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 Transition metal phosphide materials have found themselves at the forefront of 

research revolving around energy applications. Due to the vast range of properties possessed 

by marginally different phase compositions, binary and ternary metal phosphides are utilized as 

catalysts, semi-conductors and magnetocaloric materials along with many others. These 

attractive properties, which are highly phase dependent, call for a versatile and cost effective 

synthesis route for various phosphide materials without sacrificing properties important at the 

nanoscale such as particle size and morphology.  



viii 
 

 The primary focus outlined in the work of this dissertation pertains to a versatile wet 

chemical synthesis capable of producing multiple phases of binary and ternary phosphides 

containing one or more of the transition metals cobalt, iron and nickel. These metals were of 

particular interest due to the proven catalytic activity of iron, cobalt or nickel binary phases and 

the lack of research conducted on the corresponding ternary phases. The challenge presented 

by wet chemical synthesis methods is the ability to separate different crystal phases of metal 

phosphide in a short amount of time, with less toxic and lower cost chemicals, and a simple 

synthetic process with the ability to produce products on a larger scale. Oleylamine was used as 

a solvent, capping agent and reducing agent along with trioctylphosphine or 

triphenylphosphine as a phosphorus source. Many binary phosphide phases were synthesized 

with the same method and purity of phase was controlled primarily with temperature or 

phosphorus to metal ratio (P:M). At lower temperatures (290-320°C) or lower P:M (4:1) 

Ni3P,Ni2P, Fe2P, and Co2P were synthesized while higher temperatures (330-360°C) or higher 

P:M (22:1) produced Ni5P4, Ni12P5, FeP and CoP. Ternary phosphides FeCoP and CoNiP were also 

successfully synthesized at temperatures of 300-330°C with small excesses of phosphorus (2-5 

molar excess).  

 Preliminary catalytic studies for the evolution of hydrogen gas were conducted to test 

the efficacy of phosphide materials produced via the simplistic oleylamine method. Ni2P was 

found to have the highest activity toward hydrogen evolution with an overpotential of 320 mV 

which is comparable and in some cases better than other unsupported phosphide catalysts of 

the same phase. The ability to control phase composition using a simple, cost effective wet 

chemical synthesis is promising for the future production of active metal phosphide materials.  
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1.1 Overview 

 Transition metal phosphides (TMPs) have a wide array of properties that are sought 

after both commercially and fundamentally. These properties are highly dependent upon the 

phase of the transition metal phosphide and include categories such as semiconductors, 

ferromagnets, catalysts etc. TMPs are typically segregated into two main groups, binary 

phosphides are composed of a single metal and phosphorus, while polyphosphides comprise 

more than one metal and phosphorus. For the purpose of this work, the only types of 

polyphosphides that will be explored are those with only two types of metal and will be 

referenced as ternary phosphides. For example, Fe3P is a ferromagnet with a high transition 

temperature, while Fe2P is a small band-gap semiconductor. 1 Similarly, Ni2P is one of the most 

highly active catalysts for hydrodesulfurization (HDS) and hydrodenitrogenation (HDN), while 

NiP2 is a promising negative electrode for lithium-ion batteries. 2,3  

Transition metal phosphides of many varieties, particularly those of iron, nickel and 

cobalt have gained popularity in recent years due to their promising results that either make 

them a more cost-effective alternative, or outweigh the current performance of an existing 

material. Due to their applauded performances in current critical research in the fields of ion-

battery capacity, hydroprocessing of petroleum feedstocks and renewable energy by hydrogen 

evolution, it is pertinent to prepare viable synthetic routes for their transitions into industrial-

level production.  
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1.2 Uses of Transition Metal Phosphides  

The identity of almost every metal phosphide is known because of the ease of reactivity 

of the phosphide ion with most less-electronegative elements. Phosphides have a wide range of 

chemical and physical properties and for that reason are difficult to place into exact categories.  

One viable suggestion for classification is based upon stoichiometry and broken into three 

separate classes; phosphorus-rich, metal-rich and monophosphides. Phosphorus-rich consist of 

those with a metal-to-phosphorus ratio greater than one, while the metal-rich ratio is less than 

one and a monophosphide’s ratio is exactly one. Research centered around transition metal 

phosphides has skyrocketed due to their utility across many different applications. Applications 

attracting the most attention in recent years heavily revolve around energy sources. Treatment 

of current petroleum feedstocks and bio-oils, high capacity electrodes for sodium and lithium-

ion batteries and catalytic generation of hydrogen via water splitting are topics at the forefront 

of the research field for transition metal phosphides.  

The removal of sulfur and nitrogen from fuel feed-stocks has been of particular interest 

as the impurity standards have become more stringent for transportation fuels. Upon burning 

fuels with high contents of nitrogen and sulfur, their respective oxides are released into the 

atmosphere. High concentrations of SO2 in the atmosphere was discovered to be harmful to 

plant and animal ecosystems as well as the human respiratory system which lead to higher 

restrictions on emissions implemented by the Environmental Protection Agency (EPA) and 

other regulatory agencies worldwide since the 1970s. Currently the government regulations in 

the U.S., Europe and Japan all limit the sulfur contents of diesel to less than 10 parts per 
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million.4 Due to these regulations, catalysts are used to treat fuel feedstocks before they are 

burned for energy purposes. The removal of organonitrogen compounds is critical to achieving 

ultra-low sulfur levels because their presence inhibits the removal of sulfur and can potentially 

poison catalyst further down the processing line for fuels. 

 While supported metal catalysts, such as Pt5, Ni-Mo-S6 and Co-Mo-S7 have been praised 

for their efficiency, cost in the case of Pt and recyclability in the cases of Ni-Mo and Co-Mo are a 

concern. Due to those obstacles, metal phosphides have been heavily researched for their 

catalytic activities with respect to hydrodesulfurization (HDS)8, hydrodenitrogenation (HDN)9.  

Ni2P has established itself throughout the years as the leader for catalysis in 

hydrodesulfurization and is making headway in the catalysis in many other realms. Its activity 

for HDS is proven higher than the sulfided Ni-Mo and Co-Mo materials and its cost is much less 

than that of the supported Pt catalysts.  

Lithium-ion batteries are currently at the top of the portable electronics pyramid and 

are praised for their light weight as well as their quick and efficient recharging capabilities. High 

capacity electrode materials are needed for Lithium-ion transport to prevent dendritic structure 

formation leading to a decrease in overall coulombic efficiency. A widely used material is 

graphite which interacts with lithium ions reversibly, possesses good conductivity and requires 

a low electrochemical potential. Although there are many positive things about this material, it 

is being rivaled by other electrode candidates that possess a higher capacity for lithium-ions.  

The maximum amount of lithium ions able to intercalate into the graphitic carbon 

structure is 1 ion per 6 carbon atoms which translates to a capacity of 372 mAh g-1. Transition 
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metal phosphides containing the metals iron, cobalt and nickel are at the forefront of the 

lithium-ion electrode research due to their higher capacities and similar properties to graphite. 

Theoretically Fe2P and FeP2 have capacities of 563 and 1365 mAh g-1 respectively and have 

gained research interest as carbon-free anodes with promising performance.10 Co2P and CoP 

were also investigated as potential anodes to compete with graphite and CoP registered 630 

mAh g-1 with good recyclability. 11 Once again, the front-runner, Ni2P has displayed impressive 

capacity results among Ni2P nanoparticles and Ni2P nanowires yielding capacities of 742 mAh g-1 

and 909 mAh g-1 respectively.12-13 Due to these auspicious results and continued research 

revolving around transition metal phosphides as anodes for lithium-ion and sodium-ion 

batteries, further investigation into procedures for efficiently synthesizing phosphides of many 

phases and sizes in a single system is advantageous.  

 (Equation 1)    𝐻2𝑂 (𝑙) →  𝐻2 (𝑔) + 
1

2
𝑂2 (𝑔)     ∆𝐺0 = 237.2 𝑘𝐽 𝑚𝑜𝑙−1  

One of the most exciting new endeavors for utilizing transition metal phosphides is for 

the evolution of hydrogen gas from water. The electrolysis of water (Equation 1) is an 

electrolytic reaction that converts water into gaseous hydrogen and oxygen. This electrolysis is 

a combination of two important half reactions that will be further discussed in Chapter 5 of this 

text. The abundance of water in combination with the energy potential of hydrogen gas makes 

this system a very intriguing one to try to conquer. Efficient production of hydrogen by the 

electrolysis of water is an increasingly important reaction as limited fossil fuels are consistently 

depleted, and demands for energy continue to increase. The spotlight tends to shine on 

hydrogen due to it having the largest energy density over any other fuel known in the world 
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and its green production from renewable resources. The best known catalyst for the hydrogen 

evolution reaction (HER) in terms of efficacy is platinum. Although incredible effective at 

producing hydrogen, large scale implementation of hydrogen evolution by platinum metal is 

limited due to its high cost and low abundance.14  

Due do the impracticality of Pt as a viable candidate for large scale production, many 

other avenues have been explored over the last two decades for materials that are significantly 

lower in cost and competitive in catalytic ability. A few classes of materials have been 

considered as potential alternative catalysts for HER including metal sulfides, selenides and 

most recently phosphides. Most of these alternatives include the metals cobalt, iron, nickel or 

molybdenum which have all shown high HER activity. Transition metal phosphides compared to 

other non-precious metal catalysts have shown high HER activity and are being heavily research 

as a viable candidate for large scale hydrogen evolution implementation. At the forefront of this 

research, phases that have sparked the most attention for this application are Ni2P, Ni12P5, Co2P 

and CoP.3,15–24 

For some catalysts, a synergistic effect between two metals is often observed in which 

the activity of the mixed metal catalyst such as a ternary phosphide is higher than that of its 

monometallic counterparts. A known example of this is Ni-Mo-S catalysts for HDS.25 However, 

catalytic activities for bimetallic phosphide catalysts have proven to be more of a complex 

system, as it has produced ternary catalysts with lower26, intermediate27, and higher28–30 

activities than their binary phosphide compounds. The synthesis of these ternary phosphide 

compounds is made possible by the ability of the interacting metals to form solid solutions, 
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leaving the overall crystal structure virtually unchanged. In the case of phosphides, studies have 

shown that Ni is capable or forming a solid solutions of the type (Ni1-xMx )2 P, where M = Mo, Co, 

Fe, Mn, Cr.31,32  

1.3 Synthesis Strategies of Transition Metal Phosphides  

The synthesis of binary transition metal phosphides, particularly CoxPy and NixPy, has 

been presented through many different avenues that span across benchtop, solvothermal, 

furnace and syringe pump apparatuses. CoP nanowires have been synthesized by O’Brien et al. 

by thermal decomposition in the presence of alkylphosphonic acids in oleylamine (OAm) and 

trioctylphosphine oxide (TOPO), while hollow urchin-like particles of the same phase were 

made in the presence of triphenylphosphine (TPP) and OAm.33,34 Xie and coworkers were able 

to produce Co2P hollow spheres and tubes using an autoclave approach using yellow 

phosphorus and ethanol at long reaction times (30-48 hrs).35 Many different phases of NixPy 

have been synthesized and studied, however, the main phase of interest is Ni2P due to its 

ability to form solid solutions with Co2P as well as its superior performance over many catalytic 

platforms. Ni2P nanowires have been synthesized by slow injection of Ni-Trioctylphosphine 

(TOP) complex into preheated solvent via a syringe pump13 and hollow Ni2P nanoparticles have 

been reported using conversion of Ni templates in the presence of TOP, and the reaction of Ni 

salt precursor in OAm and TOP.36,37 The applications for Ni2P encompass photocatalytic 

degradation of organic dyes38, HDS39, HDN9, HER40 etc. Figure 1.3.1 shows the general synthetic 

parameters of binary transition metal phosphides with respect to temperature, phosphorus 

source and synthetic method.  
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Figure 1.3.1: General Synthetic Parameters and Phase Identifications of Transition Metal 

Phosphides 

For the catalysis of HDS, it has been suggested and subsequently proven previously that 

CoxNi2-xP has a higher activity than Co2P or Ni2P alone. Bussell et al. has presented a Co0.1Ni1.9P 

catalyst that has a 34% higher activity for the HDS of thiophene than its optimized Ni2P 

catalyst30 and comparable conversions between Ni2P and Co0.1Ni1.9P in the HDN of carbazole.41 

Meanwhile, Smith et al. have found that in the case of 4,6 dimethyldibenzothiophene (DMDBT) 

that activity of Co doped Ni2P catalyst is slightly higher and the addition of Co enhances the 

selectivity toward direct desulfurization as opposed to the hydrogenation route.28 These 

catalysts were generally prepared by an impregnation route and subsequent temperature 

programmed reduction (TPR) method which tends to be lengthy in reaction and drying time. 

Since the monometallic phosphides have taken off in recent years, investigation into bimetallic 

phosphides has been neglected.   
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In this study, CoxNi2-xP and CoxFe2-xP are formed in a batch type process that has the 

potential for scalability. Co2P, Ni2P and CoxNi2-xP are easily prepared by the reduction of metal 

salts in the presence of oleylamine and a phosphorus source, either trioctylphosphine (TOP) or 

triphenylphosphine (TPP). These unsupported catalysts are tested for their efficacy toward the 

hydrogen evolution reaction and the photocatalytic degradation of Rhodamine B.  

1.4 The Oleylamine System 

 Wet chemical syntheses using organic solvents has proven to be a fruitful avenue for 

tailored nanoparticle synthesis. These systems allow for controlled reduction, nucleation and 

growth of particles of multiple identities by adjusting the concoction of solvents and surfactants 

appropriately. Nanoparticles are vastly different from their bulk counterparts in terms of 

properties and reactivity and can be different from one another with a subtle change in 

morphology, size or crystal structure. It is this control over shape, size, and crystalline structure 

that make solution synthesis appealing in the nanoparticle community.  

One multi-faceted organic solvent that has gained much attention over the last few 

decades is oleylamine (Figure 1.6.1). Oleylamine is a viscous, long-chain primary amine that has 

been proven to be effective as a mild reducing agent, surfactant, high boiling point organic 

solvent or sometimes even a combination of these usages. In certain cases, oleylamine has 

been known to form complex compounds with some metal ions forming a metastable type of 

secondary precursor that is successively decomposed in solution to yield many different types 

of nanoparticles. 
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Figure 1.4.1: Skeletal structure of Oleylamine. 

 Being a liquid at room temperature, oleylamine is friendlier to work with in solution-

type synthesis as a surfactant compared to other long chain alkylamines which solidify upon 

cooling due to their higher melting points. In addition to having a low melting point, oleylamine 

has a relatively high boiling point compared to other organic solvents of 365°C. This low melting 

point and high boiling point make oleylamine attractive for use as a surfactant and solvent in 

many nanoparticle syntheses.  

 Due to the unique “cis” orientation about the double bound carbons compared to its 

other chain-like counterparts, oleylamine produces particles of different morphologies than 

that of other primary alkylamines with similar basicity and affinity through the amine functional 

group. Its lack of linearity allows for a more spherical nanoparticle formation as opposed to 

long-range ordered materials (i.e. nanorods). However when used as a co-surfactant with 

certain compounds, oleic acid for example, oleylamine has also been proven to form rod-like 
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structures.42 For these reasons it is common for oleylamine to be used as a surfactant or co-

surfactant in many organic nanoparticle syntheses.  

 Oleylamine has also been proven capable of reducing metal ions at high temperatures. 

Not all metal ions however are capable of reduction by such a mild reducing agent. For 

example, iron, cobalt and nickel ions in the 2+ state are capable of being reduced by oleylamine 

however Mn2+ ions are not. It is unclear exactly the cut-off is for reducing power of oleylamine 

but it likely lies somewhere between ions with reduction potentials between -0.7618 and  

-1.185 which correspond to the reduction potentials of Zn2+ and Mn2+ respectively.  

 Due to the choice of precursor for this work, the likelihood of the mechanism for 

oleylamine reduction outlined in Figure 1.4.2 is likely. Acetate precursors are known to degrade 

at high temperatures to form metal oxide and metal due to the decomposition chemistry of the 

acetate.43–45 Nickel acetate tetrahydrate has been studied and proven to from NiCO3 which 

further degrades into NiO and Ni metal. Due to the similarities between cobalt and nickel and 

prior proof on many occasions of the ability of oleylamine to provide reduction of both metals, 

the mechanism below is adopted for the reduction of metal oxide to form metal using 

oleylamine.  
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Figure 1.4.2: Reduction of fcc CoO to fcc Co by oleylamine 46 

In addition to its versatility, commercial oleylamine has a much lower cost than 

commonly used pure alkylamines such as hexadecylamine (HDA) and octadecylamine (ODA). 

This organic solvent is used in many variations and was chosen as a result of its versatility and 

potential for facile, cost-effective and scalable synthesis of many variations of transition metal 

phosphides for catalytic applications.47 
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2.1 Overview 
 

The applications and properties of nanoparticles are highly dependent upon many 

characteristics; chemical composition, shape, size, surface area and crystal structure are all of 

interest when characterizing nanoparticles. Since it has been confirmed that nanoparticles can 

be vastly different from their bulk counterparts, more instruments are constantly being 

developed or made more sensitive in order to better understand the chemistry behind their 

subtle differences. These instruments often utilize magnetic fields, electron beams, x-rays or 

other forms of light to quantitatively or qualitatively measure some of the above characteristics 

of nanoparticles. Due to the vast amount of information one can collect on a single sample 

from multiple characteristics, the process of how these instruments work and ways to interpret 

their data must be introduced and explained. This chapter will explain how different 

instruments were used to characterize any and all of the materials made in this work. A 

summary of the techniques discussed can be found in table 2.1.1 below.  
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Table 2.1.1: Summary Characterization Techniques to be Covered in Chapter 2 

 

 

2.2 Powder X-ray Diffraction (XRD) 
 

 X-ray Diffraction is an analytical technique that uses the scattering of X-rays to 

determine the phase identification of a crystalline material. This technique is used widely 

among scientists not only for the information it provides, but also due its ease of use, quick 

data acquisition and non-destructive nature. X-ray diffraction is particularly useful for 

identification because it can distinguish the difference between compounds whose chemical 

identities are the same but crystal structures are different (i.e. glass and quartz).  

 The acquired data from an X-ray diffraction spectrum is based on the constructive 

interference of X-rays and a crystalline sample. X-rays are generated by a cathode ray tube, 

filtered to produce monochromatic radiation and collimated using slits and masks toward a 

Technique Advanced techniques Application  

X-ray Diffraction 

(XRD) 

Scherrer Analysis,  Rietveld 

Refinement 

Crystalline phase identification, crystal 

size determination, unit cell parmaters 

Inductively Coupled Plasma- 

Optical Emission Spectrometry 

(ICP-OES) 

-- Elemental analysis 

Ultraviolet-visible Spectrometry 

(UV-vis) 

-- Absorbance and concentration 

measurements 

Scanning Electron Microscopy 

(SEM) 

-- Surface morphology and topography 

determination 

Transmission Electron Microscopy 

(TEM) 

Diffraction, EELS mapping Particle shape and size, crystal 

structure, elemental mapping 

Vibrating Sample Magnetometry 

(VSM) 

-- Magnetic saturation and coercivity 
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crystalline target. In a typical x-ray diffraction experiment, the sample is irradiated with a single 

frequency of radiation across many angles. At certain angles, interactions of the sample and the 

incident rays produce constructive interference resulting in diffracted rays which obey Bragg’s 

Law. Bragg’s Law relates the wavelength of the incident radiation to the angle of the diffracted 

ray and the lattice spacing of the crystalline sample by the equation 1: 

(Equation 1)   𝑛𝜆 = 2𝑑𝑠𝑖𝑛𝜃  

where n is a positive integer of wavelengths, λ is the wavelength of the incident ray, θ is the 

angle of diffraction and d is the distance between adjacent atoms in a crystalline material, also 

known as lattice spacing.  The diffracted X-rays are directed toward a detector which translates 

those rays to an intensity signal that manifests itself in the form of a peak at the angle of 

constructive interference, known as a diffractogram. Figure 2.2.1 is a schematic of Bragg 

diffraction. Determining the identity of a sample is achieved by comparing its diffractogram to 

known standards. The largest known database for such standards is accessible from the 

International Centre for Diffraction Data (ICDD).  
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Figure 2.2.1 Schematic of Bragg Diffraction 

 

The wavelength of the incident X-rays is dependent upon the X-ray source the 

diffractometer is equipped with. The most common source used is a Cu Kα radiation with a 

wavelength of 1.5418 Å. Other sources are available to use if desired to limit interference with 

elements of interest, however, their efficiencies of X-ray generations vary which can alter the 

intensity of the signal. Some atoms that absorb the incident X-rays and emit them as X-rays of a 

different wavelength (fluoresce) can cause elevated background noise when using sources of 

radiation that are similar to the analyte. For instance, samples containing Fe and Co are 

susceptible to higher background noise when using Cu Kα radiation. This noise can often be 

eliminated by inserting a diffracted beam monochromator, but is more difficult to remedy if the 

sample signal is low. 
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While XRD is useful for many reasons, it also has some limitations. XRD is a 

characterization technique for the bulk of a sample due to the penetration depth of the X-ray 

being hundreds of nanometers for most materials, therefore other analytical techniques must 

be executed to deduce any information about the surface of a sample.  In addition to elements 

that fluoresce, many characteristics of the sample can affect the diffractogram and cause it to 

deviate slightly from the know standard, making some difficult to identify with absolute 

certainty if working with a complex system. Lattice strain can cause peak positions to shift to 

lower angles and small grain size or asymmetric lattice strain can cause peak broadening.  

2.2.1 Peak Broadening- Scherrer Analysis 

  

Named after Russian physicist Paul Scherrer, the Scherrer formula was implemented in 

1918 upon the discovery that when monochromatic radiation falls on a randomly oriented mass 

of crystals, the diffracted beam is broadened when the particle size is small.48  Scherrer analysis 

is used specifically to relate the width of a peak on a diffractogram to calculate the average 

grain size or crystallite size of a sample. Bragg diffraction (Figure 2.2.1) assumes that crystals 

are perfect and diffraction occurs at a single angle value for a given plane, therefore perfect 

crystals are calculated to have a peak width of zero. Upon experimentally measuring an 

imperfect sample synthesized in the lab, a peak width of zero is often not the case. Assuming 

instrument broadening has been compensated for by measuring a standard and subtracting the 

peak width from your sample’s peak width, Scherrer’s formula inversely relates the width of a 

given peak with the size of the crystal.  
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(Equation 2)   𝜏 =
𝐾𝜆

𝛽𝑐𝑜𝑠𝜃
 

Equation 2 shows the Scherrer formula used for crystallite estimation where 𝞃 

represents the average grain size of the crystalline domains, K represents a dimensionless 

shape factor that is typically approximated to be 0.9, λ is the wavelength of the incident x-ray, 

𝞫 is the line broadening or width of a peak at half of the maximum (full-width half-max FWHM) 

and θ is the Bragg angle. With a few of these variables there are assumptions made that may 

skew results if those assumption are not concurrent with a particular sample or data set. The 

value for K assumes that the particles are ellipsoidal in nature, which is not the case for many 

particles at the nanoscale that take on a variety of shapes, thus altering their properties; rods, 

spheres, dendritic structures etc. 𝞫 is the FWHM of a peak with the assumption that the 

instrumental line broadening in radians has already been subtracted. While these assumptions 

slightly affect the calculations accuracy, there are many other attributing factors to error within 

this relationship.  

This technique is limited to sub-micrometer particles and is ideal for use at the nano-

scale, with an upper limit corresponding to particles with a grain size around 0.1 to 0.2 μm. This 

often precludes samples that are ceramic or polymeric in nature as a result of these size 

constraints. It is important to note that the Scherrer formula provides a lower bound on particle 

size due to imperfect samples and a variety of other possibilities that can affect peak width 

other than crystallite size or instrument effects. While the most important of these other 

possibilities is lattice imperfections, there are many other possibilities that could play a role in 
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peak broadening: grain boundaries, sub boundaries, coherency strain, inhomogeneous strain, 

microstresses, twinning, dislocations, stacking faults, heterogeneities, and crystallite 

smallness.49  

 The Scherrer formula is a useful tool for X-ray diffraction analysis, but cannot be 

relied on for its accuracy and certainty and is rather a good estimating tool. X-ray diffraction in 

general is heavily biased toward crystalline components in a sample, therefore amorphous 

materials or those with non-uniform lattice spacing tend to produce wider peaks with low 

intensity. With low intensity peaks, the variance in the measurement of the FWHM becomes 

minuscule. This causes the measurements of the line broadening to be greatly dependent upon 

samples or parts of samples with the highest crystallinity. For this reason, Scherrer calculations 

are often prejudiced toward the largest crystals in a given sample. For uniformly crystalline 

samples this approximation is fairly accurate, but as properties of a sample lean toward 

imperfection, the validity of this approximation declines.  

2.2.2 Rietveld Refinement  

  

 Developed by a Dutch crystallographer, the Rietveld refinement method is typically 

applied to neutron or x-ray diffraction data which refines a theoretical line profile until it 

matches a measured line profile, using a least squares approach. This method is used to act as a 

more quantitative approach to analyzing x-ray diffraction data as opposed to the qualitative 

approach typically used to identify phase. Typical data fitting for x-ray diffraction simply 

consists of matching a standard XRD crystal pattern to the crystal pattern of your sample. This 

fitting process is usually conducted using some form of data analysis software (X’Pert Highscore 
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Plus) and does its best to match peak position and relative intensities to the best candidate for 

the data that is acquired. The issue with this method is that it does not account for all materials 

and cannot accurately account for slight changes in diffraction pattern due to changes in lattice 

parameters or atomic positions.  

 In order to conduct a Rietveld analysis, parameters of the material to be analyzed first 

need to be modeled but inputting punitive information such as atom identification, lattice 

parameters, atomic positions and space group. These values were acquired from the Pearson 

Handbook of Lattice Spacings.50 Once a model is generated in the software, it can then be 

refined using the Rietveld method to match the experimental data, thus providing a more 

quantitative analysis. Before this method, quantitative identification of crystal structure was 

only possible through analysis of a single crystal by x-ray diffraction. Since many materials of 

interest are very difficult, some if not impossible to acquire single crystals for analysis, this 

method provides accuracy of structure similar but not superior to single crystal x-ray 

diffraction.  Rietveld analysis is especially useful to mixtures of phases or diffractograms in 

which not all peaks are clearly resolved. Figure 2.2.2 depicts an example of how these peaks can 

be distinguished by computationally fitting the Gaussian data by the method of least squares 

thus quantifying the data with higher certainty.  
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Figure 2.2.2 Example of Rietveld Refinement on an Unresolved Diffractogram 

 

 

2.3 Inductively Coupled Plasma- Optical Emission Spectrometry (ICP-OES) 
 

 For many decades combustion flames were considered an easy method to analyze 

inorganic materials by converting inorganic solutions into free atoms to be detected and 

quantitatively analyzed in trace amounts by atomic absorption, emission or fluorescence 

spectroscopic techniques. Due to safety hazards and violent chemical reactions upon exposure 

to combustion flames, focus was placed on electrically generated “flames” or plasmas 

possessing higher gas temperatures and less reactive chemical environments. An inductively 

coupled plasma (ICP) is a high energy source generated by electric currents which are supplied 

by electromagnetic induction.51 

 ICP-OES is a type of quantitative analytical technique that revolves around the excitation 

and relaxation or decay of electrons in a given atom. Consider the Bohr model of an atom in 

Figure 2.3.1 that shows the excitation of an electron from the ground state to an excited state 

upon absorption of energy. When the electron relaxes back to the ground state, it emits energy 
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in the form of a photon of a given wavelength. Energy transitions in an atom or ion can be 

classified into two forms, radiational or thermal. Radiational energy transitions involve the 

emission or absorption of a form of electromagnetic radiation while thermal energy transitions 

involve an energy transfer between colliding particles.  The energy, wavelength and frequency 

of radiational emitted or absorbed photons can be related by the Planck equation (Equation 3) 

where E is energy, λ is the corresponding wavelength of light, c is the speed of light, h is 

Planck’s constant and ν is the frequency of the emitted photon.   

 

 

 Figure 2.3.1: Bohr model of the atom showing excitation and decay of an electron in an atom 

  

(Equation 3)    𝐸 =  
ℎ𝑐

𝜆
= ℎ𝜈 

 

 In optical emission spectrometry (OES) the sample is subjected to energies so high that 

not only dissociation into atoms but also collisions capable of forming ions occur via collisional 

excitation. Once atoms and ions are in excited states, their electrons then decay through 

radiational or thermal energy transitions. The intensities of light emitted at particular 

wavelength are then measured and correlated to energy transitions of elements of interest. 

These intensities directly correlate to the quantitative value of a given element assuming the 

wavelength observed does not have interference from another element present with a similar 
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transitional energy. Accurate numerical concentration values may only be obtained if standards 

with a known concentration of a given analyte are made and characterized with the sample lot.  

 One of the key advantages to OES over other techniques is the high excitation 

properties associated with the high temperature sources used such as the inductively coupled 

plasma (ICP). The benefit of these high excitation sources is their ability to cover a wide range 

of energy levels of many different elements at the same time. This allows for analysis of a 

multitude of analytes at once considering all of the excited atoms or ions emit their unique 

characteristic wavelengths from multiple energy transitions around the same time. The ability 

to monitor multiple transitions of a single element or multiple elements simultaneously makes 

this technique incredibly useful but can also present drawbacks when multiple elements are 

being analyzed.  Upon characterization of multiple elements, especially similar ones, there is an 

increased possibility of the most intense signals overlapping with one another. Typically this can 

be averted by choosing a less intense signal to monitor but sometimes this can still be 

problematic for samples with many different components comprised of intensities that are too 

close to measure separately. If interference is not an issue, sensitivity of ICP-OES is on the parts 

per billion scale and even lower for some elements. For the elements of particular interest; 

iron, cobalt, nickel and phosphorus, the detection limits all fall under 30 ppb making it possible 

to analyze small sample sizes which is important to consider when noting the ICP-OES is a 

destructive characterization technique.  
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2.4 Ultraviolet-visible Spectrometry (UV-vis) 
 

 When visible light passes through a colored substance, a mixed portion of wavelengths 

is absorbed and the remaining light that is visualized as color which is located directly across 

the color wheel in relation to the wavelength that are absorbed. A common feature of many 

colored materials, particularly organic dyes is an extensively conjugated system of pi-electrons.  

To understand the relationship of conjugation to color, analytical instruments like the UV-vis 

spectrometer have been created. UV-vis spectrometry uses ultraviolet and visible wavelengths 

comprised of photon energies of 36-143 kcal/mole to excited electrons in a compound. These 

energy transitions from the ground state to an excited state. This technique is complimentary 

to fluorescence spectroscopy which conversely measures transitions from excited states to the 

ground state.  

 When an organic compound is analyzed containing pi or non-bonding electrons, 

ultraviolet and visible light have the ability to excite these electrons to a higher anti-bonding 

orbital. The easier the electrons are to excite, the shorter the distance between the highest 

occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO). A short 

HOMO-LUMO distance corresponds to a longer wavelength of light that is absorbed. An exam 

diagram of conceivable transitions can be found in Figure 2.4.1.  
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Figure 2.4.1: Example Diagram of HOMO-LUMO Transitions in UV-vis Spectroscopy 
 

In addition to the correlation between the wavelength of light absorbed and the energy 

of the transition as well as the color of the sample, the concentration of a sample can also be 

related to the spectrum via the absorbance or intensity value of the absorbed wavelength. 

Concentration is related to absorbance by the Beer-Lambert Law found in Equation 4, where A 

is the absorbance measures, ɛ is the molar absorptivity coefficient that is specific to a particular 

compound, b is the path length of the cuvette and c is the concentration of the complex in 

moles per liter.  

(Equation 4)    𝐴 = ɛ𝑏𝑐 
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2.5 Scanning Electron Microscopy (SEM) 
 

 Scanning Electron Microscopy is a qualitative surface characterization technique that 

utilizes a focused beam of electrons to scan across the surface of a solid substance. The 

electrons are scanned in a raster pattern to produce an image containing information about the 

surface and topography of the sample. The accelerated electrons interact with the sample and 

are emitted as many useful signals for analysis. The electrons responsible for generating the 

image seen on the screen are low energy secondary electrons which are inelastically scattered 

electrons emitted by atoms excited by the electron beam. These electron are often emitted 

from atoms that reside very close to the specimen’s surface therefore yielding only surface 

information with a resolution of approximately 1 nm.  
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Figure 2.5.1: Diagram of Scanning Electron Microscope 

 

2.6 Transmission Electron Microscopy (TEM)  
 

 Transmission Electron Microscopy is a complimentary and often more informative 

characterization technique for the analysis of nanoparticles. While SEM images give more 

surface information, TEM images are capable of observing smaller samples with higher 

resolutions and observing the “inside” of a particle since electrons are transmitted through the 

sample instead of scattered off the surface. This is particularly helpful for analyzing core-shell 

type nanoparticles or particles with holes or voids inside of them.  

When the electron beam in accelerated at the sample of interest, the electrons interact 

with the sample in a multitude of ways that provide information about the sample. A simple 

diagram of these interactions is outlined in Figure 2.6.1. The most common technique using this 

instrument is bright field imaging and is the “standard” imaging technique for this instrument. 

Images are generated by measuring electrons that are transmitted through the sample without 

a large amount of scattering. The ability of the accelerated electrons to pass through a given 

sample depend of the density of the region illuminated. The differences in density produce an 

image containing light and dark regions that generate an image. The darkest regions are those 

in which electrons do not pass through the material whereas brighter regions allow some of all 

of the electrons to be transmitted. The shade of the produced image directly correlates to the 

amount of electrons passing through the material. This technique is most useful for 

investigating shape and size of a given sample. To ascertain more information about a sample 



29 
 

using TEM, more advanced techniques must be used that utilize an electron’s specific 

interaction with a sample.  

 

 

Figure 2.6.1: Schematic of Electron Interaction with Sample in TEM 
 

2.6.1 Electron Diffraction 
   

  Typically X-ray diffraction is the most common technique used for determining 

crystal structure of a sample, however electron diffraction using the TEM is another tool 
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capable of providing information in support of the diffractogram or to add to the information 

already analyzed. One major drawback of using x-ray diffraction is its limitation on smaller sized 

nanoparticles. Performing electron diffraction using a TEM alleviates this problem due to 

electrons’ ability to interact with materials much stronger than x-rays allowing for diffraction 

analysis of small sample sizes. With this same advantage comes a threshold for size however. 

Due to the smaller penetration depth of the electron vs. the x-ray, electron diffraction is only 

most useful for particles measuring under 100 nm in diameter.43 Electron diffraction analyzes 

electrons which are elastically scattered from the sample. Elastic scattering occurs when 

electron scatter with complete conservation of kinetic energy and leave the target unchanged 

from its original state. 

  

 2.6.2 Electron Energy Loss Spectroscopy (EELS) 
 

  Though diffraction techniques use elastically scattered electrons, those are not 

the only type of scattered electrons that can provide useful information. Inelastically scattered 

electrons, or electrons that do not conserve kinetic energy can be used to gather information 

about the type of atoms that make up a sample. Inelastically scattered electrons cause be 

caused as a result of energy absorbance by the same, in which the scattered electrons would 

possess less energy than the incident electrons. This absorbance occurs when a core electron is 

excited to the LUMO above the Fermi level. The amount of energy absorbed corresponds to the 

difference in energy between the core level and the LUMO. These energies are known for most 

elements on the periodic table and can be used to identify which elements are present in the 
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sample. By implementing an energy filter, these scattered electrons can be filtered and 

quantified to provide elemental analysis of a given material or part of a material.   

  This energy filter used for elemental analysis can also be used to generate an 

elemental map in which only electrons that have lost a certain amount of energy will be 

imaged. This allows for acquisition of not only what type of elements are in the sample of 

interest but also where these elements are present within the sample. This technique is 

referred to as EELS mapping. Although an incredibly useful technique capable of being 

combined with nanoparticle imaging, EELS mapping for high energy losses can produce low 

signals compared to a high baseline. Therefore, this technique tends to be most sensitive to 

elements with a low atomic number for measuring inner shell ionizations, or valence shell 

absorbance edge for high atomic number elements. EELS mapping was performed for Fe, Co 

and Ni elements for synthesized samples and monitored valence shell absorbance edges of the 

3d or 2p electrons.  

 

2.7 Vibrating Sample Magnetometry (VSM) 
 

 For samples that are magnetic is nature, the best mode of analysis of those properties is 

the vibrating sample magnetometer. This instrument is used to measure various magnetic 

properties of powder and thin film samples. Figure 2.7.1 shows a schematic of the internal parts 

of a VSM that are critical to attaining the magnetic information analyzed.  A typical 

measurement is conducted by placing a small amount of magnetic sample (Usually ~ 5mg for 

powders) in between two electromagnets. Once between the electromagnets, the sample is 

constantly vibrated at a constant frequency and amplitude while a uniform magnetic field is 
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applied perpendicular to the axis of vibration. If a sample is indeed magnetic, this application of 

a magnetic field allows for the sample to magnetize and subsequently flood the surrounding 

area with magnetic flux causing induction. Induction generates an electric potential whose 

amplitude is then measured by the pick-up coils in the instrument. The amplitude of the 

generated electric potential is directly proportional to the magnetic moment of the sample. 

 

Figure 2.7.1: Schematic of Vibrating Sample Magnetometer 
 

 One of the most common experiments conducted using a VSM is the measurement of 

magnetization (M) as a function of the applied magnetic field (H). This measurement for 

ferromagnetic materials is often referred to as a hysteresis loop. Conducting measurements of 
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magnetization as a function of applied magnetic field can be used to deduce important 

information about a sample such as its magnetic properties at a given temperature or the type 

of magnetic material the sample is (i.e. paramagnet, diamagnet, ferromagnet etc.). Another 

common and important experiment often measured is the magnetization of a sample as a 

function of temperature (M (T)). This type of measurement gives more in depth information 

about magnetic interaction and magnetic transitions and relate them to temperatures at which 

they occur. The primary measurement used for this work is M (H) measurements due to the 

lack of magnetic materials synthesized.  
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Chapter 3: Facile Synthesis of Binary Transition Metal Phosphides: Iron, 

Cobalt and Nickel Variations 
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3.1 Motivation 
 

 Binary phosphides consisting of Fe, Co or Ni elements were chosen due to their 

versatility and promise in the fields of catalysis for hydrogen evolution, hydrodesulfurization 

and hydrodenitrogenation, and electrodes for lithium and sodium ion-batteries. Adapting a 

simple method capable of producing stable, phase controlled nanoparticles that can later be 

supported or processed depending on their desired application is attractive for industrial 

applications. Current methods of synthesis typically require dangerous reagents, expensive 

reagents and equipment, multi-step processes or long reaction times and sometimes a 

combination of these. The oleylamine system is a viable system due to its versatility and 

capability of synthesizing various types of metal compounds with controlled phase and size. The 

goal of this work is to synthesize metal phosphides of three separate metals with control over 

phase in a simple wet chemical system. Some of these materials then are then tested for 

catalytic performance later on in this text to affirm the quality of particles made in relation to 

other works whose systems are far more expensive, complex and/or time consuming.  

3.2 Introduction 
 

 Binary Phosphides are materials that are comprised of a single source of metal and 

phosphorus having a total of two elements in its chemical formula. The type of metal present in 

a given binary phosphide material is just one of the many qualities that affect the properties of 

the material. Important characteristics such as size, shape, crystal structure and ratio of metal 

to phosphorus all can play a vast role in the properties of the binary phosphide that is created. 

Although all of the metals experimented with in this text are magnetic in nature, not all phases 
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of phosphide made with these materials are magnetic. Ni2P and Fe2P share the share the same 

hexagonal crystal structure, however Fe2P is a ferromagnetic material and Ni2P is not. All of the 

other binary phosphide phases that are readily synthesized are not ferromagnetic. Binary 

phosphides come in a multitude of crystal structures and metal phosphide compositions that 

range from phosphorus rich, M: P < 1, to metal rich M: P >1. The phase of these phosphides are 

highly influential on the properties they possess. These properties encompass catalysis, semi-

conductors, magneto-caloric materials, high capacity ion carriers, etc.  

 Due to their wide array of properties and applications, binary phosphides are highly 

sought after and are making headway in recent years toward a necessity for industrial scale 

production due to their enhanced activity for some applications and cost compared to noble 

metal competitors. As a result of these accolades, the need for attention to the synthesis 

methods of these materials from an industrial view is increasingly desirable. The challenge in a 

facile, scalable method of synthesis for binary phosphide material is control over phase, or 

metal to phosphorus ratio within the lattice. The phase diagrams of iron, cobalt and nickel in 

the presence of phosphorus present in Figure 3.2.1 show the potential phase compositions of 

binary phosphides as a function of temperature and atomic percent phosphorus. Phases below 

400°C are only observed due to the desire to synthesize these phosphides via wet chemical 

syntheses.  

 The phase diagram for cobalt and phosphorus containing complexes is the simplest of 

the three binary phosphide systems. Only two primary phases are stable below 400°C and are 

separated by a large enough phosphorus composition to make phase control easily attainable 

by adjusting the amount of phosphorus available for intercalation. While iron has more 
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potential phase compositions for a binary phosphide possible, these too are separated by wide 

enough margins that were not terribly concerning. Nickel phosphide derivatives on the other 

hand are rather difficult to control due to the presence of a multitude of stable phases in the 

metal-rich realm of the phase diagram. Since metal-rich binary phosphides are more attractive 

for catalytic applications of varying degrees, control over synthesizing pure phase materials 

without incredibly tailored synthetic parameters is difficult.  

 Nickel phosphides are of particular interest due to the vast amount of metal-rich phases 

that are possible, most of which possess different crystal structures. Because of the close 

proximity and often overlap in phosphorus compositions and temperatures needed to attain 

different phases, namely Ni3P, Ni12P5, Ni2P, and Ni5P4, close attention must be paid to 

temperature and phosphorus content parameters. Still in some cases, even that is not enough 

to ensure pure phase synthesis of a single targeted phase. While many of these phases have 

shown promise as catalysts of various systems, the most noted and studied phase is Ni2P. While 

Ni2P is currently known as the most promising phase for catalysis, the other nickel phosphide 

phases suffer from a lack of research and experimentation with them. Some of these phases 

have been postulated to be intermediates to the formation of Ni2P, however, not enough 

support regarding these transitions are available.  
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Figure 3.2.1: Phase diagrams below 400°C for Fe, Co and Ni Phosphides  

  

  Metal rich binary phosphides have attracted a great amount of attention in the 

catalysis world due to their promising activity at metal sites while achieving catalytic stability 

with surrounding phosphorus atoms to prevent catalyst poisoning and enhancing recyclability 

compared to purely metallic catalysts. These binary phosphides have shown activity toward 

hydrogen and oxygen evolution from water, hydrodesulfurization and hydrodenitrogenation of 

sulfur and nitrogen containing hydrocarbons in fuel sources and as high capacity lithium ion 

transporters for Li-ion batteries. Binary metal phosphides used for heterogeneous catalysis can 

be synthesized as unsupported catalyst which consist of merely particle as synthesized or 

supported catalysts that are typically synthesized in the presence of some sort of ordered 

support structure such as silica, carbon nanotubes, graphene, etc.  
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Typically, synthesis of supported catalysts require methods, like impregnation and 

organometallic routes, that require more expensive or complex precursors that must be 

annealed at high temperatures in the presence of the chosen support with little control over 

phase and particle shape and size that can be achieved using wet chemical methods. 

Unsupported methods on the other hand typically have better control over morphology and 

crystal phase of phosphide particles and display only slightly weaker activity than their 

supported counterparts in some cases. Development of a facile wet chemical method providing 

control over various phases of materials is beneficial to experiment with the possibility of post 

synthetic modification to add supports to synthesized nanomaterials if needed.  

 

 

3.3 Experimental Methods 
 

In a very simplified synthesis using only oleylamine (OAm) and n-trioctylphosphine (TOP) 

several different phases of phosphide nanoparticles, from metal rich to phosphorus rich, were 

synthesized. In a typical reaction, 5 mL of oleylamine and 5 mL of TOP were added to a three-

neck round bottom flask and purged with nitrogen gas for five minutes. The hydrated metal (II) 

acetate corresponding to the specific metal of use (Fe, Co, or Ni) was added to the flask and the 

solution was ramped to the desired temperature using a heating mantle and variac while 

temperature was monitored via a digital thermometer in solution through the duration of the 

reaction. The ramp rate was measured to be approximately 5°C per minute and overshoot 

temperatures of less than 7°C were ensured. After reaching the desired reaction temperature, 

the solution was held at temperature for approximately one hour. A schematic of the general 
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reaction set-up can be found in the figure below. The solution was then removed from the heat 

source and cooled to room temperature naturally. Upon successful cooling the particles were 

washed repeatedly with ethanol and separated by centrifugation. The black particles were 

completely dried in a vacuum oven at 50°C. 

 

Figure 3.3.1: Schematic of Synthesis of Binary Phosphide Nanoparticles 
 

 In later experiments, conditions of the synthesis were slightly modified to provide a 

higher level of control or simply to test if small variations affected the phase outcome. For the 

system containing nickel as the metal of interest, 1-octadecene was used as a primary solvent 

to prevent temperatures from reaching over 310°C, while oleylamine was still utilized as a 

surfactant and reducing agent. Other variations included the use of triphenylphosphine (PPh3) 

as the phosphorus source and the use of NiCl2 as the metal precursor.  
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3.4 Results and Discussion 
 

3.4.1 FexPy  
 

  Iron phosphide nanoparticles follow the same general trend as the cobalt 

phosphide particles. FeP is easily synthesized at higher temperatures and only a mixed 

phase was attained when lowering the P: Fe ratio and decreasing the temperature. A 

difference in between the syntheses of the iron and cobalt phosphides is that the mixed 

phase of Fe2P and FeP were only seen if the temperature was spiked to 350°C for a few 

minutes and then reacted for the remainder of the reaction time around 300°C. Running 

a reaction just at 300°C or 320°C did not give any signal at the 100% peak for Fe2P. 

Figure 4 shows the difference in morphology when going from the mixed phase 

Fe2P/FeP (A) to the pure phase FeP particles (C). It has been reported in the literature 

that the metal rich phosphide phases of Co and Fe in particular (Fe2P and Co2P) tend to 

form rod or wire-like structures. 

Figure 3.4.1.1 shows the SEM (A) and TEM (B) images of Fe2P/Fe3O4 and FeP 

respectively. Since Fe2P was not obtained in pure phase without another phase to grow 

off of, images of 200-300 nm Fe3O4 spheres with small wire-like Fe2P structures can be 

seen in the SEM images. FeP particles on the other hand are easily synthesized at high 

temperatures with an excess of TOP and form spherical particles with small voids in the 

center. These voids are likely a result of the Kirkendall effect that occurs at the 

nanoscale and will be discussed later in this text.  
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A           B 

Figure 3.4.1.1: (A) SEM images of mixed phase Fe2P/FeP nanoparticles. (B) TEM images of hollow 

FeP nanoparticles. 
 

  The formation of different iron phosphide phases mainly occurs with a change in 

temperature. Phosphorus rich iron phosphide (FeP) is formed at high temperatures while a 

mixture of phosphorus rich and metal rich phases form at 330°C (Fe2P/FeP) and metal rich 

phosphide (Fe2P) in the presence of iron oxide is formed at low temperatures or lower P:M 

ratios. Figure 3.4.1.2 shows the phase differential with temperature variance. This general 

trend is also seen with cobalt phosphide in the next section but is not the case for binary nickel 

phosphides.  
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Figure 3.4.1.2: X-ray Diffractograms of Transition from Fe2P to FeP with Increasing Temperature 
 

 3.3.2 CoxPy 

 

Under the same general synthetic conditions, using cobalt (II) acetate 

hexahydrate, TOP, and OAm, phases of Co2P and CoP were generated. While pure phase 

CoP is easily synthesized using the above components with a P: Co ratio of 10:1 at reflux 

for 1 hour, Co2P was not as easy to isolate. As the ratio of P:Co was decreased to 3.4: 1 

or the temperature was lowered to 300°C thus limiting P available, samples containing a 

mixed phase of Co2P and CoP were detected. When the ratio was decreased further to 

2:1, pure phase CoO was made. Further investigation on the temperature and duration 
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of the reaction will need to be conducted to pinpoint the parameters for synthesizing a 

pure phase of Co2P in this system. 

 

Figure 3.3.2.1: XRD Data of CoP at 360°C and Co2P/CoP at 300°C 
 

 3.3.3 NixPy 

 

Nickel phosphides are easily synthesized in many phases compared to their iron 

and cobalt counterparts. The isolation of each phase individually using a wet chemical 

approach has proven challenging but not impossible. Two approaches were tested for 

the development of nickel phosphide: the thermal decomposition of a single precursor 

containing both Ni and P in OAm and the reaction of a nickel precursor and separate P 

source in OAm, both at elevated temperatures. For the first method, a Ni and P 

containing precursor was synthesized by reacting NiCl2* 6H2O with 1,5-

Co2P 
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bis(diphenylphosphino)pentane using a 1:2 ratio in gently heated (~60°C) ethanol. The 

dried precursor was then added to OAm at room temperature and ramped to the 

appropriate temperature. Iterations were carried out at 370°C (reflux) and 330°C. In 

both cases Ni2P was synthesized, however, the reaction carried out at 370°C also 

produced NH4Cl, while the other product at 330°C was Ni12P5. The presence of salt 

deters the use of this single source precursor due to the probability of forming the salt 

impurity which could have an effect on reaction kinetics and further complicate the 

system. Also further characterization would need to be carried out to ensure the purity 

of the precursor synthesized. Eliminating the single source precursor also takes out 

another added step to the synthesis process and thereby eliminates another variable. 

Using a phosphorus source and nickel source as separate precursors in 

oleylamine led to no salt formation and the formation of a phase not seen when using 

the single source precursor, Ni5P4. For this study, nickel (II) acetate tetrahydrate 

(Ni(OAc)2*4H2O) was used as the nickel source, n-trioctylphosphine (TOP) was used as 

the phosphorus source and oleylamine acted as the capping agent, reducing agent and 

solvent. In initial studies with respect to temperature, the amount of TOP and nickel 

acetate added were kept constant at 5 mL (11 mmol) and 265 mg (1 mmol) respectively. 

When conducting the exact same reaction at different temperatures for one hour, it was 

found that two different phases were capable of forming depending on the temperature 

at which the experiment was conducted. Figure 3.3.3.1 shows that pure phase Ni2P is 

formed at lower reaction temperatures (300°C) while pure phase Ni5P4 is formed at 

higher temperatures (360°C). At temperatures between 330-350°C under the same 



46 
 

reaction conditions, mixtures of Ni2P and Ni5P4 are observed. The effect of temperature 

on phase of nickel phosphide generated can be attributed to the liberation of more 

phosphorus from TOP with increasing temperature. The presence of greater amount of 

phosphorus allow for the formation of phosphide phases whose Ni: P ratios are closer to 

one.  

  

Figure 3.3.3.1: XRD Data of Pure Phases of Ni2P and Ni5P4 with Temperature Variation 

 

  

A      B 

Figure 3.3.3.2: TEM Images of (A) Ni2P Nanoparticles and (B) Ni5P4 Nanoparticles 
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To affirm that and increasing amount of phosphorus did indeed play the main 

role in change in nickel phosphide phase, the amount of TOP added to the reaction was 

varied and studied. This set if reactions was carried out at temperatures where it was 

possible for both Ni2P and Ni5P4 phases to be present, 340°C. Starting with 0.5 mL of 

TOP (1 mmol) and conducting subsequent experiments that increase the phosphorus to 

nickel ratio to 5:1, 11:1 and 22:1. Figure 5.3.3.3 shows the XRD diffractograms that show 

Ni2P at a ratio of 1:1 and an increasing amount of Ni5P4 formation with higher amounts 

of TOP when observing the data from top to bottom. This data coincides with the 

previous temperature study affirming that phosphorus availability significantly affects 

crystal phase formed.  

Figure 3.3.3.3: XRD Data of Transitions from Ni2P to Ni5P4 with TOP 
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Pure phases of both of these nickel phosphides were synthesized multiple times 

by repeating the same general synthesis showing reproducibility if temperature is 

appropriately monitored. Due to the multitude of metal-rich phases of nickel phosphide 

attainable in lower phosphorus environments, a slightly modified system was tested to 

better control temperature at a lower value and make it easier to control smaller 

amounts of phosphorus introduced into the system. In order to ensure the reaction 

temperature was easily kept at a level friendlier to metal-rich phases, 1-octadecene was 

used as the primary solvent due to its lower boiling point of 315°C. Because TOP is a 

viscous liquid at room temperature, using it as a phosphorus source while trying to 

achieve smaller amounts introduced into the reaction can be more difficult to monitor 

when using liquid reactants compared to powders that can easily be weighed. For this 

reason, triphenylphosphine (TPP) was used as the phosphorus source 

Once this modified system was implemented, reactions were carried out with 

octadecene as the solvent, olelyamine as the reducing agent and surfactant, nickel 

acetate as the nickel precursor and TPP as the phosphorus source. Using nickel acetate 

and a 1:1 Ni: P ratio at 310°C produced a different phase nickel phosphide than the 

previous system, Ni12P5. Under these conditions, this material was produced easily in a 

pure phase and is a more metal-rich phase than Ni2P and Ni5P4. Some experiments by 

other groups have suggested that Ni12P5 is a precursor to Ni2P, however upon 

conducting longer reaction times under the same conditions, that hypothesis does not 

appear to hold validity in this system. As displayed in Figure 3.3.3.4, no change in crystal 

phase was observed when conducting the same experiment for longer reaction times. 
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Pure phase Ni12P5 is still easily formed from one hour to three hours with no appreciable 

change in crystal phase, morphology or size.  

 

 

 

Figure 3.3.3.4 XRD Study of Effect of Time of Phase 
 

  One last study to observe phase changes of nickel phosphide materials was to 

change the precursor used with the aforementioned method using TPP. By simply changing the 

precursor from nickel acetate tetrahydrate to nickel chloride hexahydrate, a different metal-

rich phase was easily synthesized. Pure phase Ni3P is formed when reacting nickel chloride in 

the same exact system as discussed above which yielded Ni12P5. Unlike the stability of Ni12P5 

upon implementing longer reaction times, Ni3P is not the only phase found when slightly longer 

times are applied. Figure 3.3.3.5 shows formation of Ni12P5 with increasing reaction time. The 
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formation of Ni3P upon changing precursor from nickel acetate to nickel chloride is believed to 

be caused by slower kinetics when using the chloride precursor.  

 

Figure 3.3.3.5: XRD Data of Phase Composition vs. Metal Precursor 
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Figure 3.3.3.6: TEM Images of (A) Ni12P5 Nanoparticles and (B) Ni3P Nanoparticles  
 

  Ni3P will likely form Ni12P5 with longer reaction times at a P: Ni ratio of 1:1 given 

the above data. In order to persist formation of the metal-rich Ni3P phase with increasing time, 

the amount of phosphorus available in solution likely needs to be reduced to a ratio closer to 

that of the phase’s chemical formula (Ni:P = 3:1). Due to the high probability that all of the 

nickel precursor added to the reaction is not 100% converted into zerovalent nickel metal to be 

available for subsequent reaction with the neighboring phosphorus source, the ratio added is 

likely not that which persists throughout the reaction. Phosphorus availability increases with 

temperature and time while metal availability is likely not equal to the amount that was initially 

added. It is also possible that all of the phosphorus added is not used as a phosphorus source, 

but rather some is used as a co-surfactant. It does appear that from previous studied that 

phosphorus liberation increases with temperature.  This makes it plausible for phases formed 

to not match identically with precursors initially added.  

A B 
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3.5 Conclusion  
 

 Binary phosphides were successfully synthesized using oleylamine as a reducing source 

and in cases of using TOP or TPP as a phosphorus source. Ample phase control was achieved 

even with an excess of phosphorus compared to the stoichiometry within a given phase’s 

formula through temperature, phosphorus source or precursor control. As a general trend, 

phases produced at higher temperatures were more phosphorus rich compared to those 

synthesized at lower temperatures with the same amount of phosphorus source in solution. 

When dealing with the more complex system of nickel phosphide, control was still achieved by 

altering the precursor or phosphorus source in addition to temperature. Four different pure 

nickel phosphide phases, Ni2P, Ni12P5, Ni3P and Ni5P4, were synthesized with control of simple 

reaction conditions.  Of the binary phosphides synthesized, the most difficult phase to obtain 

pure phases of was M2P when M= Fe or Co. These phases were typically low in crystallinity 

unless there was another crystalline material in solution to aid in the growth of M2P particles.  
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Chapter 4: Synthesis of Ternary Phosphide Materials: CoNiP and FeCoP 
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4.1 Motivation  
 

 While binary phosphides are useful as catalysts as well as a multitude of other uses, 

ternary phosphides containing more than one metal can be useful for their unique properties as 

well. Ternary phosphides when compared to binary phosphides have not been extensively 

studied, so it is of interest to research mixed metal phosphides containing metals that have 

already proven affective for catalysis. Two variations using Fe, Co, and Ni were chosen based on 

potential magnetic and catalytic properties associated with FeCoP and catalytic potential 

associated with CoNiP.28,52 The latter of these ternary phosphides has already been utilized as a 

highly active catalyst for hydrodesulfurization along with other ternary nickel based derivatives 

such as NiWP, NiMoP and NiFeP. Further investigation into synthetic methods of ternary 

phosphides materials as well as their activities and properties is needed.  

4.2 Introduction   
 

 Ternary phosphide materials are composed of three elements and usually involve two 

metals and phosphorus. When combining metals within a single structure, it is important to 

make sure the metals used are similar enough to be incorporated into the lattice of the other 

material. Phases of the type M2P were chosen due to the ability of binary phosphides 

containing Co, Ni and Fe to form solid solutions with one another. The resulting mixed metal 

system has a formula of M12-xM2xP where metal 1 (M1) and metal 2 (M2) have different 

identities.  The combination of metals that yield ternary phosphides can have many advantages 

and display interesting magnetic, catalytic and semi-conducting properties. It is often 

speculated that a synergistic effect can occur with ternary phosphides when combining two 
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active binary phosphide phases. This synergy in activity is said to originate from the presence of 

active catalytic metal sites that occupy more edge-like positions and make them available for 

higher interaction without sacrificing stability. 

 Observations of structural similarities and difference between phases of interest is 

important to ensure compatibility between the mixture of Co and Ni into a ternary phosphide 

material and Fe and Co into a ternary phosphide material. The former combination in the form 

of CoNiP has been synthesized previously and has displayed high activity for 

hydrodesulfurization (HDS) catalysis. In some cases the ternary phosphide has proven to be 

more active than its Co and Ni binary materials and in other cases the binary phases possess 

higher activity for HDS. The activity of this ternary phosphide material however, has not yet 

been tested against cobalt phosphides and nickel phosphides for activity with respect to the 

hydrogen evolution reaction (HER). Combinations of iron and cobalt to form ternary phosphide 

phases have been even more scarcely reported than those with cobalt and nickel.  

 When observing the crystal structures of the M2P phases of interest, it is seen that Fe2P 

and Ni2P both possess hexagonal crystal structures while Co2P is orthorhombic. Of these three 

structures, Fe2P is the only phase that in ferromagnetic in nature. Based on this information, by 

initial inspection it would appear that Ni and Fe phases can create ternary phases effectively, 

but ternary materials combining Co and Ni and Fe and Co would be less successful based on 

structural differences. However, upon further inspection of the two crystal structures, it is seen 

that along the [001] direction of the hexagonal structure and the [010] direction of the 

orthorhombic structure, phosphorus atoms form tetrahedral and square based pyramids 

alternatively.  
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As seen if Figure 4.2.1 A, these alternating geometries form a canal of triangular cross 

sections. Due to the inability of both canals to be occupied simultaneously, two types of canals 

are possible, those with only tetrahedral sites occupied and those with only pyramidal sites 

occupied. However, in both hexagonal Fe2P and orthorhombic Co2P geometries, canal pairs are 

capable of forming as a result of both types of canals sharing common square pyramidal bases 

(Figure 4.2.1 B). These pairs create a series of structural units or subcells that are rhombahedral 

in nature and consist of an occupied tetrahedron-occupied pyramid pair and an empty 

tetrahedron-empty pyramid pair. This subcell can be visualized in Figure 4.2.1 C.53 The 

hexagonal structure of Fe2P results from a hexagonal arrangement of the rhombaheral subcells 

while the orthorhombic structure of Co2P results from a zig-zag stacking of the subcells as seen 

in Figure 4.2.2 A and B respectively.  
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Figure 4.2.1: Building Blocks of Hexagonal and Orthorhombic M2P Structures. (A) Phosphorus 

Canals (B) Relationship of pyramidal and tetrahedral sites form a rhombahedral subcell (C) 53 
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Figure 4.2.2: Stacking Arrangements of Rhombahedral Subcells for (A) Fe2P and (B) Co2P 53 

 
 These crystal structure similarities allow for the formation of mixed metal ternary 

phosphides between binary phases or Fe2P, Co2P and Ni2P. While both stacking arrangements 

cannot be occupied simultaneously, there is likely a threshold of metal ratios that dictates the 

structural arrangement of the stacking taking place in the synthesized ternary phosphide. An 

abundant amount of research is still needed to identify whether ternary phosphides possess an 

advantage over binary phosphides for a multitude of applications that binary phosphides are 

heavily being synthesized and researched for.  

4.3 Experimental Methods 
 

 Preliminary experiments using metal acetate and oleylamine were conducted to ensure 

that metal alloys could indeed by synthesized under the mild reducing conditions of solely 

oleyamine, some of this data can be found in Appendix A. While the synthesis of ternary 

phosphides is very similar to the method of synthesizing binary phosphides from Chapter 3, the 

A 
B 
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phosphorus source is added separately after a desired temperature is reached. Figure 4.3.1 

shows a schematic of the reaction conditions for ternary phosphide materials in which metal 

acetates of chosen metals totaling 1 mmol (either Co and Ni or Fe and Co) were reacted with 5 

mL of oleylamine at 300°C for a small amount of time. Variations of Co: Ni were made while 

keeping the overall metal content constant at 1 mmol. Formation of metal nanoparticles was 

typically assessed by the attraction of the greyish/black nanoparticles to the stir bar within the 

flask causing the solution to become more transparent. Upon the observation of metal 

nanoparticles, the phosphorus source, in one case TOP was added to the solution at 300°C. The 

solution was aged for one hour after TOP addition at 330°C, cooled to room temperature, 

washed with ethanol and separated via centrifugation.  

 

 

Figure 4.3.1: Schematic of Mixed Metal Phosphide Synthesis 
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 Slight modifications were made to this synthesis to test the effect on phosphorus source 

by replacing TOP with PPh3 and the addition to 1-octadecene to oleylamine to control the 

temperature more effectively to stay less than 310°C.  

  

4.4. Results and Discussion  
 

 4.4.1 CoNiP 

 

  When cobalt and nickel acetates were reacted with oleylamine and subsequently 

a hot addition of trioctylyphosphine, mainly CoNiP was formed no matter the ratio between 

cobalt and nickel precursors initially added as long as the temperature was kept below 315°C. 

Figure 4.4.1.1 shows XRD data of iterations conducted at temperatures between 300°C and 

315°C with an excess of TOP (P:M = 3.4:1). Some residual CoNi metal remains in the 50:50 

mixture but no other phosphide phases were present. However, if temperatures were 

increased above 330°C under the same conditions, CoP was formed in addition to CoNiP at 

different ratios of Co: Ni. Interestingly, no other phases of nickel phosphide were observed, 

such as Ni5P4, which has previously shown to develop at higher reaction temperatures from the 

data provided in Chapter 3.  
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Figure 4.4.1.1: XRD Data of CoNiP at Different Co: Ni Ratios 

 

  The shape and morphology of these CoNiP nanoparticles appear to be spherical 

and in some cases appear hexagonal in nature and around 50-100 nm in size. These particles 

also possess voids in the center that take up a relatively large portion of the particle’s diameter. 

Figure 4.4.1.2 B presents TEM images of the CoNiP particles synthesized with TOP as the 

phosphorus source.  These particles did not appear to change much in size when varying ratios 

of Co: Ni metal precursors however, void sizes may have been slightly different and will be 

discussed further later in this section. CoNiP particles synthesized using triphenylphosphine 

(TPP) instead of TOP are pictured in Figure 4.4.1.2 A. These particles seem to have similar size 

to void ratios within their given particles, however when comparing sizes of the overall 

particles, the particles synthesized with TPP are considerably smaller than those synthesized 

with TOP.  
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Figure 4.4.1.2 TEM Images of CoNiP with Co: Ni ratio of 30:70 with (A) TPP and (B) TOP 

 

  Particles synthesized using TPP have the same general shape as those made with 

TOP however the particle sizes were about 10-15 nm compared to the 50-100 nm particles 

made in TOP. In addition to smaller size, the particles made with TPP possess a more narrow 

size distribution leading to more overall uniform particles. When comparing the ratios of Co:Ni 

added initially to the reaction vs. the Co:Ni ratio measured in the product in Table 4.4.1.1, the 

values are in good agreement and show a deviation of less than 10% which is impressive for a 

one-pot reaction system using a mild-reducing source. This continuity in data is likely due to the 

similarities between the reduction potentials of Co2+ (-0.28) and Ni2+ (-0.25) causing them to 

behave similarly in the presence of oleylamine.  

Table 4.4.1.1: ICP-OES Ratios of Co: Ni in CoNiP Synthesized with TPP 
 

Sample  
Co:Ni- P Source 

Co:Ni Added At Beginning of Reaction Co:Ni Measured in CoNiP by ICP-OES 

30:70-TOP 0.43 0.43 

30:70-TPP 0.43 0.45 

50:50- TPP 1 1.1 
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Similar to those made with TOP, the particles using TPP did not differ in phase when 

comparing Co: Ni ratio of precursors added at the beginning of the reaction. Figure 4.4.1.3 

demonstrates the retention of crystal phase with changing Co: Ni ratio. The sample containing a 

higher cobalt content appears to be less crystalline in nature compared to the more Ni-rich 

material. This is concurrent with data seen previously in Chapter 3 with decreasing crystallinity 

in the Co2P and Fe2P phases when compared to their CoP and FeP counterparts.  

 

Figure 4.4.1.3: XRD of CoNiP at different Co: Ni ratios 
 

 When observing the difference in particle size and morphology in Figure 4.4.1.4, 

the particles appear to be similar in size of about 10-15 nm but their center void sizes appear 

differ dramatically. The material with higher cobalt content has much smaller voids at the 

particles’ centers while the Ni-rich material has voids similar to that of the particles containing 

the same ratio synthesized with TOP instead (pictured in 4.4.1.2 B). The abundance of cobalt in 
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the lattice compared to nickel may affect the diffusion rates of the metals relative to 

phosphorus. Since cobalt is ever so slightly larger than nickel, it likely diffuses out of the center 

slower than nickel particles thereby creating a smaller void.  

 

 

A      B 

Figure 4.4.1.4 TEM Images of CoNiP at different Co: Ni ratios (A) 470-50:50 (B) 473-30:70 
 

 CoNiP nanoparticles are easily synthesized using this system with both phosphorus 

sources, TOP and TPP and provide relatively uniform particle with good crystallinity. Yet 

another transition metal phosphide, this time merging two separately active metal phosphide 

phases is possible. Testing of these particles is reviewed in Chapter 5 of this text.  
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4.4.2 FeCoP 
 

 Working with FeCoP presented itself to be the most difficult of the phases synthesized 

but gave the most interesting morphologies and magnetic properties. This synthetic system is 

identical to the schematic outlined in Figure 4.3.1 in the section above and significant research 

was done on the formation of the FeCo alloy in oleylamine which can be found in Appendix A of 

this text. Unlike nickel, which is similar to cobalt in reduction potential, iron is more difficult to 

reduce with a reduction potential of -0.44 compared to that of cobalt at -0.28. Iron also tends 

to form compounds with oxygen instead of metallic compounds if exposed to enough air.  

 Due to the low crystallinity observed with both Fe2P and Co2P type phases in this wet 

chemical system, that lack of crystallinity continued to present itself in the X-ray diffraction 

results of the ternary phosphide materials. While high percentage peaks can be identified in 

Figure 4.4.2.1, the overall low intensity of the entire diffractogram makes it difficult to seek out 

other peaks due to either crystallinity or size make it difficult to identify if the phase is pure or 

contains other impurities. With Fe:Co ratios all around 60:40 and varying ratios of P:M, 143 

containing the highest excess and 157 containing the lowest excess, XRD data does not seem to 

detect a significant difference in phase composition  
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Figure 4.4.2.1: XRD Data of FeCoP 
 

  Although their phases do not appear to be significantly different, other 

properties of these materials differ quite a bit with no real correlation to reaction conditions 

like the other binary and ternary phosphide phases. The morphology changes however seem to 

coincide with magnetic changes seen via vibrating sample magnetometry hystereses. When 

comparing Figures 4.4.2.2 and 4.4.2.3, it is apparent that magnetic saturation and coercivity 

increase with morphology changes observed via SEM and TEM images.  

Figure 4.4.2.2 A consists of more dendritic-like structures that seem to be a collection of 

short wire-like structures or elongated structures forming off of a spherical center. These 

particles possess the lowest magnetic saturation and coercivity at 10 emu/g and 200 Oe 

respectively. Images in part B of the same figure depict more elongated structures that appear 

(111) 

(210) 
(300) 
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to be better aligned and less clustered, though still aggregated. Lastly, the TEM images in part C 

depict particles presenting the best magnetic properties of the three samples with a magnetic 

saturation of 45 emu/g and a coercivity of 1600 Oe which is characteristic of hard 

ferromagnets.  

 

                A                 B               C 

Figure 4.4.2.2: SEM Images (Green and Blue) and TEM Images (Red) of Different FeCoP Samples.  

 

 These structures are interesting for particularly their magnetic properties. When taking 

a closer look at the inlay present in Figure 4.4.2.3, a kink in the hysteresis loop is noticed. This 

kink is often indicative of two phases separate phases contributing to the magnetic data 

measured. While this two phase characteristic appears in all of the hysteresis loops, it is easiest 

to discern from the hysteresis in blue. If the natural curves of the hysteresis were followed, two 
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hysteresis curves could be extrapolated corresponding to the two phases. One phase would 

have a larger coercivity and lower saturation magnetization, while the other would have a 

smaller coercivity and likely a higher magnetic saturation. Since it is difficult to separate these 

phases magnetically and the x-ray diffractograms make it difficult to ascertain the identity of 

the phases present due to low crystallinity, contributions of these properties cannot be 

pinpointed to a particular material.  

 

Figure 4.4.2.3 VSM Hysteresis Loops of FeCoP Samples 
 

4.5 Kirkendall Effect 
 

 The findings from chapters 3 and 4 lead to the assumption that these metal phosphide 

nanomaterials are formed via the Kirkendall effect. The Kirkendall effect is a nanoscale 

phenomenon that occurs at the boundary between two elements as a consequence of different 
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diffusion rates. As seen in Figure 4.5.1, the formation of these voids seen in many of the binary 

and ternary phosphides synthesized is a result of different diffusion rates. In cases where voids 

are found in the center of the nanoparticle, the diffusion of metal outward is faster than the 

diffusion of phosphorus inward, thus creating vacancies in the nanoparticle. Consequently, if 

these diffusion rates are more equal to one another, solid particles without voids can be 

observed though it is not known whether or not this is the formation mechanism for solid 

phosphide nanoparticles. The likelihood of the Kirkendall effect playing a role in this synthetic 

system is the formation of metal nanoparticles first in almost all cases. Typically when reactions 

were run for short periods of time, metal or alloyed metal impurities were noticed in x-ray 

diffraction. It is postulated that for these systems, the metal acetate precursor decomposes to 

yield metal and metal oxide nanoparticles in which the metal oxide nanoparticles undergo 

reduction by the oleylamine. Upon the liberation of phosphorus from a chosen phosphorus 

source at high temperature, the diffusion of phosphorus into metal nanoparticles occurs 

yielding either hollow or solid metal phosphide nanoparticles.  
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Figure 4.5.1: Schematic of the Kirkendall Effect in the Formation of Cobalt Phosphide 
 

4.6 Conclusion 
 

 Ternary metal phosphides, like binary phosphides are also capable of being synthesized 

using oleylamine as a reducing source, solvent and surfactant though some compositions, 

particularly FeCoP, present more difficulty than CoNiP in determining phase composition and 

resulting properties when comparing results with reaction conditions. CoNiP nanoparticles of 

varying compositions all displayed hollow spherical/hexagonal morphologies and differed in 

size when using different phosphorus sources, and void size when testing different Co: Ni metal 

ratios. Some of these materials will be tested in the following chapter for their catalytic activity 

toward the hydrogen evolution reaction as well as their photocatalytic ability. These findings 

will be compared to those of binary metal phosphides containing the same metals and other 

literature findings.  
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Chapter 5: Preliminary Catalytic Studies Focused around Hydrogen 

Evolution 
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5.1 Motivation 
 

 Transition metal phosphides have recently gained copious amounts of attention for 

their ability to successfully catalyze the hydrogen evolution reaction, oxygen evolution reaction 

and a few photocatalytic reactions. Testing the activity of some of the unsupported catalysts 

synthesized in this work is beneficial to ascertain the potential utility of the particles made by a 

facile method that has promise for scalability and industrial applications. Upon demonstration 

of effective catalysis toward hydrogen evolution as well as photocatalytic activity, these two 

processes have the potential to be combined to increase performance.  

 

5.2 Hydrogen Evolution Reaction  
 

 5.2.1 Introduction 
  

 

Figure 5.2.1.1: Schematic of Water Electrolysis   
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  Water electrolysis, also known as water splitting, is an incredibly useful and 

promising electrolytic reaction that converts water into hydrogen and oxygen gas in the 

presence of a current. Hydrogen gas is generated at the cathode and oxygen gas is generated at 

the anode in this reaction as depicted in Figure 5.2.1.1. The electrolysis of water theoretically 

has the ability to generate twice the amount of hydrogen as oxygen for a single molecule of 

water exhibited by the balanced reaction in Equation 4. The overall electrolytic reaction is 

comprised of two separate reactions, the hydrogen evolution reaction (Equation 5) and the 

oxygen evolution reaction (Equation 6). The half reaction of most interest is the hydrogen 

evolution reaction due to the potential hydrogen possesses as a green, renewable energy 

source compared to current rapidly declining fuels used that are responsible for greenhouse 

emissions. 

 

 (Equation 4)   𝐻2𝑂 (𝑙) → 𝐻2(𝑔) +  
1

2
𝑂2 (𝑔) 

__________________________________ 

(Equation 5)    (HER)   2𝐻+ (𝑎𝑞) + 2𝑒− → 𝐻2(𝑔) 

(Equation 6)   (OER)   2𝐻2𝑂(𝑙) → 4𝑒− + 4𝐻+ +  𝑂2(𝑔) 

 

  The hydrogen evolution reaction is a multistep process that is capable of 

generating hydrogen in two different ways depending on the reaction pathway taken. The 

reaction pathway taken is dependent upon the chemistry that takes place at the catalytic 

surface. Figure 5.2.1.2 shows a schematic of the two potential reaction pathways involved in 

the catalytic evolution of hydrogen. The first step during the catalytic evolution of hydrogen is 
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the discharge step which is also referred to as the Volmer reaction. This step involves electron 

transfer to the cathode to capture a proton in the electrolyte resulting in an intermediate state 

of an adsorbed hydrogen atom on one of the catalytic active sites. From this position the 

adsorbed hydrogen on the catalytic service can combine in two ways to produce hydrogen gas 

depending on the loading on the catalyst. If the catalyst used has low coverage of adsorbed 

hydrogen on its surface, the hydrogen adsorbed on the catalytic surface is electrochemically 

desorbed and recombines with a new electron and proton combined in the electrolyte. This is 

known as the Heyrovsky reaction and is associated with a measured Tafel slope of 39 mV dec-1. 

The second pathway that can be taken via the Tafel reaction which occurs when adsorbed 

hydrogen on the catalytic surface is high. When catalysts possess a large amount of active 

catalytic sites, recombination between adjacent adsorbed hydrogen atoms is responsible for 

generation of hydrogen gas through chemical desorption. Catalysts following a Volmer-Tafel 

mechanism possess a Tafel slope of 29 mV dec-1. While mechanism and obtaining the value of 

the Tafel slope to ascertain the chemistry taking place between the hydrogen and the catalyst, 

it is also important to observe how much current it requires for this catalysis to happen in the 

form of measuring the overpotential.  
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Figure 5.2.1.2: Schematic of Catalyzed Hydrogen Evolution Reaction 
 

  Regardless of the media (acidic, neutral or alkaline) that water splitting takes 

place in, the thermodynamic voltage of water splitting is 1.23 V at 1 atm and 25°C. This 

thermodynamic voltage can be lowered with an increase in temperature, however standard 

conditions are usually the simplest way to compare results among researchers. The 

overpotential is a key factor in determining efficacy of electrocatalysts for the evolution of 

hydrogen from water electrolysis. The overpotential is the voltage value that must be applied 

over the thermodynamic voltage, 1.23 V to allow for water splitting to occur. This extra voltage 

must be applied to overcome intrinsic activation barriers present at both the cathode and the 

anode, as well as other resistances due to contact or the solution.  
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  The standard electrode potential for HER is zero at standard conditions. The 

value for overpotential is measured as the absolute value between zero and the onset potential 

required to initiate HER. The smaller this value is, the better the electrocatalyst performs. High 

performance catalysts with lower overpotential values essentially require less energy to achieve 

the same current density. While overpotential is a key measurement for determining the 

performance of a catalysts, other methods for evaluating an effective electrocatalyst may also 

be assessed.  

5.2.2 Experimental Methods 
   

  In a typical catalytic experiment, a rotating disk electrode system was 

implemented to study the catalytic activity of binary and ternary phosphides. This three-

electrode set-up included rotating disk electrode containing the loaded particles catalytic 

testing, a Pt counter electrode and an Ag/AgCl working electrode.  A slurry containing the 

transition metal phosphide particles were made and placed on the end of the rotating disk 

composed of polytetraflouroethylene (PTFE).  
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Figure 5.2.2.1: Schematic of Set-up for Catalytic HER Testing 
 

 A rotating disk was chosen for homogeneity of catalytic surface exposure to the 

electrolyte solution and proximity to the cathode or anode. Hydrogen evolution testing was 

conducted in acidic media using 0.5 M sulfuric acid as the electrolyte. The benefit of using a 

rotating disk electrode is to minimize concentration overpotential by stirring. Overpotential is 

broken down into two main forms, activation overpotential, due to the efficacy of the 

electrocatalyst and concentration overpotential resulting from the concentration difference of 

the involved ions between the solution and the electrode which is caused by slow diffusion 

rates of ions. This value can be partly reducing by a rotating disk electrode but can also 

consequently disturb the electrode reaction. Another form of overpotential is resistance 

overpotential that occurs on surfaces and interfaces of the measurement system and elevates 

actual values for overpotential. This value can be corrected by measuring and subtracting the 

resistance measured between the Luggin capillary and the working electrode. By multiplying 

this resistance value (R) by the current flowing through the system 
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5.2.3 Results and Discussion 

 

 One of the many potential applications for the cobalt and nickel binary and 

ternary nanoparticles developed from the oleylamine synthesis method is as catalysts for the 

hydrogen evolution reaction (HER).  HER testing was performed in a three-electrode setup using 

a rotating disk electrode in 0.5M sulfuric acid electrolyte with a Pt-counter electrode and a 

Ag/AgCl working electrode as diagramed in Figure 5.2.1.1. Their resulting performance is shown 

below in Figure 5.2.3.1. The Ni2P catalyst required the lowest overpotential, only 320 mV, to 

achieve a current density of 20 mA/cm2 while the other mixed phosphides required slightly 

larger overpotentials, topping out around 420 mV. A clear trend was observed showing 

increased performance with increasing nickel content where CoNiP with a Co:Ni ratio of 70:30 

shows the poorest performance. The pure Co2P nanoparticles are not shown as their 

dispersions were not uniform and resulted in erroneous values.  I would not be surprising 

however is Co2P values were not more similar to that of Ni2P considering research that has 

been conducted concluding the high catalytic activity of Co2P nanoparticles for HER and other 

similar reactions.  
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Figure 5.2.3.1: Linear sweep voltammetry results for Ni2P (red), 30:70 CoNiP (blue), 50:50 CoNiP 

(green), and 70:30 CoNiP (black). 
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Figure 5.2.3.1 HER Performance of Co2P and Ni2P as well as different ratios of ternary CoNiP 

 

 

Previously, both Ni2P4> and CoP55 particles have been optimized and demonstrated 

excellence for forming hydrogen at low overpotentials. For Ni2P, Popczun et al. achieved 

current densities of 20mA/cm2 at reported overpotentials of 130mV. However, the synthesis 

method was significantly more hazardous due to the decomposition of phosphine and was also 

time consuming. Furthermore, their loadings were 3 times greater, and they performed post-

processing to remove organic ligands from the surface of the particles. Post-fabrication 

optimization of our Ni2P particles for HER including substrate choice, organics removal, and 
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deposition are likely to yield comparable results to state-of-the-art non-precious metal 

catalysts. 

5.3 Photocatalytic Catalysis 

 

5.3.1 Introduction 

  

  Dye degradation has been heavily researched for waste water treatment 

applications, particularly for the textile industry. Many organic dyes can decompose or react 

with other natural environmental contents to form toxic products that may be harmful to the 

environment. One the other hand, some dyes used in textiles without degradation are harmful 

on their own. Transition metal phosphides consisting of cobalt and nickel phosphide derivatives 

have shown to be active photocatalysts toward the degradation of organic dyes Pyronine B and 

Safranine T.38,56–58 In conjunction with their ability to photcatalytically degrade organic dyes, 

they have also gained most of their attention for electrocatalysis of the hydrogen and oxygen 

evolution reactions as discussed in the previous section. Photocatalysis is an interesting 

property to test these particles for to see if future experiments for HER can produce increase 

efficacy of the catalyst upon UV irradiation. Some groups are already experimenting with this 

idea and have found it to be fruitful.19,59 

 Rhodamine B was chosen as the organic dye of interest for no particular reason other 

than convenience and similarity to other dyes that have been successfully tested with transition 

metal phosphides. This dye in particular is most often used as a biomarker due to its fluorescent 

properties and while its degradation is not of utmost concern, it is a good indicator of the 

synthesized nanoparticles photocatalytic ability. There is some controversy about this dye in 
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certain states however that have potentially identified the dye as a carcinogen where other 

sources disagree.  

 

Figure 5.3.1.1: Skeletal Structure of Rhodamine B 
 

 5.3.2 Experimental Methods 
 

  Rhodamine B is a pink fluorescent dye that is often used in biotechnology and 

can easily be monitored by UV-vis spectrometry or a fluorometer. For the purposes of 

monitoring photocatalytic degradation ability of different transition metal phosphide particles, 

solutions of Rhodamine B were prepared in ethanol and subsequently exposed to ultraviolet 

light at a wavelength of 365 nm. Rhodamine B solutions with a concentrations 5 mg L-1 in 

ethanol were created in the dark. Prepared phosphide nanoparticles (5 mg) were added to 100 

mL of a prepared solution and exposed to UV light. To ensure particles were in fact playing an 

active role in degradation, a control solution with no particles was exposed to UV light along 

with the solutions containing different transition metal phosphide materials. Aliquots of all 

solutions were initially taken and measured by UV-vis spectrometry. Subsequent aliquots were 

collected of the same solutions in five minute intervals and degradation of Rhodamine B was 
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monitored over time with different phases of binary and ternary phosphides by monitoring the 

predominant peak on the UV-vis spectrum.  

5.3.3 Results and Discussion 
 

  The photocatalytic degradation of Rhodamine B was measured in the presence 

of three separate transition metal phosphide materials. Two binary nickel phosphide phases 

and two ternary cobalt nickel phosphide materials. Figure 5.3.3.1 shows the results of these 

four samples after exposure to 365 nm UV light for 60 minutes. Note that all test solutions were 

made from the same stock solutions and were irradiated at the same time under the same 365 

nm UV lamp. The major peak of Rhodamine B at 555 nm was monitored for this study. A 

dramatic difference is seen between those samples which contain particles and the sample that 

does not contain any particles. A faster rate of degradation clearly occurs with samples 

containing transition metal phosphide catalysts vs. no particles at all. Ni2P and CoNiP-80:20 

show similar activity toward Rhodamine but are surpassed by Ni12P5 and CoNiP- 50:50, with the 

latter being the most active of the tested transition metal phosphide materials. These results 

favor the presence of nickel metal while in the ternary system, activity increases with Ni 

content and among the binary phosphides, activity increases with Ni:P ratio when going from 2 

(Ni2P) to 2.4 (Ni12P5). 



84 
 

 

Figure 5.3.3.1: UV-vis Spectrometry Data of Rhodamine B with Different Phases of Phosphides 

 

  To ensure that particles were degrading Rhodamine at a faster rate due to UV 

irradiation was confirmed by placing the most active particles measured in Figure 5.3.3.1 above 

in solutions that were kept in the dark for the duration of the reaction and exposed to UV light 

for the entirety of the reaction. Aliquots were taken at 60 min and 120 min and monitored via 

UV-vis. Figure 5.3.3.2 shows that the particles kept in the dark had larger measured absorbance 

values at given times than those exposed to UV irradiation indication that the CoNiP particles 

measured were indeed affected by light 

450 475          500          525        550           575         600          625 650

 675 
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Figure 5.3.3.2: UV-vis Comparison of CoNiP in Rhodamine in Dark vs. UV Light 

  Lastly, particles were tested for phase stability and the effect of potential 

organics on the surface on catalytic activity. Sample 479, known to be pure phase Ni12P5 

confirmed by x-ray diffraction was annealed in a tube furnace at 425°C for 1 hour. The original 

and post annealed particles were then evaluated against one another to see if the heat 

treatment had any effect on phase or photocatalytic activity. When comparing the two 

diffractograms in Figure 5.3.3.3, it is clearly affirmed by x-ray diffraction that there is no change 

in phase when comparing the originally synthesized particles to the annealed ones. 

Photcatalytic activity toward Rhodamine however almost doubles as seen in the UV-vis 

spectrum comparing the annealed and original particles when exposed to UV irradiation for 60 

minutes. This activity difference is likely due to the removal of excess organic material on the 

surface of the particles providing more active sites for catalysis. To affirm this activity increase, 

BET surface area measurements were conducted on each sample and showed that surface area 

doubled upon annealing from 22 m2/g to 44 m2/g.  

490         510              530        550  570            590 
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Figure 5.3.3.3: Ni12P5 Particles Before and After Annealing: (Left): UV-vis measuring Rhodamine 

Degradation and (Right) XRD Showing Phase Stability of Ni12P5 
 

  Morphology retention was also of interest to observe to see if the photocatalytic 

activity increase and surface area increases were in fact due to surface organic removal or 

perhaps a change in shape or size of the Ni12P5 particles. TEM images presented in Figure 

5.3.3.4 show the retention of the hollow spherical/hexagonal particles with comparable sizes of 

10-15 nm. The void sizes of these particles also appear to be unchanged which is promising for 

successful post modification of transition metal phosphide nanoparticles after performing our 

batch synthesis route.  
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Figure 5.3.3.4: TEM Images of Ni12P5 Particles Before (Left) and After (Right) Annealing 

 

5.4 Conclusion 
 

 For both catalytic experiments, binary nickel phosphide phases and ternary phosphide 

phases with higher nickel contents were more active for both photocatalyic dye degradation 

and electrocatalysis of the hydrogen evolution reaction. Although further testing needs to be 

performed for stability of transition metal phosphides with respect to post synthetic processing, 

the initial results for Ni12P5 post annealing were promising for stability of particles with 

enhancement of catalytic activity. The combination of electocatalytic activity and photocatalytic 

activity make transition metal phosphides an attractive candidate for larger scale production or 

synthesis by simpler and safer methods. These materials could be implemented for a wealth of 

applications and could potentially use their catalytic activities researched in this chapter 

cooperatively for enhanced activity toward hydrogen and oxygen evolution, or 

hydrodesulfurization and hydrodenitrogenation. 
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Appendix A: Synthesis of FeCo Alloy in Oleylamine 
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A.1 Motivation  
 

 Iron and Cobalt nanoparticles separately have been known to produce materials with interesting 

ferromagnetic properties. The resulting alloy of these two metals has been reported to possess 

extremely high magnetic saturation values, making it an attractive soft magnetic material for a 

multitude of applications. Since it has been shown that iron and cobalt ions are both capable of being 

reduced by oleylamine, it is advantageous to explore wet chemical methods that are simple and less 

time consuming than current synthetic methods while maintaining high magnetic saturation values. 

Oleylamine provides this potential avenue for a simplistic synthetic process that is quick and does not 

need much material in the way of reagents. Oleylamine will act as the solvent, surfactant and reducing 

source. In conjunction with testing this method of synthesis of the FeCo alloy for its usefulness as a 

material itself, the purpose of this work is also to ensure that the FeCo alloy can be made by oleylamine 

in order to subsequently synthesis the corresponding ternary phosphide material, FeCoP, upon 

introduction of a phosphorus source. FeCoP has some literature on its properties as a thin film but very 

little literature has been found on its synthesis by wet chemical methods. This material has the ability to 

produce interesting magnetic properties as well as potential catalytic properties similar to other 

transition metal phosphides made with similar metals.  

A.2 Introduction 
 

Magnetic nanomaterials are commonly used for biomedical, catalytic and sensing  

 

applications.60 Soft ferromagnetic materials, in particular are often utilized for drug  

 

delivery, magnetic separation, data storage, and imaging applications. It is important that  

 

these soft materials have high magnetic saturation values for the majority of these  

 

applications.61–64 Therefore, FeCo nanoparticles have gained popularity in recent years due  
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to their high magnetic saturation value of 240 emu/g.65 Many avenues to synthesize these  

 

particles are being explored in hopes of producing uniform particles with a narrow size  

 

distribution, high magnetic saturation, and an efficient and facile synthetic process. To  

 

date, FeCo nanoparticles have been synthesized by various processes such as  

 

sonochemical reduction, thermal decomposition, chemical vapor deposition, and wet  

 

chemical processes. A few of these wet chemical methods have included aqueous  

 

borohydride reductions, modified polyol processes, and other time consuming, reagent  

 

intensive syntheses.66,67 

 

Previous synthetic techniques using oleylamine have involved using surfactants  

 

such as oleic acid and trioctylphosphine with reducing agents such as 1,2 hexadecanediol,  

 

which achieved good size distributions and high magnetic saturation values.68 In this  

 

study, high magnetic saturation FeCo nanoparticles are synthesized in oleylamine using  

 

iron and cobalt salts in the absence of additional surfactants or reducing agents.  
 

A.3 Experimental Methods 
 

 A.3.1  FeCo Alloy  
 

In a typical reaction, 20 mL of oleylamine was purged with nitrogen gas for  

 

approximately 15 minutes. Under magnetic stirring, cobalt (II) acetate tetrahydrate and  

 

anhydrous iron (II) chloride were added to the deoxygenated oleylamine and the  

 

suspension was ramped to 320°C. The Fe:Co ratio was varied, while the total metal  

 

concentration remained 0.08 M.  The particles were aged for 30 minutes upon reaching  
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the desired temperature then allowed to cool to 40°C before separation. The black/grey  

 

particles were separated magnetically using a rare earth magnet and sonicated several  

 

times with hexane to remove oleylamine from the particles.  

 

Many characterization techniques were carried out to identify particle  

 

composition, crystal phase, size, morphology, aggregation, and magnetic properties.  

 

Powder x-ray diffraction (XRD) was conducted to determine crystal phase of the  

 

synthesized particles at room temperature using Cu Kα radiation, λ=1.54506 Å. Analysis  

 

of phase composition and crystallite size was achieved with the aid of X’Pert Highscore  

 

Plus software using the ICDD/JCPS database for reference. The particle composition was  

 

further investigated by conducting elemental analysis to quantify Fe and Co values using  

 

Inductively Coupled Plasma with Optical Emission Spectroscopy (ICP-OES). The degree  

 

of particle aggregation was observed using a Hitachi SU-70 scanning electron  

 

microscope (SEM) at an accelerating voltage of 10 keV. Thermogravometric analysis  

 

(TGA) was used to ascertain the amount of metal in each sample to yield more accurate  

 

magnetic saturation values. Magnetic characterization used a Quantum Design Versa Lab  

 

vibrating sample magnetometer (VSM) with a 3 Tesla field. 
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A.4 Results and Discussion 

 

 

A.4.1.1 Effect of Fe:Co Ratio 
 

The XRD spectra of three different FeCo ratios are shown in Figure 

3.4.1.1. The phase change from Co to FeCo can be seen with increasing Fe 

concentration. Fe:Co ratios are shown as follows: 0:100 (A), 70:30 (B), and 80:20 

(C). A mixture of Co and FeCo phases are observed in the XRD spectrum until a 

starting ratio of 80:20 Fe:Co is used. The crystallite sizes of the Co and FeCo 

particles were found to be 11.6 nm and 38.5 nm respectively by using the 

Scherrer equation for each peak and taking the average. 

 

 

Figure A.4.1.1: XRD spectrum of three different starting ratios of Fe:Co. A) 0:100, B) 70:30, C 

80:20 

 

 

 

The FeCo particles formed agglomerations that are linear in fashion as 

seen in Figure 3.4.1.2 (A). These agglomerates seem to consist of particles that 
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are roughly 300 nm in diameter and look to have a relatively small size 

distribution.  As for the Co nanoparticles, shown in Figure 2(B), agglomeration 

occurs in a different fashion. These spheres are agglomerated into large clusters 

with no real preferred orientation. Though the Co spheres have a similar shape 

and surface to the FeCo particles, the size of these particles are only about 100 

nm. The observed particle diameters were significantly larger than crystallite 

sizes determined from XRD analysis, which points toward the individual spheres 

being polycrystalline in nature.  

 

 

Figure  A.4.1.2: SEM images of FeCo nanoparticle agglomerates (A) and Co nanoparticle 

agglomerates (B)



94 
 

 

 

Figure 4.4.1.3(A) shows the magnetic hysteresis of both Co and FeCo 

nanoparticles. The Co particles have a magnetic saturation (Ms) of 145 emu/g 

and a coercivity of 190 Oersted (Oe) and the FeCo particles have a magnetic 

saturation of 207 emu/g and a coercivity of 100 Oe.  Figure 3.4.3 (B) shows the 

linear correlation between the percentage of Fe in the sample vs. magnetic 

saturation. Note that these magnetic saturation values are corrected for weight 

loss observed from TGA experiments. These values have a good linear 

correlation with an R2 value of 0.8979 indicating that as the amount of iron in the 

alloy is increased, the Ms increases accordingly. A maximum magnetization of 

207 emu/g is nearly 10% lower than the theoretical maximum for an FeCo at 240 

emu/g, however surface oxidation is a common occurrence in Fe based 

nanomaterials. The presence of some amorphous oxide surface layer is one 

explanation for the lowered Ms value. The reported magnetization value for 

pure cobalt is also lower than bulk values, again implying the presence of an 

amorphous oxide component.  
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Figure 4.4.1.3: Magnetic hysteresis loops for Co and FeCo particles (A) and liner correlation of % 

Fe in particles from ICP-OES vs. Ms (B) 
 

The percentage of iron in the alloy increases and the Ms increases up to a  

 

maximum value of 67% seen in the Fe:Co 95:5 ratio. One possible explanation for this  

 

maximum is the cobalt particles are reduced first and act as nucleation site for the iron to  

 

insert itself into the forming cobalt lattice.  This may be the reason that both Co and FeCo  

 

signals are seen in the XRD pattern until there is a higher concentration of iron in the  

 

system.  It is worthwhile to mention that in the absence of iron (II) chloride we can  

 

produce Co particles but in the absence of cobalt (II) acetate no Fe particles are  

 

generated. Furthermore, when iron (II) chloride and cobalt (II) chloride are reacted in  

 

oleylamine, no product is collected. Metal particles are attained with both chloride salts  

 

only if sodium acetate is introduced into the system. The presence of the carboxylate  

 

group on the acetate is most likely aiding in the reduction of the metals by altering the  
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identity of the primary amine to an imine. Further mechanism studies will have to be  

 

conducted in order to ascertain more comprehensive reduction information.  

 

A.4.1.2 Effect of Temperature  

 

For this particular synthesis, temperature proved to be an important 

parameter. Carrying out reactions above the desired 320°C resulted in impurities 

in the form of cobalt carbide, thus lowering the Ms and increasing the Hc. These 

carbide phases can be easily identified in the x-ray diffraction patterns of 

affected samples and correlated to their magnetics data. Figure 3.4.2.1 shows 

the changes in the x-ray diffraction pattern corresponding to the formation of 

carbide phases above temperatures of 330°C. The formation of cobalt carbide is 

not a surprise at high temperatures, as our group has previously synthesized 

Co2C and Co3C under similar conditions.5> Since FeCo is characteristically a soft 

magnet and cobalt carbide tends to behave more like a hard magnet, the 

changes in the VSM hystereses are easily seen as a function of temperature as 

seen in Figure 3.4.2.2. 84 27 emu/g and 500 Oe; 90 160 emu/g and 100 Oe  
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Figure A.4.2.1: XRD Comparison of 50:50 ratio reactions of Fe(OAc)2 and Co(OAc)2 for 1 hr at 

different temperatures. 

 

A.4.1.3 Effect of Precursor/Surfactant  

 

In a typical synthesis, oleylamine acts as both the reducing agent as well 

as the surfactant for the FeCo particles. Introducing trioctylphosphine (TOP) into 

the system alongside OAm has proved to provide some interesting particle 

shapes across a wide variety of syntheses. This case was no different. In an 

attempt to change only the particle shape or size of the FeCo particles previously 

synthesized, the phase was also altered to incorporate phosphorus into the 

crystal structure. This addition resulted in the the formation of iron and cobalt 

phosphides or a ternary version iron-cobalt phosphide. Figure 3.4.3.1 shows TEM 

images of FeCo particles synthesized with TOP as a co-surfactant instead of just 

oleylamine as the reducing source, solvent and surfactant. This however changes 

the phase of the material from FeCo to FeCoP. The use of iron (III) 

o = FeCo 

+ = Co (FCC) 

    = Co2C and Co3C 
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acetylacetonate as an iron precursor as opposed to iron (II) acetate formed FeCo 

nanocubes as opposed to spheres. Although these morphology changes are 

interesting, they do not increase the overall saturation magnetization of the 

FeCo material which is the ultimate goal.  

  

A      B 

Figure A.4.1.3.1: Morphology differences when using TOP as a co-surfactant (A) and Iron (III) 

acetylacetonate as an iron precursor (B) 
 

A.5 Conclusion  
 

Co and FeCo nanoparticles have been synthesized by a facile method 

using only oleylamine with cobalt and iron precursors. These Co and FeCo 

particles possessed high magnetic saturation values with regard to their given 

phases of 145 emu/g and 207 emu/g respectively. Maximum magnetization 

values were recorded for an FeCo alloy containing 67% Fe, as determined by ICP-

OES. SEM images show the morphology of both particles was spherical while the 

Co particles were 100 nm in diameter and the FeCo nanoparticles were 300 nm 
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in diameter. The high magnetic saturation of FeCo nanoparticles and ease of the 

synthetic process makes them useful for many engineering and separation 

applications.70,71 
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