 37° C. The cell count was determined by 

Trypan Blue exclusion using a hemacytometer, and cells were recultured twice a week at 

a concentration of 0.5 x 105 - 1.0 x 105 cells/rnl. Nb2 cells were periodically frozen (in 

FMM + 0.8% DMSO) when the cell viability was at least 90% and the concentration of 

cells reached 1.0 x 10 6 cells/mi. 

2.3 Dexamethasone Cytolytic Assay and Dex-Prl Coincubation Assay 

Assays were conducted to determine the cytolytic response of Nb2 cells to Dex 

treatment after 24 hours (chronic) and at discrete time points (acute). Furthermore, the 

effects of Prl on Nb2 Cells was examined by the Dex-Prl coincubation assay. 

For the acute Dex cytolytic assay, cells were first synchronized in Go/GJ. Cell 

synchronization was achieved in the following manner: when cells reached a 

concentration of approximately 0.5-0.75 x 106 cells/rnl in FMM, they were centrifuged 

twice at 1000 rpm for 5 minutes at 8-10°C and washed twice in chemically defined, 

serum-free synthetic medium (SYN), consisting of .1 mM �-mercaptoethanol, 50 units/rnl 

Penicillin, 50 Jlg/rnl Streptomycin 0.15% (wtlvol), Bovine serum albumin, 4Jlg/ml 

Linoleic acid, 1mM Sodium pyruvate, 12 Jlg/rnl Transferrin, 15ng/rnl Selenium, 1x 
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vitamins (diluted from a commercial stock of 100x), 0.33x amino acids (diluted from a 

commercial stock of 100x), 0.5mM CaCh, and 0.15mM Hepes (dissolved in Fischer's 

medium). The cell concentration was then adjusted to 500,000 cells/rnl in SYN, and cells 

were incubated at 37°C for 24 hours. After this 24 hour incubation in SYN, 

approximately 90% of cells enter into Go/G1 (Lavoie and Witorsch, 1995). Synchronized 

cells were washed twice in Fischer's Medium and cells were counted with a 

hemacytometer. From the washed cells, cell concentration was adjusted to 2.0 x 106 

cells/rnl in SYN and plated at 3ml/well in Costar brand 6-well plates. Then, 1.25 �l/ml of 

DMSO and 80nM Dex in DMSO were added to the cell suspensions. Cells were 

incubated with Dex or vehicle for 0, 1, 2, 4, 6, and 8 hours. Following each time point, 

cells were harvested and percent viability per well was determined with a hemacytometer 

by counting living and dead cells (those cells that do not exclude Trypan Blue) in 

triplicate. Previous studies have indicated that three counts are required to achieve 

reliable cell quantitation (Fletcher-Chiappini et al., 1993). After each time point, cells 

were also fixed to slides for immunocytochemical studies. 

In the chronic cytolytic assay, cells were tested for their responsiveness to 

Dex±Prl following a 24 hour incubation period using a 4 well design. Log phase-cells in 

FMM were centrifuged twice at 1000 rpm for 5 minutes at 8-10° C and washed twice in 

SYN. The cells were then reconstituted in SYN and counted by Trypan Blue exclusion 

using a hemacytometer. The concentration of cells was then adjusted to approximately 

0.5 x 106 cells/rnl (at a volume of 1.5rnl in SYN) containing one of the following 4 

treatments: Control (0.125% DMSO), Dex (100nM Dex in 0.125% DMSO), Dex + Prl 
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( l OOnM Dex in 0.125% DMSO, 1ng/ml oPrl S-15), and Prl (1ng/ml oPrl S-15, 0.125% 

DMSO). All incubations occurred at 37° C in a 5% C02 incubator for 24 hours, at which 

time percent viability per well was determined by Trypan Blue exclusion as described 

above. 

2.4 Cell Fixation 

Cell fixation methods remained constant for synchronized, log phase, treated, and 

untreated cells. A total of 3 x106 cells were obtained from a cell suspension by 

determining the cell concentration and acquiring the necessary volume. These cells were 

centrifuged at 1000 rpm for 5 minutes in an Eppendorf microcentrifuge at room 

temperature. Following aspiration of supernatant, the cells were resuspended in 3.7% 

formaldehyde in .01M PBS (pH 7.1) for ten minutes at room temperature. The stock 

formaldehyde (37%) was diluted in .01M PBS to a concentration of 3.7%, and was 

allowed to reach room temperature prior to cell fixation. After fixation, cells were 

recentrifuged at 1000 rpm for 5 minutes, the supernatant was aspirated, and the remaining 

pellet was resuspended in 750 Jll .O l M  PBS (pH 7.0). Approximately 12 Jll of fixed cells 

were added to an etched circle (5mm in diameter) on Fischer Super-Frost Plus slides, and 

allowed to dry at room temperature. 

2.5 Immunocytochemistry (ICC) 
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ICC was used to localize antigens within cells with primary antibodies directed 

against signaling proteins. In this process, samples on slides were first hydrated in .OlM 

PBS for 5 minutes. Fixed cells were hydrated directly by immersion of the slide in PBS. 

Paraffin sections, however, were deparaffinized by immersion in xylene, a series of 

alcohols (100% Ethanol, 95% Ethanol, 70%Ethanol, 50%Ethanol), and finally ddH20. 

Once deparaffinized, the section was hydrated as above. Pituitary sections embedded in 

paraffin were used as positive controls in ICC experiments. The antibody added to 

control sections was rabbit anti-canine Prl at concentrations of 1:1600, 1:3200, 1:6400, 

and 1:12,800. 

Following hydration of samples, specific reagents were added sequentially as 

drops, and then incubated in an airtight, humidified chamber at room temperature for 

specified time periods. In between the addition of each reagent, slides were flooded with 

10rnl of 0.01M PBS. The first reagent added was 0.2% Triton+ PBS for 30 minutes, 

which permeabilized the section. Blocking solution was then added for 20 minutes. 

Subsequently, primary antibody was added and allowed to incubate for 3 hours (as 

mentioned earlier, dilutions of antibodies ranged from 1-2 �-tg/ml, and were based on the 

staining observed in pilot experiments). Then, biotinylated secondary antibody (i2.5% 

solution) was added for 30 minutes. Next, ABC solution (20%) was added to the sample 

for 30 minutes. The slides were then inserted into a cop lin jar filled with Aldrich brand 

Diaminobenzidine (DAB) in solution (12.5 mg DAB/50rnl of .05M tris HCl at pH 7.6) 

plus 50�-tl of pharmaceutical grade 3% H202 for a duration of 10 minutes. Following this 

incubation, the slides were immersed in tap water and dehydrated by insertion into 
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ddHzO, a series of alcohols (50% ethanol, 70% ethanol, 95% ethanol, 100% ethanol), and 

lastly, xylene. Finally, coverslips were applied to slides using Pro-Tex mounting 

medium. 

The Vectastain Universal Elite ABC kit was utilized to localize antibody bound to 

antigen (this kit recognized antibodies generated in rabbits and mice). In this procedure, 

the chromagenic substrate (DAB) binds to an avidin/biotinylated peroxidase complex 

(ABC), which itself is attached to a biotinylated antibody:primary antibody:protein 

complex. (Vector Laboratories, Inc., 1996). Vectastain solutions (blocking serum, 

biotinylated antibody, and ABC) were prepared as recommended in the kit instructions. 

2.6 Antibody Absorption 

The specificity of antibody-induced staining in cells was examined through 

immunoabsorption. This involved creating mixtures of antibody with the antigen that 

was used for its generation. In most cases, the antigen used for absorption was a peptide 

of about 20 amino acids corresponding either to the N-terrninus or C-terrninus of the 

molecule. The rationale for immunoabsorption is that if the antigen binds to the 

immunoreactive site on the antibody, or epitope, it would prevent binding of the antibody 

to the antigen within the fixed specimen, hence precluding staining. In the 

immunoabsorption of Fas, Fas ligand, Bcl-2, and Bax, antibodies were incubated with 

their respective antigens at a ratio of 10:1 (peptide to antibody), which was the ratio 

recommended by the supplier, for 24 hours at 4° C. To achieve a 10:1 ratio of peptide to 
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antibody, a volume of 10 f.tl of peptide (200 flg/ml) was added to 100 fll of working stock 

antibody (2 flg/ml). The control consisted of 10 fll of PBS -.02% BSA added to 100 fll 

working stock antibody (2 flg/ml) incubated as above. Absorbed and control solutions 

were applied to slides of fixed log phase cells. The absence of staining after exposure to 

the antibody/peptide solution signified absorption of that antibody by peptide, and hence 

verified specificity of imrnunostaining (Witorsch, 1980). As presented in the results, we 

were able to conclusively demonstrate imrnunoabsorption for anti-Fas, anti-Fas Ligand, 

anti-Bcl-2, and anti-Bax. 

While the absorption of anti-Fas, anti-Fas Ligand, anti-Bcl2, and anti-Bax were 

straightforward, establishing the specificity of p53 imrnunostaining was more complex. 

To our knowledge, a rabbit antibody directed against the N or C terminus of p53 was not 

available with its corresponding antigen. However, goat antibody directed against the N 

terminus (amino acids 2-20) or the C terminus (373-391) of p53 was available with its 

respective peptide from Santa Cruz Biotechnology. Unfortunately, we were unable to 

obtain successful imrnunostaining using an antibody generated in a goat (N-19) while 

employing a Santa Cruz ABC kit capable of detecting goat antibodies (the Vector 

Universal ABC kit detects rabbit and mouse antibodies). A rabbit antibody directed 

against the entire human p53 molecule (FL-393) was available from Santa Cruz, which 

yielded excellent staining (intense staining with low background) using the Vector 

Universal ABC kit. The mixture of this antibody with peptides directed against the C 

terminus (amino acids 2-20) and N terminus (amino acids 373-391) together failed to 

diminish staining of anti p53 (FL-393). Other attempts at absorption involved using a 
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glutathione-S-transferase (GST) fusion protein containing the entire human p53 molecule 

(amino acids 1-393) as the absorption agent. This protein, which was the original antigen 

used to generate FL-393, consisted of p53 (53kDa) and GST (27 kDa). When the weight 

of the GST is factored into the calculation, the ratio of antigen to antibody is 15:1 in 

order to obtain the appropriate ratio of antigen to antibody of 10:1. The mixture of anti-

p53 (FL-393) with the fusion protein (I-393) failed to establish immunospecificity of p53 

immunostaining, even when the N-terrninus (N-19) and C-terrninus (R-19) were also 

added. Finally, attempts at removing the anti-p53/p53 GST complex from solution by the 

addition of glutathione agarose (Santa Cruz) followed by centrifugation also failed to 

satisfactorily establish immunospecificity. 

2.7 Photomicography 

Photomicography of cells of ICC experiments was achieved by using a Nikon 

Optiphot photomicography system and Kodak Ektachrome ISO 100 slide film. To attain 

an accurate representation of cells stained, four fields of cells in each etched circle were 

photagraphed at approximately 2, 4, 8, and 10 o'clock relative to the circle. Objective 

magnification was at either 20X or 40X for best visualization of immunostaining. Less 

intensely stained cells and sparse cell fields called for the higher magnification. 

Photographs were taken toward the center of the circle since central cells demonstrated 

more representative staining than peripheral cells, and were less subject to high 

background staining, or 'edge artifact'. Fields containing significant cell clumping, 

debris, or other artifacts were avoided. 
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2.8 Data Processing 

Photomicography as described above yielded approximately 100 cells per field. 

Processing of these cell fields was accomplished by slide scanning, cell quantitation, and 

statistical analysis. The developed Ektachrome slides were first scanned into TIFF files 

by one of three methods: Sprint Scan, Nikon SF-200, or Artec Scanrom 4E. Cell 

quantitation was primarily achieved by use of Scion Image software (Scion Corp, 

Frederick, Maryland), which was downloaded from the Internet at www.scioncorp.com. 

This software allowed for computerized counting of total cells and stained cells in digital 

images. Each scanned image was opened in greyscale and the total number of cells was 

determined by altering the threshold value of the image so that only the boundaries of 

cells were visible. By choosing the "Analyze Particles" function, cellular outlines were 

counted. To determine the number of stained cells, the threshold of each image was 

lowered to the point where cellular outlines disappeared and stained inclusions remained. 

In this case, the "Analyze Particles" function counted only the visible inclusions of 

stained cells. Some manual data processing was required due to incompatibilities of 

certain images with Scion Image software. In this case, the number of total cells and 

stained cells were counted visually from an image opened on Corel Photo Paint-8. 

Additionally, for the p53 ICC experiments, nuclear and cytoplasmic localization was 

examined visually. 

ICC experiments on the proteins of interest were performed in triplicate. Data 

from these three experiments were used for statistical analysis using Sigma Stat 2.0 



software. First, means and standard errors were calculated. Then, Kruskal-Wallis one 

way ANOV A on ranks compared differences between treatments over the 8 hour time 

period. Cytolytic data were compared by the Duncan's multiple range tests. 
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Chapter 3 

Results 

3.1 Effect of Dex and PrJ on cell viability in non-synchronized Nb2 lymphoma cells. 

Figure 2 depicts a typical cell viability response of log phase Nb2 cells after 24 

hours of exposure to Dex ± Prl. Trypan Blue exclusion was employed to quantitate cell 

viability. Dex causes a 7-fold increase in the percentage of dead cells compared to 

DMSO treatment, bringing the proportion of dead cells to about 50 percent. 

Coincubation with Prl protects cells against Dex induced cytolysis. 

3.2 Effects of Dex on viability of synchronized Nb2 lymphoma cells. 

Table 1 shows the percentages of dead cells after Dex treatment for 0, 1, 2, 4, 6, 

and 8 hours in synchronized (Go/01) Nb2 cells. A significant increase in dead cells was 

observed after 6 and 8 hours of Dex exposure. Cytolytic data also suggested the 

possibility of spontaneous cell death since the percentage of dead cells after 8 hours of 

DMSO exposure (14.7%) was significantly different from the proportions of dead cells at 

-24 hours (2% dead) and at 0 hours (4% dead). The percentages of apoptotic cells were 
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measured in the same Nb2 cells by the TUNEL assay (Guanzon, 1998). There is a 

significant increase in the proportion of apoptotic cells after 8 hours of Dex treatment. 

3.3 Immunocytochemistry and antibody absorption 

24 

Figures 3-7 illustrate immunocytochemical staining for Fas, Pas-ligand, Bcl-2, 

Bax, and p53. All of the antibodies mentioned produced characteristic staining in log 

phase Nb2 lymphoma cells (Fig. 3A-6A, 7). In particular, Fas appeared to be localized to 

the cell surface and periphery of most cells (Figure 3A). Fas Ligand staining was most 

evident in the periphery of cells, although some cells appeared centrally stained (Figure 

4A). Staining for Bcl-2 was most apparent toward the periphery of cells, while some 

cells were centrally stained (Figure SA). Bax staining was characterized by both 

peripherally and centrally stained cells (Figure 6A). Finally, p53 exhibited 

predominantly peripheral staining (Figure 7). The immunospecificity of Fas, Fas Ligand, 

Bcl-2, and Bax staining was verified by their disappearance when the antibody was 

absorbed by admixture with its corresponding peptide antigen (3B-6B). As discussed in 

the methods section, the specificity of anti-p53 immunostaining by immunoabsoiption 

could not be verified. 

3.4 Examination of antibody staining in response to DMSO and DEX treatments of 

various time periods. 
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Tables 2-6 display the percentages of cells stained for Pas, Pas Ligand, Bcl-2, 

Bax, and p53 after DMSO and DEX treatment for 0, 1, 2, 4, 6, and 8 hours. Since p53 

has been implicated in nuclear translocation, nuclear localization was also examined for 

this protein. For each of the antibodies under consideration, the percentages of log phase 

cells that were stained ranged from 72% to 86%. Among these antibodies, there were no 

statistically significant differences in the proportions of cells stained between log phase 

cells and synchronized cells. In addition, we failed to detect any statistically significant 

changes in the percentages of stained cells between Dex and DMSO treatments over 8 

hours. No obvious redistribution in staining (periphery to central) was evident for p53. 
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Fig 2. Cell viability of non-synchronized Nb2 lymphoma cells following 
24 hour Dex ± Prl co-incubation. 
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Table 1. Response of Synchronized Nb2 Lymphoma Cells to DMSO and DEX exposure 
after 0, 1, 2, 4, 6, and 8 Hour Time Periods. 

Percent Dead Cells Percent Apoptotic 
as Measured by Cells as Measured by 

Time (Hours) Treatment Trypan Blue Exclusion TUNEL Assayd 

-24 Log phase 2.0± 1.0 5.7±1.5 
0 Synchronized 4.0±0.6 11.0±3.2 

1 DMSO 8.2± 1.6 10.7±3.2 
DEX 9.9± 1.6 12.0±4.5 

2 DMSO 7.7±2.3 6.0± 1.7 
DEX 10.7±3.5 8.0± 1.5 

4 DMSO 10.7±0.3 9.3±4.1 
DEX 10.2±0.9 11.3±3.5 

6 DMSO 10.0±.0.6 10.3±1.2 
DEX 17.7±0.9b 15.0±1.2 

8 DMSO 14.7±1S 10.0±2.3 
DEX 21.0±2.83 20.0±2.13 

Values are Mean ± SEM; n=3 

a Difference is significant at p!>0.05 vs. 0 hour, all DMSO controls and 1, 2, 4, and 6 hour 
Dex treatments. 

b Difference is significant at p!>0.05 vs. 0 hour, 1, 2 ,  4, and 6 hour DMSO controls and 1, 
2, and 4 hour Dex treatments. 

c Difference is significant at p!>0.05 vs. 0 hour, -24 hour (log phase), all DMSO controls, 
and 1, 2, 4, and 6 hour Dex treatments. 

d Data obtained by Guanzon (1998). 
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Table 2. Proportion of Cells Stained for Anti-Fas in ICC Experiments in Nb2 Lymphoma 
Cells after DMSO and Dex Treatment of Various Time Periods. 

Percent Cells 
Stained for 

Time (Hours) Treatment Anti-Fas (Mean ± SEM, n=3) 

-24 Log Phase 71.7±5.7 

0 Synchronized 70.0±5.0 

1 DMSO 71.3±6.7 

Dex 82.0±3.2 

2 DMSO 75.3±2.0 

Dex 80.3±5.0 

4 DMSO 76.0±4.2 

Dex 76.0±4.1 

6 DMSO 72.3±2.9 

Dex 77.7±4.3 

8 DMSO 70.5± 1.5 

Dex 78.3±3.8 



Table 3. Proportion of Cells Stained for Anti-Fas Ligand in ICC Experiments in Nb2 

Lymphoma Cells after DMSO and Dex Treatment of Various Time Periods. 

Percent Cells 
Stained for 

Time (Hours) Treatment Anti-Fas Ligand (Mean ± SEM) 

-24 Log Phase 79.0±7.6 

0 Synchronized 80.0±2.9 

DMSO 84.3±0.9 

Dex 88.0±3.8 

2 DMSO 84.7±1.5 

Dex 84.0±2.3 

4 DMSO 81.0±3.2 

Dex 85.3±1.9 

6 DMSO 82.7±2.9 

Dex 85.3±3.3 

8 DMSO 75.7±1.9 

Dex 83.0±2.7 
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Tab le 4. Proportion of Cells Stained for Anti-Bcl-2 in ICC Experiments in Nb2 
Lymphoma Cells after DMSO and Dex Treatment of Various Time Periods. 

Percent Cells 
Stained for 

Time (Hours) Treatment Anti-Bcl-2 (Mean± SEM, n=3) 

-24 Log Phas e 76.3±3.0 

0 Synchronized 74.7±2.2 

1 DMSO 76.0±3.2 

Dex 80.0± 1.0 

2 DMSO 70.7±5.4 

Dex 78.7±5.0 

4 DMSO 72.3± 1.5 

Dex 73.7±1.8 

6 DMSO 55.7± 10.9 

Dex 64.7± 15.4 

8 DMSO 56.0±15.3 

Dex 53.7±13.1 
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Table 5. Proportion of Cells Stained for Anti-Bax in ICC Experiments in Nb2 
Lymphoma Cells after DMSO and Dex Treatment of Various Time Periods. 

Percent Cells 
Stained for 

Time (Hours) Treatment Anti-Bax (Mean ± SEM, n=3) 

-24 Log Phase 86.3±3.0 

0 Synchronized 73.7±6.6 

1 DMSO 80.3±2.3 

Dex 72.3± 10.0 

2 DMSO 84.0±1.0 

Dex 78.0±6.5 

4 DMSO 85.3± 1.8 

Dex 82.7±3.5 

6 DMSO 86.3± 1.3 

Dex 82.3±2.3 

8 DMSO 81.7±2.9 

Dex 80.7±.9 
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Table 6. Proportion of Cells Stained for Anti-p53 in ICC Experiments in Nb2 
Lymphoma Cells after DMSO and Dex Treatment of Various Time Periods. 

Time (Hours) 

-24 

0 

1 

2 

4 

6 

8 

Treatment 

Percent Cells 
Stained for 
Anti-p53(Mean ± SEM, n=3) 

Log Phase 73.3±3.7 

Synchronized 79.3 ± 1.3 

DMSO 79.7±2.9 

Dex 82.3± 1.5 

DMSO 77.0±7.1 

Dex 81.7±3.5 

DMSO 79.0±5.0 

Dex 79.0±2.5 

DMSO 81.7±2.0 

Dex 79.7±2.9 

DMSO 71.0±4.4 

Dex 70.0±5.5 
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Figure 3. A illustrates immunocytochemical staining for Fas in log phase Nb2 lymphoma 
cells. Antibody was at a concentration of2j.ig/ml. B reveals the disappearance of 
staining following absorption of antibody with its antigen. Antigen concentration was at 
20j.ig/ml. Magnification x354. 
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Figure 4. A illustrates immunocytochemical staining for Fas Ligand in log phase Nb2 
lymphoma cells. Antibody was at a concentration of21J.g/ml. B reveals the 

disappearance of staining following absorption of antibody with its antigen. Antigen 

concentration was at 201J.g/ml. Magnification x354. 
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Figure 5. A illustrates immunocytochemical staining for Bcl-2 in log phase Nb2 

lymphoma cells. Antibody was at a concentration of 1 J.lg/ml. B reveals the 

disappearance of staining following absorption of antibody with its antigen. Antigen 

concentration was at I Of.lg/ml. Magnification x354. 
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Figure 6. A illustrates immunocytochemical staining for Bax in log phase Nb2 

lymphoma cells. Antibody was at a concentration of I f,lg/ml. B reveals the 

disappearance of staining following absorption of antibody with its antigen. Antigen 

concentration was at I Oflg/ml. Magnification x354. 
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Figure 7. Demonstration of immunocytochemical staining for p53 in log phase Nb2 

lymphoma cells. Antibody was at a concentration of 2�-tg/ml. Magnification x354. 
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Chapter 4 

Discussion 

The purpose of this study has been to elucidate the mechanisms of apoptosis 

control in Nb2 lymphoma cells. By employing morphological techniques, we intended to 

visualize signaling proteins (Fas, Fas Ligand, Bcl-2, Bax, and p53) associated with 

apoptosis, and to establish the specificity of antibodies directed against these signals 

through irnrnunoabsorption of the antibodies with their corresponding peptides. We 

investigated the role of these signaling proteins in apoptosis by visualizing and 

quantitating them in synchronized Nb2 cells over an 8 hour time period following Dex 

exposure. 

The Nb2 cells we used in our experiments responded in a typical manner to 

Dex±Prl exposure; Dex caused an increase in the percentage of dead cells over DMSO 

levels, and coincubation of Prl with Dex protected cells against Dex-induced cytolysis. 

This response is concordant with the results obtained from previous studies by Fletcher­

Chiappini et al. (1993) and by Guanzon (1998). Since this typical response provides a 

model for studying the signaling involved in apoptosis, we were able to utilize these cells 

for further studies. 

By using ICC, we intended to determine the feasibility of a morphological 
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approach for investigating apoptosis control. This approach was selected because it 

appeared to confer numerous advantages over the traditional biochemical techniques of 

Western blots and agarose gel electrophoresis. Biochemical methods require a 

homogenate of the cell population to extract pooled protein or DNA. Through 

immunohistochemistry, however, one can analyze single cells with preserved cellular 

architecture (Gavrielli et al., 1992). Furthermore, a maintained cell structure affords the 

opportunity to observe localization of staining within cells, and the ability to compare 

staining under varying treatments and at different time points. Examining qualitative 

aspects of cells in this manner would appear to offer much insight into the role of 

signaling proteins involved in apoptosis. In addition, ICC on intact cells may allow for 

simultaneous localization of signaling proteins. 

Through ICC, we were able to localize Fas, Fas ligand, Bcl-2, Bax, and p53 in 

Nb2 cells. The antibodies for Fas, Fas ligand, Bcl-2, and Bax were affinity-purified 

rabbit polyclonal antibodies raised against a specific amino acid sequence at theN­

terminus or C-turminus of the protein. The specificity of immunostaining for these 4 

antibodies was verified by their disappearance when the antibodies were mixed with the 

peptides that were used to initially generate the antibodies. 

The localization of p53 by ICC required the use of a rabbit polyclonal antibody 

directed against the entire p53 protein (in fact, the original antigen was a p53-

Glutathione-S-transferase fusion protein). We were unable to eliminate immunostaining 

produced by this antibody despite using several distinct approaches. For example, the 

addition of the p53 GST fusion protein and the peptide sequences corresponding to the 
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N-terminus (amino acids 2-20) and C-terminus (373-391) of p53 failed to eliminate 

immunostaining. Additionally, attempts at removing the anti-p53/p53GST complex by 

adsorption to agarose beads containing glutathione failed to prevent immunostaining. 

The failure to verify the immunospecificity of p53 may be due to several reasons. First 

of all, cell fixation may have altered the immunoreactive site of cellular p53, causing it to 

have a higher affinity for the anti-p53 antibody than the exogenous protein added during 

absorption. Secondly, the configuration of the immunoreactive site(s) on p53 may have 

been modifie� by its fusion to GST, consequently making it (them) inaccessible to the 

antibody. In addition, to our knowledge, the p53 GST fusion protein has never been used 

as an immunoabsorbant (according to consultation with Santa Cruz Biotechnology), and 

thus may act in an atypical manner. Third, the anti-p53 we used may not react with the C 

or N-terminus of p53 protein. Fourth, anti-p53 may be binding in a non-specific manner 

to another antigen, cellular protein, or an artifact of the cellular preparation. In other 

words, the staining may not be specific for p53. The failure to demonstrate 

immunospecificity of p53 signifies that its visualization can not be affirmed with 

certainty. Although immunoabsorption of an antibody with its antigen measures 

antibody specificity and antigen localization (Witorsch, 1980), many researchers fail to 

absorb their antibodies, and they may be visualizing something other than their targeted 

protein. In fact, numerous studies have reported to stain for p53 by ICC without using 

absorption controls, such as the visualization of p53 in breast carcinomas (Jensen et a!., 

1997), the localization of p53 in mammary epithelial cells (Delmolino et a!., 1993), and 

the staining of p53 in tumors derived from transgenic mice (Hall et a!., 1998). 
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Previously, immunocytochemical data that were generated in our laboratory were 

quantitated manually. The visual counting of hundreds of fields of cells became the rate 

determining step of data analysis. In the present study, we have implemented a novel, 

computerized means to quantitate the total number of cells, as well as the number of 

stained cells per field, using Scion Image software. This methodology offers a more 

objective, consistent, and expeditious means of cell quantitation versus non-computerized 

quantitation. Currently, we have been able to utilize the image analysis software to count 

the proportion of stained cells in a given field. We may potentially be able to use this 

software to determine the distribution of cell staining (ie. nuclear, cytoplasmic, or cell 

surface localization) and to measure the intensity of cellular staining. 

While computer-assisted cell quantitation has yielded more accurate cell counts, 

we have become increasingly aware of sources of imprecision in our methodology. 

When cells were counted in a hemacytometer by Trypan Blue exclusion, a single cell 

count could vary as much as 40% from another cell count (unpublished observations is 

our laboratory). After empirical testing, we came to the conclusion that multiple (at least 

3) aliquots of the same cell suspension should be utilized for quantitation in order to 

achieve a cell count within 10% of the actual cell concentration (from unpublished 

observations in our laboratory). By photographing and counting 4 fields of cells per 

etched circle, we quantitated staining for a single aliquot of a cell suspension. To 

minimize this variability in cell quantitation (in accordance with our hemacytometer 

findings), at least 3 aliquots of each cell suspension would have to each be photographed 

and counted as described above. 
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The proportions of log phase cells that were stained for Fas, Fas Ligand, Bcl-2, 

Bax, and p53 ranged from 72% to 86%. Using the same Nb2 cells, Guanzon (1998) 

found approximately 40% of log phase cells to be positively stained for Glucocorticoid 

receptor (GR), IkBA, NFkB, and STAT-5b. The discrepancy in the proportions of 

stained cells for different signals in Nb2 cells suggests the following: High percentages 

(72-86%) of cells stained for Fas, Fas Ligand, Bcl-2, Bax, and p53 indicate that the 

majority of Nb2 cells contain all of these signals. A lower percentage ( 40%) of cells 

stained for GR, IlcBA, NFkB, and STAT-5b suggests that there may be a single subset of 

cells positive for all4 signals, or several subsets of cells that each contain one or more of 

these proteins. To resolve these issues, we are currently examining the simultaneous 

localization of these signals in Nb2 cells. 

Immunocytochemical experiments staining for Fas and Fas Ligand in log phase 

Nb2 cells revealed that 72% of cells contained Fas, while 79% of cells expressed Fas 

Ligand, indicating that both proteins are within the same cell in the majority of the cell 

population. Generally, the binding of Fas Ligand to Fas receptor induces cell death by 

apoptosis (Laytragoon-Lewin, 1998). It is intriguing that although Fas and Fas ligand are 

both present in Nb2 cells, Fas mediated apoptosis is absent, indicated by a continually 

high (>90%) cell viability. There are several possible explanations for the resistance of 

Nb2 cells to Fas mediated apoptosis. First, Fas and Fas ligand association is not always 

fatal, and depends on the presence of specific elements that regulate the cell's response; 

these elements cause significant variability of cellular responses to Fas and Fas ligand 

association. (Gottlieb and Babior, 1997). For example, while both macrophages and 



endothelial cells express Fas, only macrophages undergo apoptosis in response to Fas 

ligand (Gottlieb and Babior, 1997; Richardson et al., 1994). In some instances, Fas 

occupation may even cause T cell proliferation (Gottlieb and Babior, 1997; Agarwal et 

al., 1995). 
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Next, the stage of development ofT cells determines the cellular response to Fas 

and Fas Ligand binding. In T lymphocyte development, immature cells possess both the 

CD4 (helper T cell) marker and the CD8 (cytotoxic T lymphocyte) marker. As cells 

mature, T cells express only the CD4 or CD8 marker. Double positive, immature T cells 

are sensitive to Fas mediated apoptosis, whereas more mature, single positive T cells are 

resistant to apoptosis (Ogasawara et al., 1995). The Nb2 lymphoma cell line was shown 

to be positive for both markers, suggesting that they would be susceptible to Fas induced 

cell death (Fleming et al., 1982). The resistance to Fas mediated apoptosis may have 

been mediated by discrete signals downstream from Fas and Fas Ligand binding. 

Furthermore, the Nb2 cells that we utilized may have changed through time from the 

initial clone, resulting in a single positive (CD4 or CD8) phenotype that has become 

resistant to Fas induced apoptosis. Additionally, studies from Fleming et al. (1982) 

suggested that Nb2 cells were double positive (CD4/CD8), because monoclonal 

antibodies (W3/25-HLK and OX8-HL) bound to early antigenic determinants of helper T 

cells and nonhelper T cells. It may be prudent to reevaluate the markers in Nb2 cells 

using more current methodology. 

Finally, overexpression of the transcription factor Bcl-2 has been found to 

partially block Fas mediated apoptosis (Nagata et al., 1995; Itoh et al., 1993). Since we 
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observed most log phase cells (76%) to be positive for Bcl-2, overexpressed Bcl-2 may 

explain the low occurrence of cell death in Fas and Fas ligand positive Nb2 cells. 

Furthermore, when Bcl-2 associates with its binding protein, BAG-I, Fas mediated 

apoptosis is completely inhibited (Nagata et al., I995; Takayama et al., I995). Further 

studies testing for the BAG-I protein would verify or disqualify this phenomenon in Nb2 

cells. 

The p53 protein is usually found in low levels due to its association with MdM2, 

which inactivates p53 (Admas et al., I998). However, we observed p53 to be detectible 

by ICC in a majority (73%) of untreated log phase cells. The elevated p53 levels may be 

due to the presence of mutated p53 or upregulated, wild type p53. Since the viability of 

Nb2 cells remained over 90%, the p53 was probably not the wild type, which would 

evoke cell death and decrease this viability substantially. Hence, the p53 we localized by 

ICC in Nb2 cells was most likely in its mutated (inactive) form. 

It was observed that glucocorticoids induce apoptosis in immature thymocytes by 

p53 independent mechanisms (Macfarlaine et al., I996). If this is accurate in Nb2 

lymphoma cells, then Dex treatment would not effect p53 levels. The independence of 

p53 and Dex induction of apoptosis may explain why we observed no statistiCally 

significant changes in the percentages of stained cells for p53 over the 8 hour Dex time 

course assay. 

Using immunoblot analysis, Krumenacker et al. (I998) demonstrated that there 

were no changes in the levels of Bcl-2 or Bax protein in stationary Nb2 cells that had 

been treated with Dex for I2 hours. Our results have corroborated this finding; we found 
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no statistically significant changes in the percentages of stained cells for Bcl-2 or for Bax 

over the 8 hour Dex time point assay. 

Cytolysis was observed in synchronized Nb2 cells after 6 and 8 hours of Dex 

exposure using Trypan Blue exclusion counts. This cytolytic response was correlated to 

the occurrence of apoptosis at 8 hours, as measured by the TUNEL assay (Guanzon, M.S. 

thesis, 1998). Presumably, Dex-induced cytolysis was caused by apoptosis. There was 

also a possibility of spontaneous cytolysis, since the percentages of dead cells rose from 

2% at -24 hours and 4% at 0 hours to 14.7% after 8 hours of DMSO exposure (this type 

of cell death was not validated by the TUNEL assay, however). In previous studies 

(Lavoie and Witorsch, 1995), DNA fragmentation caused by apoptosis was observed in 

synchronized Nb2 cells after 4 hours of Dex exposure by the Diphenylamine assay and 

agarose gel electrophoresis. The morphologically based TUNEL assay and Trypan Blue 

exclusion counts appeared to have detected apoptosis at a later time than biochemical 

means detected apoptosis for the following reasons: The Nb2 subline we were using may 

have changed through time from the original cells after multiple generations. 

Consequently, these modified cells may have responded to Dex in a delayed fashion. On 

the other hand, our results indicate that log phase cells responded to Dex±Prl in the 

typical fashion, suggesting that these cells were not modified. Alternatively, Guanzon 

(1998) found that a relatively small proportion (40%) of cells expressed GRand 

underwent apoptosis due to Dex exposure. Hence, detectibility of the response may have 

been diminished by the high proportion of non-responsive cells. Finally, the possible 

occurrence of spontaneous cytolysis in Nb2 cells could delay the observation of the Dex 
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response. 

Since the irnmunostaining for all antibodies except p53 was found to be specific, 

the lack of any significant changes in the proportion of stained cells would suggest the 

independence of these signals in response to synchrony and Dex treatment. In the case of 

Bcl-2 and Bax, this is consistent with the finding of Krumenacker et al. (1998), that no 

changes in the levels of bcl-2 or bax protein were observed (using immunoblot analysis) 

in response to Dex in Nb2 cells. Additionally, our findings appear to be consistent with 

those of MacFarlaine et al. ( 1996), that glucocorticoid induction of apoptosis in immature 

thymocytes does not involve p53. Alternatively, the inability to demonstrate changes in 

signals may reflect limitations in the methodology in its present stage. 

As indicated previously, there may be more variability in the quantitation of ICC 

experiments than we anticipated. While we performed ICC experiments in triplicate and 

photographed 4 fields per treatment, we utilized only one aliquot of cells per time point 

when spotting cells for the Dex time course assay. Quantitation of 3 aliqouts per time 

point would have reduced this variability. Furthermore, refinements may have to be 

implemented in order to visualize the changes in intensity of immunostaining (ie. titration 

of antibody) and the possible intracellular redistribution of signals (ie. counterstaining or 

ultrastructural analysis). 
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