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Abstract 

AN INVESTIGATION OF CENTRAL NERVOUS SYSTEM CONDUCTION PROPERTIES IN 
DIABETES MELLITUS USING BRAINSTEM AUDITORY AND SOMATOSENSORY EVOKED 
POTENTIALS 

Randy L, Anderson 

Department of Psychology Virginia Commonwealth University, 1981 

Major Director: Dr. Joseph H. Porter 

In this study brainstem auditory evoked potentials (BAEPs), median 

nerve conduction velocities (CV) and early somatosensory evoked poten-

tials (SEPs), were employed as indices of neural conduction properties 

in a group of young insulin dependent diabetics (five males and five 

females) and a group of nondiabetic controls (five males and five fe-

males). The median nerve CV was determined from 64 summated nerve res-

ponses recorded at the elbow, The nerve was stimulated at the wrist 

using 0,2 msec square wave electrical pulses, The SEP was recorded from 

scalp electrodes using the same median nerve stimulation technique as 

for the CV measure, The BAEPs were produced by recording responses to 

7 0 dB SL clicks delivered to the right ear at a rate of 10 per second, 

Measures of central transmission time were determined from each of the 

EP modalities, The time interval between BAEP waves I and V determined 

the BAEP CTT. SEP waves P9 to Pl4 determined the earliest SEP CTT 

measure. 

Comparisons between the two diagnostic groups yielded the following 

results: The diabetic group evidenced a significant (p = 0, 02) slowing 
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of the median nerve, 53 meters per second for the diabetic group versus 

59 meters per second for the nondiabetic group, With height covaried out, 

only the SEP Pl4 latency showed a significant diagnostic group difference. 

More interesting were the findings for the principal SEP CTT measure. 

The diabetic group had significantly (p � 0.01) longer CTTs from P9 to 

Pl4, 5.0 msec as opposed to 4,2 msec for the nondiabetic group. The 

diabetic group also had significantly (p = 0.03) longer CTTs for the 

BAEP, 4.2 msec versus 4.0 msec for the nondiabetic group. Although the 

magnitude of the diagnostic group differences are small, the median 

nerve CV, SEP CTT, and BAEP CTT measures indicate that diabetic neuro­

pathy is pervasive, occurring centrally, as well as peripherally, as 

early as young adulthood in juvenile onset, insulin dependent diabetics, 



Introduction 

A number of studies have documented abnormal peripheral conduction 

velocity in persons with diabetes mellitus (Horowitz & Ginsberg-Fellner, 

1979; Noel, 1973; Oester, Zalis, & Radriquez, 1972; Gregerson, 1967). 

Diabetic neuropathy is known to affect both sensory and motor nerves, 

producing abnormalities ranging from muscle paralysis to asymptomatic 

neurophysiological abnormalities such as reduced conduction velocity 

(Porte, Graf, Halter, Pfeifer, & Halar, 1981; Ward, Fisher, Barnes, Jessop, 

& Baker, 1971). In contrast, there is little information available re­

garding the effects of diabetes on the central nervous system (CNS). 

The available information comes predominantly from postmortem identifi­

cation of intracranial anatomical alterations in diabetes (DeJong, 1977). 

In many of these cases, death resulted from pathology unrelated to dia­

betes. In the cases studied where death was related to diabetes, there 

were multiple, possibly confounding complications involving other organ 

systems. This information gap is partly due to the relative difficulty 

of measuring CNS function. 

This project is an attempt to determine if metabolic abnormalities 

inherent in diabetes might affect CNS function as well as peripheral 

nervous system function. The success of scalp recorded evoked potentials 

in other applications suggests that they should provide accurate informa­

tion about changes in function of the central nervous system as a result 

of diabetic neuropathy. 

1 
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Brainstem evoked potentials (EPs) are electrical manifestations of 

the brainstem, in the nanovolt range, occurring in response to discrete 

stimulation of one of the sensory modalities. The EP electrical energy 

is volume conducted from the brainstem nuclei of origin, up through the 

brain mass to the scalp where it may be detected using scalp electrodes. 

Since the EPs occur on the background of ongoing EEG activity that is in 

the microvolt range, it is necessary to summate EP responses from many 

stimulus presentations in order to visualize the response. With serial 

summation, theoretically random background EEG activity (noise) tends to 

subtract out, while the stimulus response (signal) that is temporally 

locked to the stimulus presentation, adds up. In short, the summation 

process makes the EP response more prominent by improving the signal to 

noise ratio. 

In this study, brainstem auditory evoked potentials (BAEPs) and 

early somatosensory evoked potentials (SEPs) were recorded as indices of 

CNS brainstem function in previously diagnosed young adult insulin depen­

dent diabetics. The BAEPs were recorded in response to brief click sti­

muli. The SEPs were recorded in response to median nerve stimulation at 

the wrist. 

Two previous studies have been reported in which the SEP was used 

as a measure of diabetic neuropathy (Noel, 1973; Oester � �., 1972). 

However, it was used only as an index of peripheral conduction from the 

site of stimulation up to wave Nl8 of the SEP (see Fig. 1, middle trace). 

In this research, an attempt has been made to use the SEP as a measure 

of both central and peripheral neuropathy. 

The BAEP has proven to be an excellent comparative measure of CNS 

neuropathy since its peripheral component, wave I, is easily delineated 
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from the central components (Starr, 1978; Starr & Achor, 1979; Salamy & 

McKean, 1976; Salamy, McKean, & Buda, 1975). The integrity of the audi­

tory receptor organ is verified in each participant using pure tone 

audiometry. Thus, differences in BAEP components are attributable to 

the neural pathways. Apparently, no other studies have been reported 

using the BAEP as a measure of diabetic neuropathy. 





Literature Review 

Brainstem Auditory Evoked Potentials 

Use of the brainstem auditory evoked potential (BAEP) for highly 

specific localized neurologic evaluation is dependent upon determination 

of the neuroanatomical correlates of each waveform. There are four 

methods used to identify neural generators of EP waveforms: depth re­

cording, lesion-making experiments, deductions from clinical cases, and 

potential field analysis. The first two methods are most always limited 

to nonhuman subjects, whereas the latter two yield less specific findings. 

Thus, it is necessary to use results from the first two methods to veri­

fy results of the second two, and vice versa. This process has led to a 

general consensus as to the neural origins of waves I through V of the 

BAEP. 

Wave I arises from the potential volley along the acoustic nerve. 

Wave II arises from the cochlear nuclei (first central synapse in the 

pathway). Wave III arises in the region of the superior olivary com­

plexes, Wave IV arises from tracts and nuclei of the lateral lemniscus. 

Wave V arises at the level of the inferior colliculi (Chiappa, Gladstone, 

& Young, 1979; Fabiani, Sohmer, Tait, Gafni, & Kinarti, 1979; Starr & 

Achor, 1979; Salamy & McKean, 1976; Buchwald & Huang, 1975). 

There is some speculation about the finality of these BAEP origins 

or at least the implied one-to-one correspondence between given peaks 

and neuroanatomical structures. Discrete lesions can affect the amplitudes 

5 



of several BAEP components with no effect on latency (Starr & Achor, 

1979). Also, isocontour maps show a distribution of potential fields 
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throughout the brainstem during the occurrence of wave II (Starr & Achor, 

1979). Thus it appears that several neural generators contribute simul-

taneously to the generation of individual BAEP components, whereas some 

auditory structures do not contribute at all to the generation of the 

BAEP (Starr & Achor, 1979). 

Despite the complexity of neural origin, the BAEP is very stable 

within and between individuals. Further, the prominence of the BAEP 

components makes them fairly easy to score (see Fig. 1, lower trace). 

Typically, the latency of each peak is taken as the point of highest 

amplitude over the peak. Discrepancies sometimes arise due to morpholo-

gical variation in the IV-V complex. The qualitative patterns in appear-

ance of the IV-V complex have been described by Chiappa � �- (1979). 

These patterns are essentially permutations of the combined factors of 

the relative height and presence or absence of the two waves: 

Pattern 

A 

B 
C 
D 
E 
F 

Morphology 

A single peak in the range of V; 
2 peaks; wave IV lower than V; 
2 peaks; IV higher than V; 
IV as a shoulder on V; 
V as a shoulder on IV; 
IV and V equal. 

In this study, wave IV was scored as missing if the BAEP showed the A 

pattern. The BAEP shown in Fig. 1 is representative of Pattern A. Wave 

IV was scored in Pattern D cases only if the slope of an imaginary tan-

gent line to the curve appeared to reach zero over several consecutive 

digital points. 

Table 1 shows representative BAEP latency and amplitude data taken 

from previous publications. One of these studies was designed to examine 



..... Table 1 

Representative Brainstem Auditory Evoked Potential Data 

Publication I II III IV V CTT 

Latencies (msec� 

Salamy & McKean, 1976 1.57 ± 0.14 2.73 ± 0.19 3.64 ± 0.24 4.82 ± 0.23 5.55 ± 0.26 3.99 .± 0.21 

Harkins, McEvoy, & 
Scott, 1978 1.73 .± 0.11 2.84 .± 0.13 3.77+0.11 no report 5.70 ± 0.19 3.97* 

Michalewski, et�., 
1980 (males only) 1.90+0.26 3.02 ± 0.22 3.98 ± 0.28 5.32 .± 0.24 S.96_±0.16 4.06* 

Michalewski, et�., 
1980 (females only) 1.78 .± 0.12 2.96 ± 0,12 3.82 ± 0.16 5.31 .± 0.27 5.79 ± 0.08 4.01* 

Starr, 1977 1.5 2.7 3.8 4.7 s.s 3.8 .± 0.2 

Amelitudes {uV� 

Starr & Achor, 1975 0.28 .± 0,08 0.16 ± 0.09 0.26 ± 0.07 0.11 .± 0.10 0.30 ± 0.06 

Scott & Harkins, 1978 0.24 ± 0.04 0.17 ± 0.05 0.29 _± 0.03 no report a.so± 0.06 

Michalewski, et�., ** 
1980 (males only) 0.31 ± 0.26 0.41 .± 0.22 0.43 .± 0.16 0.80 .± 0.31 1.10 ± 0.34 

Michalewski, et�., ** 
1980 (females only) 0.32 + 0.14 o.so .± 0.18 0.35 .± 0.15 1.17 _± 0.45 1.50 ± 0.42 

* CTT calculated by difference from reported data. 
** Calculated as the difference between wave peak and preceeding negativity. 
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sex differences in the BAEP (Michalewski, Thompson, Patterson, Bowman, & 

Litzelman, 1980). While the females in the Michalewski study tended to 

have shorter latencies for all BAEP components, only the wave v latency 

sex difference was statistically significant (p< 0.05). At least one 

other study had previously reported a sex difference in wave v latency 

(Stockard, Stockard, & Sharbrough, 1978), 

The Michalewski study (1980) also reported significantly larger am­

plitudes for waves IV, V, VI, and VII among their female participants. 

However these findings are presented here only for relative comparison 

between the two sex groups since the Michalewski study calculated ampli­

tudes as the difference between each wave peak and its preceeding negati­

vity. For this study and the other two in Table 1, the amplitude of each 

component was measured from each positive peak to the subsequent 

negativity. 

Several studies have used components of the BAEP to obtain a measure 

of transmission time through a segment of the CNS (Fabiani� al., 1979; 

Starr, 1978; Starr & Achor, 1979; Salamy & McKean, 1976; Salamy��-, 

1975), Such a measure is typically referred to as central transmission 

time (CTT). The most widely used BAEP CTT measure is the time interval 

between the peak of wave I and the peak of wave V. This measure provides 

a neurological evaluation of the brainstem auditory pathway that is 

relatively independent of click intensity and receptor factors (Starr & 

Achor, 1979), 

Peripheral Conduction Velocities 

Abnormalities of peripheral conduction over the primary afferent 

neurons of the specific somatosensory system have a direct influence on 

SEP latencies and amplitudes. Therefore, it is necessary to assess the 
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integrity of the stimulated peripheral nerve in order to use the SEP to 

evaluate putative abnormalities of the central somatosensory system 

(Starr, 1978), This assessment is typically done by recording the peri­

pheral nerve volley over a given segment of the nerve with bipolar elec­

trodes and calculating the conduction velocity in meters per second, 

The nerve volley is evoked using the same stimulus as for the SEP re­

cording, The recorded waveform is a triphasic potential that is ini­

tially positive, then strongly negative, and ending with a slow positive 

component (see Fig, 1, upper trace), The negative phase is produced by 

action potentials passing beneath the recording electrodes, The posi­

tive phases can be obscured if the surface recording location is far 

from the nerve fiber (Cracco, Cracco, & Anziska, 1979). The onset laten­

cy of the negative component is typically used in calculation of median 

nerve conduction velocity (CV) (Desmedt & Cheron, 1980b; Noel, 1973). 

This method measures the CV of the fastest conducting afferent (large 

diameter, myelinated) fibers (Greene, Brown, Braunstein, Schwartz, Asbury, 

& Winegrad, 1981). 

Somatosensory Evoked Potentials 

SEPs are typically elicited with electrical pulses of 0. 1 to 0.5 

msec duration delivered to the skin over the median nerve just proximal 

to the wrist. The electrode arrangement is bipolar with the cathode 2 

to 3 cm proximal to the anode (Desmedt & Cheron, 1980b; Cracco et al., 

1979; Starr, 1978). Stimulus rate is usually 3 to 5 pulses/sec at 50 

volts. Stimulus rate and duration are important in determining the type 

of nerve fiber being stimulated. Faster or longer pulses tend to trigger 

the slower conducting A-delta and C fibers associated with pain sensation 

(Schmidt, 1978) and reduce SEP resolution. Stimulus intensity is less 
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critical since currents lightly ab th h ld 1 ove res o e icit maximal response 

amplitudes (Starr, 1978). SEPs are most frequently recorded from the 

parietal scalp (over somatosensory cortex) with a reference electrode on 

the earlobe, neck, or forehead. A noncephalic reference electrode is 

sometimes pre fer red because of its greater "neutrality" with respect to 

the recording electrode (Desmedt & Cheron, 1980b). However, the 

noncephalic reference is subject to greater myogenic contamination. 

SEPs offer the opportunity to evaluate the function of the entire 

somatosensory system (Cracco � �., 1979). However, the utility of 

the SEP is dependent on precise relationships between neural generators 

and SEP waveforms (Desmedt & Cheron, 1980b; Starr, 1978), Unfortunately, 

these relationships are currently much less precise than those of the 

BAEP. Not only are the neural generators somewhat speculative, but also 

identification of SEP waves is different in existing publications (e.g., 

Starr, 1978 reports a Pl2 but not Pll or Pl3). 

Ignoring the peak latency variations due to variations of armlength, 

the early SEP to median nerve stimulation has three major positive waves 

and one major negative wave within 20 msec of stimulus onset. The first 

positivity is around 9 msec (P9), the second around 11 msec (Pll). The 

third positivity typically has two lobes, one around 13 msec (Pl3) and 

the other around 14 msec (Pl4). A large negativity occurs around 19 

msec (Nl8), usually with small positive waves "riding" on it, Another 

large positive wave follows Nl8 at around 22 msec (P22) (Desmedt & 

Cheron, 1980b; Cracco � �., 1979) (see Fig. 1, middle trace). P22 is 

not seen in several of the taller participants in this study because its 

duration is greater than the post stimulus measurement time of 25 . 5 msec, 



Pl3 has an extremely variable morphology between individuals. It 

may predominate over Pl4 or be altogether missing (see Fig. 2). Pl3 
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and Pl4 can be extremely difficult to differentiate because of the vari­

able morphology of Pl3 and the latency "shifts" introduced by variations 

in armlength across individuals. This interpretation problem is further 

complicated in the presence of neuropathy. The general influence of 

neuropathy is to increase peak latencies and decrease amplitudes, as a 

result of demyelination, fiber loss, and/or decreased metabolic inte­

grity (Cracco � �., 1979; Starr, 1978), Finally, stimulation of the 

median nerve excites some motor axons that may contaminate the SEP. 

Recently, the identification of the SEP waves has been clarified by 

considering " . the conduction distances and anatomical features of 

each of the three neurones making up the central somatosensory pathway 

in adult man, and (attempting) to relate interpeak delays of SEP far­

fields to actual conduction times along these neurones," (Desmedt & 

Cheron, 1980b, p. 394). 

The Desmedt & Cheron (1980b) procedure uses electrical stimulation 

of the index and middle fingers in order to stimulate only sensory fibers. 

The median nerve volley is then recorded at the wrist, the axilla, Erb's 

point, and at the entrance to the spinal ganglion (C6-C7), as well as 

from the scalp. Further, the scalp SEP is recorded with a noncephalic 

reference (on the unstimulated forearm) to substantially reduce pick up 

of the early far fields at the reference electrode. Their results show 

clearly that P9 occurs before the arrival of the nerve volley at Erb's 

point but after its arrival at the axilla. Thus, the P9 wave of the 

scalp recorded SEP establishes that Pll arises from passage of the affe­

rent volley through the ascending dorsal column. The Pll onset 
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corresponds precisely with the arrival of the peripheral nerve volley at 

the spinal cord (Desmedt & Cheron, 1980b). 

After careful consideration of the geometry of the ascending central 

somatosensory pathway, Desmedt & Cheron (1980b) were able to establish 

that the Pl3 and Pl4 generators are below the thalamus but above the 

foramen magnum. It appears that the lemniscal volley has just begun to 

activate the ventro-basal thalamic neurones at Pl4 onset (Desmedt & 

Cheron, 1980b). This conclusion is in agreement with a report by 

Greenberg, Mayer, Becker, & Miller (1977) that this wave has no thalamic 

or cortical component because they have recorded it in five patients with 

electrical and clinical brain death. Desmedt & Cheron (1980b) conclude 

that Nl8 is the response of cortical projection of the afferent volley. 

Thus, the descending (positive up) limb of Nl8 can be used as a marker 

for estimating the cortical SEP latency. Desmedt & Cheron (1980b) 

believe that Nl8 is related to postsynaptic potentials elicited in apical 

dendrites of pyramidal neurones. 

Diabetic Neuropathy 

The term, diabetic polyneuropathy, describes a multiplicity of 

neuronal degenerative anomalies associated with diabetes mellitus. Peri­

pherally, the major manifestation of diabetic neuropathy is reduced con­

duction velocity in sensory and motor nerves. The presence of neuropathy 

in long standing insulin dependent diabetics is not universal (Pirart, 

1978). However histological and electrophysiological evidence suggests 

that the reduced CV is the result of demyelination and subsequent loss 

of nerve fibers (Noel, 1973) beginning well before clinical manifesta­

tions (Greene et al., 1981). The degree of glycemic control and duration 

of diabetes are major determinants of the progression of the degenerative 
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process (Porte� al., 1981; Greene et�., 1981; Horowitz & Ginsberg­

Fellner, 1979; Pirart, 1978; Skyler, Lasky, Skyler, Robertson, & Mintz, 

1978; Ward et al., 1971; Gregerson, 1967). Indeed, careful management 

of blood glucose has been shown to reverse the degenerative process to 

some extent (Ward��., 1971) with the potential reversal probably 

limited by the degree of large fiber loss (Greene��., 1981). 

Diabetic neuropathy sometimes involves weakened neuromuscular trans-

mission mechanisms (Miglietta, 1973), altered pupillary reflexes 

(Hreidarsson, 1981) as well as reduced skin sensitivity to temperature, 

pin prick, proprioception, and vibration (Greene� al., 1981). While 

it is well established that these and other processes affected by diabe-

tes are the result of primary neuronal changes, it is not certain whether 

the central mediation of these processes is affected. Neuromuscular 

transmission mechanisms are affected in some diabetics resulting in a 

decline in muscle action potentials with high stimulation frequency (20-

SO per second) (Miglietta, 1973). The decline in neuromuscular transmis-

sion is observed in some diabetics despite their having normal CVs 

(Miglietta, 1973). Some motor fibers are apparently immune to this de-

crement, such as those serving the fingers (Miglietta, 1973). Abnormali-

ties of pupil unrest are known to occur during hyperglycemia (Hreidarsson, 

1981). Since the control of pupillary unrest is of central origin (see 

Hreidarsson, 1981), it is possible that the abnormalities associated with 

hyperglycemia are directly related to the effects of hyperglycemia on the 

central autonomic nervous system (Hreidarsson, 1981). 

Electroencephalographic studies show a higher incidence in diabetics 

of abnormally slow and abnormally fast waves (DeJong, 1977). These 



abnormalities appear to be associated with recurrent hypoglycemia 

(DeJong, 1977). 
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Gupta and Dorfman (1981) have reported longer spinal conduction 

times in a heterogeneous group of diabetics, but no difference in supra­

spinal (cervical cord to cortex) conduction. They used an indirect 

method of calculating spinal transit time and supraspinal transit time 

(Dorfman, 1977) from the SEP. They suggest that the supraspinal segment 

of the somatosensory pathway is more resistant to diabetic neuropathy. 

In cases of diabetic neuropathy, sensory nerve potentials show re­

duced amplitude, a less well defined shape, and increased latency of 

the initial peak (Noel, 1973). Lesions of the central somatosensory 

pathway are expected to affect the appearance of the SEP in the same 

three ways (Oester � �-, 1972). 

The central purpose of this investigation was to determine, in the 

most direct way possible, if a group of young adult insulin dependent 

diabetics evidence altered neuronal function within the CNS, as measured 

with scalp recorded EPs. 



Methods 

Subjects 

Persons between the ages of 20 and 30 were recruited for participa-

tion in this study using fliers posted around the university campus, 

When potential participants reported to the EP lab, the entire testing 

procedure was explained, followed by an opportunity to ask questions, 

Written consent was then obtained from each participant, All were paid 

$5,00 per hour of participation. Responses to the screening question-

naire were used to exclude individuals who had a potentially confounding 

medical history, The questionnaire identified two such cases, both 

diabetics, The first had diagnosed peripheral neuropathy that had pro-

duced temporary paralysis of the legs, as well as a history of neurologic 

seizures, The second individual was approximately 80 pounds over 

reccxrunended body weight for his height and build, 

After completion of the screening questionnaire, a urine sample was 

collected from each participant, Each sample was tested immediately for 

R 
presence of glucose and ketones (AMES KETO-DIASTIX), No member of the 

nondiabetic group had previous evidence of diabetes nor did any show 

positive urinalysis results, All diabetics showed presence of urine glu-

cose on either the first urine sample or a second sample taken halfway 

through EP testing (see Table 2). Therefore, these tests verified the 

self-report diagnostic classification of the diabetics. None of the 20 

participants showed urine ketones in either urine sample, 

16 



...... 

...... Table 2 

Urine Glucose Test Results 

DIABETICS: 
Female 

n 

Male 
n 

NONDIABETICS: 
Female 

n 

Male 

First Second 
Urinalysis Urinalysis 

mg/dL mg/dL 

0.07 .± 0.06 1.00 + o. 82 

3 4 

0.75 .± 0.96 0.71 + 0.87 

4 4 

0 N/A 
s 

0 N/A 
s 
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An audiogram was completed on each participant to establish hearing 

efficacy. The audiograms were collected in a quiet room using a Beltone 

portable audiometer. None of the 20 participants showed a hearing defi­

cit greater than 30 dB at any of eleven frequency bands between 125 Hz 

and 8000 Hz (see Fig. 3). Furthermore, the two groups did not differ 

significantly over any of the eleven frequency bands, nor did hearing 

threshold to the BAEP click stimulus show a significant group difference. 

One nondiabetic individual was excluded from participation based on the 

audiogram. This individual had hearing thresholds of 45 dB over three 

frequency bands in both ears. 

All ten diabetic participants met the following inclusion criteria: 

1) insulin dependent from first diagnosis; 2) no previously diagnosed 

neuropathy; 3) body weight within ten pounds of ideal for height and 

build (Metropolitan Life Insurance statistics); 4) no history of any 

other metabolic or neurological disease. The diabetic group had a mean 

age fo 23.9 ± 3.4 years (range of 20 to 30 years) and consisted of five 

males and five females. The mean duration since diagnosis was 7.8 + 

5.8 years (range of 2.5 to 1 7 years). The nondiabetic control group 

also had five males and five females. Mean age for this group was 26. 1 

± 3.3 years (range of 20 to 30 years). 

Procedure 

Stimuli for the BAEPs were 70 dB SL condensation phase click sounds 

generated by passing 0.1 msec square wave electrical pulses through TDH-

49 headphones. Stimulation was to the right ear at a rate of ten per 

second. BAEPs were recorded from vertex (Cz) referenced to the right 

t "d w1."th a �round electrode clipped to the right earlobe 
mas 01. process, o 





20 

(Scott & Harkins, 1978; Harkins McEvoy & Scott 1978· p· t H"ll d , , , , ic on, i yar , 

Krausz, & Galambos, 1974). 

Stimuli for the SEPs and the median nerve CV measures were 0.5 msec 

square wave electrical pulses delivered three per second to the left 

median nerve just proximal to the wrist. The cathode was two cm proximal 

to the anode. A ground electrode was placed on the inner surface of the 

forearm midway between the wrist and elbow. Stimulation voltage was 50 

volts. The thumb twitch motor threshold established stimulus intensity 

for each case (Starr, 1978). The stimuli were generated by a Grass S88 

stimulator, a stimulus isolation unit, and a constant current unit 

connected in series. 

SEPs were recorded from a parasagital electrode placed over the con-

tralateral hand representation area of somatosensory cortex (one cm in-

ferior and one cm posterior to C4 of the International 10-20 system of 

cephalic electrode placement). The cephalic electrode was referenced to 

a nuchal electrode between cervical vertebrae five and six (Harkins & 

Dong, 1980). 

The electrophysiological responses being measured were amplified by 

a Grass P511J preamplifier set at a gain of 5 x 104 with filters at 10 

Hz and 3000 Hz. A Nicolet 1074 signal summator was used to process the 

EEG for EPs and to determine the mixed nerve CV to median nerve stimula-

tion. A bin width of 100 usec was employed for collecting the SEPs and 

the CV measures. Bin width was 50 usec for the BAEPs. During summation, 

the EEG was continuously monitored. Processing was stopped when muscle 

or other artifacts were apparent (Chiappa � �., 1979). For both EP 

modalities, four consecutive traces of 1024 stimulus presentations each 

were overlapped to permit determination of response stability. The 



median nerve CV measure was determined from two repeated traces of 64 

stimulus presentations each, Once collected, the EPs were plotted out 

from the signal sununator using an X-Y plotter, The important points 

were designated and the corresponding digital values for latency and 

amplitude of each point were taken from the signal summator memory, 
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The digital values were then entered into VCU's IBM 370 computer, along 

with other data on each participant, for subsequent processing using the 

Statistical Analysis System (SAS).· 



Results 

Separate three-way analyses of variance (diagnosis x sex x diagnosis­

sex interaction) were performed on all dependent variables except those 

of the audiograms and urinalysis results. The analyses of variance were 

performed using the ANOVA procedure of SAS. Correlations were performed 

using the CORR procedure of SAS. In the following account of the results, 

statistically significant differences between the diabetics and nondia-

betics are referred to as diagnostic group differences, whereas statisti-

cally significant differences between females and males are referred to 

as sex group differences. 

As a check for equivalent auditory reception in each diagnostic 

group, the group means for each frequency band of the audiograms were 

compared using t-tests. There was no significant diagnostic group dif-

ference at any of the levels tested (see Fig. 3). The anaLysis of vari-

ance for a difference in click stimulus threshold also showed no diagnos-

tic group significance (see Table 3) (n's may vary throughout all tables 

because of missing values). Thus it appears that any group differences 

in the BAEP measure did not result from an influence of diabetes on the 

auditory receptor. 

There was also no diagnostic group difference in sensory or motor 

threshold to the electrical stimulus, evidencing the absence of any symp-

tomatic deficits in the diabetics (see Table 3). The females as a group 

had significantly lower sensory thresholds than did the males. However, 

motor thresholds showed no significant sex group difference. 
22 
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N 

DIABETICS: 
Female 

n 

Male 
n 

NONDIABETICS: 
Female 

n 

Male 
n 

DIAGNOSIS: 
F 
.E 

SEX: 
F 
.E 

DIAGNOSIS & SEX 
INTERACTION: 

F 
E 

Table 3 

Stimulus Response Parameters, Height and Weight Data 

Click Sensory Motor 
Threshold Threshold Threshold 

(dB) (mA) (mA) Height Weight 

9 + 4 0.5 + 0.05 
5 4 

11 + 4 0.7 ± 0.46 
5 5 

13 + 9 0.4 ± 0. 10 
s 5 

12 + 4 0.8 + 0.25 
5 5 

0.9 0.1 
0.35 o. 79 

0.04 5.26 
0.85 0.04 

0.3 0.6 
0.58 0.45 

4. 7 + 2.11 
4 

5.8 ± 2.20 
5 

4.8_±2.11 
5 

5.7_±0.97 
5 

0.01 
0.93 

1. 3 
0.27 

0 
1.00 

63.7+2.l 
5 

69.6 + 1.8 
5 

64.1 + 2.5 
5 

71.8 ± 0.4 
5 

2.4 
0.14 

64.9 
0.000 1 

1.1 
0.30 

123.6 ± 5.9 
5 

145.4 � 12. 7 
5 

120.8 ± 9.8 
5 

173.2 _± 14.2 
5 

6.3 
0.02 

55.8 
0.0001 

9.5 
0.007 
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Summary statistics for the BAEP latencies are presented in Table 4, 

along with the results of the ANOVA comparisons for each of the four 

groups, The component latencies are slightly slower in the diabetics, 

However, the differences do not show significance. At wave v the dia-

betics are about 0, 2 msec slower than the nondiabetics ( o 06) p = . • The 

differences are small relative to the standard deviations, however the 

trend is consistent, Figure 4 illustrates the accumulation of diagnostic 

group latency differences over the interwave intervals from wave I to 

wave V, 

The BAEP amplitudes were measured as the height of each waveform 

from its right base up to its peak, This distance measure was converted 

to microvolt (uV) units using a calibration square wave pulse of known 

voltage that was summated in the same way as the scalp recorded responses, 

Swmnary statistics for the BAEP amplitudes are presented in Table 5. 

Amplitudes for waves I, III, and V were tested for group differences, 

Females tended to have slightly larger wave V amplitudes (p = 0.05), 

however, there was no significant diagnostic group difference (see 

Michalewski et !!l·, 1980) 

CTT for the BAEP was calculated by subtracting wave I latency from 

wave V latency (Starr, 1978; Starr & Achor, 1979; Salamy & McKean, 1976; 

Salamy� al., 1975), Summary statistics for the measure are presented 

in Table 6. Mean BAEP CTT for the diabetic group is about 0.2 msec long-

er than for the nondiabetics, just as for wave V latency (diabetic mean = 

4.2 msec, nondiabetic mean = 4.0 msec). The diagnostic group difference 

shows significance (p = 0.03), The slower CTT suggests that diabetes 

to affect the metabolic integrity of the brainstem audi­may have begun 

tory pathway. However, the absence of any difference in the overall 
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N 

DIABETICS: 
Female 

n 

Male 
n 

NONDIABETICS: 
Female 

n 

Male 
n 

DIAGNOSIS: 
F 

.£ 

SEX: 

F 

.£ 

DIAGNOSIS & SEX 

INTERACTION: 
F 

.E 

I 

1.43 + 0.13 
4 

1.49 .± o. 14 
5 

1.51 .± 0.09 
5 

1.47 .± 0.03 
5 

0.4 
0.56 

0.03 
0.87 

1.2 
0.29 

Table 4 

Brainstem Auditory Evoked Potential Latencies 
(msec) 

II III IV V 

2.59 + 0.11 3.71+0.13 4.90 + 0.20 5.59 + 0.33 
4 4 3 4 

2.63 .± 0.10 3.66 .± 0.11 4.65 + 0.05 5.67 .± 0.06 
5 5 3 5 

2.51 + 0.21 3.64 .± 0.30 4.60 + 0.13 5 .40 .± o. 11 
4 5 4 5 

2.52 .± 0.04 3.60 .± 0.16 4.70 + 0.25 5.50 .± 0.22 
5 5 5 5 

2.6 0.5 1. 2 4.1 
0.13 0.49 0.30 0.06 

0.2 0.2 0.4 1. 3 
0.68 0.64 0.52 0.28 

0.1 0.04 2.6 0 
o. 77 0.84 0.14 1,00 

VI VII 

6.91 + 0.17 8.63 + 0.18 
4 3 

7.31 + 0.35 8.95 .± 0.65 
4 5 

6.48 .± 0.45 8.64 + 0.32 
5 4 

7.17 .± 0.43 8.58 .± 0.25 
5 2 

0.4 0.7 
0.56 0.41 

4.1 0.7 
0.06 0.42 

0.04 0.2 
0.85 0.66 
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r-­

N 

DIABETICS: 
Female 

n 

Male 
n 

NONDIABETICS: 
Female 

n 

Male 

n 

DIAGNOSIS: 

SEX: 

F 

.£ 

F 

.£ 

DIAGNOSIS & SEX 
INTERACTION: 

F 

.£ 

I 

Table 5 

Brainstem Auditory Evoked Potential Amplitudes 

(uV) 

I 

0.36+0.22 
4 

0.31 + 0.08 
5 

0,27 _± 0,06 
4 

0.26 _± 0.13 

4 

1.0 
0.33 

0.2 
0.67 

0.1 
o. 77 

III 

0.28+0.13 
4 

0.28 .± 0.13 
5 

0.18 .± 0.007 
3 

0,28 .± 0.12 

4 

0.5 
0.49 

0.5 
0.48 

o. 7 
0.42 

V 

0,58 + 0.15 
4 

0.50 + 0.12 
5 

o. 70 + 0.21 
4 

0,48 .± 0.12 

4 

0.4 
0.52 

4.5 
0.05 

1.1 
0.32 

Ratio of 
V to I 

2.79 + 3.14 
4 

1,67 _± 0.65 
5 

2.71+1.18 
4 

2.19 + 1. 30 

4 

0.1 
o. 76 

1.0 
0.34 

0.1 
o. 72 
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N 
Table 6 

Central Transmission Times and Median Nerve Conduction Velocities 

DIABETICS: 

Female 
n 

Male 
n 

NONDIABETICS: 
Female 

n 

Male 
n 

DIAGNOSIS: 
F 

£ 

SEX: 
F 

£ 

DIAGNISOS & SEX 
INTERACTION: 

F 

£ 

BAEP SEP SEP Median 
I to V P9 to Pl4 Pl4 to Nl8 Nerve CV 
(msec) (msec) (msec) (m/sec) 

4.16 + 0.33 4. 78 _± 1.08 4.52 _± 0.65 49.8 _± 5.3 
4 4 5 5 

4.18 _± 0.10 4.90 _± 0.22 4.74 _± 0.61 55.9 _± 5.7 
5 4 5 3 

3.89 _± 0.12 3.80 + 0.35 5.38 + 0.44 59.3 + 5.8 
5 5 5 4 

4.03 _± 0.21 4.31 _± 0.21 5.82 _± 0.99 59.3 .± 4.0 
5 4 5 5 

5.5 8.1 9.6 7 .4 
0.03 0.01 0.007 0,02 

1. 1 2.0 1. 1 2.3 
0.32 0.18 0.31 0.15 

0.2 0.2 0.1 1. 2 
0.66 0.69 0.73 0.29 



appearance of the BAEP suggests that no morphological changes have 

occurred. 
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The median nerve CV measure was calculated by dividing the distance 

between the stimulating electrodes and the recording electrode by the 

latency of the nerve volley, recorded at the elbow (see Fig. 1) (Cracco 

� �., 19 7 9). The latency of the nerve volley was taken as the peak 

of the initial positivity, which corresponds to the onset of the negative 

component. Some of the median nerve volley recordings, while sufficient 

for latency determinations, are of poor quality because the recording 

electrode was not always directly over the nerve fiber. Use of a mobile 

recording probe would have permitted more precise location of the nerve. 

The median nerve CV results are summarized in Table 6 along with the 

CTTs. As expected, median nerve CV was significantly slower among the 

diabetics, indicating the presence of peripheral neuropathy (p = 0.02) 

(diabetic mean = 52.8, nondiabetic mean = 59,3). The diagnostic group 

means differ by about 6.5 m/sec. 

Summary statistics for SEP latencies are presented in Table 7A 

along with analysis of variance results. The diabetics have slightly 

longer latencies for the first three components with only the Pl4 differ

ence showing significance. However, the Pl4 diagnostic group difference 

is relatively dramatic (p = 0.003) (diabetic mean = 14 .8, nondiabetic 

mean = 13. 9 ). Pl4 is delayed by about 0.9 msec in the diabetic group. 

This difference disappears at Nl8, suggesting a reduction in terminal 

branching of the thalamocortical radiations (Desmedt & Cheron, 1980c), 

(diabetic mean = 19.3 msec, nondiabetic mean = 1 9.4 msec). Figure 5 il

lustrates the changing relationship of the diagnostic group latency 

differences over the interNave intervals from P9 to P22. 
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<'"I 

DIABETICS: 

Female 
n 

Male 
n 

NONDIABETICS: 

Female 
n 

Male 
n 

DIAGNOSIS: 

SEX: 

F 

.E 

F 

.E 

DIAGNOSIS & SEX 

INTERACTION: 

F 

.E 

P9 

9. 71 + o. 94 
4 

9.90+0.74 
4 

9.14 ± 0.73 
5 

10.18 ± 0.33 
4 

0.5 
0.51 

3.1 
0, 10 

1.6 
0.23 

Table 7A 

Somatosensory Evoked Potential Latencies 

(msec) 

Pl2k Pl4 

12.23 + 0.42 14.52 + 0.23 
4 s 

12.40 .:!: 0.98 14.92 .:!: 0.67 
3 5 

11.15 +0.83 12.94 .:!: 0.83 
4 5 

12.82 ± 0.58 14.64 .:!: 0,43 
5 

12.5 
0.003 

15. 9 
0.001 

6.1 
0,03 

* Incorrectly designated as Pl2 rather than Pll and Pl). 

Nl8 P22 

19.04 + 0.72 22. 72 .:!: 0.93 
s 5 

19.66 .:!: 1.23 23.25 + 1.03 
5 4 

18.32 .:!: 0.90 22,63 + 0,59 
5 4 

20.46 .:!: 1.10 22. 95 .:!: 1.06 
5 2 

0.01 0,2 
0.93 0.65 

9.4 1. 0 
0.007 0.34 

2.8 0 
0.11 1.00 
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Figure 5: Display of the accumulation of interwave transmission time differences over the en ti re SEP. The 

diagnostic group difference reaches significance only for the P9 to Pl4 segment in this figure. (The P14 to 

Nl8 segment is significantly shorter among the diabetic group, however this segment is hidden in the P9 to 

Nl8 segment depicted here,) 
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The difference in P9 latencies is unexpectedly small given the 

difference in median nerve CV between the two groups (see Table 6). If 

P9 originated at the level of the axilla (Desmedt & Cheron, 1980b), the 

median nerve CV difference would be expected to produce about a 0.9 msec 

delay in P9 latency in the diabetics, given an arm length of 45 cm. A 

group arm length difference may have been responsible for the 0.7 msec 

discrepancy (0.9(expected) - 0.2(actual) = 0.7). The nondiabetic males 

tended to be taller and heavier than the diabetic males while the female 

participants were more homogeneous in height and weight. The differ-

ences are reflected in the diagnostic group means given in Table 3. 

This height discrepancy may have influenced the SEP latencies. Since 

height is related to arm length, there is reason to expect that height 

may have biased the SEP latencies in the taller nondiabetics, thereby 

disguising the influence of diabetes on the SEP latencies of the shorter 

diabetics. As an attempt to account for the height influence, analyses 

of co-variance were repeated on the SEP latencies with height covaried 

out (see Table 7B). Since the females were homogeneous with respect to 

height, it is interesting to note the larger difference in P9 latencies 

between the two groups of females. The P9 difference (0. 7 msec) is more 

congruent with the median nerve CV findings. 

Summary statistics for SEP amplitudes are presented in Table 8. 

SEP amplitudes were calculated as they were for the BAEP amplitudes, with 

the exception of Nl8. Nl8 amplitude represents the vertical displacement 

from the lowest point of Nl8 up to the highest point of P22. The diabe­

tics have dramatically lower amplitudes for Pl4 and Nl8 (p = 0.004 and p 

0.007, respectively). These measures of the descending (Pl4) and ascen­

ding (Nl8) limbs of the Nl8 wave are probably closely related. Thus, the 
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Table 7B 

Somatosensory Evoked Potential Latencies with Height Covaried Out 

(msec) 

P9 Pl4 Nl8 P22 

HEIGHT: 
F 12, 1 8, l 12,8 1. 8 

.E 0,003 0,01 0,002 0,21 

--

DIAGNOSIS: 
F 0,8 10,9 0,1 0,2 

.E 0,47 0,001 0,88 0,81 

SEX: 
F 0,9 0,3 0 0,01 

.E 0,36 0, S 7 0,95 0,94 

DIAGNOSIS & SEX 
INTERACTION: 

F 1, 1 s.o 1,8 0,1 

.E 0,31 0,04 0,20 0,76 
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DIABETIC: 

Female 
n 

Male 

n 

NONDIABETIC: 

Female 
n 

Male 
n 

DIAGNOSIS: 

SEX: 

F 

.£ 

F 

.£ 

DIAGNOSIS & SEX 

INTERACT ION: 

F 

.£ 

Table 8 

Somatosensory Evoked Potential Amplitudes 

(uV) 

P9 Pl2 P14 

0.21 + 0.30 0.05 ± 0.01 3.41 ± 1. 17 
2 3 5 

0.22 ± 0.13 0.23 + 0.25 2.83 ± 0.83 

4 3 5 

0.21 + 0.17 0.32+0.15 4.85 ± 0.41 
4 4 5 

0.36 ± 0.05 0.10 + 0.08 4.31 + 1.23 
4 5 5 

0.6 11.4 
0.44 0.004 

0.9 1. 7 
0.38 0.21 

1.0 0 
0.35 1.0 

Nl8 

2.81 ± 0.77 
5 

2.03 ± 0.70 

4 

4.20 + 2.00 
4 

5.24 ± 0.45 
2 

10.7 
0.007 

0.3 
0.62 

1. 7 
0.23 
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Pl4 and Nl8 amplitude measures may actually reflect the same thing: 
a 

relatively smaller negative displacement of the lowest point of Nl8 among 

the diabetics. No other SEP amplitudes showed any significant group 

difference. 

Summary statistics for two SEP CTT measures are presented in Table 

6. The P9 to Pl4 measure is the conduction time from the peak of the 

first component of the early SEP up to the peak of the most prominent 

early positivity. The Pl4 to Nl8 measure is the conduction time from 

the most prominent early positivity up to the most prominent early nega-

tivity, corresponding to the brainstem-to-thalamocortical transition 

(Desmedt & Cheron, 1980b). Like the BAEP CTT, both of the SEP CTT mea-

sures show a significant diagnostic group difference. However, the 

directions of the two SEP CTTs are opposite. The diabetics have a longer 

CTT from P9 to Pl4 while the Pl4 to Nl8 segment is shorter in this group. 

Recall that the diabetics also had significantly reduced amplitudes on 

the descending and ascending limbs of Nl8. As with the smaller Pl4 and 

Nl8 amplitudes among the diabetics, the shorter Pl4 to Nl8 segment might 

also reflect a reduction in terminal branching of the thalamocortical 

radiations. 

A plot of each participants' BAEP CTT versus his/her SEP CTT (P9 to 

Pl4) shows a strong linear trend (see Fig. 6). This relationship implies 

that the longer CTTs observed in the diabetics occur together in both 

modalities and reflect a mild but pervasive metabolic influence of dia­

betes throughout the CNS. The plot reflects to a degree the same find­

ings as the analyses of variance tests for the CTTs. However, correla­

tions of the BAEP CTT and the SEP CTT, by diagnostic classification, 

reveal additional information about the relationship. There is a 





significant correlation between the two CTTs among the diabetics (r = 

0 , 86 , p = 0, 01), but not among the nondiabetics (r = 0.31, p = 0,42), 
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The degree of peripheral nerve diahetic neuropathy has been shown 

repeatedly to be inversely related to the degree of glycemic control 

(Greene��., 1981; Porte� al., 198 1; Horowitz & Ginsberg-Fellner, 

1979; Pirart, 1978; Skyler� al,, 1978; Ward��., 1971; Gregerson, 

1967). Better blood glucose control is associated with less peripheral 

neuropathy, Looking at Fig, 6, it appears that the large BAEP CTT 

SEP CTT correlation among the diabetics is a result of the greater dis­

persion of the diabetics along the regression line, This finding sug­

gests that not all the diabetics show a diagnostic effect, Furthermore, 

the dispersion may be related to the degree of glycemic control, as it 

is at the peripheral level, The demonstration of a relationship between 

CTTs and glycemic abnormality would verify that longer CTTs in diabetics 

are a result of glycemic abnormality and validate the use of EPs to 

diagnose CNS diabetic neuropathy. 



Discussion 

The diabetic group in this study evidenced significant slowing of 

median nerve conduction velocity, indicative of peripheral nerve diabe-

tic neuropathy. Furthermore, the three CTT measures reported in this 

study each showed a significant diagnostic group difference, suggesting 

a detrimental effect of diabetes on CNS function. However, the direction 

of the diagnostic group difference was not the same for the three CTT 

measures. The BAEP CTT (wave I to wave V) and the SEP CTT (P9 to Pl4), 

both of early brainstem origin, were significantly longer in the diabe-

tic group,probably reflecting slowed central conduction. The SEP CTT 

(Pl4 to Nl8), of midbrain origin, was significantly shorter in the dia-

betics, possibly reflecting a reduction in thalamocortical radiations 

(Desmedt & Cheron, 1980b). More definitive statements of the meaning of 

t hese findings await the resolution of measurement problems and a better 

knowledge of the neural origins of the EP waveforms. 

The group means for the SEP CTTs suggest a serious question concern-

ing accurate designation of the Pl4 component in the nondiabetics. As 

an extension of the nomenclature, the anticipated CTT from P9 to Pl4 is 

about 5 msec. The anticipated CTT from Pl4 to Nl8 is about 4 msec. 

These values appear essentially reversed in the nondiabetics, with P9 to 

Pl4 being about 4 msec, and Pl4 to Nl8 being over 5 msec (Table 6). One 

could argue that the component designated as Pl4 in the nondiabetics is 

actually Pl3 and that the diagnostic group difference in the CTTs merely 

38 
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reflects the "misdesigna tion". Desmed t & Cheron (1980b) have pointed 

out how Pl3 can be incorrectly designated as Pl4 (see Fig. 2) when Pl3 

is inordinately large and predominates over Pl4. To further exacerbate 

the uncertainty a small PlS is sometimes present on the descending limb 

of Pl4, mimicking the Pl3-Pl4 condition in the lower SEP of Fig. 2 

(Desmedt & Cheron, 1980b; Starr, 1978; Greenberg et al., 1977). It is 

possible that the naming of PlS is actually an error of misinterpreting 

the Pl3 and Pl4 waves in taller individuals. 

The issue of correct designation is much more complex than just mere 

variation in wave morphology. Given a CV of 60 m/sec, an average of 

about 0. 17 msec is required for each cm of conduction distance over the 

median nerve. Desmedt & Cheron (1980c) have attributed differences of 

as much as 2 msec in P9 onset latency to intrasubject differences in arm 

length. Thus, it is not unreasonable that the P9 wave could have a peak 

latency of as low as 7 msec or as high as 1 1 msec among normal indivi-. 

duals with identical median nerve CVs, because of inter-individual 

differences in the length of the nerve pathway. The polarity-latency 

combination nomenclature is only a representation of mean peak latencies 

from large samples where height is ignored as a factor. It is unreliable 

as a rigid guideline for designation of SEP components. 

When comparing SEPs from a group that is heterogeneous with respect 

to height, the largest component of height-related variation in peak 

latencies arises from the longest segment of the stimulated pathway, 

that is, from the stimulation site up to the axilla (vicinity of P9 ori­

gin). However, it is important to realize that this component is not 

the only component of height related variation in peak latencies. It is 

reasonable to assume that height is related to body size and that it 



tends to be distributed proportionally over th �· · 1 e enLire vertica axis. 

Therefore, it is expected that taller individuals would tend to have a 
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greater chest girth also. 's · th h 1 " suming at one- a f of chest girth closely 

corresponds to the nerve pathway length from the axilla to the point of 

spinal entry (onset of Pll), it is expected that taller individuals 

should have a greater conduction·time between the peaks ot pg and Pll. 

However, this component of height related variation in peak latencies is 

smaller than that of the first segment (stimulus onset up to peak of P9) 

because the nerve segment is shorter. An analogous argument applies for 

the remaining peak-to-peak segments of the SEP. The two major points can 

be generally stated as follows: 1) not only is height directly related 

to SEP latencies, but also it is related to the interpeak latencies. 

Thus, the height effect cannot be subtracted as an overall constant from 

each peak latency. However, 2) the height related variation in interpeak 

latencies should be proportional to the length of the nerve segment be-

tween the two peaks involved. Thus, the height factor should be less 

significant for shorter caudal segments of the nerve pathway than it is 

for longer rostral segments. These relationships are problematic when 

the SEP is used to determine impaired CNS function because the putative 

disease effect will be similar to the height effect. Therefore, the 

height effect must be accurately assessed in order to draw sound conclu­

sions concerning group differE:nces in peak latencies and interpeak dis-

tances, as they reflect neural processes. Clearly, the covariance ap-

proach employed in this study was effective in dealing with height 

related variation in the SEPs. However, the covariance approach was 

limited in that the height related variation may have hampered correct 

designation of the component peaks. Where peaks P9, Pll, and Pl3 are 
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involved, the height related variation is best controlled by recording 

the nerve volley at the axilla (origin of P9) and over cervical verte­

brae 6 and 7 (onset of Pll) (Desmedt & Cheron, 1980b). These recordings 

allow accurate designation of the scalp recorded P9 and Pll by essenti­

ally having recorded the potential from two points that give the same 

latencies as the scalp recorded SEP. Such a tight designation of P9 and 

Pll reduces the difficulty in accurately designting Pl3 and Pl4 thereby 

making the differences induced by any disease factor more detectable. 

In this study, the scalp recorded SEPs were extensively evaluated to 

insure accurate designation of the components. Since axilla and neck EPs 

were not recorded, the scalp SEP peaks were designated based on their 

overall appearance and to a degree, on the anticipated nominative peak 

latencies. Knowledge of the diagnostic group classification was not con-

sidered during the initial scoring. The data were then entered into the 

computer for calculation of summary statistics. Outlying observations 

were then checked for validity. Finally, the SEPs were rescored a second 

time from scratch with any scoring differences thoroughly reconsidered 

by Dr. Harkins and myself. In light of the new information concerning 

Pll and P13 (rather than Pl2), the SEPs will be rescored a third time 

prior to any further publication. 

More research needs to be done to clarify the components of the SEP, 

their origins, and factors influencing their appearance. Unlike the BAEP, 

it is not possible to clearly interpret the SEP findings presented here 

until such information is available. Nonetheless, there are some notable 

consistencies. The BAEP CTT, PCV, and SEP CTT (P9 to Pl4) for the dia-

betic group are all in the expected direction. Thus, it appears that, 

d. b t· conduction times tend to be longer throughout the 
among ia e ics, 
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nervous system. These findings are analogous to age differences obser­

ved by Desmedt & Cheron (1980 a & c) in a group of octogenarians. Gupta 

and Dorfman (1981) have observed a similar trend in a heterogeneous 

group of diabetics, except they found no differences at the supraspinal 

level. However, their technique involved estimation of several para­

meters that would be affected by diabetic neuropathy. It is not clear 

whether assumptions involved in these estimations remain valid in cases 

of diabetic neuropathy (see Dorfman, 1977 for technique of estimating 

conduction time based on the F-wave motorneuron backfiring phenomenon). 
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