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POWER MAXIMIZATION FOR PYROELECTRIC, PIEZOELECTRIC, AND HYBRID 
ENERGY HARVESTING 
 
By Murtadha A Shaheen, Ph.D. 
 
A dissertation submitted in partial fulfillment of the requirements for the degree of 
Doctor of Philosophy at Virginia Commonwealth University 
 

Virginia Commonwealth University 
 

 
 

Director: Karla Mossi, Ph.D. 
Associate Professor, Department of Mechanical and Nuclear Engineering 

School of Engineering 
 
 

       Research in the area of environmental energy harvesting to power small electronic 

components has developed in the last few years. In particular, researching materials that exhibit a 

piezoelectric or a pyroelectric effect have been the subject of extensive investigation for energy 

harvesting applications.  These applications however are faced with many technical challenges to 

maximize power efficiently. The goal of this dissertation consists of improving the efficiency of 

energy harvesting using pyroelectric and piezoelectric materials in a system by the proper 

characterization of electrical parameters, widening operating frequency, and coupling of both 

effects with the appropriate parameters. 

       Impedance characterization and matching is very critical for power maximization in 

pyroelectric energy harvester. A new simple stand-alone method of characterizing the impedance 

of a pyroelectric cell has been demonstrated. This method utilizes a Pyroelectric single pole low 

pass filter technique, PSLPF. Utilizing the properties of a PSLPF, where a known input voltage 



xiv 
 

is applied and capacitance Cp and resistance Rp can be calculated at a frequency range of 1 mHz 

to 1 Hz. The PSLPF method presented here demonstrates that for pyroelectric materials the 

impedance depends on two major factors: (1) average working temperature, and (2) the heating 

rate.  Neglecting these two factors can result in inefficient and unpredictable behavior of 

pyroelectric materials when used in energy harvesting applications. 

  Vibration energy scavengers provide the maximum power when working at resonance, 

which means that the harvesters are not efficient in environment vibrations with time-dependent 

frequencies. Design and implementation of a hybrid approach using multiple piezoelectric 

bimorph cantilevers is presented. This is done to achieve mechanical and electrical tuning, along 

with bandwidth widening. In addition, a hybrid tuning technique with an improved adjusting 

capacitor method was applied to this system. A small toroid inductor of 700 mH is connected in 

parallel to the load resistance and shunt capacitance. Results show an extended frequency range 

up to 12 resonance frequencies (300% improvement) along with improved power up to 197%.           

Finally, a hybrid piezoelectric and pyroelectric system is designed and tested. Using a 

new voltage doubler circuit for rectifying and collecting pyroelectric and piezoelectric voltages 

individually is proposed and tested. The investigation showed that the hybrid energy is possible 

using the voltage doubler circuit from two independent sources for pyroelectrictity and 

piezoelectricity due to marked differences of optimal performance.  The obtained results were 

significantly higher than harvested energy simultaneously from the same material. 
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Chapter 1: Introduction 

 
1. Background and Motivation 
 

                  Energy scavenging systems are those which convert different types of ambient energy 

such as wind, heat, vibration, and light into useful electrical energy. The harvesting of ambient 

energy to power small electronic components has received incredible consideration over the last 

decade (Gambier P et al. 2012). Among the most important phenomena utilized in energy 

harvesting is pyroelectricity and piezoelectricity. 

1.1 Pyroelectricity 

           Pyroelectricity can precisely be defined as the temperature reliance of the spontaneous 

polarization in an anisotropic material (S. B. Lang, 1974; M. ref; S. Bauer and S. B. Lang, 1996; 

S.B. Lang 2005). As an example for pyroelectric effect, consider a sample of pyroelectric 

material such as barium titanate as shown in Figure1.1a. The unit cells of this material have pairs 

of charges called dipoles and each dipole has a moment. The dipoles are crowded so that 

components of their moment in every unit cell combine in the path normal to the parallel flat 

surfaces. The moment of dipole per unit volume of the material is termed the polarization Ps 

which is always nonzero in a pyroelectric division. Ps exists when an electric field is not 

available. Electrons or ions nearby will be moved toward to the sample by attraction force as 

presented in Figure1.1a. Assume that two conductive electrodes are then connected to the 

surfaces and linked through a sensitive galvanometer. When the temperature of the material is 

not changing, then so is Ps and the current flow is equal to zero. A rise in temperature results in 

the net dipole moment and, accordingly, Ps to decrease. The quantity of bound charge then 

drops, and the free charges restructure to compensate for the change in bound charge producing a 
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pyroelectric current. If the material was cooled, the sign of current would be inverted (S.B. Lang 

2005).  

1.1.1 The Primary, Secondary, and Tertiary Pyroelectric Effect 

There is a thermodynamically reversible interface that may arise among the mechanical, thermal, 

and electrical properties of a crystal as shown in the triangular diagram in Figure 1.1 b. It can be 

noticed from the lines joining pairs of circles that a small variation in one of the parameters 

causes a corresponding change in the other. There are three short bold lines connecting pairs of 

elastic, thermal, and electric variables. These lines define the physical characteristics of 

elasticity, heat capacity, and electrical permittivity, respectively. For instance, a small increase in 

temperature θ yields a rise in entropy S relational to the heat capacity divided by temperature. 

The diagram also demonstrates coupled effects, designated by lines connecting pairs of circles at 

different angles. 

                         

(a)                                                                                   (b)                   

Figure 1.1 (a) Pyroelectricity (b) mechanical, thermal, and electrical properties of a crystal (Adapted from 

S.B. Lang 2005).   
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Pyroelectricity is a combined effect that relates a variation in temperature T to a variation in 

electrical displacement: 

                                                           𝑑𝑑 = 𝑝 𝑑𝑇                                                      Equation 1.1 
    

 
 Where: D is the electric displacement, p is the pyroelectric coefficient, and T is the temperature. 
 
 The pyroelectric coefficient can be defined by: 

                                                𝑝 = (𝜕𝜕/𝜕𝑇)𝑆,𝐸                                             Equation 1.2 

 Where P is the spontaneous polarization, E is electric field; S is the elastic stress. S and E are the 

constant constraints.  

The two contributions formatting pyroelectric effect are represented by the colored lines in 

Figure 1.1 b. In the first contribution, the crystal is fastened under constant strain St. A change in 

temperature causes a variation in electric displacement as presented by the green line, and this is 

called the primary pyroelectric effect.  Crystal deformation causes the second contribution: 

Thermal expansion leads to a strain that adjusts the electric displacement via a piezoelectric 

process which is described by the dashed red lines and it is called the secondary pyroelectric 

effect. It is tremendously difficult to measure the primary effect directly. 

  Experimentally, the pyroelectric effect under constant stress which is called the total effect is 

what is usually measured. The pyroelectric effect is equal to the sum of red and green lines 

shown in Figure 1.1b. The primary, secondary, and total pyroelectric coefficients of several 

materials for comparison are shown in Table 1.1.  Ferroelectrics are pyroelectric materials whose 

direction of polarization could be inverted by an appropriate electric field. They are also 

characterized by a threshold temperature called the Curie temperature Tc, above which the 

material is non polar pyroelectric. Below Curie Temperature Tc, ferroelectric materials are polar 

and can show pyroelectric effect. Ferroelectric materials are of greater interest for applications  
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Table 1.1 Properties of Materials: Anisotropy, Symmetry, (R. E. Newnham, 2005) 
 

Material  Primary  
Coefficient       

Secondary 
Coefficient           

    Total Coefficient 
     µC/m2.K 

Ferroelectrics 
 
Poled Ceramic 
 
BaTiO3 
 
PbZr0.95Ti0.05O3 
 
Crystal 
 
LiNbO3 
 
LiTaO3 

 
Pb5Ge3O11 
 
Ba2NaNb5O15 
 
Sr0.5Ba0.5Nb2O6 

 
(CH2CF2)n 

 
Triglycine sulfate 
 
 
Nonferroelectrics 
  
Crystal 
 
CdSe 
 
CdS 
 
ZnO 
 
Tourmaline 
 
Li2 SO4. 2H2 O 

 

 

-260 

-305.7 

 

-95.8 

-175 

-110.5 

 -141.7 

  -502 

  -14 

  +60 

 

 

 

-2.94 

-3.0 

-6.9 

-0.48 

   +60.2 

 

 

+60 

+37.7 

 

+12.8 

-1 

+15.5 

+41.7 

-48 

-13 

-330 

 

 

 

-0.56 

-1.0 

-2.5 

-3.52 

   +26.1 

 

 

-200 

-268 

 

-83 

-176 

-95 

-100 

-550 

-27 

-270 

 

 

 

-3.5 

-4.0 

-9.4 

-4.0 

+86.3 
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since generally they have larger pyroelectric coefficients than non-ferroelectrics. Tertiary 

pyroelectric effect is created by non-uniform heating producing non-uniform stresses that can 

cause polarization through a piezoelectric effect. Tertiary effect is of a little interest now. An 

inverse pyroelectric effect is called the electro caloric effect. In this effect, a change in an applied 

electric field generates a change in entropy and, accordingly, a variation in temperature. Three 

conditions must be satisfied to produce the pyroelectric effect in any solid material: A nonzero 

dipole moment must be available in the molecular structure; there must be no center symmetry in 

the material; and the material must have either no axis of rotational symmetry or a single axis of 

rotational symmetry that is not comprised in an inversion axis. Of the 32 crystal point-group 

symmetries, only 10 of them permit the presence of pyroelectricity (S.B. Lang 2005). 

 
1.1.2 Maximum Pyroelectric Energy Harvesting 
 
       Pyroelectric materials are used for providing a low power and can be considered as micro or 

nano generators. The investigation of the feasibility of efficient heat energy scavenging utilizing 

this pyroelectric effect and improving the efficiency of the power conversion from heat to 

electricity has become important (Guyomar et al., 2008). One of the pyroelectric materials that is 

easily available for energy scavenging is lead zirconate titanate (PZT) (Dalola et al., 2010; Hsiao 

et al., 2012; Krishnan et al., 2014; Lee et al., 2012; Xie et al., 2008; Yang et al., 2012a, 2012b, 

2012c, and Wilkie  K, 2000, Torah R et al., 2008). Another material of interest, polyvinylidene 

difluoride (PVDF) polymer as a low cost and flexible pyroelectric material, has attracted interest 

for energy harvesting applications as shown by several researchers (Kouchachvili and Ikura, 

2007; Navid et al., 2010; Navid and Pilon, 2011; Olsen et al., 1985; Yang et al., 2012b). All the 

research performed up to date on maximum power harvesting from pyroelectric devices indicate 

that material properties’ optimization, external circuitry power loss minimization, and impedance 
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matching are three key factors on achieving efficient pyroelectric energy harvesting. Researchers 

have investigated generating currents from thermal variations using pyroelectric materials based 

on fabricated PZT and commercial PVDF films. Cuadras et al. (2006) showed that economical 

PZT films are useful in pyroelectric energy harvesting and the parallel association of different 

cells provided the opportunity to optimize the power output for a given combination of the cell 

internal resistance and load resistance. Currents in the order of 0.1 mA and charges in the order 

of 10 mC have been satisfied for a temperature gradient of 60 K (Cuadras et al., 2010). Chang 

and Huang (2010) have proposed a PZT and stainless steel laminate composite with an 88% 

pyroelectric coefficient enhancement to increase its maximum power density, efficiency, and 

electro thermal coupling factor by 254%. Kandilian et al. (2011) showed that maximum energy 

density of 100 mJ cm-3 per cycle between temperatures of 80 oC and 170 oC by commercial 

PMN–32PT capacitors subjected to the Olsen cycle. Amokrane et al. (2012) showed rectifier-

generated voltages using comparators and MOSFET as diodes ranging from 0.8 to 2.5 V which 

is higher than those obtained with conventional rectifiers. Sebald et al. (2008) studied methods 

for optimizing pyroelectric energy harvesting and described the most important parameters when 

choosing materials and designing a device. Krishnan et al. (2014) showed they could achieve a 

power density of 421mW/cm3 with PZT-5H. Impedance matching in general is very important to 

maximize power delivered to the load for piezoelectric energy harvesting. For example, when the 

resistive load of the circuit exceeds the impedance of the piezoelectric cell, lower efficiency 

power generation will be achieved (Sodano et al., 2004). In a recent work, Kong et al. (2010) 

demonstrated an alternative method for impedance matching called resistive matching for 

piezoelectric energy harvesting. Since utilizing a large inductor value in order to complete the 

conjugate impedance matching is impractical, resistive impedance matching would be a better 
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solution. However, impedance matching has not been thoroughly considered in pyroelectric 

studies on energy harvesting. Pyroelectric experimental work depends on trial and error or 

statistical approaches to choose the optimum load resistance. In a recent paper, as an illustrative 

example, the resistance is chosen to be 1 MO and it was not optimized for maximum pyroelectric 

power generation (Xie et al., 2010). Erturun et al. showed the effect of various resistances, up to 

10 MO, on stored energy for a temperature rate of 0.1 Hz and capacitance of 100 mF. The 

optimal values for heat rate, resistance, and capacitance were estimated to be 0.05 Hz, 7330 kΩ, 

and 100 mF, respectively (Erturun et al., 2014). In another similar work, to optimize power, the 

resistance used in the energy harvesting circuit was tested for a range of 1 to 12MO, and based 

on that; the optimal resistance was evaluated to be 8MΩ for a PZT sample (Mane et al., 2011). 

          Some key points that previous published work in the area of pyroelectric energy harvesting 

show that the electrical part of the pyroelectric cell is modeled as a capacitor, while the inherent 

parallel resistor has been ignored. This parameter is usually neglected because common 

measurement techniques only show infinite resistance, which is not accurate. Hence, if the 

equivalent circuit for a pyroelectric cell is incomplete, optimum impedance matching becomes 

impossible. Pyroelectric energy harvesters require equipment for impedance measurements at 

low frequencies, such as 1 Hz and lower. The most commonly available equipment to measure 

the impedance is an LCR precision meter, such as QuadTech 7400 with a range from 10 Hz and 

above, and the impedance analyzer, such as HP4194 with a range of 100 Hz to 40 MHz. Some 

spectroscopy equipment such as the Solartron 1296A Dielectric Interface System actually has the 

capability to do characterization for dielectric in the frequency range from 10 mHz to 10 MHz, 

but it is not a standalone unit. It needs to interface with the 1260A impedance analyzer. It 
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requires very long cycle times for samples due to the sub-hertz frequencies. All of these devices 

are costly and bulky.  

       The purpose of this work is to demonstrate a new simple stand-alone method of 

characterizing the impedance of a pyroelectric cell. This method utilizes a pyroelectric single 

pole low-pass filter technique (Shaheen M., et al 2016). Utilizing the properties of a pyroelectric 

single pole low-pass filter technique, a known input voltage is applied and using simple 

equations, capacitance Cp and resistance Rp at a frequency range of 1 mHz to 1 Hz can be 

calculated. For verification purposes, an LCR meter and an impedance analyzer were exploited 

at 10 and 100 Hz, respectively. Results showed that Rp values for two materials, lead zirconate 

titanate-5A and polyvinylidene difluoride, were within 8%, and Cp values were within 7.5%.In 

addition, to verify the importance of the impedance values in energy harvesting applications, 

output power was measured with varying impedance values. The optimal load resistances for 

PVDF and PZT-5Awere consistent with the measured pyroelectric impedance at the particular 

heat range with 10.9% and 1.4%, respectively. The pyroelectric single pole low-pass filter 

method presented here demonstrates that for pyroelectric materials the impedance depends on 

two major factors: (1) average working temperature and (2) the heating rate. Neglecting these 

two factors can result in inefficient and unpredictable behavior of pyroelectric materials when 

used in energy harvesting applications. 
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1.2 Piezoelectricity  
 
          Piezoelectric Effect can be defined as an existence of an electrical voltage across sides of a 

piezoelectric cell when it is under stress and of strain when an electric field is applied. Pierre 

Curie and his brother Jacques explored this effect in 1880 (Pierre Curie, 1859-1906). It is 

assigned by the displacement of free charges such as ions, producing the electric polarization of 

the crystal basic structural unit. When an electric field is applied, the ions are relocated by 

electrostatic forces, causing mechanical deformation in the crystal. This effect occurs naturally in 

specific materials such as quartz crystals, but can be created in other materials, such as some 

ceramics containing mainly Lead, Zirconium, and Titanium cell (PZT). The poling process is 

used to “stimulate” the piezo properties of the mix of metals. The material is first heated to Curie 

temperature Tc. Then, an electric field is applied in the preferred direction, pushing the ions to 

align along this “poling” axis. When the ceramic material cools, the ions “recall” this polling and 

act accordingly.  

 

1.2.1 Piezoelectric energy harvesting  

           A diversity of wireless and portable applications has been developed in the past two 

decades providing convenience and new capabilities. However, the batteries used to power such 

devices require tedious maintenance or replacement, and often results in going above the volume 

requirements of some applications (Kong et al., 2010). To address this issue, energy scavenging 

systems have been presented by researchers. Different energy sources existing in the 

environment, such as light, wind, heat, and vibration, can be the sources for energy harvesting. 

Among them, the vibration can be found almost everywhere in our daily life and, hence, have 

fascinated much research consideration (Tang et al., 2010). Many research works have been 



10 
 

proposed for piezoelectric energy scavenging from ambient vibration (Richards D 2004, Beeby, 

S. P et al., 2006; Anton, S. R. and Sodano, 2007; Saadon, S. et al., 2011; Kim B. et al., 2014; 

Zhu, D. 2010, and Ottman K 2003, Wickenheiser M. 2010, and Rastegar J 2006). Some 

researchers presented series of piezoelectric energy harvesting devices with low-level vibrations 

of common household and other home environments (Sohn  W 2005, Leland, E. S. and Wright, 

P. K, 2006; Sodano, H. et al., 2004; Choi, W. J et al., 2006). There are several main restrictions 

for real applications of the piezoelectric energy scavenger. Firstly, coupling coefficient values for 

piezoelectric materials is critical to improve the performance of piezoelectric energy harvesters. 

Secondly, sustainability of piezoelectric energy harvesters under severe vibrations from fatigue 

and cracking of these devices are crucial. Thirdly, an efficiency of the electronic circuitry for 

these harvesters in such small vibration energy needs to be developed (Heung Soo Kim et al., 

2011). Lastly, operating frequency range is critical to be tuned for a specific real ambient 

vibration frequency.  

 

1.2.2 Piezoelectric operating frequency tuning and bandwidth widening 
 
           Ambient vibration sources are unpredictable which a critical issue is for piezoelectric 

cantilever based energy harvesters. Resonant devices with high Q-factor has very narrow 

frequency bandwidth of operation, whereby with a minor shift of frequency in excitation will 

result in a drop in the output power (Kok et al., 2011). In other words, piezoelectric energy 

harvesters provide the maximum output power when working at resonance, which means that the 

harvesters are not efficient in environs with random vibrations (Hsu et al., 2014). To date there 

are, in general, two methodologies to solving this issue. The first is to alter the resonant 

frequency of a single harvester so that it matches the frequency of the ambient vibration.. This 
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can be verified by changing the mechanical characteristics of the structure or electrical load on 

the harvester and they are known as mechanical and electrical tuning approaches (Zhu et al., 

2010). The second technique is to broaden the frequency bandwidth of the piezoelectric harvester 

and it can be achieved, for instance, by using an array of piezoelectric cantilevers with a diverse 

resonant frequency.  

       Mikael et al proposed a low-cost self-tuning technique (Mikael et al. 2010). It was based on 

the properties of systems driven at their natural frequency and on a non-linear, low-cost stiffness 

tuning scheme described by Guyomar et al. (2008) for the actuation. This technique permits an 

acceptable tuning of the resonance frequency on a wide range, whatever the vibration frequency 

is, while guaranteeing a net positive energy output that features a broader frequency spectrum 

than the uncontrolled system. Yu-Jen Wang et al. proposed a fine-weighted swing disk joined 

with a circular Halbach array magnetic disk for generating a steady power output in a broad 

wheel rotation speed band. A self-tuning mechanism was established, and it was revealed that 

several hundred micro-Watts of power could be scavenged from it Jen Wang et al. (2012). 

Zengtao Yang et al. suggested coupled bimorph beams whose resonant frequencies are very 

adjacent to each other are adjustable. It was shown that such a structure is wideband in the sense 

that it can collect vibration energy over a wider frequency spectrum than a single-beam 

harvester. This frequency wideband can be further broadened by using more than two beams 

Zengtao Yang et al. (2009). Wu et al presented a piezoelectric harvester utilizing mass adjusting. 

The tip mass of the suggested device consisted of two parts: a fixed mass fastened to the 

cantilever and a mobile screw (Wu et al., 2008).  Wen-Jong Wu et al suggested and verified a 

tunable resonant frequency power scavenger in a cantilever beam form to move its resonant 

frequency to match that of the ambient vibration. This system utilizes an adjustable capacitive 
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load to change the gain curve of the beam and a low power microcontroller samples the ambient 

frequency and alters the capacitive load to match external vibration frequency (Wu et al., 2006).   

         Ferrari et al presented a multi-frequency piezoelectric harvester proposed for driving 

autonomous sensors from background vibrations. The harvester is consisted of multiple bimorph 

cantilevers with different natural frequencies, whose rectified outputs are fed to a storage 

capacitor. They revealed the possibility of utilizing the harvester with input vibrations across a 

wideband frequency range, improving the efficiency of the overall energy conversion system 

over the case of a single scavenger (Ferrari et al., 2008). S.M. Shahruz studied the performance 

of vibrational band-pass filters to be used in energy harvesters. Such a filter is consisting of 

several cantilever beams where at the end of each beam a tip mass, known as the proof mass, is 

attached. Shahruz raised two questions related to the performance of this filter: (i) what is the 

optimum expected performance of the filter? (ii) How can a system with such a performance be 

fabricated? Knowledge of such issues leads to a systematic process for evaluating dimensions of 

the cantilever beams and masses of the tip masses of the band-pass filters (Shahruz S.M., 2006).  

Weiqun Liu et al. suggested a bi-stable structure consisted of four thin cantilever beams, two 

piezoelectric stacks, and a dynamic mass is developed. The harvester performance was 

established for bandlimited noise excitations and an actual vibration signal from a driving car 

Weiqun Liu et al. (2014). 

1.2.2.1 Mechanical tuning  

        Mechanical tuning can be satisfied by changing either the mass of the cantilever beam or 

the length which is also ultimately considered as cantilever mass changing. The resonant 

frequency of a spring mass structure is given by (Zhu et al., 2010): 
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𝑓𝑟 =  1
2𝜋

 �𝑘∗

𝑚
                                          Equation 1.3               

Where: k* is the spring constant and m is the inertial mass. When tuning the natural frequency of 

the harvester the spring constant or the mass can be changed. For a cantilever with a mass at the 

free end in Figure 1.2 (adapted from Shahruz, 2006a) the resonant frequency is given by 

(Blevins, 1979): 

𝑓𝑟 = 1
2𝜋

 � 𝑌 𝑤 ℎ𝑏3

4𝑙3(𝑚+0.24𝑚𝑏)
                                       Equation 1.4 

Where Y is Young’s modulus of the beam material; w, hb, m, l, and mb, are the width, thickness, 

inertial mass, length, and the mass of the piezoelectric cantilever, respectively. When the length l 

is changed the mass of the cantilever mc changes too as it is equal to w h ln ρ where ln is the new 

length (l + ∆l) and ρ is the density of the material of the cantilever. If the total mass is changed 

by both adding a proof mass m and changing the length, the new resonance frequency frn 

equation changes to: 

 

                                           

                                  Figure1.2 a cantilever with a tip mass at the free end           
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1.2.2.2 Bandwidth widening  

In order to harvest energy efficiently from different sources of vibration, an energy harvester 

should have wide bandwidth in nominated frequency ranges. A device with such characteristics 

is called a mechanical band-pass filter (Shahruz, 2006b). Figure 1.3 shows a beam–mass system 

(Shahruz, 2006a) that can be developed into a band-pass filter when dimensions of the 

cantilevers and masses of the tip masses are chosen properly: 

                                      

                                         Figure 1.3 a band-pass filter of cantilever beams and proof masses   

                                         

1.2.2.3 Electrical tuning  

          The main principle of electrical tuning is to alter the electrical damping by 

adjusting the load, which causes the power spectrum of the harvester to move (Zhu et al., 

2010). By changing shunt circuit conditions applied across the piezoelectric layer, the 

elastic modulus of the layer changes and consequently the overall stiffness of the 

structure changes. Since the resonance frequency of the structure is dependent on its 

stiffness, by changing the shunt conditions, the natural frequency can be tuned to a 

required value. For a bimorph the upper, lower and in between natural frequency limits 

are denoted by the following three equations respectively (Charnegie, 2007). 
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                                        Equation 1.8 

 

Where: 

ωlow: Lower bound frequency 

ωup: Upper bound frequency  

C11: is the mechanical compliance of the piezoelectric cell 

d31:  is the electromechanical coupling coefficient 

ε*: The permittivity of the material 

A: Capacitor area 

t: thickness 

C: the capacitance 

Csh: The shunt capacitance 

Cp: The inherent piezoelectric capacitance 

 
        In this study, a hybrid frequency tuning methodology using multiple piezoelectric bimorph 

cantilevers will be demonstrated. This is done to accomplish mechanical tuning, electrical 
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tuning, and bandwidth widening simultaneously to develop a significant growth in frequency 

spectrum for the piezoelectric energy scavenger. Rather than having three resonant frequencies 

the system has twelve natural frequencies and maximum power peaks.  

 
        In this study, a hybrid frequency tuning methodology using multiple piezoelectric bimorph 

cantilevers will be presented. This is done to accomplish mechanical tuning, electrical tuning, 

and bandwidth widening simultaneously to develop a significant growth in frequency spectrum 

for the piezoelectric energy scavenger. Rather than having three resonant frequencies the system 

has twelve natural frequencies and maximum power peaks.  

              It will be shown that this design which includes three cantilevers and four capacitors for 

each beam could deliver more power than the case if one bimorph cantilever is assumed to be 

used with 12 capacitors. The proposed hybrid tuning technique is feasible and the optimal 

method for wide broadband piezoelectric energy harvesting.  

        In addition, an experimental enhanced power harvester with hybrid tuning using multiple 

piezoelectric unimorph cantilevers will be described. This approach sought to enhance 

piezoelectric power and frequency spectrum using mechanical tuning, electrical tuning, and 

bandwidth widening techniques simultaneously with conjugate impedance matching. This 

approach aimed to enable piezoelectric energy harvesters to work efficiently in a variety of 

environments with random ambient vibrations frequencies.  A small toroid inductor of 700 mH is 

connected in parallel to the load resistance and shunt capacitance. An extended frequency range 

of 12 resonance frequencies with 300% improvement is obtained experimentally with enhanced 

power density improvements of 19.7% to 197%.  

 



17 
 

1.3: Modeling for piezoelectric bimorph cantilever with RLC load  
 
         Some single degree of freedom SDOF models have been derived to analyze piezoelectric 

bimorph cantilevers (Du Toit N E et al. 2005; Stephen N G 2006; Erturk A and Inman D J 2008; 

Hagood N Wet al. 1990; Chen S-N et al., 2006, Sterken T 2004).  Roundy S. developed a SDOF 

model for a piezoelectric harvester with two designs optimized within an overall space constraint 

of 1 cm3. These designs have been fabricated and tested with both resistive and capacitive loads. 

In this study a mathematical state space model fora piezoelectric bimorph cantilever beam with 

parallel resistance, capacitance, and inductance load has been developed considering the model 

demonstrated by Roundy S. 2004.This model can be utilized to evaluate the feasibility of 

shunting an inductive reactance with a small inductance value to improve the output power of 

piezoelectric scavengers with electrical tuning. 

 
1.4: Hybrid Pyro-Piezoelectric energy harvesting  
 
            Hybrid energy harvesting devices can be defined as those which simultaneously harvest 

the numerous energies by utilizing an integrated system (Ya Yang et. al 2013).  

Hybridizing different categories of energy systems into a single harvesting devise will 

compensate the performance of each individual system. Moreover, this will allow the hybrid 

energy scavenger to harvest different kinds of energy simultaneously (Nayar C V et al., 1993; Xu 

C, Wang et al., 2008; Gonsalez, G. 2010, Iqbal M T 2003, and Challa, R 2009).The thermal, 

mechanical, and solar energies typically can be harvested from our living surroundings and this 

harvesting is of critical significance for our long-term energy desires. As these energies are not 

always obtainable at the same time, a hybrid energy cell is developed. Some materials, such as 

PVDF, PZT, and ZnO have both the pyroelectric and piezoelectric properties; they can be used 

for manufacturing both the pyroelectric and piezoelectric harvesters. These materials are used for 
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producing the hybrid energy scavenger since they can save the production cost and reduce the 

size of the energy harvesting device (S. B. Lang 2005). In some previous work (Ya Yang et. al 

2014), a flexible hybrid energy harvester for simultaneously/individually harvesting heat, 

vibration, and solar energies was described. Dukhyun Choi proposed flexible hybrid Nano 

architecture that can be used as both an energy scavenger and a touch sensor on a single devise. 

A hybrid cell was designed with a total thickness of less than 500 nm on a plastic substrate. This 

hybrid harvester can provide both solar and vibrational touching energies (Dukhyun Choi et al., 

2010). Yonas Tadesse et al presented a hybrid energy scavenging device that uses 

electromagnetic and piezoelectric techniques. The device consists of piezoelectric crystals 

attached to a cantilever beam. The tip of the cantilever has an attached permanent magnet which 

vibrates within a coil fixed to the top of the system causing electric current by Faraday’s effect. 

This harvesting package was optimized using the finite element software, ANSYS, and the 

output power was found to be 0.25W from the electromagnetic mechanism and 0.25mW using 

the vibration at 35 g vibration acceleration and 20 Hz frequency (Yonas Tadesse et al., 2009). 

Considering previous studies, there was no investigation for impedance matching and power 

maximization for a hybrid energy harvester combining pyroelectric and piezoelectric 

mechanisms on which we focused in this work. 
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1.5 Approach  
 
 
       Several techniques for power maximization will be presented in this study.  

           In the first approach, a simple method named PSLPF is used to characterize impedance 

for PVDF and PZT-5A cells at low frequencies has been invented such that the pyroelectric 

power harvested can be maximized. The PSLPF technique proposed here shows that impedance 

dependence on the average temperature and the heating rate are both key parameters when 

characterizing a pyroelectric material. This indicates obviously that to optimize impedance when 

exploiting the pyroelectric effect, both operating average working temperature and the rate of 

temperature change need to be considered when designing energy harvesting systems. 

Neglecting those parameters will result in inefficient and unpredictable systems. 

       In the second approach, a state space dynamics model of the piezoelectric cantilever with 

RLC load has been developed. This model can be utilized to analyze the feasibility of shunting 

an inductance with small value to improve the output power of vibration based scavengers with 

passive electrical tuning. A general dynamics model of the piezoelectric cantilever with RLC 

load has been developed, and test results from this generator were presented and discussed. 

        In the third approach, a hybrid frequency tuning methodology using multiple piezoelectric 

bimorph cantilevers is presented. This is done to accomplish mechanical tuning, electrical 

tuning, and bandwidth widening simultaneously to develop a significant increase in frequency 

range for the piezoelectric energy scavenger. The proposed hybrid tuning technique was feasible 

and the optimal method for wide broadband piezoelectric energy harvesting. An enhanced power 

hybrid tuning technique using multiple piezoelectric unimorph cantilevers with conjugate 

impedance has been presented.  
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         Finally, a hybrid energy harvester has been designed and implemented. It was shown that 

to optimize impedance when utilizing the pyroelectric and piezoelectric effects simultaneously, 

both operating average working temperature and the rate of temperature change need to be 

considered when designing energy harvesting applications.  Neglecting those parameters will 

result in inefficient and unpredictable hybrid energy harvesting systems. In addition, an 

impedance matching using a new voltage doubler circuit for rectifying and collecting 

pyroelectric and piezoelectric voltages individually is proposed and tested.  The obtained results 

were significantly higher than harvested energy simultaneously from the same material.  
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Chapter 2 Pyroelectric Energy Maximization 
 
                            

2.1 Introduction 

     Energy harvesting systems are those which convert different types of ambient energy such as 

wind, heat, vibration, and light into useful electrical energy. The harvesting of ambient energy to 

power small electronic components has received tremendous attention over the last decade 

(Gambier et al., 2012). Among the most important phenomena utilized in energy harvesting is 

pyroelectricity which can be defined as the temperature reliance of the spontaneous polarization 

in certain anisotropic solids (Lang, 2005).  The investigation of the feasibility of efficient heat 

energy harvesting using this pyroelectric effect and improving the effectiveness of the energy 

conversion from heat to electricity has become of importance (Guyomar et al., 2008). One of the 

pyroelectric materials that is easily available for energy harvesting is lead zirconate titanate 

(PZT) (Dalola et al., 201; Krishnan et al., 2014; Lee et al., 2012; Xie et al., 2008). Another 

material of interest, PVDF polymer as low cost, and flexible pyroelectric material has attracted 

interest for energy harvesting applications as shown by several researchers (Olsen et al., 1985; 

Yang, Zhang, et al., 2012; Navid et al., 2010).    

    All the research performed up to date on maximum power harvesting from pyroelectric 

devices indicate that material properties optimization, external circuitry power loss minimization, 

and impedance matching are three key factors on achieving efficient pyroelectric energy 

harvesting. Researchers have investigated generating currents from thermal fluctuations using 

pyroelectric cells based on fabricated screen-printed PZT and commercial PVDF films. Cuadras 

et al. (2006) showed that economical PZT films are useful in pyroelectric energy harvesting and 

the parallel association of different cells provided the opportunity to optimize the power output 

for a given combination of the cell internal resistance and load resistance.  Currents in the order 
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of 0.1 µA and charges in the order of 10µC have been satisfied for a temperature gradient of  

60K (Cuadras et al., 2010). Chang and Huang (2010) have proposed a PZT and stainless steel 

laminate composite with an 88% pyroelectric coefficient enhancement to increase its maximum 

power density, efficiency, and electro thermal coupling factor by 254%. Kandilian et al. (2011) 

showed that maximum energy density of 100 mJcm−3/cycle between temperatures of 80°C and 

170°C by commercial PMN–32PT capacitors subjected to the Olsen cycle.  Amokrane et al. 

(2012) showed a rectifier–using comparators and MOSFET as diodes—generated voltages 

ranging from 0.8 to 2.5 V which is higher than those obtained with conventional rectifiers. 

Sebald et al. (2008) studied methods for optimizing pyroelectric energy harvesting and described 

the most important parameters when choosing materials and designing a device. Krishnan et al. 

(2014) showed he could achieve a power density of 421.18 µW/cm3  with PZT-5H.  

Impedance matching in general is very important to maximize power delivered to the load for 

piezoelectric energy harvesting. For example when the resistive load of the circuit exceeds the 

impedance of the piezoelectric material, lower efficiency power generation will be achieved 

(Sodano et al., 2004). In recent work, Kong et al. (2010) demonstrated an alternative method for 

impedance matching  called resistive matching for piezoelectric energy harvesting. Since 

utilizing a large inductor value in order to complete the conjugate impedance matching is 

impractical, resistive impedance matching would be a better solution. However, impedance 

matching has not been thoroughly considered in pyroelectric studies on energy harvesting. 

Pyroelectric experimental work depends on trial and error or statistical approaches to choose the 

optimal load resistance. In a recent paper, as an illustrative example, the resistance is chosen to 

be 1 MΩ and it was not optimized for maximum pyroelectric power generation (Xie et al., 2010). 

Erturun et al., showed the effect of various resistances, up to 10 MΩ, on stored energy for a 
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temperature rate of 0.1 Hz and capacitance of 100 µF. The optimum values for temperature rate, 

resistance, and capacitance were predicted to be 0.05 Hz, 7330 kΩ, and 100 mF, respectively 

(Erturun et al., 2014). In another similar work, to optimize power, the resistance used in the 

circuit was tested for a range of values from 1 to 12 MΩ, and based on these tests, the optimal 

value was determined to be 8 MΩ for a PZT sample (Mane et al., 2011a).  

         Some key points that previous published work in the area of pyroelectric energy harvesting 

show that the electrical part of the pyroelectric cell is modeled as a capacitor, while the inherent 

parallel resistor has been ignored.  This parameter is usually neglected because common 

measurement techniques only show infinite resistance, which is not accurate. Hence if the 

equivalent circuit for a pyroelectric cell is incomplete, optimum impedance matching becomes 

impossible. Pyroelectric energy harvesters require equipment for impedance measurements at 

low frequencies, such as 1 Hz and lower. The most commonly available equipment to measure 

the impedance is an LCR precision meter, such as QuadTech 7400 with a range from 10 Hz and 

above, and the Impedance Analyzer, such as HP4194 with a range of 100 Hz to 40 MHz. Some 

spectroscopy equipment such as the Solartron 1296A Dielectric Interface System actually has the 

capability to do characterization for dielectric in the frequency range from 10 μHz up to 10 MHz, 

but it is not a stand-alone unit. It needs to interface with the 1260A impedance analyzer. It 

requires very long cycle times for samples due to the sub-hertz frequencies. All of these devices 

are costly and bulky. 

     This study aims to show a simple method to characterize impedance for PVDF and PZT-5A 

cells at low frequencies such that the pyroelectric power harvested can be maximized. This 

method utilizes a Pyroelectric Single pole Low Pass Filter, PSLPF, which consists of a 

pyroelectric cell instead of parallel R and C components in the feedback path of this common 



24 
 

filter.  By applying a known input signal at low frequencies along with some simple calculations, 

the internal capacitance Cp and resistance Rp of the pyroelectric cell can be calculated.  Once 

these parameters were calculated, the results were verified by measuring output pyroelectric 

energy at various values of load impedance. The maximum power corresponds to the calculated 

value of RL using the PSLPF method within a 9.8 % difference for PVDF cell and a 1.4 % 

difference for PZT-5A cell.  

        The experiments highlighted the importance of the effect of ambient working temperature 

on the total pyroelectric impedance. When PVDF or PZT-5A is exposed to ambient working 

temperatures that are higher than24oC, the inherent capacitance and resistance of the pyroelectric 

material change. For instance, in the case of PVDF impedance decreases approximately 10 times 

from 24 to 90oC. This order of magnitude change can have an adverse impact on application 

design specifically on energy harvesting applications.  Hence the equivalent circuit of a 

pyroelectric material is reviewed in detail to highlight all of the effects observed in the 

experiments.  

2.2 Pyroelectric equivalent circuit 

        The general approximate model of a pyroelectric cell is described in Figure 2.1 and was 

commonly used for many years. This circuit represents a current source connected in parallel 

 with two parallel passive elements, a resistor Rp and a capacitor Cp  (Cuadras, 2006). 
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Figure 2.1. Equivalent circuit for a single pyroelectric cell 

The pyroelectric equations can be written as (Guyomar et al., 2008): 

 

                                      𝐷 =  𝜀𝜀 + 𝑝𝑝                                       Equation 2.1   

𝐼 = 𝐴 𝑑𝑑
𝑑𝑑

                                               Equation 2.2  

   𝐼 =  𝑝 𝐴𝑇̇ −  𝐶𝑝𝑉̇                                  Equation 2.3  

  𝐶𝑝 = 𝜀 𝐴
𝑏

                                                  Equation 2.4   

Where D, E, T, V, and I are the electrical displacement, electrical field, temperature, electric 

potential, and generated electric current respectively; 𝑇̇ and 𝑉̇ represent the first derivatives of 

temperature and electric potential; A, b, Cp, p, and ε are the surface area, thickness, inherent 

capacitance, the pyroelectric coefficient, and permittivity respectively.  

Leakage current, usually neglected, has a value that is especially large at high temperatures. To 

include this effect, surface current density, J, is considered in the form shown in Equation 2.5 

(Farmingdale University tutorial)  
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𝐽 = 𝐽𝑝 + 𝐽𝑐                                            Equation 2.5  

Where Jd, and, Jc are the two components of current density namely the displacement current 

density, Jd, and conduction current densities Jc  

𝐽 = 𝜕𝜕
𝜕𝜕

+ 𝜎.𝐸                                          Equation 2.6   

Where σ represents the conductivity of the material 

    𝐼𝑝 = 𝐴. 𝐽 = 𝐴 𝜕𝜕
𝜕𝜕

+ 𝐴.𝜎.𝐸                     Equation 2.7 

 

     According to An-Shen Siao (An-Shen Siao et al., 2015), if the pyroelectric circuit is analyzed 

using Kirchhoff's current law, the sum of the currents entering into a node is equal to the sum of 

the currents leaving that node. Equation 2.7 shows this effect clearly when the outgoing current 

is mostly due to the pyroelectric effect and the other terms represent losses due to the internal 

capacitance and resistance. 

The electric current in a pyroelectric cell depends on the temperature fluctuation which causes a 

polarization and a charge moving. There are not free carriers in the pyroelectric capacitor. The 

polarization of the charges induces an AC current in the electrodes if connected to an external 

circuit.  The electric equivalent circuit can be considered as a parallel resistor-capacitor with no 

current source when there is no fluctuation in temperature. 

   Considering the described equivalent circuit, a new method to characterize a pyroelectric cell is 

proposed and described in the following section. 
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2.3 Pyroelectric Single Pole Low Pass Filter (PSLPF) 

        One of the most extensively used electronic circuits is the operational amplifier low pass 

filter circuit which simply consists of an operational amplifier, a resistor connected in series via 

the non-inverting input, and a parallel RC circuit connected to the feedback path. The function of 

this circuit is to undergo low pass filtering when an input signal is applied. This application can 

be effectively utilized in order to characterize any pyroelectric cell by connecting this cell across 

the feedback path instead of the RC parallel circuit as shown in Figure 2.2. The transfer function 

of PSLPF circuit would be written as: 

 

                         𝑉𝑜
𝑉𝑖𝑖

=  −𝑍𝑝
  𝑍1

 = −

𝑅𝑝∗𝑋𝑝

�𝑅𝑝2+ 𝑋𝑝2

𝑅1
=  − 𝑅𝑝∗𝑋𝑝

𝑅1�𝑅𝑝2+ 𝑋𝑝2
               Equation 2.8   

Where: 

Vin and Vout are the input and output voltages respectively. Rp and Xp, and Zp are pyroelectric 

resistance, capacitive reactance, and total impedance respectively. 

At very low frequencies, the parallel feedback capacitive reactance can be considered as an open 

loop and the voltage gain is constant and equal to: 

𝑉𝑜
𝑉𝑖𝑖

=  −𝑅2
  𝑅1

                                           Equation 2.9   

The corner frequency for this low pass filter is: 

 



28 
 

𝜔𝑐1  = 1
𝑅𝑝𝐶𝑝�                                  Equation 2.10   

 

Figure 2.2. Pyroelectric single pole low pass filter PSLPF 

    To obtain the value of Cp and Rp using the PSLPF shown in Figure 2.2, first substitute Zp with 

a pyroelectric material with inherent Rp and Cp (unknown values). DC voltages of -12V and 

+12V are applied on either side of the operational amplifier to have a voltage range of 24V 

across the circuit as a DC biasing voltage. Then, an input voltage, Vin, is applied such that it 

doesn't produce an output voltage that exceeds the rail-to-rail voltage that is equal to 24 V. The 

frequency of the input signal is chosen as low as possible until the output voltage reaches a 

constant sinusoidal wave that no longer increases. This is the maximum peak voltage. Then the 

frequency is adjusted until the peak voltage becomes 0.707 of the maximum peak voltage. This 

is the cutoff frequency for the pyroelectric material and will be the frequency used for Equation 

2.13. The resistor in the circuit, Rp, needs to be shunted with a parallel resistor Rsh of 10 MΩ 

(See Figure2.3) so that it is significantly lower than the expected resistance of the pyroelectric 

material. This ensures that the current will all travel through the resistor Rsh instead of the highly 

resistant pyroelectric material. The capacitance Cp can then be calculated by using the cut off 

frequency and substituting Rsh instead of Rp in Equation 2.10. Once Cp is calculated, it can be 
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used to compute the capacitive reactance Xp. To calculate Rp at a particular frequency, the 

voltage gain, R1, and Xp should be substituted in Equation 2.8. Once Cp and Rp are calculated, 

the total impedance Zp can be easily computed using Equation 2.12 that is the same equation 

used for optimal load resistance.  

 To demonstrate that the optimal load resistance has been reached, an energy harvesting 

experiment is setup. It is a fact, that for maximum output power a resistive impedance matching 

method is required. Since the conjugate impedance requires a high inductance value, it becomes 

impractical in an energy harvesting application. Instead, the following section shows the 

principles for resistive impedance matching.  

2.4 Resistive impedance matching 

To extract the maximum power from an electric power source a conjugate impedance matching 

load is used. In order to cancel the capacitive impedance in a pyroelectric harvester, a large 

inductor value is needed which is impractical. An alternative method and suboptimal approach is 

to use only a resistive load and try to match the source impedance (Kong et al., 2010). If a load 

resistance RL is connected in parallel to the circuit in Figure 2.1, the power delivered to the load 

can be calculated as follows: 

   𝑃0 = 𝑖𝐿2𝑅𝐿                                        Equation 2.11 

Where iL is the load current: 

The maximum power can be satisfied at the optimal load resistance RLopt which can be calculated 

by derivation of Equation 2.11 with respect to RL and equating the result to zero.  
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      𝑅𝐿𝑜𝑜𝑜 = 𝑅𝑝∗𝑋𝑝

�𝑅𝑝2+ 𝑋𝑝2
                                 Equation 2.12  

𝑋𝑝 = 1
𝑗𝜔𝐶𝑝

                                             Equation 2.13 

Equation 2.12 states that the optimal resistance for a maximum power is equal to the magnitude 

of the internal source impedance. By considering Figure 2.1, the optimal resistance for 

impedance matching is: 

   𝑅𝐿𝑜𝑜𝑜 =  �𝑅𝑃// 1
𝑗𝑗𝐶𝑃

� = 𝑅𝑃

�1+𝜔2𝐶𝑝2𝑅𝑝2
               Equation 2.14   

Taking the limit of Equation 2.13 as follows: 

 lim𝑅𝑝→∞
𝑅𝑃

�1+𝜔2𝐶𝑝2𝑅𝑝2
   = 1

𝜔𝑐𝑝
                   Equation 2.15   

 

                                   lim⍵𝑐𝑝→0
𝑅𝑃

�1+𝜔2𝐶𝑝2𝑅𝑝2
   = 𝑅𝑝                    Equation 2.16   

Equation 2.14 demonstrates the optimal load for a piezoelectric generator wherein the voltage 

frequency is higher than a pyroelectric generated voltage. For the case of pyroelectric energy 

scavenging, the frequency is usually less than 1 Hz. Hence, the capacitive reactance in a 

pyroelectric cell is very large and the optimal resistance should be equal to Rp as shown in 

Equation 2.15. An experimental study to prove the feasibility of the suggested method is 

presented in the next section. 
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2.5 Experimental setup for PVDF and PZT-5A PSLPF circuit 

     The main experimental circuit for characterization of two different pyroelectric cells is 

employed as shown in Figure 2.3. It has two general functional modes. In the first mode it is 

called a PVDF PSLPF, and in the second one it is called PZT-5A PSLPF. The general circuit 

contains an op-amp LM-348 chip, which is a quadruple, independent, and has high gain (Texas 

Instrument, 2002). The typical offset for the used op amp was about 4 nA and can be neglected. 

Input offset voltage of 1 mV between the input voltages is expected but it can be neglected too. It 

has a unity gain bandwidth of 1 MHz and input impedance of 2.5 MΩ. The load effect would be 

minor and can be ignored. The input bias currents i+ and i- are relatively small, so we treat them 

as though they don’t present at all, and the contribution of bias voltages is still small and can be 

neglected. A National instrument DAQ was exploited to interface with a personal computer 

using LabVIEW to display and collect data.  The materials utilized were PVDF and PZT.  The 

geometry properties, manufacturer, and electrical characteristics of both samples are listed in 

Table 2.1. The circuit has three main modes as demonstrated in Table 2.1. By providing a 

sinusoidal voltage signal such that the output voltage is less than the rail-to-rail DC biasing 

voltage, measuring the output signal, and using Equations 2.8 and 2.10, parameters Rp, Cp, and 

Zp can be calculated. The experimental setup has been tested using standard ceramic capacitors 

with known values as dummy cells and the performance has been validated successfully. 
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Table 2.1. Piezoelectric Materials Characteristics 

Material Manufacturer Dimensions (cm) Capacitance (nF) 
PVDF 

(DT2-028K/L with rivets) 
Measurement  
Specialties 

Rectangular: 
6.2 x 1.2 x 0.040 2.78 

PZT5A4 Morgan Advanced 
Ceramics 

Circular: D = 5cm, 
 t = 0.0158cm 203.5 

 

 

 

Figure 2.3. Experimental setup of PSLPF for both PVDF and PZT-5A cells 
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2.6 The PVDF single pole low pass filter circuit 

      The first main mode of the experimental circuit of Figure 2.3 is the PVDF PSLPF mode at 

which the switch 4 is in ON status and switch 5 is OFF. Generally two important values need to 

be considered, the input voltage Vin and the input resistance R1. Both of these values need to be 

selected properly to have an output voltage less than the rail to rail span voltage of the 

operational amplifier at low frequencies such as 1 mHz in order to make sure that the voltage 

gain value at ultra-low frequencies is correct. Since the maximum output voltage cannot exceed 

the biasing DC voltage value, output voltage should be less than that for accurate measurements. 

Several of the chosen values are listed in Table 2.2 to show some functional modes of the PSLPF 

circuit. Comparison of the measurements is demonstrated in Table 2.3. It can be clearly noticed 

from Table 2.2 that there is a reverse correlation between resistance and frequency as it is 

already investigated by (Mathew W. Hooker, 1998).  

     For PVDF the results of Rp were in 8 % and 1.2 % differences as compared to the LCR meter 

for 10 Hz and 100 Hz respectively. There is a 3.1 % difference as compared to the IA at 100 Hz. 

The inherent capacitance Cp was measured to be in 1.9 %, 4.3 %, and 6.4 % differences as 

compared to LCR meter, IA and manufacturer measurements respectively. Measured 

pyroelectric resistance Rp, capacitive reactance Xp, and total impedance Zp for PVDF using 

PSLPF are shown in Figure 2.4. 
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Table 2.2 Functional modes for the PSLPF 

S1 S2 S3 S4 S5 S6 S7 R1 (MΩ) Vin (mV) f  (Hz) Parameter Value 

1 0 0 0 0 0 0 - - - Reset - 

0 1 0 1 0 0 1 0.01 20 6 PVDF Cp 2.6 nF 

0 0 0 1 0 1 0 10 180 0.001 PVDF Rp 1.3 GΩ 

0 0 0 1 0 1 0 0.033 100 10 PVDF Rp 390 MΩ 

0 0 1 0 1 0 1 10-3 100 3.8 PZT-5A Cp 185 nF 

0 0 0 0 1 1 0 1 100 10-3 PZT-5A Rp 40 MΩ 

 

 

               Figure 2.4. Measured pyroelectric Rp, Xp, and Zp for PVDF using PSLPF 
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2.7 The PZT-5A single pole low pass filter circuit 

     The second main mode of the experimental circuit of Figure 2.3 is the PZT-5A PSLPF mode. 

The switch 5 is within ON status and switch 4 is within OFF as shown in Table 2.1.  A 

comparison of PSLPF, LCR, and IA measurements is shown in Table 2.3. As compared to LCR 

meter the results of Rp were in 5.8% and 1.4% differences for 10 Hz and 100 Hz respectively and 

in 6.1% differences as compared to IA at 100 Hz. The inherent capacitance is measured to be in 

0.5%, 7.5%, and 9.04 % differences with the LCR meter, IA, and manufacturer measurements 

respectively. The pyroelectric resistance Rp, capacitive reactance Xp, and total impedance Zp for 

PZT-5A measured by PSLPF, in frequency range from 1 mHz to 100 Hz are shown in Figure 

2.5.  

 

           Figure 2.5. Measured pyroelectric Rp, Xp, and Zp for PZT-5A using PSLPF 
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Table 2.3 Comparison of measured pyroelectric resistance Rp, capacitive reactance Xp, and total 

impedance Zp using PSLPF, LCR meter, and IA 

Pyro 

Cell 
Freq. 

Rp (MΩ) Xp (MΩ) Zp (MΩ) 

PSLPF LCR IA PSLPF LCR IA PSLPF LCR IA 

PVDF 

10 Hz 400 370 - 6.13 6.1 - 6.1 6.1 - 

100 Hz 51 50 65 0.61 0.59 0.64 0.61 0.59 0.64 

PZT-

5A 

10 Hz 4.9 4.63 - 0.086 0.0855 - 0.086 0.0855 - 

100 Hz 0.5 0.5 0.53 0.0088 0.0087 0.0095 0.0088 0.0095 0.01 

2.8 Effect of average working temperature on internal capacitance and resistance of a 

pyroelectric material 

       Ideally, the resistance of a pyroelectric element should be infinite since it is a dielectric 

material. This would correspond to zero leakage across the pyroelectric harvester. In reality, 

however, the resistance is finite and decreases as the applied electric field and temperature 

increase (Navid and Pilon, 2011). The total pyroelectric impedance is affected by heating as both 

parameters Cp and Rp do, so it is really important to consider the effect of heat on Xp, Rp, and Zp 

to have an accurate impedance matching between the load resistance and the total internal 

pyroelectric impedance.  

For this purpose, the same PSLPF circuit was used to characterize both PVDF and PZT-5A 

materials when radiation-based heating was applied. A halogen lamp (1 kW) was used for 

heating purposes and a thermometer (OMEGA HH506R) was utilized to measure the 

temperature of the samples. The measurements for PVDF and PZT-5A were performed in the 
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same procedure done previously and the results are demonstrated in Figure 2.6 and Figure 2.7 

respectively. When a 100 mHz voltage signal is applied with different static temperature values 

the internal capacitance of the PVDF cell is found to be correlated directly to temperature as in 

Figure 2.6, hence the capacitive reactance correlates reversely while Rp directly. The total 

impedance Zp is changed from a 400 MΩ to 40 MΩ in the temperature range from 25°C to 95°C 

for PVDF cell.  

When a voltage signal with a 100 mHz is applied to the circuit and the same previous procedure 

of impedance measurement is followed at different temperature values, the internal capacitance 

of the PZT-5A cell is found to be correlated directly to temperature as in Figure 2.7; hence the 

capacitive reactance correlates reversely while Rp directly. The total impedance Zp is changed 

from 8.7 MΩ to 6.4 MΩ in the temperature range from 25°C to 95°C for the PZT-5A cell.  These 

results show that the operating average temperature of the pyroelectric material is vital to 

designing an application that utilizes the pyroelectric effect. The measurements have been taken 

at a room temperature of 23.9oC and the surrounding was kept as constant as possible. The 

different temperature values applied to the pyroelectric cells during the characterization process 

using the electric lamp were also kept as stable as possible. 

2.9 Pyroelectric energy harvesting setup 

      The same cells of PVDF and PZT-5A cells which are characterized in the previous section 

are placed as a pyroelectric energy harvester. The complete set up is shown in Figure 2.8 and 

dimensions of the PVDF and PZT-5A cells are presented in Figure 2.9. A Function Generator 

(Hewlett Packard 15 MHz), a Solid State Relay (OMEGA SSR330 DC25) with 3-15 Vdc biasing 

voltage, a halogen lamp (110 Vac and 1 kW), a thermometer (OMEGA HH506R), a Multimeter 
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(Fluke 189-True RMS), resistance decade box (0 to 10 MΩ), and a personal computer are used 

for measurements. The function generator provides a square voltage wave with different  

 

  Figure 2.6. Measured total impedance Zp, Rp, Xp and Cp values of PVDF for temperature changes at 100 

mHz 
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Figure 2.7. Measured total impedance Zp, Rp, Xp and Cp of PZT-5A for temperature changes at 100 mHz 

frequencies for the SSR which has two normally opened contacts used to supply a 110 Vac 

voltage to the light bulb to get cyclic heating with 100 mHz frequency. 

   The load resistance is connected in parallel to the pyroelectric cell. It has a resistance value 

from 0 to 10 MΩ, and in some cases a series resistance is needed to have a higher load 

resistance. The thermometer and voltmeter with DAQ system are connected to the pyroelectric 

cell to record the periodic temperature and voltage values respectively.  

 

            Figure 2.8. Experimental prototype for the cyclic pyroelectric energy harvester 
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     Figure 2.9. The PVDF and PZT-5A cells used for pyroelectric energy harvesting with cyclic heating 

2.9.1 Energy harvesting with PVDF cell 

    The maximum pyroelectric energy harvesting in a PVDF cell can be extracted when the load 

resistance matches the total pyroelectric impedance at a particular temperature. The verification 

of inherent impedance values for the PVDF cell can be achieved by implementing the cyclic 

energy harvesting in this material and observing the load impedance value at which a maximum 

power  value can be achieved.  The cyclic temperature profile, the generated pyroelectric 

voltage, and power density for the PVDF cell for temperature changes (between 82.2°C and 

88.3°C) at 100 mHz and RL of 150 MΩ are shown in Figure 2.10. Since simple equipment is 

used to provide cyclic heating, the resulted periodic temperature signal has a high frequency 

component. In a real environment the heat signal is random so it is important to have a cyclic 

temperature signal. The load resistance has been changed from 5 MΩ to 120 MΩ at 100 mHz 

and the pyroelectric voltage and power density have been plotted as presented in  
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Figure 2.10. Instantaneous waveform of temperature, voltage, and power density changes of PVDF cell for 

temperature changes at 100 mHz and RL of 150 MΩ 
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Figure 2.11. The maximum power density was 1.25 µW/cm3 when RL of 55 MΩ and ∆T of 

6.2 oC. When Figure 2.6 is considered it can be noticed that the total PVDF impedance Zp at a 

temperature of 83.5°C is about 61 MΩ which is in good coincidence with the resulted optimal 

load resistance. Results should be more consistent if the electric field effect on PVDF inherent 

capacitance and resistance are considered in addition to the temperature effect. The pyroelectric 

capacitive reactance Xp measured at temperature of 83.5°C was 400 MΩ, as shown in Figure 2.6, 

which is very large and not optimal for maximum power. 

    

Figure 2.11. Pyroelectric voltage and power density versus load resistance for PVDF at 100 mHz 
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Figure 2.12. Instantaneous waveform of temperature, voltage, and power density changes of PZT-5A cell for 

temperature changes at 100 mHz and RL of 50 MΩ 
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2.9.2 Energy harvesting with PZT-5A cell 

A similar experimental circuit and procedure are used to harvest pyroelectric energy by cyclic 

heating of the PZT-5A pyroelectric cell at 100 mHz. The cyclic temperature, voltage and the 

power density at 100 mHz temperature (between 73°C and 77°C) and RL of 100 MΩ are shown 

in Figure 2.12. The irregularities and high frequency components in the temperature wave were 

due to the simple equipment used for cyclic heating and the resolution of the thermometer which 

is equal to 0.2°F. The load resistance has been changed from 10 MΩ to 120 MΩ at 100 mHz and 

the pyroelectric voltage and power density have been plotted as presented in Figure 2.13. The 

maximum power density was 5.2 µW/cm3 measured at optimal load resistance of 7 MΩ and a 

temperature of about 75°C.  

              

                Figure 2.13. Pyroelectric voltage and power density versus load resistance for PZT-5A at 100 mHz 
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    When Figure 2.7 is considered it can be noticed that the total PZT-5A impedance at 75°C is 

about 7.1 MΩ which is in good correspondence with the optimal load resistance. The 

pyroelectric capacitive reactance Xp measured at 75°C was 13.4 MΩ as shown in Figure 2.7 and 

it is large and not optimal for maximum power. 

2.10 Results and discussion  

    A new methodology based on electronic signal filtering called PSLPF is proposed to 

characterize pyroelectric impedance. Results are compared to existing instrumentation.  To stress 

the importance of impedance matching, energy harvesting experiments using pyroelectric cells 

are conducted. The results corroborate the impedance values calculated by experimentation and 

the ones measured by the proposed PLSPF method.  

Two pyroelectric cells, PVDF and PZT-5A, were characterized in a frequency range from 1 mHz 

to 100 Hz. For PVDF the results of Rp were in 8% and 1.2% differences as compared to LCR 

meter for 10 Hz and 100 Hz respectively, and in 3.1% difference as compared to IA at 100 Hz. 

The inherent capacitance Cp was measured to be in 1.9 %, 4.3%, and 6.4 % differences with the 

LCR meter, IA, and manufacturer measurements respectively. For PZT-5A the results of Rp were 

in 5.8 % and 1.4 % differences as compared to LCR meter for 10 Hz and 100 Hz respectively, 

and in 6.1% difference as compared to IA at 100 Hz. The inherent capacitance Cp was measured 

to be in 0.5 %, 7.5 %, and 9.04 % differences with the LCR meter, IA, and manufacturer 

measurements respectively.  

      The proposed method is used with a pyroelectric cyclic heating at a temperature rate of 0.6 

degrees per second for PVDF. For PZT-5A a temperature rate of 0.44 degrees per second has 

been presented. The optimal load for PVDF and PZT-5A samples were 55 MΩ and 7 MΩ at the 

mentioned temperature rates respectively. The optimal load resistances for PVDF and PZT-5A 
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were consistent with the measured pyroelectric impedance at the particular heat range with 10.9 

% and 1.4% differences respectively. In addition, the dependence of impedance on operating 

median temperature was also measured. For PVDF sample, the results show impedance values 

can range from 400MΩ to 40MΩ with temperatures between 25 to 95 oC. In the case of PZT-5A 

the changes are smaller and are in the order of a 3MΩ at the same temperature ranges.   

The PSLPF method presented here shows that impedance dependence on the average 

temperature and the heating rate are both key parameters when characterizing a pyroelectric 

material.  This indicates clearly that to optimize impedance when utilizing the pyroelectric effect, 

both operating average working temperature and the rate of temperature change need to be 

considered when designing energy harvesting applications.  Neglecting those parameters will 

result in inefficient and unpredictable systems. 
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Chapter 3. Piezoelectric energy scavenger modeling 

 

3.1 Introduction  

     Recent two decades have noticed a dramatic increase in energy scavenging research applied 

to wireless sensors’ nodes. This research attention has been motivated by the huge reduction in 

power and size of electronic circuits of wireless sensor devices. For instance, the required power  

for wireless sensor devices has been reduced to less than 1mW (Shad Roundy and Yang Zhang, 

2005, Ajitsaria, J. 2007  , Culler D, 2002, Glynne-Jones P et al., 2001), opening up the possibility 

of driving the device from energy scavenged from the environment. 

  A major amount of research has been presented on piezoelectric energy harvesters which 

depend on the conversion of vibrations to electric power. (Roundy S et al., 2003, Amirtharajah R 

and P. Chandrakasan 1998, Williams CB et al., Tayahi M B et al., 1995, and Erturk A and Inman 

D J 2008, Taylor G et al., 2001).An important feature of the piezoelectric generators is that they 

deliver maximum output power when the natural frequency of the harvester is matched with the 

frequency of the environmental vibrations. Therefore, if there is an incompatibility between 

ambient vibration and resonance frequencies, the power output drops very rapidly. 

      This property is the main constraint to developing many applications. To address this issue, it 

has been suggested by several investigators that a capacitor could be shunted in parallel to a 

piezoelectric cantilever as a method of electrical tuning (Charnegie D 2007). When such a 

passive element is connected in parallel the total capacitance will be equal to the sum of the 

inherent piezoelectric capacitance Cp and the shunt capacitance, and the power decreases 

significantly from its original value. To resolve that, an enhanced adjusting capacitor method for 

electrical piezoelectric tuning and power maximization is developed. Utilizing this new 
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technique, an enhanced output power and piezoelectric resonance frequency matching to the 

ambient vibration frequency can be gained simultaneously. This method is performed by 

connecting a toroid inductor with a small value in parallel to the shunt capacitor to improve the 

output power. All researchers don’t consider such a method as they know that satisfying such an 

improvement needs an inductor with a huge value. The reason behind using the shunt inductor 

with a small value is the relatively high total capacitance resulted from the shunted and inherent 

capacitance. 

The aim of this chapter is to develop state space dynamics model of the piezoelectric cantilever 

with RLC load. This model can be used to analyze the feasibility of shunting an inductance with 

small value to improve the output power of vibration based scavengers with passive electrical 

tuning. A general dynamics model of the piezoelectric bimorph with RLC load has been 

developed. Results will be presented and discussed. 

3.2 Modeling of piezoelectric bimorph with RLC load 

 
      The general theory developed in this section will provide general expressions for the 

piezoelectric cantilever generator with RLC load (resistor, inductor, and capacitor). The aim is to 

analytically determine the output voltage and power delivered to the load resistance RL before 

and after connecting the shunt inductance in parallel to the output of the piezoelectric scavenger.  

The net power output when Lsh is connected should be greater than would be obtained without 

the use of Lsh. 

3.2.1 State space modeling for piezoelectric bimorph harvester with conjugate impedance 
matching (RLC load) 
 
The modeling of the piezoelectric bimorph harvester presented in this section is based on the 

linear vibration based generator model presented by Shad Roundy 2004.  
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 Figure 3.1 shows the piezoelectric electromechanical equivalent circuit of the system. The 

voltage generator ma* represents the effective force induced by the base vibration and is the only 

source in the electrical side, where m is the effective mass term and a* is the base acceleration 

amplitude. The circuit consists of two parts, mechanical and electrical which are combined 

electromechanically via a transformer with a turn ratio n which represents the piezoelectric 

coupling vector. The resistance R in the mechanical side represents the mechanical damping.  

The inductance L and the capacitance C represent the modal mass of the first mode and the 

compliance respectively. The capacitance Cp on the electrical side is the equivalent inherent 

capacitance of the piezoelectric layer. The bimorph cantilever has a natural frequency which 

should be matched by the environmental vibration frequency by using frequency tuning to 

scavenge the maximum power. Electrical tuning can be verified by connecting a shunt capacitor   

Cshn   in parallel to the inherent capacitor on the right side of the electromechanical coupling 

transformer as shown in Figure 3.2. 

                 

      Figure 3.1. the equivalent circuit for a piezoelectric energy harvester with a resistive load.  

The system model for the piezoelectric bimorph cantilever without shunt capacitor and resistive 

load in state space form can be written as (Shad Roundy 2004):  
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Where: 

ʆ: Strain. 

ʆ̇: First derivative for strain. 

ʆ̈ : Second derivative for strain. 

𝑉: Output Voltage. 

V̇ : First derivative of the output voltage. 

v : vertical beam tip deflection 

k: effective spring constant. 

m: mass. 

𝑏𝑚 : damping coefficient. 

𝑏̈ : A constant relates vertical force to stress. 

d: piezoelectric strain coefficient. 

ε: dielectric constant of the piezoelectric material. 

𝑌𝑐: Young modulus of the piezoelectric ceramic layer. 

𝑡𝑐 : Thickness of the piezoelectric material layer 

R: Load resistance. 

𝐶𝑝: Inherent piezoelectric capacitance 

𝐶𝑠ℎ: The shunt capacitance. 

𝐿𝑠ℎ: shunt inductor. 

𝑢̈ : Input vibration in terms of acceleration.  
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When a shunt capacitance Csh is connected, Equation 3.1 can be modified as in Equation 3.2. 
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In the case of connecting a parallel inductor as in Figure 3.2 via its switch to the system to 

improve the extracted power at a resonance frequency 

 

Figure 3.2. Equivalent circuit for the proposed piezoelectric energy harvester with RLC load 

 

Using Kirchhoff’s current law for the circuit on the right side of the equivalent circuit, the 

dynamic system model will be modified as:  

   

⎣
⎢
⎢
⎢
⎡ ʆ
̇
ʆ
𝑉
𝚤𝐿̈
̇
̈

⎦
⎥
⎥
⎥
⎤
 = 

⎣
⎢
⎢
⎢
⎢
⎡

0 1 0 0
−𝑘
𝑚

−𝑏𝑚𝑏̈
𝑚

𝑘𝑘
2𝑚𝑡𝑐

0

0 −2𝑑𝑌𝑐 𝑡𝑐
𝜀

−1
𝑅(𝐶𝑝+𝐶𝑠ℎ)

1
(𝐶𝑝+𝐶𝑠ℎ)

0 0 −1
𝐿𝑠ℎ

0 ⎦
⎥
⎥
⎥
⎥
⎤

�

𝛿
𝛿̇
𝑉
𝑖𝐿

� + �

0
𝑏̇
0
0

� 𝑢̈       Equation 3.3 

Equation 3.3 can be derived as follow: 
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The effective moment of inertia can be calculated as: 

𝐼 = 2 �𝑤𝑡𝑐
3

12
+ 𝑤𝑡𝑐 𝑏2� +  𝜂𝜂𝑡𝑠ℎ

3

12
                                 Equation 3.4 

Where: 

I: effective moment of inertia  

w: width of the beam. 

tc : thickness of individual piezoelectric ceramic layer. 

tsh : thickness of the center shim. 

η : ratio between Yc and Ysh 

𝜂 =  𝑌𝑐
𝑌𝑠ℎ

                                            Equation 3.5        

Ysh: Young modulus of the piezoelectric ceramic layer (Beer and Johnston 1992) 

The constitutive equations will be written in term of stress and strain instead of force and tip 

deflection. 

Assuming that le ≤ lb . 

Where le and lb are the lengths of electrode and the bending respectively 

Average stress and strains are used as state space variables. 

           𝜎 = 1
𝑙𝑒
∫ Ø(𝑥)𝑏

𝐼
𝑙𝑒
0  𝑑𝑑                                     Equation 3.6 

Where:  

σ: is the stress. 
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x: distance from the base of the beam. 

Ø(x): Moment of the beam as a function of distance x. 

Moment can be defined as the result of vertical force (𝑚(𝑢̈ + 𝑣̈) with force hand (𝑙𝑏 + 𝑙𝑚
2
− 𝑥) as 

follows: 

Ø(𝑥) = 𝑚(𝑢̈ + 𝑣̈) (𝑙𝑏 + 𝑙𝑚
2
− 𝑥)              Equation 3.7 

Where v is the vertical displacement 

Substituting Equation 3.7 in Equation 3.6 yields: 

𝜎 = 1
𝑙𝑒
∫

𝑚(𝑢̈+𝑣̈) (𝑙𝑏+
𝑙𝑚
2 −𝑥) ] 𝑏

𝐼
𝑙𝑒  [
0  𝑑𝑑 =  𝑚(𝑢̈+𝑣̈) 𝑏

𝐼 𝑙𝑒
 𝑙𝑒  �𝑙𝑏 + 1

2
𝑙𝑚 − 1

2
𝑙𝑒�           Equation 3.8  

         Or,                            

𝜎 =    𝑚(𝑢̈)𝑏(2𝑙𝑏+𝑙𝑚−𝑙𝑒)
2𝐼 

+  𝑚(𝑣̈)𝑏(2𝑙𝑏+𝑙𝑚−𝑙𝑒)
2𝐼 

=  𝜎𝑖𝑖 + 𝜎𝑚                             Equation 3.9 

Where σin and σm are the stresses resulting from input vibration and inertial element mass 

respectively. 

 

Assume: 

𝑏̈ =  2 𝐼
𝑏(2𝑙𝑏+𝑙𝑚+𝑙𝑒)

                                              Equation 3.10 

From Equation 3.9 and Equation 3.10: 

𝜎𝑖𝑖 =  𝑚𝑢̈
𝑏̈

                                                         Equation 3.11 
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𝜎𝑚 =  𝑚𝑣̈
𝑏̈

                                                         Equation 3.12 

𝑊ℎ𝑒𝑒𝑒 𝑙𝑏 , 𝑙𝑚,𝑎𝑎𝑎 𝑙𝑒: 

The lengths of the bending cantilever, mass, and electrode respectively 

b: the distance between the centers of the shim and the center of piezoelectric layers. 

So, 

𝜎 =  𝑚(𝑢̈+𝑣̈)
𝑏̈

                                              Equation 3.13 

                    

To relate a deflection to the average strain lets write the Euler beam equation as follows: 

𝑑𝑣2

𝑑𝑑2
=  Ø(𝑥)

𝑌𝑐𝐼
                                                 Equation 3.14 

 

Substituting Equation 3.7 in Equation 3.14 yields: 

𝑑𝑣2

𝑑𝑑2
=  

𝑚(𝑢̈+𝑣̈) (𝑙𝑏+
𝑙𝑚
2 −𝑥)     

𝑌𝑐𝐼
                                  Equation 3.15 

 

By integrating Equation 3.15 yields: 

𝑑𝑣
𝑑𝑑

=  
𝑚(𝑢̈+𝑣̈) (𝑙𝑏𝑥+

𝑙𝑚
2 𝑥−

𝑥2

2 )     

𝑌𝑐𝐼
                               Equation 3.16 
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𝑣 =  
𝑚(𝑢̈+𝑣̈) (𝑙𝑏

𝑥2

2 +
𝑙𝑚
4 𝑥

2−𝑥
3

6 )     

𝑌𝑐𝐼
=  

𝑚(𝑢̈+𝑣̈)(𝑙𝑏𝑥2+
𝑙𝑚
2 𝑥

2−𝑥
3

3 )     

2𝑌𝑐𝐼
                             Equation 3.17 

When x = lb: 

𝑣 =  
𝑚(𝑢̈+𝑣̈) (𝑙𝑏

3+𝑙𝑚2 𝑙𝑏
2−

𝑙𝑏
3

3 )     

2𝑌𝑐𝐼
 = 

𝑚(𝑢̈+𝑣̈) ( 
2𝑙𝑏

3

3 +𝑙𝑚2 𝑙𝑏
2)     

2𝑌𝑐𝐼
                              Equation 3.18 

Or, 

𝑣 =  
𝑚(𝑢̈+𝑣̈) 𝑙𝑏2(

2𝑙𝑏
3 +𝑙𝑚2  ) 

2𝑌𝑐𝐼
                                   Equation 3.19 

It is known that: 

ʆ =  𝜎
𝑌

                                                 Equation 3.20 

Substituting Equation 3.9 into Equation 3.19 yields: 

ʆ =  𝑚(𝑢̈+𝑣̈)𝑏(2𝑙𝑏+𝑙𝑚−𝑙𝑒)
2𝐼𝑌𝑐 

                           Equation 3.21 

 

𝑚(𝑢̈ + 𝑣̈) 2𝐼𝑌𝑐 ʆ
𝑏(2𝑙𝑏+𝑙𝑚−𝑙𝑒)

                         Equation 3.22 

By substituting Equation 3.22 into Equation 3.19 yields: 

 

𝑣 =  
2𝐼𝑌𝑐 ʆ

𝑏�2𝑙𝑏+𝑙𝑚−𝑙𝑒�
  𝑙𝑏2�

2𝑙𝑏
3 +𝑙𝑚2  �

2𝑌𝑐𝐼
      =  

𝑙𝑏2 �
2𝑙𝑏
3 +𝑙𝑚2  � ʆ 

𝑏(2𝑙𝑏+𝑙𝑚−𝑙𝑒)              Equation 3.23 

Let’s define 𝑏̇  as a parameter that relates the strain to the vertical displacement: 



56 
 

𝑏̇ = ʆ
𝑣

= 𝑏(2𝑙𝑏+𝑙𝑚−𝑙𝑒)

𝑙𝑏2 �
2𝑙𝑏
3 +𝑙𝑚2  �

                      Equation 3.24 

From Equation 3.12, Equation 3.23, and Equation 3.24 

 𝜎𝑚 =  
𝑚
𝑙𝑏
2 �

2𝑙𝑏
3 +𝑙𝑚2  �ʆ̈ 

𝑏�2𝑙𝑏+𝑙𝑚−𝑙𝑒�

𝑏̈
  =     𝑚ʆ̈

𝑏̈
𝑏�2𝑙𝑏+𝑙𝑚−𝑙𝑒�

𝑙𝑏
2 �

2𝑙𝑏
3 +𝑙𝑚2  �

                    Equation 3.25 

𝜎𝑚 = 𝑚
𝑏̇𝑏̈

 ʆ ̈                             Equation 3.26 

𝜎𝑏𝑏 = 𝑏𝑚
𝑏̇

 ʆ̇                           Equation 3.27 

 

Where:  σbm represents the effective stress. 

𝜎𝑌 =  𝑌𝑐 ʆ                        Equation 3.28 

The constitutive piezoelectric equations can be described as: 

ʆ =  𝜎
𝑌

+ 𝑑𝑑                    Equation 3.29 

𝐷 =  𝜀𝜀 + 𝑑𝑑                   Equation 3.30 

D: Electric displacement. 

E: Electric field. 

d: piezoelectric strain coefficient. 

ε: dielectric constant of the piezoelectric material. 

𝜎𝑡 =  −𝑑𝑌𝑐𝐸                   Equation 3.31 
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𝐷𝑡 = −𝑑𝑌𝑐ʆ                    Equation 3.32 

For unimorph cantilever the charge is: 

𝑞 =  𝑙𝑒𝑤𝑤                       Equation 3.33 

For bimorph cantilever: 

𝑞 =  2𝑙𝑒𝑤𝑤                     Equation 3.34 

Voltage across the bimorph will be: 

𝑉 = 2𝐸𝑡𝑐                        Equation 3.35 

𝜎𝑡 =  −𝑎𝑎𝑌𝑐
2𝑡𝑐

𝑉                     Equation 3.36 

𝑖𝑇 = −𝑑𝑌𝑐𝑎𝑙𝑒𝑤 ʆ̇                Equation 3.37 

Where  

a =1 for series wiring and a =2 for parallel wiring.  

The total stress resulted from input base vibration is: 

𝜎𝑖𝑖 = 𝜎𝑚 + 𝜎𝑏𝑏 + 𝜎𝑡 + 𝜎𝑌                Equation 3.38 

Substituting Equations 3.11, 3.12, 3.26, 3.27, and 3.28 into Equation 3.38 yields:  

𝑚
𝑏̈
𝑢̈ = 𝑚

𝑏̇𝑏̈
 ʆ̈ + 𝑏𝑚

𝑏̇
 ʆ̇ + � −𝑎𝑎𝑌𝑐

2𝑡𝑐
𝑉 � + 𝑌𝑐ʆ                  Equation 3.39 

Arrange Equation 3.39 to have: 

ʆ̈ =  𝑏 ̇ 𝑢̈ −  𝑏𝑚𝑏̈
𝑚

 ʆ̇ + �𝑏̇𝑏̈
𝑚
� �𝑎𝑎𝑌𝑐

2𝑡𝑐
� 𝑉 −  𝑏̇𝑏̈

𝑚
 𝑌𝑐 ʆ                Equation 3.40 



58 
 

  Let  𝑘 =  𝑏̇𝑏̈𝑌𝑐 and substituting in Equation 3.40 yields: 

ʆ̈ =  −  𝑘
𝑚

  𝛿 −  𝑏𝑚𝑏̈
𝑚

 ʆ̇ + 𝑘𝑘𝑘
2𝑚𝑡𝑐

𝑉 +  𝑏 ̇ 𝑢̈                 Equation 3.41 

Applying KCL to the electrical side of the transformer yields: 

𝑖𝑇 =  𝑖𝐶 +  𝑖𝐿 +  𝑖𝑅                   Equation 3.42 

Where iT: total current  

iC, iL, and iR: the current of capacitance, inductance, and resistance respectively. 

𝑖𝑇 = 𝐶𝑇𝑉̇ +  𝑖𝐿 +  𝑉
𝑅

                   Equation 3.43 

The inherent capacitance of the piezoelectric layer can be computed as follow: 

 𝐶𝑝 =  𝑎
2 𝜀 𝑤 𝑙𝑒
2𝑡𝑐

                              Equation 3.44 

The total capacitance is equal to the sum of inherent and shunts capacitances as follow:  

 

𝐶𝑇 =  𝐶𝑝 +  𝐶𝑠ℎ𝑛                    Equation 3.45 

 

By Substituting Equation 3.37 into Equation 3.43 and using Cp expression in Equation 3.2 

yields: 

For CT = Cp only 

−𝑑𝑌𝑐𝑎𝑙𝑒𝑤 ʆ̇ =   𝑎
2 𝜀 𝑤 𝑙𝑒
2𝑡𝑐

 𝑉̇ +  𝑖𝐿 +    𝑉
𝑅

                 Equation 3.46 
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For CT = Cp + Cshn     

𝑑𝑌𝑐𝑎𝑙𝑒𝑤 ʆ̇ = ( 𝑎
2 𝜀 𝑤 𝑙𝑒
2𝑡𝑐

+ 𝐶𝑠ℎ𝑛) 𝑉̇ +  𝑖𝐿𝐿ℎ𝑛 +    𝑉
𝑅

                 Equation 3.47 

For CT = Cp only 

𝑉̇ = �−𝑑𝑌𝑐𝑎𝑙𝑒𝑤 ʆ̇ −   𝑖𝐿 −    𝑉
𝑅

 � 2𝑡𝑐
𝑎2 𝜀 𝑤 𝑙𝑒

=  −2𝑡𝑐𝑑𝑌𝑐
𝑎𝑎

ʆ̇ −  𝑉
𝑅𝐶𝑝

− 𝑖𝐿             Equation 3.48 

For CT = Cp + Cshn     

𝑉̇ =  −𝑑𝑌𝑐𝑎𝑙𝑒𝑤
𝑎2 𝜀 𝑤 𝑙𝑒

2𝑡𝑐
+𝐶𝑠ℎ𝑛

ʆ̇ −  𝑉

𝑅�𝑎
2 𝜀 𝑤 𝑙𝑒
2𝑡𝑐

+𝐶𝑠ℎ𝑛�
− 1

𝑎2 𝜀 𝑤 𝑙𝑒
2𝑡𝑐

+𝐶𝑠ℎ𝑛
𝑖𝐿                              Equation 3.49 

𝑉 =  𝑉𝐿 = −𝐿𝑠ℎ𝑛
𝑑𝑖𝐿
𝑑𝑑

 = − 𝐿𝑠ℎ𝑛 𝚤𝐿̈                    Equation 3.50 

The new system model can be written as: 

⎣
⎢
⎢
⎢
⎡ ʆ
̇
ʆ
𝑉
𝚤𝐿̈
̇
̈

⎦
⎥
⎥
⎥
⎤
 = 

⎣
⎢
⎢
⎢
⎢
⎢
⎡

0 1 0 0
−𝑘
𝑚

−𝑏𝑚𝑏̈
𝑚

𝑘𝑘
2𝑚𝑡𝑐

0

0 −𝑑𝑌𝑐𝑎𝑙𝑒𝑤
𝑎2 𝜀 𝑤 𝑙𝑒

2𝑡𝑐
+𝐶𝑠ℎ𝑛

−1

𝑅�𝑎
2 𝜀 𝑤 𝑙𝑒
2𝑡𝑐

+𝐶𝑠ℎ𝑛�

1
𝑎2 𝜀 𝑤 𝑙𝑒

2𝑡𝑐
+𝐶𝑠ℎ𝑛

0 0 −1
𝐿𝑠ℎ

0 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎡
ʆ
ʆ̇
𝑉
𝑖𝐿⎦
⎥
⎥
⎤
 + �

0
𝑏̇
0
0

� 𝑦̈       Equation 3.51 

Now let: 

𝑧1 =  ʆ,  𝑧2 =  ʆ̇,  𝑧3 =  𝑉, 𝑠𝑠 𝑧3̇ =  𝑉̇, 𝑧4 =  𝑖𝐿 ,𝑎𝑎𝑎  𝑧4 =  𝚤𝐿̇     

 

Then Equation 3.51 will be: 
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�

 𝑧1̇
 𝑧2
 𝑧3
𝑧4̇
̇
̇ � = 

⎣
⎢
⎢
⎢
⎢
⎢
⎡

0 1 0 0
−𝑘
𝑚

−𝑏𝑚𝑏̈
𝑚

𝑘𝑘
2𝑚𝑡𝑐

0

0 −𝑑𝑌𝑐𝑎𝑙𝑒𝑤
𝑎2 𝜀 𝑤 𝑙𝑒

2𝑡𝑐
+𝐶𝑠ℎ𝑛

−1

𝑅�𝑎
2 𝜀 𝑤 𝑙𝑒
2𝑡𝑐

+𝐶𝑠ℎ𝑛�

1
𝑎2 𝜀 𝑤 𝑙𝑒

2𝑡𝑐
+𝐶𝑠ℎ𝑛

0 0 −1
𝐿𝑠ℎ

0 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

�

𝑧1
 𝑧2
 𝑧3
𝑧4

� + �

0
𝑏̇
0
0

� 𝑦̈   Equation 3.52 

3.3. Experimental Set up 

    The implementation for the proposed method has been performed using some equipment such 

as Arbitrary Function Generator (Tektronix AFG 2021, 20 MHz) Shaker (vibration exciter Type 

4809), Power amplifier (Type 2718), piezoelectric bimorph cantilever (manufactured by Piezo 

Systems, Inc. with model number T226-A4-503X is consisted of two oppositely poled PZT-5A 

piezoelectric layers bracketing a brass substructure element, and the two piezoelectric layers are 

connected in series), resistance decade box with resistance values 1Ω to 11 MΩ, (TENMA 72-

7270), Ceramic Capacitors (0.47 to 3µF), toroid inductor TE-4Q3TA with 2.7 H and 3H, 

Oscilloscope (Type TDS2012B, 100 MHz), and PCB PIEZOTRONICS Accelerometer, Model # 

352C33, 102.9 mV/g, and 0.5-10kHz 

     The function generator has been used to provide a sinusoidal voltage to the power amplifier 

whose output supplies the shaker to have a vibration with different level of accelerations which 

can be measured using the PCB accelerometer. The piezoelectric bimorph cantilever with the 

mentioned characteristics has been placed properly to a thick plastic piece on the top of a bar 

screwed to the shaker. The load resistance has been connected in parallel with the unimorph 

output, the shunted capacitors, and inductors via serial switches to have different collections of 

RL-Cp, RL-Cp-Csh, and RL-Cp-Csh-Lsh parallel circuits as shown in Figure 3.2. 
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A single piezoelectric bimorph T226-A4-503X with characteristics described below has been 

attached to the top of a bar connected to the shaker to be vibrated at based vibration acceleration 

of 0.3 m/s2 with frequencies’  range of  93.3 to 97 Hz. 

 

 

Table 3.1 Material properties of the piezoelectric bimorph: T226-A4-503X (source: 
www.piezo.com) 
 
 
  
     
             Brass 

    Effective length(Lsh)   50 x 10-3      m               
    Effective width (b)      31.8×10-3     m   
    Density ρs      8700        kg/m3 

    Thickness(tsh)      0.127×10-3   m    
    Elastic modulus(Ysh)       95 GPa 

    
 
 
        Piezoceramic 

    Density ρp       7800 kg/m3 
    d constant (d31)       -190e-12 m/V 
    Capacitance  Cp           50 nF 
    Effective length(Lc)         51.0×10-3

   m 
    Effective width (tc)         31.8×10-3

   m 
 

3.4 Results and Discussion  

       The maximum piezoelectric power can be extracted from the bimorph cantilever when its 

natural frequency matches the vibration frequency which can be satisfied by an electrical tuning 

technique. The electrical tuning could be verified by adjusting the output capacitance of the 

piezo-ceramic layer which changes the stiffness of the cantilever and then the resonance 

frequency will be shifted. To demonstrate the electrical tuning for the piezoelectric unimorph 

cantilever, several shunt capacitors (0.47 to 3 µF) have been connected individually in parallel to 

have different operating resonance frequencies (97Hz to 93.3Hz). The electric peak to peak 

voltage and power have been measured at load resistance of 35 kΩ to validate the influence of 
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shunt capacitance on the natural frequency and power delivered to the load resistance. The 

resonance frequency has been shifted from 97 Hz at no shunt capacitance to 93.3 Hz at a 3µF 

shunt capacitor. Although a good resonance frequency range has been obtained, the inverse 

correlation between a shunt capacitance and the output power is a real limitation which needs to 

be addressed. The maximum extracted power values at base vibration acceleration of 0.3 m2/s ( 

as shown in Figure 3.3 ) were 5.3 µW and 0.012 µW at Csh equal to zero and 3 µF respectively. 

3.5 Model Validation 

When there is no shunt capacitance and inductance connected to the load resistance, the output 

voltages are shown in Figure 3.4. There is good correspondence between experimental and 

simulated waveforms of the output voltages which have peak values of 0.48 V and 0.43 

respectively.    

As mentioned previously the issue of output power decrement needs to be resolved and hence 

shunt inductors were connected in parallel to the system for three different shunt capacitors. 

        By considering Figure 3.5 it can be noticed that there is a significant improvement in the 

harvested power of the circuit with the shunt inductor. For the case of the shunt Csh of 0.47 µF, 

an inductive impedance of 2.7 H is connected. An inductive shunt reactance with inductor Lsh of 

3H has been connected to the system to improve the generated power when the shunt capacitance 

was equal to 1.47 µF and 3 µF. Generally, the gained power percentages were (10 % - 60 %). 

The maximum difference between the simulated and experimental results was 7.5 %. 

Experimental and simulated data for output peak power Pp of the piezoelectric generator for 

different cases of shunt capacitance and resonance frequency have been demonstrated in Table 

3.2. 
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        Figure 3.3 the input base vibration acceleration 

 

       Figure 3.4 the experimental and simulated output voltages at Csh equals to zero 
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Figure 3.5 the experimental and simulated output peak voltages for the cases of shunted inductance Lsh and 

no shunted inductance Lsh 

 

Table 3.2 Experimental and simulated data for output peak power Pp of the piezoelectric generator 

 Csh  (µF) ⍵n ( Hz) Experimental 
Pp  with no Lsh 
(µW) 

Simulated Pp  
with no Lsh 
(µW) 

Experimental 
Pp  with  Lsh 
(µW) 

Simulated Pp  
with  Lsh 
(µW) 

        0.0     97      5.3     5.7        -      - 
        0.47     95.8      1.38     1.28      3.5     3.3 
        1.47     94      0.065     0.055      0.14     0.13 
         3     93.5     0.012     0.011       0.022     0.022 
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Chapter 4. Piezoelectric Operating Frequency Tuning and Bandwidth 

Widening  

4.1 Introduction  

       A diversity of wireless applications have been developed in recent years providing new 

communication abilities. However, the batteries used to power such devices require tedious 

charging or replacement, and often result in excess volume requirements (N A Kong et al, 2010). 

Variety of energy sources in the surroundings around the wireless devices, such as light, heat, 

and vibration, can be utilized for energy harvesting. Among them, vibration can be found in 

numerous applications in our daily life and has therefore fascinated much research consideration 

(Lihua Tang, et al 2010). Vibration energy scavengers provide the maximum power when 

working at resonance, which means that the harvesters are not efficient in environment vibrations 

with random frequencies (Jin-Chen Hsu et al 2014) .Ambient vibration sources, however, are 

unpredictable, which is a critical issue for piezoelectric harvesters. Resonant devices with a high 

Q-factor have a very narrow frequency spectrum of operation. A minor move in excitation 

frequency (for instance ±2 Hz) around the resonant frequency will lead to a big reduction in the 

output power (-3 dB) (Swee-Leong et al, 2011).  

         There are some proposed approaches used as a remedy to such a problem and increase the 

bandwidth of piezoelectric energy harvesters. To date there are generally two methods to 

resolving this issue. The first is to adjust the natural frequency of a piezoelectric generator so that 

it matches the frequency of the environmental vibration at all times. This can be satisfied by 

changing the mechanical characteristics of the structure or electrical load on the harvester (Dibin 

Zhu et al 2010 and Xiaoming Wu et al 2008). The second method is to widen the bandwidth of 

the piezoelectric scavenger by utilizing an array of piezoelectric beams with diverse resonant 
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frequencies. Wu et al presented a piezoelectric generator using mass adjusting. The proof mass 

of the suggested device consisted of two parts: a fixed mass fixed to the cantilever and a movable 

screw. Including such moveable parts in a piezoelectric harvester could be considered as a 

drawback (Xiaoming Wu et al 2008). Wing-Wen Wu et al developed and verified a tunable 

resonant frequency power harvesting device in cantilever beam form to change its natural 

frequency to match that of the ambient vibration (Wen-Jong Wu et al 2006). This harvester 

exploits a variable capacitive load to shift the gain curve of the cantilever and a low power 

microcontroller samples the ambient frequency and modifies the capacitive load accordingly to 

match ambient vibration frequency in real-time.  

        Marco Ferrari et al presented a multi-frequency piezoelectric scavenger envisioned for 

driving autonomous sensors from background vibrations. The harvester is consisted of multiple 

bimorph cantilevers with different resonance frequencies, whose rectified voltages are fed to a 

storage capacitor. The efficiency of the energy harvester was higher than the case of a single 

converter (Macro Ferrari et al 2008). S.M. Shahruz studied the performance of mechanical band-

pass filters to be utilized in energy scavengers. Such a filter consists of an array of cantilever 

beams where at the tip of each beam a proof mass is attached. Two issues are discussed 

regarding the performance of the filter: (i) the optimal performance of the filter (ii) the design of 

the filter to get such performance (S.M. Shahruz 2006).  

        In this chapter, a hybrid approach using multiple piezoelectric bimorph cantilevers is 

presented. This is done to achieve mechanical tuning, electrical tuning, and bandwidth widening 

simultaneously to develop a significant increase in frequency range for the vibration-based 

energy harvester. In this innovative work three bimorph cantilevers with the same characteristics 

have been used. Each one has the same natural frequency, but mechanically tuning by using two 
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different tip (proof) masses and different lengths will result in three different natural frequencies. 

These three cantilevers are connected electrically in series to create a wide bandwidth energy 

harvester. Using three different ceramic capacitors for each cantilever, each one will have an 

extended operating frequency range of several hertz around each individual natural frequency. 

Hence rather than having three resonant frequencies the system has twelve natural frequencies 

and maximum power peaks.  

        The goal behind such a hybrid system is to develop a significant increase in frequency 

bandwidth for the piezoelectric energy harvester using three techniques of mechanical tuning, 

electrical tuning, and bandwidth widening simultaneously. Using three similar bimorph beams 

connected in series and having different tip masses will result in three different natural 

frequencies. Shunting three different ceramic capacitors, each cantilever will have an extended 

range of four frequencies. A total of 12 resonance frequencies are achieved. This design, which 

includes three cantilevers and four capacitors for each beam, could deliver more power than the 

case if one bimorph cantilever is assumed to be used with 12 capacitors. It is presented that the 

output power corresponding to the largest shunt capacitor of 470 nF is less than 0.5 mW. In order 

to have a wider frequency band, capacitors with values more than 470 nF should be used, and 

accordingly the power achieved could be estimated to be even less and less than 0.1 mW. Also, if 

12 beams are used to get 12 resonance frequencies by mechanical tuning, the size limitation 

would be a serious issue. Based on that, the proposed hybrid tuning technique is more feasible 

and the optimal method for wide broadband piezoelectric energy harvesting.       
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4.2 Frequency Tuning Techniques 

4.2.1 Mechanical tuning  

        Mechanical tuning can be accomplished by changing the mass of the cantilever. This can be 

accomplished by changing its length, or by adding tip masses.  

The resonant frequency of a spring-mass structure is given by (Dibin Zhu et al 2010): 

𝑓𝑟 =  1
2𝜋

 �𝑘
𝑚

                              Equation 4.1 

Where: k is the spring constant and m is the inertial mass.  

    When tuning the resonant frequency of the generator, one can change either the spring 

constant or the mass. For a cantilever with a mass at the free end (Figure 4.1) the resonant 

frequency is given by (Blevins R D 1979). 

𝑓𝑟 =  1
2𝜋

 � 𝑌𝑌ℎ3

4𝑙3(𝑚+0.24𝑚𝑐)
               Equation 4.2       

                                             

                                            Figure 4.1. Cantilever with a proof mass at the free end (S.M. Shahruz 2006). 
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Where Y is Young’s modulus of the cantilever material; w, h, m, l, and mc, are the width, 

thickness, inertial mass, length, and the mass of the cantilever, respectively. When the length of 

the cantilever is changed, the mass of the cantilever mc changes too, as it is equal to (w h ln ρ) 

where ln is the new length (l + ∆l) and ρ is the density of the material of the cantilever. If the 

total mass is changed by both adding a proof mass m and changing the length, the new resonance 

frequency frn equation changes to that described in Equation 1.5. 

4.2.2 Bandwidth Widening  

    In order to harvest energy efficiently from numerous vibration sources, energy scavengers 

should have wide bandwidth in designated frequency intervals. A device with such a property is 

called a mechanical band-pass filter (S.M. Shahruz 2006). In S.M. Shahruz 2005, a mechanical 

band-pass filter is proposed. The proposed filter consists of several beam–mass systems; see 

Figure 4.2. It is shown that such a prototype can be used as a band-pass filter when dimensions 

of the beams and the proof masses are chosen suitably 

4.2.3 Electrical Tuning  

     The main principle of electrical tuning is to change the electrical damping by altering the 

load, which causes the power spectrum of the harvester to shift (Dibin Zhu et al 2010). By 

adjusting electrical load characteristics of the shunt circuit applied across the piezoelectric layer, 

the effective elastic modulus of this layer changes and therefore the overall stiffness of the 

structure changes. Since the natural frequency of the structure is dependent on its stiffness, by 

changing the shunt characteristics, this frequency can be tuned to a desired value.  
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Figure 4.2. Band-pass filter of cantilever beams and proof masses (S.M. Shahruz 2005). 

 

4.3 Hybrid Technique for PH frequency tuning and bandwidth widening 

         By combining the three aforementioned frequency tuning techniques in one system, a new 

hybrid technique can be developed to create a broadband piezoelectric operating frequency 

spectrum. The electrical equivalent circuit for this system is shown in Figure 4.3. It has been 

implemented by using three bimorph cantilevers using different tip masses and lengths resulting 

in three natural frequencies. The three cantilevers were connected in series and three different 

ceramic capacitors for each cantilever have been used. Each capacitor causes a frequency shift to 

get a particular resonance frequency. The system has an extra range of operating frequency 

around each individual natural frequency. A total number of 12 resonance frequencies have been 

developed using this hybrid system.   

4.4 Experimental setup of hybrid tuning system 

      An arbitrary Function Generator (Tektronix AFG 2021, 20 MHz) has been used to supply a 

sinusoidal 80 mV peak-to-peak voltage to a power amplifier (Type 2718), which provides 
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enough power to drive a shaker (vibration exciter Type 4809). The shaker provides different 

levels of vibration acceleration, which can be measured using the PCB accelerometer of the type 

PCB Piezotronics Accelerometer, Model # 352C33, 102.9 mV/g, and 0.5-10kHz. Three similar 

bimorphs (manufactured by Piezo Systems, Inc. with model number T226-A4-503X and 

consisting of two oppositely poled PZT-5A piezoelectric elements bracketing a brass 

substructure layer, with the two piezoelectric elements connected in series (NA Kong et al, 

2010)) have been placed properly to a thick plastic piece on top of a bar fastened to the shaker as 

shown in Figure 4.4.  A resistance decade box with resistance values of 1Ω to 11 MΩ, (TENMA 

72-7270) was used to have different load resistance values. The load resistance has been 

connected in parallel with the bimorph cantilever outputs and the shunted capacitors through 

serial switches to have different collections of RC parallel circuits. A Digital Storage 

Oscilloscope (Type TDS2012B, 100 MHz, 1 GS/s) was used to measure the output peak-to-peak 

potential across the load resistor, and then the measured voltage was used to calculate the peak-

to-peak output power. 
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Figure 4.3. Electrical equivalent circuits for the developed hybrid piezoelectric frequency tuning system 

        Each one of the three bimorphs has a 110 Hz resonance frequency at its full length (6.35 

cm) with no mechanical or electrical tuning. In this work the first cantilever is tuned 

mechanically by adjusting its length to 5.35 cm to have a resonance frequency of 93.5 Hz. No tip 

mass is used on the first cantilever. Mechanical tuning is applied to the second bimorph by 

changing its length to 5.05 cm and using a 0.65 g tip mass to get a 99.5 Hz resonance frequency. 

A length of 4.85 cm and tip mass of 1.1 g were chosen for the third cantilever to give a resonance 

frequency of 114 Hz. These three piezoelectric bimorph cantilevers were connected in series to 

develop a bandwidth widening tuning system with three main resonance frequencies: 93.5 Hz, 

99.5 Hz, and 114 Hz. To extend the operating frequency spectrum to 12 resonance frequencies 
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instead of 3, three different capacitors with values of 55, 100, and 470 nF were shunted to the 

load resistance through manual series switches to adjust the stiffness for each bimorph.    

               

 

Figure 4.4. Experimental setup for the developed hybrid piezoelectric frequency tuning system 

4.5 Results and discussion 

       Figure 4.5 shows the output voltage versus frequency of the first bimorph for load 

resistances of 20 kΩ, 35 kΩ, 50 kΩ, 100 kΩ, 200 kΩ, and 1 MΩ respectively. The maximum 

voltage of 24 V is obtained at an acceleration rate of 3.5 g and load resistance of 1 MΩ at a 

resonance frequency of 93.5 Hz. A maximum power of 4.25 mW (as shown in Figure 4.6) has 

been gained at the same frequency with a 35 kΩ load resistance. This load impedance is exactly 

equal to the inherent capacitive reactance of the piezoelectric cantilever (1/ωCp). The second  
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            Figure 4.5. Output voltages versus frequency of the first bimorph cantilever with resonance of 93.5 Hz. 

                          

             Figure 4.6. Output powers versus frequency of the first bimorph cantilever with resonance of 93.5 Hz. 



75 
 

                              

                               Figure 4.7. Output voltages versus frequency of the 2nd bimorph with resonance of 99.5 Hz. 

 

                              

                              Figure 4.8. Output powers versus frequency of the 2nd bimorph with resonance of 99.5 Hz.      
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cantilever output voltage and power curves are shown in Figure 4.7 and Figure 4.8 respectively. 

At a resonance frequency of 99.5 Hz, the maximum voltage of 33 V and maximum power of 5.6 

mW were measured at load resistances of 1 MΩ and 35 kΩ respectively.   Figure 4.9 and Figure 

4.10 show peak output voltage and maximum power for the third piezoelectric cantilever, which 

are 29.5 V and 6.86 mW at a resonance frequency of 114 Hz, and load resistances of 1 MΩ and 

35 kΩ respectively. 

        The series piezoelectric system of three successive cantilevers provides three voltage peaks, 

which can be observed at resonance frequencies of 93.5 Hz, 99.5 Hz, and 114 Hz, as shown in 

Figure 4.11. The maximum voltage peaks were 22.7 V, 40 V, and 38.8 V at the mentioned 

frequencies respectively at a load resistance of 1 MΩ, while the maximum output power values 

of 2.65 mW, 5.76 mW, and 5.29 mW were measured using a load resistor of 100 kΩ. This is 

equal to the sum of the three series inherent piezoelectric capacitive impedance values as shown 

in Figure 4.12. In addition to the mechanical tuning and the bandwidth widening, an electrical 

tuning has been applied and 12 resonance frequencies have been gained. The first three 

frequencies resulted from the original case (no capacitor connected): 93.5 Hz, 99.5 Hz, and 114 

Hz. The next three resonance frequencies of 91 Hz, 98 Hz, and 113 Hz resulted from shunting a 

55 nF capacitor to the load resistance. Resonance frequencies of 90 Hz, 97 Hz, and 112 Hz were 

gained using a shunt capacitor of 100 nF. The fourth group of frequencies of 89 Hz, 96 Hz, and 

111 Hz resulted from a parallel capacitor of 470 nF. It is clear that there is a significant increase 

in the number of resonance frequencies using the hybrid technique for frequency tuning. The 12 

average power peaks for the system with a load resistance of 100 kΩ and 20 kΩ are shown in 

Figure 4.13 and Figure 4.14 respectively.  
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Figure 4.9. Output voltages for 3rd piezoelectric cantilever for different load resistors at resonance of 114 Hz 

                            

 Figure 4.10. Output powers for 3rd piezoelectric cantilever for different load resistors at resonance of 114 Hz 
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                           Figure 4.11. Voltage of the series piezoelectric system at of 93.5 Hz, 99.5 Hz, and 114 Hz  

                       

                             Figure 4.12. Power of the series piezoelectric system at of 93.5 Hz, 99.5 Hz, and 114 Hz  
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        This design which includes three cantilevers and four capacitors for each beam could 

deliver more power than the case if one bimorph cantilever is assumed to be used with twelve 

capacitors. It is clear from Figure 4.13 that the output power corresponding to the shunted 

capacitor of 470 nF is less than 0.5 mW for each of the three resonance frequencies. In order to 

have a wider operating frequency band, capacitors with values of more than 470 nF should be 

used, and accordingly the power achieved could be estimated to be even less and less than 0.1 

mW. Also, if as an alternative method twelve cantilevers are used to get 12 resonance 

frequencies by mechanical tuning technique, the size limitation can be a serious issue. Based on 

that, the proposed hybrid tuning technique is more feasible and optimal method for wide 

broadband piezoelectric energy harvesting.       

 

               

           Figure 4.13. The 12 average power peaks for the series system with load resistance of 100 kΩ. 
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4.6 Enhanced Piezoelectric Energy Harvesting and Hybrid Frequency Tuning 

The maximum electrical power can be extracted from a piezoelectric scavenger when the 

resonance frequency equals that of the ambient vibration which can be satisfied using tuning 

strategies.  In this section, an experimental enhanced power harvester with hybrid tuning using 

multiple piezoelectric unimorphs is developed. This approach sought to enhance piezoelectric 

power and frequency spectrum using mechanical tuning, electrical tuning, and bandwidth 

widening techniques simultaneously with shunt inductance method.  

First, an improved adjusting capacitor method for electrical tuning has been established to 

have an enhanced power output and to match piezoelectric resonance frequency to the ambient 

vibration frequency simultaneously. The influence of a shunt capacitor Csh on the output power 

of a unimorph piezoelectric cantilever was validated by connecting four different shunt 

capacitors with values from Cp to 10Cp. An inverse correlation between the two quantities was 

noticed. In other words, according to electrical tuning strategy the variable stiffness capabilities 

of piezoelectric layer can be utilized. By placing a shunt capacitance across the piezoelectric 

layer the effective elastic modulus of the layer and the stiffness of the beam change. Since the 

resonance frequency of the beam is dependent on its stiffness, by varying the shunt capacitance, 

this frequency can be tuned to a desired value. Also, the effect of a shunt capacitance is to reduce 

the effect of the electro-mechanical coupling on the system. There is a decrease in the output 

power of the piezoelectric cantilever when shunt capacitor Csh is applied. An inductive reactance 

shunting was suggested as a remedy for this issue. The parallel inductive reactance would cancel 

a part of the capacitive reactance to have almost a pure resistive load with higher voltage and 

consequently higher output power. Also, as Cp is small and needs large L to cancel, adding Csh 
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will make the effective capacitance Cp+Csh larger and now a smaller inductance Lsh can be used 

to cancel the effect of Cp+Csh. 

 Increases in power outputs were up to 93% and 88% for the shunt inductive impedances 

equal to 1 µF and 1.16 µF respectively. In addition, for the same unimorph cantilever tuned to 

resonance frequency of 205 Hz, two shunt capacitors of 0.6 µF and 0.87 µF were connected to 

shift resonance frequency to 200 Hz and 200.5 Hz respectively. Generally, to choose the suitable 

shunt inductance value Equation 4.3 should be used (A J Fleming et al., 2003): 

𝐿1 = 1
𝜔1
2𝐶𝑝

                                               Equation 4.3 

Where: ω1 is the first vibrational mode frequency 

An inductive shunt reactance with inductor Lsh of 2 H was connected to the system to 

improve the generated power. Increases in power outputs were up to 117% and 47% for shunt 

capacitors Csh equal to 0.6 µF and 0.87 µF respectively. 

Secondly, an enhanced power hybrid tuning technique using multiple piezoelectric 

unimorphs has been presented. Mechanical tuning, electrical tuning, and band-pass filtering 

methods were used simultaneously to develop an increase in frequency range for the 

piezoelectric harvester with enhanced power using inductive impedance. A small toroid inductor 

of 700 mH was connected in parallel to the load resistance and shunt capacitance. An extended 

frequency range of 12 resonance frequencies with 300% improvement was obtained 

experimentally with enhanced power density improvements of 19.7% to 197%. Future work 
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might include an ultra-low power microcontroller to develop an actively hybrid tuned energy 

harvester with power enhancement. 

4.7 Experimental Set up 

        A new enhanced power piezoelectric energy harvesting system using several piezoelectric 

bimorph cantilevers with hybrid frequency tuning and conjugate impedance matching is 

developed. The equivalent circuit of the suggested scheme is shown in Figure 4.15. This 

improved method does not need a large inductance value, because of the high value of the 

capacitance. This high capacitance results from adding the shunted and inherent capacitances in 

parallel.  The experimental setup consists of two parts: the improved adjusting capacitor method 

and the hybrid frequency tuning method. 

4.7.1 Improved Adjusted Capacitor Method 

     An experimental scheme for electrical tuning and power maximization has been proposed. 

Several shunt capacitors with values between Cp and 10 Cp have been individually connected to 

a unimorph piezoelectric layer to shift the resonance frequency. It was shown that the harvested 

power and matching impedance are both inversely correlated to the capacitor value. An inductive 

reactance of 700 mH was connected in parallel to the system to address this issue and causes a 

substantial increase in the harvested power.  An Arbitrary Function Generator (Tektronix AFG 

2021, 20 MHz) was used to provide a sinusoidal 100 mV peak-to-peak voltage to a Power 

Amplifier (Brüel & Kjær Type 2718), which amplifies the small signal to have enough power to 

drive a Shaker (Brüel & Kjær Type 4809).  
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The shaker can provide vibrations with different levels of accelerations, which can be measured 

using an accelerometer (PCB PIEZOTRONICS Model # 352C33 with 102.9mV/g, and 0.5-10 

kHz. 

 

                                      Figure 4.14 Equivalent circuits for enhanced power hybrid energy harvester

       A piezoelectric unimorph cantilever (Type TH-7R, 18 g, 95.25 mm × 73.41 mm, 0.25 mm 

thickness piezo layer, 166 nF internal capacitance) was placed properly to a thick plastic piece on 

the top of a bar fastened to the shaker. This device was used to give a 208 Hz resonance 

frequency at its full length with no adjusting shunt capacitor connected. This cantilever was 

tuned mechanically by changing its length by 2 mm to work at 205 Hz to be utilized in a similar 

experiment as will be explained in the next section. Ceramic capacitors in a range of 0.2-1.6 µF 

were used to adjust the load impedance and verify the required electrical tuning. Two toroid 

inductors (Type TE-4Q3TA) with 700 mH and 2 H values were used for the cases of 208 Hz and 

205 Hz resonance frequencies respectively. The mentioned inductor values were chosen such 
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that the inductive reactance almost cancels the capacitive reactance according to the conjugate 

impedance matching principle. A resistance decade box (TENMA 72-7270) was used to obtain 

load resistances in a range of 1 Ω-11 MΩ. The load resistance was connected in parallel with the 

unimorphs, the shunted capacitors, and inductors via serial switches to have different collections 

of RL-Cp, RL-Cp- Csh, and RL-Cp- Csh-Lsh, as shown in Figure 4.16. A Digital Storage 

Oscilloscope (Type TDS2012B, 100 MHz, 1 GS/s) was used to measure the output peak-to-peak 

voltage across the load resistor, and then the measured voltage was used to calculate the output 

power. 

 

Figure 4.15 Equivalent circuit for improved adjusting capacitor method 

 

4.7.1 Enhanced power Hybrid Frequency Tuning Method 

To augment maximum power and widen the operating frequency range, an enhanced hybrid 

technique using three piezoelectric unimorph cantilevers has been presented. Mechanical tuning, 

electrical tuning, and band-pass filtering methods were used simultaneously with inductive 

impedance. Those three techniques were used to develop a broadband frequency range for the 

piezoelectric harvester. The inductive reactance has been used to cancel a significant portion of 

capacitive reactance, which is used for electrical tuning. To satisfy power enhancement, a small 

toroid inductor of 700 mH was connected in parallel to the load resistance and shunt capacitance. 
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         Three similar unimorphs, by Face International Corporation with 166 nF inherent 

capacitance and dimensions shown in Table 4.1, have been placed properly to a thick plastic 

piece on the top of a bar fastened to the shaker. The load resistance was connected in parallel 

with the bimorph cantilevers’ output and the shunted capacitors and inductor through serial 

switches to have different collections of RLC parallel circuits. The measured voltage was used to 

calculate the output power. 

Table 4.1 Physical properties of TH-7R Cell 

Mass 18 g 

Footprint (domed) 
95.25 mm × 73.41 

mm 

Footprint (flat) 
97.66 mm × 73.41 

mm 

Piezo thickness 0.25 mm 

Total thickness 0.53 mm 

Dome height 9.55 mm 

4.8 Results and discussion of enhanced power hybrid system 

4.8.1 Improved Adjusting Capacitor  

       To demonstrate the electrical tuning for the piezoelectric unimorph cantilever, several shunt 

capacitors were connected individually in parallel to have different operating resonance 

frequencies. The voltage was measured using the digital storage oscilloscope at different load 

resistance values up to 20 kΩ, and the output power was calculated from the square of the 

measured voltage divided by the load resistance value. 

      These experimental results were used to validate the influence of shunt capacitance on the 

resonance frequency and power delivered to the load resistance as shown in Figure 4.17. 
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Resonance frequency was shifted from 208 Hz at no shunt capacitance to 204 Hz at a 1.5 µF 

shunt capacitor, which is equal to 1.9% of resonance frequency for the no capacitor case. It 

should be considered that the load resistance has a minor influence on the shifted frequency. 

Although a good resonance frequency range has been obtained, the power decreases when shunt 

capacitance increases, which is a main constraint and to be addressed. The maximum extracted 

power values were 14.38 mW and 6 mW with a shunt capacitor Csh of zero and 1.5 µF 

respectively. It can be seen that for each case there is an optimal load resistance that depends 

mainly on the capacitive reactance, and it has a direct correlation with the shunt capacitor value.  

      The issue of output power decrement needs to be resolved and hence an inductive reactance 

of 700 mH was connected in parallel to the system for two different shunt capacitors. By 

considering Figure 4.18 it can be noticed that there is a significant improvement in power output 

with the shunt inductor. Increases in power outputs were up to 93% and 88% for the shunt 

capacitors equal to 1 µF and 1.16 µF respectively. In addition, the unimorph cantilever was tuned 

mechanically by changing its length by 2 mm to achieve a resonance frequency of 205 Hz, and 

then two shunt capacitors of 0.6 µF and 0.87 µF were connected individually with the load 

resistor RL to shift the resonance frequency to 200 Hz and 200.5 Hz respectively. An inductive 

shunt reactance with inductor Lsh of 2 H was connected to the system to improve generated 

power. The results demonstrated in Figure 4.19 show that increases in power outputs were up to 

117% and 47% for shunt capacitors Csh equal to 0.6 µF and 0.87 µF respectively. Finally, the 

relation between the shunt capacitor and the resonance frequency has been studied. The results 

shown in Figure 4.20 demonstrate that the resonance frequency decreases when the shunt 

capacitor increases. The shunt capacitance change causes a change in the stiffness of the beam 

and consequently the natural frequency changes. For the unimorph cantilever with a natural 
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frequency of 208 Hz, the shunt capacitor value was changed from 0 to 1.5 µF. accordingly; the 

operating frequency was changed to 207-204 Hz and 208-204.2 Hz for load resistance values of 

0.3-3 kΩ and 3-20 kΩ respectively. 

                           

                       Figure 4.16. Power outputs for various load resistances RL and several shunt capacitors Csh  
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Figure 4.17. Power outputs using a shunt inductor Lsh of 700 mH and two different shunt capacitors. 

 

 

 
Figure 4.18. Power outputs using a shunt inductor Lsh of 2 H and two different shunt capacitors. 
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Figure 4.19. Resonance frequencies fr versus shunt capacitors Csh for various load resistances RL. 

 

4.8.2 Enhanced power hybrid tuning method  

An enhanced hybrid technique to boost maximum piezoelectric power and widen the 

operating frequency range has been proposed. This new technique uses three piezoelectric 

unimorph cantilevers to achieve mechanical and electrical tuning, and band-pass filtering 

methods simultaneously with conjugate impedance matching. Those three tuning approaches 

have been used all together to develop a broadband frequency spectrum for the piezoelectric 

energy harvester. The inductive reactance has been used to reduce capacitive reactance which is 

used for electrical tuning. For electrical tuning (with shunted capacitors) without shunting an 

inductive load, it is clear that when the piezoelectric system is excited under random frequencies 

from 90 Hz to 115 Hz, the average harvesting output power of the energy scavenger with tuning 

will be higher than that without tuning. That shows a significant improvement of the average 

harvested power output by using an electrical tuning method.   For example in another work (Wu 

W-J et al 2006), it was found experimentally that, when the piezoelectric beam cantilever was 
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excited under random frequencies from 80 Hz to 115 Hz, the average harvesting output power of 

the generator with electrical tuning was about 27.4% higher than that without tuning. When 

inductive impedance is shunted, the average harvested power is even more than that in the first 

case which shows the significance of the new method of shunt inductor. 

Mechanical tuning was performed by setting different dimensions and tip masses, as shown 

in Table 4.2, and utilizing the experimental setup shown in Figure 4.21 for the three unimorphs. 

In the case of the open circuit, obtained resonance frequencies were 240 Hz, 277 Hz, and 294 Hz 

for the first, second, and third cantilever respectively. The three output voltages and the vibration 

acceleration signal for the case of a 10 kΩ load resistance are demonstrated in Figure 4.22 and 

Figure 4.23 respectively. When the three unimorphs are connected in parallel, a band pass filter 

with bandwidth widening is obtained with three new resonance frequencies of 237 Hz, 274 Hz, 

and 290 Hz for the three unimorphs respectively. Each cantilever now has a total parallel 

capacitance of 3Cp which is equal to 498 nF according to the parallel capacitors rule. This can be 

considered electrical tuning for each individual beam using Csh of 332 nF. By adding two 

different shunt capacitors Csh, other resonance frequency groups were 236 Hz, 271 Hz, and 

289.5 Hz for Csh of 1 µF; and 235 Hz, 270 Hz, and 289 Hz for Csh of 1.41 µF.  

     During this hybrid tuning method, it was noticed that there is a power loss due to the shunt 

capacitor Csh. To overcome this problem, an enhanced power method was developed by shunting 

a 700 mH inductor in parallel to the load resistor. The output voltage and power density versus 

frequency for this enhanced power hybrid energy harvester with and without the shunt inductor 

Lsh are shown in Figure 4.24 and Figure 4.25 respectively. It can be seen that there are 9 different 

additional resonance frequencies. The total number of resonance frequencies now is 12 with a 

300% improvement. Significant increases in voltage and power outputs, varied from 19.7% to 
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197%, were also obtained. Voltages for three resonance frequencies of the bimorph cantilevers 

are presented in Figure 4.26. 

 

Figure 4.20. Experimental setup for enhanced power hybrid tuning method 

 

 

 

Table 4.2 Properties of the three different unimorphs 

Unimorph Length (mm) Width 
(mm) Tip mass (g) Frequency (Hz) 

1 82 73 0.6 240 

2 84 73 0 277 

3 81.5 73 0 294 

 

 



92 
 

 

           

Figure 4.21 AC voltage outputs of three different unimorphs with 10 kΩ load resistance 

 

           
Figure 4.22 Vibration acceleration signal with 10 kΩ load resistance 
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Figure 4.23Output voltages versus frequency for enhanced power hybrid energy harvester 

 

 

 
Figure 4.24 Power densities versus frequency for enhanced power hybrid energy harvester 
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Figure 4.25 Voltages for three resonance frequencies of the bimorph cantilevers 
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Chapter 5.  Hybrid Pyro-Piezo Energy Harvester 
 

5.1 Introduction  

          The ultimate goal in the research field of energy harvesting is to enable self-powered 

electronic devices so that the maintenance costs resulting from the use and replacement of 

batteries can be reduced. (Xiao-biao Shan et al 2013). Heat, light, wind and vibration can be 

transformed to usable electrical energy for running such remote electronic devices 

independently. 

Those energy sources are not always obtainable. In order to scavenge energy uninterruptedly, it 

is critical to design and produce a hybrid energy scavenger that combines light, heat, and 

piezoelectric vibration generators, enabling energy harvesting from several energy sources 

simultaneously (Wischke, M 2010, A. Collado et al 2013, J. Gummeson et al 2010, B. J. Hansen 

2010, and Hua Yu et al 2014, Chulsung, P. 2006, and MacCurdy, B 2008). However, the main 

goal behind those researches was to integrate these sources to develop a new multi-source energy 

scavenger with improved power. 

 In this study an investigation for impedance matching and power maximization for 

hybrid piezoelectric and pyroelectric energy harvesting system is proposed. For maximum hybrid 

power, impedance matching between load impedance and internal impedance of the hybrid 

energy harvester must be satisfied. The total internal impedance dependence on the average 

temperature and the heating rate are both key parameters when characterizing a material used for 

hybrid energy harvesting.  This indicates clearly that to optimize impedance when utilizing the 

pyroelectric and piezoelectric effects simultaneously, both operating average working 

temperature and the rate of temperature change need to be considered when designing energy 
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harvesting applications.  Neglecting those parameters will result in inefficient and unpredictable 

hybrid energy harvesting systems. 

Hybrid energy harvesting using a new voltage doubler circuit for rectifying and collecting 

pyroelectric and piezoelectric voltages individually is proposed and tested. The investigation 

showed that the hybrid energy is possible using the voltage doubler circuit from two independent 

sources for pyroelectrictity and piezoelectricity due to marked differences of optimal 

performance.  The obtained results were significantly higher than harvested energy 

simultaneously from the same material. 

5.2 Pyroelectric, piezoelectric, and hybrid energy harvesting  

            A maximum hybrid energy harvesting extraction from piezoelectric materials requires 

load impedance matching. To verify impedance matching, the internal impedance Zp for this 

material needs to be measured. 

5.3 Study of heat effect on the impedance 

             The total impedance has two components, the inherent capacitive reactance Cp and the 

resistance Rp. In reality, the resistance Rp decreases as the applied electric field and temperature 

increase (A. Navid and L. Pilon 2011). On the other hand, the capacitance Cp has direct 

correlation with temperature. The total impedance is affected by heating as both parameters Cp 

and Rp do, so it is really necessary to consider the effect of heat on the total impedance Zp to 

have accurate impedance matching and maximum power. The same SPLPF circuit and LCR 

precision meter were used to characterize bimorph T226-A4-503X at a piezoelectric frequency 

of 115 Hz when a light heating is applied. The expected optimal load impedance for maximum 
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hybrid power is equal to the total inherent impedance at the piezoelectric frequency and 

particular temperature range.   

        A 1 kW electric lamp is used for heating purposes and a thermometer (OMEGA HH506R) 

is used to measure the constant temperature by attaching its thermocouple properly to the 

bimorph as shown in Figure 5.1. The results are shown in Figure 5.2 and Figure 5.3 respectively. 

The internal capacitance was correlated directly to the temperature as in Figure 5.2; hence the 

capacitive reactance correlates reversely. 

 

                   

                Figure 5.1. The Experimental set up for the hybrid energy harvesting. 
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 The capacitance increases from 55 nF at 24ºC to 107.8 nF at 80 ºC. The resistance decreases 

from 148 kΩ at 24ºC to 21 kΩ at 80 ºC. The optimal load impedance should be equal to the total 

inherent impedance which can be obtained from Equation 2.14. The relationship between the 

total impedance Zp and temperature is presented in Figure 5.3 which shows that Zp decreases 

from 24.8 kΩ at 24ºC to 11.4 kΩ at 80 ºC. 

              The resistive impedance required for maximum hybrid energy harvesting should be 

equal to the average value of the total impedance Zp in the particular temperature range resulted 

from the cyclic heating. 

 

              

               Figure 5.2. Inherent resistance and capacitance of the piezoelectric cell versus temperature at 115 Hz 
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           Figure 5.3. Impedance of the piezoelectric material versus temperature at 115 Hz 

 

5.4 Experimental set up for hybrid energy harvesting 

        The prototype used for investigation of piezoelectric, pyroelectric, and hybrid energy 

harvesting is presented in Figure 5.1.  

        For the piezoelectric energy harvesting part, an arbitrary Function Generator (Tektronix 

AFG 2021, 20 MHz) has been used to supply a sinusoidal 50 mV peak-to-peak voltage to a 

power amplifier (Type 2718), which provides enough power to drive a shaker (Type 4809). The 

shaker provides vibration, whose acceleration can be measured using an accelerometer, Model # 

352C33. A bimorph (manufactured by Piezo Systems, Inc. with model number T226-A4-503X) 

has been placed properly to a thick plastic piece on top of a bar fastened to the shaker. A 

resistance decade box with resistance values of 1Ω to 11 MΩ, (TENMA 72-7270) was used to 

have different load resistance values. The load resistance has been connected in parallel with the 
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bimorph cantilever. A Digital Storage Oscilloscope (Type TDS2012B, 100 MHz, 1 GS/s) was 

used to measure the output voltage across the load resistor, and then the measured voltage was 

used to calculate the output power. 

         For pyroelectric and hybrid energy harvesting some other equipment needed to be set up. 

The complete set up is shown in Figure 5.1. Another Function Generator (Hewlett Packard 15 

MHz), a Solid State Relay (OMEGA SSR330 DC25) with 3-15 Vdc biasing voltage, a halogen 

lamp (110 Vac and 1 kW), a thermometer (OMEGA HH506R), a Multimeter (Fluke 189-True 

RMS), and a personal computer are used for measurements. The function generator provides a 

square voltage wave with different frequencies for the SSR which has two normally opened 

contacts used to supply a 110 Vac voltage to the light bulb to get cyclic heating with 100 mHz 

frequency. The load resistance is connected in parallel to the pyroelectric cell. The thermometer 

and voltmeter with DAQ system are connected to the pyroelectric cell to record the periodic 

temperature and voltage values respectively.  

5.5 Results and Discussion  

      A cyclic heat with frequency of 100 mHz and rate of 0.44 degrees per second (between 61.1 

and 65.5 oC) was applied to the bimorph simultaneously with a vibration of 0.21 g and a 

piezoelectric frequency of 115 Hz and at load resistance of 25 k. The instantaneous generated 

piezoelectric, pyroelectric, and hybrid voltages are shown in Figure 5.4, Figure 5.5, and Figure 

5.6 respectively. The hybrid voltage shape was almost similar to a modulated signal which is 

mixed of a carrier signal with high frequency of 115 Hz and a modulating signal with low 

frequency of 100 mHz. The peak value of hybrid voltage (0.69 V) was less than the sum of 

pyroelectric (0.16 V) and piezoelectric (0.72 V) voltages. Considering Figure 5.7, it can be 

noticed that the maximum piezoelectric and hybrid powers of 22.9 µW and 16.5 µW were 
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extracted at a load resistances of 22 kΩ and 19 kΩ respectively. Based on the capacitance in 

Figure 5.2 the expected piezoelectric optimal load impedance at 24 oC and 115 Hz was 25.1 kΩ 

with which the experimental optimal piezoelectric shown in Figure 5.7 was in 12.3 % difference. 

Considering Figure 5.3, the expected hybrid optimal load impedance at 63.3 oC was 14.4 kΩ.  

The experimental hybrid optimal load impedance in Figure 5.7 was 19 kΩ which is within a 24 

% difference with the predicted value. The PSLPF method has been utilized to measure the 

pyroelectric impedance at low frequency of 100 mHz. The measured optimal pyroelectric 

impedance at temperature of 63.3 oC was equal to 0.45 MΩ. There is an 11.1 % difference 

between the predicted value and the experimental value of optimal pyroelectric impedance 

shown in Figure 5.8 which was equal to 0.4 MΩ.   
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Figure 5.4. Piezo Voltage for the bimorph T226-A4-503X at 0.21 g and 115 Hz vibration, and RL of 25 kΩ.    

                    

Figure 5.5. Pyro. voltage for bimorph T226-A4-503X at 100 mHz, and 0.44 degree/s heating, and RL of 25 kΩ.           
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Figure 5.6. Hybrid voltage for bimorph T226-A4-503X at 100 mHz, 0.44 degree /s  heating and at 0.21 g and 

115 Hz vibration, and RL of 25 kΩ  
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                               Figure 5.7. Piezoelectric and hybrid peak power versus load impedance  

 

                           

                                  Figure 5.8. Pyroelectric peak power versus load impedance 
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5.6 Voltage doubler circuit for hybrid energy harvesting 

       In this section a suggested voltage doubler electronic scheme to combine pyroelectric and 

piezoelectric energy harvesting in one device has been demonstrated. The experimental study is 

carried out using two similar PZT bimorph piezoelectric cantilevers of the model number T226-

A4-503X. Results show that the output voltage is equal to the sum of the doubled individual 

voltage outputs minus diodes’ losses as shown in Equation 5.1. When choosing the optimal load 

impedances, the fact that piezoelectric matching impedance is different than that in pyroelectric 

energy harvesting needs to be considered. The total optimal load resistor was found to be equal 

to the sum of individual voltage sources since they are connected in series as shown in Figure 

5.8.  

𝑉𝑜 =  2 𝑉𝑝𝑝   +   2 𝑉𝑝𝑝 − 4𝑉𝑓                  Equation 5.1 

Where: 

Vo, Vpz, Vpr, and Vf: Are the output voltage, input piezoelectric voltage, input pyroelectric 

voltage, and voltage drop across diode respectively. 

The equivalent circuit and experimental set up for Hybrid Pyro- Piezo Energy Harvester Using 

Voltage Doubler are shown in Figures 5.9 and 5.10 respectively. Four capacitors of 100µF each, 

and six diodes (two were used as freewheeling diodes) with Vf of 0.5 V have been used in the 

voltage doubler circuit. 
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Figure 5.9 Hybrid Pyro- Piezo Energy Harvester Using Voltage Doubler scheme 
 
 
 

                    

Figure 5.10 Experimental set up for Hybrid Energy Harvester Using Voltage Doubler  
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      Experimental set up for the hybrid energy harvester using a voltage doubler has been 

implemented using the same equipment set up presented in Figure 5.1. The two bimorph 

cantilevers were connected in series and one of them was fastened to the shaker under a vibration 

level of 0.5 g and piezoelectric frequency of 115Hz. A cyclic heat with frequency of 100 mHz 

and rate of 0.85 degrees per second (between 59.2 and 68.7 oC) was applied to the second 

cantilever with no vibration.  

    The regular hybrid energy harvesting experiment without doubler under a similar condition of 

0.5 g vibration acceleration and 115 Hz and cyclic heating rate of 0.85 degrees per second has 

been achieved. It can be noticed from table 5.1 that the average hybrid average voltage extracted 

at optimal resistance of 19 kΩ is equal to 3.93 V which is less than the sum of individual 

pyroelectric and piezoelectric peak voltages of 0.75V and 3.96 V respectively. This is an 

expected result because of drastic decrease in piezoelectric coefficient because of heating. 

However, the output hybrid power of (0.81 mW) is more than the sum of the individual pyro (1.4 

µW) and piezoelectric (0.71mW) powers, since the internal impedance of the piezoelectric 

decreases with the increasing of both the heat and the frequency. 

      By considering a hybrid energy harvesting with a voltage doubler, it can be seen that the DC 

output hybrid voltage at optimal resistances is equal to 7.96 V which is almost the same to the 

value obtained from Equation 5.1considering the threshold voltage of diodes to be equal to       

0.5 V. The optimal values for the load resistances in the case of the voltage doubler were equal to 

22 kΩ and 0.4 MΩ for individual piezoelectric and pyroelectric sources respectively. The hybrid 

power resulted from voltage doubler method is significantly more than that extracted using the 

regular hybrid method. The hybrid power of (2.16 mW) is almost three times the sum of the 

individual pyro (1.369µW) and piezoelectric (0.71 mW) powers. 



108 
 

Table 5.1. Regular and voltage doubler hybrid energy harvesting at 115 Hz and 0.5 g vibration acceleration, 
and 0.85 deg / sec temperature rate 

    Regular Hybrid energy harvesting Hybrid energy harvesting with voltage doubler 
 

   Pyro. 
 Voltage  

Piezo.  
Voltage 

Hybrid  
Voltage 

Hybrid  
Power 

Pyro. 
Voltage 

Piezo. 
Voltage 

Hybrid 
 Voltage 

Hybrid 
 Power 

0.75V 3.96 V 3.93 V 0.81 mW 0.74 V  3.94 7.96 2.15 mW 
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Chapter 6. Conclusions and Future work 

6.1 Conclusions 

       Studies in the area of harvesting environmental energy to power small wireless electronic 

components and sensors have grown in the recent decades. Particularly, researching materials 

that exhibit a piezoelectric or a pyroelectric effect have been the subject of wide investigation for 

energy harvesting applications. However, these applications have encountered many technical 

challenges to maximize power efficiently. This work concentrates on improving the efficiency of 

energy harvesting using pyroelectric and piezoelectric materials in a system by the proper 

characterization of electrical parameters, widening operating frequency, and coupling of 

pyroelectric and piezoelectric effects to develop hybrid energy harvesting system. 

         

6.1.1 Pyroelectric Energy harvesting 

     In this study, a simple method to characterize impedance for PVDF and PZT-5A cells at low 

frequencies has been invented such that the pyroelectric power harvested can be maximized. This 

method exploits a pyroelectric single pole low-pass filter (PSLPF) which consists of a 

pyroelectric cell instead of parallel R and C components in the feedback path of this common 

filter. By supplying a known input signal at low frequencies along with some simple 

computations, the inherent capacitance Cp and resistance Rp of the pyroelectric cell can be 

calculated. Once these parameters were calculated, the results were verified by measuring output 

pyroelectric energy at various values of load impedance. The maximum power corresponds to 

the predicted value of RL using the PSLPF method within a 9.8 % difference for PVDF cell and 

a 1.4 % difference for PZT-5A cell. 
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             The importance of the effect of ambient working temperature on the total pyroelectric 

impedance has been highlighted. When PVDF or PZT-5A is exposed to ambient working 

temperatures that are higher than 24 oC, the inherent capacitance and resistance change. For 

example, in the case of PVDF cell, impedance drops approximately 10 times from 24 oC to 

90 oC. This order of magnitude change can have an adverse impact on application design 

especially on energy harvesting applications.        

      To stress the significance of impedance matching, energy harvesting experiments using 

pyroelectric cells are conducted. The results corroborate the impedance values computed by 

experimentation and the ones measured by the presented PLSPF method. Two pyroelectric cells, 

PVDF and PZT-5A, were characterized in a frequency range from 1 mHz to 100 Hz. For PVDF, 

it was shown that Rp were in 8 % and 1.2% differences as compared to LCR meter for 10 and 

100 Hz, respectively, and in 3.1% difference as compared to IA at 100 Hz. The inherent 

capacitance Cp was measured to be in 1.9 %, 4.3%, and 6.4% differences with the LCR meter, 

IA, and manufacturer measurements, respectively. For PZT-5A, it was revealed that Rp were in 

5.8 % and 1.4% differences as compared to LCR meter for 10 and 100 Hz, respectively, and in 

6.1% difference as compared to IA at 100 Hz. The inherent capacitance Cp was measured to be 

in 0.5%, 7.5%, and 9.04% differences with the LCR meter, IA, and manufacturer measurements, 

respectively. The suggested method is used with a pyroelectric cyclic heating at a temperature 

rate of 0.6 degrees per second for PVDF. For PZT-5A, a temperature rate of 0.44 degrees per 

second has been proposed. The optimal load impedance for PVDF and PZT-5A samples was 55 

and 7 MΩ at the mentioned temperature rates, respectively. The optimal load resistances for 

PVDF and PZT-5A were consistent with the measured pyroelectric impedance at the particular 

heat range with 10.9% and 1.4% differences, respectively. In addition, the dependence of 
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impedance on operating median temperature was also measured. In the case of PVDF, it was 

shown that the impedance values can decrease from 400 to 40 MΩ with temperatures between 

25 oC and 95 oC. In the case of PZT-5A, the changes are smaller and are in the order of 3 MΩ at 

the same temperature ranges. 

 

        The PSLPF technique proposed here shows that impedance dependence on the average 

temperature and the heating rate are both key parameters when characterizing a pyroelectric 

material. This indicates obviously that to optimize impedance when exploiting the pyroelectric 

effect, both operating average working temperature and the rate of temperature change need to 

be considered when designing energy harvesting systems. Neglecting those parameters will 

result in inefficient and unpredictable systems. 

6.1.2 State space modeling for piezoelectric bimorph harvester with RLC load 

         In this study, a state space dynamics model of the piezoelectric cantilever with RLC load 

has been developed. This model can be utilized to analyze the feasibility of shunting an 

inductance with small value to improve the output power of vibration based scavengers with 

passive electrical tuning. A general dynamics model of the piezoelectric cantilever with RLC 

load has been developed, and test results from this generator were presented and discussed. 

       There was good correspondence between experimental and simulated waveforms of the 

output voltages with 10 % difference.    

        It was shown analytically and experimentally that there is a significant improvement in the 

harvested power of the circuit with the shunt inductor. A shunted inductor of Lsh of 3 H has been 

connected to the system to improve the generated power when the shunt capacitance was equal 

to 1.47 µF and 3 µF. Generally, the gained power percentages were (10 % - 60 %). Experimental 
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and simulated data for output peak power Pp of the piezoelectric generator were in good 

correspondence with a maximum difference of 7.5 %.  

6.1.3 Hybrid Piezoelectric Frequency Tuning 

    Piezoelectric energy harvesters deliver the maximum power when working at resonance, 

which means that the harvesters are not efficient in environment vibrations with random and 

unpredictable frequencies. In this study, some suggested approaches have been developed to 

increase the frequency bandwidth and maximize output power for piezoelectric energy 

harvesters.     

     At first, a hybrid frequency tuning methodology using multiple piezoelectric bimorph 

cantilevers is presented. This is done to accomplish mechanical tuning, electrical tuning, and 

bandwidth widening simultaneously to develop a significant growth in frequency spectrum for 

the piezoelectric energy scavenger. In this new work three bimorph cantilevers with the same 

characteristics have been utilized. Each one has the same natural frequency, but mechanically 

tuned by using two different tip masses and different lengths to have three different natural 

frequencies. These three bimorphs were connected electrically in series and mechanically in 

parallel. Using three diverse ceramic capacitors for each cantilever, each one has a stretched 

operating frequency range of several hertz around each individual resonance frequency. Hence 

rather than having three resonant frequencies the system has twelve natural frequencies and 

maximum power peaks.  

              A total of 12 resonance frequencies are achieved. It was concluded that this design 

which includes three cantilevers and four capacitors for each beam could deliver more power 

than the case if one bimorph cantilever is assumed to be used with 12 capacitors. It was shown 
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that the output power corresponding to the largest shunt capacitor of 470 nF is less than 0.5 mW. 

In order to have a broader frequency band, capacitors with values more than 470 nF should be 

used, and consequently the power achieved could be even less and less than 0.1 mW. Also, if 12 

beams are used to get 12 resonance frequencies by mechanical tuning, the size limitation would 

be a serious problem. The proposed hybrid tuning technique was feasible and optimal method for 

wide broadband piezoelectric energy harvesting.  

        Secondly, an experimental enhanced power harvester with hybrid tuning using multiple 

piezoelectric unimorphs is developed. This approach sought to enhance piezoelectric power and 

frequency spectrum using mechanical tuning, electrical tuning, and bandwidth widening 

techniques simultaneously with conjugate impedance matching. This approach aimed to enable 

piezoelectric energy harvesters to work efficiently in a variety of environments with random 

ambient vibration frequencies. First, an improved adjusting capacitor method for electrical 

tuning has been established to have an enhanced power output and to match piezoelectric 

resonance frequency to the ambient vibration frequency simultaneously. The influence of a shunt 

capacitor Csh on the output power of a unimorph piezoelectric cantilever was validated by 

connecting four different shunt capacitors with values from Cp to 10Cp. An inverse correlation 

between the two quantities was noticed. An inductive reactance connected in parallel to the 

system was suggested as a remedy for this issue. Increases in power outputs were up to 93% and 

88% for the shunt inductive impedances equal to 1 µF and 1.16 µF respectively. In addition, for 

the same unimorph cantilever tuned to resonance frequency of 205 Hz, two shunt capacitors of 

0.6 µF and 0.87 µF were connected to shift resonance frequency to 200 Hz and 200.5 Hz 

respectively. An inductive shunt reactance with inductor Lsh of 2 H was connected to the system 
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to improve the generated power. Increases in power outputs were up to 117% and 47% for shunt 

capacitors Csh equal to 0.6 µF and 0.87 µF respectively. 

Finally, an enhanced power hybrid tuning technique using multiple piezoelectric unimorphs 

has been presented. Mechanical tuning, electrical tuning, and band-pass filtering methods were 

used simultaneously to develop an increase in frequency range for the piezoelectric harvester 

with enhanced power using inductive impedance. A small toroid inductor of 700 mH was 

connected in parallel to the load resistance and shunt capacitance. An extended frequency range 

of 12 resonance frequencies with 300% improvement was obtained experimentally with 

enhanced power density improvements of 19.7% to 197%. Future work might include an ultra-

low power microcontroller to develop an actively hybrid tuned energy harvester with power 

enhancement  

6.1.4 Hybrid Energy Harvesting  

             For maximum hybrid power, impedance matching between load impedance and inherent 

impedance of the hybrid energy harvester must be fulfilled. The total internal impedance 

dependence on the average temperature and the heating rate are both key parameters when 

characterizing a material used for hybrid energy harvesting.  In this study, it was shown that to 

optimize impedance when utilizing the pyroelectric and piezoelectric effects simultaneously, 

both operating average working temperature and the rate of temperature change need to be 

considered when designing energy harvesting applications.  Neglecting those parameters will 

result in inefficient and unpredictable hybrid energy harvesting systems. 

In addition, an impedance matching using a new voltage doubler circuit for rectifying and 

collecting pyroelectric and piezoelectric voltages individually is proposed and tested. The 



115 
 

investigation showed that the hybrid energy is possible using the voltage doubler circuit from 

two independent sources for pyroelectrictity and piezoelectricity due to marked differences of 

optimal performance.  The obtained results were significantly higher than harvested energy 

simultaneously from the same material.  

       A cyclic heat with frequency of 100 mHz and rate of 0.44 degree per second (between 61.1 

and 65.5 oC) was applied to the bimorph simultaneously with a vibration of 0.21 g and 

piezoelectric frequency of 115 Hz. The hybrid voltage shape was almost similar to a modulated 

signal which is mixed of a carrier signal with high frequency of 115 Hz and a modulating signal 

with low frequency of 100 mHz. 

It was seen that the hybrid one was less than the sum of pyroelectric and piezoelectric 

voltages. Also, it was noticed that the maximum piezoelectric and hybrid powers of 22.9 µW and 

16.5 µW were extracted at a load resistance of 22 kΩ and 19 kΩ respectively. The predicted 

optimal piezoelectric impedance at 24 oC and 115 Hz was 25.1 kΩ with which the experimental 

optimal impedance was in 12.3 % difference. 

 The expected hybrid optimal load impedance at 63.3 oC was 14.4 kΩ.  The experimental 

hybrid optimal load impedance was 19 kΩ which is within a 24 % difference with the expected 

value. The measured optimal pyroelectric impedance at temperature of 63.3 oC was equal to 0.45 

MΩ. There is an 11.1 % difference between the expected value and the experimental value of 

optimal pyroelectric impedance which was equal to 0.4 MΩ. 

The hybrid power resulted from voltage doubler (2.15 mW) method is significantly more 

than that extracted using the regular hybrid method (0.8 mW). 
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6.2 Future Work 

6.2.1 Pyroelectric Cell characterization equipment: 

        The proposed PSLPF, a simple method for the measurement of inherent resistance and 

capacitance for pyroelectric materials and confirmed their results using pyroelectric energy 

harvesting set-up. This is useful for situations where the impedances were not measurable using 

the traditional instruments. For future work a new measurement instrument could be designed 

based on the mechanisms used for this technique. We would aim to optimize the reliability and 

functionality for such beneficial equipment. 

6.2.2 Actively tuned hybrid piezoelectric frequency tuning system 

       It can be noticed that there is a significant increase in the operating frequencies bandwidth 

using the suggested hybrid technique for frequency tuning. Future work will consider designing 

and implementing an actively tuned hybrid frequency tuning system using an ultra-low power 

microcontroller chip. 

6.2.3 Enhanced hybrid piezoelectric frequency tuning system 

         To optimize the efficiency of the new hybrid piezoelectric tuning technique, different 

series-parallel configurations of capacitance, inductance, and resistance can be considered to 

increase the power output with even a smaller shunt inductance.  
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Appendices 

Appendix A1.1 Effect of temperature on Dielectric constant for some piezo ceramics  

The effect of temperature on some piezo ceramic materials was achieved by some researchers. 

All of the these materials evaluated in this work exhibited their lowest dielectric constant values 

at -150°C, and the dielectric constant of each material increased as the temperature was increased 

as shown in Figure A.1.  

 

 
Figure A.1 Dielectric constant versus temperature data for (a) PZT-4, (b) PZT-5A, PZT-5H, and (d) PLZT-
9/65/35 (Mathew W. Hooker, 1998). 
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The dielectric constants of the PZT-4 and PZT-5A ceramics correlated directly to the 

temperature. The other two materials evaluated, PZT-5H and PLZT-9/65/35, exhibited Curie 

points within the -150 to 250°C range. The PZT-5H ceramics possessed a Tc value of 180°C at 

each frequency, whereas the PLZT-9/65/35 materials exhibited Tc properties typical of a relaxer 

ferroelectric (i.e., varying with frequency). In this instance, the temperature at which the 

maximum dielectric constant was observed increased from 72 to 91°C as the measurement 

frequency increased from 100 Hz to 100 kHz (Mathew W. Hooker 1998). 

Appendix A1.2 Effect of temperature and frequency on resistivity for some piezo ceramics  

The effect of temperature on resistivity for several piezo ceramic materials was studied by M. W. 

Hooker too. As shown in Figure A.2, when the temperature was increased more than 50oC, 

resistivity was found to decrease significantly. The resistivity of the PZT-5A specimens was 

found to decrease with increasing temperature, but the change was not a sharp decrease as that 

exhibited by the PZT-4 beyond 50°C. The resistivity of the PZT-5H materials was correlated 

inversely with temperature and reached a minimum value at the Tc and increased as the test 

specimen was heated to 250°C. A resistance minimum corresponding to the Curie temperature 

was also observed for the PLZT-9/65/35 ceramics. As previously noted, this material is a relaxer 

ferroelectric and therefore the temperature of minimum resistance was found to increase from 72 

to 91°C as the measurement frequency increased from 100 Hz to 100 kHz (Mathew W. Hooker 

1998). It can be noticed that the resistivity is correlated inversely with the frequency in the range 

from 100 Hz to 100 kHz for all the piezo ceramic materials in this study. 
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Figure A.2 Resistivity versus temperature data for (a) PZT-4, (b) PZT-5A, PZT-5H, and 
(d) PLZT-9/65/35 (Mathew W. Hooker, 1998). 
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