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Abstract 

MARKERLESS LUNG TUMOR TRAJECTORY ESTIMATION FROM ROTATING CONE 

BEAM COMPUTED TOMOGRAPHY PROJECTIONS  

By Shufei Chen 

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of 

Philosophy at Virginia Commonwealth University.  

Virginia Commonwealth University, 2016.  
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Respiration introduces large tumor motion in the thoracic region which influences 

treatment outcome for lung cancer patients.  Tumor motion management techniques require 

characterization of temporal tumor motions because tumor motion varies patient to patient, day 

to day and cycle to cycle.  This work develops a markerless algorithm to estimate 3 dimensional 

(3D) lung-tumor trajectories on free breathing cone beam computed tomography (CBCT) 

projections, which are 2 dimensional (2D) sequential images rotating about an axis and are used 

to reconstruct 3D CBCT images.   

A gold standard tumor trajectory is required to guide the algorithm development and 

estimate the tumor detection accuracy for markerless tracking algorithms.  However, a sufficient 

strategy to validate markerless tracking algorithms is lacking.  A validation framework is 

developed based on fiducial markers.  Markers are segmented and marker trajectories are 
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obtained.  The displacement of the tumor to the marker is calculated and added to the segmented 

marker trajectory to generate reference tumor trajectory.  Markerless tumor trajectory estimation 

(MLTM) algorithm is developed and improved to acquire tumor trajectory with clinical 

acceptable accuracy for locally advanced lung tumors.  The development is separate into two 

parts.  The first part considers none tumor deformation.  It investigates shape and appearance of 

the template, moreover, a constraint method is introduced to narrow down the template matching 

searching region for more precise matching results.  The second part is to accommodate tumor 

deformation near the end of the treatment.  The accuracy of MLTM is calculated and compared 

against 4D CBCT, which is the current standard of care.   

In summary, a validation framework based on fiducial markers is successfully built.  

MLTM is successfully developed with or without the consideration of tumor deformation with 

promising accuracy.  MLTM outperforms 4D CBCT in temporal tumor trajectory estimation.   
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1. Introduction 

1.1. Radiation Therapy for Lung Cancer 

Lung cancer is the most commonly diagnosed and most lethal cancer worldwide.
1
  In 2008 

for instance, 1.61 million new cases of lung cancer were diagnosed, accounting for 12.7% of the 

total cancer incidences and meanwhile, 1.38 million deaths were caused by lung cancer, 

accounting for 18.2% of the total cancer deaths of the year.  The survival of lung cancer patients 

is among the poorest of all cancer types.  The overall five-year survival rate (typically used as the 

measurement of survival) regardless of treatment type is 15% for lung cancer patients in United 

States.
2
  Surgical resection is the primary treatment choice for lung cancer patients with early-

stage diseases, but the majority patients (about 80%) are medically inoperable.  Radiotherapy 

(RT) is the primary treatment modality for inoperable patients, but the prognosis is poor.  The 5-

year survival rate of lung cancer patients who underwent RT-only treatment is about 5%-40% 

depending on the tumor stage 
2,3

.  Techniques to improve the RT treatment outcome of lung 

cancer are highly desired.  

The goal of RT is to deliver a high enough radiation dose to kill the tumor cells while 

minimizing the dose to the normal tissue.  To ensure targeting, radiographic imaging, normally a 

computed tomography (CT) image, is taken to model a patient’s anatomy, including tumor and 

surrounding tissues at the simulation stage.  Tumors are identified and delineated by physicians 

on planning CT images.  Figure 1 shows an example of delineated tumor in CT images in a lung 

cancer case.  A treatment plan is created based on the planning CT to meet the RT goal.  Before 
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treatment, the patient should be setup as close to the planned position as possible.  After setup, 

radiation beams are delivered according to the plan.  RT is normally prescribed with multi-

fractional doses meaning that a treatment course may last up to several weeks.  The time lag 

between the simulation and delivery cause patient geometry variation in relation to the planned 

geometry (simulation stage) due to the existence of geometric uncertainties, especially for later 

fractions.   

Geometric uncertainties are studied carefully for the purpose of precise targeting.  Major 

sources of geometric uncertainties are the delineation uncertainty of the gross tumor volume 

(GTV) or other critical structures (e.g. organ-at-risk (OAR)), setup error, uncertain microscopic 

extension of tumor and organ motion 
4
.  In the delineation process, the limits in image quality of 

 

Figure 1. An example of tumor delineation in CT images for a lung cancer 

patient.   
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imaging modalities (e.g. partial volume effect
5
), as well as inter-and intra-observer uncertainties 

impact the delineation accuracy and consistency.  Delineating on multi-modality images with 

clear guidelines could help to improve the delineation uncertainty.  Setup error is defined as the 

position difference between the positions of selected anatomical landmarks at the time of 

treatment in relation to their positions at planning 
6
.  Image guided radiotherapy (IGRT) and 

immobilization techniques help improve the setup accuracy, which is about 2-4 mm in the 

thoracic region
7-10

.  To address Microscopic extension of tumor  beyond that visualized on the 

imaging modalities, a margin added to the GTV to create a clinical target volume (CTV) 
11,12

.  

Another major source of geometrical uncertainty is organ motion.  Organ motion is defined as 

the organ position change with respect to the bony anatomy.  Interfractional organ motion such 

as the baseline variation in the location of the respiratory trajectory relative to the bony anatomy 

is similar in magnitude to bony setup errors and is managed by IGRT
13-15

.  Intrafractionally, 

respiration is an important factor that influences the improvement of treatment outcome in lung 

cancer because respiration introduces large intrafractional tumor motion during the treatment.  

Tumor motion at the thoracic region may be greater than 2cm when the tumor is close to the 

diaphragm
16-18

, substantially larger than other regions.   

To account for geometric uncertainties, traditionally a safety margin based on the population 

statistics is added to the target to create planning target volume (PTV) to ensure target dose 

coverage as recommended by International Commission on Radiation Units and Measurements 

Reports (ICRU 50 and ICRU 62) 
6,19

.  The margin added should be large enough to maintain 

tumor coverage in the target region, while at the same time it should be as small as possible to 

spare normal tissue.  The GTV to PTV margin is larger for lung cancer compared to some other 
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cancers because of the respiration-induced tumor motion, leading to a larger dose to normal 

tissue.   

To safely spare (reduce dose to) the normal tissue without compromising dose coverage to 

the tumor is critical to improve treatment outcomes for lung cancer.  Normal tissue dose is 

proportional to the prescription dose and irradiated volume.  The irradiated volume of healthy 

tissue increases when the CTV to PTV margin increases.  Hence, margin reduction is beneficial 

in two ways.   On one hand, margin reduction reduces the dose to the normal tissue if prescribing 

the same dose to the target as in larger PTV margin plans.  Reducing the prescription dose is 

normally not chosen as a way to spare the normal tissue, because the dose coverage of the target 

will not be enough to kill tumor cells.  On the other hand, margin reduction enables safe dose 

escalation.  Dose escalation has been reported to show improved local tumor control with less 

local failure and increased survival 
20-25

.  However, dose escalation also increases the risk (dose) 

to the OAR (e.g. lung, heart, esophagus, and etc.).  A safe dose escalation prescribes higher dose 

to the treatment target while respecting the dose tolerance to the normal tissue.  With a smaller 

margin (irradiated volume), the target can be prescribed with higher dose under the same dose 

tolerance of the normal tissue as larger margin plans.  The increased dose effect to the OAR due 

to dose escalation is reduced by dose reduction from margin reduction.  In sum, reduction of 

geometric uncertainties and the associated safety margin is crucial at achieving the RT goals, 

either improving treatment outcome or reducing normal tissue toxicity.  Therefore, as an 

important component of geometric uncertainties in lung cancer, organ motion should be 

monitored and studied carefully.    



 

 

5 

 

Techniques to manage motion during treatment incorporate the tumor motion in the treatment 

planning or the treatment delivery.  Treatment techniques such as breath-hold, respiratory gating, 

tumor tracking have been developed to manage the respiration-induce motion during RT 

treatment delivery.
26-30

  Breath-hold techniques intend to deliver radiation beams to patients only 

during the breath-hold intervals.  Patients hold their breath voluntarily or through active 

breathing control (ABC) during the treatment.  The whole treatment requires several breath-

holds. The treatment efficiency (time cost) depends on the patient’s ability to hold their breath.  

Similar to breath-hold, respiratory gating involves periodically turning radiation on normally at 

the end-of-exhale phase (EOE) of a patient’s breathing cycle.  Reducing the beam-on intervals in 

breathing cycles improves the motion management. But patients are held on the treatment couch 

longer, causing more discomfort for sick patients and degraded treatment efficiency.  Tumor 

tracking techniques propose to track the tumor movement with the radiation beam, requiring 

real-time knowledge of tumor locations and prediction accounting for system latency.  However, 

limited knowledge of the real time tumor location is the major complexity preventing the routine 

implementation of tumor tracking clinically.     

 

 

Figure 2 Two examples of breathing curves from RPM system for lung cancer patients. The left curve is more regular 

and periodic; the right curve is more irregular and aperiodic. 
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Incorporating temporal variations in patient specific geometric into the treatment planning 

process is an alternative approach to manage motion
31-39

.  Probabilistic treatment planning is able 

to reduce the safety margin by generating a patient-specific field margin, which is modeled from 

patient-specific variations (mainly respiratory organ motion) in the repetitive imaging during 

treatment.
34

  Four-dimensional (4D) inverse planning includes the temporal variation in the 

planning dose evaluation.  The hypothesis is that the repetitive breathing motion is treated as 

random motion.  The probability distribution function (PDF) of patient-specific respiratory 

motion is convolved to blur the dose distribution with respiration to approximate the dose 

distribution taking account full 4D anatomy in the respiration cycle
36-39

.  Incorporating 

variability models into the treatment planning whether through adaptation or 4D inverse planning 

requires patient-specific characterization of the tumor motion.  In sum, all these motion 

management treatment techniques require monitoring the tumor motion during simulation for 

treatment planning and during the treatment delivery for verification of the breathing pattern.   

The following section will discuss techniques to estimate tumor motion during planning.   

1.2. Characterization of Respiratory Motion for Treatment Planning 

Current techniques that are used to monitor the tumor trajectory can be grouped into 4 

categories: external surrogates, implanted internal fiducial markers, internal anatomical 

surrogates and direct tumor estimation.  The first three categories track the tumor motion 

indirectly through surrogates.  And the last category directly estimates tumor motion from the 

tumor information.  The following will discuss these 4 categories of motion characterization 

techniques.    
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1.2.1. External Surrogates 

Signals from external surrogates such as tidal volume measured by spirometer
28,40

 and 

abdominal skin surface displacement from external markers
41-43

 are used to measure respiratory 

motion.  A spirometer measures patient respiratory volume of air inhaled and exhaled by the 

patient through a mouthpiece with an electronic pneumotachometer.  One common system 

measuring the abdominal surface displacement signal is the RPM system.  The RPM system 

captures the anterioposterior motion of a block attached to the patient’s abdomen through an 

infrared camera.  The captured signal from the camera is imported to the linked computer and 

processed.  A correlation model (normally linear) is applied to the external signal to estimate the 

internal target motion and position.  The model relies on the assumption that the tumor position 

is consistently correspondent with the external surrogate signal.  Several studies have been 

conducted to assess the correlation between the internal tumor motion and the surrogate signals 

(denotes as the internal/external correlation).
44-51

  The internal/external correlation coefficient is 

high assuming linear correlation and the internal signal correlates slightly higher to spirometer 

signal than to the abdominal displacement signal
45-47,49

  But the correlation is not temporally 

invariant, rather changes intra- and interfractionally.  The correlation between tumor motion and 

external marker position is poor under breath-hold conditions
50

.  Many studies observed time, 

phase shift, as well as amplitude mismatch between the tumor motion and abdominal 

displacement.
44,46,49,51

  The internal/external correlation is sensitive to direction.
47,48

  The best 

correlation is between the superoinferior (SI) tumor position and skin marker motion, but at the 

AP direction, the correlation is poor.  The internal/external correlation varies with different 

tumor locations, skin marker locations as well as patient breathing patterns.
44,47,48

  The 
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internal/external correlation coefficient changes day to day.
46,52

  The external surrogates offer no 

indication of the interfractional baseline(location of the respiratory trajectory relative to the bony 

anatomy) variation 
14,15,34

 leading to different internal/external correlation at different days.   

The respiratory tumor motion tracking using these external surrogates requires no 

acquisition of X-ray imaging allowing continuous tracking throughout imaging or treatment 

delivery.  But due to the inconsistency of the inner/external correlation, external surrogate alone 

is an inaccurate indicator of tumor position and motion.   

1.2.2. Internal Implanted Markers 

Since external markers fail to correctly represent tumor motion, markers are implanted 

inside or near the tumor of the patient to represent tumor motion/position.  The implantation of 

markers is through percutaneous needle insertion or bronchoscopy.  Markers serve as reliable 

surrogate to locate or track tumors
53,54

.  One type of marker is electromagnetic markers and the 

positions of markers are detected using a magnetic source and receiver coil array
55,56

.  The other 

is radiopaque fiducial markers (normally gold markers) is detected from segmentation on planar 

X-ray images most commonly fluoroscopy
53,54,57-61

.   

 The concern of tumor tracking through implanted markers affecting both 

electromagnetic and radiopaque fiducial markers is the limits and risks of marker implantation.  

Studies showed that marker implantation through percutaneous needle insertion introduces a risk 

of pneumothorax up to 45%
62-68

, so performing implantation through needle insertion is not 

widely accepted by clinicians.  Inserting markers via bronchoscopy is feasible and safe limited to 

peripheral-type lung tumors but not the central lung tumors.
59,61

  The marker implantation may 

not be acceptable to patients especially those who might be expecting a ‘non-invasive’ treatment 
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modality with RT.  Another concern that limits marker implantation is the marker migration
67-69

 , 

which leads to misrepresentation of the tumor position.   

For tumor tracking with radiopaque fiducial makers, the additional dose to patient due to 

planar X-ray imaging is another concern.  In order to reduce the frequency of X-ray imaging and 

thus the dose to patients, researchers introduce techniques which combine the external surrogate 

and internal fiducial together to model and predict the tumor position.
42,70,71

  A linear model is 

built at the simulation to derive fiducial marker positions from signal of external surrogates.  

During the treatment stage, fiducial marker positions are used to update the model at certain time 

intervals.  Updating the model with internal fiducial marker positions can overcome or moderate 

variations of internal/external correlation which tracking with external surrogate encounters.  

Since X-ray images are only acquired when updating the model, the imaging frequency and the 

patient dose is reduced.   

1.2.3. Internal Anatomical Surrogates 

Due to the risks and limits of tracking tumor with implanted fiducial markers, researchers 

have increased their interest in obtaining respiratory signal from the internal anatomical features 

on X-ray images.  Diaphragm
72,73

, carina
74,75

 and other anatomical features
76

 are analyzed in 

fluoroscopic images as internal anatomical surrogates for the estimation of the tumor motion.  

Studies have shown that diaphragm and carina are well correlated to tumor motion according to 

studies.  A model obtained from the training data is applied to the trajectory of the anatomical to 

estimate the tumor trajectory.  These surrogate anatomical structures are easy to detect in x-ray 

images.  However, when these features are far apart from the tumor, one may need to enlarge the 

field of view (FOV) to include them in the images resulting in extra radiation dose to the patient.  
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Furthermore, the baseline shift of the tumor is difficult to be estimated by the feature surrogate 

modeling.   

1.2.4. Direct Tumor Estimation 

The limitations or risks of tumor trajectory tracking using external surrogates, implanted 

marker surrogates as well as internal anatomical surrogates, leads to the research interest in 

direct the tumor trajectory estimation from the tumor mass.  This category is separated into 2 

groups.  One group is 4D tomography such as four-dimensional computed tomography (4DCT).  

The other group estimates instantaneous tumor positions in sequential 2D image datasets and the 

proposed method in this dissertation belongs to this group.   

4D Tomography 

In the thoracic region, respiratory correlated imaging acquisition techniques, such as 

4DCT
77-79

, 4D cone beam computed tomography (CBCT)
80,81

 are performed to reduce the 

uncertainties and artifacts induced by the respiration-induced organ motion.  A 4D scan consists 

of a set of three dimensional (3D) images reconstructed from two dimensional (2D) images at 

multiple phases (normally 10 phases) of the respiratory cycle.  2D images are sorted into 

different phases by analyzing a respiratory trace, which is simultaneously obtained as the 2D 

images by external surrogates.  The determination of phase is based on either the amplitude or 

the phase angle.  Phase angle is defined as the fraction of time between user-specified phases of 

breathing.   For example, if end-of-inhale is phase 0% of the breathing cycle, end-of-exhale is 

around 50% to 60%.  Tumor is delineated on each 3D phase images and one mean tumor 

position is obtained for each phase.  The trajectory of the tumor motion is formed by these phase 
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mean tumor positions.  Thus, the tumor motion extracted from 4D tomography is an average of 

all respiratory cycles.   

The major disadvantage of 4D tomography is that the output is a single tumor position for 

each phase of 3D image.  However, the tumor motion is not simply periodic but it suffers from 

cycle to cycle variation and shift of the mean or exhale tumor position (drift)
13,17,82

 as shown in 

Figure 2.  Output cycle from 4D tomography cannot provide accurate information to estimate 

cycle-to-cycle variations and drift.  Hence, instantaneous tumor trajectory needs to be estimated 

in order to accurately measure these variations.   

Direct Instantaneous Tumor Estimation 

To directly investigate the instantaneous tumor positions, the intensity of the tumor mass is 

analyzed by tracking
83-85

 and gating
86-88

 in fluoroscopic images.   Support Vector Machine 

(SVM)-based
87

, template-based
83

 and optical flow-based
84

 algorithms are implemented to obtain 

the tumor positions directly from the X-ray images.  Fluoroscopy provides two dimensional (2D) 

images of the patient, and thus dual fluoroscopy is required in order to obtain 3D tumor 

trajectory.  However, the dual fluoroscopy imaging causes double dose to the patient and most 

clinics do not have the modality available.  Hence, researchers have investigated tracking in 

single-imager mounted to the treatment gantry, e.g. linac-integrated cone beam computed 

tomography (CBCT), which provides rotational images (projections) of the patient enabling the 

reconstruction of the 3D trajectory.  CBCT is widely used in IGRT to assist patient setup, plan 

evaluation, and adaptive therapy.  Many clinics have already installed CBCT in their treatment 

rooms.  Using the projections from the CBCT acquisition already taken in the patient setup to 

obtain tumor trajectory requires no extra dose to the patient.   
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One method utilizing the CBCT projections to obtain tumor trajectory information is to 

reconstruct the 3D anatomy at each time point when a projection is acquired, a method termed 

‘projection to volume’
89-93

.  The method proposes a 4DCT reconstruction technique by 

deforming a prior source CT to match the measured projections.  The technique works well 

under simulated conditions, but for actual CBCT data from free-breathing patients, the 

implementation of the 4D deformation model will be much more complicated.  Estimation tumor 

trajectory in CBCT projections is simpler and potentially easier for clinical implementation than 

the project to volume techniques.   

Some studies implement techniques such as Amsterdam Shroud (AS) 
81,94

 and principal 

component analysis (PCA)
95

 to extract breathing signal from the CBCT projections.  AS 

technique acquires 1D breathing signals extracted from AS images where the SI motion is 

enhanced.  A derivative image is created from the original projection image by computing the 

derivative along the SI direction.  The derivative image is averaged horizontally resulting a 1D 

column bar for each projection and the 1D bars of all the projections are posted together to from 

the AS image.  Breathing signals are calculated from the pixel shifts by aligning 1D column bars 

one by one.  The technique works only well when there are distinct structures in the FOV (e.g. 

diaphragm), but there is no guarantee such structures in the view.  The other idea of breathing 

signal extraction is to separate the breathing motion induced intensity changes from the gantry 

rotation induced changes.  PCA technique can be used to separate different motion modes by 

selecting different principal component eigenvectors.  The PCA analysis performed on projection 

images is more useful at determining breathing phase other than extracting full tumor motion 

trajectory. Yan et al. implement the PCA on AS image as a more reliable technique compared to  
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AS
95

 alone.  The downsides of these techniques are that the breathing signals are 1D (SI 

direction) and more importantly, the signals do not directly indicate the actual movement of the 

tumor.   

The proposed method template matching-based markerless tumor tracking (MLTM) 

estimates the full tumor trajectory which includes not only the breathing amplitudes but also the 

tumor locations.  Studies
96-98

 have evaluated small, parenchymal lesions such as those amenable 

to stereotactic body radiotherapy.  Solid validation is only available in phantom cases.  For the 

clinical patient cases, some studies rely on physician delineation at the projections as a ground 

truth
96

, which is limited to comparisons in small datasets by the time-consuming nature of the 

segmentation.  Other studies compare the result of the markerless tracking algorithm to an 

average target trajectory from 4D CBCT
97,98

, which does not allow for evaluation of the quality 

of the tracking on short time scales.  Some studies
97,99

 implemented a background subtraction 

step in projections before template matching.  The idea is to subtract the digital reconstructed 

radiograph (DRR) generated from tumor-free 4DCT, where tumor was removed, from the 

projection image.  I first proposed applying this technique in lung cancer patients in my AAPM 

presentation in 2010
100

.  The subtraction technique enhances the tumor contrast.  However, 

concerns include whether the enhanced tumor is the real tumor, for example whether the removal 

of tumor in either FBCT or CBCT to generate subtraction DRR creates an artificial boundary 

that could drive the template to an erroneous match.   

1.3. Thesis Objective and Outlines 

In this work, I extend the template matching-based tumor tracking on CBCT projections to 

larger lung cancer lesions (late-stage disease) infiltrating the chest wall, hilum, or mediastinum.  
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The treatment for larger lesions is more challenging because the large volume limits the dose that 

could be prescribed to the target within the respect of the normal tissue tolerance.  The treatment 

outcome for late-stage disease is worse than early stages and thus treatment techniques for 

improving the treatment outcome are highly desired.  Better understanding the tumor motion of 

larger lesions could result in smaller safety margins added to the target so that dose escalation 

could be applied to have better local control.  However, larger lesions are more challenging cases 

to apply template matching-based tumor trajectory estimation.  First, the treatment course lasts 

much longer for larger lesions (may be up to 7 weeks) than those amenable for SBRT (around a 

week), so the study of breathing pattern change throughout the treatment is more crucial for 

larger lesions.  Tumor volume change as well as shape change in respect to the planning tumor 

due to the treatment response should also be taken into account in the template matching process.  

The other reason is that the soft tissue boundary may not be as clear as those well-defined small 

parenchymal tumors.  Therefore, in this thesis, a markerless tumor trajectory estimation 

technique is developed for locally advanced tumors. 

The primary goal of this thesis is the development and evaluation of a template-matching 

based markerless tumor trajectory estimation algorithm (MLTM) with clinically-acceptable 

accuracy (about 3mm) for lung tumor localization in CBCT projection images.  MLTM will be 

compared against the clinical standard which is the 4D CBCT to see whether the technique can 

improve the tumor localization.  Four specific aims are introduced to achieve this goal.  

(1) The first aim is to develop and evaluate a validation framework to assess MLTM because 

a reliable validation method is lacking for direct tumor tracking.  A validation method based on 

markers is built from marker segmentation on projection images.  Tumor-to-marker displacement 
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is used to transform the marker trajectory to the tumor trajectory as the reference.  Different 

approaches to calculate tumor-to-marker displacement is evaluated and an appropriate approach 

is selected to build the validation framework.     

(2) The second aim of the thesis is to achieve clinical acceptable accuracy for MLTM with 

minimal tumor shape and volume change.  How to create templates that are best suitable for 

template matching on projections is an important issue to solve.  Template matching on rotating 

gantry images is challenging.  The template matching may not get the true matching for some 

gantry angles.  In this case, a prediction method is needed to guide the matching process.  The 

expected outcome of this goal is an appropriate approach of template and a prediction method 

that could guide the template-matching.   

(3) Patients studied here undergo multi-fractional RT which takes up to 7 weeks to complete 

the treatment.  For later fractions, tumor shape and volume changes are no longer negligible.  

Therefore, the third aim of the thesis is to adapt the MLTM algorithm account for tumor shape 

and volume changes with adequate accuracy.  Affine transformation and B-spline deformable 

registration is performed to the planning fan beam CT (FBCT) to transform the planning tumor 

to the daily tumor.  The results of these two registrations are compared to the original method.  

An approach of registration with the best results is selected.   

(4) The clinical standard of tumor trajectory estimation method is 4D CBCT.  This work 

claims to outperform 4D CBCT and a study should be conducted to support this statement.  Thus, 

the fourth aim of the thesis is to analyze the accuracy of the MLTM algorithms and compare it 

against 4D CBCT. 
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The outline of the thesis is described as follows.  The validation framework and its accuracy 

estimation are covered in Appendix I and Chapter 2.  The development of MLTM despite of 

tumor shape and volume change is taken place in Appendix II and Chapter 3 and with the 

existence of significant tumor shape and volume change in Chapter 4.  The tumor trajectories 

obtained from MLTM are compared against clinical standard (4D CBCT) in Chapter 5.  Finally 

in Chapter 6, results of previous chapters are discussed and concluded, and the further direction 

is suggested.   

Appendix I and Appendix II are manuscripts reporting on the first two specific aims in this 

work. Subsequence chapters supplement the appendices with further details and discussions on 

the project development and analysis. It is intended that each appendix to be read prior to its 

corresponding chapter. 
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2. Validation Framework 

2.1. Introduction 

A gold standard tumor trajectory is required to guide the algorithm development and estimate 

the tumor detection accuracy for the MLTM algorithm.  However, a sufficient strategy to 

validate markerless tracking algorithms is lacking.  Instead, some validation studies
96

 rely on 

manual segmentation of the target in the projections themselves as a reference, which is limited 

to comparisons in small datasets by the time-consuming nature of the segmentation.  Because a 

CBCT scan contains about 600 projections (free breathing CBCT) up to 2400 projections (4D 

CBCT), it’s impractical to manually delineate all the projection images.  Other studies compare 

the results of the markerless tracking algorithm to an average target trajectory from 4D 

CBCT
97,98

, which eliminates the time dependent motion pattern variation such as baseline drift 

and cycle to cycle variation not allowing for evaluation of the quality of the tracking on short 

time scales.  Approaches such as external surrogates and internal anatomical surrogates are not 

considered due to the deficiency stated in section 1.2.1and 1.2.2.  In this work, implanted fiducial 

markers are used to generate reference tumor trajectory because implanted markers can serve as 

reliable surrogates for tumor motion detection.        

It is suggested to read Appendix I first, then proceed to read the remainder of this chapter.  A 

validation framework to generate a gold standard tumor trajectory from implanted fiducial 
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markers is introduced in Appendix I.  And the current chapter emphasizes on the rationale of the 

framework formation.          

2.2. Patient Database  

  Table 1. Patient and marker characteristic.   

 

As in Table 1, 5 patients with either a stage IIIA or IIIB pathologically-confirmed non-small-

cell lung cancer (NSCLC) are studied in this dissertation.  All the research work in this thesis is 

performed on these 5 patients.  Patients were implanted with fiducial gold markers (Visicoil, 

RadioMed Corporation, Tyngsboro, MA).  2 to 3 fiducial markers were implanted via 

bronchoscopy in tumor or lymph node regions for each patient. The numbers of markers 

implanted and visible are summarized in Table 1.  The discrepancy of the marker implanted and 

marker detected in the projections may due to marker breakage and marker migration.  All 

patients were treated with 3D conformal RT (62.6-70 Gy) with standard fractionation (1.8-2 Gy, 

five days per week).  A respiration-correlated 4D FBCT (Brilliance Big Bore, Philips Medical 

Systems, Andover, MA) is obtained as the planning CT for each patient before treatment.  Slow 

gantry 4D CBCT were obtained at each treatment fraction of the treatment, denoted as daily 

CBCT, via a commercially available on board imaging device (Varian Medical Systems, Palo 

Patient  Stage  Location 

GTV  

(cm
3
) 

Markers 

 Implanted 

Markers  

Detected 

1 T4N3M0 RUL 88.9 2 2 

2 T4N2M0 Right Hilum 30.3 3 4 

3 T4N2M0 Right Hilum/RLL 58.3 3 2 

4 T3N1M0 LLL 42.7 2 1 

5 T3N2M0 Right Hilum 144.2 3 5 

6 T2N3M0 Left Hilum 46.2 2 1 
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Alto, CA) for each patient.  The scan conditions were 125 kVp, 20 mA and 20 ms per projection 

with half-fan geometry.  There are about 2400 projections in each 4D CBCT scan and they 

covered all 360 degrees of gantry rotation.  Fiducial markers and primary tumor were contoured 

for all 10 phases of all 4D FBCT, and weekly (about 7 CBCT scans per patient) for 4D CBCT. 

Those weekly delineated 4D CBCT are denoted as weekly CBCT in the following chapters.   

2.3. Background on 3D Medical Image registration 

Currently, multiple radiological images are generally used to guide diagnosis and treatment 

in healthcare.  A technique to accurately relate information in different images is required to 

fully exploit the image information for physicians and researchers.  Image registration is the 

solution, which determines the spatial correspondence between two images of a scene.  In the 

process, points from one image could find the corresponding points in the other image.   The 

outcomes of registration include fusion information, transformation, change detection and object 

recognition.   

Image registration provides a means to accurately relate information in different images, 

most widely used to align tomographic images in 3D space, e.g. aligning FBCT and CBCT.  The 

most often used registration techniques assume a ‘rigid body’ meaning that the structure of 

interest deforms and distorts negligibly.  This type of techniques is called rigid image registration.  

In reality, organs do deform substantially in images due to organ motion, treatment response and 

different imaging modalities.  Non-rigid registration techniques that can compensate tissue 

deformation are of high requirement.  The outcome of image registration is a major part of the 

research method in this thesis.  In the rest of this chapter specifically, image registration is used 
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to obtain target positions without delineation, and the transformation is also employed to 

transform a structure of interest to match the target structure in Chapters 3 and 4.   

2.3.1. Rigid Image Registration 

The definition of rigid is that the distances between all points of the target image remain 

constant compared to the source image.  The rigid transformation is 6 degrees of freedom for 3D 

images, including translation, rotation and reflection.  Rotation is rotating an object about a fixed 

point without changing its size or shape; translation is moving an object in space without 

changing its shape, size or orientation; reflection is flipping an object across a line without 

changing its shape or size.  Assuming a point f  in the source image and the transformed 

position is 'f  , the function to conduct the transformation is shown below: 

 '         f f c c   R Τ  (1) 

where the matrix R is a rotation matrix, c is the center of rotation (usually the center of the 

image), and matrix T is translation matrix.  The rotation matrix is parameterized by the Euler 

angles (one in 2D, three in 3D).  

Rigid image registration can be accomplished automatically and manually.  Automatic 

rigid image registration is used in routine clinical practice.  The registration of the source and 

target images is obtained by iteration and comparison of various possible matches of the two 

images.  The process is formulated as an optimization problem by a ranking function based on 

some physical considerations (correlation, mutual information and etc.).  Manual rigid 

registration is also in popular use to compare images and it is employed in the following study of 
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this chapter.  This process manually rotates and moves the source image around the target image 

and obtains the registration by comparing the critical features in the fusion images.   

2.3.2. Affine Transformation 

Affine transformation includes dilation, which expands and contracts an object without 

changing shape or orientation.  An affine transformation is a transformation which preserves 

straight lines and ratios of distances between points on any straight line.  Scaling, translation, 

rotation, reflection, shear, similarity transformations, spiral similarities as well as any 

combination and sequence of above are all affine transformations.  The affine transformation 

adds scaling and shearing to the rigid transformation matrix leading to 12 degrees of freedom in 

the registration parameters for 3D images.  The function of affine transform is shown below: 

 '         f f c c   A Τ  (2) 

where other variables are defined the same as in equation (1) except the matrix A has no 

restrictions compare to matrix R meaning that the image can be translated, rotated, scaled, and 

sheared.  Affine transformation does not increase the applicability of image registration 

dramatically relative to  rigid body transformation, as tissues deform in more complicated ways.  

Therefore, affine transformation is not incorporated into the study of this chapter, but will be 

used in Chapter 4.  

2.3.3. Deformable Image Registration 

Deformable image registration (DIR) is more complicated compared to rigid registration 

and it models individual voxel dependent distortion, which can be made using either finite ele-

ment model
101,102

, B-splines
103,104

, thin-plate splines
105,106

, optical flow algorithms
107

, or fluid 
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flow algorithms
108

.  The process of DIR requires 4 components: an interpolator to sample the 

voxels, a transformation to specify how a volume can change during the various steps in the 

optimization, a similarity metric (such as mutual information, cross correlation, and etc.) to 

measure the score for optimization, and an optimizer to find the best possible solution.  The 

optimizer compares the scores given by the similarity metric for the evaluated transformed 

spaces and obtains the best solution by marching over a subset of solution space.   

The DIR components chosen in this dissertation are B-Spline interpolator, B-Spline 

transformation, mutual information, and gradient decent optimizer. The software used to perform 

DIR is Elastix
109,110

.   B-spline DIR can represent smooth and continuous motion which is 

anatomically realistic and it is computationally efficient because changes to one region do not 

affect the remainder of the transform since B-splines only have local support.   B-spline is short 

for “basis spline”.  A function is represented as a linear combination of basis functions. 

       i iv x p x   (3) 

 Where i  is a piecewise cubic polynomial,  ip  is a scaling factor. Noting iF  is the fixing image 

intensity at voxel i , and iM  is the moving image intensity.  In the registration process, mutual 

information (MI) was calculated and used to optimize the B-spline coefficients.  The registration 

contains a global transformation and a local transformation.  The global transformation describes 

the overall motion of an object which can be estimated simply by rigid registration.  The local 

transformation defines the deformation of the object.  The idea of the transformation is to deform 

the object by manipulating an underlying mesh of control points.  The control points are defined 

on the fixed image and they are normally on a regular grid.  The transformation of a point can be 
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computed from only a few surrounding control points and it benefits the modelling of the local 

transformation and enables fast computation. 

 In this work, the average CT of the free breathing planning CT and average CBCT are 

registered and the resulting transformation is used to transform the phase images.  The image 

quality of the CBCT phase images is poor and hence the average CBCT is used to obtain better 

registration results.  The patient image data are stored in Pinnacle format and needed to 

transform to MetaImage (*.mhd ) as the input of Elastix.  The spacing of the grid for defining 

control points is 8.0, 4.0, 2.0, and 1.0 voxels.  The DIR is running at multi-resolution with down-

sampling and the resolution pyramid is 8.0, 4.0, 2.0, and 1.0 voxels.     

2.4. Validation Framework Formation 

2.4.1. Framework Outline 

The marker-based validation framework setup in Appendix I is summarized as following. 

For each scan of CBCT projections, markers are segmented in projections (1,2,3 )p N using a 

MATLAB GUI developed by collaborators
111

 , where N  is the number of projections of the scan.  

The resulting marker trajectory is denoted as 1 2 3{ , , , }Nm m m mM , where pm  is the marker 

position vector at left-right (LR), anterior-posterior (AP), and superior-inferior (SI) directions.  

Markers are implanted inside the tumor, but the marker centroid does not necessarily represent 

the tumor centroid and an offset often exists.  Tumor-to-marker displacement (TMD) is added to 

pm  for the generation of the reference tumor trace 1 2 3{ , , , }Nt t t tR  where vector pt  is the 

tumor position vector.  TMD can be computed from the mean tumor positons minus the mean 

marker position of the marker trace segmented in the CBCT projection images.  The mean tumor 
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positions can be obtained either from contours on the reconstructed CBCT or image registration 

of an image with known tumor positions to the CBCT.   

The relationship over the treatment course between marker and tumor is not well known 

and TMD is considered as the factor to represent the relationship in this work.  One strong factor 

influences TMD is marker migration.  In a treatment, normally about 3 markers are implanted to 

each patient and the distances between the markers are checked to detect possible migration
112

.  

Significant marker migration (e.g. migrating into the pleural space) normally happens within 6 

days after the insertion of the marker 
67

.  Marker positions are stable for 2–4 weeks from the 

beginning of radiotherapy
112

.  With the exception of migration, TMD changes slowly, 

continuously due to the slow, continuous change in tumor volume and shape during therapy.  

Thus, a linear relationship should reasonably model for the marker and tumor relationship as 

shown in Figure 1 of Appendix I.  A linear model for each patient is obtained through linear 

regression which minimizes the sum of squared residuals and leads to a close expression for the 

estimated value δ of TMD. 

where d is the scan day of the CBCT relative to the planning CT which is day 1, α and β are 

variables computed from the minimization of the sum of squared residuals.  This estimated value 

δ is used to obtain non-delineated scans.  However, due to tumor motion and deformation, 

marker position may not be reliable after 1 month
112

.  For example, Patient 6 demonstrates a non-

linear relationship in TMD at the last measurement after 1 month of treatment, as shown in 

Figure 1(f) of Appendix I.  In this case, marker migrates and TMD should be calculated directly 

other than through equation (1).   

= dδ α β  (4) 
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2.4.2. TMD Approaches 

For the calculation of TMD, besides physician delineated tumor contours, tumor centroid 

positions can be obtained from image registration with aligned critical structures.  Different 

approaches are compared to decide which approach is compatible with delineated contours.  As 

mentioned in Section 2.2, only weekly CBCT scans were delineated by physicians in our datset, 

so TMD for each approach is calculated and compared against contour based method on weekly 

CBCT scans.  TMD calculated from delineated tumor contours is denoted as TMD_c.  In image 

registration approaches, the tumor positions of the daily CBCT are obtained by transforming the 

known tumor positions from a delineated scan (either planning CT or CBCT).   

Three image registration approaches were compared to TMD_c.  The first approach is to 

manually align tumors (rigid registration) of the planning FBCT and the daily CBCT in the 

treatment planning system (Pinnacle), and the calculated TMD is denoted as TMD_rigid_tumor.  

The differences between the TMD_rigid_tumor and TMD_c are calculated for each weekly 

CBCT and the root mean square errors (RMSE) are listed in Table 2.  There are large 

discrepancies between the TMD_rigid_tumor and TMD_c due to registration errors caused by 

tumor regression, which is up to 60% volume reduction throughout the treatment course.   

The other attempt is to rigidly register the nearest delineated CBCT to the daily 

unsegmented CBCT automatically by aligning tumors, and the resulting TMD is TMD_CBCT.  

The rationale behind this is to accommodate tumor deformation in the registration without the 

employment of deformable registration.  The calculation is done on weekly delineated CBCT 

scans, and the transformed tumor position is also compared against the delineated tumor position 

in Table 3.  The errors are significantly reduced compared to TMD_rigid_tumor.  The last 
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attempt is to register the planning CT and the daily CBCT to the tumor through deformable 

image registration (DIR), resulting TMD_DIR.  The errors of TMD_DIR as shown in Table 4 

and they are similar to TMD_CBCT, slightly better.  However, the errors of both attempts are 

still larger than the errors (1.2/1.6/2.6 mm at LR/AP/SI directions from Appendix I) of expected 

TMD, δ , estimated from the linear model built on TMD_c.  The advantage of TMD_DIR is that 

it does not require physician delineation and could be automatic.       

Table 2. RMSE of TMD_rigid_tumor. 

Patient LR/mm AP/mm SI/mm 

1 2.0 1.3 2.0 
2 1.0 0.7 2.5 
3 5.1 2.0 6.0 
4 4.1 2.3 2.7 
5 4.5 6.1 4.4 
6 10.0 4.8 5.7 
Mean 5.3 3.5 4.2 
  

Table 3. RMSE of TMD_CBCT. 

Patient LR/mm AP/mm SI/mm 

1 1.2 0.6 1.2 
2 2.0 1.9 2.3 
3 3.0 0.4 1.8 
4 2.0 0.3 1.9 
5 1.1 2.0 2.1 
6 4.0 4.5 4.9 
Mean 2.4 2.2 2.6 

 

Table 4. RMSE of TMD_DIR. 

Patient LR/mm AP/mm SI/mm 

1 0.8 1.9 2.1 
2 1.1 1.3 0.8 
3 2.4 2.8 1.7 
4 1.7 0.8 0.6 
5 2.7 2.1 2.1 
6 3.3 2.4 3.8 
Mean 2.2 2.0 2.1 
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2.4.3. Intrafractional Consideration of TMD 

TMD is not constant during breathing, and the difference between TMD at different 

breathing phases calculated from TMD_c is up to 5 mm with a standard deviation of 1.5 mm. 

However in this work, the marker trace was not corrected phase to phase.  A mean TMD is 

computed for each CBCT scan and used as the correction factor to generate reference tumor 

trajectory from markers instead of phase to phase calculation of TMD.  There are two reasons 

behind this.  First of all, the goal of the validation framework is for application to both normal 

CBCT scans and 4D CBCT scans.  Phase-to-phase computation of TMD is not available on the 

normal CBCT scans.  Secondly, the delineation uncertainty is highly involved in the calculation 

of phase TMD.  The image quality of the phase-specific image in the 4D CBCT is poor 

compared with the average image, leading to larger delineation uncertainty of the targets.  Figure 

3 shows two examples of the average cycles of tumor positions (TC) obtained from the first two 

delineated weekly 4D CBCT.  Average cycles of marker trajectory (MS) generated from the 

direct marker segmentation in the projection images are also plotted as references.  Even though 

the amplitude of tumor movement and marker movement may not be the same, they should have 

the same moving pattern, in other words when the amplitude of the marker movement increases, 

the amplitude of tumor movement should increase respectively.  For patient 3, the amplitude of 

tumor movement increases as does the marker amplitude in the plots.  However, in week 2 of 

patient 2, the amplitude of marker motion deceases compared to week 1 but the amplitude of 

tumor motion increases.  Furthermore, the shape of the average cycle of tumor positions, 

especially TC2 for both patients, is not as expected to be a smooth curve.  This is mainly due to 
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delineation uncertainties caused by poor image quality of CBCT phase image and observer 

uncertainties.  The phase TMD obtained from the phase contours are not necessarily more 

accurate than a single TMD from the average position, therefore the average TMD is used as the 

correction factor for the whole CBCT scan in this work.  

 

2.5. Conclusion 

In the remaining of this thesis, TMD is computed from TMD_DIR for the framework 

formation.  The validation framework is demonstrated to be an accurate approach to generate 

reference tumor trajectory for MLTM with an accuracy of 2.2/2.0/2.6 mm at LR/AP/SI directions.    

 

 

Figure 3. Tumor and marker trajectories for the first two weekly CBCT of Patient 2 and 3 at the SI direction. MS1 and 

TC1 are the marker and tumor trajectories respectively for week one, MS2 and TC2 for week two.  
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3. MLTM in the Context of Minimal Target Deformation 

3.1. Introduction 

The validation framework set up in Chapter 2 is used to guide the development of MLTM.  

The next major aim of this dissertation is to implement and improve MLTM for tumors with 

minimal shape or volume change.  The more difficult task of adapting MLTM accounting for 

shape and volume change is deferred to the following chapter.  Appendix II describes the major 

analyses and conclusions. The current chapter provides the supplementary information in the 

development of the algorithm design.  The major contributions of this chapter are to extend an 

existing MLTM in the following ways.  Firstly, projection images are preprocessed to obtain 

higher quality projections.  The main goal is to improve soft tissue contrast (the tumor visibility).  

Secondly, a study is conducted to investigate the shape and the appearance of the tumor 

template, which is the key component in the template matching process.  The creation of tumor 

templates may introduce artifacts or artificial boundaries that could cause errors in the template 

matching process.  In the following, more results, which lead to the selection of the template 

type, will be discussed.  Finally, a prediction method is introduced to constrain the searching 

region for template matching in order to obtain more precise matching results.  The advantages 

and limitations of this method will be discussed. 
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      (a)                                               

 
(b) 

 

Figure 4.  An example of template and search image.   

3.2. The Principles of MLTM 

3.2.1. Overview of Template 

Matching 

 Template matching
113,114

 is a 

technique used to classify objects in an 

image by matching a set of templates to the 

image.  If an image contains an unknown 

object, a set of templates with known 

objects are matching to the image to find 

out the best match which determines what 

the object is.  Template matching is also 

position sensitive, meaning that it can also 

be used to register images.  In this chapter, 

template matching is implemented to 

estimate the position of an object in an 

image.   

 

 In order to identify an object A in a 

search image ( , )x yS  as listed in Figure 4 

(b), where ( , )x y  represent the horizontal and vertical coordinates of each pixel, a template 

image (u, v)T of the object shown in Figure 4 (a), where (u, v)  represent the horizontal and 

vertical coordinates of each pixel in the template image, is made from a part of the search image 
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or a different image which contains the shape and intensity information of the object.  When 

conducting template matching, the template (u, v)T  moves over the whole search image and the 

similarity score at each pixel position ( , )x y  of the search image is calculated.  The position with 

the highest score is considered as the best match.  One commonly used similarity measure is the 

sum of squared differences (SSD) of the intensity between the two images.  The intensity of 

pixel ( , )x y in the search image is defined as ( , )sI x y  and the intensity of pixel (u, v)  in the 

template image as (u, v)tI .  The SSD is calculated at each pixel ( , )x y in the search image as 

listed below: 

 
2

0 0

( , ) ( , ) ( , )
cols rowsT T

s t

i j

SSD x y I x i y j I i j
 

     (5) 

where rowsT  and colsT  denote the number of rows and columns of the template images.  This 

method to compute the similarity is computationally expensive, so more efficient ways to 

compute the coefficients are needed.  The calculation in Equation (5) can be expanded as  

2 2

0 0

( , ) ( , ) ( , ) 2 ( , ) ( , )
cols rowsT T

s t s t

i j

SSD x y I x i y j I i j I x i y j I i j
 

        (6) 

where the terms 2 2

0 0

( , ) ( , )
cols rowsT T

s t

i j

I x i y j I i j
 

   could be considered to be constant across all 

possible matches (i,j) and the remaining term 2 ( , ) ( , )s tI x i y j I i j   is depends on the 2D shift 

(I,j).   Hence, cross correlation coefficient (CC) defined in the following equation is utilized to 

simplify the calculation of SSD.  The expression of CC is similar to convolution as shown below: 

0 0

CC( , ) ( , ) ( , )
cols rowsT T

s t

i j

x y I x i y j I i j
 

    (7) 
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Thus, convolution, which is calculated by Fast Fourier Transform (FFT), was implemented in the 

computation of CC to improve computation efficiency. Given sF as the FFT of sI , tF as the FFT 

of tI , and ()IFFT  as the Inverse Fast Fourier Transform function, the correlation matching 

surface is: 

 *( )s tIFFT F G  (8) 

In practice, the normalized version of the cross correlation, noted as normalized cross correlation 

(NCC) is used to eliminate effects caused by different illumination situations of the images.   

0 0

2 2

0 0

( ( , ) )( ( , ) )

NCC( , )

( ( , ) ) ( ( , ) )

cols rows

cols rows

T T

s s t t

i j

T T

s s t t

i j

I x i y j I I i j I

x y

I x i y j I I i j I

 

 

   



   





 (9) 

where sI and tI  are the mean intensity of the search image and the template image respectively.  

NCC is not robust if there are occlusions in the search image, which are extraneous features and 

overlying tissues (bones, tables, and etc.).  To overcome this deficiency, a more robust approach 

noted as Orientation Correlation (OC)
115

 was implemented in this thesis.  OC is the CC 

calculated on orientation images (orientation of intensity gradient) instead of the original 

intensity images.  The orientation image f of an image with intensity I is calculated by:  

( , ) ( , )
( , ) sgn

I x y I x y
f x y i

x y

  
  

  
 (10) 

0         if 0 

where  is the complex imaginary unit and sgn( )
      otherwise

x

i x x

x

 


 


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sf  and tf  are calculated for intensity images of the search image sI and the template tI  

correspondingly.  And the OC of the template and the search image is the CC of sf  and tf .  

Orientation correlation matches the orientation of the gradient for each pixel and thus it is 

insensitive to high density noise and occlusions.  This advantage is important for this work 

because the target images, CBCT projections, have high noise levels  and the matching of tumor 

are influenced by occlusions such as bones, treatment table, cables and etc.   

3.2.2. Workflow of MLTM Tumor Detection  

Template matching has been employed to extract tumor trajectories or breathing signals 

in fluoroscopic images of RT
83,86,116,117

.  Reference templates which correspond to different 

breathing phases and tumor positions are generated from either 4DCT or fluoroscopy images 

taken at the simulation stage (refer to Appendix II for more detail).  The tumor position or the 

breathing phase of a search image is obtained by matching the template to the search image.  The 

full tumor trajectory or breathing signal is generated by running the template matching at a set of 

sequential images of a time period.   

In this thesis, the author implements template matching in tumor trajectory estimation at 

CBCT projections instead of fluoroscopic images.  The latter are acquired at a fixed gantry angle, 

usually the AP view, in fluoroscopy, while the CBCT projections are rotated over 360 degrees or 

200 degrees.  The rotational geometry of CBCT makes it more challenging to implement the 

technique.  First of all, more templates need to be generated to cover the different geometry due 

to gantry rotation.  Secondly, contrast and motion enhancement techniques cannot be applied the 

structure of interest due to the changing geometry for the rotating images.  Furthermore, the 
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variations in tumor visibility at different gantry angles also complicate the template matching. 

The purpose of this work is to achieve clinically-acceptable tracking accuracy of lung cancers 

using template matching-based algorithm in CBCT projections.   

The basic framework of MLTM was developed previously by Hugo et al. for small, well-

define and radiosurgery eligible tumors 
98

. Briefly, the procedure consists of five steps as shown 

in Figure 5: 1) Gross tumor volume (GTV) (in green) was delineated at each phase of the 

planning 4DCT by physicians and it was expanded with a margin to obtain the expanded GTV 

(Ex-GTV, in purple). Note that the Ex-GTV was not equivalent to the clinical target volume used 

to plan for microscopic disease, but instead was used exclusively for template generation. 2) A 

masked CT was generated by zero padding regions outside the Ex-GTV of each phase of the 4D 

scan, and the masked CT was shifted to the daily tumor position by registering the planning CT 

and the daily free breathing reconstructed CBCT to the tumor.  3) The shifted masked CT was 

forward projected onto the virtual detector plane to generate digitally-reconstructed radiographs 

(DRR) at all breathing phases and at periodically-spaced gantry angles, which are termed the 

tumor templates (TT). 4) The TT was cropped and 2D/2D registration of TT to the measured 

projection (MP) was performed by template matching (TM) within a search region. The 2D 

tumor position in each MP of the free breathing CBCT was calculated by matching the MP with 

its corresponding TT. The 2D registration searched in a window of ±4 mm around the 2D tumor 

position at the detector plane (equivalent to ±2.7 mm at the room coordinate system) to find the 

best match of the TT and the MP. The red contour in Figure 1 showed a matching result. 5) The 

2D tumor positions are reconstructed to the 3D tumor trajectory by backprojection.   The masked 

CT was shifted to the daily tumor position in step 2) because the difference between the real 
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daily tumor position and the tumor position of the masked CT should be small enough in order to 

obtain correct tumor template in step 3) and use small template searching windows in step 4).  

The angle between an object and the radiation source as well as the length of tissue travelled by 

radiation beams are different if the position of the object is different.  The shape and the intensity 

of the tumor in the template are related to the radiated angle and the beam travel length.  If the 

tumor position the masked CT is far away from the real daily tumor position, the shape and 

intensity of the tumor template would be incorrect.  The masked CT is shifted to be closer to the 

real daily tumor position to obtain more accurate tumor template.  Furthermore, if the tumor 

position in the tumor template is closer to the daily tumor position, the searching window in step 

4) could be smaller so that the matching results are more refined and the computation is faster.   

The following simple enhancements were added to this basic framework, but are not the 

main focus of the aim:  

1) Histogram equalization is applied to the search region in the projection images to 

improve the contrast.   

2) The search window for template matching is adapted to ±22.5 mm, which is ±15 mm 

in the room coordinates, instead of the ±4 mm window to account for the up to 3 cm 

tumor motion.    

3) The similarity metric used to conduct template matching is changed from block NCC 

to orientation correlation.  

4) A spatial probabilistic method developed by Poulsen et al 
118

 is used to reconstruct 

3D tumor positions from 2D tumor positions than using simple backprojection 

technique in the original framework.     
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The main adaptions will be introduced in the following sections.   

 

 

 

      GTV & Ex-GTV              

 
     Ex-GTV Masked CT 

 
                   TT 

 
      Cropped TT   Cropped MP    TM Result      

                            
        2D Trajectory                     3D Trajectory 

              

Figure 5. Workflow of MLTM in CBCT projections.  
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3.3. Software Development 

The central code of the MLTM is a MATLAB-based code, denoted as Tumor Detect, which 

outputs the tumor 3d positions of CBCT projection images.  The inputs of the algorithm are a set 

of templates, tumor position in each template, gantry angle and phase of each projection.  The 

previous method for generating these inputs was mainly based on using the treatment planning 

system Pinnacle, which has many manual steps and was time-consuming.  Automatic method 

needs to be developed in order to improve the efficiency and reduce manual errors.  An in-house 

data read/write and automated data processing computing framework called RCF library is 

available to serve these purpose at generation of inputs for the Tumor Detect code.   

TT is generated from each phase of the tumor-only CT by forward projection using an 

already-existing in house GPU-based algorithm called ‘project’.  The project code simulates the 

generation of a projection image.  The pixel intensity in a simulated projection represents the 

integration of the attenuation along the ray path.  The simulated projections can be generated at 

any gantry angle.  The isocenter of the rotation is an input parameter which is specified by the 

user.  For the same structure with different positions relative to rotation isocenter of the project 

code, the projections of the structure in the projection image are different due to divergence.   In 

order to make the TT image as similar to the measured projection, the tumor position relative to 

the isocenter of the rotation in the masked CT should be roughly the same as the tumor position 

relative to the isocenter in the measured CBCT.  So the isocenter of rotation for the project code 

should be at the isocenter of the reconstructed CBCT when the planning CT and reconstructed 

CBCT are registered to the tumor as shown below:   

cor CBCTISO ISO T   (11) 
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where T  is the translation from registering the planning CT to the CBCT (using a region of 

interest containing only the tumor), corISO is the center of rotation of the project code and 

CBCTISO  is the isocenter of the CBCT.  The tumor centroid position in the Tumor Template with 

this setting of rotation isocenter is at the tumor position of the daily CBCT, which means that the 

searching window of the 2D image registration from the Tumor Template to the projections can 

be constrained to a small region.   

 

The required input data of the Tumor Detect algorithm are Tumor Templates, tumor 

positions of 4D FBCT, CBCT isocenter ( CBCTIso ), translation from the CBCT to the planning CT 

(T ), the gantry angle and phase of each projection.   

 

Figure 6 Flow Chart of generation of the input data for Tumor Detect algorithm.  The red boxes are the input data 

for the Tumor Detect algorithm. 
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Figure 6 shows the flow chart of the generation of each of the four required pieces of 

input data for the Tumor Detect algorithm.  The blue boxes in the figure contain the data required 

at each step for the generation of the input data in the red box.   The summation of the 

computation process is shown in Table 5.  The type of work and the approximate cost of time are 

listed for each step. Steps 1 to 3 are conducted once per patient.  Other steps are conducted once 

per CBCT scan.  The Pinnacle-based approach switches from several platforms leading to low 

efficiency and higher chances of calculation errors.   

The RCF platform has direct access to the patient database which includes the planning 

CT, reconstructed CBCTs, treatment plans and contours.  Hence, it doesn’t need a copy of the 

data in as the Pinnacle-based approach.  The RCF tool also has image processing package which 

include automatic image registration, generation of bitmap images, calculate centroid for an ROI 

and other functions that are required in our purpose. The process of the input data generation as 

listed in Table 6 is adapted to almost fully automatic which significantly improves the efficiency 

of the input preparation process. 

Table 5.  The cost of time for each step in Pinnacle-based process.   If the property of a step is manual work, it only has 

manual cost and does not have automatic cost.  Step 1-3 are done once for each patient, so the cost of time should be 

considered separately.  The automatic cost is mostly the running of ‘project’ code, which depends on the capacity of the 

GPU-based server.   

Steps Properties Manual cost 
Automatic 

cost 

1 
Import planning CT image and plan with tumor 

contours into Pinnacle database 

Manual work in 

Pinnacle 

5 hours / patient -- 2 
Calculate the center of mass of tumor for all the 

phases 

Manual work in 

Pinnacle 

3 
Expend GTV with a uniform margin and create 

new ROI for the expended GTV 

Manual work in 

Pinnacle 

4 
Load the reconstructed daily CBCT into Pinnacle 
database 

Manual work in 

Pinnacle 
20 minutes -- 

5 

Conduct rigid registration of the daily 

reconstructed CBCT and the planning CT by 

aligning the tumor 

Manual work in 

Pinnacle 
1 hour -- 

6 Generate tumor-only masked CT Matlab-based 20 minutes 10 minutes 
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code 

7 Calculate the isocenter of the daily CBCT Manual work 

1 hour 

-- 

8 
Calculate isocenter of the rotation and generate 

Cliff files for the project code 
Manual work -- 

9 Generate templates from the ‘project’ code 
Automatic 

Project code 
-- 5 hours 

10 Obtain phase information for each  projection 
Matlab-based 

code 20 minutes -- 

11 Obtain gantry angles of projections RCF-based code 

Total Time cost per CBCT scan 
 3 hours /scan + 5 

hours /patient 

5.17 hours 

/scan 

 

Table 6. The cost of time for each step in RCF-based process.   

Steps Properties Manual cost Automatic cost 

1 
Use a program to generate the of the input Cliff file for 

the RCF-based tool 
Automatic 

20 minutes 

/patient 
Negligible  

2 
Download the image and plan information from the 

PPG website  
Web download -- 

10 minutes for 

all the patients 

3 
RCF-based too to do the processes 1~8,10 and 11 in 

Table 5 
RCF-based tool -- 10 min 

4 Generate templates from the ‘project’ code 
Automatic 

Project code 
-- 5 hours 

Total Time cost per CBCT scan 0.3 hours /scan 5.18 hours /scan 

3.4. Refinement of MLTM Algorithm  

3.4.1. Image Processing in Projection Images 

The raw projections are preprocessed before any further analysis, such as dark-flood field 

correction, bowtie filter correction, dead pixel correction and noise filtering. Even with this 

preprocessing techniques, the image contrast of the projection images are limited especially in 

the slow gantry CBCT in which the radiation exposure/projection is less than the normal CBCT 

scans.  Hence, contrast enhancement in the images for better tumor visualization is performed.  

The technique implement here is histogram equilibrium which enhances the image contrast by 

transforming the image intensities so that the histogram of the output image matches a specified 

histogram (uniform distribution here).  The preprocessing process also includes the removal of 
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markers in the projections to eliminate the potential bias of the markers on the template matching.  

As described in Appendix II, markers are successfully removed from the projections by the 

marker painting technique.  

3.4.2. Templates for Template Matching 

Shape and appearance of tumor templates are investigated to preserve the real tumor 

boundary while minimizing introduction of artificial boundaries that may be introduced the zero 

padding in the generation of masked CT outside the Ex-GTV region in the planning CT.  Three 

types of templates, including Ex-GTV template
98

, a cylinder template
96

, and a new padded 

template developed here were studied in Appendix II.  All templates are created from the 

extended GTV which is GTV plus a 5 or 10 mm expansion.  It is particularly important to 

conduct this study for locally-advanced lung cancers other than small, well-defined and 

radiosurgery eligible tumor cases.  When creating DRR for tumor templates, artificial radiation 

beams penetrate the tumor.  Large tumors attenuate the beams more than the small tumor causing 

large differences between zero and nonzero paddings.  Therefore, these three types of templates 

are investigated to reduce the zero padding effect.  This effect can be mitigated to include more 

lung tissues by increasing extended GTV expansion from 5 mm to 10 mm.  However, for tumors 

with large volume, the increased expansion itself introduces more noise structures in the 

templates.  Thus, in this dissertation, a10 mm expansion is chose for patient 2 and 3 with smaller 

tumors (less than 50 cc) located in the central lung.  For the remaining patients, the 5 mm 

expansion was used due to large tumor volume or diffuse tumor.      

Tracking results using the three types of templates are compared to the reference 

trajectory generated from the validation framework in Chapter 2.  The absolute difference 
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between the MLTM and the reference trajectory is defined as the error.  Template matching with 

padded template provides the best results with an error of 3.5 mm, which is smaller than the 5.3 

mm for Ex-GTV template and 6.1 mm for cylinder template.  Similar as the numbers, in Figure 8 

to Figure 12, the mismatch of the template matching with the marker reference is most severe 

with Ex-GTV template and the template matching with padded template best matches the marker 

reference.   

3.4.3. Search Region of Template Matching 

Even with the use of padded template, there are still large errors left in MLTM.  The 

search window in the projection imager plane is fairly large, ±2.25 cm, accounting for a potential 

large motion of 3 cm (such as a deep breath).  Hence, a way to narrow down the search window 

effectively is of interest.  One possible approach is to refine the template matching search 

window with the velocity of tumor movement.  The velocity may be up to 4 cm/s and with the 5 

Hz frequency for projection scanning, the tumor movement between two neighboring projections 

is up to 8 mm at the global coordinate leading to a ±12 mm search window to the tumor position 

in the previous projection.  This search window is still fairly large and the errors will propagate 

from one projection to the other.  Hence, this approach is not pursued.  A constraint method is 

introduced in Appendix II and is summarized in the following.  Because the intended application 

of the MLTM algorithm is not for real-time applications but for retrospective review, the tumor 

trajectory obtained from a first pass of the MLTM algorithm can be considered as the training 

data to generate an average cycle (mean tumor position of each breathing phase), which is used 

as the guidance for a second pass of the template matching.  A narrower search window is placed 
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at the phase mean tumor position, so that the chance of getting true template matching position 

increases.   

The size of the restricted search window is estimated from analyzing of marker 

trajectories segmented from projections.  For a marker in a CBCT scan, trajectory M  is 

segmented in projections P .  Let pm , pm M  to be the marker coordinates of a single 

projection p , pP .  P  is grouped into 10 phases bins based on the SI marker positions,  phase 

i projection group denoted as 
i

P .  For projection group at phase i , the mean marker position 
iM

is calculated.  For a projection p , pP , a phase j  is determined from the in-house phase 

sorting algorithm.  The difference p between the instantaneous marker position pm and the phase 

j mean marker position 
jM is calculated: 

The differences       
1 2

, , , , ,p p p S
p p p     E P P P , where S is the total number of 

marker trajectories.  The standard deviation of ,  E  and the interval included 97% of  in E

are computed.  The distribution of  is close to Gaussian distribution as shown in Figure 7.   

= j

p pm M   (12) 

 
Figure 7. Probability density functions (PDF) of E (blue dots) and their fitted Gaussian curves (red curve). Plots (1), 

(2) and (3) are at LR, AP, and SI directions respectively.  E are calculated for all the available marker trajectories, 

about 6 trajectories per patient.    
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The standard deviations,   are 0.6/0.9/1.7 mm in the  LR/AP/SI directions, respectively, and 

the 97% interval is ±1.4/±2.1/±4.0 mm.  The search windows decided by either the 2.5  

(1.5/2.25/4.25) or the 97% interval are close to each other.  Therefore, the search window of ±3 

mm at the u (across the imager panel) and ±6 mm at the v direction (along the imager panel) is 

applied to the phase mean tumor position in Appendix II.  As shown in Figure 8 to Figure 12, the 

constraint method eliminates large jumping errors and improves the match between the results of 

MLTM and the reference compared to the non-constraint methods.   

3.5. Conclusion 

The effect of the artificial boundary created by zero padding in the generation of masked 

CT is reduced by padded template which is selected as the tumor template for further study.  The 

constraint method is able to reduce the search window in the template matching and improve the 

matching results.    
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Figure 8. Patient 1 first fraction CBCT. (1) Breathing curves comparison at SI direction (2) Error comparison at SI 

direction. 
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Figure 9. Patient 2 first fraction CBCT. (1) Breathing curves comparison at SI direction (2) Error comparison at SI 

direction. 
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Figure 10. Patient 3 first fraction CBCT. (1) Breathing curves comparison at SI direction (2) Error comparison at SI 

direction. 
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Figure 11. Patient 4 first fraction CBCT. (1) Breathing curves comparison at SI direction (2) Error comparison at SI 

direction. 
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Figure 12. Patient 5 first fraction CBCT. (1) Breathing curves comparison at SI direction (2) Error comparison at SI 

direction. 
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4. MLTM Considering Target Deformation 

4.1. Introduction 

In the previous chapter, the MLTM algorithm considers tumors with minimal shape or 

volume change.  Patients studied by this dissertation underwent treatments last up to 7 weeks, so 

there is a high chance that tumor will deform due to natural growth of the tumor or treatment 

response.  Shape and volume of a tumor at the treatment day vary from the planning tumor, 

especially near the end of the treatment course.  Compared to the pretreatment tumor volume on 

planning CT, tumors regressed 30% to 65% at the end of the treatment for patients involved in 

this dissertation.  If shape and volume of a tumor change too much at the treatment day 

compared the planning CT, the algorithm may fail.  In previous chapter, templates are directly 

made from pre-treatment planning FBCT.  The MLTM with those templates is not able to obtain 

correct results for fractions with large tumor deformation, because the tumor in the template 

differs too much from the daily tumor.  Therefore, the next major aim of this dissertation is to 

adapt the MLTM algorithm for tumors with large shape or volume change.    

The key issue for the adaptation of the template matching is how to generate a set of 

templates that represent the daily tumor shape.  Rescanning and re-delineating the patient with 

FBCT is one option. But it is too costly, both in time and resources.  The other option is to 

generate tumor templates from the delineated daily CBCT.  However, the image quality of 

CBCT is low, and the tumor definition for the DRR generation requires high image quality.  A 
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way to transform the planning tumor to the daily tumor is considered in this thesis to 

accommodate the need to obtain tumor templates with the daily tumor shape while maintaining 

the image quality.  Different image registration methods are performed to register the planning 

CT to the daily CBCT by aligning tumor.  In the following, how to deform the planning tumor 

and whether the target transformation is adequate for markerless tracking near the end of the 

treatment course will be investigated.   

4.2. Transformation of Planning Target 

In order to segment the tumor correctly in a MP by template matching, shape and size of the 

tumor on its corresponding TT should as similar as on MP.  TT (2D) is generated from the 

masked CT (tumor-only CT, 3D) as mentioned in section 3.2.2.  Hence, the problem is 

equivalent to that the tumor on the masked CT (masked tumor) should match the tumor on 

reconstructed daily CBCT (daily tumor).  The proposed solution is to transform the tumor on the 

masked CT to match the daily tumor.  The transformation is obtained by image registration 

between the planning CT and the daily CBCT.  In Chapter 3, this transformation is rigid meaning 

no shape, size and intensity change of masked tumor compared to the planning tumor.   Non-

rigid or deformable transformation is needed to apply to the planning tumor to deal with shape 

and volume change.  Both affine transformation and B-Spline DIR, which are introduced in 

section 2.3, are applied to register the planning CT and the daily CBCT to the tumor.  The 

resulting transformations from the image registrations are applied to the masked CT, and the 

transformed masked CT is used to create TT for template matching.  Affine transformation 

accounts for tumor expansion or shrinkage and DIR transforms the tumor in a more complex 
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way.  The transformed tumors of the two approaches are examined visually to check whether the 

tumors align properly.   

A study is conducted to determine which method is selected to deform the tumor by comparing 

the tracking results of transforming the masked CT with rigid image registration, affine 

transformation and B-Spline DIR.  As described in Chapter 2, the average CT of the free 

breathing planning CT and average CBCT are registered and the resulting transformation is used 

to transform the phase images.  The image quality of the CBCT phase images is poor and hence 

the average CBCT is used to obtain better registration results.  The spacing of the grid for 

defining control points is 8.0, 4.0, 2.0, and 1.0 voxels.  The DIR is running at multi-resolution 

with down-sampling and the resolution pyramid is 8.0, 4.0, 2.0, and 1.0 voxels.  The rest of the 

MLTM algorithm uses the method selected in Chapter 3 (padded template + constraint method).  

The study is performed on the last weekly CBCT of each patient in which shape and volume of 

the target changes most.  Table 7 shows that rigid registration is not adequate for fractions near 

the end of the treatment course.  However, the affine transform does not improve the results as 

listed in Table 8.  The trajectories of the MLTM using B-Spline DIR are shown in red curves in 

the bottom plots of figures from Figure 21 to Figure 25 (the blue curves are the reference 

trajectories).  The accuracies are calculated in  

Table 9.  As suggested in the tables and the figures, B-Spline DIR improves the tracking 

results substantially and provides promising accuracy.   

Table 7. Errors of MLTM when the masked CT is rigidly transformed. 

Rigid Absolute Error/mm STDV/mm 90% Error Level/mm 

Patient LR AP SI LR AP SI LR AP SI 

1 1.0 5.5 2.8 1.4 7.7 3.9 2.2 12.8 4.7 

2 3.8 6.7 4.1 6.0 10.3 6.2 12.0 21.0 14.0 
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Table 8. Errors of MLTM when the masked CT is transformed by affine transformation.  

 

Table 9. Errors of MLTM when the masked CT is transformed by B-Spline DIR. 

 

4.3. Conclusion 

Affine transformation fails to provide an accurate target registration.  Transforming masked 

CT by B-spline DIR results in best tracking results, 1.5/1.3/1.3 mm at LR/AP/SI directions.  The 

transformed masked tumor matches well to the daily tumor in shape and volume therefore B-

spline DIR should be conducted to the planning CT in the process of MLTM.   

 

3 7.4 1.7 5.2 1.8 1.6 4.9 9.6 3.7 9.2 

4 1.6 2.0 1.8 2.5 0.9 2.5 4.2 3.3 4.0 

5 3.3 4.7 4.6 1.3 2.3 5.3 4.9 7.3 10.8 

Mean 4.1 4.6 3.9 3.1 5.9 4.7 7.5 11.7 9.3 

Affine Absolute Error/mm STDV/mm 90% Error Level/mm 

Patient LR AP SI LR AP SI LR AP SI 

1 0.9 5.3 2.5 1.2 7.8 4.4 1.8 12.3 6.4 

2 2.8 5.7 3.3 4.8 9.3 4.8 8.0 15.0 7.7 

3 4.4 4.0 4.7 1.6 3.4 5.2 5.8 6.8 8.7 

4 4.6 1.4 2.1 2.5 0.9 2.5 6.6 2.5 4.1 

5 6.6 10.7 7.5 1.5 13.1 8.5 8.9 21.8 16.3 

Mean 4.3 6.2 4.5 2.7 8.1 5.4 6.7 13.4 9.6 

B-Splines Absolute Error/mm STDV/mm 90% Error Level/mm 

Patient LR AP SI LR AP SI LR AP SI 

1 0.7 1.9 0.7 0.6 0.8 1.0 1.3 2.5 1.6 

2 0.3 0.7 1.1 0.2 0.7 0.8 0.5 1.4 2.1 

3 1.5 1.6 1.3 0.6 1.2 1.8 2.2 3.6 3.0 

4 1.6 0.6 1.0 0.3 0.7 1.3 1.9 1.2 2.1 

5 2.4 1.2 2.1 1.1 0.9 2.7 3.8 2.2 4.8 

Mean 1.5 1.3 1.3 0.6 0.9 1.7 2.2 2.3 2.9 
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5. Result Analysis of MLTM  

5.1. Introduction 

The major goal of this thesis is to produce a method that is better than 4D CBCT in 

estimating tumor trajectory.  The algorithm is developed in Chapters 3 and 4 along with 

Appendix II.  How the algorithm performs and whether it outperforms 4D CBCT is a question 

yet to be answered.  Hence, the next major aim of the thesis is to analyze to accuracy of the 

MLTM algorithm and compare against 4D CBCT.  The major contribution of this chapter is to 

analyze the results of MLTM in the following ways.  Firstly, the tracking errors of each scan of 

every patient are calculated and studied.  Due to the rotation geometry of the CBCT projections, 

the tracking results are expected to be different at different gantry angles.  The correlation of the 

tracking errors and gantry angle are studied to determine whether the errors correlate consistently 

among patients with the gantry angles.  If there is a correlation, certain gantry angles with larger 

tracking errors can be avoid to be used in the creation tumor trajectory or pdf of tumor motion.  

Secondly, the markerless tracking algorithm is compared against the clinical standard 4D CBCT.  

The full trajectory of MLTM and the 4D CBCT are compared and the errors are calculated.  In 

the following, angular correlation of tracking errors and whether MLTM outperforms 4D CBCT 

will be determined.   
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5.2. Angular Error Analysis 

MLTM is performed on projection images which are planer image rotating with the rotation 

of the gantry.  For the images evaluated here, the gantry rotated during CBCT acquisition from -

180º to 180º, or the opposite.  Image at 0º is AP view, 180º (or -180º) is PA view, 90º is RL view 

and -90º is RL view.  The errors are defined as the absolute difference between the MLTM 

trajectories and the reference trajectories obtained from Chapter 2.   Figure 16 to Figure 20 plot 

the errors of the MLTM trajectories at the SI direction against gantry angles of the 5 patients.   

For statistical analysis, projections are grouped in 36 groups by gantry angles with an interval of 

10º.  Projections with gantry angles from -180º to -170º belong to group 1, where the mean 

gantry angle -175º is the gantry angle of the group, and projections with gantry angles from 170º 

to 180º belong to group 36, whose group gantry angle is 175º.  Analysis of variance (ANOVA) 

test is used to evaluate if there was any relationship between the mean errors of the 36 groups of 

projections with the gantry angles.  Figure 13, Figure 14 and Figure 15 are the results of 

ANOVA test at LR, AP and SI directions.  The p values of these 3 tests are all less than 0.0001.  

Therefore, there are significant difference between groups and the tracking errors are gantry 

angle dependent.   As the gantry rotates, the contrast of tumor differs because the length of 

tissues or bones that the radiation beams penetrates are different at different gantry angles.  The 

errors are generally worse at oblique angles such as -135º, -115º, -35º, 25º, 35º and 105º.  The 

number of outliers (outside the blue lines in figures from Figure 16 to Figure 20) for each group, 

which are errors lying outside region [-2, 2] mm, is greater at gantry angles from -150º to -110º 

and -60º to -30º for patients 1, 2, 3 as well as 5, especially patient 3, and from 10º to 40º, 100º to 

120º, 140º to 150º for patient 4.  These results are consistent to the ANOVA results. These 
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oblique angles are between lateral and AP/PA views, where beams penetrate more bony 

structures (ribs) leading to worse results.   

 

 

Figure 13. ANOVA test results for LR components of absolute errors with gantry angle grouping.  For each group, 

the mean gantry angle is used to represent the group.  The central of the box indicates the median value of the group 

and the lower and upper boundary line of the box are at the 25%/75% quantile of the data.  The tick marks represent 

the outliers.   
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Figure 14. ANOVA test results for AP components of absolute errors with gantry angle grouping.  For each group, the 

mean gantry angle is used to represent the group.  The central of the box indicates the median value of the group and 

the lower and upper boundary line of the box are at the 25%/75% quantile of the data.  The tick marks represent the 

outliers.   
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Figure 15. ANOVA test results for SI components of absolute errors with gantry angle grouping.  For each group, the 

mean gantry angle is used to represent the group.  The central of the box indicates the median value of the group and 

the lower and upper boundary line of the box are at the 25%/75% quantile of the data.  The tick marks represent the 

outliers.   
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Figure 16. Patient 1 MLTM trajectory errors at SI direction. Top is the first scan and bottom is the last scan. The dots 

are the errors and the lines indicate error levels of ±2 mm.  
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Figure 17. Patient 2 MLTM trajectory errors at SI direction. Top is the first scan and bottom is the last scan.  The dots 

are the errors and the lines indicate error levels of ±2 mm.  
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Figure 18. Patient 3 MLTM trajectory errors at SI direction. Top is the first scan and bottom is the last scan.  The dots 

are the errors and the lines indicate error levels of ±2 mm.  

 

 

 



 

 

62 

 

 
 

 

 

Figure 19. Patient 4 MLTM trajectory errors at SI direction. Top is the first scan and bottom is the last scan.  The dots 

are the errors and the lines indicate error levels of ±2 mm.  
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5.3. Benchmarking MLTM against 4D CBCT 

4D CBCT is the current clinical method to determine tumor trajectory for lung tumors. 

Whether MLTM outperforms the 4D CBCT needs to be evaluated.  The tumor trajectory 

obtained from MLTM is compared against the 4D CBCT trajectory.  The output of MLTM is 

 

 

Figure 20. Patient 5 MLTM trajectory errors at SI direction. Top is the first scan and bottom is the last scan.  The dots 

are the errors and the lines indicate error levels of ±2 mm.  
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tumor positions as a function of time (gantry angle) while the 4D CBCT only provides average 

tumor position as a function of breathing phase.  Tumors are delineated in every phase of the 

reconstructed 4D CBCT resulting the average cycle of tumor positions which includes one tumor 

position at each of the 10 phases.  In order to conduct the comparison, the average cycle of the 

4D CBCT need to be expanded to a full trajectory.  Phases of all projections are predetermined.  

For a projection, the average phase tumor position obtained from the 4D CBCT is used to 

represent the tumor position of the projection and the computation is done for all projections.  

These positions are plot against the projections’ gantry angles, resulting the 4D CBCT full 

trajectory.  The errors of both the MLTM trajectory and the 4D CBCT full trajectory are 

calculated and compared.  The errors of the MLTM trajectory and the 4D CBCT full tumor 

trajectory are listed in Table 10 and Table 11.  The plots of comparing full tumor trajectories at 

SI direction are shown in figures from Figure 21 to Figure 25 and the average trajectories at the 

SI direction by grouping projections into 10 phases are shown in figures from Figure 26 to 

Figure 30. These tables and figures show that the MLTM algorithm outperforms the 4D CBCT in 

3 patients (Patient 1,2 and 4) and no worse in 2 patients (Patient 3 and 5).   The average 

amplitude of tumor motion measured from the 4D CBCT and the markers does not always match 

each other.  4D CBCT underestimates the tumor motion in several cases, for example plot (2) of 

Figure 26 and plot (1) of Figure 27.  The factors that may cause this disagreement are delineation 

uncertainties, phase sorting deficiency of 4D CBCT and 4D CBCT reconstruction artifacts.   

Table 10. Errors of tumor trajectory obtained from MLTM. 

 

1
st

 
scan 

Absolute Error STDV 90% Error Level 

Last 
scan 

Absolute Error STDV 90% Error Level 

Patient x y z x y z x y z x y z x y Z x y z 

1 0.9 1.2 1.0 0.5 1.2 1.2 1.5 2.5 2.2 0.7 1.9 0.7 0.6 0.8 1.0 1.3 2.5 1.6 

2 0.5 0.5 1.0 0.6 0.6 0.7 1.1 2.0 1.9 0.3 0.7 1.1 0.2 0.7 0.8 0.5 1.4 2.1 



 

 

65 

 

 

Table 11. Errors of 4D CBCT full tumor trajectory.   

 

3 0.5 1.4 1.8 0.7 1.1 2.1 1.1 2.7 3.9 1.5 1.6 1.3 0.6 1.2 1.8 2.2 3.6 3.0 

4 1.8 0.8 2.2 0.5 0.9 2.3 2.6 1.6 4.7 1.6 0.6 1.0 0.3 0.7 1.3 1.9 1.2 2.1 

5 1.4 2.0 2.6 1.3 1.4 3.3 2.8 3.5 5.8 2.4 1.2 2.1 1.1 0.9 2.7 3.8 2.2 4.8 

Mean  1.1 1.3 1.8 0.8 1.1 2.1 2.0 2.5 4.0  1.5 1.3 1.3 0.6 0.9 1.7 2.2 2.3 2.9 

 

1
st

 
Scan 

Absolute Error STDV 90% Error Level 

Last 
Scan 

Absolute Error STDV 90% Error Level 

Patient x y z X y z x y Z x y Z x y z x y z 

1 1.1 3.1 3.0 0.4 1.1 1.4 1.5 4.4 4.6 2.8 3.5 2.1 0.8 1.0 1.3 3.8 4.7 3.6 

2 0.8 2.0 1.6 0.7 1.0 1.8 1.6 3.4 3.2 1.7 0.7 1.3 0.6 0.8 1.4 2.4 1.5 2.9 

3 0.9 0.9 1.0 1.0 0.6 1.3 1.8 1.6 2.2 6.1 1.2 1.5 0.5 0.5 1.8 6.9 1.9 3.4 

4 2.3 1.4 3.1 1.3 1.3 3.9 3.6 2.5 6.2 2.2 2.2 2.0 0.4 0.8 2.0 2.7 3.3 3.8 

5 3.4 1.2 2.0 1.0 1.1 2.3 4.6 2.4 4.1 4.0 2.2 3.7 1.1 0.7 1.9 5.4 3.1 6.3 

Mean 2.0 1.9 2.3 0.9 1.0 2.3 2.9 3.0 4.3 3.7 2.2 2.3 0.7 0.8 1.7 4.6 3.1 4.2 
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Figure 21. Patient 1 trajectories comparison at SI direction. The green curve in each plot is the 4D CBCT full 

trajectory, red curve is the MLTM trajectory, and blue curve is the reference trajectory.  The top plot shows the 

trajectories of the first scan and the bottom plot shows trajectories of the last scan. 
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Figure 22. Patient 2 trajectories comparison at SI direction. The green curve in each plot is the 4D CBCT full 

trajectory, red curve is the MLTM trajectory, and blue curve is the reference trajectory. The top plot shows the 

trajectories of the first scan and the bottom plot shows trajectories of the last scan. 
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Figure 23. Patient 3 trajectories comparison at SI direction. The green curve in each plot is the 4D CBCT full 

trajectory, red curve is the MLTM trajectory, and blue curve is the reference trajectory.  The top plot shows the 

trajectories of the first scan and the bottom plot shows trajectories of the last scan. 
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Figure 24. Patient 4 trajectories comparison at SI direction.  The green curve in each plot is the 4D CBCT full 

trajectory, red curve is the MLTM trajectory, and blue curve is the reference trajectory.  The top plot shows the 

trajectories of the first scan and the bottom plot shows trajectories of the last scan. 
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Figure 25. Patient 5 trajectories comparison at SI direction. The green curve in each plot is the 4D CBCT full 

trajectory, red curve is the MLTM trajectory, and blue curve is the reference trajectory.  The top plot shows the 

trajectories of the first scan and the bottom plot shows trajectories of the last scan. 
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(1)             (2) 

 

Figure 26.  Patient 1 average trajectories comparison at SI direction. The green curve in each plot is the 4D CBCT 

average trajectory, red curve is the MLTM average trajectory, and blue curve is the reference average trajectory.  

The left plot shows the trajectories of the first scan and the right plot shows the trajectories of last scan. 

 

(1)              (2) 

 
Figure 27.  Patient 2 average trajectories comparison at SI direction. The green curve in each plot is the 4D CBCT 

average trajectory, red curve is the MLTM average trajectory, and blue curve is the reference average trajectory.  

The left plot shows the trajectories of the first scan and the right plot shows the trajectories of last scan. 
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Figure 28.  Patient 3 average trajectories comparison at SI direction. The green curve in each plot is the 4D CBCT 

average trajectory, red curve is the MLTM average trajectory, and blue curve is the reference average trajectory.  

The left plot shows the trajectories of the first scan and the right plot shows the trajectories of last scan. 

 

 
(1)              (2) 

 
Figure 29.  Patient 4 average trajectories comparison at SI direction. The green curve in each plot is the 4D CBCT 

average trajectory, red curve is the MLTM average trajectory, and blue curve is the reference average trajectory.  

The left plot shows the trajectories of the first scan and the right plot shows the trajectories of last scan. 
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5.4. Conclusion 

The tracking results are not as good at some gantry angles.  One may avoid use data from those 

angles as to form the final tumor trajectory.  The results also indicate that MLTM is at least not 

worse than 4D CBCT and it outperforms 4D CBCT in sum.   

(1)              (2) 

 
Figure 30.  Patient 5 average trajectories comparison at SI direction. The green curve in each plot is the 4D CBCT 

average trajectory, red curve is the MLTM average trajectory, and blue curve is the reference average trajectory.  

The left plot shows the trajectories of the first scan and the right plot shows the trajectories of last scan. 
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6. Discussion and Conclusions 

6.1. Discussion and Conclusions 

This dissertation is focused on the development of a temporal markerless lung tumor 

trajectory estimation algorithm with clinical acceptable accuracy.  By this, one is able to 

characterize the patient-specific tumor motion pattern, which outperforms 4D CBCT without the 

need for invasive fiducial implantation.  The resulting tumor motion pattern is a crucial input 

component for generating patient-specific GTV to PTV margin in adaptive radiotherapy and 

incorporating variability models into 4D inverse treatment planning.  The reduced margin 

treatment plans could spare more normal tissue or escalate the dose prescribed to the tumor.  

This motivated the implementation and development of MLTM as the primary focus of this 

dissertation.  Chapter 1 introduced the rationale for the research problem and intended research 

design.   

As a reliable validation method is lacking, a validation framework based on fiducial markers 

is developed and evaluated in Chapter 2 to assess MLTM.  TMD_DIR is selected to correct the 

segmented marker trajectory to tumor trajectory as the reference.  The accuracy of the validation 

framework is 1.8 mm, indicating that TMD_DIR + marker trajectory is a reliable validation 

method for MLTM.  The major limitation is that the calculation of the uncertainties is based on 

the assumption that the physician delineation is the ground truth.  However, the delineation itself 

introduces uncertainties.  In this study, the patients are delineated by one physician, so inter-
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observer variability is not considered.  Ideally, the intra-observer variation of tumor delineation 

could be separately quantified to enable calculation of uncertainties.  It is not separated from the 

inter- and intra-fractional variation due to the overall small magnitude of the total variability.   

MLTM is developed and improved to acquire tumor trajectory with clinical acceptable 

accuracy for lung patients with locally advanced lesions in Chapter 3 and Chapter 4.  The 

development is separated into two parts by whether considering tumor deformation.  The first 

development (Chapter 3) is taken place on the first available weekly CBCT under the assumption 

that time is not a variable in consideration meaning that tumor is with minimal or none 

deformation.  Shape and appearance of the template is investigated, and 3 types of templates 

(Ex-GTV template, cylinder template, and padded template) are studied and compared.  A 

constraint method is introduced to constrain template matching searching region for more precise 

matching results.  Padded template is selected as the template and the constraint method further 

reduce the tracking errors from 3.5 mm to 2.1 mm.  The second part (Chapter 4) is to 

accommodate the MLDM to account for time influence which is tumor deformation due to 

treatment response for the later fraction CBCT.  B-spline DIR is demonstrated to be accurate and 

adequate to transform masked CT for the generation of TT in MLDM and the accuracy is 2.4 

mm.  

In Chapter 5, the results of MLDM are analyzed and compared against 4D CBCT.  

Statistically, gantry angles affect the tracking results.  At gantry angles from -150º to -110º, -60º 

to -30º,  the MLDM algorithm has worse results.  At these angles, radiation beams penetrating 

more bony structures (ribs) than other angles and the tumor contrast is poorer.  MLDM is at least 

not worse than 4D CBCT and outperforms 4D CBCT in summary.  
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One limitation of MLDM is the tumor contrast.  One direction of the future work will be 

developing a robust method to improve tumor contrast.  A challenging task will be adapting the 

algorithm to real time.  The latency due to the computation time of the algorithm and how to 

acquire daily tumor information before the daily CBCT will be the main concern.   

6.2. Original Contributions 

In this dissertation, specific contributions include:   

(1). A marker painting technique is employed to eliminate the effect of markers on template 

matching as stated in Appendix I.  Fiducial markers are implanted in the patients inside 

the tumors.  They are radiopaque and with high intensity contrast in radiographic images.  

When conducting template matching of planning tumor to daily tumor, the existence of 

marker inside the tumor may bias the results.  An interpolation based marker painting 

technique is developed to remove markers from every projection image of a CBCT scan.  

The technique successfully removes markers and reduces the effect of markers on 

template matching by both phantom and clinical observations.   

(2). A new method to validate markerless tracking algorithm is developed and investigated in 

this work.  The validation framework is based on fiducial markers that implanted inside 

or near the tumors.  The details of the framework development are introduced in Chapter 

2.  The validation method is with acceptable accuracy and is employed in the result 

analysis in this dissertation.   

(3). A new type of tumor template, padded template, is introduced and compared to the 

existing templates, i.e. Ex-GTV template and cylinder template in Chapter 3.  Padded 

template is edited in the gradient map of Ex-GTV template.  This editing is more direct 
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and results in more accurate definition of tumor in tumor template.  The results support 

this statement and they show that the tracking errors are much smaller by using padded 

template.  

(4).  A novel prediction method is developed to constrain the search region for template 

matching to obtain better matching results in Chapter 3.  The method is developed under 

the condition that it is a retrospective study.  The method iterates the process of MLTM 

twice.  The first running is considered as the training data to obtain an average breathing 

cycle which is considered as the predicted position in the second running.  This method is 

able to reduce the search region in the template matching process and provides more 

accurate tracking results.   

The author also makes contributions in improving the efficiency of computation, development 

and writing of the codes, data collection of marker segmentation, as well as bug detection of 

RCF library.   
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ABSTRACT 

Purpose: To develop and evaluate a validation framework for image-based markerless target tracking 

algorithms.  

Methods: Fiducial markers were implanted inside or near the gross tumor volume in six locally-advanced 30 

lung cancer patients, who underwent planning 4D fan beam CT and repeat 4D cone beam CT. The 3D 

marker trajectories were reconstructed from CBCT projections to quantify tumor motion during scan 

acquisition. The tumor was delineated in a subset of the reconstructed 4D CBCT scans. A correction 

based on the tumor-to-marker displacement (TMD) was applied to the marker trajectory to generate the 

reference tumor trajectory.  The variability of the TMD over the treatment course was measured, and the 35 

uncertainty of the entire validation framework was estimated.  

Results: The uncertainties of the TMD were 0.2/1.0/1.7 mm, for the left-right/anterior-posterior/superior-

posterior directions, respectively, for delineated CBCTs. Using linear models to fit undelineated CBCTs, 

the uncertainties of the TMD were 1.2/1.1/2.1 mm.  

Conclusions: The framework of marker-based delineation-free validation method was demonstrated to be 40 

an accurate method to estimate tumor centroid positions and hence could be used to validate image-based 

markerless target tracking algorithms. 

 

I. INTRODUCTION 

Algorithms to locate lung tumors directly in sequential 2-dimensional (2D+t) data sets such as cone beam 45 

CT (CBCT) projections or fluoroscopy are in active development, but a method to validate them in 

clinical data other than phantom studies is lacking. Instead, some validation studies1 rely on manual 

segmentation of the target in 2D images, which is limited to comparisons in small datasets by the time-

consuming nature of the segmentation. Other studies compare the result of the markerless tracking 
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algorithm to an average target trajectory from 4-dimensional (4D) CBCT2,3, which does not allow for 50 

evaluation of the quality of the tracking on short time scales and in response to cycle-to-cycle variation. 

Fiducial markers implanted near or inside the tumor may provide a 3-dimensional (3D) reference tumor 

trajectory throughout the whole CBCT scan. However, lung tumors often change shape and volume 

during therapy, which may impact the utility of the fiducial markers as a long-term surrogate for tumor 

position and trajectory. We propose to calibrate the fiducial marker trajectory to the tumor position using 55 

a combination of 2D+t and 4D image data. The purpose of this study is to develop and evaluate a marker-

based validation framework to estimate the position of the tumor in 2D+t data sets for validation of 

registration or tracking algorithms.  

II. METHOD 

II.A. Patient Data 60 

Under an institutional review board-approved protocol and after providing informed consent, 2-3 fiducial 

markers (Visicoil, RadioMed Corporation, Tyngsboro, Massachusetts) were implanted bronchoscopically 

in or near the tumor prior to simulation for 6 lung cancer patients set to undergo conventionally-

fractionated radiation therapy. All patients were treated with 3D conformal RT (62.6-70 Gy) with 

standard fractionation (1.8-2 Gy, five days per week).  4D CBCT was acquired daily for each fraction of 65 

the treatment for each patient. The gross tumor volume and any implanted fiducial markers were 

contoured by a physician on each phase of a 4D planning fan beam CT (4D FBCT) and several (generally 

weekly) 4D CBCT for all the 6 patients.   

II.B. Validation Framework 

The validation framework is designed to benchmark image-based markerless tracking algorithms which 70 

perform rigid measurement of tumor position, since tumor deformation during free breathing is assumed 

to be small.  Based on this assumption, the tumor position during free breathing acquisition of a single 

CBCT is well-described by measurement of the tumor centroid. Therefore, a marker implanted near the 
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tumor centroid should describe the instantaneous translational motion of the tumor centroid, provided the 

offset between the tumor centroid and marker positions is known.  However, day-to-day changes in shape 75 

and volume of the tumor will cause this offset, which we term the tumor to marker displacement (TMD), 

to vary on a day to day basis.  The basic structure of the validation framework is to use the implanted 

marker trajectory to represent the tumor trajectory during a single CBCT scan.  Then, the TMD is 

measured from the delineated tumor and markers on the reconstructed 4DCBCT images.  The TMD over 

several fractions is then fit to a model to estimate residual uncertainty (i.e., tumor delineation and other 80 

factors) and enable TMD estimation for undelineated CBCT scans.  

     

The implanted markers are segmented in each 2D projection of a CBCT scan using a template-matching 

algorithm4, which results in the full 2D marker trajectory throughout the CBCT scan. A maximum 

likelihood estimation algorithm5 is applied to estimate the instantaneous 3D position of each marker 85 

(denoted as pm , where (0,1,2,3, )p   is the projection index) in each projection during a CBCT scan. 

A single marker identified as closest to the tumor centroid on the planning CT is chosen to reconstruct the 

reference tumor trajectory when there are more than one marker detected in the projection images. Tumor 

centroid positions differ from the marker positions. Corrections needs to be applied to the known 3D+t 

marker trajectory pm  on a set of projections in order to obtain the reference 3D+t tumor trajectory 90 

(denoted as pt ) of the same projections. Assuming TMD is constant in the domain of  ,  the definition is:  

( ) ( ) ( )TMD T M        
(1) 

where   is the collection of projections used for calculation, T is the mean tumor position  and M is the 

mean marker position in the domain of  .  The reference pt is then calculated from:  

TMD( )p pt m   
(2) 
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TMD needs to be computed daily because it varies interfractionally, up to 1.0 cm difference, as stated in 

Roman et al 6.  For the delineated CBCTs, T  is estimated from the centroid of the delineated tumor 95 

contour (denoted as 
cT ). M is calculated from the directly segmented marker trajectory pm , denoted as 

sM .  Substituting 
cT and 

sM  in equation (1) will produce TMDs for the delineated scans (denoted as 

TMDc). For the non-delineated daily CBCT scans, one approach to calculate the TMD was from a linear 

model created from the known TMD in the delineated weekly CBCTs, assuming a slow, continuous 

change of the TMD due to slow, continuous change in tumor volume and shape during therapy. Given all 100 

the known TMDc with the scan days denoted as D (the scan day of the planning CT is considered as day 

1), TMDin is calculated using the linear regression method with least square difference criterion from the 

known data:  

where d is the scan day of the CBCT relative to the planning CT(day 1), α and β are variables computed 

from the minimization of the sum of squared residuals.   105 

II.C. Framework Uncertainties 

The total uncertainty of using markers to estimate tumor positions includes the uncertainty of the 

estimation of 3D positions of the markers from 2D segmentations ( seg ), the intrafractional uncertainty of 

tumor-to-marker displacement (
intra ), the interfractional variation of tumor-to-marker displacement 

(
inter ) for non-delineated CBCT scans, and the observer variability in tumor and marker delineation in 110 

the 4D CT scans.  Based on the method of framework construction, this observer variability is already 

included in the variabilities 
intra

 
 and 

inter . The uncertainty of the estimated 3D marker positions is 

obtained from study Poulsen et al.5, as the same implementation was used. At the image frequency of 4D 

CBCT, seg  is 0.4/0.4/0.4 mm at left-right (LR)/anterior-posterior (AP)/ superior-inferior (SI) directions 

TMD =in dα β  
(3) 
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respectively 7. To estimate the value of 
intra , the tumor-to-marker displacements are calculated for each 115 

phase of each delineated 4D CBCT scan.  As a measure of intrafractional variability between the tumor 

and markers, the standard deviation of the tumor-to-marker displacements over the 10 phases is calculated 

for each scan of each patient, and 
intra is calculated as the root-mean-square of the standard deviations.   

The value of the interfractional variation
 inter  for non-delineated CBCT scans was estimated from the 

residual errors of TMDin as follows:  The difference between TMDin and the measured displacement 120 

TMDc was calculated in each delineated CBCT and defined as the residual error.  The root mean square 

of the residual errors (RMSE) was calculated as a measure of 
inter . The total uncertainty of the 

validation framework ( ) was calculated using the equation below:  

2 2 2

seg intra inter     
 (4) 

III. RESULT 

The standard deviation (SD) of intrafractional TMD of each patient was shown in Table 1 and 
intra was 125 

1.5 mm at SI direction. The SD at LR and AP directions are close to 0.0 mm.     

TMDc were calculated for the planning CT and all delineated CBCT scans for all 6 patients, and their SI 

portion are plotted in Figure 1.  The root mean square of the residual errors (RMSE) of TMDin is 

calculated for each patient and shown in Table 2.  The interfractional uncertainty of tumor-to-marker 

displacement (
inter ) for non-delineated CBCT scans is 1.2/1.3/2.0 mm at LR/AP/SI directions 130 

correspondingly.  Therefore, the total uncertainty of the validation framework ( ) was estimated to be 

0.2/1.0/1.7 mm from the calculation using equation (4) for delineated CBCT scans and 1.2/1.6/2.6 mm for 

non-delineated scans at LR/AP/SI directions correspondingly. 

The validation framework was tested in the second weekly CBCT scan of patient 1 as an example. The 

trajectory obtained from a markerless tracking algorithm2 was compared against the reference trajectory135 

pt . The markers were removed from the projection images using an in-painting technique so as not to 
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bias the markerless algorithm. The trajectories comparison at the SI direction is shown in Figure 2. The 

error was defined as the difference between the markerless trajectory and the reference trajectory from the 

validation framework. The mean absolute error was 1.7 mm with the standard deviation 1.6 mm and 90% 

error level was 3.3 mm.  140 

IV. DISCUSSION 

The marker-based validation framework, which employs TMD as the correction factor to generate 

reference tumor trajectory for the markerless tumor tracking algorithm, has an uncertainty less than 2 mm 

if the CBCT is delineated. Ideally, every CBCT should be delineated. But our study shows that, if the 

CBCT are delineated weekly, the validation framework still has promising accuracy, less than 3 mm. The 145 

intrafraction variability in TMD was 1.5 mm in the SI direction and negligible in other directions, 

supporting our assumption of minimal deformation of the tumor to marker configuration during free 

breathing.  In the calculation of TMD, the marker trajectories estimated directly from the projections are 

used to compute mean marker position rather than the marker contours in the delineated CBCTs. One 

reason is that markers close to each other may not be distinguishable from each other in the reconstructed 150 

CBCT, resulting in one contour for more than one marker. The other concern is that the volume average 

effect is more severe for small objects like markers resulting larger delineation uncertainty, thus the 

higher spatial resolution of the projection images is preferred.  In the computation of the linear function to 

calculate TMD for non-delineated CBCT scans, the planning CT was not taken into account in the model. 

As shown in Figure 1, the TMD in the planning CT lies far away from the linear curve especially for 155 

patients 4, 5 and 6.  This result could be due to actual changes in tumor volume or shape, marker 

migration in the generally two weeks between planning and treatment, or differences in observer 

variability due to different image quality between 4DCBCT and 4D fan beam CT. In one patient, patient 6, 

marker migration happens and the marker existed at the first five weekly CBCT disappeared at the sixth 

weekly CBCT.  Because of the migration, the TMD at the fifth week is drifted away from the linear 160 

model, and it is considered as the outlier as shown in Table 2 and Figure 1(f).  If the outlier is not 
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removed from the linear model, the residual errors are fairly large which are 1.0/3.0/3.7 mm in the 

LR/AP/SI directions respectively. In this case, 
inter is reduced to 1.2/0.5/1.3 mm as shown in the brackets 

in Table 2 and consequentially  is reduced to 1.2/1.1/2.1 mm.   

In the calculation of the resultant TMDs and the uncertainties, our results are based on the assumption that 165 

the physician delineation is the ground truth. However, the delineation itself introduces uncertainties into 

the framework, which manifests as an increase in  . In this study, the patients are delineated by one 

physician, so inter-observer variability is not considered. Ideally, the intra-observer variation of tumor 

delineation could be separately quantified to enable calculation of the variability due to the TMD 

component alone.  However, we did not separate the intra-observer variation from the inter- and intra-170 

fractional variation due to the overall small magnitude of the total variability.   

V. CONCLUSION 

A framework of using implanted marker and a combination of 2D+t and 4D imaging for the validation of 

image-based lung tumor tracking algorithms was developed.  The estimated uncertainty of the validation 

framework is 2-3 mm, depending on whether the tumor is delineated in the 4DCBCT scan or its position 175 

is interpolated from delineated scans.  In conclusion, the framework of marker-based validation method is 

demonstrated to be an accurate method to estimate tumor centroid positions and hence can serve as the 

validation method for image-based target tracking algorithms. 
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 180 

Figure 1 (a) to (f) are the plots of tumor to marker displacement as a function of time for all 6 patients.  

The red squares are the TMDc for the planning CT (day 1) and all the delineated CBCTs and the straight 

line with the equation are the linear fit curve for TMDin. ............................................................................. 2 

Figure 2. Example comparison of tumor trajectories measured by the validation framework and a test 

markerless tracking algorithm, superior-inferior (SI) direction over gantry angles -150º to 30º. ................. 2 185 
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Table 1. Intrafractional standard deviation of TMD for all delineated 4D CBCT scans, SI direction for each patient.  

Patient 
Intrafraction standard deviation of TMD (mm) 

1 2 3 4 5 6 7 

1 0.7 1.3 0.6 1.1 1.0 0.8 1.0 

2 0.7 0.5 0.8 0.9 0.5 -- -- 

3 1.2 0.8 0.9 1.0 0.8 0.4 -- 

4 2.1 2.5 1.3 2.6 1.7 1.3 1.2 

5 1.8 0.9 1.2 0.7 0.9 1.0 -- 

6 4.0 2.1 2.0 1.4 2.0 -- -- 

Total 

(intra) 
1.5 
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Table 2. RMSE of Linear Model.   

Patient 
RMSE (mm) 

LR AP SI 

1 0.5 0.3 0.7 

2 1.3 0.6 1.9 

3 2.3 0.3 1.6 

4 0.9 0.6 1.3 

5 0.3 0.6 1.3 

6 0.8 (1.0*) 0.4 (3.0*) 0.4 (3.7*) 

Total (inter) 1.2 (1.2*) 0.5 (1.3*) 1.3 (2.0*) 

*Results for without ruling out the outlier for patient 4. 
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     (a)                                              (b)        

 
          (c)             (d) 

  
         (e)        (f) 
Figure 1 (a) to (f) are the plots of tumor to marker displacement as a function of time for all 6 patients.  The red squares are 

the TMDc for the planning CT (day 1) and all the delineated CBCTs and the straight line with the equation are the linear fit 

curve for TMDin.   
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Figure 2. Example comparison of tumor trajectories measured by the validation framework and a test markerless 

tracking algorithm, superior-inferior (SI) direction over gantry angles -150º to 30º.  
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ABSTRACT 

Purpose: The purpose of this study was to optimize the markerless template matching algorithm for 

estimation of the 3D tumor trajectory for cone beam CT (CBCT) projections in lung cancer patients.  

Methods: Markers were planted in the patients and they were removed from the projection images 

using Laplacian interpolation. The effectiveness of marker removal was evaluated by a phantom 10 

study. Markerless tumor trajectory estimation uses a set of templates generated from forward 

projecting a region of interest of the planning fan beam CT to match the tumor in the CBCT 

projections. Three different template methods of registration were compared.  One called Ex-GTV 

template, generated from GTV plus a margin.  One generated from the minimum bounding cylinder 

of expended GTV, called cylinder template.  The last template generated from zero padding at the 15 

gradient image of the Ex-GTV template, denoted as padded template.  Errors of the markerless 

template-based matching algorithm using each set of template were calculated relative to the tumor 

position obtained from segmented implanted internal fiducial marker trajectories. Furthermore, a 

constraint method was implemented to penalize large mis-matches. 

Results: Application of marker painting improved the registration by 2 pixels at each coordinate 20 

compared against the gold standard. The registration errors (mean absolute error/standard 

deviation/90% error level [all in mm]) obtained with five patients using the three different template 

methods were 5.3/6.5/12.4 for the Ex-GTV template, 6.1/6.4/13.3 for the cylinder template, and 

3.5/5.0/7.9 for the padded template. The magnitudes of errors were further reduced to 2.1/2.5/4.3 

after implementing the constraint method.  25 



Conclusions: The marker removal technique we implemented here successfully reduced the effect of 

markers on the 2D image registration. The trajectory obtained from using padded template agreed 

best with the implanted marker trajectories and the constraint method further improved the results.  

I. INTRODUCTION 

Image guided radiotherapy (IGRT) has the potential to improve targeting by incorporating 30 

temporal patient specific geometry information and variations into the adaptive planning process1-5. 

Incorporating variability models into the treatment plan, whether through 4D inverse planning or 

offline adaptation, requires characterization of an individual patient’s motion pattern throughout 

the treatment course. Because the patient-specific motion model is often built at the simulation 

stage, it is inadequate to fully represent the situation during treatment delivery due to 35 

interfractional geometry variation6,7. Therefore, monitoring tumor motion during the treatment or 

retrospective evaluation of treatment plans is necessary to ensure and evaluate dose delivery. 

Respiration correlated four-dimensional computed tomography (4DCT) 8-10 is able to provide 3D 

anatomy at each phase of breathing and the average cycle of respiration induced organ motion. 

However, the tumor motion is not simply periodic but it suffers from cycle to cycle variation and 40 

shift of the mean or exhale tumor position (drift) 11-13. The average breathing cycle from the 4DCT 

cannot provide information to estimate cycle-to-cycle variation and drift. Hence, the instantaneous 

tumor trajectory needs to be measured in order to quantify these variations. Current techniques 

that are used to track the tumor can be grouped into three categories: tracking external surrogates, 

tracking with implanted internal fiducial markers, and markerless tracking with internal anatomical 45 

features. Although external surrogates require no radiation dose and are generally straightforward 

to use, the correlation between the tumor location and external surrogate signals varies within a 

fraction and across treatment days14-17. Tracking implanted radiopaque fiducial markers in 

fluoroscopic images and projection images of CBCT has been pursued by researchers18-25.  Fiducial 

markers serve as reliable surrogate to locate or track tumors21,24. Marker implantation is invasive, so 50 



physicians and patients are not always willing to use this procedure especially by those expecting a 

‘non-invasive’ treatment modality with radiation therapy.  

‘Markerless’ localization of the tumor mass in fluoroscopic images has been studied for 

tracking26-28 and gating29-31. Support vector machine-based30, template-based26, and optical flow27 

based algorithms were developed for fixed beam angle fluoroscopic detection (no gantry rotation 55 

during acquisition). Template-based markerless tumor tracking has been extended to the case of 

gantry rotation32-35. These studies evaluated small, parenchymal lesions such as those amenable to 

stereotactic body radiotherapy.  Here, we extend the template matching approach to larger lesions 

infiltrating the chest wall, hilum, or mediastinum. We optimize the template shape for these 

challenging cases, and evaluate a method to penalize large mis-matches. 60 

II. METHOD 

II.A. General Description of the Algorithm 

A template-based matching algorithm for markerless tumor trajectory estimation (MLTM) was 

developed previously 32. The procedure consists of five steps as shown in Figure 1: 1) GTV (in green) 

was delineated by physicians in the planning 4DCT and it was expanded with a margin to obtain 65 

Expanded GTV (Ex-GTV, in purple). 2) Generation of masked CT was by zero padding regions outside 

Ex-GTV and the masked CT was shifted to the daily tumor position by registering the tumor in the 

planning CT to the tumor in the daily CBCT, which is denoted as the daily tumor position. 3) The 

shifted masked CT was forward projected to generate digital reconstructed radiograph (DRR) at each 

phase and each gantry angle intervals and the DRRs are denoted as tumor template (TT). 4) Crop the 70 

TT and perform 2D/2D registration of TT to the measured CBCT projections (MP) by template 

matching (TM) within a search region of ±4 mm. The red contour is the matching result. 5) 

Reconstruct 2D positions to generate3D tumor trajectory by backprojection.  

The following simple enhancements are added to this basic framework, but are not the main focus 

of this work:  75 



1) Histogram equalization is applied to the search region in the projection images to improve 

the contrast.   

2) The search window for template matching is adapted to ±22.5 mm, which is ±15 mm in the 

room coordinates, instead of the ±4 mm window to account for the up to 3 cm tumor motion.    

3) The similarity metric used to conduct template matching is changed from block normalized 80 

cross correlation (NCC) to a gradient correlation metric termed the Orientation Correlation (OC) 37.  

4) A spatial probabilistic method developed by Poulsen et al36 is used to reconstruct 3D tumor 

positions from 2D tumor positions other than a simple backprojection in the original framework.     

The main adaptions will be introduced in section II.C.   

Five patients underwent CBCT imaging on a study approved by the local institutional review board 85 

after providing informed consent. The studied patients were implanted with fiducial markers, and 

the trajectories obtained from those markers were used to validate the markerless algorithm 

(Appendix I). One CBCT scan acquired early in the treatment course was analyzed to avoid the effect 

of large shape changes (i.e., tumor response) in this study. 

II.B. Marker Removal 90 

The patients were implanted with fiducial Au markers (Visicoil, RadioMed Corporation, Tyngsboro, 

Massachusetts) which were usually radiopaque and high contrast structures. The extra information 

introduced by fiducial markers in projection images might influence the 2D image registration. The 

marker effect should be eliminated in order to obtain markerless tracking results unbiased by 

markers, as the markers are used in the validation methodology.  A marker painting technique, 95 

which was replacing the intensity of pixels inside the marker region by the interpolation value of the 

surrounding region, was implemented and evaluated. 

The markers were segmented using a semi-automated algorithm25 with the output of the marker 

centroid positions and 3D marker shape models. The 2D binary mask of markers (marker shadow) 

for each projection of the CBCT was generated by projecting the 3D shape model to the projection 100 

plane. The 2D marker shadows were expanded by 2 pixels to ensure coverage of the whole marker 



and relocated to the centroid positions of the markers, e.g. Figure 2g. The intensity inside the marker 

mask was replaced by interpolating the value from surrounding pixels plus added white noise 

sampled from a Gaussian distribution. We chose a diffusion-based Laplacian interpolation to obtain 

the interpolation values 38,39.  105 

Marker painting was applied to both phantom and clinical images to see whether the method was 

effective at marker removal. A phantom study was conducted to determine if the marker painting 

technique was effective at reducing the influence of markers on the image registration. The 

phantom used was a lung phantom with a tumor insert inside (QUASAR™ Cedar Lung Tumour Insert, 

Modus Medical Devices Inc., London, Canada) as shown in Figure 2a, attached to a dynamic motion 110 

stage. The phantom images were taken at two different couch positions to conduct rigid image 

registration (translation only). Five phantom projection images were taken at two couch positions 

with or without markers at a fixed gantry angle as shown in Figure 2 (b) to (f).  At each of the two 

couch position, we took a projection image of the phantom without attaching any markers and the 

registration between these two images (Figures 2b and 2d) was considered as the gold standard. We 115 

evaluated three registration scenarios:  For Scenario 1, an image of the object with markers (Figure 

2c) was registered to an image of the shifted object without markers present (Figure 2d). For 

Scenario 2, images of the object with markers in the same location relative to the object (Figures 2c 

and 2e) were registered.  Finally, for Scenario 3, images of the object with markers in different 

orientations relative to the object (Figures 2c and 2f) were registered. These three registration 120 

scenarios were repeated after marker painting. Registration error was measured in pixels, relative to 

the result from the gold standard.  

II.C. Algorithm Refinement 

II.C.1. Template Study 

The templates were rectangular to allow usage of the fast Fourier transform (FFT) in the gradient 125 

correlation. In the previous study32, tumor templates were generated from ROI of physician 

contoured GTV plus a 5/10 mm margin in the planning 4DCT with zero padding outside the ROI, 



denoted here as the Expanded GTV (Ex-GTV) template. Artificial boundary that introduced by the 

zero padding in the generation of masked CT outside the Ex-GTV region in the planning CT is a 

particularly important issue to resolve for locally-advanced lung cancers compared to small, refined 130 

tumor cases.  When creating DRR for tumor templates, artificial radiation beams penetrate the 

tumor.  Large tumors attenuate the beams more than the small tumor causing large differences 

between zero and nonzero paddings.  Therefore, three competing template-generation methods 

were studied in order to resolve this issue.  

The first set of template was the Ex-GTV template (Figure 3a). The second set of templates was 135 

generated from the minimum bounding cylinder of the ROI (GTV plus a 5/10 mm margin), denoted 

here as the Cylinder template33. The templates generated from this ROI were already rectangular, so 

no artificial gradient after cropping was present (Figure 3b). An additional approach to avoid the 

artificial gradient was to only use pixels inside the expanded GTV region to conduct the gradient 

correlation in the template matching. But this approach is time consuming because it cannot use the 140 

FFT in the gradient correlation. Instead, the last set of templates was generated from the Ex-GTV 

template with some modification in the gradient image. The gradients outside the shape region of 

the tumor of each template were padded with zero (Padded template). Figure 3d was the zero 

padded gradient image of Figure 3c, which was gradient image of the Ex-GTV. The Orientation 

Correlation matched images using correlation, so pixels with zero gradients had no effect on the 145 

matching results, and FFT could still be utilized for speed.  

II.C.2. Constraint from Training 

The search margin in the template matching algorithm was ±15 mm in the global coordinate system. 

This search region could be constrained since the breathing phase for a given projection was known. 

The tumor trajectory obtained from a first pass of the template matching algorithm was used as the 150 

training data and an average cycle trajectory (mean tumor position of each breathing phase) was 

generated to guide a second pass of the template registration. The mean position ( ) and standard 

deviation ( ) of the tumor trajectory, which were obtained from the selected template method 



based on the results of the previous section, were calculated. The portion of the trajectory which 

was within 2   was used to generate the average breathing cycle. The 3D tumor positions 155 

chose from the average breathing cycle based on the phase of the projection were forward 

projected from the global coordinate system to the 2D detector plane to obtain the 2D positions. A 3 

mm margin was applied to the u direction (across the panel) of the 2D image and a 6 mm margin 

was applied to the v direction (along the panel) to refine the search region of the 2D registration.  

This margin was obtained from the study of the marker trajectories. The difference between the 160 

instantaneous marker positions and the mean marker position of the projection phase for each 

projection was calculated and analyzed. The margin was chosen from the 95% interval of the 

differences. The template matching was conducted at the refined search region to obtain the 2D 

tumor positions.  

II.C.3. Evaluation 165 

The resultant tumor trajectories from the markerless estimation were compared to the gold 

standard which is the tumor trajectory estimated from the marker trajectory. The errors were 

calculated by the difference between the trajectories of markerless estimation and marker 

estimation. The mean absolute errors, the standard deviation of the errors, and the 90% error level 

were calculated. 170 

III. RESULTS 

III.A. Marker Removal 

Figure 5 shows the clinical CBCT projections with and without marker in-painting. In case 1, the 

marker was successfully visually removed from a relatively uniform background region. In case 2, the 

marker is visible over a high contrast structure.  After the marker removal, the high contrast 175 

boundary beneath the marker region was preserved even though there was some blurring.  

Figure 6 shows the CBCT projections of the dynamic phantom with and without marker in-painting. 

The phantom was scanned at the same setup with and without attached markers. The projection do 



not contain markers was considered as the reference which the marker removal results were 

compare against. The sharp gradient introduced by the marker was successfully removed by the 180 

marker removal technique and the profile of the marker removed image was close to the reference 

profile. For the registration aspect of the phantom study, the registration error for the three 

scenarios were (-2, 0), (-2, 1) and (-3, 2) pixels correspondingly before marker removal.  After 

applying the marker painting technique, the registration errors were all reduced to (-1, 0).  

III.B. Algorithm Refinement 185 

Table 1 shows the errors obtained by employing the Ex-GTV template, the cylinder template, and the 

padded template as well as the padded template plus the constraint method. Overall, use of the 

padded template resulted in smaller errors than the other two sets of templates. The padded 

template was chosen for further study. The results were further improved when the padded 

template was combined with the constraint method. Figure 4 showed the scatter plots of the tumor 190 

SI positions obtained from the markerless template matching method using the three methods of 

templates, and also from the padded template combined with the constraint method. Ideally, the 

plotted points should form a straight line; thus, the narrower the width of the distribution is, the 

more the results agree with the marker estimation. The padded template has the least amount of 

outliers compared to the other two templates. And the padded template combined with the 195 

constraint method further reduces the scatter.  These results were consistent with the Table 1 

results.  

IV. DISCUSSION 

Lewis et al. 33 developed a phase-binned based algorithm to reconstruct tumor trajectory from the 

2D estimation in CBCT projections for lung tumor. This method is able to reconstruct more accurate 200 

tumor trajectory from less accurate markerless tracking results. Our study was to improve the 

accuracy of the markerless tracking instead of improvement by reconstruction. The cylinder 

template which they used in the study did not work well in our patients, because tumors in our 

patients were larger lesions infiltrating the chest wall, hilum, or mediastinum. For this kind of tumors, 



the bounding cylinder around the GTV plus the margin included more non-tumor-related tissues 205 

(different motion pattern with tumor) compared to small well-defined tumors. The extra information 

degraded the 2D image registration results. The tracking results using the padded template showed 

better agreement with the reference trajectory from the marker as expected. The padded template 

had no artificial gradient compared to Ex-GTV template while had better-defined the tumor content 

compared to cylinder template. Their results were compared against physician contours at the 210 

projection images.  Physician delineation on each projection is very time-consuming and may be very 

inaccurate. We employed the marker based validation method from our previous development to 

validate our algorithms other than the physician contours. The accuracy of the marker-based 

validation method was studied and the method was independent of the physician delineation.  

Yang et al. 40 implemented digital subtraction technique in the markerless tumor tracking to remove 215 

high contrast overlying structures in the projections. They found that digital subtraction was capable 

to emphasis tumor visibility in projections so that easier to preform markerless tracking and also 

easier for physician to delineate. In this study, we focused at improving the template matching 

aspect of the markerless tracking by constraining the tracking region from training. By shrinking the 

search region to the most possible region, the template matching was able to avoid the false 220 

matching outside the region and find the real best match with a higher possibility. The limitation of 

the constraint method would be in the case when the tumor motion encounters sharp temporal 

gradient events (e.g. coughing).  

The template matching method worked better for small well-defined tumors. As shown in Table 1, 

the final results by using the shape template and the constraint method, patients with well-defined 225 

solid tumors (Patient 1~3) demonstrated better agreement with the marker estimation. And patients 

with large and/or diffuse tumors (Patient4, 5), larger errors in both the validation and the tracking 

were observed. For large tumors, it was found in analysis of 4DCT scans of these patients41 that the 

markers were sometimes implanted in clusters in one region of the tumor.  Such anisotropic 

implantation is only a problem for those tumors that deform during breathing, causing the motion of 230 



the markers to diverge from that of the whole tumor.  To deal with these issues, multiple template 

tracking and deformable registration will be tested in future studies.  

In this study, the impact of tumor shape change over the course of treatment was not evaluated.  As 

treatment progresses over time, the tumor contours from the planning CT will be less accurate than 

at the later fractions due to tumor shrinkage. Potential solutions include affine or deformable 235 

template matching, which we plan to evaluate in the future.  

V. CONCLUSION 

Visually, the marker painting using Laplacian interpolation successfully removed the marker from the 

images and preserved high gradient boundaries with some blurring. The existence of markers in the 

projection images has influence on the accuracy of the image registration. The Laplacian 240 

interpolation method is effective at reducing the effect of markers on the image registration. Out of 

the three template generation methods, the padded template provides best results and should be 

used in further studies. With the implement of the constraint method, the results are further 

improved.    

  245 



Figure 1. Workflow of the MLTM algorithm for CBCT projections. 2 

Figure 2. Phantom images. Image (a) lung phantom with the tumor insert; (b) to (f) projection images 

of the 5 scans. Projections (b) and (c) were scanned at the same setup couch position; projections (d), 

(e), and (f) were scanned at the same setup position which was shifted 1 cm anterior, inferior and 

right from scans (b) and (c). Image (g) was the marker masks of projection (f). 2 250 

Figure 3. (a) Intensity image of Ex-GTV Template; (b) Gradient image of (a); (c) Gradient image of 

padded template by zero padding (b) at region outside the threshold; (d) Intensity image of cylinder 

Template; (e) gradient image of (d). 2 

Figure 4. Scatter plots of tumor trajectories obtained from the markerless algorithm versus tumor 

trajectory from the marker at SI direction in mm. (a) Ex-GTV template; (b) Cylinder template; (c) 255 

Padded template; (d) Padded template + constraint method. 2 

Figure 5. Visual results of marker removal of the clinical cases.  The first column was the original 

projections with the markers contours in green; the second column was the result of marker 

removed and the third column showed the marker removal results with a Gaussian noise added. 2 

Figure 6. Visual results of marker removal and the comparison of profiles for the phantom case.  The 260 

first column showed the phantom images and the profiles of the red lines were shown in the second 

column correspondingly.  The first row was from the tumor phantom with the attached markers 

(green contours); the second row showed the marker removal results of row 1 and they were 

compared against the reference as shown in row 3. 2 
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Figure 1. Workflow of the MLTM algorithm for CBCT projections. 
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(a) 

    

(b)                     (c)                          (d)                      (e)                        (f)                        (g) 

      

Figure 2. Phantom images. Image (a) lung phantom with the tumor insert; (b) to (f) projection images of the 5 scans. 
Projections (b) and (c) were scanned at the same setup couch position; projections (d), (e), and (f) were scanned at 
the same setup position which was shifted 1 cm anterior, inferior and right from scans (b) and (c). Image (g) was the 
marker masks of projection (f). 



 

(a)               (b)    (c) 

       
           (d)                                    (e)  

        
   
Figure 3. (a) Intensity image of Ex-GTV Template; (b) Gradient image of (a); (c) Gradient image of 
padded template by zero padding (b) at region outside the threshold; (d) Intensity image of cylinder 
Template; (e) gradient image of (d).  



.  

  

 
(a)  (b)  

 
(c)                           (d) 

Figure 4. Scatter plots of tumor trajectories obtained from the markerless algorithm versus 
tumor trajectory from the marker at SI direction in mm. (a) Ex-GTV template; (b) Cylinder 
template; (c) Padded template; (d) Padded template + constraint method.  
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Figure 5. Visual results of marker removal of the clinical cases.  The first 
column was the original projections with the markers contours in 
green; the second column was the result of marker removed and the 
third column showed the marker removal results with a Gaussian noise 
added.  
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Figure 6. Visual results of marker removal and the comparison of profiles for the phantom case.  The first column 
showed the phantom images and the profiles of the red lines were shown in the second column correspondingly.  
The first row was from the tumor phantom with the attached markers (green contours); the second row showed 
the marker removal results of row 1 and they were compared against the reference as shown in row 3.  



  

Method EX-GTV Template Cylinder Template Padded Template Padded Template + 
Constraint 

 Patient  MAE 
(mm) 

SD 
(mm) 

90% 
error 
(mm) 

MAE 
(mm) 

SD 
(mm) 

90% 
error 
(mm) 

MAE 
(mm) 

SD 
(mm) 

90% 
error 
(mm) 

MAE 
(mm) 

SD 
(mm) 

90% 
error 
(mm) 

1 3.4 5.6 10.1 3.1 4.5 6.8 2 2.8 3.9 1.7 1.6 3.3 

2 8.6 8.5 17.9 6.3 9.0 17.8 3.1 5.3 7.3 1.0 1.3 2.0 

3 4.2 5.0 9 6.8 6.8 14.8 3.1 4.3 7.3 2.3 2.6 4.9 

4 4.7 6.8 13.8 6.4 3.7 9.7 4.4 6.0 10.7 2.9 3.2 5.9 

5 5.6 6.2 11.5 7.9 6.7 17.6 4.7 5.8 10.3 2.7 3.3 5.5 

Mean  5.3 6.5 12.4 6.1 6.4 13.3 3.5 5.0 7.9 2.1 2.5 4.3 

Table 1.  The mean absolute error (MAE), standard deviation (SD), 90% error interval of using each template method 
and using the constraint method with the selected template method.   
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