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 In chemical analyses, it is crucial to distinguish between chemical species. This is often 

accomplished via chromatographic separations. These separations are often pushed to their limits 

in terms of the number of analytes that can be sufficiently resolved from one another, particularly 

when a quantitative analysis of these compounds is needed. Very often, complicated methods or 

new technology is required to provide adequate separation of samples arising from a variety of 

fields such as metabolomics, environmental science, food analysis, etc.  

 An often overlooked means for improving analysis is the use of chemometric data 

analysis techniques. Particularly, the use of chemometric curve resolution techniques can 

mathematically resolve analyte signals that may be overlapped in the instrumental data. The use 



 
 

 
 

of chemometric techniques facilitates quantitation, pattern recognition, or any other desired 

analyses. Unfortunately, these methods have seen little use outside of traditionally chemometrics 

focused research groups. In this dissertation, we attempt to show the utility of one of these 

methods, multivariate curve resolution-alternating least squares (MCR-ALS), to liquid 

chromatography as well as its application to more advanced separation techniques.  

 First, a general characterization of the performance of MCR-ALS for the analysis of 

liquid chromatography-diode array detection (LC-DAD) data is accomplished. It is shown that 

under a wide range of conditions (low chromatographic resolution, low signal-to-noise, and high 

similarity between analyte spectra), MCR-ALS is able to increase the number of quantitatively 

analyzable peaks. This increase is up to five-fold in many cases.  

 Second, a novel methodology for MCR-ALS analysis of comprehensive two-dimensional 

liquid chromatography (LC x LC) is described. This method, called two dimensional assisted 

liquid chromatography (2DALC), aims to improve quantitation in LC x LC by combining the 

advantages of both one-dimensional and two dimensional chromatographic data. We show that 

2DALC can provide superior quantitation to both LC x LC and one dimensional LC under 

certain conditions. 

 Finally, we apply MCR-ALS to an LC x LC analysis of fourteen furanocoumarins in 

three apiaceous vegetables. The optimal implementation of MCR-ALS and subsequent 

integration was determined. For these data, simply performing MCR-ALS on the two 

dimensional chromatogram and manually integrating the results proved to be the superior 

method. These results demonstrate the usefulness of these curve resolution techniques as a 

compliment to advanced chromatographic techniques.  
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Chapter 1: Overview of Objectives 

 

 

 

 

 With the ever increasing need to analyze complex chemical samples, analysis methods 

must constantly evolve. These complex analyte mixtures arise from a wide range of fields such 

as food science, environmental science, metabolomics [1], proteomics [2,3], and many others. 

These fields can produce samples with well over 1,000 analytes with multiple classes of analytes 

present [4–6]. Commonly, innovations in instrumental technology and instrumental methods 

drive the field of analytical separations; however, innovations in data analysis techniques can 

also offer powerful tools to complement existing instrumental methods. 

 Liquid chromatography (LC) has advanced greatly in the few decades since its inception. 

Both advances in the theoretical understanding and practical innovations have enabled its 

widespread adoption and today it is one of the most widely used techniques for chemical 

analysis. Chapter 2 presents a brief overview of the fundamentals of liquid chromatography and 

describes comprehensive two-dimensional liquid chromatography (LC x LC) [7,8], a particularly 

promising innovation in the field of separation science. LC x LC allows for a much greater 

number of analytes to be separated due its use of two coupled chromatographic separations with 

different selectivities. Even with advanced LC instrumentation and methods, the number of 

analytes able to be separated in a single analysis is finite and overlap of analyte signals is still 

common, particularly when short analysis times are desired and/or complex samples are being 
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analyzed. These peak overlaps along with other instrumental effects can degrade the quantitative 

performance of these methods [9].  

 The objective of the research described in the following chapters was to utilize 

chemometric techniques to improve quantitative liquid chromatographic analyses by extracting 

underlying quantitative information from data that may be corrupted by background, noise, 

interfering species, and other instrumental effects. The chemometric curve resolution techniques 

discussed in the following chapters mathematically resolve analyte signals from one another and 

from background and noise by analyzing the data holistically. Most traditional data analysis 

techniques rely on single-channel detection (i.e., a single wavelength or mass-to-charge value), 

even if multiple channels of data are collected from the instrument. Data from multichannel 

detectors are often visualized and analyzed at a single wavelength in the case of ultraviolet-

visible (UV-Vis) detection or an extracted ion chromatogram in the case of mass spectrometric 

(MS) detection. Chemometric curve resolution techniques use the complete data by treating them 

as higher order data arrays, making use of the full spectral dimension in the data (e.g., ultraviolet 

visible or mass spectra) [10]. Descriptions of these curve resolution methods and other 

chemometric treatments of chromatographic data are presented in Chapter 3.  

 Three major goals guide the work described in the following chapters. First, many curve 

resolution techniques have been used in the literature without a detailed study on the abilities and 

limitations of these methods. We aim to characterize one such technique called multivariate 

curve resolution-alternating least squares (MCR-ALS) [11,12]. While used extensively in the 

literature, MCR-ALS has yet to find widespread use in routine analyses outside of traditionally 

chemometric research laboratories. This is possibly due to the misperception that it is difficult to 

implement and does not provide a significant advantage for chromatographic analyses. In 
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Chapter 4 it is demonstrated that MCR-ALS does provide a clear advantage and can produce up 

to a five-fold increase in effective peak capacity, a measure of the maximum number of 

analyzable peaks in a given separation. This is demonstrated over a range of conditions using a 

design of experiments approach allowing for the generation of an approximate model of the 

quantitative performance of MCR-ALS. 

 The second goal of this work was to investigate the use of MCR-ALS to improve the 

quantitative abilities of LC x LC. LC x LC aims to resolve analyte signals by adding a second 

dimension of chromatography. While this can provide significantly higher peak capacities, it can 

come at the cost of quantitative performance. Thus far in the literature the quantitative 

performance of LC x LC has typically been inferior to that of traditional one-dimensional (1D) 

chromatography. This is attributed to effects introduced during the transfer of the first dimension 

(
1
D) effluent to the second dimension (

2
D) of separation. Therefore, quantitative information is 

preserved in the 
1
D separation. The work described in Chapter 5 aims to extract the quantitative 

information of the 
1
D separation with the assistance of the 

2
D separation. This is done by 

utilizing the greater separation of peaks in the 
2
D to improve MCR-ALS analysis of the 

1
D 

separation, containing severely overlapped chromatographic peaks. This approach is named two-

dimensional assisted liquid chromatography (2DALC). 

 Finally, our third goal was to demonstrate the use of MCR-ALS in a relevant, real-world 

LC x LC analysis. Chapter 6 describes the analysis of furanocoumarins from apiaceous 

vegetables with LC x LC and MCR-ALS. Furanocoumarins are a class of compounds of great 

interest due to their high bioactivity including interactions with the liver enzymes responsible for 

the metabolism of many pharmaceuticals[13,14]. In order to investigate the physiological effects 

from the consumption of these vegetables, it is crucial to determine the levels at which the 
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compounds are present within certain vegetables. To determine the best method for obtaining the 

concentrations of these compounds in vegetable samples, three implementations of MCR-ALS 

were investigated, as well as two strategies for the subsequent peak integration step. It was found 

that for this data set, LC x LC quantitation was competitive with that of one-dimensional LC 

when MCR-ALS was used. It was also found that, while tedious, manual integration of the 

resolved chromatographic peaks yielded superior quantitative results.  

 Through the work described in the following chapters, it is clear that MCR-ALS has great 

potential for improving quantitative liquid chromatographic performance. Through the ability to 

handle peak overlap, MCR-ALS can enable the use of shorter analysis times of more complex 

samples; however, rather than MCR-ALS being considered an alternative to improved 

separations, MCR-ALS should be thought of as a complementary technique that allows good 

separations to be made even better. This is shown by its applicability to LC x LC where MCR-

ALS can assist in the quantitation of analytes while simultaneously increasing peak capacity 

even further than with LC x LC alone. Chapter 7 draws conclusions from the work presented 

here and provides future directions for this work. 
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Chapter 2: Liquid Chromatography 

 

 

 

 

 

2.1. Fundamentals of Liquid Chromatography  

 Liquid chromatography (LC) is one of the most widely used methods of chemical 

analysis. LC separates analytes based on their interactions with a mobile phase and a stationary 

phase, either through partitioning or adsorption. These interactions differentially retard analytes 

giving rise to separation. These interactions are dictated by three main properties of the 

molecules: electrical charge, molecular size, or polarity [15]. The discussion below will focus on 

polarity; however, many of the concepts apply equally well to electrical charge. Also in this 

discussion and the following chapters, high performance or high pressure liquid chromatography 

(HPLC) will be used interchangeably with LC as it will be the focus of the work presented here. 

HPLC, rather than gravity-fed chromatography, forces the mobile phase through the stationary 

phase at higher pressure [16].  

 Separation in LC is driven by the differential retention of each analyte on the stationary 

phase. The extent of this retention can be quantified by a metric called the retention factor, k. 

This value is equal to the ratio of moles of analyte in the stationary phase, nstat, to the moles of 

analyte in the mobile phase, nmob, as shown in Eq. 2.1. Experimentally, it can be calculated based 

on the time it takes for the analyte to elute from the column, also known as retention time (tR), 
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and the time it takes for an unretained compound to move through the column, also known as 

dead time (tM).  

  stat R M

mob M

n t t
k

n t


   (2.1) 

 For two analytes to be separated in a given analysis, they must have sufficiently different 

values of k. This difference is captured in a metric known as selectivity (α), defined as the ratio 

of the k values of two analytes as shown in Eq. 2.2.  Selectivity is a key term in the calculation of 

chromatographic resolution (Rs), which is the most common measure of the separation of two 

compounds. It incorporates the efficiency (N) of the separation and the selectivity, both assuming 

a Gaussian peak shape [17]. Importantly, Rs can be measured simply from a chromatogram using 

the retention times (tR) and peak widths (w), where w  is considered the peak width at four times 

the standard deviation of the peak (σ).   
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  (2.4) 

 The relative importance of each factor in the value of Rs is shown in Fig. 2.1. It can be 

seen that α is has a significant effect on the peak resolution, particularly at greater than RS = 0.5; 

however, it should be noted that for a resolution greater than 1.5, the peaks are resolved to the 

baseline, meaning no further quantitative advantage is gained by an increased resolution.  
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Figure 2.1. The influence of each individual term on the Rs. Figure reproduced from refs. 

[18,19]. 

 

 When trying to increase the Rs between two peaks, that is, to decrease the overlap of the 

peaks, the peaks can either be made to elute further apart, increasing α, or the width of the peaks 

can be decreased, achieved by increasing N. In real-world chromatography, analysis time 

matters. Increasing α can be achieved by increasing retention, thereby increasing the time it takes 

for analytes to move through the column; however, at a certain point this become impractical due 

to longer separation times. The more popular approach is to increase N. From Eq. 2.3, it can be 

seem that the practical implication of increasing N is to decrease the peak width (w). Decreasing 

w allows for a greater number of peaks to be resolved in a shorter amount of time. This concept 

is known as peak capacity (nc) and is defined as the maximum number of analyzable peaks 

(usually defined at Rs = 1) in a separation [20]. At an RS of less than one, it becomes difficult to 

differentiate peaks and quantitation greatly degrades due to the inability to integrate the 

individual peaks. Eq. 2.5 shows the formula for nc when using LC with a mobile phase gradient 

[20] where tgradient is defined as the time from the beginning to the end of the mobile phase 
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gradient. This equation assumes a random distribution of peaks from the beginning to the end fo 

the mobile phase gradient.  

  
4

gradient gradient

c

t t
n

w 
    (2.5) 

 The factors affecting N are explained using the common van Deemter equation. This 

simple equation (Eq. 2.6) equates the height equivalent of a theoretical plate (H), defined as the 

length of the column (L) divided by N, to three phenomena in chromatography. First, the A term 

describes the eddy diffusion through the column; in other words, the effect of many different 

paths an analyte can take through the column. The more different paths that the analyte can 

travel, the higher the value of H, which leads to a broader chromatographic peak. Second, the B 

term describes the longitudinal diffusion occurring in the column. This is inversely proportional 

to the linear velocity (u), which is related to flow rate; the slower the analyte moves, the more 

time it has to diffuse into a wider analyte band, leading to a broader peak. Finally, the C term 

describes the resistance to mass transfer of the analyte into the stationary phase. Figure 2.2 

graphically depicts the van Deemter equation along with the influence of each term on the 

separation. The minimum value of H on the black curve in Fig. 2.2 is considered the optimum 

linear velocity. Often, however, this optimum velocity is slower than desired for quick analyses 

times and thus a tradeoff is made between linear velocity and minimal plate height. The penalty 

for using a linear velocity greater than the optimum velocity is determined by the magnitude of 

the C term, as shown by the blue line in Fig. 2.2.  
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Figure 2.2. Van Deemter plot and individual term contributions to the van Deemter curve 

(black). Hmin and uopt represent the minimum plate height at the optimum linear velocity. 

   

  
B

H A Cu
u

     (2.6) 

  
L

H
N

   (2.7) 

 The major contributing factor to all three terms in the van Deemter equation is the 

column. Column manufacturers are constantly innovating to create new packing materials in 

order to increase the efficiency of the columns. Traditionally, the silica particles used for packing 

are fully porous particles; recently, however, superficially porous, or core shell, particles are 

becoming very popular [21]. These particles consist of a solid core with a porous outer shell. The 

main implications of this are a decrease in the C term (i.e., increasing the speed of mass transfer) 

and a decrease in the A term due to improved column packing [22]. A decrease in the C term 

lowers the slope of the blue curve in Fig. 2.2, which allows for an increase in linear velocity with 

lesser effects on H.  Monolithic columns, consisting of a solid rod of porous silica or other 

material, also have this same advantage [23]. Decreasing particle size has been found to 

significantly increase efficiency as well. Not only do these small particles increase the speed of 
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mass transfer, they also pack more uniformly, decreasing the A term, eddy diffusion. However, 

this comes at the cost of higher backpressure, leading to a need for ultra-high performance liquid 

chromatography (UHPLC), with pressures up to 1000 bar (14,500 psi) or more.  

 While chromatographic technologies are constantly improving, increasing column 

efficiency and leading to higher peak capacities, other approaches must be considered. In 

addition, increased peak capacities may not solve the problem of co-elution, which is common 

between analytes with similar chemical properties, such as isomers. In these cases, improved 

selectivity is required. Harnessing the different selectivities of two columns in one analysis 

presents a powerful separation method. Mixed mode columns, which consist of two 

functionalities, such as anion exchange and octadecyl carbon chains (C18), on a single column 

provide separation based on both ion exchange and polarity [24]. This type of column provides 

different α values for many compounds, but does not provide an increased peak capacity and 

necessitates the purchase (or synthesis) of a new column whenever a different selectivity is 

desired. Recently, we published a method for the synthesis of stationary phase gradients which 

allow for the fine tuning of chromatographic selectivity [25]. These stationary phase gradients 

were created on in-house synthesized monolithic columns by infusing an aminosilane 

functionalizing reagent through a bare-silica column creating a column with both amine and 

silica surface functionalities. The surface coverage and gradient steepness of the functional 

groups on the column support can be easily controlled by varying the time of infusion and 

concentration of reagent. This approach can be also extended to multiple functionalities, such as 

phenyl and C18 [26]. Although this approach makes tuning the selectivity of these columns 

simpler, the in-house synthesis of columns does not reach the same efficiencies as 

commercialized columns.  
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 Another approach is the coupling of two or more separate columns. This can be 

accomplished in two main ways: serial connections or multidimensional coupling. Serially 

connected columns consist of two or more columns connected end-to-end, providing added 

selectivity. These columns can simply been connected with a piece of tubing; however, this 

potentially adds significant dead volume, leading to broadening of the chromatographic peaks. 

Commercialized versions of serially connected column, such as the POPLC
®
 system (Bischoff 

Analysentechnik, DE), use specialized column “segments” which connect to one another with no 

additional tubing, thus eliminating the majority of dead volume between the columns. Still, the 

additional connections can prove to be problematic [27] and the column choices are limited by 

the offerings of a single manufacturer. Another approach, and the one focused on in Chapters 5 

and 6, is two-dimensional liquid chromatography (2D-LC), in which two columns are coupled in 

an orthogonal manner. 

2.2. Basics of Two-Dimensional Liquid Chromatography (2D-LC) 

 The 2D-LC technique combines two individual separations into a single analysis in order 

to provide greater separation power for a greater number of compounds due to its increased 

selectivity and increased peak capacities. The coupling of two separations is accomplished via a 

sampling valve placed between the two columns. This sampling valve collects a pre-defined 

volume of effluent from the first dimension (
1
D) column and then injects it onto the second 

dimension (
2
D) column. This is described further in the section 2.2.1. This sampling and 

2
D 

separation can occur in two main ways. In heart-cutting methods, a single section of the 
1
D 

chromatogram, often fully encompassing the peak(s) of interest, is collected in a single aliquot 

and transferred to the 
2
D column [28,29]. This creates a 

1
D chromatogram and a single 

2
D 

chromatogram. Multiple heart-cutting (MHC) methods do this for two (or more) sections of the 



 
 

12 
 

1
D chromatogram, with each 

1
D section resulting in a single 

2
D chromatogram [30–32]. One 

potential disadvantage to this method is that any slight resolution obtained in the 
1
D separation 

will be lost due to mixing of the aliquot in the sample loop. Comprehensive 2D-LC (LC x LC) 

collects the entire 
1
D effluent in small aliquots (> 3 aliquots per peak [33]) and sequentially 

injects each aliquot onto the 
2
D column. This creates several 

2
D chromatograms, which when 

plotted together creates a two-dimensional (2D) chromatogram, with the 
1
D time on one axis and 

the 
2
D time on the second axis. In LC x LC the 

2
D separation time dictates the 

1
D sampling rate. 

Even at fast 
2
D separation times (< 1 min), the 

1
D separation is severely undersampled.  A fairly 

recent variation of LC x LC, termed selective LC x LC (sLC x LC), can be viewed as a hybrid 

method of heart-cutting and comprehensive [34–37]. sLC x LC selects a single window in the 
1
D 

chromatogram similar to heart-cutting, but rather than collecting the entire window in a single 

aliquot, it collects several smaller aliquots, more similar to LC x LC. This produces multiple 2D 

chromatograms, each with a 
1
D axis for only the window selected. This method has the 

advantage of allowing for longer 
2
D separation times, for reasons that will be discussed further in 

the instrumentation section below. A graphical comparison of MHC, LC x LC, and sLC x LC is 

shown in Fig. 2.3. 

 In order to gain the most advantage from 2D methods, it is desired that the selectivities of 

the two separations be as different, or orthogonal, as possible [29]. This means that the retention 

of the compounds on the 
1
D column should be uncorrelated with the retention of the 

2
D column. 

This suggests that the most powerful combinations of separations would involve two different 

phases of separation and, indeed, these combinations are often seen in the literature. These 

include ion exchange (IEC) with reversed phase (RP) [38], size-exclusion (SEC) with RP [39], 

hydrophilic interaction liquid chromatography (HILIC) with RP [40], and others. Normal phase  
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Figure 2.3. Three modes of 2D-LC. (A) This diagram shows the 
1
D chromatogram and the 

collection of the 
1
D effluent samples across the 

1
D chromatogram. Each box represents a single 

aliquot collected in a single sample loop. Here, two peaks are selected for further analysis using 

MHC or sLC x LC. (B) These plots show the resulting chromatograms for each of the methods. 

MHC and sLC x LC result in two separate chromatograms for each of the two 
1
D windows 

collected. LC x LC results in a single comprehensive 2D chromatogram. 

 

has also been used with RP [41]; however, solvent compatibility between the two separations 

must be considered. For example, normal phase LC uses highly non-polar organic solvents with 

increasing polarity to elute compounds. RP LC uses highly aqueous solvents with decreasing 

solvent polarity to elute compounds. Ignoring potential solvent immiscibility issues, if 

compounds elute from the 
1
D normal phase column in non-polar solvents and are injected onto 
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the 
2
D RP column, no retention (or minimal retention) will be observed. To circumvent these 

issues, complex methods are required. On the other hand, a very popular choice is the use of two 

RP separations [7,42–44]. While an increase in retention correlation is seen, the plethora of 

different RP column chemistries commercially available often allows for sufficient orthogonality 

between the two dimensions. Online selection tools are available to assist in the selection of 

orthogonal columns. HPLCcolumns.org [45], for example, makes use of the hydrophobic 

subtraction model (HSM) of selectivity [46] to compare over 600 commercially available RP 

columns from over 30 different manufacturers. By incorporating empirical values for 

hydrophobicity, steric effects, hydrogen bond acidity and basicity, and cation-exchange activity, 

this website calculates a similarity value between two columns. In their primer to LC x LC, Carr 

and Stoll attempt to compare different mode combinations according to several factors [42]. A 

portion of their table is reproduced here in Table 2.1. While the scoring is somewhat subjective, 

it presents a good overall picture of the different combinations. From this table, it can be seen 

that while the combination of two RP separations suffers slightly from lack of orthogonality, it is 

superior to all other combinations, particularly in terms of the wide range of compounds able to 

be analyzed by RP separations as well as the peak capacity per unit time of RP separations.  

 For the work in the following chapters, only comprehensive LC x LC and sLC x LC with 

RP conditions in both dimensions will be considered. LC x LC provides a significant increase in 

separation space allowing more peaks to be detected in a given analysis time. In terms of peak 

capacity, LC x LC provides an ideal 2D peak capacity (nc,2D) equal to the product of the two 

individual separations’ peak capacities (
1
nc and 

2
nc); however, this 2D peak capacity is impacted 

by two major factors: peak broadening due to the undersampling of the 
1
D chromatographic peak 

and correlated retention between the two columns.  
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Table 2.1. Comparison of different combinations for LC x LC 

1
D Mode IEC SEC NP RP HILIC HILIC SEC SEC LCCC 

2
D Mode RP RP RP RP RP HILIC NP IEC RP 

Orthogonality ++ ++ ++ + + - + + ++ 

Peak capacity + + + ++ + + - -- + 

Peak 

capacity/time 

- -- + ++ + + -- -- + 

Solvent 

compatibility 

+ + -- ++ + ++ + + - 

Applicability + + - ++ + - - - - 

Score 4 3 1 9 5 2 -2 -3 2 

*IEC – ion-exchange; RP – reversed phase; SEC – size-exclusion; NP – normal phase; HILIC – 

hydrophilic interaction; LCCC – liquid chromatography under critical conditions; Adapted from 

ref. [42]. 

  

 First, undersampling in LC x LC is due to the reality that the sampling rate of the 
1
D 

chromatogram is dictated by the speed of the 
2
D separation. This indicates a need for rapid 

separation in the 
2
D. To accomplish this, a combination of short column lengths and high 

temperature LC (HTLC) is often used in the 
2
D separation due to fact that higher temperatures 

allow for higher linear velocities owing to reduced solvent viscosities and therefore reduced 

backpressure [7]. Column efficiency is also increased using HTLC, particularly at high linear 

velocities [47]. This can be explained using the van Deemter equation (Fig. 2.2). At high 

temperatures, resistance to mass transfer (C term) is decreased and thus an increase in linear 

velocity has a lesser effect on H. These factors allow for a fast 
2
D separation; however, even with 

a 
2
D separation time of 12 seconds (to our knowledge, the fastest gradient separation achieved 

thus far in LC x LC [48,44]), the sampling rate of the 
1
D chromatogram is equal to 0.08 Hz, 

leading to the 
1
D chromatographic peak being represented by only a few data points, leading to a 

broadening of the peak [49]. A correction factor for broadening, <β>, can be incorporated in the 
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definition of nc,2D. Davis, Stoll, and Carr define <β> as shown in Eq. 2.8 [49], where ts  is the 

sampling time and 
1
σ is the 

1
D peak width before sampling.  

  

2

1
1 0.21 st



 
     

 
 (2.8) 

 Correlated retention is also a major factor when estimating peak capacity. When retention 

in both dimensions of separation is strongly correlated, the chromatographic peaks elute along a 

diagonal line across the 2D separation space. If the two separations are completely uncorrelated, 

or orthogonal, the peaks appear evenly spread across the separation space. As stated previously, 

the combination of two RP separations will never be completely orthogonal and thus the 

separation space will always be under-utilized. The extent of this under-utilization of the 

separation space is captured in a metric called fractional coverage (fcoverage) and can be estimated 

via many different methods [50,51]. Figure 2.4 shows the cases of high and low fcoverage. 

Typically, low fractional coverage is a result of the peaks falling along a diagonal line across the 

2D separation space, however it can also be caused by weak retention in one dimension of the 

separation, leading to elution along a horizontal or vertical line in the 2D chromatogram.  Eq. 2.9 

incorporates both fcoverage and <β> into the calculation of nc,2D [52].  

  1 2

,2

1
c D c c coveragen n n f


   

 
  (2.9) 
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Figure 2.4. Diagram comparing cases of low fractional coverage (A) and high fractional 

coverage (B). Each dot represents an analyte peak. Low fractional coverage is often a 

consequence of correlated retention between the two separations causing peaks to elute along a 

diagonal line across the separation space. 

 

 As stated previously, mobile phase issues are of great concern in LC x LC. Even with RP 

in both dimensions, the compatibility of the solvents must be considered. When using gradient 

elution, compounds that elute towards the end of the 
1
D gradient are contained in a highly 

organic mobile phase composition. This sample is then injected onto the 
2
D column which is at a 

low organic composition.  This solvent mismatch can cause broadening or even splitting of 

analyte peaks [53–55]. An area of interest in LC x LC literature is the promotion of on-column 

focusing in order to give better peak shapes. On-column focusing occurs when a compound is 

highly retained at the front of the column, leading to a narrower analyte band [56–58]. In 

LC x LC this can be achieved by diluting the 
1
D effluent with a weaker (i.e., aqueous) solvent in 

order to increase retention at the head of the column. While this decreases the analyte 

concentration and greatly increases the injection volume, Stoll et al. showed that the effect of on-

column focusing was great enough to allow for narrower peaks and thus higher signal-to-noise 

ratios (S/N) [59] in comparison to the case with no dilution. Another approach is to modulate the 

temperature at the front of the column such that at injection the head of the column is at a lower 
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temperature, which increases retention and focuses the analytes [60]. This has been applied 

mostly to capillary LC due to the low thermal mass of capillary columns.  

2.2.1. Instrumentation 

 High performance liquid chromatography requires the use of a high pressure pump to 

deliver the analyte mixture and mobile phase to the column where the analytes are separated. 

After separation, the analytes are detected using a detector suitable for the target analytes, often a 

diode array detector (DAD) or a mass spectrometer (MS).  The choice of detector is crucial to the 

success of the analysis. Mass spectrometers are available with varying levels of mass resolution 

and have become a powerful detector in terms of both selectivity and sensitivity. When tandem 

mass spectrometry (MS/MS) is utilized, sensitivity and selectivity are enhanced even further 

along with the ability to obtain structural information about the compounds being analyzed.  

Mass spectrometers, however, are costly compared to alternatives such as DADs and require 

much more upkeep and maintenance. Issues with ion suppression are also commonly present in 

MS when multiple compounds coelute [61,62]. This occurs when two compounds enter the 

ionization source (e.g., electrospray ionization) and one compound negatively affects the 

ionization of the second compound. The exact mechanism of this process is not fully understood. 

The most common cause of ion suppression is interferences in the sample; however, ion 

suppression can also be caused by compounds introduced during sample preparation or even 

from tubing on the instrument [62].  These effects can lead to a drastic decrease in instrument 

sensitivity towards certain compounds in the sample.  DADs, which measure the ultraviolet-

visible absorption of analytes, are much more inexpensive and robust, but can suffer from lower 

sensitivity and lower selectivity due to the broad absorption bands of most organic compounds.  

Stoev and Stoyanov have shown, however, that the reliability of compound identification is 
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similar between DAD and low-resolution tandem MS [63]. Coelution in DAD is also less 

problematic as the analyte signals are additive when coelution occurs (assuming the total amount 

of analytes eluting is within the linear range of the detector). Combined with the use of curve 

resolution methods (described in the next chapter), LC-DAD detection can be a powerful method 

for analysis.  

 The instrumentation used for LC x LC is similar to that used for 1D LC with a few 

notable differences. Figure 2.5 shows a basic LC x LC set up. Two pumps are required for the 

two dimensions of separation. Figure 2.5 also shows the instrument set up with dual DADs. 

While the 
1
D DAD is not strictly required, it is useful in optimizing the instrumental conditions 

as it allows for the visualization of the 
1
D chromatogram prior to sampling. It can also serve to 

improve the quantitative abilities of LC x LC as described in Chapter 5. The sampling of the 
1
D 

effluent is accomplished via a sampling valve with two sampling loops. A 10-port/2-position 

valve is shown in Fig. 2.5, but concentric 8-port/2-position valves are becoming common as well 

[44,64,30]. Both valve types accomplish the same task of collecting the 
1
D effluent in the two 

sample loops. An optional dilution pump is shown in Fig. 2.6. This pump can be used to dilute 

the 
1
D effluent with a weak solvent in order to promote on-column focusing in the 

2
D, as 

discussed in the previous section. Splitting of the 
1
D effluent can also be employed to facilitate 

method development by de-coupling the flow rate of the two dimensions [65]. 
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Figure 2.5. Diagram representing a typical setup for LC x LC, with a 10-port/2-position valve. 

The dashed outlines on the dilution pump and 
1
D DAD indicate these components are optional. 

 

 In LC x LC only two sampling loops are required due to the fact that as one loop is being 

filled with 
1
D effluent, the contents of the second loop are being delivered to the 

2
D column. The 

valve switches and these loops switch roles. sLC x LC requires a more complex sampling valve 

setup. sLC x LC collects many aliquots of the 
1
D effluent and stores them in sample loops rather 

than immediately injecting them onto the 
2
D column. This allows for fast sampling of the 

1
D 

separation and longer separations on the 
2
D column. Because of this, ten or more sampling loops 

are required. These are typically configured in what is sometimes called a “sampling deck [66]” 

or a “parking deck [30].” The instruments typically contain two of these sampling decks, where 

each one is used for a single peak window. This allows for a selected peak window to be 

sampled 10 or more times, which allows for a much faster 
1
D sampling rate than allowed in 

comprehensive LC x LC.  

 Data are collected at the 
2
D DAD as a sequence of 

2
D chromatograms, corresponding to 

the 
2
D separation of each sampled volume of the 

1
D effluent. In order to visualize these data as a 

2D chromatogram, the sequence of 
2
D chromatograms must be folded into a 2D chromatogram  
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Figure 2.6. Folding of instrumental data into a 2D chromatogram. Data is collected as a string of 
2
D chromatograms as shown in (A) separated by the dashed lines. These 

2
D chromatograms are 

aligned perpendicular to the 
1
D time axis as shown in (B). Typically this 2D chromatogram is 

visualized as a contour plot as shown in (C). 

 

as shown in Fig. 2.6. Then, the data can be visualized as either a contour plot or a 3D plot. Note 

that these plots can only represent a single wavelength at a time so the choice of wavelength at 

which to visualize the data is important. 

 Despite its complexity both in instrumentation and method development, LC x LC 

provides a powerful analysis method for complex samples that are difficult to analyze with 1D-

LC alone. Instrument manufacturers such as Agilent [67] and Shimadzu [68] are starting to 

recognize the strength of LC x LC and are starting to market LC x LC systems. This will likely 

lead to more widespread adoption of the technique due to the increased support and technical 

assistance that comes with the purchase of a commercial instrument.  

One potential drawback of LC x LC, however, is its quantitative abilities. Typically, 

LC x LC has been seen to have poorer quantitative abilities compared with 1D-LC. This can be 

attributed to several factors which are described further in Chapter 5. The work described in 
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Chapters 5 and 6 aims to apply chemometric curve resolution to the analysis of LC x LC data in 

order to improve the quantitative abilities of LC x LC. These curve resolution methods are 

described in the following chapter.   
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Chapter 3: Chemometric Techniques for Liquid Chromatography 

Portions of this chapter adapted, with permission, from D.W. Cook, S.C. Rutan, Chemometrics 

for the analysis of chromatographic data in metabolomics investigations, J. Chemom. 28 (2014) 

681-687. 

 

 While LC is a powerful analysis technique, the data obtained from such analyses are 

often complex and necessitate the use of advanced data analysis techniques. Chemometrics 

provides many useful data analysis tools by utilizing mathematical concepts to solve chemical 

problems. Svante Wold, widely considered one of the fathers of chemometrics, defined 

chemometrics as “How to get chemically relevant information out of measured chemical data, 

how to represent and display this information, and how to get such information into data [69].” 

This definition encompasses both post-acquisition analysis of the data as well as pre-acquisition 

design of experiments in order to collect data that contains the most information pertinent to the 

goal of analysis.  

 Post-acquisition data analysis can be divided further into preprocessing and pattern 

recognition. Pattern recognition aims to find underlying trends in the data for easier visualization 

of the data or for more targeted purposes such as discriminating between two sample groups 

(e.g., healthy versus diseased individuals). This includes methods such as principal components 

analysis (PCA), partial least squares (PLS) [70], and cluster analysis, to name a few [71].   
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3.1. Traditional Preprocessing Methods 

Preprocessing methods are often employed prior to pattern recognition in order to remove 

unwanted contributions to the data to reveal relevant signals in those data. Chromatographic data 

consist of three main contributions to the instrumental signal as shown in Fig. 3.1. Figure 3.1.A. 

depicts the chromatogram obtained instrumentally. This is an combination of the analytical 

signal, background, and noise (Figs 3.1.B,C,D, respectively). Background and noise reduction 

methods are among the most common preprocessing techniques. These aim to eliminate the 

background and noise signals from the raw data leaving only the analytical signal. This 

analytical signal contains the information about the compounds analyzed and thus the 

information that is relevant to the analysis.  

To remove the background, several methods of baseline correction have been developed. 

The most commonly used method in currently available software packages is curve fitting [10]. 

 

 

Figure 3.1. The instrumental signal (A) consists of the analytical signal (B), the background (C), 

and the noise (D). Adapted from Matos et al. [72] and Amigo et al. [10]. 
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This approach attempts to estimate the baseline by fitting a curve under each peak based 

on the area around the base of each peak. These fits can be global fits, or can be localized, which 

may provide a better fit but may not be continuous between segments [10]. When analyzing 

complex samples this approach can be problematic; if the chromatogram does not have baseline 

resolution around many of the peaks, it can be difficult to fit a suitable curve to estimate the 

baseline. Background correction methods have also been proposed for LC x LC. Often, these 

background methods extend 1D methods to 2D chromatograms. Filgueira, et al. extended 

traditional 1D background correction methods (median filtering and polynomial fitting) to 

LC x LC chromatograms [73]. Their method, named orthogonal background correction (OBGC), 

applies the selected method at each extracted 
1
D chromatogram (at each 

2
D time point). This 

implementation is orthogonal to how the data is collected (individual 
2
D chromatograms). The 

authors found this to be a very effective and easy to implement method. 

 Most noise reduction techniques make use of the fact that noise in data is typically high-

frequency with low peak widths. The most well-known form of noise reduction is smoothing. 

This is often performed with Savitzky-Golay smoothing in which a few data points are captured 

in a window and those points are multiplied by a set of coefficients and summed [74]. The new 

value replaces the original center point of the window. The window is moved through the data, 

multiplying the data points within each window by the coefficients at each step. A popular 

variation on this is matched filtering in which the coefficients used in each window are set to 

match the expected peak shape [75,76]. For example, in chromatography, the analytical signal is 

expected to be a Gaussian peak shape so the matched filter is set to be a Gaussian peak with a 

similar peak width. Danielsson et al. proposed using a second-derivative Gaussian peak as the 
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filter [77]. By using the second-derivative, linear background contributions are reduced to zero, 

essentially performing background subtraction and noise reduction in the same step. 

 Once background and noise contributions are removed from the data, peaks must be 

detected to allow for further analyses. It is most often desired to detect peaks in an automated 

fashion particularly in complex samples and/or with a large number of samples. Two major 

approaches to peak detection are the use of derivatives and peak fitting. When the first-derivative 

of a chromatographic peak is taken, the zero-crossing point corresponds to the peak maximum. 

The peak width can be estimated using the second-derivative, where two zero-crossing points 

exist near the edges of a chromatographic peak [9]. Peak fitting can also be used for peak 

detection. In this approach the user or software uses a fixed peak model and optimizes the fit of 

the model to the data. Gaussian peak models are often used [10]; however, most 

chromatographic peaks exhibit non-Gaussian characteristics due to tailing and sometimes 

fronting. Very often, an exponentially modified Gaussian (EMG) model is employed due to its 

ability to model a tailing chromatographic peak [78]. A multitude of other peak models are also 

available which may fit peaks better depending on the data being fit. Almost 90 of these models 

have been compiled by Di Marco and Bombi [79]. Determination of the peak shape can be a 

tedious “guess-and-check” process, particularly if the peaks do not conform to a Gaussian or 

EMG shape. In cases where peak overlap is severe it is particularly difficult, if not impossible to 

choose determine the best peak shape. Amigo et al. demonstrated that in some cases, two peak 

shape models seem to fit the data equally well, but it is impossible to know which model better 

explains the true underlying peak shape [10]. Peak fitting methods are known as hard models in 

that the model is set and the parameters are estimated to best fit this model. A more flexible 

method is known as soft modeling, or self-modeling. These methods are explained in section 3.2. 
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3.2. Multiway Curve Resolution Methods  

 Most traditional methods treat the data using a single or a few detector channel(s) (i.e. a 

single wavelength or mass-to-charge value); however, this approach can exclude important 

information that may be contained in other channels such as other analytes or information about 

the background. Multiway curve resolution analyses treat the full spectrum and the 

chromatographic dimension as a single array of data from which components can be extracted. 

These components ideally correspond to each compound present in the sample. These methods 

can accomplish background and noise reduction by treating them as one or more extra 

component(s) in the data. In theory these can greatly simplify analysis by eliminating the need 

for multiple algorithms for each preprocessing step, which may affect the results of one another. 

Often, these methods eliminate the need for separate peak picking algorithms as well because 

each compound is ideally contained in a separate component. These components can then be 

utilized for the further pattern recognition steps. Two of the most widely used curve resolution 

methods are parallel factor analysis (PARAFAC) and multivariate curve resolution-alternating 

least squares (MCR-ALS). 

3.2.1. Data Structure 

In order to apply multiway methods of analysis to the entire dataset, the data must be organized 

into a single data array. These arrays are classified by the number of dimensions they contain, 

resulting from the instrumental measurement. Figure 3.2 depicts the types of data 
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Figure 3.2. Data structures resulting from instrumental techniques of increasing complexity. 

Adapted from Olivieri [80]. 

 

structures typically encountered. The data produced by LC-DAD analysis, for example, are 

classified as a second-order structure (i.e., a matrix) with both a temporal and a spectral 

dimension. When multiple samples are included, the data becomes a three-way data array (i.e., a 

cube). LC x LC-DAD adds a second temporal dimension creating a third-order array for a single 

sample and a four-way array for a multi-sample dataset.  LC-MS/MS adds a second spectral 

dimension; however, the spectra collected in the second dimension of MS are not independent of 

the selected precursor mass, and therefore cannot be represented as an additional multilinear 

dimension in the data.  

These data can be analyzed with curve resolution algorithms (i.e., PARAFAC or MCR-

ALS) in order to resolve pure analyte signals from one another and from background signals. 

These pure analyte signals can then be used for quantitation or pattern recognition.  
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3.2.2. Parallel Factor Analysis (PARAFAC) 

 Parallel factor analysis is one technique capable of handling higher order data. 

PARAFAC is based on the assumption that the instrumental response, X, is a trilinear 

combination of pure compound responses in each dimension: the concentrations of the 

compounds in each sample, the chromatographic profiles, and the spectra (for LC-DAD data), 

and has dimensions of IxJxK [81]. Here, I is the number of chromatographic time points, J is the 

number of m/z or wavelength points and K is the number of samples. The PARAFAC model can 

be represented below:  

   
1

( ) ... ( )


   X a c s E
N

n n n

n

vec vec  (3.1) 

where an, cn and sn are the sample, chromatographic and spectral profiles for the n
th

 component 

and which form matrices A (IxN), C (JxN) and S (KxN), respectively. E represents the error 

contribution and has the same dimensions as X [72]. The  symbol represents the Kronecker 

product, and the vec operator rearranges the multidimensional array into a vector [81]. This is 

depicted graphically in Fig. 3.3. If multi-dimensional chromatographic data are being analyzed, a 

fourth (or more) dimension(s) can be added to the term within the summation. 

 

Figure 3.3. 

Graphical depiction of the PARAFAC model (Eq. 3.1) with two components. Adapted from Bro 

[82]. 
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 The PARAFAC model is trilinear (when analyzing third-order data such as LC-DAD) 

which restricts its use to data whose retention times do not shift between runs. This is a strict 

requirement in LC where retention time shifts can occur due to slight inconsistencies in flow rate 

and mobile phase gradient as well as column aging. If shifts in retention occur, an alignment 

step, such as correlation optimized warping (COW) [83], is required, or an algorithm such as 

PARAFAC2 can be used, which attempts to handle retention time shifts within the model. 

Bortolato and Oliveri showed, however, that PARAFAC2 did not perform well when interferents 

were present [84]. Several algorithms exist for fitting the PARAFAC model to obtain the sample, 

chromatographic, and spectral profiles. These include generalized rank annihilation method 

(GRAM) and alternating least squares (ALS) [81,82].  

 Khakimov et al. [85] employed PARAFAC2 for the analysis of LC-MS data in a study of 

a plant’s resistance to insects. With the exception of splitting the chromatograms into smaller 

segments to decrease data complexity, no preprocessing steps were performed.  Combining the 

results of PARAFAC with pattern recognition, these authors were able to correlate four 

previously reported compounds and five previously unknown compounds to the plants’ 

resistance to insects.  

 Synovec and colleagues have used PARAFAC extensively for the analysis of two 

dimensional gas chromatography (GC)-MS data [86–89].  After processing raw chromatograms 

in LECO ChromaTOF software [90], PARAFAC was used to resolve the chromatograms for the 

purpose of quantification. Their approach consists of a pattern recognition step to find the peaks 

that change the most between samples, then using ChromaTOF software to match mass spectra 



 
 

31 
 

to a library. Finally, the relative concentrations of the analytes of interest were found using peak 

areas determined with PARAFAC [86]. They were able to identify 26 metabolites that differed 

between yeast metabolizing glucose and yeast metabolizing ethanol, with ratios ranging from 

0.02 to 67 for the compounds [88], as well as identifying 63 metabolites between 5 strains of 

yeast and correlating them with RNA data to create pathways which could be compared across 

strains [86]. 

 Due to the trilinearity requirement, PARAFAC is difficult to implement in LC x LC. 

Retention time shifts are very common in both separation dimensions. In the second dimension, 

retention time shifts mainly occur due to misalignments of the 
2
D chromatograms. This is very 

often due to slight variations in the valve timing. In the first dimension, slight retention time 

shifts are amplified by the undersampling of the 
1
D separation.   Due to these requirements, it is 

often very difficult to implement PARAFAC in LC x LC, and often LC, analyses. PARAFAC 

can also be time consuming do to the computational demands compared to other techniques. For 

datasets with many samples, this can be another potential disadvantage. 

3.2.3. Multivariate Curve Resolution (MCR) 

 Another method of curve resolution which is much more flexible is called multivariate 

curve resolution (MCR). MCR is a based on a bilinear model, rather than the trilinear model of 

PARAFAC, which makes MCR impervious to retention time shifting. The only requirement of 

MCR is that the spectral profiles of each analyte do not vary over the dataset. DAD is a very 

reproducible method which almost always meets this requirement, whereas other method such as 

mass spectrometry can have slight variations in spectra between each chromatographic time 

points. 
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 The MCR model is shown in Eq. 3.2 and Fig. 3.4, where X is the raw data matrix (as 

described in the previous section) and C and S are matrices consisting of the pure analyte (and 

background) chromatographic and spectral profiles, respectively.   

  X CS E
T    (3.2) 

 

 

Figure 3.4. (A) This graphic depicts the MCR model for a LC-DAD dataset with I time points, J 

wavelengths, and N components representing the data. The yellow areas represent how each 

point in the raw data (X) is represented by the chromatographic (C) and spectral (S) profiles and 

error (E). Figure inspired by Rutan et al. [11]. (B) This graphic shows an example of a 2-

compound spectrochromatogram resolved into two pure analyte chromatographic and spectral 

profiles.  

 

 Unlike PARAFAC, which can accept higher order data structures, MCR requires a matrix 

as input. For a single LC-DAD run, the data are contained in a matrix which fits the MCR model; 

however, when multiple samples are used, the data must be rearranged from a three-way array to 

a matrix. As shown in Fig. 3.5, this is accomplished by concatenating the chromatograms from 

each sample end-to-end along the time dimension to create a single augmented time dimension 
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while retaining the spectral dimension. This matrix can then be used for MCR-ALS analysis. 

After analysis the data is then re-folded to determine the component profiles in each sample.   

 Similar to a multi-sample dataset, LC x LC-DAD adds another dimension to the data, 

creating a third-order data array, or a four-way array when multiple samples are analyzed. This 

requires two rearrangement steps. First, the two separation dimensions are unfolded to a single 

time dimension consisting of the 
2
D chromatograms appended to one another similar to how the 

data are collected (see Fig. 2.6). Then, the time and sample dimensions are unfolded to a single 

dimension as depicted in Fig. 3.5. This results in a single spectral dimension and a single 

augmented time dimension which can be analyzed via MCR-ALS. 

 

 

 

Figure 3.5. Rearrangement of a multisample LC-DAD dataset into a single matrix for MCR 

analysis. λ represents the spectral dimension, while t represents the time dimension. (A) This 

graphic depicts the process graphically while (B) shows the process with realistic chromatograms 

with the wavelength axis going into the page.  

 

3.2.3.1. Alternating Least Squares (ALS) 

 Data collected from the instrument are represented by X in Eq. 3.2 but the goal of MCR 

is to obtain the chromatographic and spectral profiles for each analyte and background 
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contribution, contained in the C and S matrices, respectively. To accomplish this, an alternating 

least squares (ALS) methodology is most often used. ALS works by solving Eq 3.2 for C and S 

alternatively using least squares solutions as shown in Eqs. 3.3 and 3.4.  

  1( )C XS S S
T   (3.3)  

 1( )S C C CX
T T    (3.4) 

  Before the ALS process can begin, a number of components (the number of columns in C 

and S) must be chosen and an initial guess, or estimate, must be obtained for either C or S as a 

starting point for ALS. The selection of the correct number of components is data dependent and 

often multiple numbers of components are tested for the best MCR-ALS performance. Scree 

plots, shown in Fig. 3.6., can offer a starting point for this determination. These plots are 

obtained from the singular values (from a singular value decomposition) of the data plotted 

versus the number of components [71]. A break or a shoulder in the trend can indicate a 

reasonable starting point for determining the number of components. 

 

 

Figure 3.6. Scree plot for estimating the number of components for MCR-ALS. The possible 

break point occurs at 4 components indicating a starting point of 4 components for MCR-ALS.  
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 The initial guess is typically derived from the raw data. Several methods have been 

developed for this purpose. If an initial guess of the chromatographic profiles, C, is desired, 

evolving factor analysis is a popular choice [91,92]. Most often, however, an initial guess of the 

spectral profiles, S, is preferred. All of the methods for obtaining an initial guess of S involve 

extracting individual spectra from the raw data. The methods differ in how this is accomplished. 

Methods include SIMPLISMA [93,94], iterative key set factor analysis (IKSFA) [95,96], and 

iterative orthogonal projection approach (IOPA) [9,97], which is used throughout the work 

presented in the following chapters. IOPA, developed previously in our lab [9,97], builds off the 

previously developed orthogonal projection approach (OPA) [98,99] which extracts a set of 

spectra that represent the most different, or orthogonal, spectra in the dataset by defining a 

dissimilarity metric. This dissimilarity metric is defined as the determinant of a matrix containing 

the set of spectra for the initial guess. IOPA adds an iterative step in which each spectrum in the 

initial guess is replaced by each spectrum in the raw data to maximize the orthogonality between 

the spectra set used for the initial guess. If some or all of the analyte spectra are known a priori, 

they can be used in the initial guess; however, OPA is still performed to obtain initial estimates 

of the background and potential interferent spectra [9].  

 Once the initial guess is obtained, it is used in either Eq. 3.3 or 3.4 to initiate ALS. ALS 

alternatively solves for C and S until either a predefined number of iterations is met or a solution 

is converged upon as defined by a minimum change in fit error (E in Eq. 3.2). A defining factor 

of ALS is that every time an updated estimate of C or S is calculated, the column vectors 

contained in these matrices are subjected to constraints. Mathematically, a wide range of possible 

solutions are possible for Eqs. 3.3 and 3.4, a problem often referred to as rotational ambiguity. A 

much smaller range of solutions are physically reasonable, however. For instance, analyte 
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chromatographic and spectral profiles cannot be negative. To drive the ALS solutions to 

physically reasonable solutions, constraints are imposed. These constraints, which are typically 

only applied to components (columns in C and S) that correspond to true analyte signals, most 

commonly include non-negativity, unimodality, normalization, and spectral selectivity. Non-

negativity replaces any negative values with zeros, recognizing that concentration values and 

spectral intensities of chemical species cannot be negative. Unimodality recognizes that well-

behaved, spectrally distinct analytes should only produce a single maximum in their 

chromatographic profiles. Unimodality eliminates any secondary maxima. Selectivity allows for 

any known values to be input into the C and/or S matrices. This is most often used in the spectral 

profiles to incorporate the knowledge that most analytes will not absorb at higher wavelengths 

and therefore the absorbance values at those wavelengths should be zero. It has been observed 

that spectral selectivity greatly helps in resolving analyte signals from background signals 

[100,101]. Selectivity can also be used in the chromatographic dimension or the sample 

dimension. Sample selectivity is especially useful when blanks are present in the dataset, and it is 

desired to set an analyte signal to zero in that sample. Normalization of the spectra solves the 

problem of intensity ambiguity. That is, normalization ensures that any intensity information is 

contained in the chromatographic profiles rather than the spectral profiles, allowing for 

quantitation based on the chromatographic profiles.  

 In the next chapter, we will explore the advantages of applying MCR-ALS to LC-DAD 

data, particularly in terms of its ability to increase the number of quantitatively analyzable peaks 

in a chromatogram.  
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Chapter 4: Peak Capacity Enhancements Enabled By Chemometric Curve Resolution 

 

4.1. Introduction 

When developing chromatographic methods, the primary goal is often to increase the 

separation between analytes in order to facilitate further analysis. Sufficient separation is 

particularly important when quantitation is the final goal of the analysis in order to enable the 

precise and accurate recovery of peak areas (or peak height). Typically, the extent of separation 

is defined by chromatographic resolution (RS) as discussed in Chapter 2 and the ideal separation 

ability is estimated by peak capacity (nc). By definition, peak capacity is defined as the number 

of peaks that can be separated at a RS of 1.0 in an analysis [20]. As discussed in Chapter 3, curve 

resolution methods such as multivariate curve resolution (MCR-ALS) can resolve overlapping 

chromatographic peaks, allowing for quantitative analysis at low RS. 

Optimization of the chromatographic conditions is a crucial step in developing a 

chromatographic method; however, method development can be time consuming and may still 

not lead to satisfactory results. Similar attention to the application of chemometric approaches to 

enhance the analysis is often not considered as carefully. These methods can assist in both 

qualitative and quantitative analysis. MCR-ALS has been reported in the literature as early as 26 

years ago [102,103] and has been utilized in a multitude of papers in many fields since then. 

Specifically, MCR-ALS has been applied to liquid chromatographic (LC) data for various 
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applications including, but not limited to, environmental analyses [104–106], omics studies 

[107–109], detection of biomarkers [110,111], food analyses [92,112,113], and pharmaceutical 

analyses [114–116]. Several software packages for MCR-ALS are available including a program 

by Tauler and colleagues [117,118] and the ALS package for the R programming environment 

by Mullen [119]. Commercial chemometric programs are also available which include MCR-

ALS such as the PLS toolbox (Eigenvector Research, Inc., Manson, WA), which works through 

the MATLAB programming environment.  

Despite the demonstrated utility of MCR-ALS, it has yet to find widespread use in 

chromatography outside of literature reports. It is our belief that this is due to an assumption that 

MCR-ALS (and other chemometric techniques) are overly complex and difficult to implement. 

There have also been very few papers characterizing the performance of MCR-ALS and other 

curve resolution techniques and demonstrating their potential in everyday analyses. Davis, 

Rutan, and Carr [120] investigated the use of chemometrics to analyze LC x LC data in a 

theoretical study involving statistical overlap theory [121,122] and multivariate selectivity [123]. 

Multivariate selectivity is related to the quantitative precision that can be obtained when using 

PARAFAC [82]. In that work, the authors found that in a separation space with a peak capacity 

of 100 with 200 randomly positioned peaks actually present, 120 peaks would be able to be 

analyzed quantitatively if PARAFAC were to be used. In comparison, only 20 peak maxima 

were able to be identified in the chromatograms without chemometric assistance. That work 

provided a detailed theoretical demonstration of the potential advantages of chemometrics, but 

no curve resolution was actually performed and no experimental deviations from ideality 

(background, retention time shifts, etc.) were considered. Fraga, Bruckner, and Synovec also 

investigated the use of chemometric curve resolution in two dimensional separations, but with 
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generalized rank annihilation method (GRAM) [124]. They found that, on average, the number 

of analyzable peaks was increased by a factor of two; however, no spectral information was 

utilized in that work, relying solely on the additional information provided by a second 

dimension of separation. This work also neglected the influence of background on the 

performance of the curve resolution techniques, which may be significant in many cases.  

There is a need for a general characterization of MCR-ALS performance over a range of 

conditions in order to provide general guidelines of when it can provide an advantage in an 

analysis. In the work in this chapter, LC-DAD data have been simulated under a range of 

conditions with real instrumental background signals and analyzed with MCR-ALS. Then, 

quantitation was performed and a model of quantitative MCR-ALS performance was created. 

4.2. Methods 

All simulated data creation and MCR-ALS analyses were performed in MATLAB 

(R2013a, Mathworks, Inc., Natick, MA, USA). MCR-ALS was performed using an in-house 

program. Modeling was performed using JMP statistical software (version 12.0.1, SAS Institute, 

Inc. Cary, NC, USA).  

4.2.1. Design of Experiments 

To investigate the effects of different factors on the quantitative performance of MCR-ALS, 

simulated LC-DAD data were created varying the signal-to-noise ratio (S/N), the 

chromatographic resolution (RS) and the spectral similarity as measured by the coefficient of 

determination ( 2
rspectra

).  A three factor, three level full-factorial experimental designs was created 
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to investigate the effect of each of these three factors on the quantitative ability of MCR-ALS. 

The factor levels are listed in Table 4.1. 

 

Table 4.1. Factor levels for full-factorial experimental design 

S/N 

Peak B 

Chromatographic 

Resolution 

(Rs) 

Spectral 

Similarity 

(
2

rspectra ) 

26 0.25 0.5 

256 0.5 0.95 

513 1.0 0.98 

*S/N of reference peak A = 1026; S/N calculated at middle calibration point 

Simulated chromatograms were created using two Gaussian peak shapes with a set peak 

width (σ = 0.05 min). One peak, designated peak A, was held at a roughly constant intensity and 

at the same position to be used as the reference peak. The intensity and position of the second 

peak (peak B) were varied to give different S/N and RS values. To create a calibration set, five 

samples were created. If peak A were held at exactly constant intensity across these five samples, 

any “cross-talk” between the resolved chromatographic profiles of the two peaks may influence 

the calibration quality of peak B. To account for this, a slight variation in the intensity of peak A 

(uncorrelated with peak B) across the samples was introduced in the data. A spectral dimension 

was added by first creating four artificial spectra. These were created by combining Gaussian 

peaks of varying positions (along the wavelength dimension) and peak widths to create realistic 

spectra. One spectrum was set as a reference, while the other three were used to create different  
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Figure 4.1. Simulated spectra used to create simulated datasets. The similarity of the spectra to 

the reference spectra (black) as measured by 
2

rspectra are 0.50 (blue), 0.95 (red), and 0.98 (green). 

 

spectral correlations with the reference spectrum (listed in Table 4.1).  These spectra are shown 

in Fig. 4.1. 

Background data were added to each sample using real instrument backgrounds taken 

from 15 blank, gradient chromatographic runs. For each sample within a dataset, two 

backgrounds were chosen at random from the set of 15 backgrounds and a weighted average was 

calculated using random weights.  These were then added to the simulated data. By taking 

randomly weighted averages, an infinite number of different backgrounds were able to be created 

within a reasonable range.  Examples of the simulated chromatograms are shown in Fig. 4.2. 
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Figure 4.2. Examples of simulated chromatograms at varying S/N and RS values. Each color 

represents one of the five different samples in each dataset. 

 

Twenty-seven of these datasets were created with different combinations of the factors 

shown in Table 4.1, each with the same set of five backgrounds. Each of these datasets was then 

analyzed individually with MCR-ALS. 

4.2.2. Multivariate Curve Resolution- Alternating Least Squares 

For each of the 27 datasets, MCR-ALS was performed to resolve peak A and peak B from 

each other and from background in order to build a calibration curve based on the area of peak B. 

IOPA was used as an initial guess. Non-negativity and selectivity were used in both spectral and 

chromatographic dimensions. Unimodality was used in only the chromatographic dimension and 

normalization was used in the spectral dimension. A background smoothness constraint was used 

in the chromatographic dimension on the background component(s). This constraint ensures the 

background chromatographic profiles are smooth, which is expected for backgrounds caused by 

a changing mobile phase composition. This constraint is based on Eilers’ perfect smoother 
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algorithm [125] which requires a single value be input to determine the extent of smoothing. In 

order to remove any peak-like features in the background, this value was set high to effectively 

“over-smooth” the background chromatographic profiles.. For all analyses, except in cases where 

S/N was 26, three components were used. For the cases S/N was 26, five components were 

needed to sufficiently resolve peak from the background.  

After MCR-ALS resolution, the area of peak B was calculated for each sample by 

summing all intensities in the resolved chromatogram of peak B and a calibration curve was 

built. From this calibration the quality of fit was calculated using the coefficient of determination 

of the calibration curve ( 2
r
cal

).  

4.2.3. Monte-Carlo Simulations 

After the MCR-ALS analyses of the 27 datasets, the set of background chromatograms 

was changed to a new, randomly generated set of backgrounds produced in the same manner as 

the previous set. The entire process was repeated including creation of datasets and MCR-ALS. 

This process was repeated a total of 50 times to give 50 replicates for each of the 27 

combinations of factors, each with a slightly different background.  

4.2.4. Modeling 

From the calibration curves, the coefficient of determination ( 2
r
cal

) was calculated. A 

model was built using the average 2
r
cal

from each combination of factors (n = 50) as the response 

variable and S/N, RS, and 
2

rspectra  as the predictors. Before building the model, both the spectral 

and calibration r
2

 variables were converted to angles using Eq. 4.1 [126]. Using angles (θ) rather 

than r
2
 as the model variables allows for greater sensitivity particularly at higher values of r

2
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where a difference between 0.9 and 0.999 is mathematically small, but very meaningful in terms 

of fit quality. In terms of angles the difference between these two values is 10-fold. Of note is the 

inverse relationship between r
2
 and θ.  

  
2 2cosr    (4.1) 

A model was built including independent terms and interaction terms, to predict the 

quality of the calibration using the three predictors. The generic model is shown in Eq. 4.2, 

where b represents the intercept, the m values represent the coefficients, and the x terms are the 

predictors, defined in Table 4.2. Only terms whose coefficients were statistically significant 

(p<0.05) were included in the final model. 

  
3 3 3

log
1,2,3 1 2 31 1 1

b m x m x x m x x xi i ij i jcal i i j
      

  
  (4.2) 

Table 4.2. Predictors used in building prediction model 

i or j x 

1 log(θspectra) 

2 log(S/N) 

3 log(RS) 

 

4.3. Results and Discussion 

A model was built with S/N, RS, and θspectra as predictors and θcal as the response variable 

as shown in Eq. 4.2 and Table 4.2. All terms were log-scaled to ensure no negative predicted 

values. Each independent term and cross-term was evaluated for its significance in affecting the 
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model using significance testing.  Terms with p-values < 0.05 were included in the final model.  

The terms included are listed in Table 4.3 along with their corresponding coefficient (m), 

standard error (SE), and p-value. To interpret this model, it is important to remember the inverse 

relationship between r
2
 and θ. A larger θcal indicates a worse 2

r
cal

for the calibration curve and a 

larger θspectra indicates more dissimilar spectra. As shown in Table 4.3, θspectra has an inverse 

relationship with θcal; as the spectra corresponding to peaks A and B become more dissimilar, the 

calibration fit quality improves, as expected. Similarly, S/N and RS have inverse relationships 

with θcal; as the peak becomes less intense and the peaks become more overlapped, the 

calibration fit quality worsens.  Several cross-terms were also found to be statistically significant 

including a quadratic term for θspectra as well as all of the interaction terms between the 

predictors.  

 

Table 4.3. Coefficients and errors for predictive model of calibration quality 

Term* m SE p-value 

Intercept 1.15 0.11 <0.0001 

θspectra -1.670 0.075 <0.0001 

S/N -0.646 0.030 <0.0001 

RS -0.35 0.15 0.0331 

(θspectra)² -1.70 0.34 <0.0001 

θspectra *S/N 0.47 0.10 0.0001 

θspectra * RS -2.00 0.30 <0.0001 

S/N* RS 0.50 0.12 0.0007 

(θspectra)² *RS -4.3 1.4 0.0061 

θspectra *S/N* RS 1.46 0.39 0.0016 

*All variables are log-scaled; cross-terms are mean centered 
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 Using this model, quantitative performance can be predicted with different combinations 

of S/N, RS, and θspectra (or 
2

rspectra ). Of particular interest in this work is the prediction of the 

resolution required to obtain satisfactory calibration curves given a particular S/N and spectral 

similarity. Figure 4.3 shows the effect of RS on 2
r
cal

at three different S/N values. A threshold 

value of 2
r
cal

was defined at 0.999 for defining a satisfactory calibration, which is shown by the 

dotted line in Fig. 4.3. The point at which the calibration fit quality rises above 0.999 is 

considered the minimum resolution for quantitative analysis, '

sR . As is shown in the figure, this 

value greatly depends on 
2

rspectra , represented by the colored lines. 

 

 

Figure 4.3. Predicted calibration quality ( 2
r
cal

) versus RS at S/N = 100 (A), 50 (B), and 26 (C). 

The dotted line represents a threshold 2
r
cal

 of 0.999, above which represents a satisfactory 

calibration curve. 



 
 

47 
 

 

Figure 4.4 shows the relationship between '

sR  and S/N at various values of 
2

rspectra . As 

expected, as the correlation between the spectra decreases, the ability to perform quantitative 

analysis at lower RS and S/N improves. For example, at 
2

rspectra = 0.75, satisfactory quantitation at 

S/N = 50 is possible at a resolution as low as 0.25. With more similar spectra (i.e., higher 

correlation), MCR-ALS does not provide satisfactory results for peak resolution because MCR-

ALS works by separating peaks based on the difference between the spectra of the different 

compounds. This explains the results in Fig. 4.4 that at higher values of 
2

rspectra the '

sR  increases 

and is greater than one at low S/N; however, '

sR  is a function of the threshold 2
r
cal

. In Fig. 4.3 it 

can be seen that the 2
r
cal

is still greater than 0.99 in all cases, showing that MCR-ALS is able to 

resolve the analyte signals with similar spectra and low S/N, just with a worse calibration fit 

quality. 

 

 

Figure 4.4. Calculated minimum resolution required for quantitation ( '

sR ; defined at 2
r
cal

 = 

0.999) as a function of S/N. Each line represents a different spectral correlation (
2

rspectra ) as 

shown in the legend. Values in the gray area are below the range of the model and thus are 

extrapolated values. 
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4.3.1. Effective peak capacity in MCR-ALS 

As shown in the previous section, MCR-ALS is able to resolve severely overlapped 

signals permitting quantitative analysis at low chromatographic resolution. In order to determine 

the enhancement in peak capacity, an effective peak capacity in MCR-ALS (nC,MCR) is defined by 

Eq. 4.4 which includes the parameter, '

sR , the minimum required resolution for quantitation. 

Traditionally nc for a gradient LC separation is defined as the analysis time (tanalysis) divided by 

the peak width at four times the standard deviation (σ) of the peak. By incorporating this 

traditional peak capacity, nc, into Eq. 4.3, Eq. 4.4 is obtained. From this equation, it can be 

shown that the peak capacity enhancement is proportional to the inverse of RS’.  

  , '4

analysis

c MCR

S

t
n

R
   (4.3)  

  
, '

c
c MCR

S

n
n

R
   (4.4) 

Conventionally, peak capacity is defined at '

sR  = 1, giving the traditional peak capacity equation. 

When using MCR-ALS, quantitation is possible at resolutions less than one, as shown in Fig. 

4.3. Using '

sR values from Fig. 4.4 in Eq. 4.3, the effective peak capacity can be estimated and 

the peak capacity enhancement can be calculated. For example, in a chromatogram where the 

target peak has a S/N of 100 (S/Nreference = 1026) and the 
2

rspectra of the two compounds is 0.9, then 

Rs’ = 0.45, meaning there will be a 2.2-fold enhancement in peak capacity. At higher S/N values, 

the peak capacity is enhanced even more. Quantitative analysis can be performed at RS = 0.20, 

corresponding to a 5-fold enhancement, at an S/N as low as 52, depending on the correlation 

between the compound spectra.  
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4.4. Conclusions 

While MCR-ALS has been well documented in the literature, it has not yet become a 

standard tool in the analytical chemist’s arsenal. In the work presented here, three crucial factors 

impacting the performance of MCR-ALS – S/N, RS, and
2

rspectra – were varied and the potential for 

peak capacity enhancement in quantitative LC-DAD analysis was evaluated. It was found that 

MCR-ALS significantly increased the effective peak capacity. In many cases, the number of 

quantitatively analyzable peaks was increased by a factor of five or more compared to the 

traditional peak capacity at a resolution of one. This has the potential to significantly impact 

analyses by reducing the need for long analysis times and/or complicated methods to completely 

separate analyte peaks for subsequent quantification. The data simulated in this work included no 

pure standards. Previous work in our lab found that including pure standards in the data structure 

submitted to MCR-ALS improves the performance by providing a better initial guess to initiate 

the ALS algorithm [9].   

 In this work MCR-ALS was applied to LC-DAD data; however, the technique is broadly 

applicable to other instrumental methods including LC x LC, LC-MS, various spectroscopies, 

etc. Based on the results here, MCR-ALS can be expected to perform even better with increased 

peak separation (as in LC x LC) or with decreased spectral correlation (as in high resolution 

mass spectrometry). We believe that the ability of MCR-ALS to quantify significantly 

overlapped analyte peaks along with its relative ease-of-use lends itself well to being utilized 

much more often in the analytical laboratory for both routine and complex analyses. 
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Chapter 5: Two-Dimensional Assisted Liquid Chromatography 

This chapter has been adapted, with permission, from D.W. Cook, S.C. Rutan, D.R. Stoll, P.W. 

Carr. Two dimensional assisted liquid chromatography – a chemometric approach to improve 

accuracy and precision of quantitation in liquid chromatography using 2D separation, dual 

detectors, and multivariate curve resolution, Anal. Chim. Acta 859 (2014) 87-95 

Section 5.4.3 was adapted from D.W. Cook, S.C. Rutan, D.R. Stoll. 2016 in preparation for 

submission to Chemom. Intell. Lab. Syst. 

 

5.1. Introduction 

 The increasing need for the analysis of complex samples necessitates the development of 

new analytical techniques and data analysis strategies. Particularly in “-omic” type applications, 

these samples can contain several hundred to several thousands of compounds [4].  For these 

applications traditional 1D chromatography is being pushed to its limits in regards to peak 

capacity, particularly when analysis time is limited. Many of these applications require analyte 

quantitation not merely detection. To do this the analytes must be adequately  resolved in order 

to accurately determine how much is present in the sample  [101]. 

Comprehensive two-dimensional liquid chromatography (LC x LC) can provide a 

significant advantage over one-dimensional liquid chromatography (1D-LC) in terms of 

resolving power. Ideally, the theoretical peak capacity for a two-dimensional (2D) separation is 
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equal to the product of the peak capacities of each separation dimension; however, this peak 

capacity is significantly smaller than ideal due to undersampling and lack of orthogonality 

between the two dimensions as discussed in Chapter 2. Despite these limitations Stoll, Wang, 

and Carr determined through both theoretical and experimental studies that when separation 

times are greater than 10 minutes and the 
2
D separation is conducted sufficiently rapidly, LC x 

LC has superior effective peak capacity as compared to 1D-LC [48,52,65,127]. While multi-

dimensional chromatography has definite advantages in terms of peak capacity and peak capacity 

per unit time, the precision and accuracy of these methods compared to 1D chromatography 

often are not considered. Indeed, multi-dimensional liquid chromatography methods often suffer 

in terms of quantitative performance in comparison to their traditional 1D counterparts [101]. 

Stoll et al. reported percent relative standard deviations (%RSD) for two dimensional (2D) peak 

areas ranging from 0.7% to upwards of 15% with most falling between 1.5% and 7% when 

manual peak integration was employed [59]. In another paper, Stoll et al. compared the precision 

of 1D-LC and LC x LC and found that the 2D peak areas were on average seven-fold less precise 

based on the %RSD  [52]. Kivilompolo et al. reported %RSDs for peak volumes ranging from 

3%-13% for antioxidants in wines and juices [128]. Dugo et al. were able to quantify more 

polyphenols in red wines due to the increased resolving power of LC x LC; however, for the 

compounds detected in both LC x LC and 1D-LC, the %RSD in LC x LC was 12-fold higher 

than in 1D-LC [129].  A summary of these results is presented in Table 5.1. While the 

quantitative ability of LC x LC is improving with improved instrumentation and methods, poor 

quantitation still remains an issue and is unlikely to completely disappear without even more 

complex instrumentation and methods.  
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Table 5.1. Literature reports of quantitation in LC x LC 

Work LC x LC Result 1D-LC Result LC x LC Integration 

Method 

Stoll, et al 2014 [59] %RSD: 0.7 – 15%; 

most between 1.5 – 7% 

Not reported Manual integration 

Stoll, et al 2008 [52] %RSD: 1.5-8% %RSD: 0.2-2.2% Manual integration 

Kivilompolo, et al. [128] %RSD: 3-13% Not reported Manual integration 

Dugo, et al. [129] %RSD: 1.1-4.3% 

*LOQ ~6 x higher for LC 

x LC 

%RSD: 0.1-2.2% 
Chrom

square

 software 

(Chromaleont) 

Place, et al. [130] %RSD: 1.8-5.4% %RSD: 2.7-4.7% Automated integration of 

individual 
2

D slices 

 

Factors that can contribute to this poorer precision include the use of multiple sample 

delivery valves and loops, which require precise control; the sampling of the first dimension; and 

higher background signals at the 
2
D detector. These high background signals result from the use 

of fast second dimension gradients. When short overall analysis times are required, and a 

gradient is used in the second dimension, the speed of the gradient causes a substantial increase 

in the 
2
D baseline due to dynamic refractive index effects in the UV-visible detector cell [131].  

Dilution of the analytes is also of concern. Dilution can occur in two ways. First, the nature of 

LC x LC causes the analytes to be diluted when being delivered to the second dimension [57]. 

One strategy to counteract the dilution issue is to increase the volume of 
1
D effluent injected onto 

the 
2
D column, thereby increasing the number of moles of analyte delivered to the second 

dimension; however, this can lead to volume overload of the 
2
D column. This problem can be 

somewhat ameliorated by on-column focusing in the second dimension as described in Chapter 

2. This on-column focusing can be enhanced by intentionally diluting the 
1
D effluent with a 
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weak solvent before delivery to the second dimension. This is useful for avoiding injection 

broadening on the 
2
D column caused by the delivery of the 

1
D effluent in a stronger solvent  

[59,35]. The amount of dilution needed is dependent on the analytes and should be optimized to 

avoid unnecessary loss of the signal-to-background caused by the loss of signal intensity. 

Sampling of the 
1
D separation can also cause a loss of S/N due to the division of a single 

chromatographic peak into three or more peaks. 

Even given the superior peak capacity of LC x LC, many analytes may still be poorly 

resolved in complex samples, making quantification difficult. Another approach for improving 

peak resolution is to use a curve resolution technique, such as MCR-ALS. Using MCR-ALS, 

Bailey et al. were able to detect 18 peaks in a separation space which had  a calculated 

chromatographic peak capacity of only 5 using a DAD detector [101]. Curve resolution can 

essentially improve resolution without increasing the complexity of instrumentation, while 

maintaining the inherent quantitative abilities of the instrument. This is demonstrated in Chapter 

4 where MCR-ALS was shown to resolve chromatographic peaks with a resolution of less than 

0.25 depending on the spectra similarity and S/N. While curve resolution methods work well for 

moderate to significantly overlapped peaks, they can fail when peaks are severely or completely 

overlapped and have low S/N. This is shown in Fig. 4.3, where the performance of MCR-ALS 

began to degrade at resolutions as high as 0.5 if the spectral similarity between the analytes was 

very high (
2

rspectra  > 0.9). Having the additional chromatographic resolution provided by 

LC x LC can potentially create a powerful technique when both LC x LC and MCR-ALS are 

combined. 
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 In this chapter, a new strategy is presented, termed 2D assisted liquid chromatography 

(2DALC), for improving quantitation in LC x LC. This strategy is outlined graphically in Fig. 

5.1. In this approach the higher resolving power of LC x LC is combined with the superior 

precision available from 1D chromatography by using a diode array detector (DAD) at the end of 

both the first and second dimension columns. By quantifying the 
1
D peaks, this strategy partially 

overcomes the inevitable resolution loss caused by the undersampling of the first dimension 

chromatogram, as well as the decrease in the signal to background ratio resulting from dilution 

encountered in LC x LC. This is accomplished by first using MCR-ALS to get an improved 

estimate of the pure component spectra from the 
2
D DAD data and then using those resolved 

spectra to initiate MCR-ALS analysis of the 
1
D DAD data. Calibration and quantification can 

then be performed using the resolved 
1
D chromatograms.  

 

Figure 5.1. Overall strategy for analyzing LC x LC-DAD data using 2DALC  
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5.2. Strategy 

 Figure 5.1 shows the overall strategy developed here. First, the 2D chromatogram is 

analyzed with MCR-ALS to obtain resolved spectra of the real chemical components. Then, 

these spectra are used to initialize MCR-ALS on the 
1
D chromatographic data to obtain the 

resolved 
1
D chromatograms. Calibration is performed with these resolved 

1
D chromatograms in 

order to assess the quantitative performance of this strategy.  

5.2.1 Instrumental Setup 

 As discussed in Chapter 2, LC x LC commonly uses one detector at the end of the 
2
D 

column, which, after rearranging the data gives the 2D chromatogram. For this work, a 

multichannel detector is also needed at the end of the 
1
D column as shown in Fig. 5.2. In this 

case, both detectors were diode array detectors (DAD); however, this strategy should work with 

other multichannel detectors as well as long as the two detectors are identical. With this setup, 

both a 
1
D chromatogram from the 

1
D DAD and a 2D chromatogram from the 

2
D DAD can be 

produced. The addition of a detector after the first dimension will induce peak broadening due to 

added extra column volume; however, under the conditions of this experiment we estimate that 

the 
1
D detector will add at most a few percent to the 

1
D peak width prior to sampling (assuming a 

flow cell contribution of 1 µL
2
). When this is compared to the broadening of 

1
D peaks due to its 

undersampling [49] , it is evident that the contribution of the 
1
D detector to the effective 

1
D peak 

width is very minor. As discussed in the previous section, pre-dilution with a weak solvent was 

also employed in this setup as shown in Fig. 5.2. 
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Figure 5.2. Instrumental setup for LC x LC with dilution and dual DAD detectors. Reproduced 

from Stoll et al. [59] with permission. 

 

5.3. Experimental 

 All calculations and programs were written in MATLAB version R2013a (Mathworks, 

Inc. Natick, MA). ACD/Labs ChromProcessor 9.0 (Advanced Chemical Development, Inc. 

Toronto, Canada) was used to translate experimental data from Chemstation software files 

(Agilent Technologies Santa Clara, CA, USA, rev. C.01.05) to MATLAB format.  

5.3.1. Simulated Datasets 

 The data discussed in this chapter consists of both simulated and experimental results, 

with each chromatographic analysis consisting of a 2D chromatogram and a 
1
D chromatogram, 

as shown in Fig. 5.3.  

 The simulated chromatograms consisted of two peaks, created by adding Gaussian peaks 

onto real, independent instrumental backgrounds. Backgrounds were collected on an Agilent 

1290 Infinity 2D-LC system (Agilent Technologies, Waldbronn, Germany), which included a 

prototype Agilent pump to control the flow transferred to the second dimension. A more detailed 
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description of the instrumentation can be found in Allen et al. [44]. Mobile phases in both 

dimensions were water as the A solvent and acetonitrile as the B solvent. The first dimension 

consisted of an SB-C18 column (30 mm x 4.6 mm; 5 µm; Agilent Technologies, Little Falls, DE) 

maintained at 40 °C and a flow rate of 0.500 mL/min. A gradient from 5%-95% B over 10 

minutes was used for a 15 minute time of analysis. The 
1
D effluent

 
was split to 0.05 mL/min (see 

reference [65] for more details about splitting) and directed to a pair of 40 µL sample loops 

connected to an 8-port valve. The sample loops were alternatively filled with 
1
D effluent and 

then the effluent was delivered to the 
2
D column by switching the valve position. The cycle time 

was 12 sec and the gradient was 0%-100% B over 9 s. The second dimension consisted of a 

Poroshell 120 C18 column (30 mm x 2.1 mm; 2.7 µm; Agilent Technologies, Little Falls, DE) 

maintained at 80 °C with a flow rate of 3 mL/min.  

 For 2D chromatograms, Gaussian peaks were used in the second dimension (sampled at 

0.0250 sec intervals) and sampled Gaussian peaks were used in the first dimension (sampled at 

12 second intervals), using an in-house MATLAB program [132]. Two separate sets of simulated 

data, differing in only the amount of dilution of the 
1
D effluent before delivery to the 

2
D column, 

were created. The peak heights and widths were chosen to approximately match experimental 

data obtained for an amphetamine mixture. For low dilution conditions, the peak height ratio 

between 
1
D and 

2
D chromatograms was 2:1. For high dilution, the ratio was 10:1.  The 

chromatographic resolution of the peaks was varied from 0.01 to 1 in both dimensions.  At each 

resolution, 15 “samples” were created at varying concentrations including 9 calibration samples, 

4 test samples, and 2 blanks. These concentrations are listed in Table 5.2. The spectra for the two 

analytes were taken from pure samples of 3-methoxyamphetamine (MoxyAmp) and 3,4-

methylenedioxy-N-methylamphetamine (MDMA). The similarity of each compound’s spectra to 



 
 

59 
 

the rest of the data, including background, was measured using the first order selectivity metric 

developed by Lorber [123,133] and calculated as described in Cantwell et al. [134]. The 

selectivity of the analysis of MoxyAmp with respect to the background spectra and the MDMA 

was 0.714, and the selectivity of MDMA with respect to the background spectra and MoxyAmp 

was 0.311. Another measure of spectral selectivity, and that used in Chapter 4, is 
2

rspectra , which 

equals 0.49 for MDMA and MoxyAmp.  From this point on, MoxyAmp will be referred to as 

peak A and MDMA will be referred to as peak B.  

 

Table 5.2. Relative concentrations of samples in the simulated dataset 

 
Concentrations  

Peak A Peak B 

Blank  - - 

Calibration 1 1.00 1.00 

Calibration 2 1.00 0.25 

Calibration 3 1.00 0.50 

Calibration 4 0.25 0.60 

Calibration 5 0.50 1.00 

Calibration 6 0.80 1.00 

Calibration 7 0.60 0.80 

Calibration 8 0.10 0.70 

Calibration 9 0.90 0.10 

Blank  - - 

Test 1 0.50 0.50 

Test 2 0.66 0.48 

Test 3 0.39 0.77 

Test 4 0.88 0.84 
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5.3.2. Experimental Datasets 

 The experimental data consisted of selective LC x LC (denoted sLC x LC) analyses of 

three furanocoumarins – psoralen, angelicin, and 8-methoxypsoralen (8-MOP). The multivariate 

selectivities of these compounds’ spectra were calculated to be 0.160, 0.204, and 0.156, 

respectively. The pairwise 
2

rspectra  values for the furanocoumarin spectra were: psoralen/8-MOP 

0.91; psoralen/angelicin, 0.95; and 8-MOP/angelicin, 0.89.  The data consisted of three mixtures 

and three pure calibration standards for each compound. The concentrations of the components 

in each sample are listed in Table 5.3. In this work, sLC x LC separations of the furanocoumarins 

were performed using an Agilent 1290 Infinity 2D-LC system (Agilent Technologies, 

Waldbronn, Germany). Mobile phases in both dimensions were 10 mM phosphoric acid as the A 

solvent and acetonitrile as the B solvent. The 
1
D separations were carried out on a Poroshell 120 

PFP (100 mm x 2.1 mm i.d.; Agilent Technologies, Little Falls, DE) column maintained at 40 °C 

with a flow rate of 0.15 mL/min and a 5 µL injection. A gradient was used with the following 

conditions: 40%-55% B from 0-6 min; 55%-95% from 6-7 min; 95%-40% from 7-7.01 min; and 

held at 40% until 9 min. The 
1
D effluent was sampled six times at 5-sec intervals starting at 3.75 

min into 40 µL loops following dilution with water at 0.25 mL/min. Each 
1
D effluent sample was 

then delivered sequentially to the 
2
D column, which was a Zorbax SB-C18 (30 mm x 2.1 mm i.d; 

3.5 µm; Agilent Technologies, Little Falls, DE) column maintained at 60 °C with a flow rate of 

2.5 mL/min under isocratic conditions (17.5% B) over 45 sec. For a more detailed description of 

the implementation of sLC x LC, the reader is referred to Stoll et al. [37].  
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Table 5.3. Concentrations of samples in the experimental dataset 

 
Concentrations (mg L

-1
) 

Angelicin Psoralen 8-MOP 

Blank - - - 

Blank - - - 

Mix 1 4.0 1.5 6.0 

Mix 2 6.0 4.0 1.5 

Mix 3 1.5 6.0 4.0 

Psoralen Standard - 1.0 - 

Psoralen Standard - 2.5 - 

Psoralen Standard - 7.0 - 

8-MOP Standard - - 1.0 

8-MOP Standard - - 2.5 

8-MOP Standard - - 7.0 

Angelicin Standard 1.0 - - 

Angelicin Standard 2.5 - - 

Angelicin Standard 7.0 - - 
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Figure 5.3. Representative chromatograms and spectra from the data analyzed in this work. The 

left column is the simulated data under high dilution conditions and experimental data is shown 

in the right column. A and B show the 2D chromatograms (at 200 nm) with a box around the 

actual section analyzed (the colorbars indicate the intensities in mAU). C and D show the 
1
D 

chromatograms (at 200 nm) and E and F show the pure spectra of the compounds. The peak 

resolution in both chromatographic dimensions is 0.5 (before undersampling) in A and C. See 

section 5.3 for chromatographic conditions.  

 

 To decrease the complexity of the data analysis and speed up analysis, regions of interest 

were selected from the raw data for analysis in both the 
1
D and 2D chromatograms (see the black 
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boxes in Figs. 5.3.A and 5.3.B).  Before MCR-ALS analysis, the data must be augmented as 

described in Chapter 3.  

5.3.3. MCR-ALS 

 MCR-ALS was performed using an in-house algorithm adapted from a previously 

described algorithm [135]. The code is reproduced in Appendix A. Non-negativity was applied 

as a constraint for the 
1
D and 

2
D chromatograms, unimodality was used for the 

1
D 

chromatograms, and spectral selectivity was used to set absorbances at the longer wavelengths to 

zero in the 2D chromatograms to assist in the differentiation of the signal from the background 

[101]. These constraints were applied only to the components which represented real chemical 

compounds; background components were not constrained.  

5.3.4. Calibration  

 The resolved 
1
D chromatograms were integrated over the full retention time range to 

obtain the peak area. This gave acceptable results because of the complete resolution of the 

signals from each other and from the background. For the resolved 
2
D chromatograms, Savitzky-

Golay second-derivative peak detection was employed to deal with the incomplete resolution of 

the analyte signals from the background signal. This was implemented using a Savitzky-Golay 

second-derivative smoothing [74,75] and then finding the peak start and end points based on a 

noise threshold in the second derivative. A window size of 19 points for the simulated 

chromatograms and 115 points for the experimental chromatograms for the second derivative 

smoothing was used, and the noise threshold was set at 0.0025 mAU. The peak area was then 

determined by summing the signal above a linear baseline created between these points in the 

MCR-resolved chromatogram. The areas of the calibration samples were then used to create a 
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calibration curve. The peak areas of the test samples were then used to estimate the predictive 

ability of this method, measured by root mean squared percentage error (RMSPE) as defined by 

Eq. 5.1  [136], where yi is the true concentration, ŷ is the calculated concentration from the 

calibration curve, and n is the number of samples. 

  𝑅𝑀𝑆𝑃𝐸 =
√∑(

𝑦𝑖−�̂�

𝑦𝑖
)
2

𝑛
× 100% (5.1) 

5.4. Results 

5.4.1 Simulated Data 

 Chromatograms were simulated to investigate the effect of peak resolution on the 

quantitative capabilities of 2DALC for both low dilution and high dilution conditions. RMSPE 

was used to compare the quantitative ability of 2DALC to the four alternative methods listed in 

Table 5.4. Examples of the 
1
D and 2D data are shown in Figs. 5.3A and 5.3C, and the results are 

summarized in Figs. 5.4 and 5.5. These figures show the RMSPE as a function of both the first 

and second dimension resolutions. The bottom left corner of each panel in Figs. 5.4 and 5.5 

shows the RMSPE for the case where no resolution is achieved in either the first or second 

dimension, and the top right corner of each panel shows the RMSPE for the case of high 

resolution in both dimensions. As expected, there is a clear trend where the performances of all 

of the methods improve as the resolution in both dimensions improves. 
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Table 5.4. Quantitation methods studied in this work 

Method Chromatogram used 

for quantitation 

Method of obtaining initial guess 

1
D-IOPA 

1
D IOPA 

1
D-Pure 

1
D 

Pure analyte spectra with OPA estimated 

backgrounds 

2DALC 
1
D 

2D resolved spectra with OPA estimated 

backgrounds 

2D-IOPA 2D IOPA 

2D-Pure 2D 
Pure analyte spectra with OPA estimated 

backgrounds 

 

 When the two methods of resolving 
1
D chromatograms are compared (rows 1 and 2 in 

Fig. 5.4), it can be seen that IOPA begins to degrade at resolutions less than 0.3 versus using the 

pure spectra, where quantitative results can be achieved even when peaks are almost completely 

overlapped, (represented as a resolution of 0.01 in Fig. 5.4 and 5.5). A similar pattern is observed 

when the two methods of resolving 2D chromatograms are compared (rows 4 and 5 in Fig. 5.4 

and rows 2 and 3 in Fig. 5.5). For peak A, as long as one dimension has a resolution greater than 

0.4, the RMSPE is similar to that obtained using pure spectra as initial guesses. For peak B, the 

results are similar at low dilution; however, at high dilution 2D-IOPA fails to give acceptable 

quantitative results at any 
1
D resolution if the 

2
D resolution is low. In low dilution conditions 

(Fig. 5.4) the RMSPE is almost equal between peak A and peak B. In the high dilution 

conditions (Fig. 5.5) peak B has higher RMSPE values, which is consistent with the higher 

relative residual background in the resolved chromatographic profile due to the lower 

multivariate selectivity of this peak relative to the background and peak A (0.311 vs. 0.714 for 

peak A). In addition, some of the points in the 2D graphs do not follow the trends seen for peak 

A under the high dilution conditions. We attribute this to the difficulty in obtaining accurate peak 
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areas due to the low S/N, despite using peak detection to assist in the differentiation of peaks 

from residual noise in the resolved components. 

 2DALC is superior to 2D-IOPA (row 3 vs. row 4 in Fig. 5.4 and row 1 vs row 2 in Fig. 

5.5). Under the low dilution conditions, the difference is small, but for higher dilution conditions, 

the advantage of quantitation in 2DALC is clear. Both peaks have poorer quantitation in 2D-

IOPA when the resolution is less than 0.5 in both dimensions. Peak B has poorer quantitation at 

all resolutions when 2D-IOPA is used. There are also more inconsistencies in the patterns of both 

peaks, owing to the lower S/N in the 2D chromatogram. When 2DALC is used, quantitative 

performance is slightly better under low dilution conditions (compared to high dilution, compare 

row 3 of Fig. 5.4 to row 1 of Fig. 5.5), whereas the extent of dilution has a much bigger impact 

on the quantitative performance of 2D-IOPA (compare row 4 of Fig. 5.4 to row 2 of Fig. 5.5). 

Based on this we conclude that 2DALC is less sensitive to variations in S/N at the 
2
D detector.   

 2DALC also has advantages over 
1
D-IOPA (row 2 in Fig. 5.4). At 

1
D resolution of 0.25 

1
D-IOPA begins to fail. When the 

2
D resolution is greater than that of the 

1
D resolution, the 

spectrum obtained from the 2D chromatogram provides a better initial guess than IOPA analysis 

of the 
1
D data, and therefore provides better quantitation under both low and high dilution 

conditions. The exception is when 
1
D resolution is greater than 0.25; in this case IOPA is able to 

obtain a sufficiently accurate initial guess from the 
1
D chromatographic data leading to results 

that are equivalent to those obtained using 2DALC.  
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Figure 5.4. Results for simulated data at low dilution conditions (peak height ratio of 2:1). 

Colorbars indicate RMSPE. Scales for the graphs showing pure spectra initial guesses have 

different scales than the other graphs to better show the results. Resolution is defined as the 

chromatographic resolution before undersampling. 
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Figure 5.5. Results for the simulated data at high dilution conditions (peak height ratio of 10:1).  

For comparison to 
1
D results see rows 1 and 2 of Fig. 5. Colorbars indicate RMSPE values. 

Scales for the graphs showing pure spectra initial guesses have different scales than the other 

graphs to better show the results.  

  

5.4.2 Experimental Data 

 Three furanocoumarins – angelicin, psoralen, and 8-MOP – were analyzed via sLC x LC. 

More information on these compounds is provided in Chapter 6. The dataset consisted of 

chromatograms for two mixtures analyzed in duplicate and three separate samples containing 

pure standards for each compound, as outlined in Table 5.3. All samples were analyzed, 
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representing a targeted analysis, in which the compounds present in the mixture are known ahead 

of time. The corresponding 2D and 
1
D chromatograms for one of the mixtures are shown in Figs. 

5.3B and 5.3D, respectively. The results of this analysis are shown in Fig. 5.6. We observe that 

the RMSPE values for the 
1
D-IOPA and 

1
D-pure methods are almost equivalent, and superior to 

all other methods shown. This is because IOPA easily finds almost pure spectra from the 

standards to use as an initial guess. This indicates that when all of the compounds being analyzed 

are known, 2D chromatography does not provide an advantage over 1D chromatography for 

quantitation, when the spectra of the overlapped components are distinguishable and no 

spectrally similar interferents are present. In other words, spectral resolution along with the 

improved precision of 1D chromatography provides the necessary quantitative information 

without the need for the additional chromatographic resolution provided by the 
2
D column, as 

long as pure standards of the target compounds are available. 

 

Figure 5.6. Quantitation error for the five quantitation methods applied to the targeted sLC x LC 

analysis of furanocoumarins (based on experimental data). 

 

 Often, such as in the case of “discovery” type metabolomics investigations, the analytes 

are not known prior to analysis; this is known as an untargeted analysis. To investigate this type 

of problem, the analysis of the furanocoumarin sLC x LC data was repeated, but without using 
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the data for the pure standard samples; this meant that there were no calibration standards 

included in the analysis. Therefore, the quantitative performance of the different methods was 

estimated by dividing the peak area by the concentration of the analyte in the mixture. The 

percent relative standard deviation (% RSD) was then calculated. As seen in Fig. 5.7, 
1
D-IOPA 

now gives the worst results due to the inability to obtain a sufficiently accurate initial guess, due 

to the severe overlap of compounds. Both 2D methods give similar results, with angelicin having 

a very good % RSD, but psoralen and 8-MOP still having a very poor % RSDs. The best results 

in the “untargeted” analysis are given by the 
1
D-pure method; however, this method is only used 

for comparison because pure spectra are not available prior to analysis in the untargeted case. 

2DALC has the next best % RSD, being much better than both 2D-IOPA and 
1
D-IOPA. In this 

case, 
1
D-IOPA gives the worst results.  

 

Figure 5.7. Quantitation error for the five quantitation methods applied to the untargeted sLC x 

LC analysis of furanocoumarins (based on experimental data). 

 

5.4.3. Combined 2DALC (c2DALC) 

 An alternative approach to 2DALC was also investigated. In this variant, 2DALC was 

modified to perform the MCR-ALS analyses on the 
1
D and the 2D chromatograms 

simultaneously. This approach was named combined 2DALC (c2DALC). This method makes 
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use of a data augmentation step similar to that shown in Fig. 3.5. After the rearrangement of the 

2D chromatogram, the 
1
D chromatogram is concatenated with the reshaped LC x LC 

chromatogram along the same augmented axis. This strategy is depicted in Fig. 5.8. This strategy 

is possible because both the 
1
D and 

2
D detectors collect spectral data with the same wavelength 

range and the same spectral resolution, meaning that spectra from both detectors have identical 

wavelength axes [137,138]. By concatenating the 
1
D and 2D chromatograms and performing a 

single MCR-ALS analysis, as opposed to a two-step process in 2DALC, the spectral information 

found in the 2D chromatogram can more directly assist in the resolution of 
1
D chromatogram, 

assuming the spectra are the same between the two detectors. As in 2DALC, the resolved 
1
D 

chromatogram is used for peak integration and subsequent quantitation.   

 

 

Figure 5.8. Overview of the strategy utilized in c2DALC. First, the 2D chromatogram is 

unfolded and then concatenated with the 
1
D chromatogram. This concatenated chromatogram is 

then resolved with MCR-ALS and the 
1
D portion (represented by the gray shading) is integrated. 

Multiple samples can also be used by adding another concatenation as shown in Fig. 3.5. 
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  The assumption that the spectra of the compounds will be identical between the two 

detectors is often incorrect. Because a molecule’s spectral properties are often influenced by its 

solvent environment [139], it can be expected that spectral shifts may occur between the 
1
D and 

the 
2
D detectors. As the molecules elute off of each column, they will be contained in a certain 

solvent composition and therefore a certain solvent polarity. Most often the mobile phase 

composition during the elution of a compound from the 
1
D column will be different than that 

from the 
2
D column. Even if the polarity difference is slight, spectral shifts may occur. To 

investigate the effect of these spectral shifts, data were simulated as described in section 5.3.1. 

One dataset was created with furanocoumarin spectra and the other was created with 

amphetamine spectra, which show less pronounced solvent effects on their spectra. The 

amphetamine spectra are also more dissimilar to each other compared to the furanocoumarin 

spectra. As demonstrated in Chapter 3, this will have an effect on all of the implementations of 

MCR-ALS tested here. The spectra used for the 
1
D and the 2D chromatograms were taken from 

MCR-ALS resolved experimental data from the 
1
D and 

2
D detector, respectively. This allowed 

the use of realistic spectral shifts in the data. As shown in Fig. 5.9, the furanocoumarin spectra 

have more pronounced spectral shifts than the amphetamine spectra. The chromatographic 

resolution in the second dimension (
2
RS) was held constant at 0.4 and the first dimension 

resolution (
1
RS) was varied to determine what effect resolution had on the performance of the 

methods tested.  

 Both datasets were analyzed with c2DALC, 2DALC, 
1
D-IOPA, and 2D-IOPA. The 

results are shown in Fig. 5.10 with 
1
RS values of 0.2, 0.3, and 0.5. In addition to integrating the 

1
D chromatogram in c2DALC as discussed above, the 2D chromatogram was also integrated.  
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Figure 5.9. Spectra used for data simulation. (A) shows the furanocoumarin spectra and (B) 

represent the amphetamine spectra: methylenedioxymethamphetamine (MDMA), 

methoxymethamphetamine (MoxyMeth), and methamphetamine (Mamp). Spectral correlations 

(r
2
) are a measure of the spectral shifts between the 

1
D spectra (solid lines) and the 

2
D spectra 

(dashed lines). These correlation values were calculated over the spectral range from 200-400 

nm.  

 

These results are labeled c2DALC (2D) in Fig. 5.10. In general, as 
1
RS decreases, the 

performance of 
1
D-IOPA improved, as expected. This trend generally held for 2DALC and 

c2DALC as well; however, the %RSD was generally higher for c2DALC versus 2DALC. For 

these data, 2D-IOPA most often performed the best at low 
1
RS, with a few exceptions; this is 

most likely due to sufficient resolution of the compounds in the second dimension (
2
RS

 
= 0.4) for 

MCR-ALS analysis. The trends seen in the angelicin plot are mostly different than the other 

compounds. This is most likely due to the fact that the angelicin elutes in the middle of psoralen 

and 8-MOP in the 
2
D separation causing peak overlap on both sides of the peak. In the 

1
D  
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Figure 5.10. Comparison of c2DALC, 2DALC, and other methods at varying 
1
D resolution. 

2
D 

resolution was held constant at 0.4. c2DALC (2D) represents the results when the 2D 

chromatogram was integrated after c2DLAC as opposed to the 
1
D chromatogram.  Results from 

both furanocoumarins and amphetamines are shown, where the amphetamine spectra are less 

affected by the solvent difference between the 
1
D and 

2
D detector.  

 

chromatogram, angelicin elutes last, possibly explaining the low %RSD values for 
1
D IOPA. 

Another interesting trend shown in Fig. 5.10 is that of c2DALC when the 2D chromatogram is 

integrated (labeled as c2DALC (2D)), rather than integrating the 
1
D chromatogram. For many of 

the compounds, the %RSD values are lowest for c2DALC (2D) at low 
1
RS values and increase as 

1
RS increases. This is the opposite trend as c2DALC (where the 

1
D chromatogram is integrated). 

The goal of c2DALC is the simultaneous optimization of the 
1
D and 2D chromatograms. Ideally, 

the optimal solution would match the true peak profiles for both the 
1
D and 2D chromatograms 
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(i.e., %RSD close to zero for both chromatograms); however, the opposing trends suggest that at 

low values of 
1
RS, c2DALC is optimizing the fit based on the 2D spectra whereas at higher 

values of 
1
RS c2DALC is optimizing based on the 

1
D spectra. Due to this finding, and the 

observation that c2DALC did not provide a significant advantage over 2DALC, we decided not 

to pursue c2DALC for further analyses, such as those in Chapter 6.  

5.5. Conclusions 

 A new method of quantitation in LC x LC based on the use of multivariate detection with 

a DAD in both dimensions has been developed. This method, 2DALC, uses MCR-ALS analysis 

of the 2D chromatogram to obtain a better initial guess for the component spectra for subsequent 

MCR-ALS analysis of the 
1
D chromatogram than would be obtained using the 

1
D detector data 

alone. For targeted analyses, where the spectra of all detected compounds are known prior to 

analysis, use of the 
1
D chromatography with pure spectra to initiate MCR-ALS is superior to all 

other methods tested, including all 2D methods. However, in contrast to untargeted analyses, 

where an initial guess of the analyte spectra must be extracted from the chromatograms for the 

unknown sample, 2DALC provides the best quantitation. Further, although not investigated in 

this work, we believe that 2DALC will provide quantitative advantages in targeted analysis in 

which unknown interferences overlap the target analytes.  Based on simulated chromatograms, 

when the 
1
D peak resolution is less than 0.3, 2DALC gives better quantitation than the other, 

more conventional methods of data analysis tested (i.e., improved the accuracy by up to 14-fold 

compared to 1D-LC and up to 3.8-fold compared to LC x LC with a single multivariate detector).  

As chromatographic resolution improves, the quantitative performance of 2DALC and the 

conventional methods converge. The superiority of 2DALC over traditional IOPA-based 

methods increases as chromatographic resolution decreases. Additionally, 2DALC performs 
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increasingly better compared to other methods as sample dilution between the two separation 

dimensions of 2D-LC increases.  

  The performance of 2DALC depends on the spectral dissimilarity between the 

compounds themselves, and between the compounds and the background. The more similar the 

spectra, the harder it is for MCR-ALS to resolve severely overlapped peaks, even with the 

assistance of a second dimension of separation. This changes the threshold chromatographic 

resolution, below which point an advantage is gained by using 2DALC. This observation also 

depends on the degree of dilution between the first and second dimension separations.  The use 

of 2DALC for high dilution cases provides better quantitation compared to quantitation based on 

the 
2
D detector signal because of the lower S/N in the 

2
D chromatogram. Even in low dilution 

cases, the background in the
 2

D detector signal is still worse than the 
1
D signal. The experimental 

data shown here involved a relatively high level of dilution. For other, more hydrophobic 

analytes, less dilution might be required, which should lead to improved performance from the 

MCR-ALS analysis of the 2D chromatogram [35]. It was shown that 2DALC is less sensitive to 

the amount of dilution, and therefore is recommended whenever dilution of any magnitude is 

applied. The results shown for simulated 2DALC also represent an optimistic case in which the 

spectra are identical between the two detectors. While this is often not the case, the experimental 

data confirmed that 2DALC can still provide a quantitative advantage. 

 A combined 2DALC approach was also investigated in which the 
1
D and 2D 

chromatograms were simultaneously resolved with the goal of improving 2DALC due to a more 

direct application of the 2D spectra to the 
1
D MCR-ALS analysis. It was found, however, that the 

effects of different solvent compositions on the analyte spectra at the two separate diode array 

detectors degraded the performance of c2DALC. While in cases of minimal spectral shifts, 
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c2DALC may provide a slight advantage over 2DALC; however, since it was found that even 

slight shifts greatly affect c2DALC, it was not tested in further analyses.  

 2DALC is a simple way to improve the accuracy and precision in the LC x LC analysis 

of compounds present in complex samples by combining LC x LC equipped with dual DADs 

and chemometrics, where neither method alone provides the desired quality of quantitation. 
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Chapter 6: Comparison of Curve Resolution Strategies in LC x LC: Application to the 

Analysis of Furanocoumarins in Apiaceous Vegetables 

This chapter adapted from D.W. Cook, M.L. Burnham, D.C. Harmes, D.R. Stoll, S.C. Rutan, 

Multivariate curve resolution-alternating least squares analysis of high resolution liquid 

chromatography-mass spectrometry data, 2016 in preparation for submission to Chemom. Intell. 

Lab. Syst. 

 

6.1. Furanocoumarins 

 Many naturally occurring compounds in foods we eat are considered bioactive, with 

either positive or negative effects on our bodies. The complexity of the interactions of these 

compounds with our bodies very often means that these compounds can affect multiple 

biological pathways simultaneously, sometimes with both positive and negative effects. Many 

times the difference between beneficial and harmful effects is dependent on the concentration of 

the compound. In pharmaceuticals, medications must be dosed as to maximize the positive 

effects while minimizing the negative effects (i.e., side-effects). In foods it is also important to 

understand the effect of different compounds and their concentration-dependent interactions 

within the body.   

 One class of compounds known to have significant biological activity is 

furanocoumarins, found in significant levels in citrus fruits and apiaceous vegetables. As their 
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name suggests, furanocoumarins are defined by their structure of coumarin with a fused furan 

ring as shown in Fig. 6.1. The two common furanocoumarin isomers, psoralen and angelicin, are 

also shown in Fig. 6.1. Most furanocoumarins can be classified as a derivative of one of these 

two base structures.  

 

Figure 6.1.  Two basic furanocoumarin isomers, psoralen and angelicin, showing the furan and 

coumarin subunits in gray boxes. 

 

 Furanocoumarins are of great interest because of their interaction with the P450 enzymes 

found in the liver. P450 enzymes play a crucial role in the metabolism of many medicines and 

endogenous compounds. The interaction of furanocoumarins with these enzymes can have major 

implications on a medication’s effectiveness. One well-known effect, known colloquially as the 

“grapefruit juice effect,” is caused by furanocoumarins, namely bergamottin, interacting with the 

CYP3A4 enzyme. This enzyme is one of the most common P450s involved in the metabolism of 

many widely used medications such as statins, some blood-pressure drugs, and some anti-anxiety 

medications, to name a few [140]. Traditionally, grapefruit juice has been contraindicated with 

statin use, due to the increased bioavailability of the statins resulting from the decreased 

metabolism by the CYP3A4 enzyme [14]. Furanocoumarins are also known to cause 

photosensitivity, a condition sometimes called bartender or margarita dermatitis due to the rash 

that outdoor bartenders can develop from handling citrus fruits.  
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 While often associated with their negative effects, furanocoumarins’ biological activity 

can often be harnessed for powerful medical treatments. Using grapefruit juice to inhibit 

CYP3A4 has been shown to increase bioavailability of a cancer therapeutic [141]. The 

photosensitizing effect of psoralen has been incorporated with ultra-violet therapy to increase its 

efficacy for diseases such as eczema, psoriasis, cutaneous T-cell lymphoma and others [142]. 

The inhibition of procarcinogen activation has also been studied. Procarcinogens are compounds 

that have the potential to become carcinogenic after activation by enzymes such as P450s. By 

inhibiting these enzymes by consumption of furanocoumarin rich foods, procarcinogen 

activation may be suppressed [143]. Finally, bergamottin has been proposed for treating 

overdoses of acetaminophen by inhibiting the conversion of excess acetaminophen to a toxic 

metabolite via the P450 enzymes [144].   

 Due to the important bioactivity of furanocoumarins, it is crucial to develop methods that 

are able to quantitatively analyze their presence in foods. Because of the complex sample matrix 

that is present in food analysis, it is necessary to employ more advanced analysis techniques. In 

this case, LC x LC is used to provide separation of the target analytes from the matrix, 

interfering compounds, and one another. Due to the complexity and relevance of furanocoumarin 

analysis, it was chosen for testing quantitation using different implementations of MCR-ALS for 

LC x LC-DAD data. Fourteen furanocoumarins were targeted in three apiaceous vegetables – 

parsley, parsnips, and celery. The structures and abbreviations of the fourteen targeted 

furanocoumarins are shown in Fig. 6.2. 
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Figure 6.2. Structures and names of 14 furanocoumarins and the internal standard (IS) 

comprising the target analyte set 

 

 The goal of the work in this chapter was to compare the quantitative performance of three 

methods of implementing MCR-ALS for LC x LC-DAD data. 2DALC as well as 
1
D and 2D 

analysis (both with IOPA initial guesses) were compared in terms of their quantitative 

performance for this dataset. In addition two methods of integrating the resolved 

chromatographic peaks are compared. The first method was manual integration of the resolved 

chromatographic peaks by visually choosing peak start and end points and drawing a linear 

baseline between the two points. The area between this baseline and the peak was then 

calculated. The second method, which we call summation, was performed by simply adding the 

intensities across the entire resolved component. Ideally, MCR-ALS removes most of the 

background contributions and interfering compounds signals (except spectrally identical 

compounds). This means that any points with non-zero intensity should correspond to the analyte 
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signal. By summing all intensities, this should provide a simple alternative to the tedious manual 

integration approach. 

6.2. Experimental 

 LC x LC analyses, including sample preparation, were carried out in the lab of Dwight 

Stoll at Gustavus-Adolphus College. Fourteen furanocoumarin compounds, listed in Fig. 6.2, 

along with one internal standard, 4-chlorobenzophenone (CBP) were analyzed. Samples of three 

apiaceous vegetable types – parsley, parsnip, and celery – were then analyzed for the presence 

and concentration of these 14 target compounds. 

6.2.1. Plant Extracts 

 Samples of parsley, parsnips, and celery were purchased from a local grocery store and 

were provided by Sabrina Trudo and colleagues at the University of Arkansas. Sample 

preparation was accomplished using a QuEChERS methodology [145,146]. In general, the 

QuEChERS method entails the following steps: homogenization of sample with acetonitrile and 

internal standard, buffering and phase separation with salts, centrifugation and extraction of 

organic phase, and sample clean-up with dispersive solid phase extraction. For the vegetables in 

this work, samples were prepared combining 5.0 g of wet vegetable matter with 10 mL of water 

and 10 mL of acetonitrile (ACN) with 0.1% acetic acid. This mixture was then homogenized in 

an Ultra Turrax T25 Homogenizer (IKA Laboratories, Wilmington, NC) for 3 min. A 1 g portion 

of sodium acetate and 4 g of magnesium sulfate were added to the homogenate and hand-mixed 

by inversion for 2 min.  Samples were then centrifuged at 3,000 rpm for 5 min at room 

temperature which resulted in three distinct layers: ACN, vegetable matter, and aqueous.  

Following centrifugation, 1.8 mL of the supernatant (i.e. the ACN layer) was transferred to a 2 
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mL dispersive solid extraction (dSPE) tube (United Science 20 CarbonX QuEChERS; Center 

City, MN; part number 05040114) to remove highly non-polar compounds such as pigments and 

lipids from the extract. Water was added to the dSPE tube to 10% of total volume to improve 

retention of undesirable non-polar compounds and tubes were vortexed with a Mini Vortex 

(VWR Part Number 12620-852, Radnor, PA) at the maximum speed setting. Samples were again 

centrifuged at 6,000 rpm for 30 sec and the supernatant was transferred to a HPLC vial and 

diluted 1:2 with water prior to LC analysis.   

6.2.2. Chromatographic Conditions 

 The LC x LC analyses were performed on modules from the Agilent Technologies 1290 

Infinity line (Agilent Technologies.  Waldbronn, Germany). Samples were injected using an 

autosampler (Model G4226A). First and second dimension flows were generated using binary 

pumps (Model G4220A); a quaternary pump (Model DEQAT00023) was used to dilute 
1
D 

effluent. Thermostated column compartments were used in both dimensions (Model G1316C) 

and nominally identical diode-array UV detectors (DADs) (Model G4212A) were used at the 

outlets of the 
1
D and 

2
D columns. Low dispersion flow cells (800 nL volume, Model G4212-

60038) were used in both the 
1
D and 

2
D DAD detectors.  At the outlet of the 1D flow cell a 

pressure relief valve (Model G4212-60022) was used to protect the cell from breaking due to 

downstream pressure.  A 2-position 8-port Duo-valve (Model 5067-4214) fitted with two 80 µL 

stainless-steel loops mounted on an external valve drive (Model G1170A) was used to transfer 

fractions of 
1
D effluent to the 

2
D column.  The 2D-LC instrument was controlled by OpenLab 

Chromatography Data System (Agilent Technologies.  Rev. C.01.07). 
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 The 
1
D separation was performed using an Agilent Poroshell 120 PFP (100 mm x 2.1 mm 

i.d.) column with 5 mF sodium phosphate at pH 6 (A) and methanol (B). The unit milliformal 

(mF) used here indicates the amount of sodium phosphate added to solution rather than the 

amount of phosphate species that exists in solution after dissociation.  A gradient was used with 

the following conditions: 45-45-75-100-100-45-45 % B from 0-12.5-29.5-31.5-33-33.01-36 min; 

this is shown in Fig. 6.3. The temperature was held at 20°C and the flow rate was 0.25 mL/min 

from 0-7.5 min and 0.125 mL/min from 7.51 to 36 min.  Beginning at 7.0 min, the 
1
D effluent 

was diluted with 20 mM phosphoric acid in water at 0.15 mL/min to promote focusing of the 

analyte bands at the inlet of the 
2
D column [19]. The diluted effluent was collected in 80 µL 

sample loops before injection on the 
2
D column. 

 The 
2
D separation was performed from 7.5-36 min using an Agilent Zorbax SB-C18 

rapid resolution high definition (RRHD) (50 mm x 3.0 mm i.d., 1.8 µm) column using 20 mM 

phosphoric acid in water (A) and acetonitrile (B) as mobile phase components.  The temperature 

was held at 50°C and the flow rate was 2.5 mL/min. The 
2
D mobile phase was held isocratic at 

42% B until 12.5 min and then a shifted gradient was employed as shown in Fig. 6.3. 

6.2.3. Data Analysis 

All computation was performed on a Dell Precision T3600 with an Intel Xeon E5-1620 

CPU at 3.60 GHz and 32.0 GB of RAM. Data files were converted from Agilent .D format to 

MATLAB .mat format files using ACD/Lab Spectrus Processor (Advanced Chemical 

Development, Inc., Toronto, Canada). All other computational analysis was performed in 

MATLAB version R2013a (Mathworks, Inc., Natick, MA). 
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 Figure 6.3. Gradient profiles for the 
1
D and 

2
D pumps. Time has been cut off from 0-10 minutes 

as the percentages for both dimensions remain constant. 

MCR-ALS was performed using an in-house algorithm which accepts LC x LC data in 

the original four-way data format (
2
D time x 

1
D time x spectra x sample). In the current work,  

non-negativity and selectivity were used in both the chromatographic and spectral dimensions. 

Unimodality was used in some cases; however, in many cases, particularly when analyzing the 

1
D chromatograms, interferents were present in the resolved component chromatograms, 

meaning that the true, underlying chromatographic profile contained more than one peak. 

Implementing unimodality in these cases would incorrectly constrain the chromatographic 

profiles, leading to incorrect results.  

Prior to MCR-ALS analysis, the data were divided into sections to minimize 

chromatographic complexity and data size. The sections chosen for analysis are shown in Fig. 

6.4. For MCR-ALS analysis, the full dataset was subdivided into three smaller datasets. Each 

dataset contained all samples from a single vegetable type (nparsley = 56; nparsnip = 56; ncelery = 54). 

Each dataset also contained two blanks and three calibration sets, each consisting of five 

standard mixtures with analyte concentrations ranging from 1 – 50 µg/mL. Internal standard 
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calibration curves were created by integrating the resolved chromatograms, with each of the 

methods described in the following section. Because the concentrations of many of the 

compounds were found at the low end of this concentration range, calibration standards that were 

much higher than the predicted concentration in the extract were eliminated from the calibration 

curves, and analyte concentrations were predicted with this new calibration curve.  The narrower 

range of concentrations allowed for increased accuracy of prediction.  

 

 

Figure 6.4. Representative chromatograms of a standard (blue) where all compound 

concentrations are 10 µg/mL and a parsley extract (red; offset by 50 mAu in (A)). (A) and (B) 

show the 
1
D and 2D chromatograms, respectively. The boxes indicate the windows chosen for 

analysis and the numbers labeling the peaks correspond to the compounds in Fig. 6.2. IS = 

internal standard. 
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MCR-ALS was performed on the data using three strategies: 
1
D, 2D, and 2DALC. The 

1
D analysis corresponds to MCR-ALS being applied to only the 

1
D chromatogram, collected at 

the 
1
D detector. Likewise, the 2D analysis corresponds to MCR-ALS being applied to only the 

2D chromatogram, collected at the 
2
D detector. Both of these methods used IOPA as the initial 

guess. Finally, 2DALC is the strategy described in Chapter 5, utilizing both the 
1
D and 2D 

chromatograms.  

6.3. Results 

Extracts from the three vegetable types – parsley, parsnips, and celery – were analyzed 

via LC x LC. Using diode array detectors (DAD) placed at the end of both the 
1
D and 

2
D 

columns, both 
1
D and 2D chromatograms were collected. This allowed for the comparison of 

quantitative performance of 1D and 2D chromatography. Representative chromatograms from 

both a standard and a parsley extract are shown in Fig. 6.4. From this, it can be seen that, as 

expected, the peaks are separated much better in the 2D chromatogram; however, interferents are 

still present. It is also important to note that lower level interferents in the 2D may not been seen 

in the 2D chromatogram due to the contour plot style in which minor peaks may not be seen. 

6.3.1. Comparison of Integration Methods 

Ideally, MCR-ALS completely resolves the pure analyte signals from the background and 

noise. This would allow for the integration over the entire pure analyte component. This is 

simply a summation of the total signal intensity contained in the resolved chromatographic 

profile of each component as shown in Fig. 6.5B. Unfortunately, MCR-ALS with DAD data 

rarely eliminates background and noise completely. This complicates the summation process by 

including residual background producing an overestimate of peak  
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Figure 6.5. Graphical representation of integration methods compared. (A) shows a 

MCR-ALS resolved LC x LC chromatogram. (B) and (C) show the rearranged LC x LC 

chromatogram with summation and manual integration, respectively. The shaded area represents 

the area calculated for quantitation. The percent difference in calculated peak area for these two 

chromatograms is 9.9%.  The results from the two integration methods are identical for 1D LC.  

 

area. In contrast, manual integration is performed by visually estimating the peak start and end 

points, drawing a linear baseline between those points, and integrating the peak area between that 

baseline and the peak as shown in Fig. 6.5C. 

To compare manual integration to simple summation, resolved chromatographic profiles for both 

the calibration set and the unknown samples were integrated using both methods. Calibration 

curves were constructed and the concentrations in the samples were predicted. Since the samples 

were run in duplicate, the differences between the duplicates can be taken as a measure of the 

precision of each integration method. Figure 6.6 displays the sum of these differences across all 
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samples for five of the furanocoumarin compounds. By comparing Fig. 6.6A and 6.6B (showing 

the two integration methods), it can be seen that four of the five compounds showed better 

agreement between duplicates for all methods when manually integrated, as expected. The fifth 

compound, isoimperatorin, showed similar results between summation and manual integration 

across the three methods. This indicates that there is a significant amount of residual background 

and/or noise in four of the components which can be excluded with manual integration. While 

manual integration is considerably more tedious, the results are superior in terms of quantitation. 

 

 

Figure 6.6. Comparison of quantitative performance between different implementations of 

MCR-ALS. The difference in predicted concentration between instrumental duplicates is used to 

estimate the quantitative performance.  (A) shows the results when the peaks are manually 

integrated. (B) shows when the resolved chromatograms are integrated over the entire 

component. 
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6.3.2. Comparison of Curve Resolution Strategies 

In addition to manual versus summation approaches, it is important to understand the 

performance of the three methods tested – 
1
D, 2D, and 2DALC. Figure 6.6 compares the 

agreement between duplicates for the three methods tested. Figure 6.6A shows the comparison 

when employing manual integration. When comparing the 
1
D and 2D data analysis, the results 

are similar, with the 2D analysis having better agreement between the duplicates for 8-MOP and 

isoimperatorin, while the duplicates for imperatorin agree better with 
1
D analysis. However, note 

that these differences are not very large. Overall, 
1
D and 2D are similar due to the ability of 

manual integration to exclude interferents and background. Figure 6.6B shows the results for the 

summation approach. Overall the agreement is worse than for manual integration due to the 

residual background that occurs in all methods. For most of the compounds the 
1
D analysis has 

better agreement than the 2D analysis, with the exception of psoralen, which eluted early and had 

more interferents that may not have been completely resolved with MCR-ALS. Interestingly, 

when manual integration was applied, 2DALC had the best agreement only for imperatorin; 

however, for the summation approach, 2DALC performed the best or was equal to the best 

method for all but psoralen, most likely due to less residual background. For summation, any 

slight errors in MCR-ALS analysis would be overshadowed by residual noise, but when manual 

integration is employed, the small differences between resolution results obtained using the 

different methods become more evident.  

For the best quantitative results, it is shown that 2D with manual integration is the best 

method for this data set; however, this process can be very time consuming. If the summation 

approach is to be utilized the 
1
D data provides superior results due to the fact that the signal-to-

background ratio is higher in the 
1
D chromatograms. This is, however, limited to cases in which 
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there are no interfering compounds, meaning a compound with the same spectra occurs in the 

same resolved component as the target compound. In the presence of interfering compounds, the 

additional chromatographic resolution provided by LC x LC is key.  

6.3.3. Vegetable Results (from 2D Manual) 

Concentrations for the furanocoumarins in all three vegetable types were calculated using 

the 2D chromatograms with manual integration, which was determined to be the most precise 

method tested here as discussed in sections 6.3.1 and 6.3.2. The results are shown graphically in 

Fig. 6.7. Out of the fourteen compounds targeted in this analysis, only ten compounds were 

detected and the concentrations of these ten compounds are represented in the figure. Four 

compounds – trioxsalen, phellopterin, epoxybergamottin, and bergamottin – were not detected in 

any vegetable type in this study. It is interesting to note the wide range of concentrations for 

many of the compounds even within the same vegetable type. The sources of this large variation 

are unknown at this time; however, they may be related to the freshness, purchase data, 

geographical origin, or species of the vegetables. Correlations between sample information and 

analyte concentrations are currently being investigated by Sabrina Trudo (University of 

Arkansas, Fayetteville, AR) whose goal is to study the physiological effects of the consumption 

of these vegetables on rats, particularly in terms of anti-cancer properties [147]. Overall, the 

parsley samples had the highest concentrations of furanocoumarins, followed by parsnips, and 

then celery, on a per gram basis, but since the typical serving of parsley is much smaller than 

parsnips or celery, this does not reflect an actual dietary load. 
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Figure 6.7. Concentration (C) of detected furanocoumarins in the three vegetables as calculated 

with manual integration of the 2D chromatogram. The box represents the median and the 1
st
 and 

3
rd

 quartiles. Each point represents the average concentration of instrumental duplicates in each 

sample.  Only compounds which were found to be present in at least one vegetable type are 

shown. The total numbers of samples analyzed were: nparsley = 56; nparsnip = 56; ncelery = 54. 

 

6.4. Conclusions 

 When quantitative analysis is performed it is important to consider the impact of all steps 

on the analysis. This is especially true when chemometric techniques are performed on the data. 

Here, several strategies for MCR-ALS analysis for LC x LC were compared along with the 

subsequent integration methods. In most cases 2DALC performed similarly to resolving the 
1
D 
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chromatogram by itself. Even though spectral shifts were present, the two-step strategy of 

2DALC allowed for the 
2
D spectra to be further optimized for the resolution of the 

1
D 

chromatogram.   

  As expected, manual integration was superior to summation approaches; however, this 

approach is time consuming for studies involving many samples and for 2D chromatograms in 

which several 
2
D peaks must be integrated for a single chromatogram. If summation is to be 

used, the 
1
D chromatogram gave better agreement between replicates, but caution must be used 

so that interfering peaks are not included in the component window being summed.  It is possible 

that the resolved chromatograms could be submitted to peak detection for a more automated 

method of excluding residual background [130]. Depending on the performance of the peak 

detection algorithm, results from this approach may approach those obtained from manual 

integration. This would facilitate the use of the 2D chromatographic data to obtain superior 

quantitative results.  
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Chapter 7: Conclusions and Future Work 

 

 As defined in Chapter 1, three main goals were set for the work in this dissertation: 1) to 

characterize the abilities and limitations of MCR-ALS for LC-DAD data; 2) to improve 

quantitative abilities of LC x LC through the use of a novel implementation of MCR-ALS; and 

3) to demonstrate the utility of MCR-ALS for real-world LC x LC analyses. Work was 

performed towards these goals in Chapters 4-6. 

7.1. Reflections on Chapter 4 

 Goal 1 was addressed in Chapter 4 where MCR-ALS was implemented on data over a 

wide range of conditions such as varying S/N, Rs, and spectral similarity. An effective peak 

capacity was defined where the number of analyzable peaks within a separation was defined by a 

calculated threshold RS rather than a RS of one. It was found that even when the target peak was 

of low intensity (i.e. low S/N) and was overwhelmed by a coeluting peak, excellent quantitation 

was achieved even at RS values less than 0.25. This was particularly true when analyte spectra 

were sufficiently dissimilar. These values corresponded to an up to five-fold increase in effective 

peak capacity. This finding clearly demonstrates the potential of MCR-ALS to improve 

separations. This work is particularly meaningful due to the inclusion of background 

contributions to the simulated data, which is often neglected in similar literature reports.  
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 While we believe these results to be representative of expected experimental results, 

future work may include the validation of this work with the use of experimental data. By 

collecting experimental data under a range of conditions such as varying mobile phase 

composition and different analyte concentrations, the chromatographic resolution and S/N can be 

controlled. Spectral similarity can be controlled through the careful selection of different analyte 

pairs. While significantly more involved than the simulated data sets used in Chapter 4, a smaller 

range of data (within the ranges used in the simulations) would be able to be used in order to 

validate the simulation results, rather than creating a full model.   

 The approach used in Chapter 4 can also be used as the basis for a comprehensive 

comparison between MCR-ALS and other curve resolution techniques such as PARAFAC and 

PARAFAC2. For this comparison, retention time shifting should be added as an additional 

parameter because these shifts are known to affect the performance of PARAFAC [4]. 

7.2. Reflections on Chapter 5 

 The second goal was addressed in Chapter 5. A new implementation of MCR-ALS was 

developed for LC x LC data in which data from two detectors were utilized to take advantage of 

the resolution of the 2D separation and the quantitative superiority of the 
1
D separation. It was 

found that a clear advantage was present for the simulated data, particularly when dilution was 

significant. At 
1
D peak resolutions of less 0.3, 2DALC provided a clear advantage. While no 

spectral shifts were incorporated in this data, the experimental data clearly showed that for the 

untargeted analyses, 2DALC did provide better quantitation for two of the three compounds. 

c2DALC was also investigated; however, it was found that even minor spectral shifts greatly 

affected the results and thus, we decided not to pursue c2DALC further. It is important to note 
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that while 2DALC was proven effective in this data, it may not always be superior to 2D or 1D 

chromatography alone, as seen in Chapter 5; however, the ability to obtain 
1
D and 2D 

chromatograms from an LC x LC analysis gives the analyst the ability to choose the best method 

for each analyte. Each of the three methods – 
1
D-IOPA, 2D-IOPA, and 2DALC – are relatively 

simple to run, giving the analyst the opportunity to evaluate which method is best for the given 

data. It is very possible that certain compounds that are not strongly overlapped in the 
1
D may 

work better with 
1
D-IOPA while other overlapped compounds in the same analysis may work 

better with 2DALC or 2D-IOPA, depending on the resolution in the 
2
D separation. 

 The work in this chapter also showed two types of analyses: targeted and untargeted. The 

targeted analysis showed that when standards are available for all compounds, MCR-ALS was 

able to provide excellent calibration and prediction errors. Future work should investigate the 

intermediate case in which only some of the compounds are known prior to analysis.  This would 

represent the case in which unknown compound spectra would need to be estimated from the raw 

data, while known compound spectra are also included in the analysis.   

7.3. Reflections on Chapter 6 

 In Chapters 4 and 5, mostly simulated data were created in order to control 

chromatographic parameters such as RS, S/N, and spectral similarity. This allowed us to 

investigate the effect of each of these parameters individually, which would have been difficult 

to completely control with experimental data. In order to demonstrate the applicability to real-

world analyses, we tested methods of MCR-ALS analysis on a targeted analysis of 

furanocoumarins from three apiaceous vegetables: parsley, parsnips, and celery. The LC x LC 

data were analyzed using the three methods outlined in Chapter 5: 
1
D-IOPA, 2DALC, and 2D-
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IOPA. It was found that for this data set all three methods tested performed approximately 

equally in terms of the precision of quantitation. 2D-IOPA had the advantage that it was able to 

separate chromatographically overlapped, spectrally identical interferents from the target 

compounds, which MCR-ALS is unable to do. As discussed in Chapter 4, MCR-ALS requires a 

minimal level of spectral dissimilarity and chromatographic resolution in order to resolve 

overlapped analyte signals.  Manual integration was also found to provide greater quantitative 

precision over the summation approach despite MCR-ALS removing most of the background. 

This suggests that the quantitative abilities in LC x LC are comparable to 1D-LC for these data 

when MCR-ALS is utilized. These findings are impressive when compared to many of the 

previous literature reports of quantitation in LC x LC.  Because of this, we used 2D-IOPA with 

manual integration to quantify all 14 furanocoumarins. We were able to detect 10 of the 14 

furanocoumarins at varying concentrations. Overall, the concentrations were low and often lower 

than the lowest calibration point; however, an estimate of concentration was able to be 

calculated. The concentrations of each furanocoumarin were found to vary greatly even within a 

single vegetable type. This may be due to vegetable freshness, specific plant species, 

geographical origin, or a plethora of other factors. It may also be due to natural, random 

variations, which would be a significant finding itself. Studies of correlations of the 

concentrations with exact sample information are ongoing. These samples will also be used to 

study the physiological effects of these compounds on rats. Although not performed in this work, 

peak detection may provide an alternative to manual integration that performs better than the 

summation approach, but still in a semi-automated fashion. The peak detection approach in 

Chapter 5 may work; however, selection of parameters for this approach (noise threshold, 
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window size, etc.) can still be tedious. Future work may provide a more automated peak 

detection method that can complement our work presented here. 

 

 

7.4. Outlook and Future Work 

 It is clear from the work presented in this dissertation, along with the body of work in the 

literature, that MCR-ALS and other curve resolution techniques have the potential to greatly 

impact the field of separation science. While widespread adoption of these techniques has yet to 

occur, it is undeniable that these methods provide valuable tools for the analytical chemist. 

 While the identification power of diode array detection has been shown previously [63] 

and has been shown in the previous chapters to be particularly powerful in terms of quantitation 

using MCR-ALS, curve resolution with mass spectrometric detection must be explored due to 

the increasing adoption of both low and high resolution mass spectrometry. Currently in our 

laboratory and in a select few other labs, work is being performed towards this aim 

[109,148,149]. One major impediment to MCR-ALS analysis of LC-high resolution MS data is 

the immense size of the data. LC-DAD analysis collect UV-Vis spectra which typically contain 

100-200 data points per spectrum corresponding to a wavelength range of approximately 190-

600 nm sampled at 2-4 nm intervals. High resolution MS (HRMS) produces several orders of 

magnitude more data points. For example, a mass range of 100-1000 amu at a 0.001 amu 

precision, gives 9 x 10
5 

data points per mass spectrum. In our lab, we implement a data reduction 

strategy that allows us to exclude many of these masses corresponding to background and noise  

[149]. By employing a binning strategy which initially reduces the precision to unit mass, MCR-
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ALS can be performed to resolve masses corresponding to true chemical compounds and discard 

the remaining masses. Using this limited range of masses, a second binning process takes place, 

this time to 0.1 amu bins. MCR-ALS is performed on this data and once again any masses not 

corresponding to compounds are discarded. This process continues until the final precision level 

is reached as dictated by the instrument’s capabilities.  

 Automation should also be a key focus of curve resolution research moving forward. As 

with any technique, MCR-ALS can always be improved upon; however, if it is difficult to 

implement due to the need for experience and knowledge of computer programming, these 

techniques will never find widespread use. It is our belief that MCR-ALS is developed to a point 

that with automation of certain steps (component determination, application of constraints, etc) 

rather than optimization of the algorithm should be a major focus of research. Some work has 

been performed in other groups towards this goal, specifically on the determination of the 

number of components [150–152]; however, these methods can overestimate the number of 

components [97] and still may require several iterations of MCR-ALS with different numbers of 

components to find the optimal fit. While not completely automated, graphical user interfaces 

(GUI) have been developed for MCR-ALS analysis. One of the more popular MCR-ALS GUIs 

was developed by Jaumot, de Juan, and Tauler [118] which simplify the MCR-ALS process by 

eliminating the need for programming experience, but still requires a certain level of expertise 

and experience on the part of the user to determine the number of components and properly 

apply constraints.  With further automation of these steps and subsequent commercialization of 

MCR-ALS packages, we believe MCR-ALS can become a standard tool in the analytical 

chemist’s arsenal.  
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Appendix A 

 The MCR-ALS analyses in this work was performed in MATLAB using personal code 

adapted from Robert Allen and Ernst Bezemer, previous graduate students in the Rutan group. 

This code is located in Virginia Commonwealth University’s network R drive 

(R:\CHEM\Rutan_lab\Dan\Dissertation\Cook_Toolbox) and is reproduced here. 

als_DWCv5.m 

This is the core function for applying MCR-ALS. It calls upon the function constrain_DWC.m 

which is located within the same directory. The inputs ig and options are obtained using the 

functions listed further in this Appendix. 

function [r_opt,s_opt,IT,fit,conc_opt]=als_DWCv5(data,ig,iterations,options) 
%Adapted from Robert Allen's als_Xv4 
%data consists of 4 dimensions of data in the following order: 
%   1st dim time, 2nd dim time, sample, spectra 
%ig consists of spectra x components 
%iterations is the maximum number of iterations 
%nn is nonnegativity where the 1st row is concentrations and 2nd row is 
%   spectra 
%u is unimodality in which the 1st row is 1st dim and 2nd row is 2nd dim 
%   u must also contain an extra column at the end specifying how to 
%   implement unimodality 
%uTol is tolerance for unimodality 
%csel is chromatographic selectivity in the with the dimensions of: 
%   1D x 2D x sample x component or 1D x sample x component 
%ssel is spectral selectivity with the dimensions of: 
%   spectra x component 

  
%% Initialize data and options 
if size(size(data),2)==3 && size(data,2)>size(data,3) 
    data=permute(data,[1 3 2]); 
end 

  
if size(size(data),2)==4 && size(data,3)>size(data,4) 
    data=permute(data,[1 2 4 3]); 
end 

  
nn=options.NN; 
u=options.Uni; 
uTol=options.Utol; 
ssel=options.ssel; 
csel=options.csel; 
trilinearity=options.Trilinearity; 
smoothness=options.Smoothness; 

  
if exist('constrain_DWC','file') == 0 
    error('Missing constrain_DWC file necessary to impose constraints') 
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end 

  
if any(any(smoothness ~= 0)) && exist('whitsm','file') == 0 
    error(['Missing whitsm function - needed for smoothing.'... 
        'whitsm is part of Perfect Smoother']) 
end 

  
if numel(ssel)==1 
    ssel=NaN(size(ig)); 
end 

  
if numel(csel)==1 
    csel=NaN(size(data)); 
end 

  

  
if size(nn,2) == 1 %if only a single number,duplicate it for all components 
    nn=ones(2,size(ig,2)).*nn; 
end 

  
if size(nn,1)==1 %If nn is only one row, duplicate it for second row 
    nn(2,:)=nn(1,:); 
end 

  
if size(size(data),2)==3 % If the data is 1D data 

     
    if size(u,2) == 1 
        u=[ones(1,size(ig,2)).*u 1]; 
    end 
end 

  
if size(size(data),2)==4 % If the data is 2D data 

     
    if size(u,2) == 1 
        u=[ones(1,size(ig,2)).*u 1]; 
    end 

     
    if size(u,1) == 1 
        u(2,:)=u(1,:); 
    end 

     
end 

  
%%  Begin ALS 
comp=size(ig,2); 
S=ig; 
md=3; 
osq=inf; 
bsq=inf; 
dc=0; 
ssqX=sum(sum(sum(sum((data.^2))))); 

  

  
for n=1:size(size(data),2) 
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    dimensions(1,n)=size(data,n); 
end 
reshapesize=prod(dimensions(1,1:size(size(data),2)-1)); 
refoldsize=dimensions(:,1:end-1); 
if size(dimensions,2) ~= 3 && size(dimensions,2) ~=4 
    error('dimensionality of data is incorrect') 
end 
datars=reshape(data,reshapesize,dimensions(1,end)); 

  
h= waitbar(0,sprintf('0 out of %d iterations',iterations)); 

  
for IT=1:iterations 
    C=datars*pinv(S'); %Solve for concentration profiles 
    C=reshape(C,[refoldsize,comp]); 
    %Constrain concentration profiles 
    for a=1:comp 
        for b=1:dimensions(1,end-1) %samples 
            %If this is LCxLC data, we need to constrain  
            %dimensions differently 
            if size(dimensions,2) == 4 
                for c=1:dimensions(1,2) 
                    C(:,c,b,a)=constrain_DWC(C(:,c,b,a),nn(1,a),u(1,a),... 
                        u(1,comp+1),uTol,csel(:,c,b,a),smoothness(1,a)); 
                end 
                % To constrain 1st dimension, uncomment the next 4 lines 
                %for c=1:dimensions(1,1) 
                %   C(c,:,b,a)=constrain_DWC(C(c,:,b,a),nn(1,a),u(2,a),... 
                %u(2,comp+1),uTol,csel(c,:,b,a),smoothness); 
                %end 
            else 
                if size(dimensions,2) == 3 
                    C(:,b,a)=constrain_DWC(C(:,b,a),nn(1,a),u(1,a),... 
                        u(1,comp+1),uTol,csel(:,b,a),smoothness(1,a)); 
                end 
            end 
        end 
        if any(trilinearity == 1) 
            if size(dimensions,2) == 3 
                [C,Ctril,conc]=apply_trilinearity1D(C,trilinearity); 
            else 
                if IT == 1 
                    warndlg(['Trilinearity constraint is not defined'... 
                        '4-way data. Press OK to continue without'... 
                        'trilinearity','Warning:Trilinearity']) 
                end 
            end 
        end 

         
    end 
    C=reshape(C,reshapesize,comp); 

     
    S=(pinv(C)*datars)'; %Solve for spectral profiles 

     
    %constrain spectral profiles 
    for a=1:comp 
        S(:,a)=constrain_DWC(S(:,a),nn(2,a),0,0,0,ones(size(ssel(:,a))),... 
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            smoothness(2,a)); 
        S(:,a)=S(:,a)/max(abs(S(:,a))); 
        S(:,a)=constrain_DWC(S(:,a),nn(2,a),0,0,0,ssel(:,a),... 
            smoothness(2,a)); 

         
    end 

     
    T=C*S'; 
    res=datars-T; 
    ssq=sum(sum(sum(res.^2))); 
    imp=(osq-ssq)/osq %Percent improvement 
    if IT==1 
        imp=0; 
        r_opt=C; 
        s_opt=S; 
        bsq=ssq; 
    end 
    if ssq<bsq 
        dc=0; 
        r_opt=C; 
        s_opt=S; 
        bsq=ssq; 
    end 
    if ssq<osq 
        dc=0; 
    end 
    if ssq>osq 
        dc=dc+1; 
    end 
    osq=ssq; 
    if dc>md    %If error increases 3 times, its divergent 
        break 
    end 
    if abs(imp<1e-6)&&imp>0 
        break 
    end 

     
    waitbar(IT/iterations,h,sprintf('%d of %d iterations',IT,iterations)) 
end 

  
if exist('Ctril','var')    %If trilinearity was imposed 
    r_opt=Ctril; 
    conc_opt = conc; 
end 

  
r_opt=reshape(r_opt,[refoldsize,comp]); 

  
fit=100*sqrt(bsq/ssqX); 

  
waitbar(IT/iterations,h,sprintf('Completed!')) 
pause(0.5) 
close(h) 

  
if size(ig,2)<5 
    for n=1:size(ig,2) 
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        subplot(4,1,n);plot(r_opt(:,:,n)) 
    end 
end 
if size(ig,2)<8 && size(ig,2)>4 
    for n=1:size(ig,2) 
        subplot(8,1,n);plot(r_opt(:,:,n)) 
    end 
end 

  
if size(ig,2)<13 && size(ig,2)>7 
    for n=1:size(ig,2) 
        subplot(6,2,n);plot(r_opt(:,:,n)) 
    end 
end 

  
if size(ig,2)<17 && size(ig,2)>12 
    for n=1:size(ig,2) 
        subplot(8,2,n);plot(r_opt(:,:,n)) 
    end 
end 
end 

  

  
function [C_out,Ctril,conc]=apply_trilinearity1D(C,components) 

  
C_out=C; 
Ctril=C; 
tril_comp = find(components == 1); 
conc=NaN(size(C,2),size(C,3)); 

  
for k=tril_comp %for each component 
    [Cnorm,~,weights]=normalize(C(:,:,k),1); 
    profile_average=zeros(size(C,1),1); 

     
    for j=1:size(C,2) %for each sample 
        profile_average = profile_average + Cnorm(:,j)*weights(:,j); 
    end 
    profile_average = profile_average./sum(weights(:,j)); 

     
    C_out(:,:,k)=profile_average*weights; 
    conc(:,k)=weights; 
    Ctril(:,:,k)=repmat(profile_average,1,size(C,2)); 
end 

  
end 

 

initialguess.m 

initialguess.m performs IOPA to extract a set number of spectra for use in als_DWCv5.m. If the 

input variable ‘ncomponents’ is left blank a Scree plot is created and the user is prompted to 

choose the number of components. This function calls iopav2.m which is located in the same 

directory. 
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function [ig] = initialguess(data,ncomponents) 
%Function will create intial guess for MCR-ALS using iopav2 
%ncomponents is the number of components you wish to use, if left empty the 
%program will perform SVD and allow you to choose based on Skree plot 

  
if size(data,3)~=1 
    data=reshape(permute(data,[1 3 2]),size(data,1)*size(data,3),... 
        size(data,2)); 
end 

  

  
%Create an intial guess using iopav2 
if exist('ncomponents','var')==0 
    [~,s,~]=svd(data,0); 
    figure 
    plot(log(diag(s)),'*') 
    ncomponents=input('How many components are to be used?'); 
end 
close 
    [ind_opt,max_det]=iopav2(data,ncomponents); 
ig=data(ind_opt,:)'; 
figure 
plot(ig) 
end 

 

 

optionsALS.m 

optionsALS.m creates the options structure for setting constraints in the als_DWCv5.m function. 

Inputting the number of components (NoC) prepopulates each field within the structure. 

function [options] = optionsALS_edit(NoC) 
%%  
%The optionsALS function creates an options structure that is used for  
%   als_DWCv5 

  
%INPUT: 
%   NoC is an optional input of the number of components to prepopulate 
%       some of the constraints with the correct number of elements 

  

  
%nn is nonnegativity; it is input as a vector of 1 x number of components,  
%   with 1 setting component to non-negative and 0 leaving it unconstrained 
%   If one row is set, both concentration and spectra are constrained, else 
%   two rows can be defined, where 1st row= conc and 2nd row=spectra 
% 
%u is unimodality in which the 1st row is 1st dim and  
%   2nd row is 2nd dim(if exists) 
%   u must also contain an extra column at the end specifying how to 
%   implement unimodality; 1 drops concentration to zero vertically, 2 cuts 
%   off horizontally, and 3 cuts intensity to half, which over the course 
%   of many iterations, sets second maximum to zero (3 is most common) 
% 



 
 

121 
 

%uTol is tolerance for unimodality; 1 allow no increase after intial maximum,  
%   1.1 allows 10% increase, etc. 
%    
%csel is chromatographic selectivity in the with the dimensions of: 
%   time x sample x component or 1D time x 2D time x sample x component 
% 
%ssel is spectral selectivity with the dimensions of: 
%   spectra x component 
%Trilinearity sets components to be trilinear. Row vector with sample 
%   number of elements as components. 1 sets trilinear, 0 leaves it 
%   unconstrained. Trilinearity is only defined at this point for 3-way 
%   data 
%Smoothness constrains components to be smooth, based on Eiler's perfect 
%   smoother. First row is concentration, second row is spectra 

  
if ~exist('NoC','var') 
    NoC=1; 
end 

  
field1='NN'; 
value1=zeros(1,NoC); 

  
field2='Uni'; 
value2=zeros(1,NoC+1); 
value2(:,end)=3; 

  
field3='Utol'; 
value3=1; 

  
field4='ssel'; 
value4=NaN; 

  

  
field5='csel'; 
value5=NaN; 

  
field6='Trilinearity'; 
value6=zeros(1,NoC); 

  
field7='Smoothness'; 
value7=zeros(2,NoC); 

  
options=struct(field1,value1,field2,value2,field3,value3,field4,value4,field5

,value5,field6,value6,field7,value7); 

  
end 
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Appendix B 

 

The scripts here are the basic scripts used for the work in Chapter 4. These scripts and related 

functions are saved on Virginia Commonwealth University’s network R drive 

(R:\CHEM\Rutan_lab\Dan\Dissertation\Chapter 4). 

MonteCarloALS.m 

The script below was used for the design of experiments, simulation of data, and MCR-ALS 

resolution of the simulated data. In addition to the functions for MCR-ALS as listed in Appendix 

A, two additional functions were created and used in this script. They are reproduced in this 

Appendix as well.  

sfact=[12.54 6.27 0.627]'; 
position=[4.7 4.6 4.55]'; 
specind=[3 5 6]'; 

  
%create design of experiments 
dFF=fullfact([size(sfact,1) size(position,1) size(specind,1)]); 
clear DOE 
DOE(:,1)=sfact(dFF(:,1)); 
DOE(:,2)=position(dFF(:,2)); 
DOE(:,3)=specind(dFF(:,3)); 
%set the number of components to use for MCR-ALS 
DOE(:,4)=3; 
DOE(3:3:27,4)=5; 

  
clearvars -except DOE 
load(['C:\Users\CHEM_RUTANLAB\Documents\Dan\MatLab\'... 
    'MCR-ALSperformanceReview\18Jan16\Artificial_Spectra.mat']) 
for k=1:50 
    NoS=5; %number of samples in each dataset 
    OptAll=struct; 
    for i=1:size(DOE,1) 

         
        [bkgd,time,wave]=genbkgd(NoS);%Generate random backgrounds 

         
        OptAll(i).Opt=optSim(2); %Options for peak creation 
        OptAll(i).Opt.Background=bkgd; % #samples 
        OptAll(i).Opt.Time=time; 
        OptAll(i).Opt.Sigma(:)=0.05; % #peaks 
        OptAll(i).Opt.Spectra=spectra(:,[DOE(i,3) 1]); 
        OptAll(i).Opt.Position=[4.5 DOE(i,2)]; 
        OptAll(i).Opt.Intensity(1:NoS,1)=[28.2 21.9 25.1 23.5 26.6]; 
        OptAll(i).Opt.Intensity(1:NoS,2)=[0.1 0.25 0.5 0.75 1].*DOE(i,1); 
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    end     
    clear bkgd 

     
    for i=1:size(DOE,1) 
        %Simulate peaks 
        [peaks,results(i).profiles,results(i).res]=peakSim(OptAll(i).Opt);  
        results(i).spectra=OptAll(i).Opt.Spectra; 
        results(i).intensity=OptAll(i).Opt.Intensity; 
        %results(i).peaks=peaks; 
        n=DOE(i,4); 

         
        ig=initialguess(reshape(permute(peaks,[1 3 2]),size(peaks,1)*... 
            size(peaks,3),size(peaks,2)),n); 

                
        %number of components 
        ALSopt=optionsALS(n); %Options for MCR-ALS 
        ALSopt.NN(1:2)=1; 
        ALSopt.Uni(1:2)=1; 
        ALSopt.ssel=NaN(113,n); 
        ALSopt.ssel(40:end,1:2)=0; 
        ALSopt.csel=NaN(size(peaks,1),size(peaks,3),n); 
        ALSopt.csel([1:190 700:end],:,1:2)=0; 
        ALSopt.Smoothness(1,3:end)=10e4; 

         
        %Rearrange intial guess to match the order of the real spectra 
        rearr=corrcoef(cat(2,ig,results(i).spectra)).^2;  
        rearr=rearr(1:n,n+1:n+size(results(i).spectra,2)); 

         
        for j=1:size(rearr,2) 
            [x,y]=find(rearr == max(max(rearr))); 
            rearrx(y)=x; 
            rearr(:,y)=0;rearr(x,:)=0; 
        end 
        %Rearrage ig to match spectra order 
        x=1:size(ig,2);x(rearrx)=[];ig=ig(:,[rearrx x]);  

         

         
        [results(i).r_opt,results(i).s_opt,~,results(i).fit]=... 
            als_DWCv5(peaks,ig,10000,ALSopt); 

         
        %rearrange s_opt and r_opt to match real spectra order 
        rearr=corrcoef(cat(2,results(i).s_opt,results(i).spectra)).^2;  
        rearr=rearr(1:n,n+1:n+size(results(i).spectra,2)); 

         
        for j=1:size(rearr,2) 
            [x,y]=find(rearr == max(max(rearr))); 
            rearrx(y)=x; 
            rearr(:,y)=0;rearr(x,:)=0; 
        end 
        x=1:size(results(i).s_opt,2);x(rearrx)=[]; 
        results(i).s_opt=results(i).s_opt(:,[rearrx x]);  
        results(i).r_opt=results(i).r_opt(:,:,[rearrx x]);         
        results(i).quant=squeeze(sum(results(i).r_opt)); 
    end 
    eval(['results' num2str(k) '=results;']) 
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    clear results 
end 

 

peakSim.m 

This function was created to simulate two chromatographic peaks on a real instrumental 

background. The input is an options structure defined using the optSim.m function reproduced 

below. 

function [peaks,profiles,res]=peakSim(options) 
% INPUT 
% options = an options structure defined by optSim program 
% 
%OUTPUT 
%peaks = the output simulated chromatogram 
%profiles = the pure peaks before background  
%res = the resolution between the peaks 

  

  
N=size(options.Spectra,2);     
NoS=size(options.Intensity,1); 

  
for n=1:N %Peaks 
    

temp=gausspeak(options.Time,options.Position(n),options.Sigma(n))*options.Spe

ctra(:,n)'; 
    for k=1:NoS %Samples 
    profiles(:,:,n,k)=temp.*options.Intensity(k,n);     
    end 
end 
size(profiles) 
peaks=squeeze(sum(profiles,3))+options.Background; 

  
for j=1:N %peak 1 
    for r=1:N %peak 2 
        res(j,r)=2*abs(options.Position(j)-

options.Position(r))/(4*options.Sigma(j)+4*options.Sigma(r)); 
    end 
end 

 

optSim.m 

This function creates an options structure for use in peakSim.m. 

function [options]=optSim(N); 

  
%INPUTS 
% N = number of "compounds" to simulate 

     
field1='Time'; 
value1=NaN; 
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field2='Position'; 
value2=NaN(1,N); 

  
field3='Sigma'; 
value3=NaN(1,N); 

  
field4='Intensity'; 
value4=NaN(1,N); 

  
field5='Spectra'; 
value5=NaN; 

  
field6='Background'; 
value6=NaN; 

  
options=struct(field1,value1,field2,value2,field3,value3,field4,value4,field5

,value5,field6,value6); 
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