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Mechanisms of Regulation of the Human c-myb Proto-oncogene 
During Myelomonocytic Differentiation. 

ABSTRACT 

A dissertation submitted in partial fulfillment of the requirements 
for the degree of Doctor of Philosophy at the Virginia 
Commonwealth University. 

Lawrence Harvey Boise 

Virginia Commonwealth University 

Adivsor: Eric H. Westin, M.D. 

Control of hematopoiesis is a complex set of events that is 

currently being dissected at the molecular level. To determine 

factors that may be crucial for commitment to terminal 

differentiation of myelomonocytic cells, a mutant of the HL-60 cell 

line was characterized at the cellular and molecular level. This 

clone, termed DMSOr, was shown to differentiate in a similar fashion 

as parental HL-60 in response to 1.3% DMSO at the morphologic and 

functional level. The anti-proliferative aspects of differentiation 

were also present in DMSOr as evidenced by decreased 3H­

thymidine incorporation and an increased percentage of cells in the 

Go!G 1 phase of the cell cycle. All of these phenotypic changes 

induced in DMSOr would revert if the DMSO was removed at any 



point during the differentiation process, thus DMSOr, despite its 

ability to functional differentiate, could not commit to terminal 

differentiation. 

XIV 

Associated with the altered phenotype of DMSOr was the 

altered expression of the proto-oncogene c-myb. Expression of c­

myb remained detectable at 144 hrs of DMSO treatment in DMSOr 

but not HL-60. Similar findings were shown for the cell cycle other 

related genes. This altered gene expression did not extend to the c-

myb related gene B-myb The possibility that altered 

transcriptional regulation of c-myb was eliminated by nuclear run­

on analysis and by the fact that a splice variant of c-myb with an 

altered 3' untranslated region showed no altered regulation. Thus 

the genetic defect in DMSOr may be in a global control factor for cell 

cycle related genes such as c-myb. This factor may regulate these 

genes at the post-transcriptional level. 

To determine the mechanisms of regulation of c-myb during 

hematopoietic cell differentiation, transcriptional and post­

transcriptional studies of c-m yb following treatment of HL-60 cells 

with various differentiation inducers were undertaken. Retinoic 

acid and vitamin D3 regulated c-myb at the transcriptional level via 

an attenuator, while DMSO and phorbol dibutyrate activated 

multiple mechanisms of regulation. These included attenuation and 

a post-transcriptional regulation that was dependent on continuous 

transcription, but not translation in the case of DMSO. Phorbol ester 

regulation of c-myb occurred at the level of an attenuator and 

possibly a promoter at the transcriptional level. In addition there 

was post-transcriptional control of c-myb by phorbol dibutyrate 



that differed from the regulation by DMSO through the lack of 

transcriptional dependency. Thus c-myb is regulated at the 

transcriptional and the post-transcriptional level in an agent 

specific fashion during HL-60 differentiation. 

A 2.4 kb message is present in the Northern blots probed for 

c -myb expression. This lower molecular weight message is 

XV 

regulated in an abberrant fashion compared to normal message 

during HL-60 differentiation. Probing of blots with different 

regions of a full length c-myb eDNA and primer extension analysis 

suggest that the 2.4 kb message may start in the ex on of the e-m y b 

locus. 



IN1RODUCfiON 

The process of hematopoietic cell differentiation is a complex 

set of events whereby a multipotent progenitor cell of the bone 

marrow is capable of differentiation to produce the cells required 

for a functional immune system, oxygen transport and hemostasis. 

Associated with these changes in function of differentiated cells is 

the loss of self renewal capacity due to withdrawal from the cell 

cycle. The differentiation process has "two arms," an 

antiproliferative arm and the functional/morphological arm. The 

mechanisms that control these arms of differentiation are 

extracellular and intracellular signals which are only now being 

delineated. The extracellular signals include the family of Colony 

Stimulating Factors (CSF), IL-3 and Stem Cell Factor (SCF). These 

and other factors convey their differentiation signals to the nucleus 

via receptor-coupled signal transduction mechanisms which cause 

changes in the expression of the genes required for defining the 

phenotypic and proliferative state of the cell. The control of the 

genes which are important for the phenotypic and proliferative 

state of the cell have been suggested to be under multiple 

controlling mechanisms. This is due to the fact that in certain 

leukemias, such as plasmacytomas, the cells maintain their mature 

phenotypic features, yet retain the ability to proliferate. The genes 

that control the proliferative or functional state of the cell are 

1 



regulated by specific transcription factors, such as the products of 

the nuclear, DNA binding class of proto-oncogenes. Many forms of 

leukemia are the product of the deregulation proto-oncogenes. It is 

important to understand how these proto-oncogenes are regulated 

to gain further insight into the control of hematopoiesis and the 

etiology of leukemia. 

To study the processes of gene regulation during human 

hematopoietic cell differentiation, in vitro models of differentiation 

must be utilized. The HL-60 human promyelocytic leukemia cell 

line provides an excellent model of differentiation because of its 

ability to differentiate to a variety of end-stage cells including cells 

of myeloid and monocytic lineage. The differentiation of HL-60 is 

induced by a variety of agents, many which are hematopoietic 

growth factors or activate the signal transduction systems which 

these factors utilize. Thus gene regulation during differentiation to 

myeloid or monocytic differentiated cells through the activation of 

signal transduction systems can be studied. 

HL-60 also offers the unique of advantage of in vitro models, 

in that differentiation resistant variants of the parental cell line can 

be obtained. The procedure for obtaining differentiation resistant 

mutants is to grow the cells on low levels of the differentiation 

agent, and to slowly increase the concentration to near maximal 

differentiation levels. This process will select for cells which are 

resistant to the induction of differentiation as evidenced by the 

continued ability to proliferate. These lines can then be 

characterized at the molecular level to determine what defect is 

present that may be associated with the altered phenotype. 

2 



A prime candidate for a controlling factor in determining the 

differentiation state of the cell during hematopoiesis is the gene 

product(s) of the c-myb proto-oncogene. This proto-oncogene 

encodes a transcription factor which, when altered via deletions 

present in the viral form of the gene, can transform avian 

hematopoietic cells. A unique feature of v-myb is that this 

truncated form of the gene cannot transform NIH3T3 cells, 

3 

therefore its action has been considered somewhat specific to the 

hematopoietic cell system. If c-myb encodes a transcription factor, 

which when deregulated can cause leukemia, then it is important to 

understand mechanisms that regulate the c-myb gene during 

hematopoietic cell differentiation. To this point all studies that have 

been published on the regulation of c-myb during hematopoietic 

cell differentiation have been in chicken and murine models. 

Studies of the human c-myb gene have been limited to 

measurements of changes in steady state levels of mRNA. 

The objective of this thesis project were three-fold: i) to 

characterize a variant of the DMSOr subclone of HL-60 at the 

cellular level and to determine if altered regulation of c-myb in 

DMSOr may play a role in the unique phenotype of this subclone, ii) 

to determine the mechanisms of control of the human c-myb 

oncogene during hematopoietic cell differentiation and iii) to utilize 

HL-60 and DMSOr to further characterize a lower molecular weight 

c-myb related mRNA that is present and which exhibits altered 

expression patterns from the prototypical c-myb message. 



LITERATURE REVIEW 

Hematopoiesis 

Hematopoiesis is the process of supplying and replenishing 

the body with cells that will carry out the functions of the innate 

and acquired immune systems, oxygen transport and hemostasis. 

The majority of the cells required for these functions have lifespans 

that range from hours to weeks, thus the hematopoietic system 

must be constantly resupplying the blood with functional cells. This 

is accomplished through the ability of the plouripotent stem cell of 

the bone marrow. This cell is unique in that it is capable of self­

renewal and can be stimulated to differentiate via multiple 

pathways to provide all the functional cells of the above mentioned 

systems. These pathways are initially marked by a committed 

progenitor cell for that branch of hematopoietic differentiation. The 

committed progenitor can differentiate through various 

intermediates to the end-stage cells of that arm of differentiation 

(Fig. 1 ). These branches of differentiation are the erythroid branch, 

the megakaryocytic branch, the lymphoid branch, and the myeloid 

branch. 

Erythroid differentiation provides the erythrocytes which are 

required for oxygen transport. The erthyroid cells, along with the 

megakaryocytes which ultimately provide platelets, are derived 

4 
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from the same precursor cell as the cells of myeloid origin. This 

progenitor cell (CFU-GEMM) will differentiate to a cell which is 

committed to becoming either a platelet-providing megakaryocyte, 

erythrocyte or myeloid cell. The myeloid committed precursor may 

differentiate to multiple end-stage cells. These cells fall into two 

classes, monocytic cells and granulocytic cells. The monocytic cells 

are the blood monocytes and tissue macrophage cells which function 

in both the innate and acquired immune systems. The granulocytic 

cells can be further subdivided into three cell types. The most 

common of these cells is the neutrophil, with differentiation 

occurring to a lesser extent to basophil and eosinophil forms. These 

are the majority of cells that make up the cellular portion of innate 

immunity. 

The lymphoid committed progenitor cell is provided directly 

from the pluripotent stem cell. The differentiation of these 

committed precursor cells provide the immature B and T 

lymphocytes which must migrate to the mammalian Bursa 

equivalent or to the thymus respectively for further development. 

Mature B lymphocytes, upon stimulation will differentiate to 

antibody secreting plasma cells to drive the humoral arm of 

acquired immunity, while mature T lymphocytes are divided into 

regulatory cells, such as helper or supressor cells, or they may 

become cytotoxic cells that are the active cells of the cell-mediated 

arm of acquired immunity. 

Hematopoietic Cell Growth Factors 



6 

Figure 1. Schematic diagram of Hematopoiesis. The diagram 
illustrates the ability of the pluripotent stem cell of the bone 
marrow to differentiate through myeloid and lymphoid 
precursors to the functional cells of oxygen transport, 
hemostasis and of the innate and acquired immune systems. 
Differentiation to end stage cells is through a series of 

committed progenitor cells such as the CFU-GEMM, the blast 
cells and the non-mitotic cells such as the megakaryocyte, the 

proerythrocyte and the B cell. 
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Figure 2. Colony-Stimulating Factors (CSFs) and other growth 
factors involved in hematopoiesis. Differentiation of stem cells, 
committed progenitors and blast cells requires the external 
stimuli of growth factors( or antigen in the lymphoid branch). 

The activity of many of these growth factors is depicted in this 
schematic representation of hematopoiesis. The general factors 
such as Stem Cell Factor (SCF), Interleukin 3 (IL-3), Interleukin 
6 (IL-6) and Granulocyte-Macrophage Colony-Stimulating 
Factor (GM-CSF) are active in the early stages of differentiation. 
Specific factors like Granulocyte Colony-Stimulating Factor (G­
CSF), Macrophage Colony-Stimulating Factor (M-CSF), 
erythropoietin (EPO) and thrombopoietin in addition to many of 
the general factors are active in the latent stages of 
hematopoieis. 
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The growth and differentiation of the stem cell and lineage specific 

progenitors is stimulated by soluble and membrane associated 

growth factors. Many of these factors are produced by cells in the 

bone marrow, providing a microenvironment consisting of 

predominantly paracrine and some autocrine stimulation while 

others, such as the red cell stimulating erythropoietin, are 

synthesized in the kidney(Sherwood and Goldwasser, 1978). The 

autocrine activity was initially recognized in in vitro clonigenic 

assays of normal bone marrow cells. Different soluble factors could 

stimulate the formation of colonies of cells from single 

precursors(Clark and Kamen, 1987). The colonies would contain 

cells which had acquired characteristics of a mature cell type. Thus, 

the soluble factors were stimulating growth and differentiation of 

the progenitor cells. The factors were named by their ability to 

form colonies of cells with specific phenotypic features. These 

Colony Stimulating Factors (CSF) as well as other hematopoietic 

growth and differentiation factor activities are shown in Fig. 2. 

Granulocyte/Macrophage Colony Stimulating Factor (GM-CSF) 

GM-CSF is an 18-24 kd glycoprotein that is produced by a 

variety of cells including activated peripheral blood lymphocytes 

(PBL)(Welte et al., 1985), mature T cell lines(Welte et al., 1985) and 

non-immune tissues(Clark and Kamen, 1987). GM-CSF is capable of 

stimulating progenitor cells to differentiate to either mature 

granulocytes or macrophage cells(Metcalf, 1986). In clonigenic 

assays, GM-CSF stimulated clones will yield colonies that contain 

both macrophages and neutrophils. The percentage of macrophage 



cells in the colony can be influenced through the addition of other 

CSFs(Metcalf, 1986). 

Granulocyte Colony Stimulating Factor (Q-CSF). 

G-CSF is also a glycoprotein ( 19 kd) that is produced by cells 

in and outside of the bone marrow(Wong et al.1986,). G-CSF is 

named for its ability to stimulate formation of colonies of cells of 

granulocytic character( Metcalf and Nicola, 1983 ), although G-CSF is 

also capable of stimulating the formation of erythroid, macrophage 

and megakaryocytic colonies to a lesser extent(Wong et a1.1986,). 

Macrophage Colony Stimulating Factor (M-CSF). 

M-CSF (also known as CSF-1) is a heavily glycosylated 45 kd 

protein dimer that specifically stimulates macrophage committed 

progenitor cells(Das et al., 1981 ). The receptor for M-CSF is a 

tyrosine kinase that is related to the product of the c-fms proto­

oncogene(Sherr et al., 1985). 

Multi-Colony Stimulating Factor (Multi-CSF). 

1 1 

Multi-CSF (also known as IL-3) interacts with early 

progenitors based on its ability to support the proliferation and 

differentiation of all the classes of committed progenitors(Yang et 

al., 1986). Multi-CSF is a 23-28kd glycoprotein that is produced by 

T cells(Yang et al., 1986). 

Stem Cell Factor CSCF). 
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SCF (also known as Mast Cell Factor) is the ligand for the 

receptor encoded by the c-kit proto-oncogene(Witte, 1990). The 

factor is encoded in the steel locus of the mouse and is produced by 

hematopoietic and non-hematopoietic tissues(Zsebo et al., 1990b; 

Williams et al., 1990; Huang et al., 1990). SCF is capable of 

stimulating the growth of many hematopoietic cell types including 

mast cells(Williams et al., 1990; Huang et al., 1990). SCF has 

moderate effects on myeloid, erythroid and lymphoid cell growth 

and differentiation by itself, but can also synergize with lineage 

specific factors(Zsebo et al., 1990a). SCF is expressed as a 

membrane associated protein or as a soluble molecule, of each 

which can stimulate cell growth and differentiation(Huang et al., 

1990). 

Myeloid Differentiation: Morphology and Function. 

Differentiation of myeloblasts to end-stage cells such as 

neutrophils occurs in the bone marrow over a 1 week period. The 

early or mitotic phase of development consists of differentiation 

through myeloblasts, promyelocytes and myelocytes. As the cells 

progress through the pathway a loss of proliferative potential 

occurs until they reach the non-mitotic phase of differentiation. 

The metamyelocytes, band cells and mature PMNs make up the late 

or non-mitotic phase of myeloid differentiation (Fig. 3). 

Myeloblast 

The myeloblast is the most immature white cell that can be 

distinguished at the morphological level . These cells have large 



round nuclei that are located in the center of the cell. The Wright­

Giemsa stain of these cells also reveals prominent nucleoli and a 

blue cytoplasm that contains no visible granules. 

Promyelocyte 

The promyelocyte is similar to the myeloblast in its 

morphology, except for the appearance of dark staining primary 

granules, which contain the product of the mim 1 gene(Ness et al., 

1989). These granules also contain degradative enzymes such as 

lipases, proteases, mannodases and glucosidases. The function of 

these granules is not known. 

Myelocyte 

The nucleus of myelocytic cells is round but the nucleoli are 

no longer present. The primary granules that were present in the 

promyelocyte are also no longer present. These granules are 

replaced by secondary granules. These granules contain lysozyme 

and lactoferrin. 

Metamyelocyte 
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The nucleus of the metamyelocyte is condensed into a "kidney 

bean" shape that is offset to one side of the cell. The secondary 

granules remain present in these cells. The Wright-Giemsa staining 

of the cytoplasm is grey instead of the blue of the mitotic cells. 

Band Cell 
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Figure 3. Myeloid differentiation. This schematic details the 
differentiation from a myeloblast to a polymorphonuclear cell. 
The myeloblast is a mitotic cell with prominent nucleoli (black 
dots) and no cytoplasmic granules. The promyelocyte is 

morphologically similar to the myeloblast although primary 
granules are now visible in the cytoplasm. The promyelocyte is 

also a proliferative cell which contains detectable nucleoli. The 
myelocyte is a proliferative cell, but not to the same extent as 
its precursor cells. The nucleus is similar to that of a 
promyelocyte, with the exception of the nucleoli, which are no 

longer present. The primary cytoplasmic granules are replaced 
by secondary granules. The metamyelocyte and band cell are 

non-mitotic cells with condensed nuclei. These cells also have 
secondary granules. The polymorphonuclear cell has a 

segmented nucleus and granules that are specific for the cell 
type; either neutrophilic, basophilic or eosinophilic. 
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The band cell represents a continued maturation of the 

metamyelocyte, with continued condensation of the nucleus into a 

"crescent moon" shape. The cytoplasm and its granules are similar 

to the metamyelocyte. 

Polymorphonuclear Leukocyte 
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This fully mature cell contains a lobular nucleus, and many 

granules in the cytoplasm. Neutrophils, eosinphils and basophils 

contain granules that are colorless, red or blue respectively when 

the cells are stained with Wright's stain. These cells function in the 

innate immune system by producing enzymes and chemicals which 

are bactericidal. These chemicals such as superoxide anion are 

produced in response to bacterially elements such as 

formylpeptides. The enzymes are located in the granules which also 

contain enzymes found in the secondary granules previously 

mentioned. PMNs also possess phagocytic capabilities. 

Monocytic Differentiation: Morphology and Function. 

The blood monocytes and tissue macrophages also 

differentiate from myeloblast cells in the bone marrow. This 

differentiation is through an intermediate stage cell, the 

promonocyte and takes 3-4 days for maturation to occur. 

Monocytic cells are phagocytes which function in both innate and 

acquired immunity. The macrophage is capable of processing 

phagocytized antigen so it can be presented to lymphocytes for 

activation of a humoral immune response. Monocytes and 

macrophages also have a gray, granule containing, cytoplasm and 



indented nucleus when visualized with Wright's stain. These cells 

are also characterized by their in vitro characteristic of adherence 

to glass or plastic. 

In Vitro Models of Hematopoietic Cell Differentiation. 

1 7  

To perform experiments designed to investigate how 

hematopoiesis is controlled at the molecular level, in vitro models of 

hematopoietic cell differentiation must be utilized. These models 

are usually cell lines derived from various forms of leukemia. 

Many of these tumor cell lines will exhibit the phenotypic 

characteristics of the normal immature cells prior to transformation. 

Along with maintaining some of the normal cell's phenotype, the 

tumor cell lines also retain the normal cell's responsivness to 

differentiation inducing stimuli. 

Some examples of commonly utilized models of differentiation 

include: HEL(Martin and Papayannopoulo, 1982) and Friend Murine 

Erythroleukemia (FMEL)(Friend et al., 1971) lines which are human 

and murine erythroblast cell lines which are capable of 

differentiating via the erythroid lineage to nucleated red cells; 

K562 is derived from a human Chronic Myelogenous Leukemia, but 

is capable of differentiation through erythroid pathways(Anderson 

et al., 1979); KG-1(Koeffler and Golde, 1978) and ML-1(Takeda et 

al., 1981) behave in a fashion similar to human myeloblastic cells in 

culture and are capable of differentiation via myelomonocytic 

pathways; and HL-60(Collins et al., 1977) is derived from a human 

promyelocytic leukemia and can be stimulated to differentiate to 

myeloid or monocytic end-stage cells. 
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HL-60. 

HL-60 was derived from a female patient with acute 

promyelocytic leukemia(Collins, 1987). A unique feature of HL-60 

was its ability to grow in suspension culture in RPMI 1640 medium 

that was supplemented with only insulin and transferrin(Breitman 

et al., 1980a). In culture, the cells resemble the original patient 

sample, which appeared histochemically as promyelocytes. 

Karyotype analysis revealed chromosomal deletions (5 and 8) and 

aberrancies of the E chromosome group. 

As previously mentioned, the cells resemble promyelocytes in 

culture and grow as if they are frozen at this stage in development. 

This is evidenced by the doubling time of 24 hours in liquid culture 

and the high cloning efficiency in soft agar. Histochemically, HL-60 

is positive for primary granules which contain esterase and 

myeloperoxidase(Collins et al., 1977). HL-60 is not considered to be 

a normal promyelocyte since it does lack some of the features of 

normal cells (see Table 1 ), but is capable of spontaneous or 

stimulated differentiation via myeloid or monocytic pathways. 

Differentiation of HL-60. 

Approximately ten percent of HL-60 cells will spontaneously 

differentiate to mature myeloid or monocytic cells (see Table 1 ). 

This percentage can be enhanced dramatically through the use of 

differentiation inducing agents. These agents include 

solvents(Collins et al., 1978), cancer chemotherapeutics(Griffin et al., 

1982), protein kinase activators(Rovera et al., 1979) and physiologic 



Table 1. Characteristics of HL-60 

Characteristic 

Myeloper oxidase 

Nonspecific esterase 
Acid phosphatase 
Plastic adherence 
Chemotaxis 

Complement receptors 
Fe receptors 
Lysozyme 
NBT reduction 

Phagocytosis 
Monocyte markers 

Granulocyte markers 

Uninduced 

positive 

negative 

positive 
negative 
negative 
positive 
positive 

positive 
negative 
negative 

+I-

+I-

(derived from Collins, 1987) 

Granulocyte 

decreased 

negative 
increased 
negative 
positive 
increased 
increased 
increased 
positive 

positive 
negative 

positive 
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Monocyte 

decreased 

positive 
increased 

positive 
positive 
increased 
increased 

increased 
positive 
positive 
positive 

negative 



Table 2. Inducers of HL-60 differentiation. 

Induced Cell Type 

Granulocyte 

Inducing agents DMSO 

Retinoic acid 
Actinomycin D 

Hypoxanthine 
6-thio guanine 

(derived from Collins, 1987) 

Mono cyte/Macro phage 

Phorbol esters 
Vitamin 03 

Sodium Butyrate 
Tumor necrosis factor 
Ara-C 
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regulators of cell differentiation(Elias et al., 1980; Olsson et al., 

1981; Olsson et al., 1984 ). A partial list of differentiation inducing 

agents is given in Table 2. 

Dimethyl Sulfoxide (DMSO) Induced Differentiation of HL-60. 

2 1 

DMSO stimulates the induction of myeloid differentiation to 

neutrophilic band cells(Collins et al., 1978). Associated with these 

morphologic changes induced by DMSO are changes in the cell's 

functional capabilities. DMSO differentiated HL-60 cells acquire 

functional chemotactic receptors, including formylpeptide 

receptors(Niedel et al., 1980), increased production of 

lysozyme(Rovera et al., 1979), superoxide anion(Collins et al., 1979) 

and complement receptors( Collins et al., 1979) (see Table 1 ). These 

changes allow the cells to respond to bacteria in the same fashion as 

normal granulocytes(Shakarjian and Carchman, 1990). 

Differentiation of HL-60 cells with DMSO occurs when the 

DMSO is at a concentration of approximately 1.25%. The cells reach 

maturity six days after the addition of DMSO. The DMSO must be 

present for at least the first 72 hours of differentiation for the cells 

to terminally differentiate. This is the point during the time course 

of DMSO treatment that the cells begin the post-mitotic phase of 

di fferen ti a ti on. 

Phorbol Ester Induced Differentiation of HL-60. 

The phorbol esters are a class of tumor promoter derived 

from the active portion of the oil from Crotun tiglium. This class of 

tumor promoters can stimulate cell growth or differentiation 
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through the pharmacologic stimulation of Protein Kinase 

C(Nishizuka, I986). Differentiation of immature leukemia cell lines 

including HL-60 has been previously demonstrated(Rovera et al., 

I979). Differentiation of HL-60 by phorbol esters will result in cells 

that resemble monocytes or macrophages in culture. This is 

evidenced by the adherence of phorbol treated cells to plastic or 

glass(Rovera et al., I979), the ability of these cells to phagocytize 

antigens(Rovera et al., I979) as well as increased esterase 

production(Rovera et al., I979) (see Table I). 

Phorbol esters are potent inducers of HL-60 differentiation, 

requiring only I day for the complete differentiation process to 

occur. The concentration of phorbol ester needed for stimulation of 

HL-60 differentiation is in the micromolar range. 

Retinoic Acid Induced Differentiation of HL-60. 

Retinoic acid (RA; also known as vitamin A) is a lipophilic 

vitamin that interacts with a receptor of the steroid/thyroid class. 

Stimulation of the retinoic acid receptor results in a wide variety of 

cellular changes including differentiation of keratinocytes(Regnier 

and Darmon, I989) neuroblastoma derived cells(Matsumoto et al., 

I989) and leukemia derived cells(Douer and Koeffler, I982; Thiele 

et al., I988). For this reason, retinoic acid is currently used 

therapeutically for dermal lesions and in the treatment of Acute 

Promyelocytic Leukemia. 

Retinoic acid is capable of stimulating the differentiation of 

HL-60 cells to neutrophilic band cells following treatment for six 

days with a I 11M concentration of drug(Breitman et al., I980b). 
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This makes retinoic acid the most potent of the natural 

differentiation inducers, although it is not as efficacious as DMSO for 

granulocytic induction of HL-60. It has recently been demonstrated 

that RA induced differentiation of HL-60 is via stimulation of the 

alpha form of the RA receptor(Collins et al., 1991). This may not be 

the only mechanism of action of RA, as it had been previously 

reported that RA that was covalently linked to beads could also 

stimulate HL-60 differentiation(Yen et al., 1984 ). This suggests that 

RA may also create membrane perturbations that could effect HL-

60 differentiation. 

Vitamin D3 Induced Differentiation of HL-60. 

The activated form of Vitamin D3, 1-alpha, 25-

dihydroxycholicalcerferol (1 ,25(0H)D3 or D3), is also an oil soluble 

vitamin that activates a receptor of the steriod/thyroid class. Once 

activated in the kidney, D3 has multiple actions throughout the 

body. These activities include stimulation of osteoclast 

differentiation and activity, differentiation of intestinal cells and 

effects on calcium and phosphorous transport and 

homeostasis(Minghetti and Norman, 1988). 

Differentiation of HL-60 by D3 results in monocytic cells after 

six days of treatment with nanomolar concentrations of 

drug(Miyaura et a!., 1981 ). Although this is as potent as phorbol 

ester, the differentiation is not as complete. Since nanomolar 

concentrations of D3 can be achieved in the blood, this compound is 

currently in clinical trials for treatment of leukemia. 
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Differentiation Resistant Forms of HL-60. 

One method for studying mechanisms important in HL-60 

differentiation that has been successful is the use of differentiation 

resistant mutants of HL-60. These mutants are generated by 

treating normal cells with low but increasing concentrations of a 

specific inducing agent. This method will select for spontaneously 

resistant cells by differentiating the sensitive ones. The remaining 

population of cells can be assayed for its ability to differentiate and 

can be recloned to homogenieity. These lines are often maintained 

on selective pressure, although if the resistance is stable there 

should be no need for continued selection. 

Subclones of HL-60 have been isolated that are resistant to; 

phorbol ester(Fisher and Grant, 1985; Ely et al., 1987); 5-

Azacytidine(Fisher and Grant, 1985); Retinoic acid(Fisher and Grant, 

1985); and DMSO(Fisher and Grant, 1985). Reversibly 

differentiating HL-60 cells have been isolated that will differentiate 

in the presence of 1,25(0H2)D3, but will revert if the drug is 

removed(Brelvi and Studzinski, 1987). Many of these resistant and 

reversible cell lines exhibit altered morphologic and genetic 

features. These include growth of cells in small clusters, increased 

number of vacuoles, and altered karyotypes(Ely et al., 1987). 

Associated with these altered karyotypes has been a change in the 

expression of oncogenes like c-myc and c-myb(Ely et al., 1987; 

Brelvi and Studzinski, 1987). 
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Oncogenes 

The term "oncogene" includes a growing number of cellular 

genes that are important in the control and regulation of cell growth 

a differentiation. This eclectic set of genes has been grouped under 

the name oncogene because of the effects of altered expression 

resulting in cell transformation, immortalization and tumor 

formation. The altered expression of proto-oncogenes is the result 

of; (i) transduction of mRNA of the cellular gene into a retrovirus; 

(ii) retroviral insertion into the genomic locus of the gene; (iii) 

amplification of the genomic locus; (iv) chromosomal rearrangement 

resulting relocation of the gene to a site of active transcription, e.g. 

an enhancer; (v) genes that contain mutational "hot spots" or, in the 

case of the "anti-oncogenes," the inactivation of the gene(Bishop, 

1988). A list of specific examples of proto-oncogenes which are 

(de)activated by any of these mechanisms is presented in Table 3. 

Genes that have important roles in regulation of cell growth 

can be oncogenic when normal control mechanisms are altered . It is 

conceivable that any class of growth regulating protein could be an 

oncogene if altered by one of the above mentioned mechanisms. 

This is exemplified by fact that there are proto-oncogenes which 

encode proteins that are localized to membrane, cytoplasm and 

nucleus. 

Membrane associated proto-oncogenes include proteins 

normally involved in the first steps of signal transduction. These 

genes encode receptors, such as the c-erb-B gene which encodes the 

Epidermal Growth Factor receptor( Downward et al., 1984 ); the c-fms 
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gene which encodes the CSF-1 receptor( Sherr et al., 1985); the c-t rk 

gene which encodes the Nerve Growth Factor receptor(Klein et al., 

1991); and the c-kit gene which encodes the SCF receptor(Witte, 

1990). Growth factors like the beta-chain of the Platelet Derived 

Growth Factor (PDGF) are also encoded by proto-oncogenes, in this 

case the c-sis proto-oncogene and the v-sis gene of Simian Sarcoma 

Virus(Robbins et al., 1983). In the case of receptors, many of the 

oncogenic mutations lead to production of a truncated protein that 

lacks the regulatory ligand binding region, therefore the receptors 

can become constitutively active. 

Associated with many receptors are GTP-binding proteins (G­

proteins). Gilman initially noted that there was significant sequence 

homology between the Gs protein of the Beta adrenergic receptor 

and the proteins encoded by the ras proto-oncogenes(Hurley et al. , 

1984). The ras family of proto-oncogenes encode proteins with the 

ability to bind GTP and GDP, as well as exhibiting intrinsic GTPase 

activity, but it is not known specifically which "G-protein" is 

encoded by any of the ras family members. The activation of any of 

the ras family members is via a mutation in codons 12 or 61 which 

inactivates the GTPase activity and therefore the ability of ras to 

return to an inactive state(Reddy et al., 1982; Tabin et al., 1982; 

Taparowski et a!., 1982). A cellular protein called the GTPase 

Activating Protein (GAP) plays role in the GTPase activity of 

ras(McCormick et a!., 1988). The GAP protein can interact with 

normal ras family members but not the oncogenic forms of the 

protein, and therefore may be an important regulator of cell 

growth(Trahey and McCormick, 1987). 



Table 3. Activitation of proto-oncogenes. 

Proto-oncogene Neoplasm(species) 

abl 

gip 

neu 

myc 

L-myc 

N-myc 

sis 

src 

myb 

Chronic myelogenous leukemia 
(human) 
Carcinoma of ovary and adrenal 
gland (human) 

Adenocarcinoma of breast, ovary 
and stomach (human) 

Burkitt's lymphoma (human) 
myeloid leukemia (chicken) 
Carcinoma of lung (human) 
Neuroblastoma; Small cell lung 
carcinoma (human) 
Sarcoma (simian, feline) 
Sarcoma (chicken) 
Leukemia (murine) 

Leukemia (chicken) 
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Lesion 

Translocation 

Point mutations 

Amplification 

Translocation 
Transduction 
Amplification 
Amplification 

Transduction 
Transduction 
Insertion 

Transduction 
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The third type of membrane associated protein that is 

encoded by proto-oncogenes are the non-receptor tyrosine kinases. 

The prototype for this family of genes is the c-src gene. C-src is the 

cellular homolog of the transforming gene of the Rous Sarcoma 

Virus, v-src(Parker et al., 1981 ). Many functions have been 

assigned to c-src, including roles in secretion(Ely et al., 1990), cell 

communication via desmasomes(Loewenstein and Azarnia, 1988), 

and possibly a role in insulin signalling(Luttrell et al., 1989). There 

are many src related genes that have specific regions of homology 

with c-src. Many of the src-related proteins have well defined 

roles in the signal transduction schemes of receptors of 

lymphocytes. These include; lck, which interacts with CD4 and CD8 

receptors(Veillette et al., 1989; Viellette et al., 1988); fyn, which is 

the tyrosine kinase associated with the T cell receptor(Cooke et al., 

1991) and lyn, which is a src related gene encoding the protein that 

interacts with immunoglobulin receptors on B cells(Yamanashi et al., 

1991 ). One of the regions of homology between all of these proteins 

is called the SRC Homology 2 or SH2 region, which is important for 

interactions between proteins(Cantley et al., 1991 ). SH2 domains 

allow the tyrosine kinases to interact with non-tyrosine kinase 

containing proteins such as GAP(McCormick, 1989) and 

phospholipase C (())(Stahl et al., 1988). 

The cytoplasmic localized proto-oncogenes are predominantly 

serine/threonine kinases which may be important in the movement 

of signals from the membrane to the nucleus. This is suggested by 

the fact that many of these cytoplasmic proteins have substrates in 

the nucleus. Examples of such proteins include the mitogen 
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activated protein kinase (MAP) which is encoded by the e rk 

gene(Ely et al., 1990); the raJ gene product(Rapp et al., 1988) and 

the mos gene product which is the cytostatic factor that is essential 

for maturation of the oocyte(Sagata et al., 1989). 

The nuclear class of proto-oncogenes represent a family of 

DNA binding proteins that appear to be important in the regulation 

of gene expression. This would be the final step in signal 

transduction, and should therefore be under strict control. It is not 

difficult to perceive that the effects of uncontrolled transcription of 

these genes involved in cell growth could have oncogenic 

consequences. The control of gene expression by the nuclear proto­

oncogenes can occur at two levels. The majority of the nuclear 

proto-oncogenes encode genes that have direct effects on gene 

transcription, while the anti-oncogenes may be important m the 

regulation of proteins that can activate gene transcription. 

Proto-oncogenes that encode transcription factors include the 

c-jun and c-fos genes whose products make up the AP-I 

transcription factor(Curran and Franza, 1988). The two proteins are 

capable of interacting through coiled leucine rich domains termed a 

leucine zipper(Gentz et al., 1989). The leucine zipper allows many 

forms of fos and jun homodimers and heterodimers to be formed. 

These various combinations have different DNA binding affinities 

and activities(Chiu et al., 1989; Schutte et al., 1989) which provides 

for a variety of responses to external stimuli. The protein encoded 

by c-myc is also a sequence specific DNA binding protein(Blackwell 

et al., 1990; Prendergast and Ziff, 1991) that requires an auxiliary 

protein, max, for activity(Biackwood and Eisenman, 1991). MYC 
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protein binds DNA through a basic-helix-loop-helix (bHLH) 

domain(Blackwell et al., 1990; Prendergast and Ziff, 1991). The ets 

family of proto-oncogenes encode transcription factors that are 

important in the regulation of the T cell receptor(Ho et al., 1990), 

immunoglobulin receptor(Klemsz et al., 1990), and may interact 

with many other transcription factors(Wasylyk et al., 1990; Ho and 

Leiden, 1990). The ets protein product does not contain the bHLH 

or leucine zipper domains; it appears to interact with DNA through a 

tryptophan cluster. The tryptophan cluster is also the mechanism 

by which the c-myb gene product(s) interact with DNA(Kanei-Ishii 

et al., 1990). Unlike many of the other nuclear proto-oncogenes, c­

myb appears specific for hematopoietic cell transcriptional 

regulation. The e-re! proto-oncogene encodes the p50 subunit of 

the lymphocyte specific transcriptional activator NF-kB(Ghosh et al., 

1990). 

The anti-oncogenes, such as the retinoblastoma susceptibility 

gene (Rb) and p53, have indirect effects on gene expression by 

interacting with factors that can regulate gene expression. These 

factors include the E1A protein of adenovirus(Egan et al., 1989) and 

the T antigen of the SV40 virus(Wang et al., 1989). The activity of 

Rb can be regulated by cell cycle specific kinases such as cdc2 

kinase(Buchkovich et al., 1989), suggesting an important role for 

this protein in cell growth. 

The myb Oncogene. 

The c-myb proto-oncogene is the cellular homolog of v-myb, 

the transforming gene of the Avian Myeloblastosis Virus 
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(AMY)(Klempnauer et al., 1982; Souza et al., 1980b; Souza et al., 

1980a; Papas et al., 1982) and the E26 avian retrovirus(Nunn et al., 

1984; Klempnauer and Bishop, 1984; Klempnauer et al., 1982). 

These viruses are capable of transforming chicken myeloid cells to 

leukemic cells in a process that resembles the dedifferentiation of 

the cell(Beug et al., 1987; Ness et al., 1987). This, along with the 

fact that v-myb does not transform NIH3T3 cells, was the first 

evidence that myb could be important in controlling differentiation, 

specifically that of hematopoietic cells. 

Y-myb. 

The v-myb oncogene was isolated from two separate 

replication defective strains of avian leukemia retroviruses, AMY 

and E26. Both of these viruses are capable of causing hematopoietic 

malignancies, but E26 infection predominantly results in erythroid 

tumors. The presence of a second oncogene, v-ets is necessary for 

the erythroid transformation(Nunn and Hunter, 1989). The protein 

encoded by the v-myb of AMY is 45 kd, due to truncations of the 

amino and carboxy terminus of c-myb encoded proteins(Anderson 

and Chen, 1981 ). These truncations are replaced by a fusion of 6 

gag and 11 e nv amino acids(Klempnauer et al., 1982). The protein 

encoded by E26 is a fusion protein of 135 kd that includes the 

virally derived gag protein fused to a truncated form of myb which 

is then fused to a portion of the ets proto-oncogene(Nunn et al., 

1984; Leprince et al., 1983). The truncations in the v-myb protein 

remove regulatory regions of the protein, allowing for the 

expression of an uncontrolled DNA binding protein. The amino 
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terminus deletions would remove a casein kinase II 

phosphorylation site that has been suggested to be important m the 

regulation of c-myb DNA binding activity(Liischer et al., 1990), 

while the carboxy terminus deletions remove other negative 

regulatory domains that are important in controlling the e-m y b 

trans-activation domains(Sakura et al., 1989). 

The v-myb oncogene has been an important tool in 

determining the function of c-myb, due to the lack of negative 

regulatory domains. Bacterially expressed v-myb was utilized to 

determine the specific DNA binding site of the myb proteins, which 

is pyAAC(G/T)G(Biedenkapp et al., 1988). Both v-myb and c-myb 

can trans-activate gene expression from reporter plasmid constructs 

that contain this sequence(Nishina et al., 1989; Weston and Bishop, 

1989; Sakura et al., 1989). Thus the apparent mechanism of action 

of v-myb transforming potential, is by the uncontrolled activation 

of myb responsive genes. One such gene, mim 1 was cloned by 

subtractive hybridization of a eDNA library from a temperature 

sensitive (ts) v-myb transformed cell line at the non-permissive 

temperature from a eDNA library constructed from the same cell 

line at the permissive temperature(Ness et al., 1989). Mimi 

encodes a protein that is found in primary granules and is not 

important in v-myb induced transformation. The ability of v-myb 

to activate genes that are not essential for growth (or 

transformation) must be due to activation of c-myb inducible genes 

that are not involved in growth(Ness et al., 1989). This was 

confirmed by the presence of 3 myb binding sites upstream of the 

mi m 1 promoter which can be activated by c-myb(Ness et al., 1989). 
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Transformation by the v-myb gene is due to a block in the 

ability of the myeloid cell to complete a differentiation program. 

This block is evidenced by the immature phenotype of AMY or E26 

transformed cells. Many of these cells would normally differentiate 

to macrophages but are blocked by the dominant effects of v-myb. 

This was demonstrated experimentally with the use of ts mutants of 

v-myb. At the permissive temperature the E26 transformed cells 

would resemble immature myeloid cells, typical of v-my b 

transformation, but when the cells were shifted to the non­

permissive temperature, the cells would differentiate into cells that 

exhibited the mature markers of a macrophage(Beug et al., 1987). 

The mature cells would dedifferentiate if shifted back to the 

permissive temperature. This effect on differentiation differs from 

the effect of v-myc in MC29 transformed avian myeloid cells, which 

will increase the proliferative capacity of cells without affecting the 

phenotypic characteristics. Populations of v-myc transformed cells 

may all resemble mature macrophages that have acquired the 

ability to divide. When cells are transformed with v-myb and v­

myc the cells will exhibit immature characteristics suggesting that 

the v-myb transformation is dominant to v-myc(Ness et al., 1987). 

These studies also suggest the importance of proper myb control in 

hematopoietic cells, due to its effects on cell differentiation. 

C-myb. 

The c-myb gene is expressed predominantly in immature 

hematopoietic cells(Westin et al., 1982) and mitogenically active T 

lymphocytes(Sheiness and Gardinier, 1984; Pauza, 1987), but has 
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also been shown to be present in other tissues such as colon tumor 

cell lines(Alitalo et al., 1984 ), neuroblastoma cells(Thiele et al., 

1988) and chicken fibroblasts(Thompson et al., 1986). The e-m y b 

gene is an important gene from an evolutionary perspective, since 

there is significant conservation from chicken to man at the protein 

level(Shen-Ong, 1990) and related genes have been cloned from 

drosphila(Boyle et al., 1986), Zea mays(Paz-Ares et al., 1987) and 

yeast(Ju et al., 1990; Tice-Baldwin et al., 1989). The region which 

demonstrates the greatest conservation is the DNA binding domain. 

Activation of the c-myb gene's transforming potential has 

been due to retroviral insertion within the gene in both avian B-cell 

lymphomas and murine myeloid leukemias. Both EU-8 and RAV- 1 

avian helper viruses can activate c-myb by insertion into the 5' end 

of the gene(Kanter et a!., 1988; Pizer and Humphries, 1989). 

Myeloid transformation is mediated by the insertion of Maloney­

Murine Leukemia Virus m the 5' end of the gene, just upstream of 

the first exon(Shen-Ong and Wolff, 1987; Shen-Ong et al., 1984). 

The transcriptional orientation of the provirus is the same as the 

sense transcription of e-m y b, thus the e-m y b gene comes under 

control of the viral promoter. The protein produced by the provirus 

promoter is a chimera between a viral protein and c-myb, with the 

truncation in the amino terminus of c-myb, truncated in a similar 

fashion as the v-myb protein(Shen-Ong et al., 1987). There have 

also been reports of viral insertions into the 3' end of the myb locus 

detected in myeloid leukemias(Shen-Ong, 1990). These insertions 

result in the production of proteins that have similar carboxy 

truncations as v-myb, but other insertions within the genome, in 



particular into the evi-l locus have made it difficult to prove 

whether the alterations in c-myb are necessary or sufficient for 

transformation(Mucenski et al., 1988). 

Structure of the C-myb Gene and Protein. 
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The c-myb locus is approximately 36 kb in length and encodes 

a transcript that has an average length of 3.5 kb(Westin et al., 

1982). The gene has at least 15 exons, not including multiple 

alternative exons(Westin, 1991 ). The 5' untranslated region 

contains a GC rich region with no CAT or TA TA boxes in the case of 

the mouse(Bender and Kuehl, 198 6) and the human(Westin, 1991) 

genes and no TA TA box in the chicken gene(Hahn et al., 1989). 

These features are characteristic of constitutive "housekeeping" 

promoters. 

The primary protein encoded from the locus is 640 amino 

acids (75 kd)(Liischer and Eisenman, 1990). The protein has 3 

major functional domains, the DNA binding domain, the trans­

activation domain, and the negative regulatory domain. There are 

also sites for protein phosphorylation throughout the protein, 

although only the casein kinase II site m the first 20 residues has 

been characterized(Liischer et al., 1990). 

The DNA binding domain consists of three imperfect repeats 

of 51 to 52 amino acids in length near the amino terminus of the 

protein (Fig.4 ). The second and third repeats are essential for DNA 

binding activity, and are virtually identical from chicken to 

human(Liischer and Eisenman, 1990). The DNA binding domain 

does not resemble that of other transcription factors, such as the 



leucine z1pper, zinc finger, or basic helix loop helix domains. The 

repeats do contain a unique feature in that there are three 

tryptophan residues that are evenly spaced every 18 to 19 amino 

acids within each of the repeats(Kanei-Ishii et al., 1990). This 

structure has been demonstrated to be important in the DNA 

binding activity of c-myb and has been termed the tryptophan 

cluster(Kanei-Ishii et al., 1990). 
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The trans-activation domain of the c-myb protein is located in 

the center of the protein (Fig. 4) and is approximately 50 amino acid 

residues in length(Sakura et al., 1989; Weston and Bishop, 1989; 

Ibanez and Lipsick, 1990). The amino acids in the region are acidic 

and hydrophillic, which is analogous to other trans-activation 

domains(Ptashne, 1988). Little is known about how the trans­

activation domain works or how it interacts with other proteins, 

except that it is regulated by a negative regulatory domain in the 

carboxyl portion of the protein (Fig. 4 ). The negative regulatory 

domain has been defined by the ten-fold increase in trans­

activation activity when the carboxy-terminus is removed(Sakura 

et al., 1989; Ibanez and Lipsick, 1990). This domain has a motif 

that resembles a leucine zipper although this has not yet been 

proven to be essential for activity of the negative regulatory 

domain by site-directed mutagenesis. 

C-myb Protein: Function. 

The function of the c-myb protein is not entirely known, 

although it can be presumed to be related to its ability to regulate 

gene expression. The only gene that is known to be regulated by 
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the c-myb protein is the mimi gene(Ness et al., I989). Mimi 

encodes a protein that is located in the primary granules of 

immature myeloid cells. The promoter for this gene contains three 

myb binding sites, 2 high affinity sites and one low affinity 

site(Ness et al., I989). The definition of the high affinity binding 

and low affinity binding is by the ability of bacterially expressed, 

full length protein to bind these sites(N akagoshi et al., I989). When 

bound to the high affinity site, myb protein is capable of 

transcriptional activation(Nakagoshi et al., I989; Sakura et al., 1989; 

Ibanez and Lipsick, I990; Weston and Bishop, 1989). A low affinity 

binding site was initially observed in the SV-40 enhancer. Myb can 

repress transcription, when occupying this site(Nakagoshi et al., 

1989). This ability to trans-activate and trans-repress gene 

expression, taken into context with the expression of c-myb itself, 

suggests that the function of myb is probably as a "switch" that is 

important in controlling the initial differentiation process during 

myelopoiesis and T-lymphocyte development. 

C-myb Gene Expression. 

The majority of the studies of the expression and regulation of 

the c-myb oncogene have been carried out in normal and leukemic 

cells from chicken, mouse and to a lesser extent man. As mentioned 

in a previous section, the c-myb gene has a promoter that is 

characteristic of housekeeping genes. This G/C rich, TA TAless 

promoter has multiple start sites that lead to the 5' heterogeneity m 

c-myb mRNAs that have been found in both chicken(Hahn et al., 

1989) and mouse(Bender and Kuehl, I986; Watson et al., 199I). 
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Figure 4. Structure of the c-myb protein. The structural and 
functional domains of the c-myb protein are presented in this 
diagram. The three imperfect repeats that form the DNA 
binding domain are represented by R 1, R2 and R3. The region 
that is essential for DNA binding activity is depicted below the 
protein diagram. The trans-activation (T A) and negative 
regulatory (NRD) domains are shown in black and gray 
respectively. The inclusion site of exon 9A in the negative 
regulatory domain is depicted by the white box labeled E9A. 
The arrows below the MML, represent the proviral insertion 
sites of the Moloney Murine Leukemia virus. Post-translational 
modifications of myb protein such as phosphorylation by 
Casein Kinase II (CK II) or other potential phosphorylation sites 
(P) are also shown. The black lines below the c-myb protein 
that are labelled E26 and AMY represent the portions of the c­
myb protein that are present in the transforming proteins of 
the two retroviruses respectively. This figure was adapted 
from a recent review on myb(Liischer and Eisenman, 1990). 
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The c-myb promoter is also constitutively active in most cells that 

have been tested(Bender et al., 1987), thus regulation at this level is 

probably not the primary mechanism of regulation of e-m y b 

expression. An attenuator that is located in the first intron of the 

murine gene, is active in mature lymphoid, erythroid, and myeloid 

cells(Bender et al., 1987; Watson, 1988b; Watson, 1988a). This 

premature termination of transcription is the major mechanism of 

regulation at the transcriptional level of the murine c-myb gene. 

There is no evidence of attenuation in the chicken form of the gene. 

Post-transcriptional regulation of both the chicken and murine gene 

has also been investigated. In the case of the chicken, the post­

transcriptional modification was a stabilization during chick embryo 

fibroblast cell proliferation(Thompson et al., 1986), while during 

FMEL cell differentiation, destabilization of the murine c-myb 

message has been noted(Watson, 1988b). 

A second phenomena that leads to the heterogeneity of the c­

myb mRNA is the process of alternative splicing of the unprocessed 

c-myb hnRNA. Alternative splicing of c-myb has been 

characterized in both the mouse(Shen-Ong, 1987) and the 

human(Dasgupta and Reddy, 1989; Shen-Ong et al., 1990; Westin et 

al., 1990). The alternative splicing involved in the c-myb gene, 

includes alternative use of splice donor sites that result in putative 

proteins with three amino acids deleted from the transcriptional 

activation domain(Westin et al., 1990), addition of exons that result 

in larger proteins(Dasgupta and Reddy, 1989; Dudek and Reddy, 

1989b; Dudek and Reddy, 1989a), or potentially smaller 

12 0t�iqs§W.�stil1 et al., 1990) and altered usage of transcriptional 
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termination and polyadenylation si tes(Westin, 1991 ). The effect of 

many of these changes in the c-myb message on the ability of the 

altered proteins to bind DNA has not been determined to date. 

Artificial Expression of C-mvb. 

One technique that has been utilized in determining the role 

of c-myb during hematopoietic cell differentiation, has been to 

study the effects of transfected c-myb constructs on leukemic cell 

lines. This method allows one to determine the outcome of 

aberrantly expressed c-myb on the induced differentiation process. 

One clone of c-myb, pMbml(Westin et al., 1990), which is similar to 

the prototypic c-myb message except for the use of an alternative 

splice donor in exon 8 which leads to the deletion of three amino 

acids, was transfected into FMEL cells and resulted in an inability of 

these cells to respond to DMSO induced differentiation(Clarke et al., 

1988). Another cloned alternative splice form, pMbm2(Westin et 

al., 1990) was also transfected into FMEL cells, but the outcome of 

expression of this clone on FMEL differentiation was opposite to that 

of pMbm1(Weber et al., 1990). When introduced into FMEL cells 

pMbm2 could induce the differentiation of these cells in response to 

subthreshold levels of DMSO. The ability of different forms of the c­

myb message (and presumably protein) to have opposite effects on 

differentiation is another piece of circumstantial evidence 

suggesting that c-myb is a switch involved in control of 

hematopoietic differentiation. 

Inhibition of C-myb Expression. 
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A second approach to determining the function of c-myb by 

altering its expression, has been by inhibiting the expression of the 

gene. A series of studies have been performed utilizing antisense 

oligodeoxynucleotides to block the expression of c-myb under cell 

culture conditions. These reports have implicated c-myb as being 

an essential component during cell cycle progression in stimulated 

peripheral blood lymphocytes(Gewirtz et al., 1989) and in leukemic 

cell lines that express c-myb(Anfossi et al., 1989). One of the 

leukemic cell lines that was tested, HL-60, did not differentiate in 

response to the antisense oligodeoxynucleotides, but in another 

report it was shown that HL-60 cells that were treated with 

antisense c-myb and DMSO differentiated toward a monocytic cell, 

as opposed to a myeloid cell(Ferrari et al., 1990). 

The inhibition of c-myb has also been carried out m an in vivo 

study, where the myb locus was altered by homologous 

recombination in murine embryonic stem cells(Mucenski et al., 

1991). The resultant transgenic fetuses were normal through the 

first 13 days of gestation, but by day 15 the fetuses were anemic. 

This suggests that c-myb is not essential for early fetal 

development, but is necessary for normal adult hematopoiesis (in 

particular erythropoiesis). This was determined by the fact that 

embryonic hematopoiesis, which occurs in the yolk sac was not 

affected by the "knockout," just the initial adult hematopoiesis, 

which is initiated in the fetal liver. 

C-mvb related genes. 
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Diversity in c-myb is not only generated through alternative 

splicing of the mRNA from the c-myb locus, but also through 

proteins that are expressed from related genes. Two of these genes 

A-myb and B-myb were cloned from a lymphocyte library(Nomura 

et al., 1988). Both of these genes have a more diverse spectrum of 

expression than c-myb. Some of the tissues that express A-myb 

and B-myb include, heart, intestine and lung(Nomura et al., 1988). 

B-myb is expressed in myeloid cells in a similar fashion to c-myb, 

while A-myb expression has not been detected in myeloid 

cells(Golay et al., 1991). The gene product for B-myb is a DNA 

binding protein that is capable of trans-activating gene expression 

from c-myb response elements(Mizuguchi et al., 1990). 



MATERIALS AND METHODS 

Characterization of the Phenotype of DMSOr and the Expression and 

Regulation of c-myb During Dimethyl Sulfoxide Induced 

Differentiation. 

This set of experiments was designed to determine the 

phenotype of the Dimethyl Sulfoxide (DMSO) resistant clone, DMSOr 

after removal of the constant selective pressure of 0.7% (v/v) DMSO. 

Phenotypic effects were assayed by morphological changes, 

proliferation assays, cell cycle analysis and functional analysis. 

Regulation of c-my b was determined by Northern blot analysis and 

Nuclear Run-on analysis at time points during the DMSO induced 

differentiation. The effect of antisense oligonucleotides to the e-m y b 

gene was also examined. The figures are derived from 

representative experiments of no less than two assays. 

Cell Culture. 

HL-60 and DMSOr cells were maintained m RPMI 1640 media 

supplemented with 10% defined supplemented bovine calf serum 

(Hyclone) and gentamicin ( 40 !-1-g/ml) at 37°C in a moist 5% C02 

atmosphere. Dimethyl Sulfoxide (DMSO) was purchased from 

Mallinckrodt (Paris, KY) and was added to cells as a lOx (13%) stock 

solution in RPMI 1640 growth media. Cells were treated with 1.3% 

DMSO over the entire 6 days of differentiation unless otherwise 

4 4  
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specified. Cells were removed at appropriate time points for the 

subsequent experiments. Washout studies were performed by 

removing the cells from the DMSO containing growth media washing 

the cells with fresh serum containing growth media and reculturing 

the cells for 3 days. 

Morphology Studies. 

5 x 1 04 cells were harvested at the designated time points and 

applied to slides by cytospin (600 rpm for 2 min). Slides were then 

Wright-Giemsa stained. Micrographs were taken at 400x 

magnification. 

3H-Thymidine Incorporation. 

1 04 cells were harvested 2 hours prior to each time point and 

plated in triplicate in 96 well cluster plates in a volume of 100 !J.l. 

3H-Thymidine (0.5 ).tCi in 100 !J.l of growth media with or without 

DMSO) was then added for 2 hrs. Cells were harvested onto filters 

using a Titer-Tek cell harvester. Filters were quantitated by liquid 

scintillation in Budget Solve cocktail (Research Products International 

Corp., Mount Prospect, IL). 

Cell Cycle Analysis. 

5 x 1 06 cells were harvested and fixed in phosphate buffered 

saline (Ca+2 and Mg+2 free):ethanol (1 :2) and stored at 4oc until 

staining. Cells were stained with a propidium iodide staining solution 

containing 3 .8x 10-3M sodium citrate, RNaseA (0.5 mg/ml) and 

propidium iodide (0.01 mg/ml) for 1 hr on ice. The cells were then 



pelleted and resuspended in phosphate buffered saline at 1 x 106 

cells/ml and analyzed on the Becton-Dickenson FACSCAN flow 

cytometer utilizing CELLFIT software. 

Superoxide Production. 

Superoxide production was measured using a cytochrome C 

assay(Shakarjian and Carchman, 1990). 1x106 cells were 
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resuspended in 1 ml of Gey's Balanced Salt Solution. Superoxide 

release was induced with 10-7M Phorbol-12-myrisitate,13-acetate 

(PMA) at 370C/5%C02 for 40 min. PMA was a provided by the 

laboratory of Dr. Richard Carchman. The reaction was stopped by 

refrigerated centrifugation and the supernatant measured 

spectrophotometrically at 550 nm. Nonspecific reduction was 

determined by addition of superoxide dismutase to duplicate tubes. 

Northern Blot Analysis. 

RNA was isolated from cells as previously described(Chirgwin 

et al., 1984). Briefly, cells were harvested and lysed in 4 M 

guanidine isothiocyanate. RNA was pelleted by ultracentrifugation 

through a 5.7 M cesium chloride cushion at 41,000 rpm in a Beckman 

70.1 Ti rotor for 20 hours at 2QoC. RNA pellets were then washed 

with 2 volumes of 100% ethanol, resuspended in sterile water and 

quantitated spectrophotometrically. 

Ten J..Lg of total cellular RNA was denatured in 0.02 M MOPS, 

pH 7 .0, 5 mM NaAc, 1 mM EDTA, 2.2 M formaldehyde and 50% 

formamide. The samples were heated to 65oC for s�· min and then 

separated on a 6.6% formaldehyde,· I.% .agawse· geL -.Equal : 10a<d.irig , of 
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RNA in each lane was determined by ethidium bromide staining 

and/or B-actin normalization. Blotting was carried out using the 

method of Thomas(Thomas, 1980) onto BAS-Ne transfer membranes 

(Scheleicher & Schuell). Filters were hybridized to probes, 

radiolabled by nick translation or 5' end-labelling (Bethesda 

Research Laboratories kits, Bethesda, MD), in the presence of 50 mM 

sodium phosphate pH 6.5, 5x Denhardt's (0.1% BSA, 0.1% ficoll, 0.1% 

polyvinyl pyrollidine), 5x SSe ( l x  equals 0.15 M Nael, 0.015 M 

sodium citrate), 0.1% SDS, yeast RNA (250 J.Lg/ml), 50% formamide 

and 10% dextran sulfate (not used for oligonucleotide hybridizations). 

Hybridizations were for 16-20 hours at 42oC. Filters were washed 5 

times at 42°e for 5 minutes in 2x SSe and 0.2% SDS followed by one 

wash in 2x SSe and 0.2% SDS at 60°e for 40 minutes and finally one 

wash at 60oe in 0.5x SSC and 0.2% SDS for 40 minutes before 

autoradiography (hybridization and wash conditions that were not 

carried out under these standard conditions will be mentioned in the 

figure legends). Autoradiography was performed by exposing filters 

to Kodak XAR-5 film at -80oe for the indicated times. Sizes of RNA 

species were estimated by comparison to the 18S and 28S rRNA 

m a rkers. 

Isolation of Specific Probes. 

The probes used in these studies are given in Table 4. The 

plasmids were isolated by the alkaline lysis procedure. Bacterial 

pellets were resuspended in 10 ml of 50 mM glucose, 25 mM Tris­

Hel (pH 8.0), 10 mM EDTA and 5.0 mg/ml lysozyme and incubated at 

room temperature for 5 minutes. Twenty ml of 0.2 M NaOH and 1% 
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SDS was added to the mixture and incubated for 10 minutes on ice. 

Fifteen ml of ice cold potassium acetate (5 M, pH 4.8) was then added 

to the mixture and the solution was thoroughly mixed and incubated 

for 20 more minutes on ice. This mixture was then centrifuged at 

12,000 rpm in an HB-4 rotor (Sorvall) for 35 minutes at 4oC. 

Nineteen ml of the supernatent was then decanted from the tube and 

0.6 volumes of isopropanol (11.4 ml) was added to this solution. DNA 

was allowed to precipitate from the solution at room temperature for 

at least 15 minutes. The DNA was pelleted by centrifugation at 

12,000 rpm in the HB-4 rotor for 30 minutes at 4oC. The pellets were 

dried and resuspended in 1:1 cesium chloride:TE (10 mM Tris-HCl, 1 

mM EDTA, pH 8.0) with ethidium bromide (100 Jlg/ml) and 

centrifuged at 48,000 rpm in a Ti 70.1 rotor (Beckman) for 20 hours 

at 20oC or for 4 hours at 65,000 rpm at 20oC in a VTi 65.2 rotor 

(Beckman). Plasmid bands were butanol extracted and ethanol 

precipitated. The DNA was quantitated at OD260. The specific inserts 

were isolated by digestion of the plasmid DNA with the appropriate 

restriction endonuclease and separated on a 0.8% agarose gel. The 

insert band was then isolated from the gel and subjected to 

electroelution using an Elutrap electro-eluter (Scheleicher & Schuell). 

Inserts were quantitated spectrophotometrically at OD26o or by 

approximation based on ethidium bromide staining of a 10 ml 

agarose gel. 

Oligonucleotide probes were created by the Nucleic Acid Core 

facility at the Medical College of Virginia. The synthesis products 

were deblocked in concentrated ammonium hydroxide at 55oC for 15 

hours. The solution was then evaporated in a speedvac centrifuge 



connected to a vacuum trap (Savant). The synthesis product was 

then resuspended in water and purified by thin layer 
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chromatography by the method of Alvarado-Urbina(Alvarado-Urbina 

et al., 1981 ). Briefly the solid phase was a TLC plate and the mobile 

phase was 1-propanol:ammonium hydroxide:water (55:35:10). The 

product was detected by UV shadowing and scraped from the plate. 

The oligonucleotide was extracted from the sand with water, 

quantitated spectrophotometrically at 00260 and stored at -80oC. For 

B- myb, a 30 base oligonucleotide was used for probing this c-myb 

related gene. The sequence of the B-myb .1 oligonucleotide was 

5'CTCAGAACGCAGCACCTCCTTCAAGTCCTC3'. An oligonucleotide 

designed to hybridize specifically to A-myb was also utilized. The 

sequence for the probe A-myb .I was 

5'ATGATGGGCATACTGAAGGTCATCATCCTC3'. The sequences for B­

myb and A-myb were obtained from the original publication(Nomura 

et al., 1988). The probes that were synthesized for cyclin B (cycB.1) 

and for cdc2 kinase (cdc2.1) had the following sequences 

5'GGATCAGCTCCA TCTTCTGCA TCCACATCA3' and 

5'GCTAGTTCAGCAAATATGGTGCCTATACTC3' respectively. The 

sequences for cyclin B and cdc2 kinase were obtained from the 

original publications (Pines and Hunter, 1989; Lee and Nurse, 1987). 

Antisense Oligonucleotide Experiments. 

Cells (1 04) were resuspended in I 00 111 of fresh complete 

media and allowed to acclimate overnight in 96 well culture plates. 

The antisense or control oligonucleotides were then added to a final 

concentration of I 0 11g/ml in the presence or absence of 1.3% DMSO. 
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Table 4. DNA probes utilized in Northern blot analysis. 

Gene 

c-myb 

c-myc 

Histone H4 

Ornithine decarboxylase 

B-a ctin 

Pla smid 

p Mb ml 

p Mbm28 
pMC413RC 

pMUSH4 

pODC10/2H 

pLK221 

Citation 

(Westin et al., 
199 0) 
(Westin, 1991) 
(Dalla-Favera et 

al., 1983) 
(Seiler-Tuyns 

and Birnsteil, 1981) 
(Hickok et al., 

1987) 
(Gunning et al., 

1983) 
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The cells were then incubated for 24 or 72 hours. During the last 4 

hours of the incubation, 3H-thymidine (same as above) was added to 

the cultures. The cultures were then harvested using a Skatron cell 

harvester and the radioactivity retained on the filter was quantitated 

by scintillation counting (same as above). The oligonucleotides used 

for these experiments were the antisense (Ambm1) 

(5'CCGGGGTCTTCGGGC3'), the sense control (Smbm1) 

(5'GCCCGAAGACCCCGG3') and the random sequence control (Rmbm1) 

(5'GCGTGCGGCTGGCTC3') based on the antisense oligonucleotide 

sequence. The oligonucleotides were generated and deblocked by 

the methods described above, but were then washed 3 times with ice 

cold 75% ethanol and resuspended directly in TE buffer without 

further purification. The oligonucleotides were then stored at -80oC. 

Nuclear Run-on Analysis. 

The procedure used for the nuclear run-on analysis of e-m y b 

transcription in HL-60 and DMSOr was a modification of the 

procedure of Groudine(Linial et al., 1985). Nuclei were isolated from 

cells at the indicated time points of DMSO induced differentiation. 

The cells (5xl07/set of nuclei) were centrifuged at 1,000 rpm in a 

swinging bucket rotor at room temperature for 10 minutes. The cell 

pellet was then washed two times with PBS (Ca++/Mg++ free) and 

pelleted again as above. The pellet was then resuspended in 1 ml of 

lysis buffer (10 mM Tris-HCl pH 7.4, 3 mM CaCh, 2 mM MgCl2) for 

5 x 1 Q7 cells. An equal amount of lysis buffer containing 1% NP-40 

(Sigma) was added to the solution and the mixture was then 

vortexed on setting 6 for 15 seconds. The nuclei were then pelleted 
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by centrifugation at 1,500 rpm in a swinging bucket rotor for the IEC 

PR-6000 centrifuge for 10 minutes at 4oC. The supernatant was then 

aspirated to leave a dry nuclear pellet. The pellet of nuclei was then 

resuspended in 200 111 of nuclear freezing buffer (50 mM Tris-HCl, 

pH 8.3, 40% glycerol, 5 mM MgCl2, 0.1 mM EDTA, pH 8.0) per 5x107 

nuclei (final volume of nuclei was 210 Ill). The nuclei were snap 

frozen on dry ice and stored at -80oC until needed. 

The transcription assay was performed by adding 60 111 of 5x 

transcription buffer (25 mM Tris-HCl, pH 8.0, 12.5 mM MgCl2, 750 

mM KCI, 1.25 mM GTP, pH 7.0, 1.25 mM ATP, pH 7.0, 1.25 mM CTP, 

pH 7.0) and 30 111 of (alpha 32P)-UTP (3,000 Ci/mmole, 10 I!Ci/1!1, 

DuPont, Boston, MA) to the 210 111 of nuclei thawed on wet ice. 

Nucleotides were purchased from Boehringer-Mannheim 

(Indianapolis, IN) and 100 mM stock solutions were made up in 

water (final pH, 7.0). The reaction was vortexed at setting 6 for 10 

seconds and incubated at 30oC for 30 minutes. The tubes were 

inverted once during the incubation period. The remaining steps of 

the procedure were then performed to isolate the radiolabelled RNA 

from the nucleus. 

After completion of the transcription reaction, 50 111 (1 

unit/Ill) of RQ1 DNase (Promega, Madison, WI) and 5 J..ll of 100 mM 

CaCl2 was added to the mixture and incubated for 15 minutes at 30oC . 

Protein digestion was then carried out by adding 42 J..ll of 1 Ox SET 

buffer (lx; 1.0% SDS, 5 mM EDTA, and 10 mM Tris-HCl, pH 7.4) and 

15 J..ll of Proteinase K (25 mg/ml in water) (Boehringer-Mannheim) 

to the reaction and heating the tubes to 60oC for 2 minutes. This step 

dissolves the SDS precipitate. The solution was then incubated at 
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42oC for at least 2 hrs. To remove the digested protein from the 

samples, a phenol/chloroform extraction was performed. A 1:1 

solution of Salt Saturated Phenol(for 50 g of phenol, add 11 ml of 2 M 

Tris, pH 7 .4, 14.3 ml of water; remove aqueous phase and add 11 ml 

2 M Tris, pH 7.4, 110 j.!l 2-mercaptoethanol, 2.75 ml m-cresol, 55 mg 

8-hydroxyquinalone)(Davis et al., 1986) to chloroform was made and 

360 j.!l of the mixture was added to the transcription reactions. The 

tubes were then vortexed and centrifuged in a Fisher microfuge for 5 

min and the aqueous phase transferred to a fresh tube. The 

interface of the phenol/chloroform extraction was re-extracted with 

100 j.!l of 1x SET buffer and the second aqueous combined with the 

first. The nucleic acids and unincorporated nucleotides were then 

precipitated by adding 150 j.!l of 10 M Ammonium Acetate and 650 

!J.I of isopropanol and incubating on dry ice for at least 15 min. The 

precipitate was pelleted by centrifugation for 10 min in a Fisher 

microfuge and the pellet resuspended in 100 j.!l of TE buffer. 

To remove small protein fragments and unincorporated 

nucleotides (which increase background) from the in vitro extended 

RNA, a Sephadex G-50 (fine) (Sigma) spin column was made from a 1 

cc syringe. The column was gravity packed with swelled sephadex 

and then spun at 1 ,000 rpm in a clinical centrifuge for 3 min. The 

100 j.!l of sample was then loaded on to the spin column and 

centrifuged at 1,000 rpm for 3 min. The column was then washed 

with successive washes of 100 j.!l, 50 j.!l and 50 j.!l of TE. 

The column eluate (250-300 j.!l) contains long, extended RNA 

molecules that must be cleaved to the length of the in vitro extension 

(100-200 bases) for accurate measurement of the "polymerase 
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density" of a given region of a gene. RNA cleavage was accomplished 

with the addition of 1/9 volume of 2 M NaOH for 5-10 min on ice. 

The reaction was stopped by adding 1/3 volume of 1 M HEPES pH 7.0 

buffer and the RNA precipitated overnight with 2.5 volumes of 

ethanol at -20oe . 

The RNA is then pelleted by centrifugation for 10 mm in a 

Fisher microfuge and the pellet resuspended in 100 J.ll of TE. To 

determine the quality of the labelling, 1 J.ll of the reaction is added 

to scintillation cocktail and counted. This also provides a method for 

even loading of multiple samples. The reactions are then hybridized 

to nitrocellulose filters that have the single and denatured double 

stranded targets fixed by slot blotting and baking at 80°e for 2 hrs 

under vacuum (details below). The hybridization buffer and 

conditions are the same as those described under Northern blot 

analysis. Following hybridization, the filters were washed 4 times 

with 2x SSe, 0.2% SDS at 60oe with each wash for 15 min. Two 

additional washes with 0.1 X sse, 0.1% SDS were then carried at 60oe 

for 30 min each. The filters were then autoradiographed as 

described. 

Preparation of Targets for Nuclear Run-on Assays. 

A. Double Stranded Targets 

The double stranded DNAs used as targets for hybridization 

were the plasmids pLK221(Gunning et al., 1983) for B-actin, p1XE7 

(see Fig 5)(provided by Miss Sarah Jacobs), pMe413Re(Dalla-Favera 
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Figure 5. Key to nuclear run-on probes. The map represents a 
genomic map of the 5' untranslated region through exon 1 (El 

box), intron I, ex on 2 (E2 box) and the 5' end of intron 2 of c­

myb. The arrows represent the size and orientation of the 
targets termed A through E. The myb "read-through" targets 
(B2 and B2R), and the other targets are described in the lower 
part of the figure. 
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et al., 1983) for c-myc and pB-myb(Nomura et al., 1988) for B­

myb. The plasmids were isolated as described. 

B. Single Stranded Targets 

5 7  

The procedure for generating single stranded DNAs as targets 

for hybridization were as described by Stratagene(Stratagene, 1990). 

An overnight culture of XL1-Blue cells transformed with the plasmid 

containing the DNA of interest was grown in Superbroth (0.09 M 

NaCl, 20 g/1 yeast extract, 35 g/1 bactotryptone; pH to 7.5). An 

innoculum of 5 ml was added to 50 ml of Superbroth and grown to 

an OD600 of 0.3 (2.5x108 bacteria/ml). R408 helper phage were then 

added at an MOl of 20:1 and bacteria were incubated for 8 hrs at 

37oC. Cultures were then heated to 65oC for 15 min and the bacterial 

debris removed by centrifugation at 17 ,OOOg for 10 min in a HB-4 

rotor at 4°C. The supernatant was then stored for up to 1 month 

before DNA purification. 

For purification of a large culture, the Stratagene procedure 

was scaled up for a 30 ml culture. The supernatant (30 ml) was 

added to a 50 ml fresh polypropylene tube and 7.5 ml of a 3.5 M 

ammonium acetate (NH4Ac), pH 7.5; 20% polyethylene glycol (PEG) 

solution was added. The tube was mixed by inversion and set at 

room temperature for 15 min. The phage were then pelleted by 

centrifugation at 17 ,OOOg for 20 min at 4oC in a HB-4 rotor. The 

pellet was then resuspended in 7.5 ml of TE buffer and extracted 

twice with PCI9 (100 g phenol, 100 ml chloroform, 10 ml 50 mM 

Tris, pH 9, 1 ml isoamylalcohol and 10 ml water) and once with 

chloroform. The single strand�d DNA. wa�_.then precipitated from the 

aqueous phase by adding 5 ml of 7.5 M NH4Ac, pH 7.5 and 20 ml of 
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100% ethanol and incubating on ice for at least 15 min. The DNA was 

pelleted by centrifugation at 17 ,OOOg for 20 min at 4oC in a HB-4 

rotor and resuspended in 0.5 ml of TE. 

The single stranded targets utilized for the nuclear run-on 

assays were generated from the myb containing plasmids p13, p13R, 

p12, p12R, pBSmbm1b2 (pB2), pBSmbm1b2r (pB2R) and the control 

pBluescript vectors. Fig. 5 shows a map indicating the location and 

the orientation of the targets noted above. The plasmids p13, p13R, 

p12 and p12R were provided by Ms. Karen Gorse. pB2 and pB2R 

were constructed by subcloning the 1.1 kb BamHI fragment of the c­

myb eDNA pMbm1 (exon 9 to exon 12) into the pBluescript vector 

pKSII+ in both orientations. 

Slot Blot Procedure. 

The target DNAs described above were added to nitrocellulose 

filters by means of a slot blotter (Hoeffer Scientific Instruments). 

The DNA (1 IJ.g) was brought up to 10 IJ.l in TE buffer and heated for 

5 min at 95oC. The samples were then put on ice and 90 IJ.l of 20x 

SSC was added. The samples were slotted onto a nitrocellulose filter 

that had been presoaked in distilled water followed by 20x sse. 

After the samples were slotted, slots were washed with 20x SSC and 

the filters removed to dry prior to baking. A map of the e-m y b 

targets and a legend of the other targets can be found in fig 4. 

Characterization of the Level of Regulation of the Human c-myb 

Proto-oncogene During · HL-'60 .·differentiation. 
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The following methods were used to determine the level of 

regulation of the c-myb gene during differentiation of HL-60. The 

experiments were designed to determine if regulation occurred at 

the transcriptional level by down regulation of a promoter or 

activation of an attenuator. Post-transcriptional events were also 

examined. The level of regulation was investigated for both the 

myeloid inducers DMSO and retinoic acid (RA) and the monocytic 

inducers Phorbol-12,13-dibutyrate (PDbu) and 1,25-

dihydroxycholicalciferol (Vitamin 03). To determine the role of de 

novo protein synthesis in c-myb regulation, cyclohexamide was also 

used in some experiments. 

Cell Culture. 

Cells were treated as above with the following additions. PDbu 

was purchased from Sigma Chemical Company, St. Louis, MO, and 

stored as a 2 mM stock solution in DMSO at -80oC. Differentiation 

with PDbu (250 nM) was for a 24 hr period. Retinoic acid was 

purchased from Sigma Chemical Company and was stored at -20oC in 

a desiccator. One mM stock solutions of retinoic acid were made up 

in 100% ethanol and stored at -20oC. Retinoic acid induced 

differentiation was also a 6 day induction program following 

treatment with drug at 1 11M. Vitamin 03 (Sigma) was prepared as a 

2.4 mM stock solution in 100% ethanol and was stored at -20oC . 

Vitamin 03 ( 10 nM) induces monocytic differentiation over a 6 day 

program. Cyclohexamide was purchased from Sigma Chemical 

Company, St. Louis, MO. A 100 mg/ml stock of cyclohexamide was 
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made up fresh for each experiment m 100% ethanol and added to the 

cells at a concentration of 10 jlg/ml. 

Northern Blot Analysis. 

Same as above. 

Nuclear Run-on Assays. 

Same as above. 

Post-transcriptional Studies. 

To determine if post-transcriptional regulation of c-myb occurs 

during differentiation of HL-60, cells were treated with Actinomycin 

D (5 jlg/ml) in the presence or absence of DMSO or PDbu for the 

indicated time points. Actinomycin D was purchased from Sigma 

Chemical Company (St. Louis, MO) and was dissolved in I 00% ethanol 

and stored at 4oC as a 1 mg/ml stock solution. At the indicated time 

points, cells were removed from culture for isolation of RNA to be 

used in Northern blot analysis (see above). 

Electrophoretic Mobility Shift Assay. 

The Gel Shift protocol was based on the procedure of 

Dignam(Dignam et al., 1983) and kindly provided by Dr. Timothy 

Bender. Nuclear extracts were prepared from HL-60 at indicated 

time points of DMSO differentiation and/or cyclohexamide treatment 

using an NP-40 lysis procedure. Cells were harvested and washed 

once in PBS. The cells (lxi08) were then resuspended in 250 111 of 

lysis buffer (150 mM NaCl, I mM MgC12, IO mM Tris-HCl, pH 8.0 and 
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0.5% NP-40) , transferred to a microfuge tube and incubated on ice 

for 10 min. The nuclei were then pelleted by centrifugation in a 

Sorvall microfuge at 60% speed for 2 min. The supernatant was then 

removed, the pellet resuspended in 100 111 of Dignam Buffer C (20 

mM HEPES, pH 7.9, 1.5 mM MgC12, 0.2 mM EDTA, 420 mM NaCl, 20% 

glycerol, 0.5 mM Dithiothreitol (DTT) and 0.5 mM PMSF) and 

incubated on ice for 1 hr. The samples were then spun again as 

above and the supernatant was removed, alliquoted in 25-30 111 

fractions, frozen on dry ice and stored at -80oC . 

The gel shift reactions were performed using nuclear extracts 

that were isolated as described above with target DNA from intron 1 

of the c-myb gene. The targets were isolated from the plasmids p13 

and p 12. The mapping of the targets can be seen in Fig 27. Targets 

were radiolabelled by Klenow fill-in or end-labelling. A double 

stranded oligonucleotide target which contains the high affinity myb 

binding site(Nakagoshi et al., 1989) was used as a positive control. 

The sequence of the plus strand of MBS-1 is 

5'TGTGTGTCAGTTAGGGTGTCTCG3', MBS-1 was end-labelled, vacuum 

dried and resuspended in water before use in the gel shift assay. 

The binding reactions were carried out by adding water, non­

specific competitor (polydl:dC, 0.2-2 !lg) and lOx binding buffer 

(100 mM Tris-HCl, pH 7.5, 500 mM NaCl, 10 mM DTT, 10 mM EDTA, 

50% glycerol and 1% BPB) to a microfuge tube. The extracts were 

then added to each tube at 4 !lg of protein per reaction. Extracts 

were quantitated by Bradford assay(Bradford, 1976) using the Bio­

Rad reagent. If dilutions of the protein were necessary, they were 

done in Dignam Buffer D (20 mM HEPES, pH 7.9, 0.1 M KCl, 0.2 mM 
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EDTA. 0.5 mM DTT, 0.5 mM PMSF and 20% glycerol). Following 

addition of the labelled probe (5x 104_ 1 x 1 os cpm/reaction), the 

samples were allowed to incubate at room temperature for 20 min 

and then loaded onto the gel. The gel was a 4% acrylamide/bis 

(29/1), 1X TBE (IX TBE-0.089 M Tris-HCl, 0.089 M Boric acid and 

0.002 M EDTA) gel that contained 0.2 mM DTT and was polymerized 

with TEMED and Ammonium Persulfate. The gel was pre-run for 30 

min at 170 V prior to sample loading. The samples were loaded, 

while the gel was running, and electrophoresed at 170 V (21 0 V for 

the oligonucleotide probe) until the loading dye reached the bottom 

of the gel. The gel was then dried onto Whatman 3MM paper and 

autoradiographed. 

Characterization of the 2.4 kb c-mvb mRNA. 

This series of experiments was designed to further characterize 

the 2.4 kb mRNA that hybridizes to the c-myb probe used in the 

preceding experiments. Standard cloning procedures unfortunately 

have proven unsuccessful for isolating this message. 

Northern Blotting. 

Same as above. 

Primer Extension Analysis. 

The primer LHB.l (5'GGAGGATCATGCACCTTGCT3') was end­

labelled and 2x106 cpm (counts per minute) were annealed to 25 11g 

of RNA isolated from HL-60 and DMSOr cells treated with DMSO for 0, 

72 and 144 hrs. The annealing temperature (Tm) was determined to 
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be 70oC by the formula, Tm=81.5oC + 16.6log(M NaCl) + (mole 

fraction of G+C)(41) - 500/length of the primer. Primers were 

annealed for 2 hrs in 0.4 M N aCl and 40 mM PIPES pH 7 .0. Following 

the annealing reaction, primers were extended for 1 hr at 37oC with 

200 units of Moloney Murine Leukemia Virus derived reverse 

transcriptase (Bethesda Research Laboratories) in reverse 

transcription buffer (Bethesda Research Laboratories) along with 1 

mM DTT and 1 mM each of dATP, dTTP, dCTP and dGTP. The cDNAs 

were then separated from the RNA by heating the reaction to 95oC 

for 3 min and the RNAs digested with RNase A (boiled 15 min, 10 

Jlg) at 37oC for 30 min. The eDNA was then extracted with PCI9 and 

SEVAG and precipitated with 0.3 M sodium acetate, 20Jlg of carrier 

tRNA and 2.5 volumes of ice cold ethanol. The eDNA was then 

pelleted in a Fisher microfuge for 15 min, washed with 80% ethanol, 

pelleted and dried. The pellet was resuspended in 1 volume of water 

and an equal volume of sequencing loading buffer. The samples 

were separated on a 7% acrylamide/8 M urea gel, which was dried 

and autoradiographed. 

··, .... ! 



RESULTS 

Characterization of an HL-60 Mutant That Exhibits Reversible 

Differentiation in Response to DMSO. 

The laboratory received a line of HL-60 that had been 

reported to be resistant to the induction of differentiation by 

DMSO(Fisher and Grant, 1985). This line of HL-60, known as DMSOr 

had been established by growing HL-60 cells on low levels of DMSO 

(0.4%) initially, then increasing the levels to near maximal 

differentiation concentration (1. 1% ). The cells were then 

maintained on DMSO for continuous selection purposes. Upon 

arrival into Dr. Westin's laboratory, DMSOr was removed from the 

maintenance concentration of DMSO, because it was felt that this 

type of selection did not allow for study of a stable, uninducible 

phenotype. Following removal of DMSOr from the selective 

pressure, the line had to be recharacterized. 

Morphologic changes induced by DMSO in HL-60 and DMSOr. 

A gross comparison of the phenotypic state of HL-60 and 

DMSOr during DMSO induced differentiation was performed. Cells 

were stained at the indicated time points of DMSO treatment and 

representative photomicrographs are presented in Fig. 6. Both 

control HL-60 and DMSOr cells exhibited the characteristics of an 
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immature cell with a large, round nucleus and clearly defined 

nucleoli. After 144 hours of treatment with DMSO, both cell lines 

have acquired similar levels of morphologic differentiation 

including the presence of metamyelocytes and band cells. This is 

exemplified by the condensed, bean shaped nucleus, the loss of 

nucleoli and the decreased nuclear to cytoplasmic ratio. Washout 

experiments were performed to determine whether acquisition of 

this mature cytologic phenotype was associated with terminal 

differentiation. Following the 3 day reculture period 6 days post­

DMSO treatment, the parental cells retained their mature 

morphology while the DMSOr cells reverted to the immature 

morphology (Fig. 6). 

Examination of the Effect of Induction of Differentiation on Cell 

Proliferation. 

To determine if the DMSOr response to DMSO included the 

antiproliferative portion of differentiation, 3H-thymidine 

incorporations were assayed over the treatment time course (Fig. 
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7 A and 7B.). DMSO caused a transient increase in 3H-thymidine 

incorporation over the first 24 hours of induction in both cell lines. 

This was followed by decrease in incorporation to 25% and 50% of 

control in HL-60 and DMSOr respectively by 72 hours. 3H-

thymidine incorporation continued to decline at 144 hours to 10% of 

control in HL-60 and 25% of control in DMSOr. Washout 

experiments were again performed to determine if the 

anti proliferative effect was reversible (Figure 7 A and 7B, dashed 

lines). Washout performed at the precommitment time point of 24 
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Figure 6. Morphologic survey of HL-60 and DMSOr during 
DMSO induced differentiation. Magnification is 400x. A. lll..-

60 control. B. DMSOr control. C. lll..-60 144 hours post­
treatment. D. DMSOr. 144 hours post-treatment. E. lll..-60 72 

hour treatment with DMSO followed by a 3 day reculture 
period (3 day washout). F. DMSOr 3 day washout. G. lll..-60 

144 hour treatment with DMSO followed by a 3 day reculture 
period (6 day washout). H. DMSOr 6 day washout. 
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Figure 7. 3H-thymidine incorporation in HL-60 (A) and DMSOr 
(B) following DMSO treatment. The results are presented as 
mean percentage of control (time 0) incorporation (cpm). The 
standard deviation for each point is no greater than 15% of the 
mean. Solid lines represent treatment with DMSO while the 
dashed lines represent washout experiments. The time of 
treatment with DMSO or reculture period is shown along the X 

axis. 
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hours showed a return to control levels of incorporation in both cell 

lines. If the cells had committed to the induction of differentiation, 

3H-thymidine incorporation levels would have been closer to that 

predicted by the graphs for continuous DMSO induction for 96 

hours. Washout at 72 and 144 hours demonstrated the reversibility 

of the antiproliferative effects of DMSO in DMSOr. Following the 

reculture period, 3H-thymidine incorporation in HL-60 remained 

less than 20% of baseline, while DMSOr incorporation was elevated 

to levels greater than control (1 04% and 260% ). 

To assure that the reversibility of differentiation seen m the 

morphology studies and the 3H-thymidine incorporation studies was 

not simply the selection of a DMSO resistant subpopulation within 

DMSOr, cells from the washout studies were kept in culture and 

retreated with DMSO. 3H-thymidine incorporation of cells from the 

144 hour washout point retreated with DMSO is shown in Fig. 8. 

These cells (D6) exhibited an antiproliferative response to DMSO 

treatment similar to DMSOr or HL-60. A similar response was 

obtained with cells from the 3 day washout point (data not shown) 

indicating that the observed phenomena do not represent clonal 

selection of a DMSO differentiation resistant cell population from 

within DMSOr. 

The ability of cells to maintain the washout phenotype is 

depicted in Fig. 9, where cells were taken through two cycles of 

differentiation and reproliferation. DMSOr cells maintained 

reversible differentiation for two continuous cycles as evidenced by 

the thymidine incorporations and by morphology (data not shown). 

If the DMSOr cells were subjected to a third round of sequential 
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Figure 8. 3H-thymidine incorporation in D6 following treatment 
with DMSO. The results are presented as mean percentage of 
control incorporation. The standard deviation for each point is 
no greater than 10% of the mean. The time of treatment with 
DMSO is shown along the X axis. 
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Figure 9. 3H-Thymidine incorporation in DMSOr following three 
successive DMSO treatment and washouts. The initiation of 
each six day DMSO treatment is marked with a solid arrow, 
while the start of each washout period is marked with a open 
arrow. The results are presented as average counts per minute 
(cpm) with error bars representing standard deviation. The 
time of treatment with DMSO or reculture period is shown 
along the X axis. 
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DMSO treatment, the cells would begin to exhibit resistant 

characteristics (Fig. 9). This is probably due to the near continuous 

exposure of the cells to DMSO for greater than three weeks, which 

may be enough to select for cells that have reverted to the 

phenotype they expressed when the line was originally established. 

3H-thymidine incorporations represent measures of both the 

number of cells in S phase of the cell cycle at a given time as well as 

the rate of DNA synthesis or repair. To obtain a more detailed 

analysis of the antiproliferative effects following the induction of 

differentiation and reversibility of this process in DMSOr, cell cycle 

analysis by flow cytometry was performed (Fig. 1 0). CELLFIT 

analysis of DMSO treated HL-60 and DMSOr cells demonstrate that 

withdrawal from cell cycle occurs by 72 hours following treatment 

(data not shown). This withdrawal is established to a greater extent 

in HL-60, with 84.2% of the cells in the G0/G 1 peak, while DMSOr has 

67% of the population in the resting stage at this point. At 144 

hours each cell line has greater than 85% of the cells in the G0/G 1 

peak and less than 8% of the cells in S phase (Fig. 10c&10d). 

Washout studies confirmed the reversibility of these cell cycle 

events in DMSOr with a return of cells to the cell cycle 

characterized by an increase in the number of cells in S phase (Fig. 

10f). This was not seen to any appreciable extent in the parent HL-

60 cell line (Fig. I Oe ). 

Superoxide Anion Production m HL-60 and DMSOr. 
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Figure 10. Cell cycle analysis of HL-60 and DMSOr. Cell cycle 
analysis was performed on a Becton-Dickenson FACSCAN and 
the data was analyzed using the CELLFIT software. The graphs 
represent the histograms generated by the analysis for the 
following treatments: 2N represents the G0/G1 peak and 4N the 
GJM peak. The number above the G0/G1 peak is the height of 
that peak. A. HL-60 untreated. B. DMSOr untreated. C. HL-

60 144 hour treatment with DMSO. D. DMSOr 144 treatment 

with DMSO. E. HL-60 144 hour treatment with DMSO followed 
by a 3 day reculture period. F. DMSOr 144 hour treatment 
with DMSO followed by a 3 day reculture period. For actual 
percentages of cells in each phase of the cell cycle refer to the 
text. 
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SUPEROXIDE PRODUCTION IN HL-60 AND DMSOr 

HL-60 U HL-60 D DMSOrU DMSOrD 

CONTROL 1.5o± 0.11 4.14 ± 0.40 1.07 ± 0.70 0.76 ± 0.61 

-7 
PMA 10M 38.89 ± 1.08 56.14 ± 0.30 9.19 ± 0.54 56.67 ± 2.12 

1 
nmoles superoxide/million cells 

Table 5. Superoxide production in HL-60 and DMSOr. The data is presented 

as the mean plus or minus the standard deviation. U, Undifferentiated. 

D, 6 day differentiated with DMSO. 
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In order to determine if the antiproliferative and 

morphological effects seen in DMSO treated DMSOr were simply a 

toxic response as opposed to a differentiation response, a functional 

assay of differentiation was employed. The production of 

superoxide anion is a response that is enhanced upon the 

differentiation of HL-60 toward granulocytes. Superoxide anion is 

released into the media when the cells are treated with the phorbol 

ester, phorbol myristate acetate (PMA). This is due to the activation 

of the NADPH oxidase enzyme system which is present in the 

mature cells. Some superoxide release was induced from the 

undifferentiated HL-60 and DMSOr cells. The amount of release 

from the differentiated cells however was greatly increased and 

virtually equal between the two cell lines (Table 5). 

Expression of c-myb During Differentiation of HL-60 and DMSOr. 

A comparison of c-myb expression during DMSO induced 

differentiation was performed by isolating total cellular RNA at 

selected time points and subjecting them to Northern blot analysis. 

Fig. 11 shows a Northern blot probed with the 1.1 kb BamHI 

fragment of pMbm 1. This probe spans a portion of the coding 

region of c-myb (exon 9 to exon 12), and is therefore a useful probe 

for measuring the expression of most of the alternative splice forms 

of the message. The steady state level of expression in HL-60 and 

DMSOr is equal in untreated cells (time 0 lanes). Each cell line 

shows a sharp decrease in c-myb steady state levels 6 hrs into the 

DMSO induction with a partial recovery by 12 hrs. In HL-60, c-myb 

expression begins to decline again at the 48 hr time point, with little 



80 

Figure 11. Northern blot analysis of c-myb expression during 
DMSO induced differentiation of HL-60 and DMSOr. The probes 
used in this experiment were pMbm1 (c-myb )(Westin et al., 
1990)and pLK221 (6-actin)(Gunning et al., 1983 ). H represents 
HL-60 while D represents DMSOr. The time of treatment is 
given above the sample in hours, with 6dwo a 144 day 
treatment with DMSO followed by a 3 day reculture period. 
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expression at 72 hrs and no expression of c-myb by 144 hrs. In 

contrast, DMSOr expression is diminished but can still be detected at 

the 144 hr time point. Following removal of the DMSO at the 144 hr 

time point followed by a 3 day reculture period, slight c-myb re­

expression can be detected in HL-60, while control levels are 

present in DMSOr. Similar data was obtained with cells treated for 

only 72 hrs with DMSO before washout. (data not shown). A 2.4 kb. 

message is also detected with this probe. This yet undefined mRNA 

appears to be up-regulated with respect to the c-myb mRNA 

represented by the 3.6 kb. band at the later time points of 

differentiation. The up-regulation occurs in each cell line at the 48 

hr time point to the same extent. 

This difference in expression of c-myb between parental HL-

60 and DMSOr was not seen with all the splice forms of c-myb, 

during DMSO induced differentiation. In Fig. 12, a Northern blot of 

a differentiation time course was probed with a splice variant of c­

myb termed pMbm28. This eDNA clone was isolated from an HL-60 

library and is altered by a truncated 3' end of the mRNA. 

Expression of pMbm28 is discordant with other c-myb clones in that 

it does not change significantly during the entire differentiation 

process. It should also be noted that the size (2.0 kb) and the 

pattern of expression of pMbm28 does not correspond to the 2.4 kb 

message present in Fig 11. The patterns of expression of pMbm28 

are similar between HL-60 and DMSOr, suggesting that the protein 

encoded by this splice form of c-myb may not play a significant role 

in determining the phenotype of DMSOr. 
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Figure 12. Northern blot analysis of the expression of the 
pMbm28 clone of c-myb (Westin, 1991)during DMSO induced 
differentiation of HL-60 and DMSOr. H represents HL-60 while 
D represents DMSOr. The time of treatment is given above each 
sample in hours. 
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Figure 13. Nuclear run-on analysis of DMSOr. Nuclei were 
isolated from DMSOr cells at the given time points (in hours), 
and transcription of selected genes was determined. For a 
description of the target DNAs please refer to figure 5. 
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Transcriptional Regulation of c-myb in DMSOr. 

To determine if the aberrant expression of c-myb in DMSOr is 

at the transcriptional level, nuclear run-on analysis was performed. 

Nuclei were isolated from cells at the time points indicated in Fig. 

13, and 32P-UTP was incorporated into the nascent transcripts in 

vitro. The radiolabelled RNA was isolated and hybridized to DNA 

targets (defined in Fig. 5) that are fixed to the filter by a slot 

blotter. The results indicate that c-myb (B2 probe) is regulated at 

the transcriptional level, as well as c-myc (RC probe) and 

myeloperoxidase (MP probe). The kinetics of the transcriptional 

regulation of c-myb are similar to that of the parental HL-60 line 

(Fig. 22). It is therefore unlikely that transcriptional regulation is 

the mechanism of altered c-myb expression DMSOr. 

Expression of B-myb During HL-60 and DMSOr Differentiation . 

. To examine B-myb regulation during HL-60 differentiation 

and to determine if it is the 2.4 kb message, a Northern blot was 

;'�}obe. � : with·. an oligonucleotide designed to hybridize to B-myb 
�_.::}t.if..f���--�- . 

- b��ec(�ri -.the published sequence(Nomura et al., 1988) (Fig. 14). 
:. � �;�t�f: . . 

The hy]JJ..t9izing message is 2.8 kb in size and showed an expression 
:i��:,� >L· 

pattern thal <:lid not correspond to the 2.4 kb band seen in Fig. 10. ---·r�� -
The patt�;rl ''pf. expression of B-myb in both HL-60 and DMSOr was 

__ , �.:.A� 
one of do�XWt,�gulation at 48 hours. This is consistent with the 

···�\�:::-.:= ... ;;'!.(t<- � !;"., • t • . 

pattern of ex pressi,g�Jj' .. ieportetV 'in ···Other -·leukemic cell· lines' and 
: �-._<.�f.;' ' -

normal hematopoiei{(�'hells(Golay et ·al., 1991). · Unlike: c"-myb 
't_�'i�\/-

.. :.� . ... > � ' _,. -
' 

. 
expression, there was.w .. a.!�.Q no 'difference in·'the ·regUlation of .. -B..:myb 

--�{.�tf!:�/ ;· ·' 



by DMSO between HL-60 and DMSOr. A-myb expression was 

examined but not detected in HL-60 or DMSOr (data not shown). 

Expression of Genes Associated With the Cell Cycle. 

88 

The previous results demonstrated an altered expression of c­

myb but not B-myb in DMSOr cells in response to DMSO. To 

determine if this altered expression was unique to c-myb, 

additional genes were also tested. The genes tested were either 

involved in cell cycle control, or were cell cycle regulated, since c­

my b is cell cycle regulated and there were slight differences in the 

thymidine incorporation, and cell cycle experiments between HL-60 

and DMSOr. A delay in the down regulation of expression of cdc2 

kinase, cyclin B, and histone H4, was similar to that of c-myb i n  

DMSOr, while ornithine decarboxylase gene expression was not 

significantly affected (Fig. 15). The parental ceJl line showed a 

significant decline in the expression of all these genes by 72 hrs, 

with completely ablated expression by 144 hrs. The 72 hr time 

point represents the beginning of the period of non-mitotic 

differentiation, so down regulation of these genes at this point 

would be expected. These data suggest that the genetic alteration 

in DMSOr may affect the control of genes that are important in cell 

cycle regulation. 

Effect of Antisense Oligodeoxynucleotides on HL-60 and DMSOr. 

To determine if continued c-myb expression was essential for 

the phenotype of DMSOr, antisense oligodeoxynucleotides against c-
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Figure 14. Northern blot analysis of B-myb expression during 
DMSO induced differentiation of HL-60 and DMSOr. The probe 
used in this experiment is the 30 base oligonucleotide Bmyb.l. 
H, HL-60 and D, DMSOr. Each time point appears centered 
above the two lanes. 
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Figure 15. Northern blot analysis of cell cycle related genes 
during DMSO treatment of HL-60(H) and DMSOr(D). The probes 
used for these studies were the 2.0 Eco RI fragment of 
pODC 10/2H( ornithine decarboxylase-ODC)(Hickok et al., 1987), 
the 30 nucleotide oligomers cdc2.1 and cycB.l that hybridize to 
the mRNA for cdc2 kinase and cyclin B respectively and the 1.8 
kb fragment of pMUSH4 (histone H4)(Seiler-Tuyns and 
Birnsteil, 1981). The time of treatment (in hours) with DMSO is 
centered above the two lanes. 
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myb were synthesized and used in the presence or absence of 

DMSO. Both HL-60 and DMSOr cells were treated for 24 or 72 hrs 

(72 hr data not shown) with vehicle (control), Smbml/0 (sense 

control), Rmbm l/0 (randomized antisense sequence control), and 
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Ambml/0 (antisense oligo that can bind at the translation start site 

of most forms of the protein). None of the oligonucleotides had any 

significant effect on the DMSOr cells as measured by tritiated 

thymidine incorporation (Fig. 16). The antisense 

oligodeoxynucleotide did not alter the effect of DMSO either, but the 

significance of the data must be questioned because of the effect of 

Rmbml/0 on the parental HL-60. This data suggests that the 

oligodeoxynucleotides may have non-specific effects on cell 

proliferation unrelated to the effects of antisense oligonucleotide on 

c-myb. 

Determination of the Level of Regulation of the Human c-myb 

Proto-oncogene during Hematopoietic Cell Differentiation. 

Strategy and Definition of Probes. 

To determine the level of regulation of c-myb during differentiation 

of HL-60, the changes in mRNA levels as determined by Northern 

blot analysis was compared to Nuclear Run-on analysis. The first 

four probes depicted in Fig. 5 are single stranded targets for the 5' 

untranslated region through the first portion of intron 1 that can 

detect both sense and antisense transcription. The region covered 

by probe A and B contains promoter activity and the majority of the 

mRNA start sites(Westin, 1991) The murine attenuator would map 
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Figure 16. The effect of antisense oligonucleotides on 3H­
thymidine incorporation in HL-60(A) and DMSOr(B). All 
treatments were for 24 hours. Ambml/0 and Smbml/0 are 
15mers derived from sequence 5 bases downstream from the 
translational start site of the prototypic myb message. 
Ambml/O(Al/0) would bind to sense strand message and 
Smbml/O(Sl/0) to a complementary message. 
Rmbml/O(Rl/0) was generated by randomizing the Ambml/0 
sequence. The data is presented as counts per minute (CPM) on 
the y-axis and treatment on the x-axis. Cells were treated with 
an oligonucleotide or vehicle (TE, Control) in the presence 
(striped bars) or absence (solid bars) of 1.25% DMSO. 
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at the end of probe C. The "post-attenuator" probes are the single 

stranded targets B2 and B2R. This probe is derived from the eDNA 

pMbm1 and spans a 1.1 kb region from the end of exon 9 into exon 

12. This eDNA fragment was also used for probing the Northern 

blots. Probe E from Fig. 5 is present in one experiment. This probe 

could also serve as a post-attenuator probe, but it does not 

hybridize well and its use was discontinued in later experiments. 

The other targets used in the Run-on analysis are for the third exon 

of c-myc (RC), a full length eDNA of B-actin (LK) and single stranded 

vector (pBluescript) controls for non-specific binding ( +/-). 

Transcriptional Regulation of c-myb by Retinoic Acid and Vitamin 

D3. 

Retinoic acid induces myeloid differentiation of HL-60 cells 

over a 6 day period while vitamin D3 induces monocytic 

differentiation over the same time cours�. Both of these agents 

induce similar changes in c-myb message over this time (Figure 17a 

and 18a). The message levels decline in a time dependent fashion 

with a near complete loss of message at the 144 hr time point for 

both agents. Nuclear run-on transcription was analyzed at the same 

time points for each of these agents (Figure 17b and 18b) and these 

experiments yielded three observations. First the transcription at 

the promoter and early region of c-myb was unchanged during the 

time course of differentiation with respect to B-actin transcription 

(probes A and C), suggesting a constitutive promoter. Second, 

antisense transcription is present in the 5' region of the gene 
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Figure 17. Regulation of c-myb by retinoic acid. A) Northern 
blot analysis of c-myb expression during retinoic acid induced 
differentiation of HL-60. This blot was probed with the 1.1 kb 
Bam HI fragment of pMbm1(Westin et al., 1990). The time of 
treatment is given above the lane. B) Nuclear run-on analysis 
of c-m yb transcription during retinoic acid induced 
differentiation of HL-60. The key to the slot blot targets is 
presented in Fig. 5. The time of treatment (in hrs) is presented 
at the top of each blot. 
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Figure 18. Regulation of c-myb by vitamin D3. A) Northern 
blot analysis of c-myb expression during vitamin D3 induced 
differentiation of HL-60. This blot was probed with the 1.1 kb 
Bam HI fragment of pMbm1(Westin et al., 1990). The time of 
treatment is given above the lane. B) Nuclear run-on analysis 
of c-myb transcription during vitamin D3 induced 
differentiation of HL-60. For a description of the slot blot 
targets, refer to Fig. 5. The time of treatment (in hrs) is 
presented at the top of each blot. 
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(probes B and D) but not the 3' end (probe B2R). Finally, the change 

in transcription due to differentiation with both retinoic acid and 

vitamin D3 is due to an attenuation of transcription. This is evident 

in the change in transcription in the 3' end of the gene (probe B2). 

When the Northern blots and nuclear run-ons were compared by 

densitometry, the down-regulation of steady-state message 

correlated with the decrease in transcription in the 3' region of the 

gene (Fig. 21a and b). It can be concluded that attenuation is the 

prevailing mechanism of c-myb down regulation by retinoic acid 

and vitamin D3. 

Phorbol Ester Regulation of c-myb During HL-60 Differentiation. 

PDbu induces monocytic differentiation of HL-60 cells over a 

24 hr time course, with changes in steady c-myb message 

detectable in 1 hr and significantly reduced by 6 hrs (Fig. 19a). 

Nuclear run-on analysis revealed that the levels of read-through 

transcription at 6 hr was greater than would be expected from the 

change in steady state message at this time point (Fig. 19b ). This 

suggests that attenuation is not the only mechanism of regulation 

activated by PDbu. One possibility is that c-myb is regulated by 

PDbu at the post-transcriptional level. To investigate post­

transcriptional regulation as a potential mechanism of PDbu 

regulation, the Northern blot in Fig. 20 shows the effect of 

Actinomycin D on changes in c-myb steady message induced by 

PDbu. This blot compares the effect of PDbu (P), Actinomycin D (A), 

or the combination (P A) on e-m y b expression. The decline in e-m y b 
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Figure 19. Regulation of c-myb by phorbol dibutyrate. A) 
Northern blot analysis of c-myb expression during phorbol 
dibutyrate induced differentiation of HL-60. This blot was 
probed with the 1.1 kb Bam HI fragment of pMbm1(Westin et 
al., 1990). The time of treatment is given above the lane. B) 
Nuclear run-on analysis of c-myb transcription during phorbol 
dibutyrate induced differentiation of HL-60. The key to the 
slot blot targets is presented in Fig. 5. The time of treatment 
(in hrs) is presented at the top of each blot. 
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Figure 20. Post-transcriptional regulation of c-myb by phorbol 
dibutyrate. HL-60 cells were treated with phorbol ester (P), 
actinomycin D (A) or the combination of the two (P+A), for up 
to 3 hrs. The Northern blot was probed with the 1.1 kb Bam HI 

fragment of pMbml(Westin et al., 1990). 
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Figure 21. Densitometric analysis of Northern blots and nuclear 
run-ons. All blots were scanned and normalized to the actin 
control for comparisons. The data is presented as percent of 
control promoter activity ([(A/LK)/(A0/LK0)] x 1 00)( closed 
boxes),percent of control read-through transcription 
([(B2/A)/(B20/A0)]x100)(diamonds) and percent of control 
steady state expression ((RNA/RNA0)x100)(open boxes). A) 
Retinoic acid induced changes. B) Vitamin D3 induced changes. 
C) Phorbol dibutyrate induced changes. 
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message due to PA is greater than that of A alone suggesting that c­

myb is controlled at the post-transcriptional level by phorbol esters. 

A second potential mechanism of PDbu induced regulation was 

revealed by comparing the densitometric analysis of changes in 

steady state mRN A to changes in transcription of the region of 

initiation. In Fig. 21 c, the changes in message levels are compared 

with changes in transcription of the 5' untranslated region of c-myb. 

When these transcriptional changes are normalized to the 

constitutively transcribed actin gene, there is a good correlation 

with changes in steady state message from 0 to 6 hrs. This 

correlation suggests that PDbu can induce a decrease in the 

initiation of transcription as well, presumably by regulation of the 

c-myb promoter. 

The Biphasic Regulation of c-myb by DMSO at the Transcriptional 

and Post-transcriptional Level. 

DMSO induced differentiation of HL-60 cells produces a 

biphasic pattern of regulation of c-myb expression. This is similar 

to the pattern observed in FMEL differentiation, with a sharp 

decrease in c-myb expression at 6 hr followed by an increase in 

expression that peaks at 24 hr (Fig. 22a)(Watson, 1988b). Run-on 

analysis reveals that the attenuator is active by 6 hr (Fig. 26b) and 

remains active through 12 (data not shown) and 24 hr (Fig. 22b) 

and therefore cannot be responsible for the changes in steady state 

mRNA levels through this time. Transcription of the 5' untranslated 

region of the gene does not change during this period, thus it is 

possible that post-transcriptional mechanisms may be present. To 
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Figure 22. Regulation of c-myb by DMSO. A) Northern blot 
analysis of c-myb expression during DMSO induced 
differentiation of HL-60. This blot was probed with the 1.1 kb 

Bam HI fragment of pMbml(Westin et al., 1990). The time of 
treatment is given above the lane. B) Nuclear run-on analysis 
of c-myb transcription during DMSO induced differentiation of 
HL-60. For a description of the slot blot targets, refer to Fig. 5. 

The time of treatment (in hrs) is presented at the top of each 
blot. 
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investigate the possibility of post-transcriptional mechanisms of c­

myb regulation, Actinomycin D was employed as an inhibitor of 

transcription to determine if a change in mRNA stability was 

induced by DMSO. The pattern of c-myb expression suggested that 

if a change in mRN A stability were to occur it would be in the first 6 

hours of DMSO treatment. Depicted in Fig. 23a is a Northern blot of 

RNA isolated from cells treated with DMSO (D), Actinomycin D (A) or 

the combination (AD) for a 3 hour period. When D and A are 

compared over this time course, DMSO alone leads to a decline in c­

myb mRNA that was greater than that of inhibition of transcription. 

This suggests that a message destabilization occurred during the 

DMSO treatment. The DMSO induced destabilization is inhibited 

when cells are treated with Actinomycin D and DMSO, thus the post­

transcriptional regulation of c-myb by DMSO is dependent on 

ongoing transcription. This pattern of regulation was detected for c­

myc under similar circumstances, but not characteristic of the 

regulation of ornithine decarboxylase (Fig. 23b and c). 

One possibility for the transcriptional dependency of e-m y b 

destabilization is the induction of a protein necessary to direct 

mRNA degradation. To explore this, it was determined if protein 

synthesis was essential for post-transcriptional control by DMSO. If 

DMSO induces a protein that is essential for message turnover, then 

the protein synthesis inhibitor cyclohexamide should be able to 

impede the change in steady state mRNA that is due to post-
�
�\s�riptional mechanisms. Cyclohexamide was not capable of 
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Figure 23. Post-transcriptional regulation of gene expression 
by DMSO. lll..-60 cells were treated with DMSO (D), actinomycin 
D (A) or the combination of the two (DA), and samples were 
taken for up to 3 hrs. A) The Northern blot was probed for c­
myb with the 1.1 kb Bam HI fragment of pMbm1(Westin et al., 
1990) and for 6-actin (pLK221)(Gunning et al., 1983). B) 
Samples treated under similar conditions to part A were 
probed for c-myc expression with the Eco RI!Cla I fragment of 
pMC413RC(Dalla-Favera et al., 1983). C) Samples were probed 
with the Eco RI fragment of pODC10/2H(Hickok et al., 1987) for 
detection of ornithine decarboxylase. 
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Figure 24. The effect of cyclohexamide on c-myb expression 
and DMSO induced changes in c-myb expression in HL-60. 

Expression of c-myb was detected in HL-60 cells that were 
untreated (U), treated with DMSO (D), treated with 
cyclohexamide (C) or treated with DMSO and cyclohexamide 
(DC). The time of treatment is centered above the sample. C­
myb detection was with the 1.1 kb Bam HI fragment of 
pMbm1(Westin et al., 1990). 
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superinducing c-myb nor could it significantly affect DMSO induced 

changes at 1 or 3 hrs (Fig. 24 ). Similar results were obtained 

at 6 hrs (see Fig. 26a), thus the post-transcriptional regulation of c­

myb by DMSO does not require protein synthesis. 

If a message destabilization is responsible for a portion of the 

regulation of c-myb during the first six hours of DMSO induced 

differentiation of HL-60, and there is no change in the 

transcriptional regulation during the first 24 hours of DMSO 

treatment then the increase in steady state myb mRNA from 6 to 24 

hours may reflect a restabilization of message. This is impossible to 

determine because an accurate half-life of c-myb message during 

the first 3 hrs of DMSO treatment cannot be obtained due to the 

transcriptional dependency of the regulation. If the transcriptional 

dependency is a cross talk mechanism between transcriptional and 

post-transcriptional regulation, then transcriptional dependency 

would not be necessary following the initial period of message 

destabilization. This was tested by adding Actinomycin D to HL-60 

that had treated with DMSO for 24 hours (Fig. 25). This Northern 

blot demonstrates the loss of transcriptional dependency and 

presumably post-transcriptional regulation at the 24 hour time 

point. If the transcriptional dependency remained active, then the 

addition of Actinomycin D would not enhance changes in steady 

state c-myb mRNA as in Fig. 23a. 

Effect of Cyclohexamide on Transcriptional Control of c-myb. 
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Figure 25. Post-transcriptional regulation of c-myb by DMSO 
following 24 hrs of DMSO induced differentiation. HL-60 cells 
were pretreated with DMSO for 24 hrs, then either (D), 
actinomycin D (A) or the combination of the two (DA), for up to 
3 additional hrs. The Northern blot was probed with the 1.1 kb 
Bam HI fragment of pMbm1(Westin et al., 1990). 
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Proteins have been implicated in the control of the process of 

attenuation(Reddy and Reddy, 1989). In an attempt to make a 

gross observation on the need for protein synthesis on the 

attenuator that regulates c-myb, cells were treated with 

cyclohexamide (CHX) in the presence or absence of DMSO. The cells 

were treated for 6 hrs when total cellular RNA and nuclei were 

isolated and the Northern blot and nuclear run-on analyses are 

presented in Fig. 26. The Northern blot (Fig. 26a) demonstrates a 

similar pattern of steady state c-myb levels following the 6 hr 

treatment as that seen in Fig. 24, where DMSO caused a decline in c­

myb message that is not affected by CHX. CHX alone also has 

minimal effect on c-myb expression following a 6 hr treatment. The 

nuclear run-on experiments yielded a different result (Fig. 26b), 

where CHX caused the activation of the attenuator in a similar 

fashion as DMSO. This result suggests that ongoing translation may 

be important for read-through transcription of the attenuator of c­

myb. 

One possibility for this requirement is the presence of an anti­

terminator protein. Such proteins have been postulated to exist and 

would assist the RNA polymerase to pass premature termination 

sites(Adamkiewicz et al., 1990). To determine if an anti-terminator 

protein may bind to the first intron of the c-myb gene, and if this 

binding was inhibited by CHX, electrophoretic mobility shift assays 

(EMSA) were performed. The targets for the EMSA were selected 

by evolutionary conservation between the murine and human 

ii&tb:J;i,l!lil 1 sequences (the human sequence and the comparison was 
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Figure 26. Regulation of c-myb by DMSO and/or 
cyclohexamide. A) Northern blot analysis of c-myb expression 
during treatment with DMSO, cyclohexamide (CHX) or the 
combination (DMSO+CHX). This blot was probed with the 1.1 kb 
Bam HI fragment of pMbm1(Westin et al., 1990). The time of 
each treatment is 6 hrs. B) Nuclear run-on analysis of c-myb 
transcription during treatment with DMSO, cyclohexamide 
(CHX) or both (DMSO+CHX). For a description of the slot blot 
targets, refer to Fig. 5. The time of treatment is 6 hrs. 
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Figure 27. Identity map of intron 1 of c-myb. The map 
illustrates regions of identity between the murine and human 
forms of the c-myb gene. The areas of significant identity are 
presented as hatches regions. Three regions were shown to 

have significant identity and were termed regions 1, 2 and 
3(Westin, 1991). The restriction sites utilized in the EMSA 
analysis are shown; Eco RI (Eco), Bam HI (Bam), Pvu II (Pvu), 
Hinc II (Hinc), Bgl I (Bgl) and Sph I (Sph). 
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Figure 28. EMSA analyses of nuclear extracts from HL-60 cells. 
The cells were untreated (0), treated with DMSO (D), 
cyclohexamide (C) or the combination (CD). HL-60 cells were 
treated for 6 hrs prior to isolation of nuclear extracts. A) 
EMSA of the 156 bp Bam HI/Pvu II fragment of intron 1 of c­
myb. B) EMSA of the MBS-I site. 
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completed by Dr. Eric Westin and Miss Sarah Jacobs). A restriction 

map of the human intron 1 that showing the three regions of 

homology is depicted in Fig. 27. From the map it was decided that 

the two regions that might contain a protein binding site that could 

be important for allowing read-through transcription would be 

region 1 or region 2. In Fig. 28a an EMSA of the Bam HI/Pvu II 

(156 bp) fragment of region 1 is shown. The nuclear extracts are 

from cells which were treated with DMSO, CHX, or the combination 

for 6 hrs. None of these treatments has any effect on DNA binding 

of this or any of the other regions tested (the Eco RI/Bam HI 

fragment of region 1, the Hinc II/Bgl II and Bgl II/Sph I of region 2, 

data not shown). To test if the extracts were capable of supporting 

an EMSA, the same extracts were tested with a double stranded 

oligodeoxynucleotide that contains the high affinity myb binding 

site (MBS-I). The extracts were capable of shifting this fragment 

and the CHX inhibited such shifting, presumably by inhibiting the 

synthesis of c-myb protein (Fig. 28b). 

Characterization of a Low Molecular Weight c-myb mRNA. 

In many of the Northern blots previously presented, a 2.4 kb 

molecular weight message is present. This mRNA appears to be 

regulated in an alternative fashion compared to the prototypical c­

myb message, and is easily detected in the DMSOr cell line following 

treatment with DMSO (see Fig. 11). This lower molecular weight 

message, if it is a splice form of c-myb would be of great interest 
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Figure 29. Bam HI map of pMbml. This schematic 
representation of the c-myb eDNA pMbm1(Westin et al., 1990), 

maps the Bam HI fragments with respect to the translational 
start site (ATG) and the spice acceptors that marker the 
beginning of exon 10 and exon 12. The BAM 1 fragment is 
used as a probe in Fig. 30, while the BAM 2 fragment is used as 
a probe on all of the previous Northern blots. 
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Figure 30. Northern blot of HL-60 and DMSOr cells probed with 
BAM 1. The Northern blot contains RNA from HL-60 (H) and DMSOr 

(D) cells that have been treated with DMSO for the given times (in 
hours). The blot was probed with the 1.4 kb Bam HI fragment 
termed BAM 1 in Fig. 29. 
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because of its apparent mcrease In expression during 

differentiation. Such a message could be important in the 

regulation of events during the latter stages of differentiation or 

may also exhibit the differentiation enhancing qualities of the splice 

clone pMbm2. 

Initial studies had already ruled out the possibility that the 

2.4 kb message is pMbm28 (Fig. 12) or the c-myb related gene B­

myb (Fig. 14). Other alternative splice clones were also tested but 

none showed a similar pattern of expression to the 2.4 kb message. 

The following studies were designed to characterize this message by 

attempting to find unique start sites in the c-myb locus, based on 

observations made during the screening of Northern blots with c­

myb probes. 

Differential Screening of Northern Blots with c-myb Probes. 

To determine if there are potential start sites within the 

interior of the c-myb locus, two Bam HI fragments of pMbm 1 were 

used to screen identical Northern blots. The first fragment, BAM 1 

contains the 5' half of the eDNA, while the second probe, BAM 2 

contains the next three exons (Fig. 29). When these two probes 

were hybridized to Northern blots with RNA isolated from HL-60 

and DMSOr cells taken through a time course of DMSO 

differentiation, only the BAM 2 probe could detect the 2.4 kb 

message (Fig. 11 and 30). 

Primer Extension Analysis of the BAM 2 Fragment. 
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The Northern blots in Fig. 12 and 30 suggested that the 2.4 kb 

message may initiate in the 3' end of the gene, since only the probe 

containing exons 9 through 12 could detect its expression. To test 

for initiation sites in this region of the c-myb locus, a primer 

extension analysis was performed. The strategy for the primer 

extension is presented in Fig. 31, where a primer was selected 

which could be annealed to mRNA within the 5' Bam HI site of the 

BAM 2 probe. The primer extension analysis revealed a potential 

start site within this region of the gene 170 bases from the primer 

annealing site (Fig. 32). The region where this start site maps is the 

beginning of exon 9 (Fig. 33). The pattern of expression of the 2.4 

kb message and the results of differential probing with the two Bam 

HI fragments suggest that the exon 9 start site may be the start 

point for the 2.4 kb message. 
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Figure 31. Primer extension strategy. The genomic sequence 
provided maps the start of exon 9 (*EXON 9), the Start of BAM 
2 (BamHI) and the sequence and location utilized for the 
primer extension primer LHB .1. 



PRIMER EXTENSION STRATEGY 

ACTCTTATCTTTCCTCCAACAGCATCTGATACCTTGTGCAACTTCATTGCTAAGTTCCTT 
661 ---------+---------+---------+---------+---------+---------+ 720 

TGAGAATAGAAAGGAGGTTGTCGTAGACTATGGAACACGTTGAAGTAACGATTCAAGGAA 

*EXON 9 
CTCCCTTTCTTCTGTCCTCTCTTTATTTCTACACCCTTCCCCCTTCCTTAGACACAGAAC 

721 ---------+---------+---------+---------+---------+---------+ 780 
GAGGGAAAGAAGACAGGAGAGAAATAAAGATGTGGGAAGGGGGAAGGAATCTGTGTCTTG 

CACACATGCAGCTACCCCGGGTGGCACAGCACCACCATTGCCGACCACACCAGACCTCAT 
781 ---------+---------+---------+---------+---------+---------+ 840 

GTGTGTACGTCGATGGGGCCCACCGTGTCGTGGTGGTAACGGCTGGTGTGGTCTGGAGTA 

GGAGACAGTGCACCTGTTTCCTGTTTGGGAGAACACCACTCCACTCCATCTCTGCCAGCG 
841 ---------+---------+---------+---------+---------+---------+ 900 

CCTCTGTCACGTGGACAAAGGACAAACCCTCTTGTGGTGAGGTGAGGTAGAGACGGTCGC 

BamHI 
GATCCTGGCTCCCTACCTGAAGAAAGCGCCTCGCCAGCAAGGTGCATGATCGTCCACCAG 

901 ---------+---------+---------+---------+---------+---------+ 960 
CTAGGACCGAGGGATGGACTTCTTTCGCGGAGCGGTCGTTCCACGTACTAGCAGGTGGTC 

LHB. 1 

GGCACCATTCTGGATAATGTTAAGAACCTCTTAGAATTTGCAGAAACACTCCAATTTATA 
961 ---------+---------+---------+---------+---------+---------+ 1020 

CCGTGGTAAGACCTATTACAATTCTTGGAGAATCTTAAACGTCTTTGTGAGGTTAAATAT 

134 
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Figure 32. Primer extension analysis of c-myb from the LHB.l 

probe. RNA was isolated from HL-60 (H) and DMSOr (D) cells at 
the given time points (in hours) and subjected to primer 
extension analysis. The size of the primer extension product 

was estimated by comparison with size standards. 
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Figure 33. Primer extension summary. The start site mapped 
by the primer extension in Fig. 32 is shown as arrows. This 

putative start site is within the borders of exon 9 (*EXON 9) 
and 120 bases from the beginning of the BAM 2 fragment. 



EXON 9 PRIMER EXTENSION SUMMARY 

ACTCTTATCTTTCCTCCAACAGCATCTGATACCTTGTGCAACTTCATTGCTAAGTTCCTT 
661 ---------+---------+---------+---------+---------+---------+ 720 

TGAGAATAGAAAGGAGGTTGTCGTAGACTATGGAACACGTTGAAGTAACGATTCAAGGAA 

*EXON 9 
CTCCCTTTCTTCTGTCCTCTCTTTATTTCTACACCCTTCCCCCTTCCTTAGACACAGAAC 

721 ---------+---------+---------+---------+---------+-- -------+ 780 
GAGGGAAAGAAGACAGGAGAGAAATAAAGATGTGGGAAGGGGGAAGGAATCTGTGTCTTG 

,-­
CACACATGCAGCTACCCCGGGTGGCACAGCACCACCATTGCCGACCACACCAGACCTCAT 

781 ---------+---------+---------+---------+---------+---------+ 840 
GTGTGTACGTCGATGGGGCCCACCGTGTCGTGGTGGTAACGGCTGGTGTGGTCTGGAGTA 

GGAGACAGTGCACCTGTTTCCTGTTTGGGAGAACACCACTCCACTCCATCTCTGCCAGCG 
841 ---------+---------+---------+---------+---------+---------+ 900 

CCTCTGTCACGTGGACAAAGGACAAACCCTCTTGTGGTGAGGTGAGGTAGAGACGGTCGC 

BamHI 
GATCCTGGCTCCCTACCTGAAGAAAGCGCCTCGCCAGCAAGGTGCATGATCGTCCACCAG 

901 ---------+---------+---------·---------+---------+---------+ 960 
CTAGGACCGAGGGATGGACTTCTTTCGCGGAGCGGTCGTTCCACGTACTAGCAGGTGGTC 

LHB.1 

GGCACCATTCTGGATAATGTTAAGAACCTCTTAGAATTTGCAGAAACACTCCAATTTATA 
961 ---------+---------+---------+---------+---------·---- -----+ 1020 

CCGTGGTAAGACCTATTACAATTCTTGGAGAATCTTAAACGTCTTTGTGAGGTTAAATAT 
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DISCUSSION 

Characterization of DMSOr. 

Terminal differentiation is the process whereby a cell commits 

to a program of changes which usually result in the loss of the cell's 

proliferative capacity and the acquisition of a specific function. 

During hematopoiesis, terminal differentiation gives rise to cells 

which have functions such as phagocytosis, bactericidal activity and 

oxygen transport. However these macrophage, neutrophil and 

erythrocyte cell types all lose the ability to proliferate. To examine 

the events that are important or essential to the commitment to 

terminal differentiation, the HL-60 in vitro model of differentiation 

and a subclone that was selected for a differentiation resistant 

phenotype were utilized. By removing the selective pressure from 

DMSOr, a new stable phenotype developed. The current studies 

defined this phenotype as a reversible differentiation response to 

DMSO. The cells are capable of differentiating morphologically and 

functionally while undergoing withdrawal from the cell cycle as 

evidenced by 3H-thymidine incorporation and cell cycle analyses. 

The magnitude of these changes is similar to that of the parental 

clone. However, all of these changes are reversible in DMSOr by the 

removal of the DMSO at any point during the differentiation process. 

This is not the case for the parental clone where treatment with 
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DMSO for at least 72 hours results in the commitment of the cells to 

the induction of myeloid differentiation(Siebenlist et al., 1988). 

These studies suggest that many of the changes in morphology, 

function and proliferative state of the cell are not necessarily linked 

to the process of commitment to terminal differentiation. Thus the 

DMSOr cell line may prove to be an excellent model for examining 

the events that are required for commitment to a terminal 

differentiation program. 

Earlier studies with differentiation resistant subclones of HL-

60 have demonstrated altered regulation of oncogenes(Ely et al., 

1987; Studzinski and Brelvi, 1987; Fisher and Grant, 1985; Collins et 

al., 1991). The c-myb oncogene has been shown to be expressed 

and regulated during hematopoietic cell differentiation in both 

normal and leukemic cells(Gonda and Metcalf, 1984; Blick et al., 

1984; Westin et al., 1982). This regulation includes the expression 

of multiple transcripts generated by alternative splicing and 5' 

heterogeneity(Westin et al., 1990; Bender and Kuehl, 1986; 

Dasgupta and Reddy, 1989; Shen-Ong, 1987; Shen-Ong et al., 1990). 

At least two of these alternative transcripts have opposing effects 

on the �ifferentiation of FMEL cells(Clarke et al., 1988; Weber et al., 

.�:
-
1990). Taken in context with the fact that c-myb has trans­

activation(lbanez and Lipsick, 1990;. Nishina et al., 1989; Sakura et 

al., 1989; Weston, and Bishop, 1989)and trans-repression(Nakagoshi 

et al., 1989) capabili!ies,. this gene product is a candidate for being 

a controlling factor in the differentiation of hematopoietic cells. In 

the DMSOr cell line, c-myb is aberrantly expressed at the later time 

points of DMSO induced differentiation. This could link c-myb 
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regulation to terminal differentiation of HL-60. Although no causal 

relationship was demonstrated (in part due to the difficulty in 

interpreting the antisense experiments), the expression of c-myb at 

the late time points of differentiation and the subsequent 

dedifferentiation following removal of the differentiation inducing 

agents associated with re-expression of c-myb, parallels the results 

of Beug et al.(Beug et al., 1987) where a temperature sensitive v­

myb mutant could cause a dedifferentiation of chicken macrophages 

at the permissive temperature. The current studies also suggest 

that the early down regulation of c-myb during HL-60 

differentiation is not sufficient to permit the cells to commit to 

terminal differentiation. 

Other molecular events 10 DMSOr, which may occur in an 

abnormal fashion, could play a role in its reversible phenotype. One 

other gene that was investigated was the c-myb related gene B­

myb. B-myb encodes a transcription factor that can activate 

transcription from the c-myb DNA binding site(Mizuguchi et al., 

1990). B-myb is expressed in many more tissues than c­

myb(Nomura et al., 1988) and has been shown to be expressed in 

immature but not mature hematopoietic cells(lbanez and Lipsick, 

1990). This pattern of expression in hematopoietic cells is similar 

to the c-myb oncogene but B-myb expression in DMSOr was the 

same as the pattern observed in HL-60. This indicates that altered 

regulation of c-myb in DMSOr following induction of differentiation 

is specific. The down regulation at 48 hours is the first 

demonstration of B-myb expression kinetics during HL-60 

differentiation. A-myb gene expression was not observed in either 



HL-60 or DMSOr. This is consistent with previous findings in 

hematopoietic cells(Ibanez and Lipsick, 1990). 
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It is also worthy to note that B-myb is not the 2.4 kb. mRNA 

that is recognized by the c-myb probe. This lower molecular weight 

message carries a different pattern of expression than the normal c­

myb or B-myb mRNA. The expression of this message is up 

regulated at the later time points of differentiation relative to the c­

myb mRNA. This pattern is present in both HL-60 and DMSOr and 

therefore may not play a specific role in commitment to terminal 

differentiation. The kinetics of expression of this mRNA suggest a 

role in regulation of expression of genes late in the differentiation 

process. It is not clear at this time if this mRNA is an alternatively 

spliced message of c-myb or a message from an as yet 

uncharacterized myb related gene. There is evidence for each 

possibility. A truncated form of the c-myb mRNA; HMYB.1 has been 

previously described(Slamon et al., 1986) and additional myb 

related genes may exist. The splice form pMbm 28, which also 

encodes a truncated form of the c-myb message, does not encode 

the 2.6 kb message, but does show discordant regulation when 

compared to the prototypic c-myb message, and is not regulated in 

an altered fashion during the differentiation of DMSOr. 

It has been previously demonstrated that c-myb expression is 

important for proper transition from G1 phase to S phase of the cell 

cycle in lymphocytes(Gewirtz et al., 1989). Northern blots were 

hybridized to probes for genes encoding cdc2 kinase, cyclin B, 

histone H4, and ODC to determine if other genes that are important 

in cell cycle control or are cell cycle regulated are appropriately 



expressed during DMSOr differentiation. The results from these 

experiments revealed that all of these genes showed altered 
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patterns of regulation during DMSOr differentiation. The pattern of 

expression for these genes was similar to that of c-myb with the 

delay in down regulation witnessed at the later time points. 

Altered regulation of this many cell cycle related genes suggests 

that the alteration in DMSOr is probably a mutation in the cell cycle 

control pathways. Since the nuclear run-on analyses of c-myb a n d  

c-myc regulation during DMSOr differentiation is similar to HL-60 

differentiation, it is unlikely that the genetic alteration in DMSOr is 

in a transcriptional controlling element. This alteration could be in 

a gene that is active in controlling the expression of cell cycle genes 

at the post-transcriptional level, because the cells do respond to the 

differentiation induction by DMSO and the changes in the cell cycle 

analyses (FACSCAN) were similar to the parental cell line. If a gene 

that is important in post-transcriptional regulation of any of these 

genes was effected, then mRN A levels could be elevated at later 

points during differentiation, and following removal of the DMSOr 

would be available to express proteins that are normally repressed 

at this point. The fact that the DMSOr cells are capable of 

responding to DMSO induced differentiation at all may be due to 

normal control of gene expression at the transcriptional level for c­

myb and possibly the other cell cycle related genes. Proper 

translational control of these genes during differentiation may also 

play a role in DMSOr differentiation. If the mechanisms that control 

c-myb and the other genes at the transcriptional and translational 

level are under a kinetic control then these mechanisms may no 



longer be active at the post-commitment time points and thus re­

expression can occur as the cells begin to cycle. 
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It is also interesting to note that pMbm 28 does not show the 

altered pattern of expression in DMSOr that pMbm 1 displays. This 

form of the c-myb message is truncated at the 3' end, through the 

utilization of an alternative polyadenylation site. The 3' 

untranslated regions of these messages are different, and this is a 

region of mRNA that is important in post-transcriptional 

regulation(Brawerman, 1989). A motif that is of particular 

importance in the post-transcriptional regulation of gene expression 

is the AUUUA box. There have been at least two proteins isolated 

that effect the stability of mRNA by binding to this sequence, one 

that destabilizes lymphokine and oncogene mRNA(Malter, 1989) 

and one that is inducible that may stabilize lymphokine 

mRNA(Bohjanen et al., 1991 ). The prototypic c-myb message 

contains 6 AUUUA sites in the 3' untranslated region, while 

pMbm28 has no AUUUA sites in its alternative 3' untranslated 

domain(Westin, 1991). This may reflect a difference in the 

mechanisms of regulation between c-myb splice clones, with ones 

like pMbm28 not susceptible to the post-transcriptional regulation 

that clones with the normal 3' end are. If a post-transcriptional 

mechanism of regulation of c-myb is affected in DMSOr, this could 

explain the lack of correlation between expression patterns 

witnessed for the prototypic c-myb compared to pMbm 28. Thus, 

the mechanism important for regulating pMbml expression during 

myeloid differentiation is not a normal mechanism of regulation for 

pMbm 28 and therefore might not be altered during DMSOr 
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differentiation. This lends support to the theory that the mutation 

in DMSOr may be involved in a gene that is important in the post­

transcriptional regulation of cell cycle related genes like e-m y b. It 

should be noted that it is unclear why the pMbm 28 probe does not 

hybridize to the 3.6 kb message. Further characterization of this 

form of the c-myb message should be undertaken. 

The current studies confirm the importance of control of the 

c-myb oncogene for proper differentiation of hematopoietic cells. 

These studies also characterize a cell line, DMSOr, which may be 

valuable for examination of factors that are essential for terminal 

differentiation. These studies present evidence for the uncoupling 

of withdrawal from cell cycle and functional changes from 

commitment to terminal differentiation. DMSOr will therefore be 

useful in determining what changes are necessary for commitment 

to a terminal event as opposed to acquisition of a differentiated 

phenotype. The reversible phenotype of DMSOr also correlates well 

with the altered, late expression of c-myb and other cell cycle 

related genes during differentiation. Thus this cell line will be an 

important tool in dissecting the role and regulation of c-myb during 

the differentiation process. Future studies that should be 

performed would include determining if there is a difference in the 

post-transcriptional regulation of c-myb in DMSOr compared to 

parental HL-60. If differences in regulation at the post­

transcriptional level are evident it should also be determined if 

these differences are present for the other cell cycle regulated 

genes. Another potential area of pursuit would be to determine if 

the 3' untranslated regions, in particular the AUUUA sites are 
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important m the regulation of c-myb mRNA. These results could be 

achieved experimentally in vitro by exposing c-myb messages with 

different 3' ends to cellular extracts from HL-60 and DMSOr cells at 

various stages of DMSO induced differentiation. By crosslinking the 

RNA/protein complexes it could be determined if proteins bind to 

these messages in a pattern that correlates with DMSO induced 

differentiation, and if these binding patterns are altered m DMSOr. 

By comparing the pMbm 1 3' end to the pMbm 28 3' end , it could 

be determined if the differences in the regulation of these two 

processing variants during HL-60 differentiation is due to the 

differences in the 3' untranslated region of these messages. 

Another important question that should be addressed is if there are 

differences in c-myb protein levels in HL-60 and DMSOr. All of the 

interpretation that is presented above is based on differences that 

are at the mRNA level and make the assumption that these 

differences are also present at the protein level. 

Transcriptional and Post-transcriptional Regulation of c-myb. 

The regulation of the c-myb gene during hematopoietic cell 

differentiation must be under precise control since altered 

expression of the gene may have varied effects on the 

differentiation process as has been discussed above. Studies of the 

murine clone of the gene have indicated that c-myb is regulated at 

the transcriptional level by an attenuator located in the first intron 

of the gene(Bender et al., 1987; Watson, 1988b; Watson, 1988a). 

Murine and chicken studies have also suggested that post­

transcriptional regulation may also be important in controlling the 
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expression of e-m y b (Watson, 1988b ). The current studies were 

designed to determine if the human c-myb gene shared regulatory 

schemes with the mouse and chicken genes or if novel mechanisms 

of regulation were present. The HL-60 cell line provided an in vitro 

model of human hematopoietic cell differentiation, whereby 

differences in c-myb regulation due to myeloid or monocytic 

differentiation or differentiation agent specificity could be 

determined. The results from these experiments indicate that the 

human c-myb gene is regulated at the transcriptional level 

primarily via an attenuator, although the data suggests that one 

differentiation agent, PDbu may also regulate the promoter of the 

gene. Differentiation of HL-60 cells through myeloid or monocytic 

lineages showed no qualitative differences in the regulation of c­

myb, as demonstrated by the similarities in regulation induced by 

the myeloid inducer retinoic acid and the monocytic inducer 

vitamin D3. The similarities in the regulation of c-myb induced by 

these agents may involve the mechanism of action by which these 

agents act. Both retinoic acid and the activated form of vitamin D3 

bind to the cytosolic, steriod/thyroid class of receptors and it is 

possible that upon entering the nucleus and binding to the 

appropriate response elements, these agents can activate expression 

of genes necessary for attenuation to occur. These similarities in 

transcriptional regulation were shared by the other two 

differentiation agents, DMSO and PDbu, but these two agents also 

demonstrated unique mechanisms of c-myb regulation. These 

unique events included post-transof-i.p.ti·€m:M •G.Oii·U<e'lrvan'd up:ossibly 



promoter control, thus during HL-60 differentiation, c-myb is 

regulated in an agent specific manner. 

Read-through of the c-myb attenuator appears to be 
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dependent on the de novo translation of protein, as evidenced in the 

nuclear run-on assays where cyclohexamide could induce the 

attenuation of c-myb in HL-60 cells. The possibility that 

cyclohexamide was inhibiting the translation of anti-terminator 

proteins was investigated by testing the effects of this protein 

synthesis inhibitor on DNA-protein interactions in the first intron of 

c-myb. The gel shift analyses of regions of evolutionary 

conservation did not yield any consistent data that suggested that a 

protein that could allow read-through transcription of the 

attenuator was inhibited from binding by cyclohexamide. 

Other possibilities for anti-terminator proteins that could be 

affected by cyclohexamide would be proteins that are bound to RNA 

polymerase, that allow read-through of attenuators but not 

termination sites that are associated with polyadenylation sites. 

Logan and colleagues postulated that this process would explain 

how genes like c-myc could be elongated past the 

attenuator(Adamkiewicz et al., 1990; Logan et al., 1987). The anti­

terminator would associate with the elongating polymerase and 

allow read-through of premature termination sites. When the 

polyadenylation signal was reached the anti-terminator protein 

would be released from the polymerase and soon after the 

polymerase would terminate the nascent transcript. 

Future experiments that would be necessary in . the : . 

characterization of the transcriptional �regulation H of the human' ·C-
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myb gene, include fine mapping of the attenuator region. The 

current studies have not mapped the region of termination within 

the first intron of the human gene. Mapping of this region would 

require the use of short (300-500 bp), contiguous targets within 

intron I in the nuclear run-on assay. Fine mapping of the region 

could provide further insight for locating possible DNA-protein 

interactions that are important for attenuation. RNA-protein 

interactions should also be studied in this region of the c-myb gene. 

One possible method for obtaining such data would be to incubate 

radiolabelled in vitro transcribed RNA with nuclear extracts from 

HL-60 cells at different points of differentiation. This procedure 

may yield unique RNA-protein interactions that correlate with 

attenuation or with read-through transcription. If any of these 

experiments showed a differential binding that correlated with 

read-through transcription, it should then be determined if 

cyclohexamide could block the DNA or RNA binding. If any protein 

binding site correlates with attenuation it should be tested to see if 

cell treatment with cyclohexamide could mimic the protein binding 

induced by the differentiation agent. This experiment is proposed 

because many transcriptional activators like AP-I (Auwerx and 

Sassone-Coral, 1991) and NF-kB(Baeurele and Baltimore, 1988) are 

regulated by cellular inhibitors. These transcription factors are DNA 

binding proteins, so it is not difficult to imagine that other DNA 

binding proteins could be regulated in a similar fashion. If such a 

protein had a shorter half-life than the attenuator protein, then 

cyclohexamide could be causing attenuation by effectively releasing 

the attenuator protein from the regulatory protein. To test this 
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possibility, control cellular extracts could be added to the 

cyclohexamide binding reaction to see if binding could be inhibited. 

Post-transcriptional regulation of c-myb appears to have 

multiple mechanisms of action. In the DMSO treated HL-60 cells, c­

myb steady state mRNA levels are expressed in a biphasic pattern. 

During the first 6 hrs of treatment there is a sharp decline in e-m y b 

message levels. This is followed by an increase in levels that peaks 

at 24 hrs. During the first 24 hrs of DMSO treatment the c-my b 

attenuator is activated, but does not change during the period 

where message levels rise (6-24 hrs). This suggested the presence 

of post-transcriptional control of c-myb, particularly in the first 6 

hrs of DMSO treatment. A change in the message stability was 

shown by the fact that DMSO induced changes in c-myb steady state 

levels during the first three hours were greater than Actinomycin D 

changes during the same time period. Interestingly, the changes 

induced by DMSO were blocked by Actinomycin D when the two 

drugs were used in concert. This suggested a transcriptional 

dependency to the post-transcriptional regulation of c-myb during 

the early portions of DMSO induced differentiation. If the large 

decrease in c-myb message during the first 6 hrs of DMSO 

treatment is due to post-transcriptional changes and the attenuator 

activity does not change during the period which the message levels 

rise again, then it is possible that the message destabilization is 

transient and once the attenuator is operational, the post­

transcriptional regulation becomes secondary. This hypothesis is 

suggested by the fact that the transcriptional dependency of the 

post-transcriptional regulation of c-myb is no longer present at 24 
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hrs. This experiment does not prove that all post-transcriptional 

changes in c-myb are inactive at this point since an accurate 

determination of c-myb half-life in unstimulated cells cannot be 

obtained. Similar findings were shown for c-myc expression during 

the first three hrs of DMSO treatment of HL-60, but not for ODC. 

The post-transcriptional regulation that is transcriptional dependent 

may be a global regulatory axis that is important in controlling 

genes that are considered "early-response" types. It should also be 

noted that of all the cell cycle related genes tested in the first 

section of this thesis, ODC showed the least difference in alterations 

in DMSOr expression. These differences between ODC and the 

oncogenes (& histone) may be due to a difference in the magnitude 

of post-transcriptional regulation of ODC compared to other genes. 

One possible explanation for the transcriptional dependency of 

the post-transcriptional regulation of c-myb by DMSO is that the 

expression of an inducible protein that is necessary for post­

transcriptional regulation is being inhibited. If this were the case 

then cyclohexamide treatment should be able to, an extent, block 

the changes in c-myb message induced by DMSO. The results from 

this experiment revealed that protein synthesis was not necessary 

for c-myb regulation during the first 6 hrs of DMSO treatment since 

cyclohexamide could not block the effect of DMSO. Cyclohexamide 

had no effect on c-myb expression in HL-60 as had been previously 

shown( Golay et al., 1991 ). When this data is considered in context 

with the effect cyclohexamide has on the c-myb attenuator, it 

provides further evidence that c-myb is regulated at the post­

transcriptional level. 



A possible explanation for the transcriptional dependency, 

without the need for translation on the early post-transcriptional 

regulation of c-myb by DMSO is a role for the antisense 
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transcription that occurs in the 5' end of the gene. Antisense 

transcripts have been isolated and RNA:RNA duplexes found in vivo 

for the N-myc gene(Krystal et al., 1990). These duplexes have been 

hypothesized to play a role in the regulation of post-transcriptional 

events, such as splicing or metabolism. In the case of c-myb, the 

antisense transcription could play a role in DMSO induced changes. 

There are no obvious changes in the antisense transcription rate 

during HL-60 differentiation, but it is not known if any message is 

produced from this transcription. If a message is produced from 

the antisense transcription, the half-life may be much shorter than 

the sense transcription. The Actinomycin D could then effectively 

remove any such transcript, thus removing this regulatory feature 

and leading to the apparent transcriptional dependency. Future 

experiments in this area of research should include a 

characterization of the antisense transcription in the 5' portion of c­

myb. 

The monocytic inducer, PDbu, also induced a change in the 

message stability that was different from that induced by DMSO. 

The post-transcriptional changes induced by PDbu were not 

dependent on de novo transcription. One possible explanation for 

the differences between the post-transcriptional changes induced 

by DMSO and those induced by PDbu, may be differences in the 

kinetics of the differentiation induced by the two agents. PDbu 

requires only 24 hrs to differentiate HL-60 cells, and it is possible 
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that changes that occur late in DMSO induced differentiation occur 

in the first few hours of PDbu induced differentiation. Such changes 

could include post-transcriptional changes postulated in the first 

part of the discussion (changes that occur after 72 hrs), and possibly 

after the first 24 hours of DMSO induced differentiation, where the 

transcriptional dependency is absent. The possibility that two 

levels of post-transcriptional regulation could be active can be 

extrapolated from the data of Watson, which showed that c-myb is 

post-transcriptionally regulated In DMSO induced FMEL cell 

differentiation(Watson, 1988b ). The post-transcriptional studies 

revealed that the half-life of c-myb from cells treated for 2 hrs was 

less than those untreated. The half-life from cells treated for 96 hrs 

was also less than the control cells but it was greater than the 2 hr 

treated cells. 

The c-myb promoter has many of the characteristics of a 

constitutive promoter. These include the GC rich regions, that 

contain SPI binding sites and the lack of TA TA and CAT boxes. The 

current studies confirmed that the promoter of the human form of 

the c-myb gene is also not a site of regulation during myeloid or 

monocytic differentiation, with one possible exception in the case of 

PDbu induced changes. Quantitation of the nuclear run-on data 

suggested that the early drop in steady state levels of e-m y b 

message that occurred during PDbu induced differentiation 

correlated with changes in transcription in the promoter region of 

the gene as opposed to the post-attenuator region. This data does 

not take into consideration the simultaneous post-transcriptional 



changes and therefore should be an area of pursuit in future 

studies. 

Characterization of the 2.4 kb c-myb mRNA. 
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C-myb is a gene that encodes a transcription factor associated 

with hematopoietic cell differentiation. Transcription factors are 

capable of activating or repressing the expression of many genes. 

One possible mechanism for determining whether one gene is 

affected vs. another at a given time is to generate a family of 

transcription factors that have different affinities for cis elements 

that share a core binding sequence. The differences in the proteins 

within the family may allow regulatory domains to interact with 

different sets of proteins, thus similar proteins can elicit varied 

responses. The two known mechanisms for generating such 

proteins are alternative splicing and "gene families." It has been 

revealed that the fos and j un genes utilize both of these 

mechanisms to create AP-1 transcription factors with different 

binding affinities and activation or repression functions(Ryder et al., 

1989; N akabeppu and N athans, 1991 ). The c-myb gene has also 

been shown undergo extensive alternative splicing(Westin et al., 

1990; Shen-Ong et al., 1990; Dasgupta and Reddy, 1989; Shen-Ong, 

1987) and to have to at least two family members, A-myb and B­

myb(Nomura et al., 1988). The B-myb gene product is the only 

family member or alternatively spliced product that has been 

0h<u"acterized as a transcription factor to date(Mizuguchi et al., 

J-.9(-9,0), 
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The expression of a c-myb splice product or related gene that 

is up-regulated during HL-60 differentiation could have interesting 

implications. If the gene product encodes a transcription factor that 

is expressed during the later stages of differentiation, such a factor 

could be important in the expression of genes that define the 

mature cell phenotype, or repress genes that are essential for self­

renewal of immature cells. One splice clone of c-myb, pMbm 2 is 

capable of inducing the differentiation of FMEL cells, possibly 

through such a mechanism(Weber et al., 1990). The expression of 

pMbm2 is minimal in HL-60(Westin et al., 1990) and therefore may 

not be the primary form of c-myb involved in a differentiation 

enhancing process in this cell line. 

The pattern and level of expression of the 2.4 kb message 

seen m the Northern blots presented, suggested that this mRNA 

species may encode a differentiation enhancing protein and 

therefore an attempt to further characterize the mRNA was made. 

The pattern of expression and the size of the c-myb message 

pMbm28 and the myb related gene B-myb did not correlate with 

the expression of the 2.4 kb message ruling out these two myb 

forms as being this message. To define which regions of the c-myb 

message were homologous to the 2.4 kb message, two BamHI 

fragments of pMbml were used to screen Northern blots. The first 

fragment which contained 5' untranslated region into exon 9 did not 

hybridize well to the 2.4 kb message, while the second BamHI 

fragment did. This second fragment contained the remainder of 

exon 9 to 12. This suggested the possibility of a start site within the 

3' portion of the gene. To test this possibility, a primer extension 
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analysis was performed, which demonstrated a well defined 

potential start site in the beginning of exon 9. The usage of this 

start site correlated with the expression of the 2.6 kb message 

during HL-60 differentiation, and therefore this message may use 

an alternative start site located at the beginning of exon 9. 

The current experiments do not prove that the 2.4 kb message 

is transcribed from a start site located in the 3' portion of the e-m y b 

gene, but they may provide some clues for cloning the message, 

which has proven difficult by standard techniques. By using an 

anchored PCR method, the 5' end of the clone could be readily 

obtained, this could then be used as a probe for probing Northern 

blots and eventually screening eDNA libraries. The putative 

promoter at the intron 8/exon 9 border could also be characterized. 

It is interesting to note that the sequence in the 3' portion of the 

intron 8 of the human c-myb gene has significant identity with the 

same region of the chicken c-myb gene(Westin, 1991). The only 

other intron region that contains such identity is the 3' portion of 

intron 1, which which functions as a promoter(Westin, 1991). 

The protein that would be encoded from a message that 

started in exon 9 of c-myb would not likely be a transcription factor 

that is similar to the prototypic myb protein due to the lack of the 

myb DNA binding domain and a complete myb transcriptional 

activation domain. This does not rule out the possibility that the 

protein could affect transcription through as yet undefined motifs. 

Another possibility for this putative c-myb protein could further 

define previous studies where c-myb was isolated from the 

cytoplasm of mature myeloid cells(Bading et al., 1988). The 



immunoblots in this report show an undefined band of lower 

molecular weight than 75 kd in the cytoplasm of the mature cells. 

This band could be the protein that is encoded by the 2.4 kb 

message. A role for cytoplasmic c-myb is not known. 

Concluding Remarks. 
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The c-myb proto-oncogene is an important regulator of 

hematopoietic cell differentiation. For this reason it is important to 

gain further insight into the mechanisms that regulate the 

expression of c-myb itself, since aberrant regulation can lead to 

altered differentiation and leukemia. The studies detailed in this 

thesis have demonstrated that the human c-myb gene is regulated 

at multiple transcriptional and post-transcriptional levels during 

myelomonocytic cell differentiation. This regulation may, in part be 

under global cell cycle control. These studies have also described a 

previously unknown transcriptional dependence of post­

transcriptional regulation, that was specific for the proto-oncogenes 

tested. These multiple levels of regulation of c-myb underscore the 

importance of proper regulation of the gene. 

With a clear understanding of the regulation of genes like c­

myb, the pathways that are essential for appropriate regulation of 

oncogenes can be exploited in cancer chemotherapy. It is therefore 

important to continue the study of the regulation of c-myb and 

other similar genes at all potential levels of regulation. 
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