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Abstract 

 

Portable energy storage devices, which drive advanced technological devices, are improving the 

productivity and quality of our everyday lives. In order to meet the growing needs for energy 

storage in transportation applications, the current lithium-ion (Li-ion) battery technology 

requires new electrode materials with performance improvements in multiple aspects: (1) energy 

and power densities, (2) safety, and (3) performance lifetime. While a number of interesting 

nanomaterials have been synthesized in recent years with promising performance, accurate 

capabilities to probe the intrinsic performance of these high-performance materials within a 

battery environment are lacking. Most studies on electrode nanomaterials have so far used 

traditional, bulk-scale techniques such as cyclic voltammetry, electrochemical impedance 

spectroscopy, and Raman spectroscopy.  These approaches give an ensemble-average estimation 

of the electrochemical properties of a battery electrode and does not provide a true indication 

of the performance that is intrinsic to its material system. Thus, new techniques are essential to 

understand the changes happening at a single particle level during the operation of a battery. 

Fig: Single NW Electrochemical Device 
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The results from this thesis solve this need and study the electrical, mechanical and size changes 

that take place in a battery electrode at a single particle level.  

 

Single nanowire lithium cells are built by depositing nanowires in carefully designed device 

regions of a silicon chip using Dielectrophoresis (DEP). This work has demonstrated the assembly 

of several NW cathode materials like LiFePO4, pristine and acid-leached α-MnO2, todorokite – 

MnO2, acid and nonacid-leached Na0.44MnO2. Within these materials, α-MnO2 was chosen as the 

model material system for electrochemical experiments. Electrochemical lithiation of pristine α-

MnO2 was performed inside a glove box. The volume, elasticity and conductivity changes were 

measured at each state-of-charge (SOC) to understand the performance of the material system. 

The NW size changes due to lithiation were measured using an Atomic Force Microscope (AFM) 

in the tapping mode. Electronic conductivity changes as a function of lithiation was also studied 

in the model α-MnO2 NWs and was found to decrease substantially with lithium loading. In other 

measurements involving a comparison between the alpha and todorokite phases of this material 

system, it was observed that the rate capability of these materials is limited not by the electronic 

but, by the ionic conductivity.  

 

Mechanical degradation of a battery cathode represents an important failure mode, which 

results in an irreversible loss of capacity with cycling. To analyze and understand these 

degradation mechanisms, this thesis has tested the evolution of nanomechanical properties of a 

battery cathode. Specifically, contact-mode AFM measurements have focused on the SOC-

dependent changes in the Young’s modulus and fracture strength of an α-MnO2 NW electrode, 
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which are critical parameters that determine its mechanical stability. These changes have been 

studied at the end of the first discharge step, 1 full electrochemical cycle, and 20 cycles. The 

observations show an increase in Young’s modulus at low concentrations of lithium loading and 

this is attributed to the formation of new Li-O bonds within the tunnel-structured cathode. As 

the lithium loading increases further, the Young’s modulus was observed to reduce and this is 

hypothesized to occur due to the distortions of the crystal at high lithium concentrations. The 

experimental-to-theoretical fracture strength ratio, which points to the defect density in the 

crystal at a given stoichiometry, was observed to reduce with electrochemical lithium insertion / 

cycling. This capability has demonstrated lithiation-dependent mechanical property 

measurements for the first time and represents an important contribution since degradation 

models, which are currently in use for materials at any size scale, always assume constant values 

regardless of the change in stoichiometry.     
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Chapter 1. Introduction 

 

1.1) Introduction to batteries: 

 

A battery is a device that performs two basic functions in an alternating fashion: (1) storing 

electrical energy or charge within its constituent elements during the “charging” process, and (2) 

delivering the stored energy or charge, on-demand, to an external load during the “discharging” 

process. Batteries are made up of one or more electrochemical cells, which are connected in a 

suitable way to generate the desired output voltage and current. This is accomplished by 

converting the chemical energy stored in their components into electrical energy. The energy 

capacity and performance life of a battery depends on factors such as size and shape of each cell, 

chemical reactions at the interface of cathode and anode material with the electrolyte, 

electrical/mechanical stability of electrodes, chemical stability of the electrolyte, charge capacity 

of the electrode materials, and operating temperature/ environment 1,2. Batteries are mainly 

classified as primary or secondary cells. Primary cells are designed for one-time use, whereas 

secondary cells can be re-used by charging them with an external power supply. With growing 

energy needs, it has become increasingly essential to improve the performance of current-

generation batteries in terms of their technological performance metrics such as capacity, size, 

lifetime, safety and environmental sustainability 3–6. 

 

Over the years, many different electrochemical systems have been employed to build batteries. 

These differ in terms of the underlying electrochemical reaction, ionic charge carrier 
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concentration, and the electrode/electrolyte material system. The first demonstrated 

rechargeable battery was the Lead-acid battery, which was invented by Gaston Plante in 1859. 

This technology is still in use today in automobile and heavy duty appliance batteries. The key 

drawback with this system is that it is bulky, with high maintenance costs and less energy 

density7. After several years of experiments, NiCd (Nickel-cadmium) batteries emerged as a 

solution involving an alkaline electrolyte. Because cadmium is toxic, NiMH (Nickel-metal hydride) 

batteries were proposed in 1989 owing to their improved lifetime and safety characteristics8. In 

recent decades, lithium (Li) metal has also been considered for batteries because of its useful 

properties such as light weight and high electro-positivity9. However, batteries made of pure 

lithium were found to be unstable and unsafe, as lithium is highly reactive to atmosphere and 

dendrite formation from Li anodes results in catastrophic failure due to short circuits10,11. 

Because of such explosive properties, lithium has always been extracted from the earth core as 

lithium minerals, in the form of rocks or from lithium chloride salts. 

 

A key approach to overcome these technological limitations and deliver high-performance 

electrical energy storage involves the use of a lithium-ion (Li-ion) electrochemistry, which 

employs a Li insertion anode instead of pure Li metal to improve safety12. Unlike a lithium metal 

battery, a Li-ion battery does not have lithium metal as an electrode but is made of other 

materials and lithium ions move between the electrodes through the electrolyte in a reversible 

fashion, thereby generating electricity in an outer circuit. A Li-ion battery has four major 

components: an anode, a cathode, an electrolyte and a separator. Typical Li-ion batteries have 
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solid electrodes and a non-aqueous electrolyte13, while there is emerging research on systems 

with solid electrolytes and gaseous or liquid electrodes. 

 

In a battery, the anode and cathode perform the roles of the negative and positive electrodes, 

respectively. An anode material in a Li-ion battery is chosen to have high electro positivity while 

the cathode material used will decide the voltage and capacity of the battery system. Most of the 

batteries are manufactured in a discharged state and companies recommend charging the device 

to full capacity in the first cycle. Li-ion batteries do not accept high initial charging current and 

need a charger to initially charge it with a constant current profile. During a charging cycle, an 

external power source supplies the electrons and force the lithium ions to move from cathode to 

anode, while the opposite reaction occurs during a discharge cycle to deliver power to an external 

load. This process in which lithium ions are inserted and removed back and forth during the 

charging/discharging process is also called as the “Rocking chair” mechanism, and the process of 

inserting Li ions into the material itself is referred to as “lithiation.” Figure 1.1 shows the 

discharge process in a typical Li-ion battery with LiCoO2 and C as the representative cathode and 

Figure 1.1: Schematic of a Li-ion battery, image reproduced from ref. [14] 
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anode materials, respectively14. The electrochemical cycle in this battery can be better 

understood by the following reactions occurring between LiCoO2 cathode and C anode15. 

 

At Cathode:  

𝐿𝑖𝐶𝑜𝑂2  ⇌  𝐿𝑖1−𝑥𝐶𝑜𝑂2 + 𝑥 𝐿𝑖+ + 𝑥𝑒−                   (1) 

                              

At Carbon Anode: 

𝐶 + 𝑥𝐿𝑖+ + 𝑥𝑒−  ⇌ 𝐿𝑖𝑥𝐶                                           (2) 

                                                        

In the above equations, the reaction proceeding from the left hand-side to right hand-side 

represents the charging process, while the reverse process represents discharging. The total 

chemical reaction of the cell is given as: 

 

𝐿𝑖𝐶𝑜𝑂2 + 𝐶 ⇌  𝐿𝑖𝑥𝐶 +  𝐿𝑖1−𝑥𝐶𝑜𝑂2                               (3) 

 

Here x varies between 0 and 1. 

 

Early research was focused on improving the battery system by understanding the redox 

reactions at the electrode surface, especially at the Li anode where porous deposits are formed. 

These deposits penetrated the separator barrier between the anode and cathode through the 

separator, and eventually resulted in short circuiting the battery16. This phenomena is often 

termed as dendrite formation17. While the dendrite problem was solved by replacing the Li anode 
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with other Li insertion materials such as graphite: volume expansion, structural and electronic 

conductivity changes due to lithiation are still open issues that limit the storage capacity and 

cycle-life of batteries18,19. Newer Li-ion batteries, which solve these problems associated with 

traditional batteries, are thus essential. Specifically, in order to make this battery system suitable 

for use in transportation and next-generation portable electronics, improvements are essential 

in the areas of charge capacity, lifetime performance and safety aspects of today’s lithium-ion 

batteries. Furthermore, it has other disadvantages such as high manufacturing costs and safety 

issues arising from the explosive nature of the underlying chemical reaction20. Current research 

is focused on delivering improvements in each of these areas and global attention is focused on 

each component within a battery such as the electrodes, electrolyte, and their packaging. 

 

 

In order to deliver improvements in the electrode material systems, new knowledge is essential 

to understand the lithiation-related, electrode material property changes at the atomic-to-

nanoscale. The focus of this dissertation is on delivering new knowledge related to the 

Figure 1.2: Voltage versus capacity for cathode and anode materials, image reproduced 
from ref. [21] 
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performance of next-generation electrode material systems. The electrode material system has 

a key impact on the performance of a Li-ion battery and this is shown using the output voltage 

vs. capacity chart shown in Figure 1.2 for different electrode materials21. Different materials have 

been studied for use as electrodes in Li-ion batteries in order to increase safety and storage 

capacity22–25. For anodes, early reports indicated the use of carbonaceous materials, including 

graphite have been implemented26,27. But these materials form a passivating layer at the 

interface of anode and electrolyte, called the Solid electrolyte interface (SEI), and this layer 

causes instability of the electrode28. Other carbonaceous materials were later studied to 

overcome the problem, but they resulted in high irreversible capacities during the first cycle, 

which eventually continued for the rest of the cycles. This prompted more studies with different 

materials such as transition metal oxides, which offer two-to-three time’s higher capacity than 

carbon but, were found to undergo structural degradation due to large volume changes29. 

Lithium alloys were considered much before carbonaceous materials and offered great 

advantages, but they also exhibited drawbacks related to very large changes in volume. Recently, 

it was found that reducing their dimensions will considerably help in stabilizing these volume 

changes in anode materials30. 

 

Cathode materials also play an equal role in storing and releasing lithium ions in a repeatable 

manner. Therefore, cathodes are also required to maintain stability during the electrochemical 

cycling process and it is essential to focus attention on improving their storage capacity as well, 

just as with anodes (see Figure 1.3 31 and Figure 1.4 32).  
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Battery potential is the electrochemical potential difference between the voltages of cathode 

and anode materials. Higher the difference in the potential between the two, higher the potential 

of the battery. Moreover, the output voltage of a LIB cell (Wcell) cannot always be improved by 

just increasing the energy capacity of anode, but depend on increasing the energy capacity of the 

cathode.  

 

Figure 1.3: Energy density of a LIB cell vs capacity of a negative electrode 
material, image reproduced from ref. [31] 

Figure 1.4: Electrochemical reduction potential with reference to Li metal vs. Li-ion capacity 
for some common anode and cathode materials, image reproduced from ref. [32] 
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From Fig. 1.3, it can be seen that the energy density of the LIB cell remains close to 250 Wh Kg-1, 

unless the cathode material is changed from LiCoO2 to sulphur. When combined with an anode 

having lithiated graphite, the energy density increases to 296 Wh Kg-1. Fig. 1.4 gives the energy 

capacity for various anode and cathode materials. 

 

Layered or crystalline lithium metal oxides were initially studied for cathodes for their high 

capacity and low manufacturing costs. LiCoO2 was the first cathode material that showed good 

performance and was used in the commercial Sony battery developed by Goodenough and 

Mizushima33. It is still the most widely used material for cathodes. Because of the low 

availability of cobalt in the environment, other metals such as manganese, chromium, and nickel 

etc. were implemented for better use, and to reduce the costs involved in manufacturing34,35. 

Among these, LiMn2O4 has gained much interest but, it has its drawbacks of low specific capacity 

and formation of unstable compounds during lithiation. Lithium iron phosphate (LiFePO4) has 

also been used in commercial batteries for its advantages of safety, high specific capacity and 

lower costs36,37. It has an olivine structure as shown in Figure 1.5, and has a favorable 3D 

framework with one-dimensional movement of lithium ions. Iron stays in the center during 

discharge and recharge cycles and forms strong oxygen covalent bonds37. 

 
Figure 1.5: Olivine crystal structure of LiFePO4, image reproduced from ref. [37] 
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Similar to anodes, reducing the dimensions of materials for cathodes has helped in increasing the 

power density of batteries38. Recently, NIST (National Institute of Standards and Technology) 

developed the world’s smallest reference material (RM) 8027 which has a potential use in 

cathodes of Li-ion batteries39. 

 

Lithium oxidizes in aqueous solutions to form lithium monoxide (Li2O) or lithine (LiOH) depending 

on the reaction with water. Hence, electrolytes need to be non-aqueous and are usually made of 

organic carbonates like ethylene carbonate or diethyl carbonate in ternary solutions such as 

lithium hexafluorophosphate (LiPF6), (as shown in Fig. 1.1), lithium perchlorate (LiClO4) , lithium 

hexafluoroarsenate monohydrate (LiAsF6) , lithium tetrafluoroborate (LiBF4) and lithium triflate 

(LiCF3SO3)40. 

 

In addition to Li-ion electrochemistry, there are ongoing studies towards building better batteries 

using other electrochemical systems such as lithium-air41–43, lithium-oxygen 44,45, lithium-

sulphur46–48, sodium-ion 49,50, and sodium-oxygen (Na-O), among others. These technologies have 

Figure 1.6: Watt-hour per kilogram (W-h/Kg) capacity for various energy sources, 

image reproduced from ref. [51] 
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the potential to revolutionize the current battery industry, and the estimated storage 

performance of these future systems are shown in Figure 1.6 and Figure 1.7 51,52. 

 

1.2) Nanostructured electrodes for batteries: 

 

There is a need to improve the current state of batteries, especially to be able to reach a position 

where batteries can completely replace the automobile engines running on fossil fuels. 

Nanotechnology can help in building better and safer batteries at a reasonable cost, because 

material properties are different at the nanoscale when compared to their bulk counterparts53. 

Electrodes in a battery are made of mixed ionic or electronic solid conductors, while the 

electrolyte is made of an ionic conductor. Since batteries rely heavily on the conductivity of 

materials in the cell, it is important to study the ionic behavior of solid materials in detail at a 

nanoscale level, the study of which is also termed Nanoionics54,55. Li-ion battery performance can 

be improved by increasing the reaction rate at which lithium ions are inserted and removed from 

an electrode surface. This can be achieved by designing a new material structure, improving 

Figure 1.7: The Rechargeable Battery Revolution, image reproduced from ref. [52] 
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crystallinity and also increasing the diffusivity of lithium ions in the solid state. The current limit 

for diffusivity of lithium ions in solid state is 10-8 cm2 s-1 56. The movement of ions in a Li-ion 

battery depends strongly on its diffusivity (τ) and is given by this equation 57: 

 

𝜏 =  
𝐿𝑖𝑜𝑛

2

𝐷𝐿𝑖
                                   (4) 

                                   

where Lion = Diffusion length, and DLi = Diffusion coefficient. 

 

Diffusion length depends on the geometry of the material while the diffusion coefficient depends 

on both size and shape of the material. Hence by controlling the size and shape, the rate of 

diffusion can be controlled58. In the case of nanostructured electrodes, the short diffusion paths 

result in high rates of Li-ion movement and offer high rate capabilities in batteries. The 

advantages offered by nanosized electrodes in batteries are given below57 : 

 

 Increase in surface area of the electrode, thereby providing short diffusion path for ionic 

transport. This also increases the rate at which lithium ions insert and get removed from 

the electrodes. 

 High surface area results in increasing the contact area between electrode and electrolyte 

thereby increasing the rate of reactions. 

 Because of reduced dimensions, there is a change in thermodynamics of some of the 

reactant materials. Inactive materials such as Li2O and LiF become reactive at the 

nanoscale thereby contributing to the increase in reactions. 
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 Nanostructures have better structural integrity during intercalation owing to their 

crystalline or layered properties. 

 

However, using nanomaterials in batteries have some disadvantages such as agglomeration, high 

inter particle resistance and uncontrolled surface reactions, and research is focused on finding 

solutions for it59. Another major hurdle relates to the manufacturing cost involved in the 

synthesis of nanomaterials for fabricating the electrodes. At the same time, the goal of the 

automobile industry is to reduce the cost of manufacturing batteries over half by the year 202060. 

A recent study by researchers at MIT and 24M company have developed a new manufacturing 

technique that replaces the conventional solid electrodes with similar semisolid colloidal 

suspension of particles, thereby reducing the cost of battery by half. This is a promising sign for 

bright future of Li-ion batteries61. Very fast intercalation and de-intercalation process in Li-ion 

batteries also results in undesired and uncontrolled reactions thereby damaging the battery. This 

rate of reaction is higher in nanoparticles, even though their structural stability is much better 

than their bulk counterparts. These limitations to the use of nanomaterials in battery technology 

are target areas for current research. While this thesis has offered some solutions for these 

problems, covering every aspect listed here is beyond the scope of this work62,63. 

 

1.3) Past Research on Nanostructured Electrodes: 

 

Nanomaterials in the form of nanoparticles, nanowires/nanotubes/nanorods, and nanoporous 

structures have been studied for use in various electrode chemistries in batteries. In addition to 
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electrodes, nanomaterials in the form of amorphous or crystalline polymers have been used in 

both solid and liquid state electrolytes to increase mobility and surface charge effects58,64. 

Separators made of nanoporous membranes are used to arrest the movement of dendrites to a 

major extent between the electrodes, thereby preventing short circuit failure65. Nanocoatings for 

the electrodes were studied to reduce electrode decomposition caused by SEI formation in a 

carbonaceous anode66, and in a different study, they were found to increase the capacity of a 

battery67. Figure 1.8 gives a similar idea where a mechanical clamping around a nanowire 

prevents the formation of SEI layer68. Materials such as iron oxide (Fe3O4) nanoparticles69, and 

carbon nanotubes encapsulated with TiO2 nanoparticles70 have shown to produce durable and 

high rate capable electrodes, which can improve the cyclability of the battery. Also, studies are 

being made to form various 2D, 3D structures for electrodes71–77 so as to better accommodate 

for the volume expansion of these materials during the charge/discharge cycles. Nanostructured 

materials such as graphene, tin, silicon etc. are now being studied for use as anode material 78–81 

and materials such as MnO2, silicon, carbon and sulphur etc. for use as cathode material82–85. 

 

Figure 1.8: SEI formation on Silicon surfaces a) Solid Si nanowire. b) Si nanotube, and 
c) Mechanical constraining layer on a Si nanotube, image reproduced from ref. [68] 
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One dimensional nanostructures such as nanowires, nanorods and nanotubes offer advantages 

over nanoparticles owing to their anisotropy86 and to their capability for being single crystalline. 

They have also been used extensively in other applications such as photovoltaics87 and 

nanoelectronics88. As discussed in the earlier section, the unique properties of such 

nanostructures help in improving the performance of current generation Li-ion batteries. Si is 

perhaps the most studied nanomaterial for use as a battery anode. While Si nanowires retained 

their high initial capacity of roughly about 4200mAhg-1 for several charge-discharge cycles, the 

lithiation process causes a 400% increase in volume18. While fracture and cracking in 

nanostructured silicon is less of a problem as compared to bulk Si, there are other concerns such 

as large volume changes, reduction in electronic conductivity and elastic softening. Other 

nanomaterials used for battery components were also found to have similar challenges 

associated with them, particularly because of stress and strain being induced during cycling. 

These issues need to be further investigated, if nanomaterials are to be used in future battery 

electrodes. In terms of cathodes, materials such as hollandite and todorokite were found to 

provide efficient ionic and electronic pathways in the crystal structure for increased storage of 

Li+ and Na+ ions during lithiation. 

 

Techniques such as cyclic voltammetry89, galvanostatic cycling31, electrochemical impedance 

spectroscopy (EIS)90,91, Raman spectroscopy92,93 , X-ray photoelectron spectroscopy (XPS)94, X-ray 

diffraction etc. were extensively used for understanding the electrochemical change in 

nanomaterials over several charging/discharging cycles, but the drawback associated with these 

measurements is that they give an average information on the electrochemical properties in a 
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bulk-scale quantities of the nanomaterial. Figure 1.9 gives the cyclic charge-discharge curves of a 

nanopore battery array having V2O5 as cathode, pre-lithiated V2O5 as anode, ruthenium (Ru) 

current collector and a conventional 1:1 EC: DEC electrolyte95. 

 

In order to truly understand the performance of a nanomaterial, these have to be tested for their 

performance at the single nanowire or particle level. Until recently, there has been a lack of 

proper techniques to evaluate the fundamental mechanism during electrochemistry in a battery 

at an individual single nanowire. Huang et al. performed the first electrochemical study inside a 

Figure 1.9: Electrochemical charge–discharge of a half-cell device at high-rate cycle life. a) Rate 
performance of V2O5/Ru-nanotube battery (blue), O3-treated Ru current collector (pink) and pure 
contribution of V2O5 (green). b) Galvanostatic charge–discharge cycling curves of V2O5/Ru-nanotube 
cathode at various C rates. c) V2O5/Ru-nanotube cathode has 91% of the original capacity after 1,000 
cycles and 80% after 1,800 cycles when cycled at 25 C. d) Charge–discharge curves at the second, 
1,000th and 1,800th cycles. Image reproduced from ref. [95] 
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TEM, with a SnO2 nanowire acting as a working electrode in a battery, having LiCoO2 as a cathode, 

as shown in Figure 1.1096,97. 

 

This study gave a direct correlation of the properties of the material with its electrochemical 

lithiation, which means a direct study of the electrochemical reaction inside that material without 

the influence of any other inactive material such as a binder. There have since been several 

reports that applied the same principle of in situ TEM study for other materials and 

electrochemical systems98–101. For better understanding of the dynamic changes in properties at 

the atomic or nanoscale, such single nanowire studies are necessary and can be done using high 

Figure 1.10: Time-lapse structure evolution of a SnO
2
 nanowire anode during charging at –3.5 V 

against a LiCoO
2
 cathode. The single-crystal nanowire was elongated 60% and the diameter 

increased 45% (resulting in a 240% volume expansion) after charging for 1860 s. (A) Schematic of 
the experimental setup. The initially straight nanowire (B and C) became significantly twisted and 
bent after charging (D to S). The chemical reaction front progressed along the nanowire’s 
longitudinal direction, with the front clearly visible, as pointed out by arrowheads in (E) to (S). The 
red line in (B) to (O) marks a reference point to track the change of the nanowire length. (P) to (S) 
are sequential high-magnification images showing the progressive migration of the reaction front, 
swelling, and the twisted morphology of the nanowire after the reaction front passed by. The big 
dark particle in the middle of (O) is an island of gelled ILE. Because of the long cumulative electron 
beam exposure time during the recording of TEM images, the ILE front became gelled (with high 
viscosity) at this spot. Image reproduced from ref. [96] 
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resolution equipment such as transmission electron microscopes (TEMs), scanning electron 

microscopes (SEMs), and atomic force microscopes (AFMs). But the challenge is to create new 

characterization techniques that can perform these battery diagnostics with high accuracy101. 

 

1.4) Original contributions of this dissertation: 

 

The previously mentioned in situ TEM technique, however, can only provide the information 

regarding morphology, structural and compositional changes happening in a material over the 

life cycle of a battery102. For an understanding of the other electrochemistry related changes in a 

battery electrode such as its electronic conductivity and Young’s modulus, the key is to construct 

a device that has the capability to work as a battery with one single NW as a working electrode 

and to study the properties of it. There were several reports that tested different properties of 

several nanomaterials in this way6,92. But, most of these studies have targeted anode materials 

and there are very few reports on cathode materials. 

 

To address this need, Subramanian et al. 103 has recently demonstrated a single nanowire 

electrochemical cell, which was constructed on silicon chips. This cell integrated a beta-MnO2 

nanowire cathode in the form of a doubly-clamped beam across gold nanoelectrode current 

collectors. This platform has been used in the past to study the electrical, mechanical, structural 

and compositional changes in the single nanowire cathode as a function of its lithium content or 

state-of-charge (SOC). This thesis has used this recently demonstrated on-chip, single nanowire 

platform to test several new material systems at a single nanowire or nanoparticle level for their 
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performance in batteries. Specifically, single nanowires of potential cathode materials were 

deposited on to device regions using the Dielectrophoresis (DEP) technique. While the devices 

are fabricated in an array, each nanowire location can be individually tested for their electrical 

and mechanical properties. The fabrication procedure, which involves dielectrophoretic (DEP) 

assembly, and the factors that control it are discussed in chapter 2. 

 

Chapter 3 presents the electrochemical lithiation results from two different material systems: α-

MnO2 and acid-leached α-MnO2. The NWs are characterized using SEM and AFM imaging. The 

tapping mode scans are further analyzed to measure the diameter changes of these nanowires 

as a function of lithium content inside the electrode material. Also, pure electrolyte dip tests are 

presented to verify that the changes are caused by electrochemical lithiation and not, due to a 

chemical reaction. 

 

Conductivity of the material plays a major role in determining the rate capability of a battery. 

Hence, it is essential to understand the electronic conductivity of the battery material system. 

This thesis has presented electronic conductivity data for a number of different battery materials 

at a single particle-level for the first time. This includes measurements from materials such as 

bio-derived graphitic carbon particles, α-MnO2, acid-leached α-MnO2 and todorokite-MnO2. Also, 

the changes in conductivity with lithiation are measured for the α-MnO2 and acid-leached α-

MnO2 NW system. Detailed information on this experimental procedure and its results are 

discussed in chapter 4. 
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Chapter 5 presents the nanomechanical measurements performed on single NW cathodes. These 

measurements are performed to obtain the Young’s Modulus (YM) and ultimate strength of the 

electrodes. These material properties are essential to study the lithiation induced stresses and 

mechanical failure in battery materials. This work has determined the YM for two different 

material systems at the single NW level for the first time. These include LiFePO4, and α-MnO2 

NWs. 

 

Mechanical degradation of a battery cathode represents an important failure mode, which 

results in an irreversible loss of capacity with cycling. To analyze and understand these 

degradation mechanisms, this thesis has tested the evolution of nanomechanical properties of a 

battery cathode and these results are presented in Chapter 6. Specifically, contact-mode AFM 

measurements have focused on the SOC-dependent changes in the Young’s modulus and 

fracture strength of an α-MnO2 NW electrode, which are critical parameters that determine its 

mechanical stability. These changes have been studied at the end of the first discharge step, 1 

full electrochemical cycle, and 20 cycles.  

 

Chapter 7 presents the main conclusions and recommendations, which have emerged from this 

doctoral dissertation. 
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Chapter 2. Single NW Battery Device 

 

2.1) Device Overview: 

 

The single NW devices are constructed on silicon wafers. Each wafer produces around 200 chips, 

and Figure 2.1 shows the electrode and device regions on one such chip 103. The fabricated chip 

has an array of 200 to 400 devices. The devices have a common large pad on the left to which all 

the electrode pairs are connected. Each electrode pair has a gap ranging between 400nm to 

1000nm between them. The height of the pads is about 100 nm from the silicon nitride substrate 

surface. Each device has a single pad, which is capacitively coupled to the left pad, on the right 

hand side and this works as an individual terminal for single NW electrical measurements. 

 

2.2) Dielectrophoresis: 

 

Dielectrophoresis or DEP is the process in which any neutral particle, when placed in a non-

uniform field experiences a dipole moment, and becomes polarizable. The force of this dipole 

Figure 2.1: a) SEM Image of fabricated chip with one large electrode on the left, 
individual pads to the right. b) SEM Image of one location with α-MnO2 NW, 
clamped using EBID. 



24 
 

moves the particle in the direction of field maxima. From the fundamentals of physics, it is 

understood that a positively charged particle is attracted to and moves towards a negative field 

whereas a negatively charged particle moves towards a positive field. In both cases, the 

movement of the particle will be in the direction of position of maximum field. In Figures 2.2 and 

2.3, the particle will always move to the left because of the presence of strong field. Positive field 

is maximum in Fig. 2.2, while the negative field is maximum in Fig. 2.3104. Also, DEP is independent 

of the type of applied field, which means that the movement of a polarized particle will always 

be in one direction, irrespective of whether it is AC or DC in nature. When a DC source is 

connected to the positive terminal, the particles always move towards the left pad. Similarly, 

when an AC source is connected, there will be alternative positive and negative maxima on the 

left pad and so the movement of the polarized particle will always be to the left. Also, the particle 

need not be conductive to undergo these effects. As long as the particle is polarizable in an 

applied field, it will move in the direction of field maxima. 

 

Figure 2.2: Particles move towards Positive maxima – DEP, 
Image redrawn using ref. [104]. 
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The DEP force is inversely proportional to the distance of the particle from the electrodes. DEP is 

dependent on the following parameters: voltage, time, frequency, shape of field regions, gap 

between positive and negative terminals, shape and size of particle, and initial contact 

position105,106 . The time averaged DEP force acting on an ellipsoid particle in a medium is given 

by this formula107. 

 

< 𝐹𝐷𝐸𝑃 > =  
1

2
 [𝑅𝑒(𝑝̃. 𝛻)𝐸∗] =  

1

2
𝑣 𝑅𝑒[𝛼]̃∇(𝐸. 𝐸∗)                (5) 

 

=  
3

2
𝜋𝑟2𝑙  𝜖𝑚 𝑅𝑒 {

𝜖𝑝
∗ − 𝜖𝑚

∗

𝜖𝑚
∗

} ∇ |𝐸|2            (6) 

            

where 

V = Volume of nanowire    =  𝜋 ∗ 𝑟2 ∗ 𝑙 

Figure 2.3: Particles move towards Negative maxima – DEP, 
Image redrawn using ref. [104]. 
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a, b, c = half-length of major ellipsoid axes 

 = Term for polarizability of the body = 3*ϵm*K 

*p = Complex Permittivity of particle 

*m = Complex Permittivity of medium 

E = External Electric field intensity 

 = Gradient 

 

 

 

Some other applications for DEP based on non-uniform electric fields are listed below: 

 Separate live from dead cells 

 Pollution control 

Figure 2.4: Dielectrophoresis - A) Negative DEP, and B) Positive DEP, image 
reproduced from ref.  [108] 
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 Maser or laser control 

 Fresh water treatment 

 Particulate matter separation 

 Fabrication based application: nanowire based gas detectors, micro-nanosensors, 

transistor gates, diode, photovoltaics etc. 

 

Figure 2.4 gives an example for the use of dielectrophoresis in dispersing live yeast cells in a dot 

micro system108. Here, the particle movement is influenced to occur in the positive or negative 

DEP regime, depending on the control parameters. 

 

2.3) Device Fabrication: 

 

Most steps in the chip nanofabrication process were performed at the Sandia-Los Alamos Center 

for Integrated Nanotechnologies (CINT), a U.S Department of Energy, Office of Basic Energy 

Sciences user facility in Albuquerque, New Mexico. This facility was chosen because of the 

availability of sophisticated laboratory equipment’s such as an advanced Electron beam 

lithography system (JEOL 6300FS), versatile Electron beam deposition system (Temescal FC-2000) 

etc. The fabrication process starts with a 4 inch, 450 μm thick silicon wafer and results in ≈ 200 

chips per wafer. The chips contain different electrode designs and have dimensions of 4 mm x 6 

mm. 
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First step in the fabrication process is to deposit a 200nm low stress silicon nitride film on the 

silicon wafer. Silicon nitride is chosen instead of silicon oxide to assist further fabrication steps, 

which involves the use of strong acids such as sulfuric acid and the use of strong bases like TMAH. 

Each wafer is subjected to two steps of photolithography. First step results in gold pad and 

connecting line fabrication. Here, chromium acting as an adhesion layer. This step consists of 

photolithography followed by metal deposition and lift-off. The second step consists of an 

etching of silicon nitride in select regions to provide contact to the silicon substrate. The third 

and final step involves electron beam lithography (EBL) definition of gold nanoelectrodes in the 

device region with an accuracy in the range of tens of nanometers. Here, the wafer is developed, 

deposited with metal and finally a lift-off step is performed to remove the unwanted and excess 

metal on the wafer. Once this is complete, the wafer is coated with a layer of photo resist, 

attached to a tape and diced into individual chips, each having a dimension of 4mm in width and 

6mm in height. These wafers are vacuum sealed and transported to VCU for carrying out further 

experiments. A small portion of the photo resist layer remains on the wafer after dicing and 

prevents the chips from getting contaminated from any kind of particulates until they are ready 

for use. 

 

2.4) DEP Experimental Procedure: 

 

A single nanowire is deposited across the left and right pads using DEP, which is explained next. 

To realize the electrical circuit for DEP, a negative potential is applied to the substrate (Ground 

Electrode G) while all the right side individual electrodes (Electrode F) are at a floating potential. 
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A positive potential or biasing potential is applied to the large left pad (Electrode B). A liquid 

droplet, with nanowires suspended in it, is poured on top of the chip. Because of the difference 

in permittivity of the nanowire with respect to the medium, the nanowires get polarized, align in 

the direction of the field and are attracted towards electric field maxima. An AC signal drives this 

DEP process and Figure 2.5 shows the equivalent electrical circuit109 .  

 

 

Since the biasing electrode and floating electrode come in contact with liquid suspension, there 

exists a double layer capacitance between the electrode and liquid. This is shown by the 

impedance terms ZB-DL and ZF-DL. In addition, there is impedance between the suspension and bias 

electrode (Zsusp). Finally, there is impedance offered by the capacitive coupling between gate and 

floating electrodes (ZF-G). By calculating the magnitude of these individual components, it is 

possible to evaluate the current or voltage acting on each individual nanowire in the device 

region. 

 

The experimental setup for Dielectrophoresis is shown in Figure 2.6.110 

 

Figure 2.5: Equivalent Electrical circuit, image reproduced 
from ref. [109] 
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2.5) Sub-crossover Frequency Regime: 

 

The time-averaged DEP force acting on a nanomaterial, given by equation 5 has a complex 

parameter “K” in it, which gives the relative polarizability of the NW with respect to the medium. 

This term is also called as the “Clausius-Mossotti” factor, given by this equation: 

 

𝐾(𝜔) =  
𝜀𝑁̃𝑊 −  𝜀𝑚̃

𝜀𝑚̃
                             (7) 

 

Where 𝜀𝑁̃𝑊 represent the complex permittivity of the nanowire, 𝜀𝑚̃: the permittivity of the 

medium. 

 

Figure 2.6: Experimental Setup for dielectrophoretic assembly process a) Si3N4 deposited 
on a silicon substrate. b) Definition of gold Nanoelectrodes. c) Assembly of LiFePO4 NWs 
using AC Dielectrophoresis. d) NW bridging the gap in the electrode region, image 
reproduced from ref. [110] 



31 
 

The complex permittivity is in turn given by this equation, where it is dependent on real dielectric 

permittivity (ϵ), conductivity (σ) and frequency (ω). 

𝜀̃ =  𝜀 − 𝑖
𝜎

𝜔
                               (8) 

 

Positive DEP and negative DEP effects can be visualized from an earlier Fig. 2.4, where positive 

DEP attracts the particle close to the gap region, and negative DEP repels it from the gap. This 

effect depends on how polarizable a particle is with respect to the medium, and is given by the 

Clausius-Mossotti factor (K). When the real part of K term in equation 7 is greater than zero, it 

results in positive DEP and is negative otherwise. To understand the effect of frequency, voltage 

and time, which are the three major factors that control DEP, several experiments were 

performed with α-MnO2 nanowire system. A design of experiments was performed to 

understand the role of these parameters. To start with, a voltage of 1VP-P was applied over a 

deposition time of 2min. At this condition, the frequency was varied between 10 mHz and 20 

MHz to estimate the “fill-factor” for these nanowires. Fill-factor is a term that represents the 

number of electrode locations (out of a total of 100), where there are one or more nanowires 

either bridging the gap, cantilevered or overlapping. Figure 2.7 (a) gives the fill factor values for 

this variable frequency study and it also includes data for “single NW” deposition109. “Single NW” 

condition represents the locations where an individual nanowire is perfectly suspended within 

the gap region at each condition. As it can be seen from Figure 2.7 (a), the fill-factor was 

maximum at 100 kHz frequency, and there was no observed deposition after 20 MHz. Hence, 20 

MHz was the “crossover frequency” (fCO) for this material system. It represents the frequency 
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below which, the DEP is always positive. The curve in the figure is a plot of the Clausius-Mossotti 

factor as a function of frequency using equation 7. 

 

 

Similarly, the experiment is repeated to estimate the effect of AC bias and deposition time on 

DEP. A 10 MHz frequency was chosen to perform these experiments as the DEP force (the 

parameter which moves the nanowire towards the electric field maxima) at this frequency is not 

too high and enables effective control over the movement of single nanowires in the 

electrokinetic region of influence. In the next set of experiment, the deposition time remained 

fixed at 2min, while the voltage is varied between 200mV to 2V. The “fill-factor” and “single NW” 

results from these experiments are shown in Figure 2.7(b). It can be seen that with increasing 

voltage, the fill factor increases as the DEP force is larger thereby, attracting more nanowires to 

Figure 2.7: a) Clausius-Mossotti factor vs Frequency, fCO – Crossover frequency. b) DEP as a 
function of applied bias (V). c) DEP as a function of time (min). d) Electrode design showing 
inter-electrode center line [109]. The computational models in these figures (related to CM 
factor and ROI calculations) were performed by Dr. Subramanian. 
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the gap region. Ideally, the field reduction after the first NW deposition should be large enough 

to prevent the possibility of additional nanowires being attracted. However, this is not always the 

case if there are other nanowires situated in closer proximity to the electrodes, which exert 

sufficient fields at high AC voltages to attract them. As a result, there is decrease in the single-

nanowire to fill-factor ratio with increasing voltage. 

 

Finally, to estimate the effect of time on DEP, another set of experiments are performed where 

the frequency and voltage are kept constant, while varying the DEP time between 2min and 8min. 

These results are shown in figure 2.7 (c) and it can be observed that the fill-factor and single NW 

depositions increase with time, as the nanowires get sufficient time to get attracted to the 

electric field maxima at the electrode edges. While the device geometry is three-dimensional, 

which is difficult to estimate, a two-dimensional approximation has been performed to study the 

variation of electrokinetic region of influence under these different deposition conditions. While 

the experimental results presented here are a part of this thesis, the computational models were 

performed by Dr. Subramanian. Here, the axial region of influence is defined along the inter-

electrode center line as shown in figure 2.7 (d). By drawing a hemisphere with a radius equal to 

RROI along the electrode center line, the volumetric ROI over which the electric fields exert 

influence on the nanowires within the suspension can be written in this form: 

 

𝑉𝑅𝑂𝐼 =  
2

3
 𝜋𝑅𝑅𝑂𝐼

3                      (9) 
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The capture time for a nanowire in a suspension typically ranges from milliseconds to several 

minutes depending on the configuration. Using the computational model, it was found that the 

capture time for a nanowire located at a 5μm distance from the center line varied from 11.38 

micro seconds to 0.71 micro seconds at low frequencies such as 1 kHz (when the bias changed 

from 0.5V to 2V) 109. This deposition time is 8 to 10 orders of magnitude smaller than the sub-

crossover regime of 10 MHz under similar conditions. These small capture times at low 

frequencies in particular will be difficult to control for getting single nanowire depositions. Hence, 

finding parameters that work within the sub-crossover range for any material system will yield 

better results.  

 

This work has identified appropriate deposition conditions for successful DEP assembly of 

multiple nanomaterial systems. These include LiFePO4 NWs (synthesized by Dr. Chunsheng 

Wang’s lab at the University of Maryland), bio-derived sub-micron carbon particles (synthesized 

by M. Demir at Dr. Ram Gupta’s lab at VCU), pristine and acid-leached α-MnO2 particles 

(synthesized by Dr. Pomerantseva’s lab at Drexel University), pristine and acid-leached 

Na0.44MnO2 NWs (synthesized by Dr. Pomerantseva’s lab at Drexel University), N2 doped CNTs, 

and InSb, InSb-Cr, Ni-InSb-Ni tri-layer NWs (synthesized by Dr. Bandyopadhyay’s lab at VCU), 

among others. SEM images showing these deposition results are shown in Figure 2.8.  
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Figure 2.8: SEM images of a) LiFePO4 NW, b) α-MnO2 NW, c) acid-leached α-MnO2 NW, d) GC1000 

nanoparticle, e) Na0.44MnO2 NW, f) acid-leached Na0.44MnO2 NW, g) N2 doped CNT, h) InSb NW, 

and i) Ni-InSb-Ni tri-layer NW in a 3D electrode configuration. 
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Chapter 3. Electrochemical Characterization 

 

3.1) Rationale and Background: 

 

During the course of electrochemical reaction, electrodes typically undergo structural and/or 

phase changes, often accompanied by changes in electrical and mechanical properties. This 

causes a reduction in storage capacity due to a loss of contact with current collectors or due to 

the mechanical failure of the electrode particles. As a result, there has been interest in studying 

the capacity fading mechanism and its causes at a single nanoparticle level111. There have been 

past reports on in-situ lithiation experiments112–116, with many of these reports focusing on the 

use of nanostructured anode materials96,117,118. In the case of nanostructured materials for 

cathodes, studies were mostly limited to synthesis techniques119,120. Among them, very few have 

actually focused on understanding the behavior of cathodes at a single nanomaterial level74,121–

123.  

 

Currently, most of the Li-ion batteries use LiCoO2 as the cathode, and there is a need to replace 

this material system with other materials because cobalt (Co) is not very abundant in the earth’s 

crust, and also high costs are involved in mining cobalt from the ore.  MnO2 is environmentally 

stable and has high initial capacity124. Moreover, it is also non-toxic in nature, and these 

properties make it the most promising material system for testing its compatibility in use of Li-

ion batteries. Based on the way, the structural unit MnO6 octahedra arrange themselves and get 

linked, there are different polymorphs of MnO2
125, mainly α-, β-, γ-, δ-, OMS-6 and todorokite-
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MnO2, where α-, β-, γ-, todorokite types have tunnel crystal structure, δ- have a layered structure 

and λ- have 3D structures . Recently, a single NW electrochemistry platform has been designed 

and demonstrated for studying the performance of cathodes. This platform, which was 

demonstrated at the Center for Integrated Nanotechnologies (Sandia Labs), enables the 

measurement of the structural, mechanical and electrical properties as a function of lithiation103. 

This thesis has used this platform to study the electrochemical performance of two new material 

systems: α-MnO2 and acid-leached α-MnO2. This chapter presents this experimental set-up and 

the lithiation-induced changes, which were observed in the two material systems. 

 

3.2) Experimental Procedure: 

 

The setup for lithiation, which can be used with any type of nanowire electrode, is shown in the 

Figure 3.1. The negative terminal here is connected to a lithium metal (anode). Pure lithium is 

explosive and hence, the experiment is performed inside a glove box. The post-lithiation AFM 

experiments were done in air without harm, since the lithium in the material is in an oxidized 

state. Geometric changes are evaluated using an Atomic force microscope (AFM). 

 
Figure 3.1: Lithiation setup, Electrolyte: EC: DMC (1:1)/LiPF6 
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The α-MnO2 material system has been used in this study, since it has demonstrated high initial 

capacity as a battery cathode. However, the cyclability of this material is poor and hence, the 

goal of this thesis is to understand the changes in this material system, which cause this behavior. 

The crystal structure of α-MnO2 is shown in Figure 3.2126. This illustration does not show the 

stabilizing potassium ions, which are located in the tunnels, for simplicity. This material is of 

interest for battery electrodes since it has vacant structural tunnels that can hold lithium ions 

during intercalation. In the case of the NW material used in this thesis, which has been 

synthesized by the Pomerantseva group at Drexel University, the tunnels run along the 

longitudinal axis of the wires.  

 

 

The α-MnO2 NWs were synthesized by hydrothermal treating a mixture of 2mmol KMnO4 (Acros 

Organics, 99+%) and 2mmol NH4Cl (Strem Chemicals, 99.5%) dissolved in 100ml of deionized 

water, according to a procedure reported elsewhere127. A 20ml of this solution was sealed in a 

23 ml autoclave with a Teflon stainless steel liner and the autoclave was heated at 150°C for 2 

days. After cooling down to room temperature, the solid product was washed thoroughly with 

Figure 3.2: Crystal structure of α-MnO2. Small (red) spheres are oxygen and large (purple) 
manganese lie inside the indicated approximate MnO6 octahedra. Image reproduced from ref. [126] 
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deionized water and then dried at 100°C in air overnight. This results in producing high aspect 

ratio one-dimensional crystals, which are ~15-60 nm in diameter and up to several micron long. 

 

 

 

The morphology of the as-synthesized material is similar to the results reported before127 (Fig. 

3.3 a128). Briefly, MOx units are formed when the chemicals of KMnO4 and NH4Cl are mixed to 

form layer-structured sheet MnO2. Then under hydrothermal treatment, the mixture rolls up into 

nanowires, and K+ ions stabilize the final product as α-phase MnO2.  The bulk-scale characteristics 

of these NWs as shown in EDX spectrum (Fig. 3.3 b) indicated that stabilizing potassium ions are 

present in the NW crystal structure, which corresponds to a stoichiometric composition of 

K0.11MnO2. The XRD pattern of the α-MnO2 NWs, as shown in Fig. 3.3 c, is in good agreement with 

the standard data (JCPDS No. 44-0141) indicating formation of a pure tetragonal phase with I4/m 

Figure 3.3: (a) SEM image (b) EDS spectra and (c) XRD for α-MnO2 nanowires. Images 
reproduced from [128]. Experiments performed by Dr. Pomerantseva group, Drexel 
University. 
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symmetry. The composition the NWs, as determined using EDX analysis, was used to estimate 

the theoretical capacity of the material and was found to be 261 mAh/g at a 1 C-rate. 

 

In addition to pristine α-MnO2 material, acid-leached samples have also been studied. In the acid-

leached samples, the stabilizing potassium ions, which are within the α-MnO2 material, are 

removed using acid treatment. This results in more space within the tunnels for lithium storage 

and also, increases the electrical conductivity of the electrode (as will be discussed in the next 

Chapter). 

 

α-MnO2 nanowires are deposited onto the device regions using DEP, as described earlier. Each 

nanowire is doubly clamped with platinum using the EBID technique129 in order to avoid slippage, 

and also to reduce contact resistance. This chip is now placed on a stage inside the glove box, 

with the positive terminal being connected to the large pad on the left, using a gold-coated probe 

needle. Lithium wire acts as an anode and is connected to a second micromanipulator probe 

holder. An EC: DMC 1:1 electrolyte (Ethylene carbonate: Di methyl carbonate) with LiPF6 

dissolved in it is dropped on the nanowire arrays to complete the electrochemical circuit. To start 

the lithiation, a potential of 2.75V vs Li+/Li is applied for the nanowire array and the state-of-

charge (SOC) is decreased further by using lithiation potentials of 2.25V and 1.5V for the next 

steps. With the same setup, the nanowire will be de-lithiated when a higher voltage of 4V is 

applied. This completes one full electrochemical cycle. At each SOC, the properties of the 

electrode material, such as its size, electronic conductivity and Young’s modulus are measured. 

This chapter presents evidence for electrochemical lithiation of the nanowires and also, presents 
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insights into the size changes in the nanowires. The conductivity and nanomechanical 

measurements of α-MnO2 will be presented in the later chapters. 

 

3.3) Results and Discussion: 

 

 

The SEM images of an α-MnO2 NW device taken at different stages of lithiation, are shown in 

Figure 3.4. It can be seen that this NW remains intact without mechanical fracture. In order to 

measure the size changes caused by lithiation, AFM imaging was performed on these nanowires. 

An example device is shown in Figure 3.5.  

 

At every stage of lithiation, the diameter of several α-MnO2 nanowires was measured using the 

height plot from an atomic force microscopy scan using Bruker Nanoscope analysis software. The 

Figure 3.4: SEM images at different stages of lithiation a) 2.75V, b) 2.25V, and c) 1.5V.  

Figure 3.5: 3D AFM image of pristine α-MnO2 
a) Before lithiation, and b) After 1.5V lithiation 
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change in diameter (y-axis) at unlithiated and 1.5V state of charge is shown in the data presented 

in Figure 3.6.  

 

 

From the graphs, it can be seen that the size of the NW increases with lithiation. This is due to 

the increase in tunnel size after the lithium ions are intercalated into the material. This conclusion 

is supported by past simulations, which have shown an increase in the ‘a’ lattice parameter 

(which corresponds to the NW diameter) due to lithiation130. On the other hand, past models 

have predicted no change in the ‘b’ lattice parameter and this is expected to result in no changes 

in the NW length, as is observed in our experimental results. 

 

To confirm that the size changes are caused by electrochemical activity and not by any chemical 

reaction of the electrolyte, an electrolyte dip test was performed on a chip sample for about 40 

seconds, which is on the order of the lithiation times used in earlier experiments. SEM images of 

Figure 3.6: Diameter calculation for α-MnO2 NWs 
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two different NWs are shown in Figure 3.7. The measured diameter of the NWs, before and after 

the electrolyte dip, did not show any difference. This confirms that size changes occurred due to 

lithiation. 

 

 

 

In addition to α-MnO2 NWs, lithiation experiments have also been performed on acid-leached 

nanowires, which were synthesized and provided by the Dr. Pomerantseva’s lab at Drexel 

Figure 3.7: SEM images of Electrolyte dip test for 
40 secs, no change in diameter from a – b, c – d 

Figure 3.8: a) 1 – Extraction of potassium ions and possible exchange with protons; 2 – Formation of 
oxygen defects; 3 – Disproportionation of Mn3+ into Mn4+ remaining in solid material and Mn2+ 
dissolving in acidic solution. (b) Empty circles show formation of vacancies in potassium (green), 
manganese (blue) and oxygen (red) sites due to the acid-leaching of the material, image reproduced 
from ref.  [131] 
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University. Acid-leaching is a technique in which the material is acid treated to partially remove 

the potassium ions and then, replace them with protons. In this step, nitric acid is used and the 

acid reaction results in three types of vacancies, as shown in the Figure 3.8131. 

 

Figure 3.8 shows AFM images of the un-lithiated and lithiated acid-leached nanowires. 

 

 

Following figure 3.9 gives the AFM section plot of the diameter change in a) acid-leached and b) 

pristine α-MnO2 nanowire before and after lithiation. 

 

 

 

Figure 3.9: 3D AFM image of acid-leached α-MnO2  
a) Before lithiation, and b) After lithiation 

Figure 3.10: AFM section plot - Diameter change comparison 
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Chapter 4: Electrical Characterization 

 

4.1) Rationale and Background: 

 

As indicated in earlier parts of the text, nanomaterials are proposed for use in battery electrodes 

to improve energy and power density132. Electrodes based on nanomaterials help in reducing the 

mass of the inactive material. Another positive attribute is the short diffusion path offered, 

thereby increasing the rate capability of the cell133. Electronic and ionic conductivity of the 

electrode has a direct impact on the performance of the battery and its characterization is 

essential in both, the un-lithiated as well as the lithiated states of the material. A higher 

conductivity enables the movement of electrons and ions from/into the electrode material and 

results in higher charge/discharge at a given rate. 

 

The crystal structure of a battery electrode has a direct impact on its electronic conductivity. For 

instance, the conductivity of representative battery cathodes, which are shown in Figure 4.1, is 

dependent on their crystal structures134. The crystal structure of these materials determines 

different diffusion pathways for the movement of ions and electrons. The first material type is in 

the form of layered compounds, having a 2D framework and have a chemical form LiMO2 (M=Co, 

Ni, Mn etc.). Metal and Lithium cations occupy the octahedral sites of alternative layers as shown 

in figure 4.1 (a). They undergo severe structural changes when more than half of Li ions were 

removed during a discharge cycle. Studies are being conducted by mixing metals such as Ni, Mn, 

Co to form an oxide compound like LiNiyMnyCo1-2yO2 (NMC), which can reduce the drawbacks 
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associated with LiCoO2 and LiNiO2. The second type of cathode material has a 3D framework 

spinel structure with metal cations occupying the octahedral position, but having 1/4 of them in 

the Li layer. This allows for some lithium ions to occupy the vacant octahedral sites in the 

transition metal layer, thereby offering high energy density. These are of the chemical form Li 

[M]2O4 with M = Mn, (Mn1-y/2Liy/2) or (Mn3/4Ni1/4) and were found to undergo capacity fading due 

to Jahn-Teller (JT) distortion associated with Mn3+ unstable ions. Doping with Cr, Fe and Ti was 

also found to reduce this disorder. The third type of compound is the Olivine shape, which offers 

1D framework for movement of Li ions. They are of the chemical form Li [M]PO4 with M = Fe, Mn, 

Ni, Co or (FeyMn1-y) and have metal and Li cations in half of the octahedral locations and 

phosphorus in one-eighth of tetrahedral sites. These compounds offer excellent properties such 

as low cost and non-toxicity, but have a major disadvantage of lower cell potentials. Substituting 

Fe with transition metal ions like Mn, Co, Ni was found to increase the voltage 

substantially57,134,135. 

 

 

 

Although conductivity of nanostructured electrodes is considerably higher than that of bulk 

materials, conductive fillers or additives are still essential to improve their rate capability136,137. 

Figure 4.1: Crystal structure of a) Layered LiMO
2, b) Spinel LiM

2
O

4
 (Blue: M ions, Red: Li ions), 

and c) Olivine LiFePO
4
 (Blue: Fe, Yellow: P ions, Red: Li ions), image reproduced from ref.  [134] 
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There are additional techniques that have been found to increase conductivity, such as doping 

with metal or non-metal ions132,138 and developing new synthesis methods139, and using new 

electrolyte compositions140. Because of the high surface area offered by nanomaterials, the rate 

of reactions with the electrolyte increases at the electrode surface resulting in high self-discharge 

and reduced cycle life. Electrolytic oxidation is one such phenomenon that happens at the 

cathode surface, which is non-reversible, and results in releasing electrons. These in turn react 

with the cathode material forming compounds that affect their electron transport 

performance141. Also, the structure of electrodes affects electron conduction142. In a recent 

study, it was found that 2D crystallized materials offer better characteristics owing to their 

scattering property143. 

 

To summarize, for any battery nanomaterial, controlling and measuring its conductivity will be 

crucial for efficiently implementing its functionality. There are several additional factors that can 

affect this value at the nanoscale as compared to their bulk counterparts. A few of these factors 

are listed below144–148: 

 Presence of Crystallographic defects 

 Impurity during NW growth 

 Oxidation of the surface 

 Increase in surface scattering 

 Carrier Concentration 

 Band gap 

 Temperature 
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But, the techniques developed so far for battery diagnostics give an average estimation on the 

total properties, and are not correlated with the material performance at a single particle level. 

For a better understanding of these changes, new characterization methods are needed to 

evaluate the performance of single battery nanomaterials at different stages of lithiation. This 

chapter presents two-terminal electrical property measurements from single nanowire battery 

electrodes sourced from multiple material systems149,150. There are two types of measurements 

presented in this chapter: (1) electrical characterization of as-synthesized materials; this has been 

performed for multiple material systems such as pristine and acid-leached α-MnO2, todorokite – 

MnO2, bio-derived graphitic carbon particles and n-doped CNTs, (2) electrical characterization 

measurements as a function of lithiation; this has been performed on pristine and acid-leached 

α-MnO2. A comparison of electronic and ionic conductivity of α-MnO2 and todorokite – MnO2 is 

also presented at the end of the chapter. 

 

4.2) Experimental Procedure: 

 

Two-probe and four-probe methods are two popular techniques that have been used earlier to 

perform conductivity measurements on single nanowires151–154. Two-probe method does not 

have a capability to resolve the contact resistance between the NW and the metal contact. This 

method needs additional experimental steps to take into account the contact resistance of the 

NW with the metal surface. On the other hand, the four-point method eliminates the contact 

resistance by adding two more probes to the circuit. In a current controlled circuit, the voltage is 

measured between the same probes in a two-point method, whereas the remaining two probes 
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are used for measuring the voltage in a four-point method. A setup for simultaneous two and 

four point measurements is shown in the Figure 4.2 155. In our case, we use a Keithley 2636B 

source-meter to supply the voltage and measure the current in a two-terminal configuration, 

thereby generating an I-V (Current- Voltage) plot. 

 

 

 

A typical NW device is shown in Figure 4.3, with the NW being deposited at a capacitively coupled 

location using DEP. Double top side platinum metallization clamps are done on both sides of the 

nanowire, made using Electron beam induced deposition (EBID). The function of these clamps is 

to reduce the contact resistance between the nanowire and the gold surface109. 

 

Figure 4.2: Simultaneous set up for two and four-point measurement. 
Image reproduced from ref. [155] 

Figure 4.3: SEM image of α-MnO2 NW, double clamped with Pt EBID 
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Each pad on the right side of the chip is wired to an individual device, while the one on the left is 

common to all devices on that chip. To perform the I-V measurements, one probe (positive) is 

brought in contact with the right side, individual pad and the second probe (negative) is brought 

in contact with the left-side common pad (Figure 4.4). The goal of the IV measurements is to 

characterize the electrical properties of one suspended nanowire at any given location. The 

resulting data is used to either quantify the electronic conductivity of the material or to gain 

insights into the changes in electron transport performance as a function of lithiation. 

 

 

In measurements involving the α-MNO2 material system, the contact resistance term is 

quantified using a technique where the two-probe measurements are performed on two 

separate device locations, each with a different probe separation156,157. In such a two-probe 

setup, the total device resistance is given by this formula109,158: 

 

𝑅 =
𝑉

𝐼
= 𝑅𝑐 +  

𝑙

𝜎𝑁𝑊 𝐴
                      (10) 

Figure 4.4: I-V Setup using Keithley 2636B source meter 
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Where 

V = Voltage in the circuit 

I   = Current in the circuit 

Rc = Total contact resistance in the circuit = 2 ∗ 𝑟𝑐 

rc = Contact resistance between NW and gold surface on each end 

σc = Conductivity of the NW 

l = Suspended length of the NW 

A = Cross sectional area of the NW 

 

The above equation is valid only if the nanoelectrode is perfectly cylindrical in shape i.e., in the 

form of a nanowire (as is the case with most materials in this thesis). However, if the particle has 

a cross-sectional area which changes along the length (for example, a spherical particle), then 

the total resistance can be calculated as a function of length L given by the following equation144: 

 

𝑅 = 𝑅𝑐 +  ∫
𝜌

𝐴(𝐿)
 𝑑𝐿             (11)

𝐿/2

−𝐿/2

 

 

4.3) Results and Discussion: 

 

The results from I-V measurements, which were performed on two α-MnO2 NW samples, are 

shown in Figure 4.5.  
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The first nanowire was 412nm long and measured 19nm in diameter. The second nanowire 

measured 759nm long and 16nm in diameter. These measurements were calculated using AFM 

data and from NIH ImageJ software159. The inverse slope of the graph for each NW will give its 

terminal resistance (R). Using the two terminal resistance formula (equation 10) and solving for 

the two unknowns using the two resulting equations, the material conductivity and NW-metal 

contact resistance is calculated for this system. Using this method, the contact resistance 

between NW and gold surface (rc) is calculated to be 145.7 kΩ and the conductivity of α-MnO2 

NW (σNW) to be 182.2 S/m. 

 

The changes in electronic conductivity of the NWs have also been studied as a function of 

lithiation. In this experiment, the NWs were lithiated (using the set-up shown previously in Figure 

3.1). The lithiation potentials were fixed at 2.75V, 2.25V and 1.5V, and the NW resistance is 

measured at the end of each stage (Fig 4.6). When lithiated, lithium ions from the anode 

intercalate into the single NW working cathode and increase the impedance in the NW. This 

Figure 4.5: I-V plots of two α-MnO
2
 NWs, image reproduced from ref.  [109] 
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reduces the conductivity because of an increase in lithium capacity at the end of each stage of 

lithiation. It was observed that the conductivity of the NW drops by half when lithiated to 1.5V 

from an unlithiated state. The conductivity doesn’t change much from the unlithiated to the 

2.75V state, where the lithium insertion is just starting to take place. On the other hand, much of 

the lithium is inserted during 2.25V stage and there is minimal change that happens after 2.25V. 

At 1.5V, maximum insertion of lithium occurs. These conductivity changes were found to be 

consistent with previous results94,103. 

 

 

 

Because an electrolyte is also involved in the lithiation process, it is important to test that the 

conductivity changes are caused by pure lithiation and not due to the electrolyte. In every 

lithiation experiment, the NW was lithiated for about 30 secs in each stage. So a dip test was 

performed in pure electrolyte for about 40 secs to measure the effect of a pure chemical dip in 

the electrolyte. The conductivity and diameter were found to remain almost the same both, 

before and after this dip test. Figure 4.7 gives the I-V data for one NW on the chip before and 

Figure 4.6: I-V curves of NW at different stages of lithiation 
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after electrolyte dip. These tests prove that the changes in conductivity, which were observed in 

Figure 4.6, are caused by electrochemical lithiation. 

 

 

In a similar fashion, electronic conductivity measurements were also performed on the acid-

leached α-MnO2 material system as a function of lithiation. Figure 4.8 gives the I-V plots for acid-

leached α-MnO2 NWs.  

 

From the graph, it can be understood that conductivity of the acid-leached NW is reduced by a 

factor of 12. This is higher than that observed with the nonacid-leached material. This behavior 

Figure 4.7: I-V before and after electrolyte dip test for 40 sec 

Figure 4.8: I-V for acid and nonacid-leached α-MnO2 NW 
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is explained by a higher lithium intercalation in the acid-leached NW, which provides additional 

pathways for ionic and electronic intercalation owing to the differences in its crystal structure. 

This hypothesis needs further verification in terms of storage capacity comparisons for these two 

materials. These measurements, while being outside the scope of this thesis, are currently being 

performed by our collaborators at Drexel University. 

 

Another material system, which was tested for its electronic transport properties, is bio-derived 

graphitic carbon particles (material sourced from Dr. Gupta’s Lab at VCU). The Li-ion batteries of 

today use carbon or graphitic anodes. Due to the rapid growth in the use of these batteries, there 

is an increase in efforts to have battery electrode materials made from “green” sources94. Lignin 

bio-mass is one such source, which is a byproduct from the paper and pulp industry. Only 2% of 

this material is reused for heating, while the rest is burned to generate energy. Graphite, a 

naturally occurring material, helps in improving the electronic conductivity and energy density of 

batteries. It has gained popularity due to its ability to be synthesized from byproducts of naturally 

occurring products such as lignin160, flake, cellulose, etc. There are previously reported 

techniques that produced graphite from bio-mass using a catalyst at high temperatures. The 

particles used in this project have been synthesized at Dr. Gupta’s Lab using a combination of 

hydrothermal and high-temperature processing steps involving suitable catalysts161. Synthesis 

parameters were found to have an impact on the extent of graphitization within the carbon 

particles, and using this principle, three bio-derived Li-ion battery electrodes GC1100, NiGC1100 

and NiGC1000 were developed from commercially available lignin. Here, GC stands for graphitic 
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carbon, Ni was used as a catalyst in NiGC formation and 1000, 1100 are the temperatures in the 

process. Figure 4.9 gives the SEM images for these three particles after DEP assembly. 

 

Since the particles are spherical and not cylindrical in shape, the resistance equation is modified 

as:  

𝑅𝑝 =
𝜌

2𝜋𝑅
{𝑙𝑛 (

𝑅 + 𝐿1

𝑅 − 𝐿1
) + 𝑙𝑛 (

𝑅 + 𝐿2

𝑅 − 𝐿2
)}                (12) 

where Rp, ρ and R denote the particle resistance, resistivity and radius, respectively. L1 and L2 

indicate the radial length of the inter-electrode regions of the left and right-halves of the particle, 

respectively. 

 

From experimental values of particle geometry, resistance using the equation 12, resistivity from 

the slope of I-V plot (Figure 4.10), conductivity is extracted for the three materials. These values 

are listed in Table 1.  

 

Figure 4.9: SEM images of a) GC1100, b) NiGC1000, and  
c) NiGC1100 nanoparticles with radius between 300-500nm 
  

Figure 4.10: I-V Comparison of GC1100, NiGC1100 and NiGC1000 
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Table 1. Conductivity Comparison 

Particle 

 type 

Radius 

(R, nm) 

L1 

(nm) 

L2 

(nm) 

Resistance  

(Rp, 

kohm) 

Resistivity 

(ohm-m) 

Conductivity  

(S-m-1) 

GC1100 357 149 177 64.18 0.072 13.83 

NiGC1100 315.5 86 156 14.34 0.017 57.80 

NiGC1000 451 252 272 602.75 0.643 1.55 

 

It can be seen that NiGC1100 exhibits higher conductivity among the three particle types. This 

increase in electronic conductivity is attributed to an increase in graphitic content, which was 

confirmed by X-ray diffraction data obtained by Dr. Gupta’s Lab162,163. This method to increase 

electronic conductivity in lignin-based carbon is critical to their potential application as 

environmentally-friendly Li-ion battery anodes. 

 

Additionally, the electronic conductivity of both α-MnO2 and todorokite – MnO2 are measured in 

a similar fashion to bring the relationship between electrochemical performance, electronic and 

ionic conductivities of these tunnel structured manganese oxides in order to compare their rate 

performance128. This study was needed to determine the factors contributing to the rate 

performance, and thereby fine tune the properties and structure of the material in order to 

achieve higher current and power density. The ionic conductivity of the electrode material is 

often represented by the Li+ diffusion coefficient (DLi+) and the reported values in literature are 

used as a reference for comparison. Both these materials have similar square tunnel 

configurations and are built by edge and corner sharing MnO6 octahedra building blocks. Both 
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these materials are stabilized by the presence of cations within its tunnels. α-MnO2 has K+ and 

todorokite has Mg2+ ions, but they only partially occupy the space inside these structural tunnels, 

thereby leaving enough room for the Li+ ions to intercalate within the material. 

 

The todorokite-MnO2 has the largest tunnel structure among all polymorphs of MnO2 and forms 

a 3 × 3 tunnel structure164,165, whereas α-MnO2 forms a 2 × 2 tunnel structure having a lattice side 

length of 4.6 angstroms128. Both these polymorphs are synthesized using hydrothermal method 

but with different startup solutions. The synthesis procedure for α-MnO2 was discussed in detail 

in Chapter 3, section 2, whereas todorokite nanowires are synthesized using a previously 

published technique166. Briefly, 50 ml solution of 1M NaOH and 50 ml solution of 2M H2O2 was 

added to a 50 ml solution of 0.3M Mn(NO3)2. The solution is left to react for 30 min, after which 

the precipitate product Na-birnessite was filtered and washed with deionized water. This filtered 

powder when placed in 1M MgCl2 for 3 days at a constant stirring rate performs an ion exchange 

and replaces Na+ ions with Mg2+ ions. This final Mg-buserite product is also filtered and washed 

with deionized water, dried at 100 °C for 12 hours under vacuum. Todorokite nanowires are then 

obtained by dispersing 100 mg of dried Mg-buserite in 17 ml of 1M MgCl2 solution. This mixture 

was hydrothermally treated for 96h at 220°C, and products were filtered, washed and dried at 

100°C for 12h under vacuum. 

 

Using Equation 10, the electronic conductivity and contact resistance for α-MnO2 are calculated 

(average of 4 samples) to be 2.259 S/cm and 395.7 kΩ respectively. Similarly, for todorokite, we 

obtained the electronic conductivity and contact resistance to be 4.9 × 10-2 S/cm and 21.7 MΩ, 
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respectively. Thus, we find that the electronic conductivity of α-MnO2 is higher than that of 

todorokite phase by a factor of ~46. The representative I-V plots and 2-terminal resistance plots 

are shown in Figure 4.11128. Past works in literature have reported that the lithium diffusion 

coefficient (DLi+) values of α-MnO2 range from 1 × 10-10 cm2/s for the fully charged state to 2 × 

10-11 cm2/s for the fully discharged state167. For todorokite, the values reported ranged between 

1 × 10-7 cm2/s for the fully charged state to 2 × 10-10 cm2/s for the fully discharged state. 

 

 

 

The rate performance of both material systems has been determined by conducting 

electrochemical cycling at different current rates and then compared128. These bulk-scale 

measurements, which were performed at the Dr. Pomerantseva Lab in Drexel University, showed 

Figure 4.11: (a) Two-terminal I-V measurement data (top) from a representative α-MnO2 
nanowire device. The bottom panel shows a plot of the two-terminal resistance as a function 
of the nanowire length-to-area (cross section) ratio for four different devices. (b) The I-V plots 
of a todorokite nanowire device (top) and the two-terminal resistance as a function of 
nanowire length-to-area ratio for four nanowire devices. Image reproduced from ref. [128]. 
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that todorokite had better electrochemical performance at higher current rates, and ionic 

conductivity played a significant role than electronic conductivity (Fig. 4.12). 

 

 

Hence, it is evident that lithium diffusion coefficient is the limiting factor in determining 

performance of tunnel structured materials, and by tuning the tunnel size and stabilizing cation, 

the electrochemical performance of intercalation based energy storage materials can be 

improved. The measurement of electrical performance of multiple battery electrode material 

systems, the data for which is not available in the current literature, is an important contribution 

of this thesis. 

 

Figure 4.12: Electrochemical performance of α-MnO2 and todorokite nanowires in a Li-ion 
battery at current rates of C/50, C/20, C/10, C/2, and 1C. (a) and (b) show the capacity of α-
MnO2 and todorokite nanowires, respectively, versus the cycle number as a function of 
applied current density. The galvanostatic discharge/charge curves are shown for the first 
cycle at each current rate for α-MnO2 (c) and todorokite (d). Image reproduced from ref. [128]. 
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Chapter 5: Nanomechanical Characterization 

 

5.1) Rationale and Background: 

 

As newer materials with varying structures and shapes are being studied for use in batteries, it 

will be crucial to perform mechanical testing on these materials in order to understand their 

failure modes and to overcome them for building better batteries. Fracture and disintegration of 

the electrode material is one such critical failure caused by buildup of stress, either by volume 

expansion or by phase transition, in a typical electrochemical cycle. Fracture causes electrode 

break-up resulting in electrode dissolution in the electrolyte or reduction in electronic 

conductivity, and thereby, leads to a reduction in the capacity of the system. The insertion and 

removal of ions during charging/discharging cycles result in high volume changes in the material, 

thereby restricting the use of some high energy capacity materials such as Si18,71,75,168, 

sulphur169,170, Sn, Al, Ge and Bi171–173 in present batteries. Also, it was found that stress will be 

high when both phase transition and the intercalation mechanism act in a coupled fashion inside 

the material system. 

 

There were previous studies on testing the properties of a material at the nanoscale using 

different principle techniques such as mechanical resonance174, three-point bending 

method175,176, and nanoindentation method177,178. For experiments involving indentation or 

mechanical pushing of the material using an AFM, different models have been established and 

the model is chosen based on the shape and structure of the materials179. Some models actually 
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studied the effect of stress and strain inside the electrode material during 

intercalation/deintercalation mechanisms, but these results are based on assumptions of a 

constant Young’s Modulus value180. However, this assumption is incorrect and electrode 

materials have different elastic moduli during lithiation. This is consistent with some recently 

reported studies, which have found that the Young’s modulus is continuously changing at every 

state of charge (SOC)181,182.This is caused by re-ordering of chemical bonds during the relaxation 

and reconstruction processes that accommodate elastic strain. At small lengths, the mechanical 

properties of the surface layer are also found to dominate the elastic response of the material183. 

Depending on the type of stress acting on the material, the electrode materials show either 

elastic stiffening or softening184. 

 

AFM has been used quite extensively in determining the mechanical properties of materials185,186 

and it works on the principle of scanning the surface using an ultra-sharp probe (tip), which is 

attached to a cantilever. The cantilever is tuned near its resonance frequency and its amplitude 

of vibrations is detected using a photo detector. This data is analyzed to construct an image of 

the structure with a resolution reaching the sub atomic scale features. Young’s modulus of a 

material gives an understanding of the elastic properties of a material, while other properties 

such as surface tension, adhesion force187 and conductivity can also be obtained using an AFM. 

The most commonly used method for mechanical testing of nanomaterials is contact mode AFM. 

In this mode, a known force is exerted on the material by pushing on it using a calibrated tip. This 

results in a deformation or a change in shape of the material. This deformation is measured using 

the movement of the stage with respect to the tip. From an analysis of this data, a force versus 
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deflection plot of the nanostructure is obtained. A slope of this plot gives the Young’s modulus 

of the material. Figure 5.1 shows this AFM three point bending technique for YM measurement 

in nanowires177. 

 

 

5.2) Experiments: 

 

A chip with the nanowire beam is placed under a Veeco Icon AFM to perform force spectroscopy 

measurements. Figure 5.2 shows an AFM image of a doubly clamped α-MnO2 NW, which is 

suspended between the electrode pads109. 

 

The three-point bending method was then used to perform force spectroscopy on this sample. 

In this technique, the nanostructure is suspended in air as a bridge and the nanowire is anchored 

at the edge of the electrodes on both sides. The AFM tip is used to push on the NW at its mid-

Figure 5.1: Experimental setup for three point bending a) Before 
Manipulation, and b) During Manipulation. Image reproduced from ref. [177] 
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lengths. The clamps on both sides help in reducing slippage of the nanostructure during this 

bending test. 

 

 

 

First step in the experimental procedure is to calculate the stiffness of the tip (ktip). The tip is 

tuned to the resonance frequency and based on its quality factor / dimensions, its stiffness is 

estimated using Sader’s method188. This tip is now calibrated by making contact with a hard 

surface on the chip (gold pad region) and the cantilever deflection (zcant) versus the stage 

movement (zpeizo), which is controlled by a piezo motor, is measured. When calibrated, the slope 

of the cantilever deflection versus stage movement plot will be unity (as shown in Figure 5.3). In 

the plot, the blue line is termed as the “approach curve” (where the stage is moving up towards 

the tip) and the red line is termed as the “retract curve” (where the stage is moving down away 

from the tip). 

 

Figure 5.2: AFM image of α-MnO2 NW 
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Now, the AFM tip is moved to the mid portion of the nanowire and a force is exerted on it. As the 

tip is brought closer to the substrate, there are Vander walls forces acting on the tip, which makes 

it attract to the NW surface. This is also called the adhesion force and can be seen in Figure 5.4 

at piezo distance (zpeizo) of 59.4 nm on the X-axis. 

 

 

Figure 5.3: AFM plot of tip indentation on the gold electrode surface 

Figure 5.4: AFM plot of tip indentation on an α-MnO2 NW 
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The red and blue lines corresponding to the position of -1.57 nm on Y-axis will be a reference line 

and at this line, the force on the cantilever (Fcant) and the force on the NW (FNW) is zero. This is 

because, the cantilever deflection is zero along this horizontal segment. 

𝐹𝑐𝑎𝑛𝑡 =  𝐹𝑁𝑊 = 0                         (13) 

                     

The movement of the stage from this reference line to the right will result in the deformation of 

the nanowire and the force acting on the NW can be calculated using these formula: 

 

𝐹𝑁𝑊 =  𝐹𝑡𝑖𝑝 =  𝑘𝑡𝑖𝑝 ∗  𝑍𝑁𝑊          (14) 

 

𝛿𝑐𝑎𝑛𝑡 =  𝑍𝑐𝑎𝑛𝑡 −  𝑍𝑐𝑎𝑛𝑡(𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑙𝑖𝑛𝑒) 

 

where  

Ftip = Force exerted by the tip, Ktip = Stiffness of the tip 

Zcant = Deflection of the cantilever, 

Zcant(Reference Line) = Deflection of the cantilever at the reference line (-1.57 nm on Y-axis) 

 

The deflection of the NW (ZNW) can be calculated as: 

  

𝑍𝑁𝑊 =  𝛿𝑝𝑒𝑖𝑧𝑜 −  𝛿𝑐𝑎𝑛𝑡                 (15) 
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The slope of the plot of FNW vs ZNW will give the stiffness of the nanowire (kNW). Finally, the 

Young’s modulus of the material can be calculated using the formula18: 

 

𝐸 =  
𝐿3 ∗  𝑘𝑁𝑊

192 ∗ 𝐼
                               (16) 

where 

L = Suspended length between the electrodes in the gap region 

I = Moment of Inertia of the NW 

  = (π*r^4)/4 

r = Radius of the NW, obtained accurately using AFM section plot 

 

In a similar fashion, the ultimate strength of the material can also be measured using an AFM by 

extending the tip indentation on the NW to the point of maximum force that can cause fracture. 

The original AFM loading and unloading data on one NW sample is shown in Figure 5.5 (a) and 

the extracted data in Figure 5.5 (b). From the Figure 5.5 (b), it can be seen that this 34 nm 

diameter NW undergoes fracture at a maximum force of 602.2 nN and at a deflection of 52.7 nm. 

Using these values, the ultimate strength of the material can be computed using equation 

17189,190 and was found to be 5.8531 GPa for this NW: 

 

𝜎𝑢𝑙𝑡 =  
𝐹𝑐𝑟𝐿𝑁𝑊

2𝜋𝑅𝑁𝑊
3 𝑔(𝛼)                  (17) 

Where  
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𝑔(𝛼) =
4

√𝛼
tanh (

√𝛼

4
) +  √(

2 + cosh (
√𝛼
2 ) −

6 sinh (
√𝛼
2 )

√𝛼

𝑎 (cosh (
√𝛼
4 ))

2         (18) 

 

 

At deformations larger than the thickness of the nanowire, the FNW vs ZNW has a nonlinear 

behavior as shown in Fig 5.5 (c). This indicates that the material is undergoing both bending and 

tension loading. For these large deformations, the above mentioned approach using linear elastic 

beam bending theory would be insufficient. To account for tension and bending, an analytical 

model presented by Heidelberg et al. for Si nanowires may be used, and is given by this 

equation177,186: 

 

Figure 5.5: a) Original loading-unloading curve, b) Extracted AFM loading-unloading curve showing 
fracture, and c) Extracted force vs deflection plot on an α-MnO2 NW – Nonlinearity 
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𝐹𝑐𝑒𝑛𝑡𝑒𝑟 =  
192 𝐸 𝐼

𝐿3
 𝑓(𝛼)𝑍𝑁𝑊               (19) 

Where 

𝑓(𝛼) =  
𝛼

48 −  
192 tanh (√

𝛼
4)

√𝛼

             (20) 

                            

α represents the maximum deflection on the NW by the following equation, ε = (2*ZNW/R)2 

𝛼 =
6𝜖(140 +  𝜖)

350 + 3𝜖
                             (21) 

 

In our experiments, as discussed earlier, the suspended NW length is obtained from the SEM 

image using ImageJ software and the NW radius from tapping-mode AFM scans of the NW. If a 

nonlinear behavior was found to be the case for any NW, the observed experimental data was 

curve-fitted to this analytical model using Matlab and the NW Young’s modulus was estimated. 

Figure 5.6 (a) gives the curve-fit for the extracted data of Figure 5.5, and it can be seen that the 

fit accurately describes the force-deflection behavior and a YM of 74 GPa was extracted. 

 

Moreover, when the curve fit is extended up to the point of maximum deflection, as seen in 

Figure 5.6(b), the predicted fit deviates from the extracted data starting from 35 nm (the 

diameter of the NW is 34 nm). At the point of maximum deflection (~ 52 nm), the NW deviates 

about 5-6 nm, before it eventually breaks down. This confirms a plastic deformation behavior, 

where the nanowire is permanently deformed, and it will not return to its original state. 
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5.3) Results and Discussion: 

 

Nanomechanical measurements of pristine and fully lithiated α-MnO2 nanowires were studied 

using the AFM187. To test the impact of the state-of-charge (SOC) on the Young’s modulus of a 

material, contact mode AFM was used to perform indentation at the end of each lithiation step, 

and the YM was calculated from these force-displacement plots. When lithiated, Li ions 

intercalate into the material, causing structural changes. These lithiation induced changes are 

discussed in detail in Chapter 6. 

 

Using models presented in equations 17 and 19, the Young’s modulus and ultimate strength for 

unlithiated α-MnO2 are calculated. For the three NW samples that were measured in these 

experiments, the average value for the YM was found to be 46.5 GPa (with 95% confidence limits 

of +4.5 GPa). The reported Young’s modulus values for bulk-scale lithium manganese oxide 

Figure 5.6: a) YM of 73.9 GPa was extracted from Matlab curve and b) Matlab Curve fit extended up to 

the fracture point, undergoes plastic deformation around 5-6 nm. 
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spinels lie within the range of 10 GPa to 240 GPa191,192 and has shown no clear dependence on 

particle size193. Figures 5.7-5.9 give the detailed information for three unlithiated α-MnO2 

nanowire samples, followed by a summary of measured values of Young’s modulus, ultimate 

strength and theoretical-to-experimental strength ratio for these nanowires. 

 

Figure 5.7: DEP Sample 1 a) SEM micrograph of NW, b) SEM micrograph of NW with EBID 

clamps, c) Height trace, d) 3D AFM scan of NW, e) 3D AFM scan of NW after fracture, f) Original 

loading-unloading curve, g) Extracted AFM loading-unloading curve showing fracture, h) 

Extracted force vs displacement plot, i) YM of 49.4 GPa was extracted from Matlab curve fit, 

and j) Matlab Curve fit extended up to the fracture point, undergoes plastic deformation of 

~7-8 nm. 
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Figure 5.8: DEP Sample 2 a) SEM micrograph of NW, b) SEM micrograph of NW with EBID 

clamps, c) Height trace, d) 3D AFM scan of NW, e) 3D AFM scan of NW after fracture, f) 

Original loading-unloading curve, g) Extracted AFM loading-unloading curve showing 

fracture, h) Extracted force vs displacement plot, and i) YM of 48.2 GPa was extracted from 

Matlab curve fit, and j) Matlab Curve fit extended up to the fracture point. 
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Figure 5.9: DEP Sample 3 a) SEM micrograph of NW, b) SEM micrograph of NW with EBID 

clamps, c) Height trace, d) 3D AFM scan of NW, e) 3D AFM scan of NW after fracture, f) 

Original loading-unloading curve, g) Extracted force vs displacement plot, h) YM of 41.8 

GPa was extracted from Matlab curve fit, and i) Matlab Curve fit extended up to the 

fracture point. 
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Sample DEP 

diameter 

Young's 

Modulus 

(GPa) 

Ultimate 

Strength 

(GPa) 

Plastic 

Deformation 

Theoretical 

Strength 

(Gpa) 

Experimental-

to-Theoretical 

ratio 

1 36.1 49.4 5.8 Yes, 7-8 nm 7.8 73.73% 

2 52.1 48.2 4.7 Yes 8.3 61.4% 

3 40.2 42 6.7 Yes, 2 nm 6.7 99.63% 

 

Table 5.1: Summary of parameters for DEP step 
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Figure 5.10: Plots for DEP samples a) Young’s modulus vs % increase in diameter, b) Ultimate strength 
vs % increase in diameter, and c) Experimental-to-theoretical strength ratio vs % increase in diameter. 

b) 

c) 

a) 
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The theoretical strength of the nanowire can be calculated as E/2π.194 The ratio of the 

experimental to theoretical values for the fracture strength of these nanowires was observed to 

be an average of 78% of the predicted theoretical strength for this NW material. This high ratio 

indicates that these NW crystals are relatively defect-free195. 

 

Next, the results from nanomechanical measurements involving one other battery nanomaterial 

system (lithium iron phosphate nanowires) are presented. Lithium iron phosphate has been 

commercially used in real-time applications for its advantages of low self-discharge rate, safe 

rapid recharge, nontoxicity, low cost and higher cycling capacity. A measurement of its YM will 

be useful to model the stress fields and fracture in this material system during its lithiation. In 

order to meet this need, contact mode AFM force spectroscopy was performed on these 

nanowires and Young’s modulus values were extracted from F-d plots. Figure 5.11 (a-c) gives the 

SEM images of these nanowires, which are deposited in device regions similar to other material 

systems using DEP. The DEP parameters used in this experiment were 6VP-P, 1 kHz frequency and 

2min of deposition time. It can be observed that the diameters of these materials are extremely 

high with a range of 150-300 nm in radius. Three-point bending technique, as described earlier, 

is suitable for use in small diameter (<100 nm) NWs. Nano-indentation mode was commonly used 

in such cases where the nanowires have low-aspect ratio and large diameters. However, in 

regular indentation based experiments, there exists two region of contacts: contact of the tip 

with the top surface of the NW and the NW being attached to a substrate. In this technique, the 

contact between NW and substrate is eliminated with the NW being suspended in the air. This 
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can be clearly seen from AFM 3D plots, as shown in Figure 5.11 (d). Also, AFM section plots can 

be used to measure the diameter of the nanowire as shown in Figure 5.11 (f). 

 

 

Indentation based atomic force spectroscopy measurements were performed at the center of 

each NW and the F-d data plots were obtained. This data was processed in the same procedure 

that was described earlier in the chapter. One such plot is shown in Figure 5.12 (a). However, it 

is important to understand that, since the diameter of the NW is large, it undergoes both bending 

(beam like bending in the suspended region) and indentation-induced localized deformation (at 

the contact point of the AFM probe on the surface). Thus, to exactly estimate the contribution of 

each mode on the Young’s modulus, ANSYS FEM software simulations were performed110.  

 

A NW having a radius of 168nm and a suspended length of 400nm is shown in Fig. 5.12 (a - c). Its 

Young’s modulus value is estimated to be 113 MPa. Also, the Young’s modulus was found to vary 

with diameter, as seen in Fig 5.12 (d). For radii ranging between 168 to 182 nm, the Young’s 

Figure 5.11: a-c) SEM images of assembled NWs. d-e) AFM 3-D images of NWs. f) AFM 
Section plot of one NW, diameter is 571 nm, image reproduced from ref.  [110] 
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modulus was in the range of 100 to 120 MPa and for radius ranging between 228 to 255 nm, it 

was in the range of 220 to 255 MPa, twice that of the smaller diameters. 

 

 

 

 

 

 

 

 

Figure 5.12: a) F-d plot of one LiFePO4 NW, b) Ansys FEM model – Side View showing bending of 
NW, c) ANSYS FEM modeling, which was performed by Dr. Subramanian – 3D View showing point of 
contact of AFM tip and induced deformation, and d) Young’s modulus variation with diameter, 
image reproduced from ref. [110] 
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Chapter 6: Degradation Study 

 

6.1) Introduction: 

 

Past measurements of charge capacity as a function of cycling have shown that there is a large 

drop in electrode performance at the end of the first charge/discharge cycle. The first part of this 

dissertation has studied the material changes during this first cycle that result in a drop in 

capacity. However, after the first cycle, there is a continuous but, slower drop in capacity over 

the lifetime of the battery electrode. The reasons for this slow degradation of the battery 

electrode have not been fully understood so far and current chapter will focus on this need. 

Specifically, the material properties of a battery nanowire electrode will be tested at the end of 

20 cycles of lithiation.  

 
Figure 6.1: Degradation mechanisms in Li-ion batteries 
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A rechargeable battery needs to have the capability to survive several hundreds of 

charge/discharge cycles and so this study is especially important to understand, and improve the 

lifetime of a battery electrode. This is also known as a degradation study. Some of the many 

physical and chemical processes that contribute to battery degradation are shown in Figure 6.1 

and the remaining steps are expected to provide new knowledge on some of these aspects 

related to the degradation in a battery system. 

 

Battery electrode materials offer different characteristics at the nanoscale, and a fundamental 

understanding of the mechanism of battery degradation for each material helps in identifying 

the failure modes of the material, and thereby enable pathways to improve electrochemical 

behavior. This chapter extends the single nanowire electrochemical study presented in Chapter 

3 with necessary modifications, and thereby develop the capability to test the mechanical 

behavior of nanomaterial for 20 cycles of lithiation. 

 

6.2) Experiments: 

 

The electrochemical lithiation experimental setup is same as Figure 3.1, and degradation study 

on α-MnO2 was conducted at unlithiated, first discharge, first full cycle lithiation and 20 cycles of 

lithiation steps. The electrical output from function generator is set as a square wave with 4V as 

higher voltage limit that represents charging (lithium ions move from nanowire back into 

electrolyte and lithium wire anode), and 1.5V is set as a lower limit for discharging (lithium ions 

move from lithium wire anode through electrolyte into the nanowire). The time period was fixed 
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at 1 min each for charging and discharging cycle, and the square wave is set at 50% duty cycle. 

This setup completes a full electrochemical cycle. 

 

For every stage, following steps were performed according to the study: 

1) Firstly, α-MnO2 nanowires are deposited onto desired locations on the chip using 

dielectrophoresis, the process is discussed in Chapter 2. AFM scans are performed on 

single nanowire locations to determine the diameter of the nanowire. This step is done in 

order to achieve a better height plot of the nanowire, considering the minimal roughness 

of the gold electrode pad surface during this process.  

2) Based on the lithiation test cycle in study, the lithiation experiment is performed inside a 

glove box according to the procedure described above. For example, in the 20 cycle 

lithiation step, the nanowires are dipped in electrolyte inside the glove box for a total of 

40 minutes. 

3) After lithiation is complete, AFM scans are again performed to determine the post 

lithiation diameter. These values can be used to calculate the % increase in diameter for 

every stage of lithiation. 

4) EBID clamps are then placed on both sides of the nanowire to provide good surface 

contact and thereby reduce contact resistance. This particular step is different from the 

earlier study presented in Chapter 3, as we found that lithiating the nanowires after 

placing EBID clamps leaves a carbon coating near the clamp regions, and effects the AFM 

height plots for accurate diameter measurements. 
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5) Finally contact-mode AFM is used to fracture the nanowires, and Young’s modulus and 

ultimate strength of the material are determined according to the procedure described 

in Chapter 5. 

 

The results for the unlithiated stage were discussed in chapter 5. The Young’s modulus and 

ultimate strength of those nanowires were found to lie in the range of 40 to 50 GPa and 4.7 to 

6.6 GPa, respectively. The nanowires exhibited relatively defect-free single-crystalline behavior 

with an experimental-to-theoretical strength ratio of 78%. In this chapter, nanomechanical 

measurements are presented at the following SOCs: first discharge, first full cycle of lithiation 

and 20 cycles of lithiation. 

 

It is important to note that an extension of this capability for longer duration lithium cycling is 

limited by the stability of the electrolyte suspension for durations longer than ~1 hour. In an open 

cell configuration, as is needed for these single NW tests, the electrolyte tends to solidify over 

periods lasting more than an hour. As a result, these measurements have been limited to the first 

20 cycles in this thesis. However, it is important to note that this represents an important advance 

from past efforts due to the following key considerations: (1) the biggest change in charge 

capacity reduction for a battery electrode occurs during the first few cycles and the degradation 

of the electrode at this important step has already been captured in these experiments, (2) 

capacity loss beyond the first few cycles typically exhibits a slow and gradual fade (see Fig. 4.12) 

and a study of up to 20 cycles is representative of the smaller changes that occur within the 

material during this extended cycling period, and (3)  past efforts involving single particle battery 
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diagnostics have only tested the material either at the end of the first lithiation step or at the end 

of the first charge-discharge cycle. This limitation with past efforts has been due to constraints in 

building lithium cells using robotic nanomanipulations within an electron microscope. However, 

this thesis has adopted a new approach to build lithium cells on silicon chips and presented a 

transformative diagnostic methodology, which is able to test the material system over 

comparatively longer cycling durations. 

 

6.3) First discharge step 

 

The results from the first discharge step are summarized in this section. The table below lists the 

pre- vs. post-lithiation nanowire diameter (to indicate size changes), Young’s modulus of the 

lithiated NW, fracture strength of the lithiated NW, the occurrence of plastic deformation (if any), 

and experimental-to-theoretical fracture strength ratio for five different NW samples. These 

results are also summarized in Figure 6.2. 

 

Figures 6.3 to 6.5 provide detailed information from the measurements involving three 

representative NW samples. This includes: (i) SEM images of the NWs, before and after EBID 

clamping at the anchor points, (ii) tapping mode AFM scans of the NWs, before and after fracture 

measurements, (iii) AFM height traces used for diameter measurements, (iv) raw force 

spectroscopy data, and (v) processed NW force-vs deflection plots and their curve fit using 

MATLAB to extract Young’s modulus and fracture strength. 
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Sample DEP 

diameter 

Discharge 

1min 

diameter 

% 

Increase 

in 

diameter 

Young's 

Modulus 

(GPa) 

Ultimate 

Strength 

(GPa) 

Plastic 

Deformation 

Theoretical 

Strength 

(GPa) 

Experimental-

to-theoretical 

strength 

1 21.4 24.1 0.13 108.3 6.0 No 17.2 34.57% 

2 38.5 44.5 0.16 46.3 5.4 Yes, 7-10 nm 7.4 72.71% 

3 30 32.6 0.09 112.2 7.0 Yes, >10nm 17.9 39.08% 

4 N/A 27.9 N/A 71.5 5.4 No 11.4 47.01% 

5 N/A 23.4 N/A 117.3 8.1 No 18.7 43.43% 

 

 

From the results, it was observed that the average value for the Young’s modulus of the material 

was 91 + 27 GPa (based on measurements from 5 different NW samples). This value is higher 

than that of the unlithiated state at low concentrations of lithium loading (as represented by 

smaller increase in NW diameter), and can be attributed to the formation of new Li-O bonds in 

the tunnel structure when lithium is inserted. At the same time, the experimental-to-theoretical 

ratio drops to a lower level and indicates the increase in defect density within the material 

system. However, at higher levels of lithium loading we observe the YM of the material to drop 

thereby, indicating a softening of the material due to crystal distortions at large volume 

expansions. 

Table 6.1. Summary of parameters for Discharge step 
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Figure 6.2: Plots for first discharge step samples a) % Increase in diameter vs DEP diameter, b) 
Young’s modulus vs % increase in diameter, c) Ultimate strength vs % increase in diameter, and 
d) Experimental-to-theoretical strength ratio vs % increase in diameter. 

 

a) b) 

c) d) 
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Figure 6.3: Discharge 1 min Sample 1 a) SEM micrograph of NW, b) SEM micrograph of NW with EBID 

clamps, c) Height trace, d) 3D AFM scan of NW, e) 3D AFM scan of NW after fracture, f) Original 

loading-unloading curve, g) Extracted AFM loading-unloading curve showing fracture, h) Extracted 

force vs displacement plot, and i) YM of 108.3 GPa was extracted from Matlab curve fit. 
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Figure 6.4: Discharge 1 min Sample 2 a) SEM micrograph of NW, b) SEM micrograph of NW with EBID 

clamps, c) Height trace, d) 3D AFM scan of NW, e) 3D AFM scan of NW after fracture, f) Original loading-

unloading curve, g) Extracted AFM loading-unloading curve showing fracture, h) Extracted force vs 

displacement plot, i) YM of 46.3 GPa was extracted from Matlab curve fit, and j) Matlab Curve fit 

extended up to the fracture point, undergoes plastic deformation around 7-8 nm. 
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Figure 6.5: Discharge 1 min Sample 3 a) SEM micrograph of NW, b) SEM micrograph of NW 

with EBID clamps, c) Height trace, d) 2D AFM scan of NW, e) 2D AFM scan of NW after fracture, 

f) Original loading-unloading curve, g) Extracted AFM loading-unloading curve showing 

fracture, h) Extracted force vs displacement plot, i) YM of 112.2 GPa was extracted from 

Matlab curve fit, and j) Matlab Curve fit extended up to the fracture point, undergoes plastic 

deformation around 25 nm. 
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 6.4) First cycle of lithiation 

 

The results from the first discharge-charge cycle are summarized in this section. The table 

below lists the pre- vs. post-cycling nanowire diameter (to indicate size changes), Young’s 

modulus of the lithiated NW, fracture strength of the lithiated NW, the occurrence of plastic 

deformation (if any), and experimental-to-theoretical fracture strength ratio for five different 

NW samples. These results are also summarized in Figure 6.6. Figures 6.7 and 6.8 provide 

detailed information from the measurements involving two representative NW samples. This 

includes: (i) SEM images of the NWs, before and after EBID clamping at the anchor points, (ii) 

tapping mode AFM scans of the NWs, before and after fracture measurements, (iii) AFM height 

traces used for diameter measurements, (iv) raw force spectroscopy data, and (v) processed 

NW force-vs deflection plots and their curve fit using MATLAB to extract Young’s modulus and 

fracture strength. 

 

Sample DEP 

diameter 

1 Cycle 

Lithiation 

% 

Increase 

in 

diameter 

Young's 

Modulus 

(GPa) 

Ultimate 

Strength 

(GPa) 

Plastic 

Deformat

ion 

Theoretical 

Strength 

(GPa) 

Exp-to-

Theoretical 

ratio 

1 37.9 42.1 0.11 40.2 4.0 No 6.4 61.76% 

2 35 40.6 0.16 42.4 2.9 No 6.8 42.98% 

3 32.5 34 0.05 49 3.1 Yes, 7 nm 7.8 39.71% 

4 N/A 47.7 N/A 24 1.9 No 3.8 49.74% 

5 28.5 30.3 0.06 50.9 2.2 No 8.1 27.51% 

Table 6.2. Summary of parameters for 1 cycle of lithiation 
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From the presented data, it can be observed that the Young’s modulus of the NWs drops an 

average value of 41.4 + 9.3 GPa (based on 5 NW samples). This is near the value observed for the 

un-lithiated material. This points to the fact that the de-lithiated material, after the loss of Li-O 

bonds that were established during lithiation or NW discharge, softens and exhibits a modulus 

that is similar to that of the as-synthesized NWs. However, the material after one lithiation cycle, 

presents a much smaller experimental-to-theoretical ratio for the fracture strength. This points 

to the increase in defect density within the NW material to the first discharge-charge cycle. 
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Figure 6.6: Plots for 1st cycle lithiation samples a) % Increase in diameter vs DEP diameter, b) 
Young’s modulus vs % increase in diameter, c) Ultimate strength vs % increase in diameter, and 
d) Experimental-to-theoretical strength ratio vs % increase in diameter. 

 

a) b) 

c) d) 
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Figure 6.7: 1 Cycle Sample 1 a) SEM micrograph of NW, b) SEM micrograph of NW with EBID clamps, 

c) Height trace, d) 3D AFM scan of NW, e) 3D AFM scan of NW after fracture, f) Original loading-

unloading curve, g) Extracted AFM loading-unloading curve showing fracture, h) Extracted force vs 

displacement plot, i) YM of 40.2 GPa was extracted from Matlab curve fit, and j) Matlab Curve fit 

extended up to the fracture point, undergoes plastic deformation around 25 nm. 
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Figure 6.8: 1 Cycle Sample 2 a) SEM micrograph of NW, b) SEM micrograph of NW with EBID 

clamps, c) Height trace, d) 3D AFM scan of NW, e) 3D AFM scan of NW after fracture, f) Original 

loading-unloading curve, g) Extracted AFM loading-unloading curve showing fracture, h) 

Extracted force vs displacement plot, and i) YM of 42.4 GPa was extracted from Matlab curve. 

fit. 



94 
 

6.5) 20 cycles of lithiation 

 

The measurement results from the 20-cycle lithiation experiments are summarized in this 

section. The table below lists the pre- vs. post-cycling nanowire diameter (to indicate size 

changes), Young’s modulus of the lithiated NW, fracture strength of the lithiated NW, the 

occurrence of plastic deformation (if any), and experimental-to-theoretical fracture strength 

ratio for five different NW samples. These results are also summarized in Figure 6.9. Figures 6.10 

to 6.13 provide detailed information from the measurements involving representative NW 

samples. This includes: (i) SEM images of the NWs, before and after EBID clamping at the anchor 

points, (ii) tapping mode AFM scans of the NWs, before and after fracture measurements, (iii) 

AFM height traces used for diameter measurements, (iv) raw force spectroscopy data, and (v) 

processed NW force-vs deflection plots and their curve fit using MATLAB to extract Young’s 

modulus and fracture strength. 

 

Sample DEP 

diameter 

Lithiation 

20 Cycles 

diameter 

% 

Increase 

in 

diameter 

Young's 

Modulus 

(GPa) 

Ultimate 

Strength 

(GPa) 

Plastic 

Deformation 

Theoretical 

Strength 

(GPa) 

Exp-to-

theoretical 

ratio 

1 26.4 33 0.25 94.7 4.1 No 15.1 27.03% 

2 20.2 23.6 0.17 60.3 2.5 No 9.6 26.34% 

3 28.7 34.2 0.19 73.9 5.9 Yes, 4-5 nm 11.8 49.73% 

4 29.1 38.6 0.33 48.3 4.6 Yes, 3.5-4nm 7.7 59.28% 

 

Table 6.3. Summary of parameters for 20 cycles of lithiation 
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Figure 6.9: Plots for 20 cycles lithiation samples a) % Increase in diameter vs DEP diameter, b) 
Young’s modulus vs % increase in diameter, c) Ultimate strength vs % increase in diameter, and 
d) Experimental-to-theoretical strength ratio vs % increase in diameter. 

 

a) b) 

c)  d) 
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 From the results, it can be observed that the Young’s modulus of the material assumes an 

average value of 69.3 + 19.5 GPa. This is higher than that of the unlithiated state. At the same 

time, the experimental-to-theoretical strength of the material is very low. This can be attributed 

to the fact that cycling causes the material to constantly undergo structural changes and 

eventually disintegrate. This phenomenon can be explained better using Figure 6.15126. 

 

 

Figure 6.10: 20 Cycles Sample 1 a) SEM micrograph of NW, b) SEM micrograph of NW with 

EBID clamps, c) Height trace, d) 3D AFM scan of NW, e) 3D AFM scan of NW after fracture, f) 

Original loading-unloading curve, g) Extracted AFM loading-unloading curve showing fracture, 

and h) Extracted force vs displacement plot, YM of 94.7 GPa was extracted. 
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Figure 6.11: 20 Cycles Sample 2 a) SEM micrograph of NW, b) SEM micrograph 

of NW with EBID clamps, c) Height trace, d) 3D AFM scan of NW, e) 3D AFM scan 

of NW after fracture, f) Original loading-unloading curve, g) Extracted AFM 

loading-unloading curve showing fracture, and h) Extracted force vs 

displacement plot, and i) YM of 60.3 GPa was extracted from Matlab curve. 
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Figure 6.12: 20 Cycles Sample 3 a) SEM micrograph of NW, b) SEM micrograph of 

NW with EBID clamps, c) Height trace, d) 3D AFM scan of NW, e) 3D AFM scan of 

NW after fracture, f) Original loading-unloading curve, g) Extracted AFM loading-

unloading curve showing fracture, and h) Extracted force vs displacement plot, i) 

YM of 73.9 GPa was extracted from Matlab curve and j) Matlab Curve fit extended 

up to the fracture point, undergoes plastic deformation around 4-5 nm. 
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Figure 6.13: 20 Cycles Sample 4 a) SEM micrograph of NW, b) SEM micrograph of NW with 

EBID clamps, c) Height trace, d) 3D AFM scan of NW, e) 3D AFM scan of NW after fracture, 

f) Original loading-unloading curve, g) Extracted AFM loading-unloading curve showing 

fracture, and h) Extracted force vs displacement plot, i) YM of 48.3 GPa was extracted from 

Matlab curve and j) Matlab Curve fit extended up to the fracture point, undergoes plastic 

deformation around 3-4 nm. 
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6.6) Results and Discussion: 

 

 

 

During lithiation of alpha phase manganese dioxide NWs, the lithium ions prefer the low energy 

sites of tunnel walls and distribute uniformly to the maximum extent themselves, so as to 

minimize the Li-Li Coulomb repulsion energy. Lithiated α-MnO2 is written in empirical form as α-

LixMnO2, and as seen in Figure 6.15, as the extent of lithiation increases, more number of lithium 

ions try to occupy the 2 x 2 tunnel structure along the c-axis. The resulting crystal structure 

changes were computationally modeled by Tompsett et. al. in ref. [126] and this is pictorially 

represented in Figure 6.14. At the same time, the summary of data from our nanomechanical 

measurements is provided in Table 6.4 below. 

Figure 6.14: Lowest energy structures obtained for the unit cell of (a) α-Li0.25MnO2, (b) α-
Li0.5MnO2, (c) α-Li0.75MnO2, and (d) α-Li1MnO2. The polyhedra are connected by Mn–O bonds 
of length 2.7 Å. Red spheres are oxygen, purple is manganese, and green spheres are lithium. 
Image reproduced from ref. [126]. 
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SOC Average Young’s Modulus 

(GPa) 

Average experimental-to-

theoretical fracture strength 

ratio 

As-synthesized 47.8 + 6.1 76.6 + 24.9 

After first discharge 91.1 + 27.1 47.37 + 11.7 

After first cycle 41.4 + 9.3 44.34 + 11.1 

After 20 cycles 69.3 + 19.5 40.6 + 16.2 

 

 

Figure 6.15: Schematic illustration of the crystal structure evolution at different SOCs. 
Cartoons adapted from ref. [126]. 

As-synthesized First discharge 

After first cycle After 20-cycles 

Table 6.4. Evolution of nanomechanical parameters as a function of NW SOC 
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The nanomechanical changes in the electrode material, which explain the data summarized in 

Table 6.4, are illustrated schematically in Figure 6.15. The as-synthesized material provides a 

baseline for the degradation measurements and exhibits a Young’s modulus (YM) and 

experimental-to-theoretical fracture strength ratio (ET ratio) of 47.8 GPa and 76.6%, respectively. 

At the end of the first discharge step, the YM increases to 91.2 GPa due to the addition of Li-O 

bonds that adds to the stiffness of the electrode material. However, the ET ratio drops to 47.4% 

due to the increase in defect density of the crystal. 

 

On the other hand, when this intercalated lithium is extract out of the NW electrode at the end 

of the first cycle, the NW material relaxes to its initial YM value; however, a key difference from 

the as-synthesized material is the substantially lower ET ratio associated with the NWs at the end 

of the first cycle (44.3% vs. 76.6%). This indicates that even though the Li is extracted from the 

NW crystal, this insertion and de-insertion process introduces more defects as compared to the 

starting material. Also, the NW electrodes at the end of 20 cycles of repeated discharging and 

charging exhibit a YM that is higher than that of the as-synthesized material. But, at the same 

time the increase in YM is not as high as that observed in the NWs at the end of the first discharge 

step. This points to the irreversible trapping of some intercalated lithium during extended cycling 

of the NWs. This lithium, while it leads to an increased material stiffness, it also is a likely cause 

for the loss in capacity of the material with cycling. Another interesting attribute here is that this 

increase in stiffness of the material is not accompanied by gains in the fracture strength of the 

material. As observed in the data, the ET ratio remains low at 40.6% and points to the degradation 
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in the NW material. Electrochemical induced mechanical changes at a single nanowire level was 

performed for the first time, and this is an important contribution of this dissertation. 
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 Chapter 7. Conclusions and Recommendations 

 

This thesis has demonstrated capabilities for integrating and characterizing single nanowire 

battery electrochemical cells using an on-chip platform. This platform has enabled an 

electrochemically correlated study on the mechanical, size and electronic conductivity changes 

that occur within battery electrodes during repeated and reversible lithium cycling. Degradation 

studies in battery electrode materials is currently an important topic in battery research, with 

the goal of understanding the fundamental behavior of each component over its life-cycle. These 

capabilities, which have been demonstrated in this thesis, are critical to determine the failure 

mechanisms associated with the material system, and to come up with modifications/changes to 

crystal structure, composition etc. that minimize such degradation mechanisms. With an increase 

in the usage of nanomaterials to achieve these improvements, the single nanowire degradation 

work presented in this study is an important contribution of my thesis to the research 

community. Primarily, the ET ratio calculations presented at the end of this work should be 

considered as a key parameter in the study of lithiated behavior of the material system by the 

battery research community to develop future batteries using nanotechnology. 

 

Specifically, this dissertation has made the following key contributions: (a) integration of single 

nanomaterials into functional lithium cells, (b) a capability to measure the electronic conductivity 

of a battery electrode at a single nanoparticle level; this has been used to study the impact of 

electronic conductivity on the rate capability of a battery electrode,  (c) a capability to measure 

the SOC-dependent size changes in a battery electrode, and (d) measurement of mechanical 
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degradation with lithium cycling in a single battery nanowire electrode for the first time. These 

contributions have resulted in seven co-authored journal articles and three co-authored 

conference contributions.  

 

In summary, advances in energy storage technology holds the key in enabling next generation 

applications such as electric vehicles and integration of renewable energy sources within the 

electric grid system. The search for such storage devices having higher energy density, faster 

charge-discharge rates, low cost and long cycle-life are vital to achieve this progress. 

Nanotechnology has the potential to play a pivotal role in realizing these improvements in each 

of the battery components199,200, an helps building a better battery by increasing the size and 

surface of battery electrodes95 and moving from conventional 2D structures to 3D201,202. 

 

This thesis has presented some new avenues for testing and optimizing these next-generation, 

nano-enabled battery materials. The solutions that emerge from these capabilities, together with 

solutions to other challenges associated with the use of nanomaterials in batteries (such as 

agglomeration203, understanding inter-particle effects59, manufacturing difficulties60 etc.), have 

the potential to play a transformative role in the insertion of batteries for future transport and 

electric-grid applications. 
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