
Virginia Commonwealth University Virginia Commonwealth University 

VCU Scholars Compass VCU Scholars Compass 

Theses and Dissertations Graduate School 

2016 

PATTERN RECOGNITION IN CLASS IMBALANCED DATASETS PATTERN RECOGNITION IN CLASS IMBALANCED DATASETS 

Nahian A. Siddique 
Virginia Commonwealth University 

Follow this and additional works at: https://scholarscompass.vcu.edu/etd 

 Part of the Electrical and Electronics Commons, and the Signal Processing Commons 

 

© The Author 

Downloaded from Downloaded from 
https://scholarscompass.vcu.edu/etd/4480 

This Thesis is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has 
been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass. 
For more information, please contact libcompass@vcu.edu. 

http://www.vcu.edu/
http://www.vcu.edu/
https://scholarscompass.vcu.edu/
https://scholarscompass.vcu.edu/etd
https://scholarscompass.vcu.edu/gradschool
https://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F4480&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=scholarscompass.vcu.edu%2Fetd%2F4480&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/275?utm_source=scholarscompass.vcu.edu%2Fetd%2F4480&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarscompass.vcu.edu/etd/4480?utm_source=scholarscompass.vcu.edu%2Fetd%2F4480&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libcompass@vcu.edu


PATTERN RECOGNITION IN CLASS 

IMBALANCED DATASETS 

 

 

A Dissertation submitted in partial fulfillment of the requirements for the 

degree of Master of Science in Electrical & Computer Engineering at 

Virginia Commonwealth University. 

by 

NAHIAN ALAM SIDDIQUE 

Bachelor of Science in Electrical & Electronic Engineering, BUET, 2011 

 

Director: Yuichi Motai, Ph.D. 

Associate Professor, Department of Electrical and Computer Engineering. 

  

Virginia Commonwealth University 

Richmond, Virginia 

August, 2016.  



ii 

 

Acknowledgement 
 

First of all, I would like to express my deep gratitude to my MS supervisor Dr. Yuichi Motai. 

Lessons that I have learnt from him as mentee, will act as a guideline for my future career. I would 

also like to express my sincere appreciation to Dr. Ruixin Niu and Dr. Preetam Ghosh, members 

of my dissertation committee, for offering their time, experience and advice. 

I would like to express my appreciation to Seonyeong Park, Emrah Benli and Ammar Osama, my 

fellow graduate students at the Sensory Intelligence Lab. I express my sincere appreciation to Ron 

Volpicella, my mentor at Commonwealth Center for Advanced Manufacturing, Virginia. I would 

also like to thank all the staff at the Department of Electrical and Computer Engineering. 

This journey would never have been possible without the support of my family: my parents, Dr 

Md Nurul Alam Siddique and Anjuman Ara, my brother and his wife, Nafiul Alam Siddique and 

Tanjia Arif, my niece, Wania Izma Siddique, and my wife, Tasnia Subrin. I can never appreciate 

them enough. Last but not the least, I express my sincerest gratitude to the Almighty Allah. 

 

  



iii 

 

Table of Contents 

 

Acknowledgement ..................................................................... ii 

List of Figures .......................................................................... vi 

List of Tables .......................................................................... viii 

List of Acronyms...................................................................... ix 

Abstract .................................................................................... xi 

1 Introduction ......................................................................... 1 

1.1 Organization of the Thesis ............................................................................................... 2 

2 Literature Review  ............................................................... 4 

2.1 Training from Class Imbalanced Data ............................................................................. 5 

2.2 Training Dataset Class Imbalance Reduction .................................................................. 6 

2.3 Algorithmic Optimization for Class Imbalanced Training .............................................. 9 

2.4 Comparison among the relevant studies ........................................................................ 12 

3 Proposed Architecture: Overview .................................... 15 

4 Dataset Modification: Loss-Optimized Under-Sampling 17 



iv 

 

4.1 Repetitive Under-sampling  ........................................................................................... 18 

4.1.1 Random Segmentation ............................................................................................ 19 

4.1.2 Local Model  ........................................................................................................... 20 

4.1.3 Merging ................................................................................................................... 21 

4.2 Dataset with Sub-sampled Majority Class: Associated Information Loss ..................... 21 

4.2.1 Random Segmentation ............................................................................................ 23 

4.2.2 Local Model ............................................................................................................ 24 

4.2.3 Merging ................................................................................................................... 24 

5 Model Optimization for Class Imbalanced Dataset ........ 25 

5.1 Kernel Transformation ................................................................................................... 25 

5.1.1 Mathematical Foundation ....................................................................................... 25 

5.1.2 Entropy Analysis ..................................................................................................... 27 

5.2 Weighted Neural Network ............................................................................................. 28 

5.2.1 Overview of the Weighted Network Architecture .................................................. 29 

5.2.2 Mathematical Model ............................................................................................... 30 

6 Experimental Results and Analysis .................................. 34 

6.1 Data ................................................................................................................................ 34 

6.2 Performance Metrics ...................................................................................................... 36 

6.3 Classification Results  .................................................................................................... 38 



v 

 

6.4 ROC Analysis ................................................................................................................. 40 

6.5 Analysis of Data Modification  ...................................................................................... 42 

6.6 Analysis of Kernel Optimization.................................................................................... 44 

6.7 Comparison among the relevant studies  ....................................................................... 45 

6.8 Computational Time ....................................................................................................... 46 

7 Conclusion .......................................................................... 49 

References ............................................................................... 50 

 

  



vi 

 

List of Figures 

Figure 2-1: Effect of Data Modification. Increasing the ratio between number of minority class 

(green star) samples and number of majority class (red plus) samples increase the classifier 

performance. The broken line and solid line represent the generating (target) class separation line 

and learned separation line respectively. (a) Original dataset (green to red ratio=1:50), (a) 

Magnified view of a portion of the original dataset and class separation lines (c) Same 

magnification view of a portion of the dataset with udersampled majority class (green to red 

ratio=1:10) to reduce imbalance between two classes along with class separation lines. The gaps 

between the target and learned separation lines are much higher for highly imbalanced dataset (b).

......................................................................................................................................................... 7 

Figure 3-1: An outline of the proposed methodology. .................................................................. 15 

Figure 4-1: The three steps of Repetitive Under-sampling. The majority class is subsampled 

repeatedly by identifying informative samples as in LM. ............................................................ 18 

Figure 4-2: Algorithm for extracting Local Model. ...................................................................... 20 

Figure 5-1: Functional outline of WNN. The weight matrix, W, is an accessory to the training of 

the SLFN and is not used for normal operation. ........................................................................... 29 

Figure 6-1: Receiver Operating Characteristics Curve for varying the Neural Network Parameter 

β, corresponding to six representative UCI Datasets. ................................................................... 40 

Figure 6-2: Receiver Operating Characteristics Curve generated by controlling the conformal 

transformation of the kernels, corresponding to six representative UCI Datasets. ....................... 41 

Figure 6-3: Comparison of effect of Data Modification on (a) Accuracy, (b) Sensitivity, (c) G-

Mean and (d) F-Measure, for six representative datasets. The blue bars correspond to performance 

file:///C:/Users/Nahian/Downloads/work/Siddique_Nahian_MS_811.docx%23_Toc459134220
file:///C:/Users/Nahian/Downloads/work/Siddique_Nahian_MS_811.docx%23_Toc459134220
file:///C:/Users/Nahian/Downloads/work/Siddique_Nahian_MS_811.docx%23_Toc459134220
file:///C:/Users/Nahian/Downloads/work/Siddique_Nahian_MS_811.docx%23_Toc459134220
file:///C:/Users/Nahian/Downloads/work/Siddique_Nahian_MS_811.docx%23_Toc459134220
file:///C:/Users/Nahian/Downloads/work/Siddique_Nahian_MS_811.docx%23_Toc459134220
file:///C:/Users/Nahian/Downloads/work/Siddique_Nahian_MS_811.docx%23_Toc459134220
file:///C:/Users/Nahian/Downloads/work/Siddique_Nahian_MS_811.docx%23_Toc459134220
file:///C:/Users/Nahian/Downloads/work/Siddique_Nahian_MS_811.docx%23_Toc459134220
file:///C:/Users/Nahian/Downloads/work/Siddique_Nahian_MS_811.docx%23_Toc459134221
file:///C:/Users/Nahian/Downloads/work/Siddique_Nahian_MS_811.docx%23_Toc459134222
file:///C:/Users/Nahian/Downloads/work/Siddique_Nahian_MS_811.docx%23_Toc459134222
file:///C:/Users/Nahian/Downloads/work/Siddique_Nahian_MS_811.docx%23_Toc459134223
file:///C:/Users/Nahian/Downloads/work/Siddique_Nahian_MS_811.docx%23_Toc459134224
file:///C:/Users/Nahian/Downloads/work/Siddique_Nahian_MS_811.docx%23_Toc459134224
file:///C:/Users/Nahian/Downloads/work/Siddique_Nahian_MS_811.docx%23_Toc459134225
file:///C:/Users/Nahian/Downloads/work/Siddique_Nahian_MS_811.docx%23_Toc459134225
file:///C:/Users/Nahian/Downloads/work/Siddique_Nahian_MS_811.docx%23_Toc459134226
file:///C:/Users/Nahian/Downloads/work/Siddique_Nahian_MS_811.docx%23_Toc459134226
file:///C:/Users/Nahian/Downloads/work/Siddique_Nahian_MS_811.docx%23_Toc459134227
file:///C:/Users/Nahian/Downloads/work/Siddique_Nahian_MS_811.docx%23_Toc459134227


vii 

 

metric of the WNN-UID algorithm and the brown bars correspond to performance metric of the 

same WNN algorithm without any data modification. G-mean. .................................................. 42 

  

file:///C:/Users/Nahian/Downloads/work/Siddique_Nahian_MS_811.docx%23_Toc459134227
file:///C:/Users/Nahian/Downloads/work/Siddique_Nahian_MS_811.docx%23_Toc459134227


viii 

 

List of Tables 
 

Table 2-1: List of Reviewed Works 4 

Table 2-2: Popular Kernel Functions 11 

Table 2-3: Comparison of Similar Methods 13 

Table 6-1: Datasets Used for Evaluation of the Proposed Algorithm 35 

Table 6-2: Accuracy Performance on Representative Datasets 38 

Table 6-3: Comparison of Effect of Kernel Transformation on the Proposed 

WNN-UID. 44 

Table 6-4: Comparison of Performance with other Methods for Representative 

UCI Datasets 45 

Table 6-5: Comparison of Computation Time (second per training sample) on 

representative UCI Datasets 47 

 

  



ix 

 

List of Acronyms 
 

ACT Adaptive Feature-Space Conformal Transformation 

ANN Artificial Neural Network 

AUC Area Under the Curve 

CPU Central Processing Unit 

CTC Computed Tomographic Colonography 

CUDA Compute Unified Device Architecture 

DSAE Distributed Storage Access Emphasizes 

ELM Extreme Learning Machine 

EM Expectation-Maximum 

FN False Negative 

FP False Positive 

GD Gradient Descent 

GMM Gaussian Mixture Model 

GPU Graphics Processing Unit 

GRBF Gaussian Radial Basis Function 

GSVM-RU Granular SVM-Repetitive Under-Sampling 

KBA Kernel Boundary Adjustment 

KFD Kernel Fisher Discriminant 

KKT Karush–Kuhn–Tucker 

k-NN k Nearest Neighbors 

LHCG Large Hadron Collider Grid 



x 

 

LM Local Model 

MLE Maximum Likelihood Estimation 

NN Neural Network 

RBF Radial Basis Function 

RKHS Reproducing Kernel Hilbert Space 

ROC Receiver Operating Characteristics 

SDC SMOTE with Different Costs 

SLFN Single Hidden Layer Feed Forward Network 

SMOTE Synthetic Minority Oversampling Technique 

SVM Support Vector Machine 

TN True Negative 

TP True Positive 

UCI University of California, Irvine 

WNN Weighted Neural Network 

WNN-UID Weighted Neural Network for Under-Sampled Imbalanced Dataset 

 

  



xi 

 

Abstract 
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by 
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Class imbalanced datasets constitute a significant portion of the machine learning problems of 

interest, where recognizing the ‘rare class’ is the primary objective for most applications. 

Traditional linear machine learning algorithms are often not effective in recognizing the rare class. 

In this research work, a specifically optimized feed-forward artificial neural network (ANN) is 

proposed and developed to train from moderate to highly imbalanced datasets.  



xii 

 

The proposed methodology deals with the difficulty in classification task in multiple stages—by 

optimizing the training dataset, modifying kernel function to generate the gram matrix and 

optimizing the NN structure. First, the training dataset is extracted from the available sample set 

through an iterative process of selective under-sampling. Then, the proposed artificial NN 

comprises of a kernel function optimizer to specifically enhance class boundaries for imbalanced 

datasets by conformally transforming the kernel functions. Finally, a single hidden layer weighted 

neural network structure is proposed to train models from the imbalanced dataset. The proposed 

NN architecture is derived to effectively classify any binary dataset with even very high imbalance 

ratio with appropriate parameter tuning and sufficient number of processing elements.  

Effectiveness of the proposed method is tested on accuracy based performance metrics, achieving 

close to and above 90%, with several imbalanced datasets of generic nature and compared with 

state of the art methods. The proposed model is also used for classification of a 25GB computed 

tomographic colonography database to test its applicability for big data. Also the effectiveness of 

under-sampling, kernel optimization for training of the NN model from the modified kernel gram 

matrix representing the imbalanced data distribution is analyzed experimentally. Computation 

time analysis shows the feasibility of the system for practical purposes. This report is concluded 

with discussion of prospect of the developed model and suggestion for further development works 

in this direction. 
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1 INTRODUCTION 

Class imbalance [1] occurs frequently in datasets from many real-world applications, i.e. anomaly 

detection [2], intrusion detection [3], fraudulent detection [4], medical diagnosis [5] and web 

mining [6] etc.. In fact, majority of classification applications involve the class of interest to be a 

rare or at least a minority class concept [7]. Machine learning problems applicable in the medical 

field mostly involve recognizing a rare class, i.e. recognizing cancer cells, anomalous growth, 

tissue etc. [2], [5], [8]. For web mining and data mining, where data samples occur as stream—

available at different times, pattern classification learning involves concept drift, target variable 

changing over time in unforeseen ways as well as highly imbalanced class distribution [9], [10]. 

Commerce related applications require machine learning algorithms to detect anomaly, suspicious 

transactions and error [11]–[13] both novel and previously encountered in nature. Thus, imbalance 

class datasets has grown into a very interesting topic of research in the present day machine 

learning community. A large number of studies have been conducted for investigating the impact 

of class imbalance on supervised machine learning, on the basis of training a classifier directly 

from a static set of training data [7]. In recent time, classification of imbalanced datasets is 

appearing in new applications and hence has emerged as one of the most critical and important 

topic of research in the machine learning community. 

The contribution of this article is three-fold. Firstly, an under-sampling method that works 

independently and in conjunction with high dimensional conformal kernel feature transformation 

is proposed. Secondly, the high dimensional conformal kernel feature space, where the dataset in 
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consideration is expected to be linearly separable, is modified to accommodate the linear learning 

machine without losing conformality and iterative transformation retraining. Thirdly, a single 

hidden layer feed-forward network with additive neurons for marginal performance improvement 

is proposed with fast convergence time as one of the goals. We present our work on implementing 

a new method of kernel modification method for a weighted neural network (NN) optimized for 

under-sampled imbalanced dataset (WNN-UID). We developed a segmentation method by 

creating subset of the sample problems and optimize the support vectors on that subset. 

Incorporation of kernel modification in weighted network model allows us to effectively classify 

non-linearly separable unevenly distributed datasets and transform the kernel space according to 

the dataset characteristics. Generally kernels and non-linear tools have the tendency to favor the 

majority class. We addressed that issue by adjusting kernel matrices to skew the hyper plane 

toward the majority class. With an intermediate objective to “rebalance” the data set under 

consideration, proposed methodology can improve classification performance by modifying the 

underlying data distribution in two aspects: extraction of informative samples that are essential for 

classification, and elimination of a large amount of redundant, or even noisy, samples. The 

developed method is compared against state of the art works at latter chapters. 

1.1 ORGANIZATION OF THE THESIS 

The remaining of this report is organized as follows. In chapter 2, a brief literature review as 

theoretical foundation for the proposed algorithm is presented. Chapter 3 discusses the overview 

of the proposed algorithm. Chapter 4 and 5 develop the proposed concept and theoretically analyze 

the merits and limitations of it. Chapter 6 contains the experimental results and the concluding 

discussions are presented in Chapter 7. For lengthy chapters, details of how the chapter is 
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organized is presented in the introductory section of corresponding chapter. The conclusion is 

followed by a list of references.  
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2 LITERATURE REVIEW  

Imbalance in data can be handled intuitively from two aspects of the problem [6], [7]. According 

to [1] class imbalance in dataset can be intrinsic and caused by the nature of the data itself or be 

extrinsic and caused by misrepresentation of one class for some foreign/unknown reason. 

Whatever causes the imbalance, it is often impossible to avoid class imbalance data and detection 

of the minority class is usually the case that is of interesting application. In [1], [7], [14] we see 

that learning from imbalanced datasets are particularly difficult because of the inherent linear 

nature of the fundamental machine learning algorithms that are used in the community. In the first 

section, we discuss about the state of research in machine learning community in dealing with 

class imbalance in training dataset. In the next following two sections, we take a closer look at 

some of these works organized according their respective fields of contribution. As a conclusion 

to the literature review, in section 2.4, a comparative analysis of some state of the arts methods is 

presented. 

Table 2-1: List of Reviewed Works 

Contribution Type List of Works 

Review & Survey  [1], [2], [3], [7], [14], [15], [18], [19], [20], [31] 

Dataset Class Imbalance Reduction [6], [17], [21], [23], [25], [26] 

Algorithmic Optimization [8], [12], [16], [27], [28], [34] [35], [38 

Hybrid [9], [13], [17] 
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2.1 TRAINING FROM CLASS IMBALANCED DATA 

Chawla et al in [15] discussed about the emergence of class imbalanced data as an important and 

useful topic of research in machine learning community. They present the limitation of existing 

traditional learning machines for class imbalance data and discuss ways to solve these. The most 

potential solution being, reduce the existing imbalance present in training data. Zhou and Liu in 

[16] review on using state of the art methods in solving class imbalance difficulty in machine 

learning by modifying the underlying linear learning machine, i.e. artificial neural network, 

support vector machine, principal component analysis etc. Seiffert et al in [17] discussed 

effectiveness of hybrid ensemble methods, data boosting approaches and algorithm optimization 

for learning from class imbalanced data. In [18] Galar et al reviews several hybrid approaches on 

solving class imbalance learning. 

In their survey paper [7], He and Garcia summarizes several approaches and demonstrate that, 

there are three types approaches in handling the difficulty in class imbalanced data. The first type 

is to modify the actual dataset for emphasizing the information needed to train the classifier. The 

second type transports the original dataset to a different space (using kernel trick) where both the 

classes become more evenly distributed in concept of a Euclidean space and choose that kernel 

space to be such that, it accommodates for accurate learning through a linear learning machine. 

The latter becomes a problem of finding an appropriate kernel feature space—to be more specific 

modifying any base kernel space to achieve the desired features. The third type involves with 

hybrid approaches and/or ensemble methods that are applicable to specific datasets. Here, we 

devise a strategy to solve the difficulty in learning from class imbalanced data. We refer to the first 

type of approaches as training dataset class imbalance reduction since these methods mostly 

modify the training dataset by respectively adding or subtracting samples into or from the original 
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sample set to reduce class imbalance in the training set. We refer to the second type of approaches 

as algorithmic optimization for class imbalanced training since these mostly deal with modifying 

the kernel space where the linear machine can perform. Since we employ a variant of neural 

network as our base classifier we focus mostly on kernel modification for neural networks. In the 

following three sections we present some state of the art approaches on solving learning from class 

imbalanced data. Table 2-1 presents a summary of reviewed relevant state of the art 

manuscripts.[19], [20] 

2.2 TRAINING DATASET CLASS IMBALANCE REDUCTION 

Training dataset class imbalance reduction methods attempts to reduce the ratio of number of 

majority class samples to number of minority class samples in training dataset by somehow 

changing the effective number of either the majority class samples or minority class samples or 

both in order to create a balanced class distribution of the training dataset. Typical approaches of 

training dataset optimization for class imbalanced learning applications consist of oversampling 

of the minority class [21], under-sampling [22] of the majority class or modification (data cleaning 

[23]) of an imbalanced data set by some mechanisms in order to provide a balanced distribution. 

Performance speed of the classification algorithm depend on the amount of critically considered 

data samples and effective computational complexity. For example, in kernel based SVM, K(X, 

Xk), is regarded as a measure of similarity (/distance) between the new sample X and Xk. This 

kernel function is calculated for each of the support vectors Xk for every new sample X. Then, it 

is classified using the sum of these kernel values and a bias. One method to speed up the SVM 

classification is by decreasing the number of support vectors, which represent the critical data 

samples. Studies have shown that for several base classifiers (i.e. ANN, SVM, kNN etc.), a 

balanced data set provides improved overall classification performance compared to an 
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imbalanced data set [7]. For most imbalanced data sets, the application of sampling techniques 

does indeed aid in improved classifier accuracy.  

Fig. 1 demonstrates effect of a simple data modification on class separation boundary obtained 

using linear machine. Fig. 1.(a) depicts the original dataset along with the ideal separation 

boundary. In Fig. 1.(b), it is shown that, minority class samples are too few and are 

underrepresented compared to majority class. In Fig. 1.(c) the majority class is undersampled and 

the learned  boundary approximates the target boundary more closely when compared to (b). From 

the working principle of SVM we can verify that (c) represents a preferable configuration (i.e. at 

least for a linear kernel) compared to (b). The classifier in Fig. 1.(c) uses a undersampled dataset 

for the negative class. The data imbalance ratio affects the classification performance heavily. For 

Fig. 1.(b), a large portion of the positive (minority) class training data is misclassified and is 

regarded as a poor performance because of low sensitivity (true positive rate). On the other hand, 

 
(a) (b) (c) 

Figure 2-1: Effect of Data Modification. Increasing the ratio between number of minority class (green star) 

samples and number of majority class (red plus) samples increase the classifier performance. The broken line 

and solid line represent the generating (target) class separation line and learned separation line respectively. 

(a) Original dataset (green to red ratio=1:50), (a) Magnified view of a portion of the original dataset and class 

separation lines (c) Same magnification view of a portion of the dataset with udersampled majority class 

(green to red ratio=1:10) to reduce imbalance between two classes along with class separation lines. The gaps 

between the target and learned separation lines are much higher for highly imbalanced dataset (b). 
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for Figure 2-1.(c), even though some of the negative (majority) class samples are misclassified but 

it is considered a better classifier than that of Figure 2-1.(b), because of higher sensitivity. This 

justifies the necessity of modifying the training dataset to achieve improved performance.  

Random under sampling removes randomly selected majority class samples from the original data 

set, S. In particular, we randomly select a subset of majority class examples from the entire 

majority class samples set, Smaj, and remove these samples from S so that |S|=|Smin|+|Smaj|–|E|, where 

E is the set of randomly selected majority class samples. Consequently, under sampling readily 

gives us a simple method for adjusting the balance of the original data set S, without any 

consideration of how the samples are distributed in input space or feature space. 

Random under-sampling [22] is one of the most naive approach to curing difficultiy in calassifying 

imbalanced data, and often works surprisingly good considering the randomness of the method. 

But more often than not, it fails to provide very good result, especially when compared to other 

existing more complex approaches. The subset of majority class, generated randomly, fails to 

represent the actual class. A preferred alternative is informed under sampling, one example of 

which considers the K-nearest neighbors (KNN) of the corresponding sample to accomplish under 

sampling. Based on the characteristics of the given data distribution, four KNN under-sampling 

methods were proposed in [24]: NearMiss-1, NearMiss-2, NearMiss-3, and the “most distant” 

method. Experimental results suggest that these KNN based methods often achieve significant 

performance improvement over random sampling for imbalanced learning.  

Tomek links [14] have been effectively applied to remove the overlapping that is introduced by 

sampling methods. Tomek links [14] can be defined as a data cleaning approach searching for pairs 

of minimally distanced nearest neighbors of opposite classes. One very popular, albeit 
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computationally expensive, scheme for selective oversampling is the synthetic sampling: the 

synthetic minority oversampling technique (SMOTE) [25]. SMOTE is a powerful method that has 

shown a great deal of success in various applications. The SMOTE algorithm generate new 

artificial data samples between existing minority-class samples based on similarity measures. This 

essentially can be considered an interpolation technique [26] based on various metric, typically the 

Euclidean distance in input space.  

There have been several published works in the community that apply general sampling and 

ensemble techniques to the linear learning framework. Some examples include the SMOTE with 

Different Costs (SDCs) method [27] and the ensembles of over/under sampled SVMs. In our work 

we were motivated by the excellent performance of under sampling done based on SVM by Tang 

et al [28]. In this algorithm representatives of the minority class are selected from the subset of 

support vectors, and thus the SVM itself works as the mechanism for under sampling.  

2.3 ALGORITHMIC OPTIMIZATION FOR CLASS IMBALANCED TRAINING 

Algorithmic optimization approaches modify standard linear learning algorithms to more 

effectively handle the class imbalance present in training dataset. Popular approaches include inter-

class hyperplane optimization in the kernel feature space, uneven misclassification cost, kernel 

space optimization etc. Any linear machine learning algorithm  can use the kernel mapping [29] 

to map the data from a Euclidean input space, I, to a high-dimensional Hilbert feature space H, in 

which a classification or regression problem becomes linear. Mercer’s Kernel trick [30] allows to 

transform the data to an infinite dimensional Reproducing Kernel Hilbert Space (RKHS), H, and 

use the advantage of higher dimension in pattern learning without actually dealing with the infinite 
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dimension. The transformation from I, to H is given by, k: RdxRd→H. If k is a positive semi-

definite symmetric function, gram matrix, K is defined by its component, as (1).  

(x ), (x )
ij i j

k   
 (1) 

The mapped data reside on the high dimensional surface S in H. The degree of freedom 

constrained by S is same as the dimensionality of the input space I. The shape of S is determined 

by the associated mapping Φ. For a Φ with all derivatives continuous and defined, as in the case 

of any RBF function, the surface S in H is smooth, and thus can be considered as a Riemannian 

manifold. This is the sufficient condition to define a Riemannian metric, gij, for S. A conformal 

transformation [31], also called a conformal mapping, is a transformation, T, which maps the 

elements Φ(X) in kernel space H, to elements Φ(Y)(=T(X)) in new conformal kernel space T(H) 

while preserving the local angles between the elements after mapping, where H is a domain in 

which the elements Φ(X) reside [32]. Usually, an analytic function is conformal at any point where 

it has a nonzero derivative. Some commonly used conformal functions are: X2, e–X, and e–x2

. 

The distance between two points on S  can be measured using two concepts: the distance between 

two points along a straight line in H, which is the so-called Euclidean distance, and the distance 

between two points along a path on S, to be specific the shortest distance along S  computed by 

integration. This distance, called the Riemannian distance [33], is computed by a metric induced 

on S. This metric is known as the Riemannian metric, denoted by gij—which is the computation 

unit for the distance between any two points, corresponding to axis i and j, on S. The components 

of a Riemannian metric can be viewed as coefficients which are multiplied with the differential 

displacements dxi in I  to compute the distance ds in H in a generalized Pythagorean theorem, 
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 2

,

ij i j

i j

ds g dx dx  (2) 

This distance can be calculated using Mercer’s kernel trick as shown in (3).  

 

2

'

( , ')
( )

ij

i j

K
g

x x





 

 
 
 x x

x x
x  (3)  

Kernels allow to, compute and utilize the pattern in Hilbert space through an inner product space. 

There are several standard functions for utilizing the kernel trick. Each type of kernel function 

demonstrate certain characteristics that can be beneficial to certain application. Table 2-2 lists 

some popular kernels and their parameters. Success of any classification method largely depends 

on the choice of kernel function. There is no such kernel function that is universally best for all 

application [31]. The choice of kernel for a specific application depends on characteristics of the 

data, mechanism of the employed algorithm, and target application. Often the most suitable kernel 

is found empirically [31]. The experiments in this research work employ following types of 

Table 2-2: Popular Kernel Functions 

Kernel Name Kernel Function, k(x,x') 

Linear '
T

x x  

Polynomial ( ' 1)
T b

a x x   

Gaussian RBF  2
exp || ' ||x x   

Laplacian  2

|| ' ||
exp

2

x x



   

Sigmoid  tanh( ' b)
T

a x x   

Circular 1 2

1 1 1 1

|| ' ||
cos ( ) 1 , for 1

x x
x x x x
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kernels: i) RBF Kernel, ii) Gaussian Kernel, iii) Polynomial Kernel, iv) Sigmoid Kernel and v) 

Linear Kernel. 

Next, in section 2.4 we summarize some of the state of the art methods specifically developed to 

classify imbalanced datasets. We also point out their limitations and hence our proposal of an 

alternate to those methods as a mean of learning from imbalanced data.  

2.4 COMPARISON AMONG THE RELEVANT STUDIES  

In table 2-3, we briefly present some of the recent research works and compare our method with 

those in order to see where the proposed method lies compared to these. The SVM-WEIGHT [34] 

implements cost sensitive learning to handle imbalance in the representation of two classes. Cao’s 

ESPO and INOS [21] computation requirement grows exponentially for very sparsely distributed 

datasets and becomes very slow with large databases. In [25] Chawla et al demonstrate 

effectiveness of SMOTE algorithm by synthetically oversampling the minority class and thus 

reduce representative imbalance between two classes. Akbani’s modification of SVM-SMOTE 

[27] is not suitable for handling big data due to its tendency to inflate number of training samples. 

Wu’s KBA [35] uses  conformal transformation of the kernel function and thus optimizing the 

hyperplane that differentiates between the two classes. Extreme learning machines (ELM) [36], 

[37] are a major category of kernel NN learning methods. Zong’s weighted ELM [38] is 

specifically developed for classification of imbalanced datasets. Now all of these work well if the 

imbalance is moderate. Table 2-3 outlines their principals and limitations. 
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 The proposed method is devised to overcome these limitations by reducing the imbalance between 

representation of the two classes and also optimizing the kernel function. Compared to SVM-

WEIGHT, as the penalty optimization is not relevant here as SVM will be used for under-sampling. 

 

Table 2-3: Comparison of Similar Methods  

Work Principal Limitation(s) 

SVM-WEIGHT 

[14]  

Cost sensitive learning. Larger penalty for 

false negatives than for false positives 

No mechanism for penalty 

optimization 

ESPO  [15] Structure preserving oversampling 
Optimizes feature space, not 

kernel space 

Weighted ELM 

[17] 

ELM modified to incorporate weight 

reflecting class distribution.  

Achieves good performance 

for moderately imbalanced 

class distribution. 

SMOTE  [25] 

Synthetic over-sampling of minority class. 

Synthetic samples are placed on linear 

connections in the input plane. 

Synthetic sampling is done in 

the input feature space  

SVM-SMOTE 

Akbani [21] 

SVM modified with SMOTE variant for 

class imbalanced training 

Very slow convergence with 

larger datasets 

KBA [35] 

Optimization of class separating hyper-

plane to adjust for the imbalanced class 

ratio. 

No explicit mechanism for 

controlling varying class 

imbalance ratio. Only cost 

based optimization 

WNN-UID 

Majority class is repeatedly under-sampled 

using segmented SVM. Finally remaining 

samples are used with a conformal 

transformation of kernels.  

~ 
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Also, as SVM is used for the under-sampling, the selection of informative samples are done in the 

higher order kernel space instead of the input feature space as in SMOTE. And as the kernel 

boundary is adjusted after the under-sampling is completed, the computation cost is much less than 

KBA. Weighted ELM is a modification of the original ELM theory [36] to work with imbalanced 

datasets. The limitation of weighted ELM is it linearly reacts to increase in imbalance ratio and 

hence is not suitable for highly imbalanced datasets. More justification on these claims about the 

proposed algorithm are presented in the following sections. 
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3 PROPOSED ARCHITECTURE: OVERVIEW 

A brief overview of the proposed classifier architecture is presented in this chapter. The complete 

process of developing an artificial NN optimized for training using a class imbalanced database is 

discussed as a sequence of two consecutive methods. In Figure 3-1 an outline of the proposed 

methodology is shown.  

In chapter 4, we discuss the dataset modification method—which is the first stage of the proposed 

methodology. Chapter 4 is comprised of two sections. The dataset modification method is 

primarily a technique of subsampling the majority class samples with minimum information loss. 

In section 4.1, we present the proposed method of repetitive under-sampling of the majority class 

 

Figure 3-1: An outline of the proposed methodology. 

 

Repetitive Under-sampling (4.1)  

Class Imbalanced Training Dataset

Kernel Transformation (5.1)

Weighted Neural Network Training (5.2)

Dataset with Subsampled 

Majority Class (4.2)

Single Hidden Layer Feed Forward Network

Data Modification (4)  

Model Optimization (5)  
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samples and in section 4.2, we present the information loss associated with the sub-sampling 

process. 

In chapter 5, we discuss the method for developing the artificial NN model. Chapter 5 is also 

comprised of two sections. Before designing the NN, the data must be transformed to a high 

dimensional feature space, namely Hilbert space, to allow for considering the inherent non-linear 

differentiation present in between the two classes of the dataset. Section 5.1 discusses a kernel 

transformation method, again optimized for class imbalanced data, and section 5.2 discusses the 

training of the proposed WNN.  
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4 DATASET MODIFICATION: LOSS-OPTIMIZED UNDER-SAMPLING 

Objective of the data modification stage is to reduce the existing imbalance between two classes 

by subsampling the majority class. To address the relative imbalance, in 4.1 the majority class 

sample is first randomly partitioned into smaller segments and then each segment is processed 

with the entire minority sample. Each of the smaller subset is then modeled and only the 

informative samples are identified. Only these informative majority class samples are considered 

in the next step of the algorithm and thus reducing the imbalance between representations of the 

two classes. In 4.2 we justify this approach by computing information loss and compare with 

random under-sampling and Synthetic Minority Over-sampling Technique (SMOTE). Tang et al 

in [22] measure granularity of the dataset and under-sample randomly to reduce the class 

imbalance present in the data. Several of recent research works on learning imbalanced data 

reduces inherent imbalance by similar under-sampling techniques. The dataset modification stage 

of the proposed methodology employs the same underlying principal for dataset modification for 

imbalanced datasets that, both principal components and support vectors tend to recognize the 

most important samples for learning. We under-sample the majority class samples to reduce inter-

class imbalance and create a more favorable functioning environment for the main learning 

algorithm. The subsequent stages of the proposed methodology takes advantage of the reduced 

imbalanced data, and employs kernel optimization and neural network weighting to deal with class 

imbalance. The proposed methodology only partially depends on the data modification stage (we 

present a section in the experiments section with results demonstrating performance of the 

proposed method in absence of the data modification stage). 
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4.1 REPETITIVE UNDER-SAMPLING  

Repetitive under-sampling is the first stage of the proposed methodology, as can be seen from 

Figure 4-1.  Objective of this stage is to reduce, not eliminate, the class imbalance present in the 

training dataset. We describe the under-sampling technique in three steps: Random Segmentation, 

Local Modeling and Merging. In step 1, the negative samples (or the majority class samples) are 

randomly segmented into several parts. In step 2, each segment of negative samples and the entire 

set of positive class samples are passed to a kernel based support vector machine training algorithm 

which then identifies the informative samples as support vectors or principal components. In step 

3, these separately selected informative samples are aggregated and the remaining is passed to the 

 
 

Figure 4-1: The three steps of Repetitive Under-sampling. The majority class is subsampled 

repeatedly by identifying informative samples as in LM. 
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step 1 for another iteration of the process until certain conditions are fulfilled. Figure 4-1 shows 

these steps and in the following paragraphs, these three steps are described in details.  

4.1.1 Random Segmentation  

Step 1 is the random segmentation, where the class imbalanced data is segmented into smaller sets 

with intention to reduce class-imbalance. Here, the training dataset is denoted by S, which contains 

large number of negative samples and small number of positive samples. Each sample in S can be 

described as (xi,yi) tuple, where xi  Rd is a sample described in d dimensional Cartesian space 

and yi  {+1,–1} is the class label. The set of all negative (also referred to as majority) class 

samples is Smaj, and the set of all positive (also referred to as minority) class samples, Smin. In order 

to deal with the imbalanced class representation, Smaj is divided randomly into several negative 

class segments. Number of negative class segments depends on the class imbalance ratio and the 

actual dataset characteristics and is determined empirically. Each of these negative class segments 

are then used to construct a data segment. The ith data segment is represented as Si:={Xi,Yi}, where 

Xi is the set of sample descriptions and Yi denotes the set of corresponding class labels. Xi contains 

all of the positive class samples as well as the ith negative class segment. If the number of extracted 

data segments is r, we can write, 

 1

min

r

i
i

i j

S S

S S S







  (4) 

Here, in the second equation, i≠j and i,j  {1,2,…,r}. 
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4.1.2 Local Model  

Step 2 of the under-sampling stage is construction of a local model, which can be constructed over 

a kernel based statistical machine learning process. This is the core step of the under-sampling 

stage. Each of the data segment, Si—generated in step 1, is modeled using either kernel Fisher 

discriminant (KFD) or support vector machine (SVM). KFD can be used to extract the informative 

negative samples. The principal components in KFD are generated as a linear combination of 

training samples. The training samples with higher Eigen value are more informative for the 

classification task [8]. For the ith data segment, Si, let the output coefficient vector of KFD is given 

by αi, which is a vector of length |Si|. Here, |∙| operator is used to denote the number of elements of 

the enclosed set. The values in αi correspond to the weight of the respective sample towards 

constructing a classifier. On the other hand for SVM, usefulness of a sample in computing the 

Begin 

 Initialize  

XLMi←{} 

yLMi←{} 

End Initialize   

KFD or SVM optimization→αi 

Normalize αi 

For idx← 1 to |Si| 

If |αi(idx)| ≥ θα  

Include Xi(idx) in XLMi 

Include Yi(idx) in yLMi 

End if 

End for 

End 

Figure 4-2: Algorithm for extracting Local Model. 
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class boundary is determined its Lagrange coefficient. The Lagrangian in the SVM model can be 

compared to the αi for the KFD. A higher coefficient in αi corresponds to a more useful sample for 

the purpose of reconstruction of the database in consideration. Figure 4-2 show the algorithm for 

step 2: Local Model (LM) for a Data Segment.  

4.1.3 Merging 

Step 3 is merging local models extracted in step 2 to construct a unified dataset for the WNN. To 

reduce the imbalance in representations of the two classes, all samples from Smin is included in the 

unified dataset without repetition, while only the important samples, as determined in step 2, are 

included in the final training set. A kernel based piecewise linear classifier should be able to 

perform at minimum as good as the weakest of the local models used to construct the merged 

dataset. For simplicity and efficiency, we assume that, all minority samples are informative, hence 

the merged dataset should include entire of the minority samples. Construction of the merged 

dataset can be expressed by, 

 
min

1

: {X , y }
r

U LMi LMi
i

S S


   (5) 

 —where the merged dataset, Su, is a superset of the set of all samples from minority class and the 

informative negative samples as extracted from step 2, local modeling. If in step 2 all informative 

negative samples are extracted using local models, Su contains all of them and hence can be 

regarded as sufficient for achieving optimum classification performance.  

4.2 DATASET WITH SUB-SAMPLED MAJORITY CLASS: ASSOCIATED INFORMATION LOSS  

The sub-sampling process mentioned in section 4.2 suffers from the difficulty in determining 

optimum number of data segments, r. Optimum value of r depends on several characteristics of 

the training dataset. Intuitively it seems that, extraction of more data segments to reduce 
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information loss would result in the best result. A very high value of r would result in very little 

reduction in majority class samples for the machine learning algorithm—which is the first problem 

we want to solve in this work. Moreover, information contributed by two different segments may 

be contradictory to each other in some cases (i.e. when each of the segments are largely insufficient 

and represent different concept of the classes). Hence, lesser number of data segments may be 

preferred over many data segments.  

Concept of entropy is used to characterize the (im)purity of an arbitrary collection of examples. 

Information Gain is the expected reduction in entropy caused by partitioning the examples 

according to a given attribute. The entropy of an arbitrary set, with r different subsets in it, is given 

by: 

 
2

1

( ) ( ) log ( ( ))
r

i i

i

I S P S P S


   (6)   

Here, P(Si) denotes the probability density function corresponding to the sample set under 

consideration. And for a specific division, Dr, the gain ratio is given by, 

 
{1,2, ,r}

,( , ) ( )
| |

v

r v v i

v

S
G S D I S S S

S

     (7) 

To ensure that each of the local models are optimum, step 1 through 2 are repeated as long as the 

local models are equally good. To construct the concept of goodness of a model, the weakest 

performance of any classifier is identified as that of a naïve classifier, which classifies all sample 

to be from the majority class.  That is why the simple set theory approach to merge the local models 

in an aggregative manner without any repetition is adopted. The gain ratio associated with a naïve 

classifier is given by, 
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| |

v

N v v N maj

v

S
G S D I S S D S S

S
       (8) 

After every iteration, G(S,Dr) is computed and the under-sampling continues as long as the 

decrease in magnitude of G(S,Dr) becomes insignificant, and G(S,Dr)> G(S,DN). The iteration is 

stopped when one of the following conditions are met: a preset number of iterations are completed 

or G(S,Dr) starts to decrease. This, minimizes information loss associated with the applied 

subsampling process.  

The information loss associated with the segmentation process can be parametrically measured 

using (8) and hence can be numerically optimized throughout the proposed methodology. The 

entropies corresponding to sub-sections in 4.1 are shown in rest of this section. It will be evident 

from the entropy calculation that, the proposed under-sampling method successfully reduces class 

imbalance but still retain the necessary information. In the repetitive under-sampling process, the 

initial entropy of the original un-segmented dataset is given by, 
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   (9) 

4.2.1 Random Segmentation 

After the jth iteration of step 1, the random under-sampling, the new entropy of the system is given 

by, 
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Here, i denotes the index of the random segment and the summation is computed over all the 

segments. There exist only one term that corresponds to the minority class, since minority class is 

not segmented. Equation (10) represents a specific case of (8), where the summation parameter i 

corresponds to each segment in jth iteration. Either of (8) or (10) can be used to find the optimum 

segmentation. After several iteration of the method described in IV.A, the random under-sampling 

process, Ij(S) starts to saturate and the segmentation iteration is stopped.  

4.2.2 Local Model 

The entropy of the kth local model is given by, 

| | | | | | | |
log log

| | | | | | | |

pk pk nk nk

LMk

LMk LMk LMk LMk

X X X X
I

X X X X
  

   
   
   

  (11) 

Here Xpk and Xnk denotes the set of positive support vectors and the set of negative support vectors 

of the kth local model respectively. And the associated imbalance ratio of the kth model is much 

lower as expected. 

4.2.3 Merging 

After the 3rd step, merging, is completed—the entropy of the under-sampled dataset is given as the 

summation of all the ILMks. Now, for the entropy, 

min min
| | | |

nk maj

nk jk ma

S S
X S

X S
     (12) 

Hence, (12) justifies utility of the segmentation step of the proposed algorithm for a dataset with 

imbalanced class. In the next chapter, our proposed model optimization technique is described. 
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5 MODEL OPTIMIZATION FOR CLASS IMBALANCED DATASET 

Model optimization encompasses the entire process that develops a suitable model for capturing 

the characteristics of the target classes based on available input features. To deal with the inherent 

non-linearity of the target classes, in V.A a kernel optimization technique is presented. This 

proposed kernel optimization technique accept the moderately imbalanced input data, and 

transform it into sample set residing in a Hilbert space optimized for a learning machine. All the 

computation required for the classification must be valid after the optimization is completed in an 

inner product space. The dataset in consideration is then trained and classified using a kernel based 

weighted neural network (WNN) training algorithm. So, in V.B our proposed method of 

optimizing a universal single hidden layer feed-forward network is described.  

5.1 KERNEL TRANSFORMATION 

The kernel function is used to map the data from input space to high dimensional Hilbert feature 

space. In order to address the imbalance between the two classes’ representation in the training 

dataset, the initially chosen kernel is modified to enhance the high dimensional hyperplane region 

that separates the two classes. In the following two sub-sections the mathematical foundation of 

modifying the kernel function and derive an expression to approximate the advantage of kernel 

transformation are described respectively. 

5.1.1 Mathematical Foundation 

To optimize an ordinary kernel function to gradually be transformed into a kernel function that 

better suits the class imbalance problem, a conformal function is associated with the original kernel 

function as a multiplication factor. As long as the conformal function is positive semi-definite for 
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practical purposes and is continuous, the modified function is a valid kernel function. Let, the 

original kernel function from (1) be modified as: 

 
ˆ ˆ ˆ( , ) ( ) ( ) ( , )K D D Kx x x x x x  (13)  

The most suitable conformal function, D(∙), is found to be very much data dependent just like the 

kernel function itself. As long as, D(∙) is positive continuous function, K̃us(∙,∙) is a valid kernel 

function which is the only requirement to apply Mercer’s kernel trick.  

To find a suitable function for D(∙), the Riemannian manifold distance associated with the RKHS 

is examined. The incremental distance, ds, along the margin is needed to be magnified in order to 

aid the classification of the imbalanced dataset. Look into the distance as defined in the RKHS: 

 
2 2 2

|| || || ( ) ( ) ||ds d d    z x x x  (14)  

Here, dz denotes the boundary in the RKHS and ||∙|| operator is used to denote the L-norm of the 

enclosed vector quantity. Applying the Taylor’s expansion for vector spaces and ignoring higher 

orders of the differential terms, we can write for all practical purposes:  

 ( ) ( ) '( )d d    x x x x x  (15)  
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Substituting the kernel function k() in (16) by (13) gives, 
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Where, xm is one of the informative samples as selected in section 4.1, and θ is a normalization 

factor chosen by the system designer. Number of samples near the boundary is a good choice for 

θ. Equation (17) and (18) together completes the kernel optimization for the imbalanced dataset. 

The derived kernel is used to formulate the gram matrix and passed on to the proposed weighted 

neural network for classification. 

5.1.2 Entropy Analysis  

Let, for the under-sampled dataset, Sus, the modified gram matrix be denoted by K̃us and for dataset, 

S, the modified gram matrix be denoted by K̃. Also let, the sorted list of Eigen values corresponding 

to the gram matrix, K̃, be: Λ={λ1, λ2, λ3,… ,λn} and the sorted list of Eigen values corresponding 

to the gram matrix K̃us be: Λus={λ'1, λ'2, λ'3,… ,λ'ru}. When, Sus, is a representative subset of S,  

 us
  

 (19)  

The information loss of repetitive sub-sampling in high dimensional feature space representation 

is given by, 

 

|S | |S|

2 2

1 |S | 1

( ' )
us

us

Dr i i i

i i

SSE   
  

   
 (20)  

The experimental objective of the methodology is to minimize SSEDr. Now, to compute the 

information loss when the general kernel is used, let, for Sus, the gram matrix be denoted by Kus 

and for S, the gram matrix be denoted by K. Also let, the sorted list of Eigen values corresponding 

to K, be: Λ*={λ*
1, λ

*
2, λ

*
3,… , λ*

n} and the sorted list of Eigen values corresponding to Kus, be: 
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Λ*
us={λ'*1, λ'*2, λ'*3,… , λ'*ru}. Here, the information loss of repetitive sub-sampling in high 

dimensional feature space representation is given by,  
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* * * 2 * 2
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i i
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  (21) 

The second terms in (20) and (21) are already very small since the under-sampled training set is 

assumed to contain most of the necessary information for separating the two classes. So (20) and 

(21) respectively becomes, 
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Comparing (20) and (21), the first terms correspond to the repetitive under-sampling process. The 

kernel transformation, described in (13), increases the distance of the training samples from the 

hyper-plane in average. This shifts the magnitude of (20) or (21) towards the first term from the 

second term, and hence we can write: 
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So, the information loss for the kernel modification is less than that for the original kernel method. 

This demonstrates the utility for the kernel transformation.  

5.2 WEIGHTED NEURAL NETWORK 

The proposed NN is a single hidden layer feed forward network (SLFN). An interesting 

characteristics of artificial NN is that, they can be optimized in different ways to approximate the 
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same target system [37]. In 2006 Huang et al showed a single hidden layer NN with randomly 

generated hidden layer weights can approximate any target function, given that it contains 

sufficient number of neurons, by optimizing only the output layer weights [36], whereas the nodes 

remain random. We discuss the proposed NN in following paragraphs.  

5.2.1 Overview of the Weighted Network Architecture  

To optimize the training process of an ordinary SLFN for the class imbalanced training dataset, an 

optimized weight matrix W is associated with the input data. The conceptual diagram of the 

network is shown in Figure 5-1.  The training data, X, along with the label vector is coupled with 

a diagonal weight matrix, W. The input layer associates it with corresponding weights and pass as 

input to the randomly selected hidden layer. The hidden layer passes the data through respective 

activation function of the corresponding processing element and the output of hidden layer is 

transferred to the output layer activation function through another layer of weight matrix.  

The output of the output layer is the network output which, in ideal scenario, matches with the 

input labels for training dataset. Notice, the dimension of input data as well as the number of hidden 

layer neurons are variable. The weight matrix affects the way that network treats individual sample 

 

Figure 5-1: Functional outline of WNN. The weight matrix, W, is an accessory to the training of 

the SLFN and is not used for normal operation. 
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of the input data only in training stage and inherently is not part of the network. So, the weight 

matrix is a component of training the network, not a component of the trained network that 

classifies unknown samples. Hence, while the network is not learning/training the weight matrix 

W has no effect on its operation and can be treated as a general SLFN.  

5.2.2 Mathematical Model 

In order to present the proposed WNN, first the notations are defined. For a given training dataset 

{X,Y}, let X=[x1,x2,…,xN] and Y=[y1,y2,…,yN]T. yi denotes the class label while xi is the sample 

description. An NxN diagonal matrix W is associated with every training sample xi. Intuitively for 

xi from the minority class (positive class), the associated weight Wii is relatively larger than for xi 

from majority class (negative class). To maximize the marginal distance and to minimize the 

weighted cumulative error with respect to each sample, we have an optimization problem: 

Minimize: || Hβ – Y ||2 and || β || 

Subject to: Hβ = Y + Ζ 

Where, H is the output of the hidden layer and β is the weight vector connecting hidden layer to 

the output layer. And the error matrix Z=[ζ1, ζ2,…, ζN]T. 

So, the optimization problem can be written as: 

Minimize, LP := || β ||2 + W 
2

1

N

i

i




          (25) 

Where, ζi = yi – h(xi)β , and, H=[ h(x1); h(x2);…; h(xN)] 
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Equation (25) is the formulation of the optimization problem addressed in the preceding paragraph. 

The constraints β and ζi are defined as above and (25) can be minimized equating first derivatives 

with respect to β, W and ζi to zero. Determining the optimal weight matrix, W, is critical for the 

performance of the algorithm for highly imbalanced datasets. We set W as a diagonal matrix, 

where diagonal element corresponding to sample xi is given by, wii=1/ns. Here, ns corresponds to 

the effective number of training samples of the class, that is represented by xi. 

If we transform the data to a RKHS, H, the transformation from input space, I, to H is given by, 

k:Rd xRd→H. If K is the gram matrix, where kij=〈Φ(xi),Φ(xj)〉, then K is a Mercer kernel matrix. 

According to Karush–Kuhn–Tucker (KKT) theorem, the equivalent dual optimization problem 

becomes minimization of:  

2 2

1 1

: (h(x ) )
N N

D i i i i i

i i

L CW y    
 

     
(26) 

—where αi is the ith Lagrangian coefficient of the hidden layer and C is an arbitrary scalar which 

is constrained only by (27) and (28). Introduction of C ensures the numerical solution in (27) and 

(28) converges and to minimize the effect of introduction of an arbitrary constant, C should be as 

large as the numerical solution allows. The only constrain on β and ζ are imposed by their 

definitions, as mentioned prior to (25). Hence, each element of β and ζ is a finite real number. 

Inclusion of the third added term in the problem enables the network to accommodate an ability to 

emphasize specific training samples, i.e. the minority class samples as well as the flexibility to 

sustain occasional error in training samples. Equation (26) can be solved under two different 

conditions, for N≤L and for L<N, as shown in (27) and (28). How to obtain (27) and (28), is shown 

in next paragraph. 
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When, N≤L, (26) can be solved to,   

 
 

1
T TIH WHH WY

C




 
  (27) 

And, for N>L, (26) can be solved to, 

 
 

1
T TI H WH H WY

C




 
  (28) 

Equation (27) and (28) show that this proposed architecture does not require iterative parameter 

updates of β. Rather, H, W, and Y can directly calculate the parameter β.  Equation (27) (28) are 

derived as shown in Proof below. 

Proof:  

Let, α=[ α1, α2,…, αN].  

By taking partial derivatives of (26) with respect to β and equaling to zero, we get, 
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Again, taking partial derivatives of (26) with respect to ζi and equaling to zero, we get, 
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  (30) 

And again, taking partial derivatives of (26) with respect to αi and equaling to zero, we get, 

 

1

0 (h(x ) ) 0

h(x ) , {1, 2, , }

N

D

i i i

ii

i i i

L
y

y i N

 


 




     



    



  (31) 



33 

 

—which is the defining equation for ζi. While, (29), (30) and (31) constitute the KKT optimality 

condition. Substituting ζi  in (30) using (31) and then substituting α in (29) gives us β. Depending 

on the rank of the matrix H, we employ inverse or pseudo-inverse to solve for the system.  

When, N≤L, right pseudo inverse is computationally less expensive and we determine the solution 

as (27). And, when L<N, left pseudo inverse is computationally less expensive and we determine 

the solution as (28).            

 ∎ 

This proves (27) and (28)—which constitute the functional basis of the proposed NN structure. 

The identity matrix I in the solutions are included to avoid the singularity incidence that often 

occur in practical databases. For a very high value of C, C–1 approaches zero, hence the effect of 

including the extra term in solution affects negligibly to the numerical solution as long as 

differentiable by the numerical computation precision. For example, with computation 

environment with 64 bit signed floating point numbers with 51 precision bits, the boundary 

condition is given by, 𝐶 < 10211
.   

As concluding remarks, the proposed network architecture is fast—since it is a single layer 

network and does not depend on iterative procedures for convergence. The computation 

complexity of the network is also reduced by a factor of SN compared to ordinary approach as will 

be shown in section 6.8. Next in Chapter 6, we extend our discussion to experimental setup and 

results of the proposed algorithm for several class imbalanced datasets.  
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6 EXPERIMENTAL RESULTS AND ANALYSIS 

To conduct successful experiments we evaluate the performance of the classification algorithm 

with appropriate metrics and compare our results with other related works. Hence, we organize 

remaining of this chapter as follows: in section 6.1 we present a description of the datasets used 

for experimentation; in section 6.2 we describe the performance metrices used to evaluate the 

proposed algorithm; in section 6.3 we present experimental classification performance of the 

proposed algorithm on representative datasets; in section 6.4 we analyze receiver operating 

characteristics of the proposed algorithm; in section 6.5 the data modification stage is critically 

investigated; in section 6.6 the kernel optimization stage is critically investigated with 

experimental results; in section 6.7 the proposed method is compared with state of the art methods 

in terms of performance; and in section 6.8 computational time for training of the proposed method 

is analyzed. 

6.1 DATA 

To compare the proposed method with other relevant works [25], [28], [34], [35] we used 

imbalanced datasets widely used throughout the community for evaluating classification 

algorithms. Following paragraphs present a short description of each of the datasets.  

All datasets, except CTC [8], we used for testing and comparing the performance of the proposed 

methodology, were extracted from the UCI learning repository [39]. We used several datasets from 

this source. Table 6-1 presents a summary of these datasets. The CTC is a compiled collection of 

Computed Tomographic Colonography images from 8 different hospitals. 
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Table 6-1 presents information about 23 datasets used for the experimental procedure of the 

proposed method. The “#Attributes” denotes the number of features available in the source dataset. 

For some of the datasets (i.e. Wisconsin Breast Cancer), this number includes an ID of the sample 

Table 6-1: Datasets Used for Evaluation of the Proposed Algorithm  

Dataset # Attributes Ratio (P/N*100%) # Samples 

Wisconsin(Breast Canc.)  32 59.4 569 

ISOLET B  617 4 7797 

ISOLET D 617 4 7797 

ISOLET A 617 4 7797 

ISOLET E 617 4 7797 

ISOLET I 617 4 7797 

ISOLET O 617 4 7797 

ISOLET U 617 4 7797 

ISOLET M 617 4 7797 

ISOLET S 617 4 7797 

ISOLET R 617 4 7797 

Gene Sequence(Splice Junc.) 61 33.3 3190 

Segmentation (seg1) 19 16.67 210 

Glass (g7) 10 15.7 214 

Euthyroid (euth1) 24 13.5 2000 

Landsat Satellite (sat) 36 9.73 6435 

Abalone1 (9 vs 18) 8 5.75 731 

Oil (oil) 49 4.38 937 

Car (car3) 6 4.16 1728 

Yeast (yeast5) 8 3.56 1484 

Mammography 6 2.32 11183 

Abalone2 (ab19) 8 0.772 4177 

CTC* 884736 10.1 3576 

All datasets are from UCI repository [39] except 

* CTC [8], which is Computed Tomographic Colonography images compiled from 8 hospitals 
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which is not used for the final classification process. Also, for some of the datasets the #Attribute 

includes the class label. The P/N ratio is defined as the ratio of number of positive samples and 

number of negative samples. Intentionally datasets that cover a diverse range of P/N ratio was 

selected to investigate the performance of the proposed algorithm at different levels of imbalance. 

One should consider that, table 6-1 provides information about the source dataset, not the 

training/test data—which are subset of the source datasets. In the next section the metrics for 

evaluating performance of the proposed algorithm are presented.   

6.2 PERFORMANCE METRICS 

With highly skewed data distribution, the overall accuracy(=(TP+TN)/(P+N)) metric is not 

sufficient. Here, TP, TN, P and N stands for number of true(correctly detected) positives, true 

(correctly detected) negatives, positives (in the whole set) and negatives (in the whole set) 

respectively. For example, a naïve classifier that predicts all samples as negative has high 

accuracy—while practically, it is totally useless in detecting rare positive samples.  

To deal with class imbalance, two kinds of metrics have been proposed: G-mean and F-measure. 

G-Mean is the geometric mean of two accuracies, namely sensitivity(=TP/P) and 

specificity(=TN/N). G-mean is defined as:  

G-mean * *TNTP sensitivity specificity
P N

 
  (32) 

F-Measure, concentrates on high detection accuracy of one class while very moderately 

incorporating the detection accuracy of the other class and can be computed from 

precision(=TP/(TP+FP)) and recall(=sensitivity). 
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2 * *
F-Measure

Precision Recall

Precision Recall


   (33) 

Another common metric is the area under the curve (AUC) of the receiver operating characteristics 

(ROC— sensitivity vs FP/(TP+FP) curve). AUC is more suitable for comparing several algorithms 

on same dataset. The choice of the metric is application dependent. For moderately to highly 

imbalanced classification problems, G-Mean provides good measure of effectiveness. Very highly 

imbalanced classification problems usually employ both G-Mean and Accuracy to investigate the 

trade-off between design constrains and application requirement. In this article, both will be used 

for analysis of the proposed algorithm. Also for comparison with relevant methods we use overall 

accuracy, G-Mean and computation time for training.  



38 

 

6.3 CLASSIFICATION RESULTS  

The proposed algorithm was developed and tested in MATLAB executed on a 64bit Microsoft 

windows OS. All the experimental results are obtained using 5-fold to 10-fold cross-validation. 

Table 6-2: Accuracy Performance on Representative Datasets 

Dataset Accuracy Sensitivity G-mean F-measure 

Wisconsin 98.1(0.8) 95.8(2.3) 97.6(1.6) 97.4(1.7) 

Isolet B 84.7(1.8) 86.3(9.2) 85.5(10.9) 30.3(12.1) 

Isolet D 79.5(1.6) 74.7(9.1) 69.6(7.8) 61.7(8.1) 

Isolet A 89.7(1.7) 71(11.5) 80.1(8.4) 34.6(9.6) 

Isolet E 91.6(1.5) 85.7(5.8) 88.7(4.2) 43.9(4.9) 

Isolet I 79.5(1.9) 43.3(8.3) 59.24.0) 14(4.3) 

Isolet O 84(1.6) 49.3(9.4) 28.5(8.8) 44.3(9.5) 

Isolet U 85(1.5) 96.7(8.7) 90.4(6.4) 33.1(7.2) 

Isolet M 79.8(1.5) 44.7(5.3) 60.2(3.3) 14.5(3.8) 

Isolet S 80.9(2.0) 52.7(6.2) 65.7(3.6) 17.5(5.0) 

Isolet R 81.8(1.8) 52.3(4.0) 65.9(2.3) 18.1(2.7) 

GeneSeq 87.4(1.2) 85.9(8.9) 86.9(6.1) 77.3(6.7) 

Segmentation 97.6 (1.4) 80(6.4) 89.7(4.0) 90.6(4.6) 

Glass 92.1 (3.2) 82.8(9.1) 88(6.1) 73.8(6.3) 

Euthyroid 92.4(1.3) 89.5(8.2) 91.1(7.9) 73.7(10.6) 

Satel. 90.1(1.9) 82.1(11.0) 86.4(7.6) 59.6(8.2) 

Abalone1 92.3 (2.6) 77.5(9.1) 85(6.4) 52.5(7.0) 

Oil 91.9 (2.3) 76.9(5.9) 84.4(3.5) 44.1(3.8) 

Car 98.4(0.9) 75.4(6.4) 86.5(4.6) 78.8(4.7) 

Yeast 78.4(2.6) 74.5(2.0) 76.5(2.3) 19.1(2.5) 

Mammography 94.6(1.5) 82.7(7.3) 88.6(5.8) 41(6.1) 

Abalone2 79.4(1.9) 75(6.7) 77.2(7.2) 25.3(7.5) 

CTC 91.3(0.9) 86.4(3.1) 89.7(2.4) 86.9(2.9) 

Mean 87.9 70.0 77.0 44.1 
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For cross validation we allowed up to 25% overlap to accommodate for highly imbalanced data 

and scarce positive samples. The experimental results for performance metrics are shown in Table 

6-2.  

Table 6-2 shows four accuracy related metrics i.e. Accuracy, Sensitivity (Recall), G-Mean and F-

measure for all 23 datasets along with standard deviation of corresponding metric along the 

recorded runs for each dataset. The last row shows the mean for all 23 datasets. Notice the accuracy 

varies between 78% and 98%—a fairly acceptable range considering the highly imbalanced data 

distribution. The standard deviation portrays consistency of performance for the proposed 

algorithm for respective dataset. For any imbalanced data distribution, Sensitivity is one of the 

most important performance metric. Notice the high magnitude of parenthesized standard 

deviation values, which denote the performance varied highly within different runs. This signifies 

the high imbalance ratio in training set, as some of the runs did not contain sufficient positive class 

samples to correctly represent the minority class— a typical problem for highly class imbalanced 

data. As can be seen from table 6-2, proposed WNN-UID demonstrated acceptable sensitivity 

performance. Overall G-mean and F-Measure portrays more complete evaluation of the 

performance of any classification algorithm. From table 6-2 it is evident that for most of the 

datasets, the performance of WNN-UID is acceptable regarding the imbalance nature of the 

concerning datasets. 
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6.4 ROC ANALYSIS    

Fig 6-1 shows ROC for selected databases corresponding to tuning the network bias, β, from 

section 5.2. For all datasets, the algorithm saturates after certain sensitivity is achieved and no 

more improvement in sensitivity can be achieved. This characteristics is attributed mostly to rarity 

of the positive class samples and limitation of ability of the machine learning method used to learn 

the pattern. This may be eliminated by using entirely different activation function or by drastically 

changing the number of hidden nodes or by changing the kernel function used. Six different colors 

represent the ROC curve for six different UCI datasets from table 6-1. Also the algorithm responds 

differently to different datasets—which indicates the usefulness of the algorithm for the 

corresponding dataset.  

 
 

Figure 6-1: Receiver Operating Characteristics Curve for varying the Neural Network Parameter 

β, corresponding to six representative UCI Datasets. 
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Figure 6-2 shows ROC for selected databases corresponding to tuning the maximum number of 

boundary points for kernel transformation, from section 5.2. Similar to Figure 6-1 the ROC curve 

is shown for six UCI datasets. Without any kernel tuning a linear machine learning mechanism, 

i.e. a SLFN, exhibits very poor sensitivity. Also notice, the sensitivity rises very quickly with 

introduction of kernel optimization. Again, the impact of high imbalance ratio cannot be entirely 

eliminated with introduction of kernel optimization and the impact is training dataset dependent. 

With rare samples of the positive class, achieving a 100% sensitivity is practically not feasible. If 

the results of Figure 6-1 and Figure 6-2 are compared, it is easily perceptible that, the highest 

sensitivity for a pre-specified dataset is fixed—which imply the proposed algorithm to be robust.  

 
 

Figure 6-2: Receiver Operating Characteristics Curve generated by controlling the conformal 

transformation of the kernels, corresponding to six representative UCI Datasets. 
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6.5 ANALYSIS OF DATA MODIFICATION    

Proposed WNN-UID method consists of two step improvement, as mentioned in chapter 3, 

compared to traditional classification methods: dataset modification (chapter 4) and model 

optimization (chapter 5). In this section we present a comparative analysis of accuracy 

  

(a) (b) 

  

(c) (d) 

 

Figure 6-3: Comparison of effect of Data Modification on (a) Accuracy, (b) Sensitivity, (c) G-

Mean and (d) F-Measure, for six representative datasets. The blue bars correspond to 

performance metric of the WNN-UID algorithm and the brown bars correspond to performance 

metric of the same WNN algorithm without any data modification. G-mean. 

  

glass euth sat ab1 oil car
0

0.2

0.4

0.6

0.8

1
Accuracy

 

 

With Data Modification

Without Data Modification

glass euth sat ab1 oil car
0

0.2

0.4

0.6

0.8

1
Sensitivity

 

 

With Data Modification

Without Data Modification

glass euth sat ab1 oil car
0

0.2

0.4

0.6

0.8

1
G-Mean

 

 

With Data Modification

Without Data Modification

glass euth sat ab1 oil car
0

0.2

0.4

0.6

0.8

1
F-Measure

 

 

With Data Modification

Without Data Modification



43 

 

performance between the proposed WNN-UID approach and a modified version of the proposed 

WNN, without any dataset modification.  

Figure 6-3 shows (a) Accuracy, (b) Sensitivity, (c) G-Mean and (d) F-Measure in presence of the 

data modification stage of the proposed WNN-UID and without the data modification stage for 

selected six datasets. Figure 6-3.(a) indicates that accuracy declines with addition of the data 

modification stage. But Figure 6-3.(b) indicates that sensitivity increases with addition of a data 

modification stage. For imbalanced class distribution, accuracy often portrays a very incomplete 

perception of the performance of the classifier. Our experiment on all 22 datasets revealed an 

average of about 2.5% increase in accuracy with removal of the data modification stage and an 

average of about 11% increase in sensitivity with addition of the data modification stage. Figure 

6-3.(c) indicates that G-Mean increases with addition of the data modification stage. But Figure 6-

3.(d) indicates that F-Measure decreases with addition of a data modification stage. For imbalanced 

class distribution, G-mean is often considered the most critical performance metric. Our 

experiment on all 22 datasets revealed an average of about 5% increase in accuracy with addition 

of the data modification stage and an average of about 1.5% increase in F-Measure with removal 

of the data modification stage. The results presented in Figure 6-3 demonstrate that the introduced 

data modification increase all four performance metrics and hence is worthy to be included in the 

learning process. Especially the increase in sensitivity imply a net effectiveness of the learning 

algorithm. The comparatively moderate increment of accuracy is a mere reflection of high 

imbalance ratio present in the datasets under consideration. 

The data modification stage is a critical stage of the proposed WNN-UID. It leverages the 

performance of the classifier by reducing imbalance ratio even in presence of a WNN, and the 

advantage is clearly perceptible by the increase in sensitivity and G-Mean metrics.  
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6.6 ANALYSIS OF KERNEL OPTIMIZATION   

Now we analyze the effectiveness of the kernel modification step of the proposed method. The 

purpose of introducing a kernel modification stage was to increase effectiveness of the 

classification algorithm. Note that, for highly imbalanced datasets, achieving a high accuracy is 

not the utmost priority. Rather achieving higher sensitivity and specificity is of higher priority. 

Which is why we chose to use the sensitivity, G-Mean and F-Measure metrics as evaluator of 

performance in the first place.  

Table 6-3 Presents mean of all the performance metrics for all datasets. The two sets of results, 

above and below, correspond to implementation of the WNN-UID algorithm with kernel 

optimization step and without kernel optimization step respectively. Notice the change in each of 

the performance metrics with introduction of the kernel optimization step. The increase for 

accuracy is comparatively small—which is an expected result, as we mentioned earlier in this 

section. For sensitivity, G-mean and F-measure the increase in performance is significant. This 

justifies the necessity of the conformal transformation of kernel step, as discussed in section 5.1. 

The sensitivity increased by a fair amount of ~17% in average for the corresponding databases. 

Both G-mean and F-Measure increase by about 25% with introduction of the kernel optimization 

Table 6-3: Comparison of Effect of Kernel Transformation on the Proposed WNN-UID. 

Metric Without Kernel Modification  With Kernel Modification 

Accuracy 0.829 0.877 

Sensitivity 0.563 0.693 

G-Mean 0.691 0.764 

F-Measure 0.374 0.421 
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step—which is a good achievement. In summary, it can be safely claimed that the kernel 

optimization step is an effective addition to the proposed WNN-UID algorithm. 

6.7 COMPARISON AMONG THE RELEVANT STUDIES    

In Table 6-4 we compare our results with those of SMOTE (with SVM) [25], GSVM-RU [28] and 

KBA [35]. As already listed in section 2.4, these are state of the art representative methods that 

address imbalance in training datasets. 

Table 6-4 compares performance of the proposed WNN-UID with that of recent state of the art 

methods. WNN-UID achieves similar or better accuracy if compared to the SVM based SMOTE 

Table 6-4: Comparison of Performance with other Methods for Representative UCI Datasets 

Dataset 
Performance Metric 

(relevant methods) 

WNN-UID 

(Accuracy) 

WNN-UID 

(G-Mean) 

Seg. 98.1 [25], 98.1 [35] 97.6 89.7 

Glass 91.8 [25] , 93.7 [35] 92.1 88 

Euth. 92.4 [25] , 94.6 [35] 92.4 91.1 

Satel. 89.9 [28] 90.1 86.4 

Abalone1 86.5 [28] 92.3 85 

Oil 84.9 [28] 91.9 84.4 

Car 99.0  [25] , 99.9 [35] 98.4 86.5 

Yeast 69.9  [25] , 82.2 [35] , 87.8 [28] 78.4 76.5 

Mamm. 89.0 [28] 94.6 88.6 

Abalone2 0 [25] , 57.8 [35] , 81.1 [28] 79.4 77.2 
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algorithm. The KBA algorithm demonstrates somewhat mixed—on some datasets better, and on 

some datasets worse—performance when the accuracies are compared with the proposed WNN-

UID. But because of unavailability of any other metric than accuracy for the KBA algorithm the 

comparison is not very conclusive. On the other hand the GSVM-RU method demonstrates very 

similar performance in terms of G-Means as the proposed WNN-UID. Since G-Means is 

considered as a very reliable performance metric for classification of class imbalanced datasets, 

WNN-UID can be considered a well alternate of GSVM-RU. Since GSVM-RU is known to be a 

highly iterative process with slower convergence time, WNN-UID can be considered as a preferred 

alternative.   

6.8 COMPUTATIONAL TIME 

The kernel boundary adaptation employed is an operation with complexity in O(T’maxN
2) where N 

and T’max are number of samples and number of iterations respectively. It inherently contains 

T’max+1 SVM training operations. Employing the segmented SVM, we reduce the N by a factor sN 

and the new complexity becomes: O(T’maxN
2/sN). The SMOTE increases the number training 

samples by a factor of ni>1 and hence the SVM training complexity becomes: O(T’maxN
2 ni) and 

the total complexity is given by: O(T’maxN
2 ni) + O(N2 ni). The latter corresponds to the 

oversampling technique. The KBA however is an iterative process that requires long time to 

converge in absence of undersampling methods. The complexity is given by O(T’maxKBAN2), where 

T’maxKBA is number of iterations for the KBA to converge (or the preset to stop iteration). The 

complexity of the GSVM-RU can be simplified to as summation of O(T’maxN
2/si), where si denotes 

the reduction factor for majority samples in ith  iteration. 
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Table 6-5 shows the comparison of computation time for training of the proposed algorithm on 

UCI datasets with other methods from [25] and [35]. The proposed algorithm and the other 

comparative algorithms were tested on MATLAB executing on a 64bit Microsoft windows OS. 

The MATLAB 2013a ran on a system with 4th generation Intel i7 Haswell processor with 3.4GHz 

clock speed and 16GB DDR3 memory. The time required for training on different datasets vary 

with sample size, number of attributes and the complexity of the kernel boundary.  

Table 6-5, compares time (in seconds) required for training the corresponding model for SMOTE 

with SVM, KBA and WNN-UID for representative UIC datasets. The time required for training 

on different datasets vary with sample size, number of attributes and the complexity of the kernel 

boundary. As can be seen from the table, WNN-UID requires slightly more time, about 25% on 

average, to train if compared to SMOTE. This is an expected outcome since, SMOTE comprises 

of data modification only and do not include any kernel adjustment. Also, for most datasets WNN-

UID achieves higher accuracy than SMOTE. WNN-UID requires much less time for training when 

Table 6-5: Comparison of Computation Time (second per training 

sample) on representative UCI Datasets 

Dataset SMOTE [25] KBA [35] WNN-UID  

Seg. 1.0 4.3 1.4 

Glass 1.1 4.3 1.5 

Euth. 1.7 17.1 1.9 

Car 1.3 6.4 1.8 

Yeast 1.1 5.7 1.6 

Abalone2 1.5 11.9 1.7 

Mean 1.28 8.28 1.68 
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compared with the KBA. On representative datasets, as in table 6-5, WNN-UID shows 3-fold to 

8-fold improvement in training computation time compared to KBA. Even though the accuracy of 

both methods are very similar, WNN-UID requiring much less time, on average about 20% of the 

time required by KBA,  makes it a more preferable method for most applications. 
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7 CONCLUSION 

A new algorithm for under-sampling class imbalanced data and fast training weighted neural 

network was developed. The proposed WNN-UID takes advantage of, data modification (chapter 

4) for imbalanced class distribution, as well as, model optimization (chapter 5) by kernel 

modification. First, WNN-UID extracted the data modified from the available sample set through 

an iterative process of selective under-sampling. Then, the initial kernel function is incrementally 

optimized to specifically enhance class boundaries for imbalanced datasets by conformally 

transforming the kernel functions. WNN-UID demonstrated promising results of accuracy, close 

to 90% and above as well as 80% and above for G-mean. The analysis of ROC curves and 

comparison tables demonstrated that the data modification and model optimization both 

contributed to increase the sensitivity from 15% to 25%, and from 15% to 35%, respectively. The 

proposed algorithm showed 3-fold to 8-fold improvement in time required for training 

computation when compared to some of the state of the art methods. We plan to extend this 

algorithm for distributed datasets, medical datasets and cloud environment. 

. 
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