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Abstract 

ESTIMATION OF THE LD100P WHEN P IS SMALL 

Daniel M. Bettendorf, M.S. 

A thesis submitted in partial fulfillment of the requirements of the degree of Master of 

Science at Virginia Commonwealth University. 

Virginia Commonwealth University, 1997 

Director: Sung C. Choi, Ph.D. 

Professor, Department of Biostatistics 

This thesis concerns the estimation of extreme quantiles on a dose-response curve. 

It focuses on the Robbins-Monro and up-and-down procedures. Simulation studies run in 

search of the LD15 and LD30 using a variety of methods suggest that the Robbins-Monro 

procedure is optimal in terms of Monte Carlo MSE and bias. The up-and-down 

procedure's performance differs in many cases only slightly from that of the Robbins-

Monro process, therefore indicating its value as a practical alternative to the Robbins-

Monro process for extreme-quantile estimation. 



CHAPTER 1: INTRODUCTION 

1.1 The Tolerance Distribution 

This thesis concerns the level of stimulus at which a certain proportion of 

responses can be expected. It is assumed that all experiments discussed have a quanta! 

response. That is, the response to stimulus is binary rather than continuous. For example, 

the response might be death and the stimulus is some dose (or log dose) of a toxic 

substance. 

The stimulus-response relationship is described by the tolerance distribution, 

which gives the probability of response at given levels of the stimulus or dose. In the case 

of subjects exposed to a toxin, we expect that at increasing levels of the toxin the 

probability of death will increase. Figure 1 illustrates this concept most generally. 
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We might arrange these initial concepts in a more rigorous fashion in the 

following manner. Quanta! response is a situation where stimulus (e.g., dose of a drug) is 

applied ton experimental units (e.g., animals) and r respond and n- r do not respond. 

Furthermore, our main assumption is that for any given individual there is an individual 

effective dose (lED) and the tolerance distribution is a distribution of these lED's across 

the population. In practice, we often assume this tolerance distribution to be normal or 

logistic; failing that, a transformation of the dose might make that assumption more 

plausible. 

An important problem is to find the level of stimulus or dose where a certain 

proportion, say p, of the population can be expected to respond. We wish to estimate the 

quantile qP such that 

for a given tolerance distribution F. Whenp = 0.5 and the response is death, the dose 

level is called the Lethal Dose-50 or LD50; alternatively, such a dose, regardless of 

response, is referred to as the Effective Dose-50 or the ED50. In general, for the quantile 

where lOOp% of the population can be expected to respond, the terms are LD100P and 



3 

1.2 Examples 

There are a variety of circumstances under which one might be interested in the 

estimation of such a quantile. In toxicity studies, one is commonly searching for 

thresholds, i.e., levels after which a certain unacceptable proportion of responses (such as 

death in laboratory animals) might be expected. Several methods for estimating the LD50 

have been proposed (Hamilton, 1979). In this study we are interested mainly in those 

quantiles where pis relatively small (e.g., 0.15 or 0.3); relatively few studies have 

focused on methods for finding the quantiles where pis other than 0.5 (Wu, 1985). 

Toxicity studies are not the only application of this methodology. The approaches 

discussed below are appropriate whenever the outcome is binary and the search is for the 

point or place where a certain proportion of outcomes may be expected. We might easily 

imagine an agricultural firm that wishes to discover how to maximize use of fertilizer 

while containing the amount of crop damage due to overfertilization. While fertilizers 

naturally help plants to grow, they are in certain quantities toxic to plants as well. Each 

plant, or group of plants, would have a certain tolerance level to the amount of fertilizer; 

that is, each plant would have an Individual Effective Dose (lED). 

The researchers might therefore design an experiment in which they applied 

various amounts of fertilizer to different rows of a particular crop. Then each crop has to 

be assessed after a certain time period as either seriously damaged by fertilizer or not. If 

the case of damaged crops is considered as a response, the researchers might have a 

certain amount of crop damage in mind that would be considered acceptable given their 



desire to maximize fertilizer use; let us say 10%. In that case, conducting the experiment 

as described, the researchers would be searching for the LD10 on the response curve as a 

function of amount of fertilizer. 
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Other examples of the application of these procedures are numerous. There might 

be a certain metal strip under testing which has a breaking point distribution; the 

researcher might be then interested in finding the maximum tension where a 5% failure 

rate is expected (see, for example, Wu, 1985). In short, in any situation where there is 

some kind of binary response and the above assumptions can reasonably be made, the 

investigator may be interested in estimating a given quantile. 

Finally, a compelling example of estimating a quantile other than the LD50 is the 

case of the maximum tolerable dose (MTD) in cancer studies; the MTD is the LD33 on 

the tolerance distribution of the drug under study. Other methods besides those discussed 

here have also been explored for this application (Storer, 1989). 

1.3 Purpose of Study 

The sequential procedures such as the Robbins-Monro process or the up-and-

down method are alternatives to a fixed sample, non-sequential approach such as the 

Spearman-Karber estimator. In a variety of fixed-sample situations, the trimmed 

Spearman-Karber estimator has been found to be optimal (Hamilton et. a!, 1979). 

Investigation of the sequential procedures for the LD50 has been extensive; Davis 

conducted a particularly germane simulation study involving most of the methods 

discussed below. His results indicated that the Robbins-Monro (RM; Robbins, 1951) 



method had a remarkably good performance when compared to the other methods, 

including the non-sequential Spearman-Karber estimator. 
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The problem is, however, that there has not been sufficient investigation into the 

relative advantages of these sequential procedures when the quantile to be estimated is 

small (or large). This oversight is pertinent because, for example, it is known that 

difficulties arise in the Robbins-Monro process when the quantile sought after is extreme 

in this sense. The main problem is that a single positive response late in the estimation 

sequence can cause a big jump in dose while it will take the process a long time to 

recover from this jump; that is, in later iterations the step sizes are quite small and a large 

jump past the quantile may take too many iterations to correct. 

This difficulty alone is enough to warrant some comparative simulation studies of 

the most popular sequential procedures in clinical trials. In order to see how the 

procedures compare in the case of extreme quantiles, we have conducted the investigation 

that follows. 

1.4 Literature Review 

The most important results relative to this inquiry are given by Davis ( 1971 ). As 

we mentioned above, Davis' simulation results indicated the overall superiority of the 

Robbins-Monro method for the LD50, at least when the sample size is relatively small. 

Much later Wu (1985) conducted similar simulation studies on the estimation of 

other quantiles and achieved similar results. While he considered the up-and-down 

method for estimating the LD50, he did not report his results because he claimed that the 



method was consistently the worst of those he tried. Much of the paper is devoted to an 

exploration of an adaptation of the Robbins-Monro procedure as well as a parametric 

method he himself proposed. 
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The Adaptive Robbins-Monro (ARM) involves an effort to use regression to 

estimate the slope of the response curve and to incorporate that into the sequential 

procedure. As a result of its relevance to our present aims we have included the ARM in 

our investigation. Wu's own contribution, however, seemed too far afield for our 

consideration. In short, the procedure involves making some general assumptions about 

the parametric form of the tolerance distribution and using the data to obtain maximum

likelihood estimates of the parameters to approximate the distribution and draw the next 

dose level from what would be the quantile on that approximated curve. While the idea is 

clearly clever, it involves too many assumptions about the form of the tolerance 

distribution and it is far more complicated than either RM or up-and-down. 

Simplicity is, in fact, the main virtue of the up-and-down method. While it might 

be inferior to RM, it is possible that some level of outperformance is less attractive than 

the clinical simplicity offered by the up-and-down procedure. One cannot overemphasize 

the importance of having a procedure that can be easily explained and correctly executed. 

Despite its simplicity and efficiency relative to fixed-sample methods, the 

literature on the up-and-down procedure is scarce. A review of the last 25 years under the 

heading "up-and-down" in the Current Index of Statistics will show only a handful of 

entries. Those relevant to this study are two papers by Little (1974a, 1974b). 



Little was concerned with simulation studies of the different estimators generally 

available. He described another method of obtaining estimators, the "minimum chi

square" analysis, and compared it to the maximum-likelihood estimators of Dixon-Mood 

and Brownlee. His studies showed that there was very little difference among these 

estimators for either normal or logistic tolerance distributions; in the latter paper he 

confirmed that the methods based on these symmetric distributions are relatively robust 

by simulating results from an extreme-value distribution. 

Hsi ( 1969) is the main resource for a multiple up-and-down design. This design 

uses several experimental units per trial rather than the classic single-unit trials of the 

traditional up-and-down method. Most of the details of this paper relevant to this 

undertaking are explored below. Durham and Flournoy (1994) provided the main outline 

for how to modify the up-and-down design to accommodate quantiles other than the 

LDso· 
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McLeish and Tosh (1983) focused on estimation of extreme quantiles (such as the 

LD05). Their concern centered around experiments where the experimental units were 

precious or highly valuable, such as primates. They therefore explored an estimation 

procedure that began at very low doses and continued increasing by small increments 

until a response was recorded. This process is repeated. The distribution of ending points 

of these dose sequences is then approximated to locate the LD05. It is an ingenious 

approach when there is the added constraint that a response is to be avoided as much as 



possible, but it is rather complicated, especially when compared to the two methods 

investigated in this study. 
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Because Hamilton has shown the superiority of the trimmed Spearrnan-Karber 

estimator for the LD50 with symmetric background distributions (Hamilton, 1979), we 

thought it worthwhile to search for similar estimators for the general LD100P. Wu pointed 

out that the Spearman-Karber can be easily modified to a sequential procedure by taking 

the estimate at each stage and using that to decide the next dose level; however, as no 

modified estimator for the LD100P could be found, this avenue is available only in the 

case of the LD50. 



CHAPTER 2: DISCUSSION OF METHODS OF 

ESTIMATION 

2.1 The Robbins-Monro Process 

The Robbins-Monro process is a simple sequential allocation scheme that easily 

accommodates various group sizes at different trial stages. Let x0 be the initial esimate of 

the LD1oop. The design can be summarized neatly by writing the next design level or dose 

level at stage n + 1 as 

1:!. (r, J x,+ 1 = x, -- - - p , 
n t, 

where 1:!. is a constant, n = 1,2, .... , rn is the number of responders in a group of (usually) 

fixed size tn = k, and pis the quantile whose estimate is sought. This formula applies, of 

course, when we wish to test only one unit at a time, rendering the proportion of 

responders invariably either 0 or 1 (i.e., rn = 0 or 1). 

The asymptotic variance of the estimate xn takes a minimum when the step 

constant is related to the slope of the response curve at the desired quantile; that is, 

where qP is the quantile as defined in Section 1.1. Given the slope � and response curve 

F(x), we set the step constant 1:!. = 11� to attain the lower bound for the asymptotic 

variance (Wetherill, 1986). 

9 



That the RM estimator is consistent (i.e., lim = q ) follows directly from the 
11-+CO p 

following theorem due to Robbins (Robbins, 1951 ). 

THEOREM Suppose that the cumulative distribution function F(x) of the tolerance 

distribution as described above has the following properties: 

(I) F(x) is nondecreasing; 

(2) F(qp) = p; 

(3) F'(qp) > 0, 

then lim E(xn+I - q P )2 = 0. n-+ao 

Naturally, it is seldom the case that sufficient prior knowledge is available about 

the underlying tolerance distribution to warrant hazarding a guess at the slope of the 

curve at the proposed quantile. While there are methods, discussed below, for obtaining 

reasonable estimates of this value, it might be safer merely to postulate a value for the 

10 

step constant � that seems suitable for the case at hand. A simple rule of thumb might be 

to make an estimate of the standard deviation of the underlying distribution and use that 

figure; that is, if the distribution is fairly spread out we might expect the slope of the 

response curve to be small and its reciprocal correspondingly large. In any case, in all 

practical circumstances, unless one wishes to incorporate "adaptive" methods for the 

process, some sort of guess will have to be made. 

One possible adaptive method is to estimate the slope of the response curve at the 

quantile by applying, somewhat naively, ordinary regression estimation to the responses. 



11 
That is, we might estimate the slope P by setting it equal, after each iteration (n > 1 ), to 

the following: 

This leads to the "adaptive" Robbins-Monro process: 

X I= X _ _ 

1
_ ( r,

, -p) tr+ , 
.... 

nP, t, 

It has been proved that this process, under certain regularity conditions, together with 

proper truncation of P", has the same asymptotic distribution as the optimal nonadaptive 

procedure above with�= 1/P (Wu, 1985). The truncation is necessary to avoid a 

situation where the slope of the response curve is too close to 0, for example, when the 

doses tested are being drawn from the tails of the distribution. Therefore, a truncation of 

the form 

max[min(p"-1,d),8], d >8 > 0, 

instead of p "_, , is advisable to maintain good performance of the adaptive procedure 

while preserving the asymptotic optimality mentioned above (Wu, 1985). 

It is noteworthy that the Robbins-Monro process is not limited to quanta!-

response data; on the contrary, the procedure works �qually well for continuous-response 

data. No adaptation is required. Furthermore, for the adaptive procedure, continuous-

response data are more suitable because the regression approximations are more 

reasonable. Regression is generally not well-suited for binary-response data. 
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2.2 Up-and-Down Method 

The up-and-down method is a simple variation of the Robbins-Monro technique 

in which the intervals between experimental levels are fixed. That is, we begin testing at 

an initial estimate and decide to move up one step or down one step depending on the 

outcome of the experiment. The best way to illustrate this procedure is to consider first 

the method for estimating the LD50. 

In order to estimate the LD50, we first choose an initial dose, say 0. Then we 

decide on a suitable step size 1:!. based on whatever prior experience may indicate, for 

example, 1:!. = 1. (Often, one standard deviation of the tolerance distribution is deemed the 

best choice for step size.) Then we begin by testing the first experimental unit at dose 0; 

an outcome is observed. If it is a response, then the next dose is one unit down; 

otherwise, the next dose is one unit up. Figure 2 contains an illustration of these steps. 
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• Response 

o Nonresponse 

Figure 2 Up-and-Down Design for LD50 

There are two relatively easy ways to estimate the LD50 using this method. The first is to 

take the mode of the dose levels, so that for the above example the estimate would be 0 or 

1. (The fact that there are two choices indicates an obvious weakness with this estimate.) 

The second is to consider an average of dose levels, namely 

n X 

LDso = 2:-; 
i=O n + 1 

While the first method is fairly crude, it is correspondingly simple. The second estimate 

intuitively seems more trustworthy. 

Both of these estimates, however, admit to the likelihood of bias. If the initial 

estimate of the LD50 is inaccurate (and it most likely is, else we would not be conducting 

the experiment), then the choice will clearly influence the location of the dose levels 

included in the calculation of the estimate. Two clear alternatives arise: ( 1) strike the first 



14 

dose level and begin at the second, or (2) begin including dose levels after a change in 

direction has occurred. This latter alternative is clearly appropriate only for the LD50. 

It is also noteworthy that in this method there is a "free" extra dose level without 

requiring an experiment at that point; that is, if at the terminal dose level there is a 

response (or nonresponse) then it is known that the next dose level will be one step down 

(or up). Using this fact and the first adjustment above (1), we have 

11+1 x. 

LDso=L-' 
i=t n + 1 

Another estimator for the LD50 was proposed by Wetherill; this estimator only 

counts the mean values between "turning points" in the up-and-down diagram. Such an 

estimator is clearly not generalizable to the search for quantiles other than the LD50, 

because it assumes one is interested in the place on the curve where responses alternate 

evenly. 

2.2.1 Biased Coin Method 

It is evident that the up-and-down method described above is no longer 

appropriate when the quantile of interest is not the median. An alternative algorithm for 

determining dose levels is required. One way to alter this method for other quantiles is 

the biased-coin method following Durham and Flournoy ( 1994). The method is based on 

the up-and-down design described in the previous section; the modification is as follows. 



Let us assume the quantile is below 0.5 (i.e., p < 0.5 for LD100P )1. We then 

construct a biased coin with the probability of obtaining a head given by 

P(H) = __.E_ 
1-p 
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Then if the outcome is a failure or nonresponse, we flip the biased coin to decide whether 

to go up a step ("heads" means go up; "tails" means stay at the same level). For a success 

or response, we automatically drop down a step. This procedure is illustrated in Figure 3 

below, where T and H denote "tails" and "heads," respectively. It should be noted that the 

procedure reduces to the standard up-and-down design whenp = 0.5. 

H 

• Response 

o Nonresponse 

H 

F1gure 3 Up-and-Down Design: Biased-Coin Technique 

In the case of the biased-coin technique, the estimator used in Section 2.2 for the 

LD50 is no longer adequate; rather, an adjustment has to be made to avoid a certain 

amount of bias. The new estimator is given by 

1 For p > 0.5, we will adjust the procedure slightly; that is. P(H) = ( 1-p)lp and we flip only at success to decide 
whether to drop. 



n+l 
X. 

LDIOOp =I-' - !::,.(p- 0.5) 
x=l n + 1 
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where !::,. is the size of the step. It has been shown that this procedure will converge at the 

estimate of the LD100P (Durham, 1994 ). 

2.2.2 Multiple Up-and-Down Process (MUD) 

Typically, the up-and-down procedure involves one experimental unit per trial. 

However, there are methods for dealing with multiple units per trial. In general the 

advantage of multiple units is one of economy of experimental time and effort (Hsi, 

1969). Moreover, Hsi has found that under certain conditions MUD can be nearly as 

efficient (in terms of bias and mean-squared error) as the single-unit up-and-down 

procedure. 

The procedure available to us follows the general pattern described here (Hsi, 

1969): 

( 1) a series of doses is chosen; 

(2) n trials of k subjects are performed; after each trial, the following decision is 

made: increase by one dosage level if there ares or fewer responses; decrease if there are 

r or more; and remain the same otherwise; 

(3) after n trials the experiment is terminated and the estimator (as given above) is 

calculated. 

The obvious difficulty with this procedure in regard to our aims is how to decide 

what values to use for sand r to obtain good estimates of the LDts and LD3o· 
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Furthermore, the question arises whether some form of the biased-coin technique should 

be incorporated into the scheme to insure better estimates or greater efficiency (with 

respect to statistical error). While it might be expected that a straightforward way to 

achieve the ED10, for example, would be to use 10 units per trial and stay at the same 

level for one response and go down for two or more, that method does not work as well 

as choosing s = 0 and r = 1 (Hsi, 1969). 

It should be noted that for determining the LD50, Hsi found that it is best to find 

an s and an r such that s = k- r. Thus, for example, if the trial has five subjects and we 

decide to increase if only one or no response, we should decrease for four or more 

responses. 

For our purposes we would like to be able to formulate a general guideline for 

estimation of the LD100P. We would like to propose as an alternative a combination of the 

biased-coin technique and the multiple up-and-down design. 

2.2.3 Biased-Coin Multiple Up-and-Down Technique 

The idea behind this approach is to combine the multiple-trial method (i.e., MUD) 

for the LD50 with the biased-coin technique in the following manner. For simplicity we 

will consider only two cases here, namely trials with 2 or 5 subjects (k = 2 or 5). In the 

first case (k = 2), the dose will be decreased if any responses are observed, and if no 

response is observed the biased coin will be flipped, where the odds
2 

are determined as 

before as p/(1-p). With 5 subjects per trial (k = 5), the dose level will decrease if there is 

2 Again, these odds apply only to the case p < 0.5. 



more than one response; otherwise, the coin will be flipped with the biased odds as 

before. 
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This procedure consists of proceeding as though it were the LD50 under 

consideration, but before the decision to increase a dose level is made, the biased coin is 

flipped. This avenue avoids the question of the search for suitable s and r for every 

situation other than the LD50. 

One of the solutions given by Hsi ( 1969) to the problems when searching for 

LD100P withp < 0.5 is to use a method of varying step sizes; however, that suggestion 

seems to us to violate the entire advantage of the up-and-down design, which surely rests 

in its simplicity. If we were to consider adjusting step sizes, the up-and-down design 

reverts back to the general Robbins-Monro process in terms of allocation. 



CHAPTER3: SIMULATION STUDIES 

The simulations for the assessment of the procedures below were conducted in 

SAS using both the standard normal and gamma (a= 2, p = 1) distributions as 

background or tolerance distributions. The normal distribution represents the case of a 

symmetric distribution; the gamma (quite skewed with these parameters) represents an 

asymmetric case. 

Dixon and Mood suggested a step size about equal to the underlying standard 

deviation; Brownlee showed that the up-and-down design is most efficient when the step 

size is between 2/3 and 3/2 of the standard deviation. We have therefore chosen 1/2, 1 

and 3/2 of the underlying standard deviation as a suitable step size for both methods. 

The simulation size for every simulation in this study is 500, and sample sizes (N) 

of both 20 and 30 were used. Performance of the estimate is measured in terms of Monte 

Carlo mean-squared error (MSE) and bias. 

The programs for two of the simulations that follow can be found in Appendix A; 

the other programs differ only slightly from those given as examples in the appendix. 

3.1 Robbins-Monro Process 

The first question related to this process specifically was how to choose the values 

of the step constant for consideration. As we will see below, one possibility is to employ 

an adaptive procedure where the step constant is generated by the prior data within the 

experiment. However, commonly we wish to set the step constant at the outset, so in this 
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first experiment we have done so. Our choices for this constant are 1/2, I and 3/2 for the 

standard normal; these step sizes represent, if desired, those multiples of the standard 

deviation of the distribution. Of course, for our choice of shape parameter in the gamma 

distribution, the standard deviation would be '>12 or, roughly, 1.41. Consequently, if we 

wish to continue with this guideline for step constant for the gamma distribution, we must 

choose values of 0.7, 1.4 and 2.1. 

Another consideration is the choice of initial doses. For the standard normal case, 

we have chosen -1, 0, and 1, representing, very roughly, good, mediocre and poor choices 

for initial dose with response to the 15% and 30% quantiles. The analogous choices for 

the gamma case might be I, 2 and 3. 

A frequent criticism of the Robbins-Monro procedure is that the step sizes 

decrease too rapidly if the initial estimate is far from the true quantile; this problem is 

exacerbated by large "one-way" jumps in the procedure for extreme quantiles when there 

is only one subject per trial. In order to ameliorate this deficiency, various delay 

mechanisms are often recommended. For example, in the search for the median one 

might recommend that the steps ought not begin to decrease until both a response and a 

nonresponse have been observed (Davis, 1971 ). A somewhat more clever approach 

advanced by Kesten (1985) is to decrease the step size if the last two responses 

immediately prior to the present trial are opposite and to leave it static otherwise. 

Unfortunately, neither mechanism is appropriate for the present case, because 

each applies only to the search for the median. That is, it makes little sense to wait for 
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both a response and a nonresponse if we are indeed searching for a quantile where few 

responses are expected(e.g., LD15 ). Therefore, we have followed a different course. 

Our interest is in the estimation of LD 15 and LD30 as representative of extreme 

quantiles; therefore, our delay mechanism might reasonably take into account places 

where we are expecting a greater number of nonresponses than responses. Consequently, 

we have decided to begin the decrease of the step sizes when 3 nonresponses have been 

observed. After that stage we begin decreasing by the usual increment; that is, 

� 
a = ----

' (t-t'+2) 

where a1 is the step constant, t is the index of trials and t' is the stage at which we have 

observed the third nonresponse. This adjustment has the effect of decreasing c by 

consecutive factors only after the delay criterion has been met. All simulations in this 

section followed this pattern. 

The results of the simulation are summarized in Table 1 for p = 0.15 and Table 2 

for p = 0.3. Note that the "design" refers both to the total sample size and the background 

distribution assumed for simulation purposes. 
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Table 1 MSEX1 rJ and BiasX1 rJ for Robbins-Monro Process when p= 15% 

MSE 

k=1 k=2 k=S 
First Dose First Dose First Dose 

DESIGN STEP -1 0 1 -1 0 1 -1 0 1 
1/2 05 22 40 02 35 73 0 21 152 

normal 1 13 16 18 07 17 24 01 14 69 
N=20 3/2 21 22 20 11 14 16 03 17 35 

112 06 21 31 02 29 58 0 13 137 
normal 1 11 14 17 05 13 18 01 07 54 
N=30 3/2 18 17 17 09 12 11 02 06 24 

First Dose First Dose First Dose 
1 2 3 1 2 3 1 2 3 

112 08 17 29 05 29 61 06 67 167 
gamma 1 11 10 13 07 12 21 05 29 62 
N=20 3/2 07 26 07 10 11 12 06 15 28 

112 07 16 24 05 24 49 05 58 137 

gamma 1 07 07 08 05 09 14 04 21 45 

N=30 3/2 05 17 05 07 08 07 04 11 15 

BIAS 
k=1 k=2 k=S 

First Dose First Dose First Dose 
DESIGN STEP -1 0 1 -1 0 1 -1 0 1 

112 -2 35 48 0 53 77 2 76 123 

normal 1 -8 10 11 -1 27 35 2 54 78 

N=20 3/2 -14 -5 -9 -5 11 11 1 37 46 

112 -1 30 46 1 49 73 2 71 113 

normal 1 -7 7 10 0 24 30 2 51 66 

N=30 3/2 -14 -11 -8 -2 11 8 -1 32 40 

First Dose First Dose First Dose 
1 2 3 1 2 3 1 2 3 

112 7 23 35 13 47 64 21 78 127 

gamma 1 -3 -1 1 3 15 19 13 44 68 

N=20 3/2 -9 -18 -8 -6 2 2 6 23 33 

112 4 19 29 11 43 58 19 72 116 

gamma 1 -1 -2 -1 9 15 11 37 56 

N=30 3/2 -8 -15 -5 -5 0 -1 5 18 24 
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Table 2 MSEXJrJ and BiasXIrl for Robbins-Monro Process whenp=30% 

MSE 

k=1 k::2 k=S 
First Dose First Dose First Dose 

DESIGN STEP -1 0 1 -1 0 1 -1 0 I 

112 09 10 20 II 10 36 16 14 79 
normal 1 12 II 13 08 09 14 12 09 32 
N=20 3/2 13 13 14 10 09 13 08 08 17 

1 12 09 II 15 10 09 29 14 13 67 

normal 1 10 09 10 07 07 10 09 07 25 

N=30 3/2 10 10 II 07 08 07 07 06 12 

First Dose First Dose First Dose 
1 2 3 1 2 3 1 2 3 

1 12 07 16 25 04 18 43 01 33 121 

gamma 1 10 12 14 06 12 17 03 18 47 

N=20 3/2 10 10 10 08 10 13 04 12 24 

1 12 07 15 19 03 15 38 02 29 105 

gamma 1 07 09 10 05 08 12 02 13 37 

N=30 3/2 06 07 06 06 07 09 03 09 17 

BIAS 

k=1 k=2 k=S 
First Dose First Dose First Dose 

DESIGN STEP -1 0 1 -1 0 1 -1 0 1 

112 -24 12 25 -30 21 49 -39 36 87 

normal 1 -12 2 2 -19 8 18 -31 23 49 

N=20 3/2 -14 -7 -6 -12 2 1 -26 14 28 

1 12 -22 10 26 -28 22 43 -38 33 79 

normal 1 -12 -2 2 -18 7 14 -29 20 44 

N=30 3/2 -10 -7 -5 -8 -1 5 -22 14 20 

First Dose First Dose First Dose 

1 2 3 1 2 3 1 2 3 

1 12 -4 15 25 -5 29 54 -9 54 108 

gamma 1 -4 2 6 -1 8 16 -6 30 57 

N=20 3/2 -5 0 0 -1 2 9 -4 17 29 

112 -3 15 24 -5 26 50 -8 49 96 

gamma 1 -1 2 5 0 8 15 -5 26 50 

N=30 3/2 -2 0 -3 3 5 -3 13 26 
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There are several noteworthy results above. First, observe that the patterns 

discernible in these results are very similar for the LD15 and LD30; this fact bodes well for 

the generalizability of our recommendations. 

There are some clear trends evident in the results in terms of Monte Carlo MSE. 

The best results when the initial estimate is close to the true value are achieved by using a 

larger trial size; that is, the best estimates for both the symmetric (normal) and 

asymmetric (gamma) background distributions are achieved with trial sizes of 5. For the 

symmetric distribution, that trend is more pronounced (i.e., some of the 'second-best' 

estimates are found in trial sizes I or 2 for the asymmetric). 

We note, however, that if the initial estimate is very poor then using a large trial 

size is equally so: the results for trial size 5 and the 'bad' initial guess are uniformly 

disappointing. This outcome is not surprising: if the initial guess is far removed from the 

true quantile, it will take a larger number of total iterations to approximate it. Similarly 

unsurprising is the fact that a larger step size has a hugely salutary effect when the initial 

guess is poor and the trial sizes are large. All of these observations seem to apply equally 

well to a total sample size of20 or 30. 

It seems that, unless the researcher has a very good idea of where the quantile is, it 

is best to avoid using large trial sizes. If time is important, however, there is very little 

difference between using trial sizes of 1 or 2, except when the step size is small. 

Consequently, one might recommend in general using one or two experimental units per 
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trial with a reasonably large step size, unless the investigator is certain that the quantile is 

within a very small range indeed. 

Finally, we note that the biases reported do not contradict these conclusions, 

though the patterns are not precisely the same. In those cases where bias would lead to a 

slightly different choice, the discrepancies of bias are minuscule. 

3.2 Adaptive Robbins-Monro Process 

As previously discussed, the adaptive Robbins-Monro Process (ARM) is one in which the 

slope of the response curve at the quantile under consideration is estimated via ordinary 

linear regression. To this end we arrive at an estimate for the slope given by 

To achieve the step coefficient, a1, we then take 

� 
a =-A 

, n� 

This substitution can take place only after both nonresponses and responses have been 

observed; otherwise, we would have an estimate of 0 for � and be unable to take its 

reciprocal. Also, there cannot be an equal number of responses and nonresponses, else the 

regression line would be horizontal; in that case, we merely use the former step 

coefficient as if the procedure were nonadaptive. 

Furthermore, to avoid unduly large estimates of �-I, we may use the truncation 

mentioned above. In our simulations we followed the ordinary RM pattern from the 



previous section until the criterion for both responses and nonresponses was met, and 

then we applied the truncation 

max[min(� ,-1 , d), o ] 
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instead of � ,-1 with d =50 and 8 = 1. Clearly, if � ,-1 is very large our truncation will cut 

it at 50, while if it is very small it will truncate at 1. Also, of course, the estimate cannot 

be obtained until two trials at two different doses have been observed; in that case, we 

also merely continue with the procedure as before. The results of the simulation are 

surnrnarized in Table 3 for p = 0.15 and Table 4 for p = 0.3. 



Table 3 MSEXJ rl and BiasXJ rJ for Adaptive Robbins-Monro Process when p= 15% 
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MSE 
k=1 k=2 JeS 

First Dose First Dose First Dose 
DESIGN STEP -1 0 1 -1 0 1 -1 0 1 

112 15 51 126 34 81 322 22 79 232 
normal 1 14 42 44 20 55 65 26 47 156 
N=20 3/2 23 46 25 23 48 38 40 63 68 

112 13 28 70 21 40 209 28 71 282 
normal 1 11 23 23 19 30 37 32 38 190 
N=30 3/2 17 21 17 15 27 33 34 65 66 

First Dose First Dose .First Dose 
1 2 3 1 2 3 1 2 3 

112 17 56 210 34 403 661 90 615 2180 
gamma 1 15 28 47 20 242 314 62 484 1131 
N=20 3/2 37 29 57 28 199 338 66 204 744 

112 12 38 177 16 275 506 86 630 1909 
gamma 1 13 17 46 13 177 242 51 335 853 
N=30 3/2 36 11 35 24 146 202 76 291 667 

BIAS 

k=l k=l k=S 
First Dose First Dose First Dose 

DESIGN STEP -1 0 1 -1 0 1 -1 0 1 
112 7 1 7 8 3 14 23 39 33 

normal 1 9 -3 22 13 -4 25 24 22 46 

N=20 3/2 7 -4 6 14 0 14 27 10 38 

112 8 -6 -1 15 -8 0 32 12 21 

normal 1 9 -8 14 13 -5 20 26 12 17 

N=30 3/2 6 -2 6 12 -8 17 32 -8 35 

First Dose First Dose First Dose 
1 2 3 1 2 3 1 2 3 

112 -32 -12 -17 -27 -89 -90 -35 -99 -197 

gamma 1 -32 -16 3 -26 -53 -61 -29 -84 -93 

N=20 3/2 -43 -25 -21 -32 -51 -71 -30 -51 -66 

112 -28 -9 -25 -21 -76 -85 -41 -119 -198 

gamma 1 -31 -14 -6 -25 -52 -56 -35 -71 -82 

N=30 3/2 -43 -18 -15 -29 -49 -55 -41 -78 -74 
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Table 4 MSEXJrl and BiasXJrl for Adaptive Robbins-Monro Process when p=30% 

MSE 

lcl k=2 k=5 
First Dose First Dose First Dose 

DESIGN STEP -1 0 1 -1 0 1 -1 0 1 
112 13 21 52 37 32 253 53 13 239 

normal 1 12 13 23 20 23 36 52 26 178 
N=20 3/2 11 12 18 26 23 38 38 12 86 

112 11 12 23 26 17 104 63 29 181 
normal 1 11 8 15 16 19 23 57 15 135 
N=30 3/2 9 10 11 17 13 20 43 15 57 

First Dose First Dose First Dose 
1 2 3 1 2 3 1 2 3 

112 26 76 165 54 179 267 36 418 1422 
gamma 1 39 61 103 37 208 203 48 247 904 
N=20 3/2 36 74 87 39 157 189 47 124 733 

112 16 28 123 34 168 264 28 407 1334 

gamma 1 18 39 65 27 166 159 28 221 882 

N=30 3/2 26 50 51 20 129 184 33 155 677 

BIAS 
k=1 k=2 k=5 

First Dose First Dose First Dose 
DESIGN STEP -1 0 1 -1 0 1 -1 0 1 

112 -2 6 6 4 5 -10 16 21 -29 

normal 1 3 5 1 5 5 14 14 13 14 

N=20 3/2 4 5 -2 15 4 5 14 6 10 

112 0 1 2 2 -8 29 8 -18 

normal 1 1 6 7 7 4 10 26 5 -6 

N=30 3/2 3 6 -1 11 2 0 19 5 8 

First Dose First Dose First Dose 

1 2 3 1 2 3 1 2 3 

112 -34 -27 -28 -35 -65 -48 -24 -86 -155 

gamma 1 -37 -33 -24 -28 -67 -48 -27 -67 -92 

N=20 3/2 -39 -43 -29 -33 -59 -62 -28 -52 -100 

112 -23 -11 -28 -31 -69 -59 -29 -103 -197 

gamma 1 -23 -27 -16 -27 -71 -49 -30 -63 -123 

N=30 3/2 -34 -37 -24 -24 -58 -68 -31 -63 -100 
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This procedure appears to be unifonnly worse than the nonadaptive Robbins-

Monro for quantal-response data. It is noteworthy, however, that here the 

recommendation is much clearer if the ARM is to be used: sticking with one 

experimental unit per trial seems to be always the best approach, whether in tenns of 

MSE or bias. On the whole, however, there is a clear advantage in avoiding the procedure 

altogether. 

3.3 Up-and-Down Design: Biased-Coin Technique 

The simulations for both the single-unit trials and the MUD were conducted via 

the same program; for the specific case at hand as described above, the biased-coin MUD 

with n = 1 is the same as the single-unit biased-coin technique. 

The delay mechanism for this procedure was the same as in the RM simulations, 

namely the calculation of the estimate never involved any observations before three 

nonresponses had been recorded. The estimate from the up-and-down design often 

excludes the initial observation to remove bias (following Brownlee), but we see no 

reason why this principle should not be extended for small p cases as was done in the 

case of Robbins-Monro. Thus the estimate for the LD100P was calculated as 

n+l 

LD100P = 2:X; I (n + 1- x')- tl(p- 0.5) 
i=x· 

where x • is the first dose level after at least three nonresponses have been observed and tl 

is the step size. 
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Note that the biases listed below would be exaggerated by a factor of /::;.(p- 0.5) 

were it not for the adjustment. Thus, for our p == 0.15 and steps 1/2, 1 and 3/2, the biases 

listed below would be less by the amounts 17, 35 and 52. Similarly exaggerated biases 

would apply to the other results below. 

On a very few occasions, when starting at an initial point far from the true 

quantile, the experiment never led to at least three nonresponses, and therefore the above 

estimate could not be calculated. (Such was the case on at most 5 out of the 500 

simulations per individual design.) The estimator is determined before an experiment is 

conducted; therefore, if the estimate cannot be calculated then there is no estimate. This 

strategy is consistent with one's overall aims, namely to get an accurate estimate of the 

quantile. Indeed, if there were not even three nonresponses, then clearly the doses tried 

were almost all far away from the true LD lOOp • 

Of course, in the case of the up-and-down there is no further adjustment made to 

the step within the simulation: once the step is chosen for the experiment the increment is 

fixed throughout, following the up-and-down design methods. 

The results from the simulations for the up-and-down design are presented in 

Table 5 for p = 0.15 and Table 6 for p == 0.3. 
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Table 5 MSEXJ rJ and BiasXJ rl for Biased-Coin MUD when p= 15% 

MSE 
k=l k=2 k=S 

First Dose First Dose First Dose 
DESIGN STEP -1 0 1 -1 0 1 -1 0 1 

112 14 22 25 11 16 27 6 26 115 
normal 1 21 27 26 22 21 24 17 17 36 
N=20 3/2 35 35 33 36 41 34 28 29 27 

112 12 16 20 13 10 13 11 10 50 
normal 1 17 19 19 21 19 19 23 15 15 
N=30 3/2 23 27 24 27 34 29 33 33 21 

First Dose First Dose First Dose 
1 2 3 1 2 3 1 2 3 

112 17 22 24 26 46 68 29 113 245 
gamma 1 25 31 32 38 56 56 63 122 160 
N=20 3/2 39 36 47 65 56 78 117 128 148 

112 11 14 15 17 31 41 29 89 172 
gamma 1 15 25 26 28 39 39 53 98 113 
N=30 3/2 25 35 27 46 42 53 88 92 126 

BIAS 
k=1 k=2 k=S 

First Dose First Dose First Dose 
DESIGN STEP -1 0 1 -1 0 1 -1 0 1 

112 10 29 35 -9 19 36 -10 46 106 
normal 1 9 21 20 -I 0 0 8 -12 16 49 
N=20 3/2 15 16 14 -15 -10 -5 -24 4 21 

112 9 21 29 -14 4 18 -20 22 68 
normal 1 11 15 15 -17 -6 -9 -27 -6 11 
N=30 3/2 12 13 15 -20 -20 -15 -33 -17 -8 

First Dose First Dose First Dose 
1 2 3 l 2 3 1 2 3 

112 22 29 32 32 50 67 43 97 147 

gamma 1 20 23 39 23 40 50 54 86 105 

N=20 3/2 8 50 11 17 55 30 63 76 84 

112 18 23 26 23 40 50 39 83 121 

gamma 1 16 22 39 21 27 44 44 71 84 

N=30 3/2 3 52 6 12 52 18 44 73 68 
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Table 6 MSEXJrJ and BiasXJr/ for Biased-Coin MUD whenp=JO% 

MSE 

k=1 k=2 k=S 
First Dose First Dose First Dose 

DESIGN STEP -1 0 1 -1 0 1 -1 0 1 
112 II 16 17 34 17 14 41 6 25 

normal 1 17 18 20 36 32 37 60 36 19 
N=20 3/2 22 22 24 45 45 46 81 64 45 

112 8 9 12 28 17 15 56 16 6 
normal 1 11 12 13 34 28 28 66 48 36 
N=30 3/2 16 14 15 39 35 36 79 73 59 

First Dose First Dose First Dose 
1 2 3 1 2 3 1 2 3 

112 16 18 22 20 28 48 16 61 128 
gamma 1 27 27 26 43 44 46 56 85 101 
N=20 3/2 39 32 43 68 48 72 104 99 125 

112 11 14 15 15 24 30 16 47 93 
gamma 1 17 20 19 34 34 33 42 69 81 
N=30 3/2 25 25 32 48 36 52 79 70 97 

BIAS 

k=1 k=2 k=S 
First Dose First Dose First Dose 

DESIGN STEP -1 0 1 -1 0 1 -1 0 1 
112 -1 10 14 -44 -21 -3 -58 -11 47 

normal 1 3 5 6 -39 -32 -33 -64 -44 -17 

N=20 3/2 5 6 2 -39 -34 -36 -71 -55 -46 

112 -1 6 9 -43 -27 -20 -69 -31 11 

normal 1 4 7 3 -42 -37 -34 -71 -56 -44 

N=30 3/2 5 6 2 -40 -38 -39 -74 -67 -61 

First Dose First Dose First Dose 
1 2 3 1 2 3 1 2 3 

112 13 17 25 10 26 43 8 60 99 

gamma 1 21 24 27 14 24 36 24 50 60 

N=20 3/2 14 34 22 7 31 25 30 38 48 

112 15 20 21 11 25 32 11 47 80 

gamma 1 18 23 27 18 23 32 17 44 56 

N=30 3/2 17 35 17 21 34 16 26 36 40 
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There is a clear correlation between increased step size and poverty of the 

estimate in terms of MSE and bias. This observation is highly intuitive, as the larger step 

sizes limit the number of dose choices. The other quite remarkable trend here is that it 

does not seem to matter much how good the initial guess is; that is an extremely valuable 

point to keep in mind. When compared to the Robbins-Monro procedure, however, we 

note that the MSE is almost always greater here; however, when the step size is small the 

difference is correspondingly insignificant. 

We note that Hsi has already anticipated a poor performance for the MUD if the 

initial guess is far from the desired quantile (Hsi, 1969). This expectation is certainly 

confirmed by the above results. 

Second, we note that for p = 15% and the symmetric case, the MUD is actually 

comparable in performance to the single-trial method. This comparability collapses for p 

= 30% or for the asymmetric case. Aside from the advantage of speed, the MUD seems to 

have little to offer. In every other instance it is consistently outperformed by the single

trial up-and-down design. 

3.4 Simultaneous Trials 

The entire purpose of the MUD procedure is to speed up the experiment. The 

same end can be accomplished, however, without the loss of statistical accuracy; such a 

compromise is possible if we allow several one-unit-per-trial up-and-down designs to 

take place at the same time. We might well expect an improvement over the MUD in 

terms of both MSE and bias. 
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To this end we conducted a simulation that took the simultaneous trials approach 

with the up-and-down design. The approach was to run simultaneous trials with k = 2 and 

5, find their estimates in the ordinary fashion, and then average those estimates. (Trying 

to obtain an overall estimate from all the data points would fail to take into account the 

delay mechanism described earlier.) The results of the simulations studies are presented 

in Table 7 for p = 0.15 and Table 8 for p = 0.3. 
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Table 7 MSEXJ rl and BiasXJ rJ for Simultaneous Biased-Coin MUD when p= 15% 

MSE 

k=2 k=S 
First Dose First Dose 

DESIGN STEP -1 0 1 -1 0 1 
1/2 8 47 83 4 73 195 

normal 1 18 36 49 14 64 108 

N= 20 3/2 26 35 41 27 63 93 

1/2 7 26 52 5 57 131 

normal 1 14 24 31 13 46 77 

N= 30 3/2 19 29 26 22 44 60 

First Dose First Dose 
1 2 3 1 2 3 

1/2 131 19 17 189 20 18 

gamma 1 65 4 4 122 5 5 

N=20 3/2 89 1 20 95 I 24 

1/2 100 19 18 166 19 17 

gamma 1 41 4 4 90 4 4 

N=30 3/2 87 19 90 21 

BIAS 

k=2 k=S 
First Dose First Dose 

DESIGN STEP -1 0 1 -1 0 1 
1/2 15 64 86 18 84 138 

normal 1 25 47 58 31 75 99 

N=20 3/2 27 41 47 42 70 88 

1/2 13 45 66 17 74 112 

normal 1 17 37 44 28 63 83 

N=30 3/2 21 34 35 37 60 70 

First Dose First Dose 
1 2 3 1 2 3 

1/2 -113 -43 -41 -137 -45 -41 

gamma 1 -76 -19 -19 -110 -21 -20 

N=20 3/2 -93 6 -43 -97 2 -48 

1/2 -98 -43 -42 -128 -44 -41 

gamma 1 -60 -19 -18 -93 -20 -20 

N=30 3/2 -92 6 -43 -94 4 -44 
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Table 8 MSEXUJ and BiasXJrf for Simultaneous Biased-Coin MUD when p=30% 

MSE 
k=2 k=S 

First Dose First Dose 
DESIGN STEP -1 0 1 -1 0 1 

112 9 14 31 9 16 78 
normal 1 12 15 22 7 16 37 
N= 20 3/2 16 18 23 10 20 28 

112 7 10 18 7 13 50 
normal 1 9 11 14 6 12 25 
N=30 3/2 11 13 16 9 15 21 

First Dose First Dose · 

1 2 3 1 2 3 
112 159 68 62 282 72 60 

gamma 1 82 35 34 178 40 39 
N=20 3/2 166 14 68 187 18 77 

112 123 66 62 223 70 60 
gamma 1 64 34 33 123 37 35 
N=30 3/2 159 13 65 172 15 70 

BIAS 

k=2 k=S 
First Dose First Dose 

DESIGN STEP -1 0 1 -1 0 1 
112 -14 25 48 -27 35 85 

normal 1 0 20 27 -12 30 49 
N=20 3/2 3 14 23 -3 26 34 

112 -11 19 33 -21 31 67 
normal 1 -2 14 18 -4 23 40 
N=30 3/2 0 13 14 3 21 29 

First Dose First Dose 
1 2 3 1 2 3 

112 -125 -82 -78 -168 -85 -77 
gamma 1 -89 -59 - 57 -132 -63 -61 
N=20 3/2 -128 -36 -81 -136 -41 -86 

112 -110 -81 -78 -149 -83 -77 
gamma 1 -79 -58 - 57 -110 -61 -59 

N=30 3/2 -125 -34 -80 -131 -38 -82 
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For the symmetric distributions, the simultaneous-trials approach (SMUD) is 

often more efficient in terms of MSE when the initial guess is relatively good. This 

advantage is not as widespread or as consistent as we might have hoped; there appears to 

be little advantage, if a symmetric tolerance distribution is supposed, in using the SMUD. 

The simultaneous trials outperform the standard MUD in the asymmetric case 

(both in terms of MSE and bias) for p = 0.15 when the initial guess is not near the true 

quantile. Hence, if the researcher has reason to believe the tolerance distribution is 

asymmetric and not much is known about the location of the true (extreme) quantile, it 

may be worthwhile to use the simultaneous-trials approach. 

3.5 Comparison of Methods 

In order to summarize the relative efficiency of the various methods, we have 

chosen four representative scenarios. In the graphs in Figure 4 through Figure 7, the 

patterns already described in Sections 3.1 to 3.4 can be seen. (Note that those values so 

large as to be unworthy of comparison are not recorded on the graphs.) 

In the case of one subject per trial (Figure 4 ), the relative parity of the up-and

down design and the RM procedure is clear. The uniform inferiority of the ARM is also 

evident, and it is the more exaggerated the worse the initial estimate is. 

Similar results are evident in the case of two subjects per trial with an asymmetric 

tolerance distribution(Figure 5); however, here we have the additional observation that 
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the simultaneous MUD is less efficient than the MUD for a good initial estimate but more 

efficient if the initial estimate is very poor. 

In Figure 6 the RM and the SMUD clearly outperform the other methods for a 

good initial estimate; furthermore, for less precise initial doses the three non-ARM 

methods appear roughly equally efficient. It is noteworthy that in this case (with a 

symmetric tolerance distribution) the SMUD underperforms the MUD for a very poor 

initial choice. 

Finally, in Figure 7 we see a scenario where there appears to be a clear hierarchy 

of methods: RM, SMUD, ARM, MUD. It should be emphasized that here we observe an 

unususally good performance in the ARM. 
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CHAPTER 4: CONCLUSION 

4.1 Summary and Recommendations 

This thesis is concerned with sequential estimation of the LD100P when p-::�= 0.5 . 

Although we have focused our attention on cases where p is relatively small (i.e., p = 0.15 

or 0.3), the conclusions are likely to be generalized to other relatively small and large 

values of p. Noteworthy, however, is that overall the MSE and bias are often lower when 

p = 0.3 than when p = 0.15. Such a result is consistent with expectations, because more 

extreme quantiles are more difficult to estimate. 

In terms of both MSE and bias, the clear overall recommendation is for the 

Robbins-Monro procedure (RM) in virtually every case. Such a result is consistent with 

the published results for the LD50. The only possible exceptions to this general rule would 

be the following two cases: (1) if the researcher is interested in conducting multiple 

experiments per trial and has reason to believe that the tolerance distribution is 

asymmetric, the simultaneous-trials biased-coin MUD procedure may be optimal; (2) if 

the step sizes are small (e.g., one-half standard deviation of tolerance distribution), the 

initial estimate is relatively far from the true quantile. and there is reason to believe the 

tolerance distribution is symmetric, the up-and-down procedure is often superior or at 

least comparable to RM in terms of MSE. 
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There is often lower bias generally found for the adaptive RM (ARM) in the 

symmetric case, especially for the larger quantile (p = 0.30); however, this discrepancy is 

negligible. 

It is not surprising that the RM process works so well, given its variable step sizes 

and its proven record with the LD50. On the other hand, it is important to remember that 

the delay mechanisms we have introduced may play a role in this apparent superiority 

revealed in our simulations. In any event, using the procedure as we have advised appears 

to work very well. 

The performance of the MUD for k = 5 can be better than that of RM in the 

symmetric case with poor initial estimates, so it may be advisable to use the MUD if such 

trial sizes are necessary given the small overall samples (N = 20 or 30). Note, however, 

that SMUD appears to have little advantage over the MUD except for the asymmetric 

case. We would continue to recommend this biased-coin MUD because it is easy to use in 

general, instead of searching for the rights and r as required by the unaltered MUD 

presented by Hsi (Hsi, 1969). 

Finally, we repeat that there appears to be no reason to use the ARM process 

when analyzing quantal-response data. The RM process appears to be the most efficient, 

while the up-and-down procedure is often comparable enough to warrant its use and is 

sometimes even superior. 



4.2 Recommendations for Further Study 

The methods in this study have been modified slightly in some ways from their 

form given by the original proponents (e.g., delay mechanisms and the biased-coin 

element in the MUD); therefore, it may be necessary to compare via simulation these 

methods with their unaltered versions to see if the modifications are indeed 

improvements. Such a comparison would involve only slight changes in the programs 

used to run the simulations in this study (see Appendix A). 
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Furthermore, in most procedures in sequential analysis, the sample size is a 

random variable determined by the outcomes of the experiments. In the case of the 

procedures describes in this study, however, there is no stopping rule. Although work has 

been done in this area, a satisfactory, well-tested method for deciding how to stop a test 

using either RM or up-and-down has not been devised (see Pflug, 1988). Further 

development in this arena is needed. 

Finally, there are also some methods for determining confidence intervals for the 

estimates, but they often involve modifications of the original estimation procedures 

(Ghosh, 1991 ). Further development for constructing confidence-intervals is necessary. 
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APPENDIX A:SAS PROGRAMS FOR SIMULATIONS 

Appendix A-1 Program for Robbins-Monro Design 

***************************************************************** 
* This program runs simulations for the Robbins-Monroe technique* 
* It assumes a background NORMAL distribution (i.e., N(O,l)). 
* Author: Dan Bettendorf 
*****************************************************************· , 

Title 'Robbins-Monroe Macro'; 

Footnote 'UD$BHS: [ dbettendorf.thesis.simulations ]robbins_ monroe.sas'; 

******************************************************************* 
* VARIABLES: 
* INIT is the inital value for the algorithm 
* DIVIDE is the divisor of 20 to create the group SIZE 
* STEP is the step coefficient in the algorithm 
* P is the p as in LD10op 
*Then we can discuss the ORDINARY VARIABLES: 
* RESP counts the number of responses within group 
* TOTAL counts the number of responses within experiment 
*·QUANT is the estimate of the LD100P 
* IST AR is the iteration at which 3 nonresponders have been reached 
* for the purposes of the delay mechanism 
* EXP is the index variable for the experiments 
* RESPOND is an indicator whether the random variate is a response 
* MARGIN is the count of nonresponders 
************************************************************************ 

options ls=80 ps=54; 
data driver; 
do q=l to 3; 
do w=l to 6; 

do e=l to 3; 

do r=l to 2; 

init=q-2; 

ifw=l then do; divide=20; 



size=!; 
end; 

ifw=2 then do; divide=IO ; 
size=2; 

end; 

ifw=3 then do; divide= 4; 

size=5; 
end; 

if w=4 then do; divide= 30 ; 
size=! ; 

end; 

ifw=5 then do; divide= 15; 
size=2; 

end; 

if w=6 then do; divide= 6 ; 

size=5; 
end; 

step=e* 0.5; 
p= r*( 0.15); 
truth= probit(p); 

output; 
end; 

end; 

end; 

end; 

*proc print data=driver; 

data collect(keep=step p init size sam_siz quant row sqbias); 

set driver; row= _N_; 

retain resp total quant istar; 

do exp= l to 50 0; 

quant=init; total=O; istar=O; 

do i= l to divide; 

resp=O; 
do j=l to size; 

z=normal( -1 ); 
respond= (z le quant); 
resp=resp+respond; 

end; 
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total=resp+total; 

margin=size*i-total; 

if margin ge 3 then do; 

else a=step; 

if istar=O then do; 

istar=i; 

end; 

a=step/(i-istar+2); 

end; 

quant=quant+a * (p-resp/size ); 

end; 

sqbias=( quant-truth)* *2; 

sam_siz=divide*size; 

output collect; 
end; 

proc univariate data=collect noprint; 

var sqbias; 

by row; 

output out=info 

mean=mse; 

data final( drop=quant); 

merge collect 

info; 

by row; 

if first.row; 

proc print data=final(drop=row sqbias); 

* END OF PROGRAM 

APPENDIX A-2 

(MUD) 

Program for Biased-Coin Multiple Up-and-Down Design 

***************************************************************** 

* This program runs simulations for the Up-and-Down technique 

* using the NORMAL distribution. It was composed by Dan 

* Bettendorf, 

*****************************************************************· 
' 

Title 'UP-AND-DOWN DESIGN/NORMAL'; 

* 

* 

* 
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Footnote 'UD$BHS: [ dbettendorf. thesis.simulations ]upanddown _ normal.sas'; 

******************************************************************* 
* INIT is the inital value for the algorithm 
*DIVIDE is the divisor of20 
* STEP is the step coefficient in the algorithm 
* Pis the p as in LD1oop 
*Then we can discuss the ORDINARY VARJABLES: 
* RESP counts the number of responses within group 
* TOTAL counts the number of responses within experiment 
* QUANT is the estimate of the LD1oop 
* 

* EXP is the index variable for the experiments 
* RESPOND is an indicator whether the random variate is a response 

so 

* MARGIN is the count of nonresponders 
************************************************************************ 

options ls=80 ps=54; 
data driver; 
do q=l to 3; 
do w=l to 6; 

do e=l to 3; 
do r=l to 2; 

init=q-2; 
if w=l then do; divide=20; 

size= I; 
end; 

ifw=2 then do; divide=IO; 
size=2 ; 

end; 
if w=3 then do; divide= 4; 

size=S; 
end; 

if w=4 then do; divide= 30 ; 
size=! ; 

end; 
if w=S then do; divide= 15 ; 

size=2 ; 
end; 

ifw=6 then do; divide= 6 ;  
size=S ; 



end; 

step=e*0.5; 

p= r*(0.15); 
truth= probit(p ); 

output; 
end; 

end; 
end; 

end; 
run; 

***Now that the driver dataset is ready we move on to the kill; 
*data collect check; 
data collect(keep=step p init sam_siz size est row bias sqbias); 

set driver; row= _N_; 
retain resp total quant count nurner; 
do exp=l to 500; 

quant=init; total=O; count=O; nurner=O; 
do i= l to divide; 

resp=O; 
do j=l to size; 

z=normal( -I); 

respond= (z le quant); 
resp=resp+respond; 

end; 

total=resp+total; 
margin=size* i -total; 

if margin ge 3 then do; 
nurner=nurner+quant; 
count=count+ I; 

end; 

if resp ge 1 then do; 
quant=quant-step; 

end; 

else do; 
try=ranuni( -1 ); 
if try le p/(1-p) then quant=quant+step; 

end; 

*output check; 
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end; 

est=(numer/count) -step*(p-0.5); 
bias=( est-truth); 
sq bias=( est-truth)* *2; 

sam_siz=size*i; 

output collect; 
end; 

run; 

proc univariate data=collect noprint; 

var sqbias bias; 
by row; 

output out=info 

mean=mse bias; 

run; 

data almost; 

merge collect 

info; 

by row; 

if first. row; 

run; 

proc sort data=almost; 

by p sam_siz size init step; 

run; 

/*Writing the data to a suitable format*/ 

I* Make sure you open a blank sheet in Excel FIRST *I 

**Also, you need to put a put statement in your data step; 

filename random dde 'excellsheetl !riel :r l40c8'; 

run; 

data final; 

set almost; 

file random; 

bias=round(bias* 100,1 ); 

mse=round(mse* 100,1); 
put p sam_siz size init step mse bias; 
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run· 
' 

proc print data=final(drop=row sqbias); 
run; 
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