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INTRODUCTION 

The prostaglandins are a family of unsaturated 20-carbon 

fatty acids, which are ubiquitously distributed throughout virtually all 

animal tissues. Four series of natural prostaglandins are commonly 

synthesized in biological systems, and have been designated by the 

letters E, F, A, and B, which correspond to differences in their degrees 

of hydroxylation and unsaturation, with the latter denoted by a subscript 

numeral after the letter (Horton, 1972). The diverse pharmacological 

act ivity of these 20-carbon unsaturated fatty acids was orig inally estab­

lished by U . S. von Euler (1934), who observed that human semen and 

extracts of sheep vesicular g lands l owered arterial b l ood pressure and 

stimu lated numerous isolated intestinal and uterine smooth muscle 

preparations. More recently, the ub iq uitous prostaglandins have been 

implicated in such physiological process es as reproduction, hormone 

secretion , nerve transmission , lipolysis, vasoconstriction and vaso ­

dilation , gastric secretion, and platelet aggregation (Bergstrom, 1967; 

Horton, 1972). 

Most cell types possess a prostaglandin synthetase whi ch 

is responsive to hormones or other stimuli; through this multi-enzyme 

comp lex prostaglandins can be formed as potential intracellular messen­

gers (Ramwell, 197 3). The prostaglandins, thus formed may influence 

cellula r function either by d irectly affecting the activity of a given enzyme 

or by modulating the levels of other biologically active substances like 

cyclic nucleotides or calcium ions. Alternatively, the prostaglandins 

synthesized may be secreted by stimulated cells and influence nearby 

cells or tissues thus acting as local hormones. Finally, those prosta­

glandins released into the general circu lation may serve as classical 

hormones at distant target tissues. 

Although prostaglandins have been implicated in many diverse 

cellular functions, the large number of prostaglandins and their physio-
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lo g ica lly active endoperoxide int ermed iates has complicated the defini­

tion of their role as intra cellu lar regu lators (Silver and Smith , 1975). 

Steroidogenic tissues are known to synthesize several types of prosta ­

glandins, and although a substantial amount of evidence has accrued 

regarding the putative role of prostaglandins in gonadal steroidogenesis 

(Shaw and Tillson , 197 4), much less i s known about th e ir role in the 

action of ACTH on adrenal steroidogenes is. However , th e participation 

of prostaglandins in the regu lation of corticosteroid production and 

release i s suggested by the pharmacologic evidence that exogenous 

prostaglandins elicit steroidogenic activity in systems such as the rat 

decapsulated adrenal cort ex (Flack et £1. , 19 69) and the feline adrenal 

cortical suspens ion (Rubin and Warner, 1975). The latter test preparation 

was used in t he present study. 

In order to assess more clearly the relationship of prostagland ­

in s to adrenal stero idogen es is, the id entity and metabolism of prosta­

glandins in the adrenal cortex mus t be ascertained since heretofore this 

information has been la cking. Hence, the purpose of the present invest i­

gation was to elucida t e further the role of prostaglandins as an intermed ­

iate in the action of ACTH on the adrenal cortex by a comprehensive 

study of adrenocortical prostaglandins and th e ir functional relationship 

to steroid production and release . 
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I. Steroidogenesis in the adrenal cortex 

The ultimate cellular response of the adrena l cortex to ACTH 

stimu lation is the synthesis and secretion of various steroid compounds. 

Unlike most other endocrine organs, the adrenal cortex does not store 

corticosteroid in anticipation of a releasing stimulu s, but rather ACTH 

enhances steroid production and causes its i mmed iate extrusion from the 

ce ll (Jaanus et al. , 1970). Morphologica l studies of the adrena l cortex 

confirm the absence of intracellular structures which might be corre lated 

with secretory granules storing steroid prior to exocytotic release 

(Malamed, 1975). Thus , ACTH augments the synthesis and release of 

corti costeroid by the activation of specific biochemical pathways. 

The synthesis of corticosteroids in the adrenal cortex is 

accomplished by several enzymes located in different organelles. 

Cholesterol appears to be the initial substrate in the production of corti ­

costeroids by the adrenal gland (Garren , 1968). Cellular esters and 

fatty acids contribute to the formation of free cholesterol (Macho and Saffran, 

1967) wh ich can participate in other cellular reactions cu l minating in 

the synthesis of corticosteroids. In the cell , most of th e cholesterol 

exists as esters of unsaturated fatty acids contained within cytoplasmic 

lipid droplets (Grant, 1968). Before this steroid precursor pool can be 

utilized , the cholesterol must be liberated by the action of a sterol 

esterase, which hydrolyzes the cholesterol ester and converts it to a 

compound available for mitochondria l metabolism (Batta, 197 5). Numerous 

investigations have demonstrated not only that the electron -dense lipid 

bodies lose th eir density and acqu ire a crink l ed outline indicative of a 

lo ss of lipid when ce ll s are exposed to ACTH ( Luse, 1967) , but also 

that on stimulation with ACTH the more unsaturated fatty acid esters of 

cholesterol are depleted from the human adrenal cortex (Grant et al. , 1968). 

Within the adrenal cortica l mitochondrion the side cha in of 

cholesterol is cleaved, forming pregnenolone by a sequence of enzymatic 

reactions (Fig. 1) . This cleavage of the s id e chain from cholesterol 
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depends upon a d esmola se complex found w ithin the mitochondria 

(Ha l kerston e t fil., 1961). This enzyme complex appears to convert 

cholest erol to ZOa-hydroxycholes t erol, then to ZOa- 22¢ - dihydroxycholes ­

terol, and finall y to pregnenolone and i socaproi c acid (Garre n, 1968; 

Constant opou los ~ fil, , 19 62 , 1966). But, uncertainty rema ins as to 

the identity of some intermed iates involved in the conversion of 

chol esterol t o pregnenolone. While Roberts et al. ( 1969) were abl e t o 

isolate rad iola be l ed ZOa-hydroxycholesterol from bovine adrenal tis sue , 

the conversion of chol es te rol to 2 Oa, 22R - dihydroxycholesterol and 

22 -R hydroxycholestero l has also been es tabli shed (Burste in et a l. , 

1970a, b) us in g acet one - dried powder preparations of human , bovine, 

and guinea pig adrenals . 

Th e mitochondrial enzyme complex responsible for cleavage 

of the cholesterol side - cha in requires NADPH and oxygen and utilizes 

cy tochrome P
450 

as a termina l oxidas e (Schulster , 1974) . In addi tion 

to thes e cofactors, t he regulation of pregnenolone synthesis is a l so 

at least partly dependent upon a modification of mitochondrial membrane 

structure. Changes in the permeability properties of the mitochondrial 

membrane might enhance th e entry of NADPH used by mitochondrial 

cho lesterol - cleaving enzymes , or might a llow the exit of pregnenolone 

from the organelle (Schul s ter, 19 7 4) . The la tter possibility rece i ved 

support when, us ing an acetone powder of adrena l mitochondria , 

pregnenolone was demonst rat ed to cause an allo s t e ric inhib ition of the 

conversion of cholesterol to pregnenolone (Koritz and Ha ll, 19 64). 

This ob servation is th e bas is of the Koritz and Hall model of ACTH action 

which postu lates that ACTH indirec tly affects the mitochondrial membrane 

so that exit of pregnenolone from w ithin the mitochondria is enhanced 

(Koritz , 1968 ). The enhanced removal of pregne nolone stimulates its 

own synt hesis in the absence of feedback inh ibition and results in an 

overa ll increas e in th e rate of steroidogenes i s . Th is centra l fa cet of 

the Koritz - Ha ll model has , however, been cha llenged as a mechanism 
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of action of ACTH, since inhibition of the conversion of pregnenolone 

to progesterone by cyanoketone in rat adrenal sections (Farese , 197 1a) 

did not block ACTH stimu lation of pregnenolone synthes i s despite the 

accumulation of pregnenolone within th e g land . It i s possible that 

experi men tal results obtained from acetone powder mitochondrial prep­

arations do not perta in to who l e ce ll preparations , or that inta ct cell s 

have a mechan i sm for the removal of pregnenolone from its inhibitory 

site. 

Pregnenolone leaves the mitochondrion and i s converted into 

progesterone by the action of an NAD - dependent 3f3 - hydroxysteroid 

dehydrogenase and a proton-transfer enzyme in the microsomal fra ction 

(Beyer and Samue l s , 1956; Ewald e t al., 1964). This reaction does not 

appear to be stimulated directly by ACTH since s tudies show that high 

concentrations of cyclic AMP , a proposed second - messenger of ACTH 

action, inhibit the conversion of pregnenolone to proges terone in rat 

adrenal homogenates and in isolated beef adrenocortical mitochondria 

(Koritz ~ al. , 1968), while physiolog ical concentrations of th e cyclic 

nucleo tid e had no effect on the convers ion process. 

The conve rsion of progesterone and l l a, -hydroxy prog es t erone 

to deoxycorticosterone and 17-hydroxydeoxycorticosterone occurs in 

the microsomal fraction of the cell where enzymes ca talyze the in tro ­

duct ion of a hydroxy group into the 21 position of the steroid nucleus 

(Garren, 1968). The 2 1-hydroxy la se in adrena l microsomes requ ires 

NAD + and atmospheric oxygen , as is common for reactions in which 

cytochrome P 
4 50 

i s the oxygen - activating enzyme (Ryan et al., 19 57; 

Estabrook e t~., 1963). If the 17a,-hydroxyla ting enzyme system i s 

active, the predominant steroid secret ed will be cortisol ra the r than 

corticosterone , as is the case in th e fe lin e adrenal cortex (Bush , 1953; 

Ja anus e t al., 1970). 

Deoxycorticosterone is transformed into corticosteron e , and 

1 7-hydroxydeoxycorticosterone is transformed into cortisol by the 
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introduction of the hydroxyl grou p in the 11/3 position of the steroid mole­

cu l e (see Fig. 1). Once again, the e n zymes responsible for this conver ­

s i on are present in the mitochondria of th e adrenal cort ex and r equire 

NADPH and oxygen and mitochondrial cytochrome p (Garren 1968) 
4 50 ' . 

The fa c t that high concen tration s of d eoxycorti costerone are formed from 

(208)-20-hydroxycholesterol in i solated rat adrena l cell s , suggests that 

the synth es is of corti costerone from deoxycorticosterone i s a re lative ly 

slow reaction not under the control of ACTH (Sharma, 197 3). 

II. Mechanis m of ACTH a c ti on 

A. ACTH binding 

In order to appreciate fully the pos s ibl e roles wh ich pro s ta­

glandins may play in the stero id ogeni c process, it is necessary to pro­

vid e background in formation regarding what i s already known about th e 

mechanism of a ct i on of ACTH. The action of ACTH on the adrenal cortex 

i s typified by the hormone com plexing with its spec ifi c receptor system 

in order to initiat e regulatory and metabolic processes which culminate 

in th e e nhanced syn thes i s and secretion of corticos t eroid. The binding 

of ACTH to the adrenal cort ica l cell has been d escribed for cortical tissu e 

s lices (Golder and Boyns , 1972) and membrane prepara tions from rat and 

mouse adrenal tis sue (Hofmann et al., 19 70; Lefkowitz e t al., 19 71), 

suggesting t hat ACTH binds at t he cortical cell surface (Pastan et al., 

1966 ; Richardson and Schu l s ter , 1972). 

The b indin g data accrued from studies using receptor extra c ts 

of adrenal cortical tumor h omoge nat es (Lefkowitz e t al., 1971) or intact 

i so lated adrenal cell s (M c ilhinney and Schulster, 1974) indicate that 

two sets of ACTH receptor s are present wh ich differ in th e ir e quilibrium 

and kinetic constants. Low affinity binding sites are in the majority, 

w hile the high affinity binding s ites are in th e minority and appear to 

be responsible for steady , sus tain ed ACTH responses. Two populations 

of binding sites may provide greater fl exibility in th e cellular respon se 
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to chang ing level s of ACTH at the targe t tissue, but whethe r there are 

any other specialized funct ion s associated with the different receptor 

s ite s i s a matter of speculation. Stud ies us ing the ACTH analogu e , 

o-nitrophenylsulphenyl ACTH (NPS-ACTH) (M oy le e t £1_. , 197 3), however, 

suggest that th e two receptor s ites for ACTH may actually differ as to 

their role in reading, tran s lating and amplifying th e hormone - carried 

message. The s tud i es by Moy l e and co-workers demonstrate th e competi ­

tive binding o f NPS - ACTH to an ACTH receptor site , wh ich when 

activated i s capabl e of in c reasing steroidogenesis in the absence of 

inc re a ses in cyclic AMP. It appears, however , that a second type of 

ACTH binding site, in sen s itive to NPS-ACTH , s timulates steroidogenesis 

subsequ e nt to inc r easing cycli c AMP level s within the adrenal cortical 

ce ll. Thus, t he differences among receptors may lie in their potential 

for activating adenylylicyclase o r other membrane-associated enzymes 

(Lefkowitz e t al. , 197 1; Moyl e e t £1., 197 3). 

B. Proposed media t ors for ex press ion of hormone -carrie d message 

1. C y c li c AMP. The ACTH hormone-receptor complex 

activates a specific plasma membrane enzyme of the target tissue, and 

it i s thi s enzyme whi ch i s responsible for discriminating environme ntal 

signals and generating the tran s lated form of t he hormon e - ca rried message 

(Torda , 197 1). The translated form of the message i s the second­

messenger hypothesized by Sutherland and CGrWorkers (Robi son et al. , 

19 71); and it has genera lly been demonstrated that po lypeptid e hormones 

modify tissu e fun c tion by altering tissue level s of cyclic AMP through 

a c tivation of a plasma membrane associated adenylyl cyclase (Shaw and 

Tillson, 1974). 

The theory that ACTH action is mediated through the activa tion 

of ad enylyl. cycla se and accumulation of cycli c AMP in adrena l cells was 

substantiat ed by the s tudies of Haynes (1958) using adrenal cortical 

slices to demonstrate the synthes is of cyclic AMP in response to ACTH. 

The establishme nt of cycli c AMP as a second messenger in ACT H a c tion 
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has since been corroborated by numerous investigators using as evidence 

the accumulation of cyclic AMP in vitro and in vivo (Grahame - Smith ~ 

al., 1967), as well as the stimulated conversion of ATP to cyclic AMP 

after the addition of ACTH to adrenal homogenates (Taunton et~-, 1967). 

The location of adenylyl cyclase within the plasma membrane of several 

cell types (Sutherland et~- , 1965), including the adrenal cortical cell 

(Lefkowitz et al. , 1971), suggests an ACTH-receptor-adenylyl cyclase 

complex for translating the hormonal message. 

Controversy has arisen, however, regarding the obligatory 

role of cyclic AMP in ACTH-induced steroidogenesis. As the studies 

previously described by Moyle illustrate , NPS -A CTH caused increases 

in adrenal steroidogenesis without augmenting adrenal cyclic AMP levels, 

and in fact, ACTH -induced cyclic AMP accumulation was inhibited by 

NPS -ACTH (Moyle et~-, 1973; Kong et al., 1972). In addition, studies 

with isolated rat adrenal cells have shown that low concentrations of 

ACTH stimulate steroidogenesis without causing detectable changes in 

the concentration of cyclic AMP ( Beall and Sayers, 1972). It is possibl e 

that low but steroidogenic concentrations of ACTH fail to induce detect­

able increases in the level of cyclic AMP due to the limits of the analytic 

t echniques, since high ACTH concentrations increase cyclic AMP in 

the rat adrenal preparation in which adenylyl cyclase was not detectably 

responsive to low ACTH concentrations (Beall and Sayers , 1972). 

If cyclic AMP is a mediator of ACTH action on the adrenal cor ­

t ex, then accord ing to the criteria set forth by Sutherland and co - workers 

(Robison et al. , 197 l) to describe second messengers of hormone action, 

not only should cyclic AMP be synthesized by this tissue in response 

to ACTH, but exogenous cyclic AMP should mimic the steroidogen i c action 

of ACTH. Since the pioneer work of Haynes et al. ( 1959) and Birmingham 

et al. ( 1960) which demonstrated the steroidogen i c capacity of this 

nucleotide in rat adrenal sections, many workers have shown that exogen ­

ous cycli c AMP , or its mono - or dibutyryl-derivative, is able to enhance 
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corticosteroid synthesis in a manner not unlike ACTH. Rat adrenal cell 

suspensions are responsive to micromolar amounts of cyclic and dibutyryl­

cyclic AMP in synthesizing corticosteroid (Haksar et fil., 1973; Sayers et 

fil. , 1971). In addition, dibutyryl-cyclic AMP (the more lipid soluble 

cyclic AMP analogue) was effective in inducing two- to seven-fold 

increases in steroid output when added in millimolar concentrations to 

monolayer cultures of mouse adrenal cortex tumors (Kuo et al., 1975). 

Cyclic GMP, another naturally occurring cyclic nucleotide, is also 

capable of enhancing steroidogenesis when added in vitro to rat adrenal 

cell suspensions (Kitabchi and Sharma, 1971), but it is generally much 

less potent in this regard than cyclic AMP. 

Evidence has accumulated to suggest that cyclic GMP is 

involved in promoting cellular events that are antagonistic to those 

mediated through changes in cyclic AMP levels (Goldberg et fil., 1973). 

Since the unitary role of cyclic AMP as the second messenger of the 

ACTH-adrenal interaction has been questioned (Moyle et al., 1973), 

the failure of cyclic AMP to fully reproduce adrenal response to ACTH 

(Rubin et al., 1973) and the observation that elevated cyclic GMP levels 

in the rat adrenal are synonomous with decreased cyclic AMP levels 

(Whitley et fil., 1974, 1975) lends credence to an hypothesized role for 

cyclic GMP in mediating ACTH - induced adrenal steroidogenesis. However, 

the precise regulatory relationship between the two cyclic nucleotides 

has not been elucidated. 

As a second messenger of ACTH action in the adrenal cortical 

cell, cyclic AMP should be responsible for certain metabolic or molec­

ular changes which manifest them,selves during corticosteroid synthesis. 

The delayed onset of steroidogenesis following exposure of the adrenal 

gland (Rubin et al., 1973) and isolated adrenal cells (Beall and Sayers, 

1972) to cyclic AMP allows time for the nucleotide to activate enzymes 

participating in the induction of steroidogenesis. Likewise, the increase 

in adrenal cyclic AMP induced by ACTH reaches maximum levels prior 
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to th e attainment of maximum steroid release (Graham e -Smith et al. , 

196 7; Rubin e t al., 1972). Specifi ca lly, cyc li c AMP activates the syn­

thes i s of a protein essentia l for convertin g chol es t erol to the corticoid 

precursor, pregn e nolone. During the interva l between cycli c AMP genera ­

tion and steroidogenesis , cyclic AMP binds t o a protein receptor found 

in the solub le cytoplasm ic fra c tion d erived from adrenal cort i ca l tissue 

(Gill and Garre n, 1969 ). Associated w ith the cyclic AMP receptor 

protein the re appea rs to be a prote in k ina se whose activ ity is stimulated 

by cyclic AMP (G ill and Ga rre n , 1970). 

Th e complex of cyclic AMP-rec e ptor and prote in phosphokinase 

was demons trated by the studies of Gill e t .9.l. s howin g that both binding 

and phosphory lation activities sediment a s a s ing l e peak in the analyti ­

ca l centrifuge and migrate as a s ingle band after polya cry lamide ge l 

e l ectrophoresis . Si milar methodology was in s trumenta 1 in illu stra ting 

the d i ssociation of t he nucleotide receptor and kinase components 

following incuba tion of the microsomal ce ll fra c tion with cy clic AMP, 

and t he concomitant s timula tion of prot e in kinas e (Gill and Garren , 19 71). 

From these studies a model emerges suggesting that the cyclic AMP 

receptor protein represses t he prote in k ina se w hen th ey are associated 

as a com plex, an d that cy cli c AMP bind ing dissociates t he receptor 

protein from the kinase which i s the n fu lly a c tivated (Schulster , 1974). 

Phosphoprotein kinas e i s therefore another med iator in th e 

tropic mechanism of action of ACTH. The s tudies o f Wa lton e t al. ( 197 l) 

d e monstrate t hat ribosomes may be the endogenous substrate for this 

enzyme in bovine adrenal g land s s ince it catalyzed th e phos phorylation 

of a prot e in a ssociated wit h 80S sedimentable ribos omes. A similar 

activ ity for the kinase has been d e monstrated in rat li ver microsomal 

preparations (Loeb and Blat, 1970) . The ribosomal ph osphorylation 

ha s been postulated to modulate th e translation of stabl e mess e nger 

RNA, l e a d in g to inc reased synthesis of a regulator-protein fac ilitating 

th e tran sloca ti on of choles terol to t he mitoch ondrion for convers ion t o 
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pregnenolone and ult i mate l y to corticosteroid (Garren et tl-, 197 1). 

Protein kinase has a l so been implicated in activating enzymes associated 

with the conversion of cholesterol esters to free cholesterol (Schulster, 

1974) . The generation of an active protein kinase not only appears t o 

be a criti cal precedent event for steroid production and re lease but has 

the potential for being a powerful cellu lar mediator regulating a var iety 

of metabolic processes. 

The ro l e of protein kinase in activated stero idogenes i s has 

been defined as t he capacity to phosphorylate and activate a stable 

messenger RNA wh ich c od e s for the translation of a protein active 

in steroidogenesis. Stud ies utilizing several protein synthesis inhib i­

tors have helped to e lu cidate the mechanism of action of ACTH in this 

regard (Rubin~ a l., 197 3). 

2. Protein synthes i s and s t ero idogenesis. The increase in 

protein synthes i s due to ACTH does not appear to be dependent upon 

RNA synthesis, s ince actinomycin D i s ineffect ive in blocking steroido­

genes i s (Sa to, 1965) . Cyc loheximid e , which is a pharmacological agent 

responsibl e for in hib iting the translation of cytoplasmic RNA into protein, 

effective ly inhibit s ACTH s ti mu lated steroidogenesis (Garren et al. , 

19 7 1; Rubin et al. , 197 3) . On the other hand, cyc l oheximide is ineffec­

tive in preventing the accumulation of cyclic AMP in response to ACTH. 

These results sugges t that a newly synthesized protein i s essentia l t o 

s t ero idogen es i s at some poin t after the generat ion of cycli c AMP. 

Stud ies by Sharma (1973) and Garren (1968) illustrate that 

th e ACTH stimulated con vers ion of ( ZOS)-20-hydroxychol es t e rol into 

corticos t erone and th e synthes is of deoxy cort icos t eron e from this pre ­

cursor are not inhibited by cycloheximide. Thus , these e nzymatic 

t rans for ma tions are n ot dependent upon prote in synthes is. The results 

indica t e that cyclohexi mide inhibits ACTH action by preven ting the 

convers ion o f cholesterol to it s hydroxy der iva ti ve through a mechanism 

invo lv ing microsomal , rath e r than mitochondrial, protein synthesis 
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(Garren, 19 68) . Attention has also been directed towa rd the desrnolas e 

enzyme complex in an attempt to es tablish th e regulatory site for the 

rapid steroidogenic effect of ACTH, since it is the first in a series of 

enzymatic conversions of cholesterol and its metabolites to steroid. 

Studies illustrated , however, that the half -life of the cholesterol side ­

chain desmolase complex in hypophysectomized rats was 3-4 days, 

whereas the rapid drop in the stero idogenic capacity of these rat s de ­

cayed wi th a half -l ife of 6 - 7 hours (Mostafapour and Tchen , 197 3) . 

Therefore , the decay in the steroidogenic capacity after hypophysectomy 

was attri buted to th e decay of an RNA with a half-life of 6-7 hours , and 

it was hypothesized that this RNA might be re spons ible for the synthesis 

of a labile steroidogenic protein mediating the ACTH res ponse (Garren 

e tal., 1965). 

Recent evidence subs tantiates the presence of a heat - stable 

protein in rat adrenal fractions which functions s imilarly to live r sterol 

carr i e r proteins (SCP) (Kan e t~- , 1972) in that it appears to be active 

in the synthesis, transport, and metabolism of cholesterol. The 

cholesterol SCP complex cou ld be responsibl e for the delivery of choles ­

terol to the mi tochondria where cho lesterol is enzymatically converted 

to pregnenolone . Thus, cyclohexi mide appears to e ithe r prevent the 

trans loc ation of cholesterol from the cytoplasm into the mitochondr ion, 

or acts directly upon a mitochondrial function essential for the trans ­

formation of th e sterol. It remains to be determined whether other 

mediators of cholesterol permeance of th e mitochondrial membrane, 

such as calcium or prostag landins, might not be affected by the presence 

of the antibiotic and account for the observed inhibition of cholesterol 

metabolism . 

3. Calcium , ACTH,. ,and steroidogenesis . The critical role 

of calcium in the steroidogenic process is underscored by the numerous 

s tudies in a variety of preparations that calcium deprivation leads to 

a profound depression of ACTH -induced steroid production and re lease 
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(Halk erston , 1975) . The participation of ca l cium in the activation of 

adenylyl cyclase , as well as an involvement of th e cation in steroido­

genic even ts subsequent to th e activation of adenylyl cyclase , are 

important events in the tropi c action of ACTH. The studies of Lefkowitz 

et~- ( 197 0) demonstrate that wh ile the adrenal ACTH-receptor inter­

action does not require calcium , ACTH stimu lation of adenylyl cyclase 

does require calcium, as evid enced by th e fact that EGTA, a chelator 

of calcium, inhibited the cyclase s timulation . Thus, there appears to 

be a calcium requiring step b e tween the binding of ACTH to its receptor 

and the subsequent activation of adrena l adenylyl cyclase . Similar 

calcium requ irements for ACTH sens itive adenyly l cyclase have been 

demonstrated in the bov ine adrenal cortex and ghosts from rat fat cell s 

(Bar and Hechter, 1969) , rat adrenal cell suspens ions (Haksar e t al., 

1972, 197 3; Sayers et al. , 1972), and the perfused feline adrenal gland 

(Rubin et al., 1972). 

Several studies illustrating the steroidogenic capacity of 

exogenous cyc l ic AMP disclosed yet another role for calcium in this 

process, for cort icosterone synthes is induced by this nucleotide 

seems to depend upon the availability of the cation ( Birm ingham e t al. , 

1960; Haksar ~al., 1972; Rubin et al., 1972 ; Kuo e t al., 1975; Warner 

and Rubin, 197 5). Thus , while increasing levels of calcium cause 

parallel increases in the steroidogenesis elicited by ACTH and cyclic 

AMP in isolated rat adrenal ce ll s (Sayers et ~- , 1972), the de letion of 

calcium from this system as well as from rat adrenal slices in vitro 

(Farese , 197 la)s how ed comparable decreases in the steroidogenic action 

of ACTH and exogenous cycl i c AMP. It appears, th erefore, that calcium 

i s involved in the process of steroidogenesis subsequent to th e activa -

tion of adenyly l cyclase its e lf. 

The mechanism of action of ACTH in the adrenal cortex is 

such that calcium is in some manner accumulated , mobilized , or 

redistributed intra cellula rly ( Jaanus and Rubin, 1971; Leier and Jungmann, 
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1973) enabl ing it to participate in such varied processes associated 

with the synthesis and release of corticosteroids as the facilitation of 

protein synthesis, increasing the rate of hydroxylation of corticoid 

intermediates, and ultimately enhancing the release of corticosteroid 

from the cell (Berridge, 1975). 

The multitude of second-messenger roles for calcium are 

ultimately related to the synthesis and activities of other second messen­

gers functioning during cell activation . It has been shown in several 

physiological preparations that ACTH or cyclic AMP can modulate calciu m 

homeostasis by stimulating the uptake of calcium by the sarcoplasmic 

reticulum (Entman et~. , 1969), increasing the influx of 
45

ca into the 

adrena l cortex (Leier and Jungmann, 19 7 1), and playing a role in the 

redistribution of internal calcium in the adrenal cortex (Jaanus and Rubin, 

1971). The ability of dibutyry l cyc lic AMP to stimulate minimal steroid -

ogenesis in the absence of calcium (Haksar and Peron , 1972; Birmingham 

et al., 1973; Warner and Rubin , 1975) might be explained by release of 

ca lcium from some intracellular pool. In addition, the steroidogeni c 

response of i solated rat adre nal cells to high levels of ACTH showed a 

substantial synthesis of corticosterone in the absence of added calcium 

( Haksar and Pe ron , 197 3). Perhaps this is indicative of a cellu lar reserve 

of calcium utilizable for ACTH stimulation of steroidogenesis, or suggests 

an alternate route of stimu lation by ACTH which is not dependent upon 

ca lcium and i s on ly manifest at v ery high concentrations of ACTH . 

Studies by Rubin~ al. ( 1972) show that cyc lic AMP a lone is not capable 

of redistributing adrenal cort ical ce llular ca l cium , whereas ACTH has 

this capacity; therefore the proposal that ACTH may not only activate 

a calc iu m dependent adenylyl cyclase but a l so affect a lt ernate metabolic 

pathways concerned with calcium mobilization appears plausible. 

It has been suggested that the ACTH - mobilized ca lcium exerts 

effects beyond cyclic AMP production (Sayers et a l., 1972), perhaps 

by redistributing to an active site such as the endoplasmic reticulum 



-16-

or mitochondria (Rubin et al. , 1972) . The locus of calcium actions at 

the mitochondrial level may be related to an enhanced permeability of 

th e organelle's membrane to extramitochondria l NADPH with a consequent 

stimulation of th e hydroxylation reactions occurring during steroidogene­

sis (Matsuba et al., 1970; Peron et al., 19 65). In addition, the ca l cium ­

induced conformational change in beef adrenal mitochondrial membranes 

and the demonstration of at least two calcium -binding sites in the inta ct 

cristae membran e (Matsuba et al. , 1970), suggests that ACTH may 

release intracellular calcium which in turn binds to acidic phospholipid 

sites on the c ri stae membrane resulting in a conforma tional change in 

the membrane related to enhanced corticosteroidogenesis. 

Another membran e associated event of ca l c ium redistribution 

in response to ACTH concerns the plasma membrane and release of 

corticosteroid. The accumulation of intracellular s teroid in adrenal 

glands perfused w ith calcium free medium (Jaanus et al. , 1970) , despite 
3 

the dimin ished synthesis of steroid from H-a cetate precursors (Jaanus 

et al. , 1972), indicated that steroid release was dependent upon the 

availability of calcium. An exocytotic mechanism of release for adrenal 

steroids has been hypothesized to occur in conjunction with the release 

of newly synthes ized protein (Rubin et al., 1974; Laychock and Rubin, 

19 74). In other secretory systems such as the adrena l medulla (Douglas 

and Rubin, 1961), synapti c nerve endings (Simpson, 1968; Miledi, 1973) , 

and endocrin e pancreas (Malaisse et al. , 1971), ca l cium has been demon­

strated to facilitate secretion. 

In the previous discussion of th e protein kinase associated 

increase in steroidogenesis, it was noted that ribosomal phosphoryla­

tion and newly synthesized protein are critical t o the action of ACTH. 

Studies by Farese ( 197 la) demonstrated that ACTH and cyclic AMP 

stimu lated steroid release from rat adrenal sections were equa lly depen­

dent upon calcium, and in calcium free adrenal incuba tions the incor­

poration of 3H -leucine into protein was inhibited . Calcium deletion 
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did not result in a comparable inhi bition of RNA synthesis however 
I I 

illustrating the metabolic v ia bility of the tissue. Farese (1971b), 

in later studies demonstrated tha t calcium stimu lated the transfer of 

amino acids from the amino acyl-tRNA complex to th e growing peptide 

chain, possibly by increasing transfer enzyme activity. 

The evidence thu s far indicates a second messenger role for 

calcium and a cooperation w it h cyc lic AMP in mediating the action of 

ACTH. Whether calcium may in turn enhanc e the synthesis or activity 

of oth e r adrenal messengers, such as the prostaglandins or regu latory 

protein s respons ib le for mediating th e tropic action of ACTH, has not 

been fully elucidated. 

III. Prostaglandins 

A. Functions of prostaglandins 

In addition tto a postulated role for prostaglandins in steroido ­

genesis, they are thought to participate in a variety of other physiologi­

ca l processes, and they demonstrate a wide spectrum of pharmacological 

actions on diverse b i ologica l systems. In autonomically innervated 

tissues, results obtained in studies of prostaglandin distri bution , release, 

and action indicate that prostaglandins of the E-type play a physiologi­

cal regulatory role in sympathetically innervated tissues (Hedqvist, 

1973). This action is mediated both by inhibiti on of norepinephrine 

release and by alteration of the effector response to norepinephrine, 

perhaps by an effect upon the adenylyl cyclase- cyclic AMP system 

(Bergstrom , 1967) and/or ca l cium availability (Strong and Bohr, 1967). 

In lig ht of the role of prostag landin s regulating sympa the tica lly inner­

vated tissues, it is not unexpected that the prostaglandins synthes ized 

by the kidney medulla have potent vascular and natriuretic activities 

contributing to their antihypertens ive effect (Lee, 1973). Prostag landin s 

as smooth muscle active agents also influence pulmonary vascu lar and 

bronchial muscle ton e (Smith, 1973). The cardiovascular actions of 
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prostaglandins are w ide ly recognized in myocard ia l ti ssue , as well as 

in the splanchni c , hepatic, gas tric , cerebral , ovarian and uterine 

c ir cu lations (Nakano, 1973) . 

Prostagland ins also play a part in mediating th e action of 

several hormones. Lipolysis in the epididyma l fat pad in vitro is 

induced by electrical stimulation of sympathetic postganglionic fibers , 

epinephrin e , norepinephrine, ACTH , thyroid stimulating hormone (TSH) , 

and g lucagon , and PGE
1 

is abl e to antagonize these lipo ly tic e ffects 

(Berti and Usard i, 1964 ; Ste in berg e t al., 1964). The mode of action 

of prostaglandins on lipo lysis i s largely unknown , although it appears 

to be e ithe r competitive or noncompetitive inhib iti on depending upon 

calcium availability (Pa oletti and Puglisi, 1973) . In addition , th e 

prostaglandins are ext reme ly effective in h ib itors of cycl ic AMP accumu ­

lation in fat ce ll s (Butcher and Baird , 1968) and reduce the sensitivity 

of adenyly l cyclase to many different hormones. 

Prostag landin s a l so exert regu latory effects upon the 

hypothalamus - pituitary - endocrin e system, and inves tigators have s tudi ed 

th e r e lationship between th e l eve l s of cyclic nucleotides and prosta­

glandins in regard t o tropic hormone synthesis. Evidence suggests that 

wh il e pros taglandin s are not the physiological releasing hormones, they 

may mediate t he release of re leas ing hormones from the hypothalamus 

by affecting t he r e lease of cerebra l neurotransmitt ers and/or the vas ­

cu lar properties of the hypophyseal-portal system (Flack, 19 7 3) . Prosta ­

glandi ns also s timu late adenylyl cyclase and cyclic AMP formation in 

the anterior pituitary (Zor e t al. , 19 70) and tropic hormone synthesis 

may be mediated by both agents. Studies on e ndocrin e orga ns such as 

the adrenal g land, thyroid g land, ovary , and tes ti s have demonstrated 

increased hormone synthesis and re lease in response to exogenous ly 

administered prostaglandins (Flack , 197 3). An increase in cyclic AMP, 

however , is not obligatory to the actions of prostaglandins on the adrenal 

endocrin e system (Beall and Sayers, 19 72) as it appear s to be in th e 
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other systems (Burke, 197 0; Kue hl e t al., 1970). The obs e rved increases 

in th e bi osyn thes i s of pros ta g landins upon hormonal s timulation of fat 

cell s as we ll as endocrine organs furth e r s upport s th e conce pt that endog ­

e nou s prostag land in s may serve some fun c tion in regulating hormone 

a c tion at th e tis sue l evel (Bergs trom, 19 67) . 

The synthesis of prostag landins is a l so associated w ith the 

med iation of t he inflammatory respon se . Prostaglandins are involved 

in hypera lges ia, pain production , e rythema , and edema (Fe rre ira e t 

al., 1974). In addition, fever of infec tious d i seases i s brought abou t 

by bacteria l pyrogens acting on th e ante rior hypothalamus through an 

incre a se in th e synthes i s and re lease of prostag landins of the E series 

(Feldberg , 1974). Prostaglandins appear to con tribut e to almost a ll 

aspects of the infla mmatory reaction and inc reased vascular permeability , 

and granu l oma formation in the deve lopmen t of fever , seem to be central 

to the i r mechanism of action (Ha rt, 19 74). 

Prostag landins have also been imp licated in plate let aggrega­

tion, and their synthesis in platelets during aggregati on has been shown 

(Smith e t al. , 1974). It ha s been postulated that quiescent plate l e ts 

are cha ra cterized by low cyt opla smi c calcium concen trations, and that 

prostaglandins such as PGE
1 

enhance the extrus ion of ca lcium via a 

cyclic AMP - dependent calc ium pump. In contrast , reduction in platelet 

cycl ic AM P level s, as by genera tion of e ndoperoxide pros ta g landin 

int e rm edia t es , l eads to ca l c ium influx and u ltimate ly to plate l e t aggrega -

tion (Salzman, 1976). 

Thus , th e synthes i s of prostaglandin s and the ir intermediates 

plays an important role in the mechani sm of many hormones and physio ­

logical processes oft en re lated to the cellular ca l c ium and cycli c nucleo ­

tid e l evel s . In addition , t he pronounced e ffect s of pros tag landins upon 

th e cardiova scu lar system indica tes that prostaglandins re leased from 

ti ssues pla y s i gn ificant phys i ol og ica l rol es . There i s little evidence 

that synthes iz ed prostaglandins accumulate intra ce llula rly , except in 
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seminal ves i c les , but rath e r t hey appear to be re l eased from cells soon 

after de novo syn thes i s (Piper and Vane , 1969 ). 

B. Pro s taglandin metabolism 

Almost a ll tissues s tudi ed , w ith the exception of e rythro cyt es , 

possess a prostaglandin syntheta se complex in association w ith the 

ce ll microsoma l membrane fraction (Bergstrom , 1967 ; Bohman and Larsson , 

1975) . Su ita bl e substra t es for th e synthetase in c lude three polyunsa t­

urated fatty acids commonly found in membra ne phospholipids: d ihomo ­

o-linolenic acid, arachidonic acid and 5 , 8 , 11, 14, 17-e icosapentaenoic 

acid (Ellis et al., 197 5). The availability of the precursor fatty acids 

has bee n postulated a s the controlling factor in pro sta g landin synth e tas e 

activity ( Lands and Samue l s son , 1968). 

The concept that th e controlling factor in prostaglandin syn­

thesis i s the activation of an enzyme sys tem capa b l e of supply ing free 

fatty acid precur sors to the prostaglandin synth e ta se complex has re ­

cei ved w id e support. Not on ly d oes the addition of arachidonic a c id 

augm ent prostaglandin synthesis in many tissues (Shio e t al. , 1971; 

Kueh l e t al. , 197 3) inc luding hu ma n platelets (Silver e t al. , 197 3) and 

rat s toma ch homogena t es (Cohen and Jaffe, 1973) , but the presence of 

snake venom and phospholipase A enhances the conver s ion of phospho­

lipids to fr ee fa tty a c ids and t hereby increas es the synthesis of pro s ta­

g landins (Shi o e t al., 1971; Kunze e t al., 1971). A significant propor­

tion of cell membran e phospholipids consist of polyunsaturated fatty 

a c ids (Haye~ al. , 19 76) which can b e re l eased e nzymatica lly in order 

to provide subs trat e for prostaglandin synthetase (Pace -Ascia k and 

Wolfe , 197 0). The activation of an acid hydrolase , such as phospho­

lipas e A, triglyceride lipas e and/or lysophospholipas e (Silver et al. , 

1974) is be lieved to liberate arachidonic acid from phospholipids , 

cholesterol esters , and trig lycerides in blood and other tis s u es for 

prosta g landin formation. 

Direct evid e nce for hormona l activation of pro s taglandin 
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synthesis due to a libera tion of fatty acid precursors i s derived from 

the fact that phospholipase A is present in most cell types (Ellis ~~., 

197 5), and hormones such as thyroid stimulating hormone (TSH) liberate 

arachidonate by enhancing phospholipase A activity (Haye et al. , 1976). 

The studies by Haye and co - workers (1973; 197 6) demonstrated that 

TSH activated thyroid phospholipase A to liberate arachidonate from two 

distinct pools of precursors - the phospholipids, especially phosphatidyl 

inositol, and the trig lycerides. These studies also showed that phos ­

pholipase activation was independent of cyclic AMP when phospholipids 

served as the substrate , but the release of arachidonate from triglycer ­

ides was stimulatable by cyclic nucleotides, suggesting that there may 

be dual hormonal contro l of prostag land in synthesis. Another line of 

evidence supporting the role of phospholipase in prostaglandin synthesis 

arises from studies employing mepacrine, an inhibitor of phospholipase 

A. In guinea - pig lungs , the release of prostaglandins induced by brady ­

kinin was prevented using mepacrine (McGiff et al., 1976b). Since the 

adrenal gland is rich ly supplied with cho lestero l esters and phospho­

lipids (Grant, 1968), it is possible that ACTH affects prostaglandin 

synthesis via a mechan i sm involving one or more acylhydrolases, 

including phos pholipa s e. 

Intermediates in the synthesis of prostaglandins are the endo ­

peroxides, PGG
2

, and PGH
2

, and the thromboxanes . A microsomal fatty 

acid cyclo-oxygenase converts arachidonic acid to PGG 2 , while a perox ­

idase converts PGG
2 

to PGH
2 

(Gorman, 197 5). PGG 2 and PGH 2 are 

rapidly converted to PGE
2 

and PGF 
2

a ' respectively. An isomerase con ­

verts PGG to 15-hydroperoxy PGE which is then converted to PGE2 2 2 
by a dehydrogenase, while an endoperoxide reductase is responsib l e 

for the synthesis of PGF 
2

a (Fig. 2). The thromboxanes are derived 

from end operoxide s , but th e presence of an oxane ring makes them 

structurally different from other prostaglandin compounds, and they are 

extreme ly unstab l e with a half-life of 30-40 seconds (Hamberg et al. , 
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1976). Thromboxanes are formed in numerous tissues including platelets, 

spleen, kidney, umbilical artery, and leukocytes (Samuels son, 1976), 

where they appear to exert effects similar to prostaglandins, but due to 

the limitations of administering or accurately quantitating ti ssue level s 

of such unstable compounds, their physiological role is uncerta in. 

Some tissues and plasma have the capacity for synthesizing prostaglandin 

A(PGA) and B(PGB) from PGE precursors via dehydration and PGA isomerase 

activity (Levine, 1973; Horton , 1972 ; McGiff §!_al., 1974). 

An alternative synthetic route for the generation of PGF , 
Za, 

other than through the endoperoxide reductase pathway, has been identi-

fied in severa l tissues as a PGE
2 

conversion reaction cata lyzed by 9 - keto 

reductase (Lee et al., 1974). Homogenates of pigeon heart, brain, lung, 

liver, and of monkey brain , liver, spleen , kidney , lung, uterus, and 

heart, conta in the 9 - keto reductase wh ich i s most often found in the 

cytoplasmi c cell fraction (Lee and Levine, 1974). Ordinarily , PGE and 

PGF compounds a re not considered t o be interconvertible, bu t Lee and 

co - workers have demonstrated that the 9 - keto reductase reaction i s re-

versible. 

The direction of PGE and PGF interconversion via 9-keto 

reductase may depend upon the relative levels of oxidized and reduced 

pyridine nucleotides , with NADPH acting as the coenzyme facilitating 

th e reduction of PGE. Studies on renal function suggest t hat the ratio 

of the levels of PGE to PGF in the can in e kidney , and thus the activity 

of a PGE 9 - keto reductase, could determine the phys i o logica l effect s 

of prostaglandins in this tissue (McGiff e t al., 1976a, b). Whether 

or not other factors, such as protein synthesis or ca tion dependency, 

alter the activity levels of PGE 9 -ke to reductase remains to be deter­

mined. It has been proposed, however, t hat estrogen alters prosta g landin 

l eve l s i n the ut erus to favor the synthesi s of PGF by inducing the forma ­

tion of 9 - ke to reductase, in addition to inducing endoperoxide reducta se , 

inhibiting endoperoxide isomerase, or chang ing tis sue cofactor levels 
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(Kuehl et al., 1976). 

The major pathways for the catabolism of prostaglandins involve 

a multiplicity of enzyme reactions. The initial step in the catabolic se­

quence is the formation of the 15-keto catabolite by 15-hydroxydehydrog­

enase, a pyridine nucleotide dependent enzyme (Pace-Asciak, 1976). 

The 15-keto catabolite provides substrate for D..13-reductase, resulting 

in the 15-keto-13, 14-dihydro derivative. A third enzyme, 9a,-hydroxy­

dehydrogenase, oxidizes the 9a,-hydroxyl group of the 15-keto-13, 14-

dihydro-PGF a, compound to the corresponding 15-keto-13, 14-dihydro-

PGE compound (Pace-Asciak, 1975; 1976). 

C. Inhibition of prostaglaindin biosynthesis 

The ubiquitous nature of the prostaglandin synthetase has 

rendered the classical endocrinological techniques, such as organ 

removal or ablation of a particular tissue, less than satisfactory as 

efficient methods of removing prostagland ins from physiological prep ­

arations. The pharmacological approach to inhibiting prostaglandin 

biosynthesis has therefore been adopted through the use of specific 

antagonists to prostaglandins or specific inhibitors of prostaglandin 

synthesis. Substrate analogues and certain fatty acid derivatives in­

hibit prostagland in synthetase. An acety lenic analogue of arachidonic 

acid, eicosa 5, 8, 11, 14-tetraynoic acid , is reported to cause the 

irreversible inhibition of sheep vesicular gland prostaglandin synthetase 

(Ahern and Downing, 1970) and also b locks prostaglandin release from 

heart, spleen and seminal vesicle (Flower , 1974). It appears that 

acety lenic compounds inhibit prostaglandin synthetase by destruction 

of the catalytic site (Lands et al. , 197 3). A number of fatty acids also 

exhibit inhibitory activity aga in st prostaglandin synthetase, and include 

the 12-trans analogues of di-homo-~-linolenic acid and arachidonic 

acid, which behave as competitive inhibitors (Nugteren, 1970). 

Attention has been mainly focused upon aspirin-like drugs, 

however, in pursuing efficient inhibitors of prostaglandin synthesis. 
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The aspirin-like drugs all share the antipyretic, analgesic and anti­

infla mmatory actions wh ich are characteristic of aspirin, in addition 

to being potent inhibitors of prostaglandin synthetase. The relative 

potencies of the drugs vary and may be ranked in order of decreasing 

potency: meclofenamic a c id > indomethacin > mefenamic acid > fl ufenam i c 

acid > naproxen > pheny lbutazone > aspirin or ibuprofen (F lower , 1974). 

The nature of the inhibition caused by thes e drugs is competitive and 

nonreversible, except for the newer anti-inflammatory compound desig­

nated SU -21 524 and oxyphenbutazone (Ku and Wasvary, 1973) . While 

the mechanism of the inhibitory action of the aspirin-like drugs includes 

more than one mode of action, the likely alternatives include competi ­

tion at the substrate or cofactor site , irreversible inactivation of the 

enzyme, a chelating action , or a free radical destroying mechanism 

(Flower, 1974). Unfortunately, these diverse mechanisms of action 

of the aspirin -li ke drugs also contr ibute to their inhibitory effects at 

higher concentrations upon other ce llular enzymes, in c luding phospho­

diesterase, oxidative phosphory la tion .enzymes, and prostaglandin 

dehydrogenase 1 (Flower, 1974) . 

D. Prostaglandin receptors 

[lhe syn thesis and release of prostaglandins from most cell types 

has contributed to the hypothesis that prostaglandins initiate or mediate 

many cellu lar phenomena induced by hormones and other stimulatory 

agents. Since prostaglandins are genera lly cons idered as local or intra­

ce llular hormones in view of their rapid inactivation by intrava scular, 

lung and kidney enzyme systems (Golub et al. , 1975) , it is not unexpected 

that specific receptors for prostaglandins are found in many tis sues in­

cluding th e plasma me mbrane of rat liver (Smi ge l and Fleischer, 1974) 

rat stomach, thyroid, luteal cell (Kuehl, 1974), and adrenal gland (Dazord 

et a 1. , 1 9 7 4) . 

The existence of prostaglandin receptors has been implied from 

the effect s of structura lly related prostaglandin antagonists, such as 
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7-oxa-l 3-prostynoic acid, wh ich compe titive ly block the stimulatory 

e ffe c t of pros ta g landin s on smooth muscl e and other tissues (Ku eh l, 

1974). The rat live r plasma membran e contains receptor s specific for 

PGE , and th e prostaglandin agonis t s 16 , 16- dimethyl PG E a nd 15s -1 5 
2 

me thyl PGE 2 , compet e for the PGE
2 

binding site (Smige l and Frolich, 

19 74). The study by Dazord e t al. ( 1974) determined the binding 

charact eri s tics of radio labeled PGE
1 

and PGE
2 

to purified membranes 

of human and ov ine adrenal glands . Th e binding of prostagland ins in 

these preparations was specific , and since the effect s of maximum stim ­

ulatory concentration s of prostaglandins and ACTH were additive in 

promoting steroidogenes i s , th e prostag landin receptors are believed to 

be distinct from ACTH rec e ptors . In addition, as with ACTH receptor 

b inding, ca lcium does not affect th e pros taglandin binding in adrena l 

ce ll preparations. In contrast, high - affinity prostaglandin rec e ptors in 

bovin e corpu s luteum ce ll membranes are dependent upon calci um (Rao , 

1975) . 

E. Prostaglandins and cyclic nucl eotides 

As wa s s tated ea rlier , th e a ctions of polypeptide hormones 

are often mediated in the target tissue through the a c tiva tion of adeny ly l 

cycla se. The fact that prostaglandins have been demonstrated to inc rease 

adeny ly l cycla se activity i n severa l cell types (Kuehl , 1974) may i mply 

t hat the e ff ects of certa in hormones on the adenylyl cyclas e - cyclic AMP 

system may b e expressed through the actions of one or another of th e 

pros taglandins. Since prostaglandins are synthesized by most ti ssues , 

th e y may affect adenylyl cyclase activ ity by an endogenous biochem-

i ca l intera c tion, or throug h their actions as local hormones stimulating 

specific receptors on ce ll membranes . In thi s regard, it has recently 

been proposed that prostaglandins may in fact be synthes ized by the 

same ce ll whose membrane receptor s they activate (Bito, 1975) . 

Support for an adenylyl cyclase-activa ting ro le of prostaglandins 

derives from the observation that purified solubili zed myocardial adenyly l 
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cyclase ca n b e s timulated by prostaglandins (Kuehl , 197 3). In the mouse 

ovary, PGE
1 

and PGE
2 

mimic lute iniz in g hormone in augmenting cyclic 

AMP formation (Kuehl e t al. , 1972) , and kin e tic studies suggested that 

the activation of a prostaglandin receptor was essential to the action 

of l u t e iniz ing hormone in s ti mula tin g adenylyl cyclas e in the ovary (Kuehl 

e t al., 197 0). In other systems , PGE increased cyclic AMP accumula­

tion in broken cell preparations of human leukocytes and platelets, as 

well as in incubation s o f inta c t cell prepa rations of l ung , s pleen, dia­

phragm, kidney and testes (Butcher e t~., 1968) . Several prostaglandins 

have also been reported to stimu late pituitary adenylyl cyclase and 

increa se cycli c AMP levels in the intact gland (Sundberg et al., 197 5) . 

In human and ovine adrenal glands prostaglandins bind to 

plasma membrane receptors and increase the maximum veloc ity of 

adre nal adenylyl cyclase a ctivity ( Dazord e t al. , 197 4). This adrena l 

prepa ration als o demonstrated that prostaglandins are not obligatory 

for at l eas t certa in actions of ACTH , s ince inhibition of the ir synthesis 

by indometha c i n did not in hi bit adenylyl cyclase s timu lation induced 

by ACTH. The thyroid gland i s s imilar to the adrenal gland in that prosta­

glandins and th e tropic hormone TSH i ncreased adenylyl cyclase activity 

in thyroid slices , as we ll as in sheep and dog thyro id homogenates 

(Ma shite r and Fie ld , 19 74). In addition, aspirin and indomethacin 

fail ed to inhibit the TSH-induced e levation of cyclic AMP, sugges ting 

that prostaglandins are not obligatory intermediates in the action of 

TSH on the thyroid . 

The stimulatory actions of prostag landins are not alway s 

a ssociated w it h enhanced adenylyl cyc la se activity , however, s ince 

in rat adrenal gland preparations prostaglandins did n ot inc reas e cyclic 

AMP l evel s in vitro (Halkerston , 197 5), and in feline isolated adrenal 

cortical cell suspen s ion s the PGE
2

-induced in c r eas e in cyclic AMP 

was not statistically s ignificant and sma ll in re lation to that found 

w ith equ ipotent s t eroidogenic ACTH concentrations (Warner and Rubin, 
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19 7 5). The trypsinization procedure used to i sola t e the feline adrenal 

cortica l cells may in part account for the depressed s timulation of 

membrane - associated adenylyl cyclase (Dazord e t al., 1974). Studies 

employing indome tha c in trea t e d rats showed a d epressed steroidogenic 

response to ACTH wh ile th e response t o dibutyry l cycli c AMP was un­

affect ed (Gallant and Browni e , 197 3) , suggesting t hat prostaglandins 

were regulating the action of ACTH e ither at the receptor site , th e trans­

mission of th e signa l from the ACTH receptor to the adenylyl cyclase 

moiety, or in th e modification of enzymes involved with cyclic nucleo ­

tide metabolism (Halkerston, 19 7 5). In fat cell s a binding protein for 

prostaglandins has been i solated (Kue hl, 19 74), but fat cells provide 

a c las sic exampl e of prostaglandins antag oniz ing the activation of 

a deny ly l cyclase . Ord inarily , epinephrine s timulates th e accumulation 

of cycl i c AMP in lipocytes , but PGE antagonizes this action (Butcher 

and Baird, 1968; Dalton and Hope , 1974) . While no d irect prostaglandin 

inhi bition of adenylyl cyclase ha s been demonstrated, Gorman e t al. 

( 19 7 6 ) reported that th e en do peroxide , PGH 
2

, inhibit s directly ad e nyly l 

cyclase in isolated adipocyte membran es . It was suggested that PGH 
2 

may be an endogenous feedback regulator of lipolysis in adipos e tis sue ; 

th e significance of endoperoxides in stimulating or inhibiting adenylyl 

cyclas e and regulating hormone action in differe nt cell ty pe s re mains 

to be determined. 

Prostaglandins possess t he capacity t o s timulate intra cellular 

cycli c AMP production as we ll as t o inc rease cycl i c GM P levels in 

several tissues. This dual action has been viewed as an important means 

of regu lating cell fun c ti on . Generally , prostag landins of th e E series 

are con cerned with th e regulation of cyclic A MP l evel s , whereas those 

of th e F se ries are responsible for alterations in cyclic GMP le vels 

(Kuehl, 197 3). In those ti ssues where the actions of PGE and PGF are 

antagonistic, the a ction of the PGF may be mediated by cyclic GMP 

which opposes th e PGE activation of adenylyl cyclase. Such a 
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relationship between the activities of the prostaglandins is evident 

when considering prostaglandins as modulators of the autonomic nervous 

system, since PGE 1 dilates lobar arteries and ve ins by increasing cyclic 

AMP l evels in smooth muscle ce lls, whereas PGF in creases intracellu-
2a 

lar cyclic GMP in isolated lobar veins (Brody and Kadowitz, 1974). 

Thus, augmented levels of cycli c GMP may play a role in the vasocon ­

s tri ctor effect of PGF , whereas increases in the levels of cyclic AMP 
2a, 

may be important in the vasodilator action of PGE. It has also been 

proposed that endoperoxides , which stimulate vascular smooth muscle 

and antagonize cyclic AMP regulatory functions, may act through the 

stimu lation of cyclic GMP synthes is (Gorman, 1975). 

In regard to the mediation of hormonal stimulation, ev idence 

has been provided that cyclic GMP has the capacity to stimulate steroid ­

ogenesis in rat adrenal quarters although it is much weaker in thi s regard 

than cycl i c AMP (Glinsman et al., 196 9). As to the re lationship of 

prostaglandins, cyclic nucleotides and ACTH stimulated steroidogenesis, 

it is conceivab l e that prostaglandins increase the l eve ls of cyclic GMP 

prior to increas es in cycl i c AMP and increased steroid release. Although 

the studies of Warner and Rubin ( 1975) showed only marginal PGE 2-

elicited cyc li c AMP increases in the feline adrenal cortex , the time 

period chosen to measure such in creas es may not have been optimal. 

On the other hand , as noted ea rlier , in such preparations as the per­

fused feline adrenal cortex (Rubin et al. , 1972) there is a sufficient lag 

between the administration of ACTH and the onset of maximal steroido­

genesis that rapid in c reases in cycli c GMP l evels (Kuehl, 1973), in 

response to ACTH or prostaglandins, could influence the onset of 

steroidogenesis in the adrenal gland. In the uterus, however, it has 

been demonstrated that prostaglandins do not mediate the estrogen­

induced in c reases in cyclic GMP leve l s (Kuehl et al. , 1976), thus 

suggesting that cycli c GMP generat ion in some tissues occurs prior 

to PGF formation, which in turn may influence adenylyl cyclase activity. 
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In a dd ition to prostaglandin activation of cycl i c nucleotide 

synt hesis , there i s evidence that th e cycli c nucleotides stimu late prosta­

glandin formation. Trea tm e nt of i so lated gonadal tissue with dibutyryl 

cycl i c AMP inc reases synt hes i s of both E and F prostaglandins (Kuehl 

e t al. , 197 3) , and dibutyryl cyc lic AMP inc reases the concentration 

of PGE2 in adipocytes (Dalton and Hope, 1974). The finding that cyclic 

AMP increases prostaglandin level s in i sola t ed rabbit Graafian follicles, 

as we ll as in mouse ova ries , ra t testis , thyroid tissue , neuroblastoma, 

g lioma , and fibrob last cell cultures (Marsh e t a l., 1974) l ed to the 

deve lopmen t of a model suggesting that the action of a trophic hormon e 

is t o in c rease the synthes i s of cycl i c AMP in certain target tissues, and 

the cyc lic n uc l eotide is in turn res pons ible for prostag landin synthesis 

(Bergstrom, 19 67; Marsh et al. , 1974) . Cyclic nucleotid e migh t exert 

it s s timu latory effect on phospholipa se, triglyceride lipase or cholesterol 

estera se , which wou ld convert es t e rifi ed fatty acids t o free fatty acids; 

the free fatty a c ids wou ld t hereby provide the substrate for prostaglandin 

syn th es i s . 

F. Pros taglandin s and ca l c ium 

Ca lcium has been implicated in many aspects of th e action of 

ACTH on the adrenal g land . If prostag landin s play a rol e in th e tropic 

action of ACTH , the ir inte rre lationship with th e d i stribution and actions 

of this i mporta nt cation deserves to be asse ssed , especially in regard 

t o th e ir poss ib le role in e nzym e activa tion. In thyroid tissue, phospho­

lipa se activation and subsequent prostaglandin synthesis is cal c ium 

dependent, since EDTA diminishes T SH -stimula t ed phos pholipa s e a c tivity 

(Haye e t~- , 1976). In homoge nates o f bovine s e minal ves i cles, 

phospholipase A activ ity i s stimulated by ca lc iu m and inhibited by 
2 

EDTA, w ith parallel effects on prostag land in formation (Kunze et al. , 

19 74). Thus, c alcium i s im plicated as a modulator of prostaglandin syn­

thesis in that it contri butes to t he a vailability of free fatty acids. The 

dependence of prostaglandin syn th e tas e acti vity its e lf upon the presence 
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of calcium has yet to be evaluated. However, it may be inferred from 

experiments in which calcium deprivation enhances lipase activity and 

prostaglandin synthesis in the face of diminished phospholipase activity, 

that prostaglandin synthetase re mains active in the absence of available 

calcium so long as substrate acids are provided by lipolytic enzymes 

(Kunze~al., 1974). 

Prostaglandins appear to not only be regulated in their syn­

thesis by calcium , but have been shown to affect cellular calcium distri ­

bution as well. For several years Hedqvist ( 1970a ; 1974) has proposed 

that prostaglandins inhibit norepinephrine release from sympathetic nerves 

by inhibiting the calcium influx normally induced by depolarization 

(Hedqvist, 1970b). It was further demonstrated that prostaglandins 

affect c alcium fluxes when PGF Za, enhanced the uptake of 
45

ca into 

helical strips of airterial and venous smooth muscle incubations 

(Greenberg et al. , 197 3). Evidence also suggests that prostaglandins 

affect calcium transport across platelet membranes resulting in alter­

ations in certain aggregation phenomena (Vigdahl et al., 1969; MacIntyre 

and Gordon, 1975). Even the turkey erythrocyte , which is not known to 
45 

synthesize prostaglandins, demonstrates a modified Ca efflux in th e 

presence of these unsaturated fatty acids (Shio et al. , 1971) . It is 

not unlikely that the secretion of substances such as adrenal cortico­

steroids - which is ca lcium dependent - might be altered by the calcium­

mobilizing actions of prostaglandins. 

Intra cellularly, prostaglandins have membrane -a ssociated 

actions similar to those that have been described for the plasma membranes 

of severa l tissues. Th e mitochondria l membranes seem to be especially 

affected by prostaglandins. Using configurational changes and resultant 

light-s cattering alterations which occur when ca lc ium ions bind to the 

inner mitochondrial membrane, Kirtland and Baum ( 1972) demonstrated 

the marked facilitation of non-energized calcium binding to rat liver 
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mitochondria in the presence of PGE
1

. These results prompted the hypo­

thesis that PGE
1 

as a monobasic acid might act as an "ionophore" facil­

itating calcium exchange . Further studies on the interplay between prosta ­

glandins and calcium at the mitochondrial level demonstrated that the 

cation stimulate prostaglandin binding by liver mitochondria, and the 

b inding of the prostaglandins induce the efflux of calcium from the 

mitochondria ( Malstrom and Carafo li, 197 5). Interestingly enough , 

while the prostaglandin binding to mitochondria would be an effective 

way to sequester prostaglandins away from the cytosol , isotopic stoi ­

chiometry suggested that prostaglandins are probably transported into 

the mitochondria , where two molecules complex with a calcium ion re ­

sulting in the efflux of the cat ion from the organelle . The consequences 

of this action of prostaglandins is not on ly that calci um may redistribute 

intra cellula rly for partic ipation in a multiplicity of reactions, but also 

that mitochondrial respiration is activated. This activation probably 

has profound effects upon biochemica l syntheses occurring within this 

organelle . 

G . Prostaglandins and gonadal steroidogenes i s 

In view of the purported effects of prostagland ins on mitochon­

dria and calcium dynamics, cyclic A MP synthes i s, and cholesterol avail ­

ability, it might be expected that these unsaturated fatty acids would 

p lay a role in steroidogenesis since this process i s dependent t o some 

extent upon each of these parameters . Because the conversion of choles ­

terol esters to free cholesterol has been discussed as an initial event 

in steroidogenesis in several tissues includ ing the adrenal gland , the 

regulation of cholesterol availability by prostaglandin s is an important 

aspect in their mechan i sm of action. In the liver, the addition of prosta -

glandin E or F to liver microsomes inh ibits the esterification of choles -
1 1 a 

terol with l ong - cha.in fatty acids (Schweppe and Jungman, 1970). Later 

stud i es revealed that prostaglandin E
1 

can either enhance cholesterogenesis 

and fatty acid synthesis or inhibit these reactions , depending upon its 
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concentration in liver tissue (Calandra and Montaguti, 197 3). These 

workers sug ges ted that prostaglandin E interferes with the formation 
1 

of active acetyl, th e precursor for the biosynthesis of fatty acids and 

sterols. In the rat ovary, a similar phenomenon was observed when 

prostaglandin F Za depressed ovarian cholesterol ester turnover in vivo 

(Behrman .§l_al., 197 1). lQ_ vitro ev idence, however , demonstrated that 

the incorporation of labe led acetate into ovarian cholesterol was not 

diminished by prostaglandin F Za (Pharriss et al. , 1968) and that steroid ­

ogenesis was stimula ted in in cuba ted slices of ovarian tissue (Behrman 

_g1_ al., 19'71). 

The conflicting effects of prostaglandins on cholesterol ester 

formation and s teroidogenes is in vivo and in v itro mi ght be resolved by 

an examination of the direct effects of prostaglandins on steroid synthe­

sis , since the latte r response is dependent upon changes in cholesterol 

metabolism . Steroid synthesis in several tissues has been studied in 

the presence of different species of prostaglandins (Shaw and Tillson, 

1974). In the t es tes , initial s tudies found that the intra-arterial infusion 

of prostaglandin E
2 

augmented testosterone secretion induced by human 

chorionic gonadotrophin in th e dog (Ei k - Nes , 1969), but in the rat PGF 2a 

reduced testicular t estosterone secretion (Shaw and Tillson, 1974). 

The observed steroidogenic responses to these two prostaglandins, how­

ever , may depend in large part upon the evoked alterations in b lood flow 

to th e organ, rather than to th e direct effect of these compounds on 

cellular secretion. Using minced rat testicular tis sue, prostaglandin 

A (PGA ) diminished conversion of progesterone to androgens and PGE 1 1 1 
reduced testosterone production compared with control samples (Shaw 

and Tillson , 1974). In the testes, therefore, some prostaglandins may 

be direct inhibitors of the steroidogenic process. 

The ovary is another steroi d secreting tissue which is respon­

sive to prostaglandin stimulation. Pharriss and Wyngarden ( 1969) report ed 

that PGF Za in c reased progesterone synthesis in ovarian minces, and in 
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a similar tissue preparation PGE
2 

increased the production of 20a,-hydro ­

oxypre gn-4-en- 3-one (Bedwani and Horton, 1968). Studies on both 

human (Santos et al., 1973) and bovine (Speroff and Ramwell, 1970) 

corpora lutea d e monstrated that PGF PGE PGE and PGA stim-
2a,' 2 I 1 I 1 

ulate the synthesis of progesterone in vitro, thus supporting the view 

that prostaglandins are steroidogenic agents in lutea l tissue. The PGE
2 

induced increase in bovine corpus luteum progesterone .l.!:!_ vitro was ac-

. d b . d . . f 14 compan1e y an increase incorporation o acetate-1- C into steroid 

(Marsh , 1970), suggesting that cholesterol synthes i s was not inhibited. 

On the other hand, contradictory evid ence derives from.l.!:!_ vivo studies, 

which describe PGF Za, as inhibiting corpus luteal progesterone secretion 

in several species (Behrman e t tl-, 1971; 0' Grady et al., 1972) , presum­

ably by inhibiting cholestero l ester synthetase activity and causing a 

decline in free cholestero l available for steroidogenesis. Although the 

disparity in these results has not been resolved, it appears that alte rations 

in blood flo w s imila r to those induced by prostaglandins in the testes, 

or an inte rfere nce with in vivo LH and pituitary regulation of corpus 

luteum function, might be in part responsible for the in vivo luteolytic 

effects of prostaglandins (K irton et al., 1976; Novy and Cook , 1973; 

Behrman et al., 1976). In the placenta, in vitro studies fail to demon­

strate any effect of PGE or PGF on progesterone synthesis ( Bedwani 
l 2a, 

and Marley, 1971). Thus , not all repr@ductive steroidogenic tissues 

behave comparably to prostaglandin administration. 

Whi l e prostaglandins influence the synthesis of steroids in 

severa l tissues includ in g the gonads, the reciprocal effect of steroids 

upon prostaglandin synthesis and/or metabolism is also a factor in their 

relationship. In rat ovaries and homogenates of cultured Graafian follicles 

the suppres sion of steroidogenesis by aminoglutethimide did not impair 

the synthesis of prostaglandin in response to lutein izing hormone 

(Bauminger et al. , 197 5). Such results sugges t that steroids play no 

mediator role in prostaglandin synthesis. In contrast, when guinea-pigs 
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were treated with estradiol and/or progesterone the result was a doubling 

in the PGF Za synthesizing capacity of the uterus in response to estradiol 

(Poyser, 1976). Progesterone treatment alone did not increase prosta­

glandin synthetase activity. In vitro studies using uterine tissue showed 

an estradiol stimulation of prostaglandin synthesis, which was antagonized 

by progesterone (Naylor and Poyser, 1975). Thus, the products of steroid 

synthesis have the capacity for affecting and possibly regulating prosta­

glandin synthesis, although the mechanisms involved remain obscure. 

The observed inhibition of placental prostaglandin dehydrogenase by 

high concentrations of estrone and progesterone (Thaler-Dao et al. , 

1976) suggests that some steroids similar in dimension and shape to the 

prostaglandins might compete for prostaglandin synthesizing or metab­

olizing enzymes and regulate prostaglandin production accordingly. 

H. Prostaglandins and adrenal steroidogenesis 

The adrenal gland represents another steroidogenic tissue 

responsive to prostaglandin administration. In response to PGA 
1

, there 

was a three-fold increase in the adrenal aldosterone secretion rate in 

man in vivo (Fichman ,and Horton, 1973), while PGE
1 

inhibited aldosterone 

secretion from the autotransplanted sheep adrenal (Blair-West et al. , 

19 71) and PGF had a similar inhibitory effect on slices of beef adrenal 
1 O' 

tissue (Saruta and Kaplan, 1972). In the beef adrenal system, however, 

PGE increased the synthesis of aldosterone, in contrast to the ovine 
1 

response. One type of prostaglandin appears to be capable of affecting 

the synthesis of a particular steroid in different ways, depending upon 

the species studied or the experimental methods used. 

The prostaglandin induced synthesis of adrenal corticosteroids, 

other than aldosterone, has received much attention. In vivo, the admin­

istration of PGE to hypophysectomized rats (Gallant and Brownie, 19 7 3) 
2 

or of PGF to dexamethasone treated humans (Wentz et al., 1973), had 
Za 

no direct stimulatory effect upon corticosterone or cortisol synthesis, 

respectively. In the absence of dexamethasone, PGF 2 a, elicited a three 
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fold in c reas e in corti sol secretion , suggesting that prostag landin s were 

dependent upon the secretion of pituitary ACTH for an e ffect upon adre n­

a l steroidogenesis . l.!2 v itro s tudies found this not to be the case, how­

ever, since PGE 1 a nd PG E
2 

stimulated th e synthes i s of cortico s t erone 

and corti sol in s li ces of beef adrenal tissu e (Saru ta and Kaplan, 1972) 

a nd PGE , PGE2 a nd PGF 2a enhanced steroidogenesis in superfus ed rat 

adre nal g lands (Flack et al. , 1969 , 197 2). Recent evid ence demon-

s trated that PGE , PGE , and to a les s er exte nt PGF were steroid -
! 2 ' 1 a 

ogenic when incuba ted w ith i solated fe line adrenal corti ca l cells 

(Warner and Rub in, 19 7 5) . In addition , prostaglandin stimulated steroid ­

oge nes is was a t leas t partia lly depende nt upon ca l c iu m (Saruta and 

Ka plan, 1972; Warner and Rubin, 197 5) and required protein synthes is 

(Fla ck et ~- , 1969) . Thus , the possibility that prostaglandins are 

intra ce llular mediators of the act ion of ACT H arises from the fact tha t 

both agents re qu ire s i mila r cofactors and synth etic pathways in pro -

moting steroidogenesis. 

I V. Su mmary and methods of approach 

The foregoing introdu c tion was meant to provide an in-depth 

perspective of the mechanism of action of ACTH on adrenal cort ical 

ce llula r metabolism and steroidogenes is. In tra c ing th e act ion of ACTH 

from it s ca pa c ity to interact with membrane recept ors , to stimulate the 

synthesis of second - messengers , to regula t e protein synthesis, and 

finally to e nhance steroid synthes i s and secretion , it is hoped that 

an appreciation of t he complexity of the mechanisms involved was 

ga in e d. In this light, the ro l e of the ubiquitous prostaglandins as 

poss i ble med ia tors of the steroidogenic mechanism of ACTH was reviewed. 

Actua lly, very littl e is known about the physiolog ica l role of prostagland -

ins in corti cal s t eroidogenes i s , exce pt that in pharma cologi cal con-

centrations th ey are abl e to enhance ste roidogenes i s . However, th e 
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ability of prostaglandins to alter cyclic AMP synthesis, redistribute 

calcium, and affect steroid synthesis in various other cell types con­

tributes to an understanding of the ways in which prostaglandins might 

be expected to mediate the action of ACTH on the adrenal cortex. Often, 

conflicting evidence regarding the interrelationship of prostaglandins 

and other mediators of hormone action was reported in this overview. 

These data were delineated. not to confuse, but rather to emphasize the 

options available for explaining a possible role of prostaglandins in 

the tropic action of ACTH on the adrenal cortex. 

Conflicting data not withstanding, evidence supporting any 

physiological role for prostaglandins in ACTH-induced steroidogenesis 

must involve the demonstration of prostaglandins within cortical cells 

and an alteration of prostaglandin metabolism during stimulation of 

steroid production and release by ACTH. Hence, the primary aim of 

this investigation is to characterize the prostaglandins synthesized 

in adrenal cortical cells by the use of radioactive precursors and radio­

immunoassay techniques and to attempt to correlate prostaglandin levels 

and steroid release. In addition, since cyclic AMP and calcium as well 

as prostaglandins are implicated in cortical steroidogenesis, the pos­

sible interaction of these steroidogenic mediators will be considered. 

Such an approach may help to unravel the complexities associated 

with ACTH action. 

The preparation chosen to study the physiological and bio­

chemical events associated with PG metabolism was the feline adrenal 

cortical cell suspension system (Warner and Rubin, 1975). This prep­

aration maintains the integrity of cells, unlike cell homogenates, and 

although the basic architecture of the gland is destroyed, the advan­

tages of the suspension allowing rapid distribution and elimination 

of chemical compounds remain. Adrenal cortical cell suspensions 

respond to physiological concentrations of ACTH, unlike adrenal sec­

tions which are one thousand times less sensitive and lack a homogenous 
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cell population. While cell suspensions show variability among prep­

arations, the cells in each preparation are completely randomized and 

a number of different experiments can be performed on cells allocated 

to small separate aliquots. Since PGs ,ue ubiquitous compounds syn­

thesized by many cell types, it is of particular importance that the cell 

suspensions are relatively free of fat cells and cell fragments removed 

during centrifugation steps of the isolation procedure. 

The adrenocortical cell suspension system therefore appears 

well suited to a study of prostaglandin metabolism. Not only are 

diffusion barriers, exclusive of the plasma membrane, removed, 

permitting unhindered access of ACTH and other pharmacological agents 

to the cells; but tritiated compounds used in biochemical synthesis 

studies also have ready access to target cells with a minimum of iso­

tope dilution due to the uptake by non-adrenocortical tissue. Likewise, 

the release of chemical compounds and prostaglandins synthesized by 

the cells is not diffusion limited and these substances are contained 

within a specified volume of incubation media making them particularly 

amenable to qua lita tion and quantita tion procedures. In addition, 

following centrifugation of the suspension the cell pellet is available 

for homogenization and extraction of prostaglandins for comparison 

with releasable prostaglandin species. The radioimmunoassay technique 

used to identify prostaglandins in this investigation relies upon anti­

bodies specific for a particular prostaglandin, and provides a highly 

sensitive means of estimating endogenous prostaglandins, which compete 

against labeled antigen for binding to a specific antibody ( Berson et al. , 

19 56). 
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METHODS 

I. Preparation of cortical cell suspensions 

Cats (2-3 kg) were anesthetized with an intraperitoneal injec­

tion of pentobarbital sodium ( 30 mg/kg). The adrenal glands were quickly 

removed and placed in Modified Eagle's Medium (MEM) plus glutamine 

(2 mM), which was equilibrated with a gas mixture of 95% oxygen and 

5% carbon dioxide and had a pH of 7 . 4. The glands were cut into 1 mm 

cubes, placed in siliconized trypsinizing flasks containing 10 ml MEM 

plus trypsin (0. 15%) and bovine serum albumin ( BSA) ( 1%) and incubated 

at room temperature in a metabolic shaker. After 90 minutes, the temp­

erature was raised to 37° C and the rate of shaking increased from 120 to 

300 rpm. Afte r 1 hour the undigested material was removed and the sus­

pension incubated for an additional 40 minutes at 120 rpm with sufficient 

trypsin inhibitor to block furth e r proteolytic activity. The cell suspension 

was centrifuged at 3000 rpm for 10 minutes at 4° C and washed once with 

MEM and re-centrifuged . The cell pellet was r e -suspend ed in MEM sup­

plemented with 0 . 2% BSA and 0. 04% trypsin inhibitor when prostaglandin 

analysis was performed and 0. 6% BSA and 0. 1% trypsin inhibitor when 

optimum responsive ness to ACTH was desired for measurement of corticc 

steroid releas e. 

Contamination of the cortical cell preparation by other tissu e 

components was minimized since non cortical tissu e was either digested 

by the trypsin or separated from the cortical cells during centrifugation 

by remaining suspended while th e cortical cells formed a pellet. The 

cortical cells were counted with a h e mocytomete r and the cell concen -
5 

tration adjusted so that an equal numb e r of cells ( circa 2. 5 X 10 ) could 

be added to each beaker in a final incubation volume of 1 ml. 

In the experiments concerned with calcium deprivation the 

basic medium was Kreb' s bicarbonate solution fortified with vitamins plus 

amino acids in concentrations identical to thos e in MEM. Calcium was 
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exc luded from the Kreb' s solution and EGTA ( 0, 4 mM) was added to 

chelat e residual calcium. 

II. Adrenal perfusion 

The left cat adrenal gland was perfused in situ according to 

the method of Douglas and Rubin ( 196 1). Perfusion was carried out at 

room temperature w ith Locke's solution which had the fo llowing compo­

s ition (mM); NaC l 154; KCl 5. 6; CaCl 2. O; MgCl 0. 5 , NaHCO 12; 
2 2 3 

dextrose 10. The perfusion medium was equilibrated with 95% oxygen and 

5% carbon dioxide , and had a pH of 7. 0, The rate of flow was maintained 

between 0, 8-1. 2 ml/min by regulation of the perfusion pressure and the 

addition of ACTH to the medium did not alter flow rate t hrough the gland. 

The perfusate was co lle cted in aliquots every 8 or 10 minutes from a cannula 

placed in the adrenolumbar vein . 

III. Steroid analysis 

Methylene chlorid e (5 ml) was used to extract 1 ml of medium. 

The steroid (hydrocortisone) concentration of the organic phase was deter­

mined by competitive protein binding using human transcortin as the 

binding agent ( Jaanus et al. , 1972). Each experi menta l procedure for 

prostaglandin determinations was accompanied by steroid analysis in 

order to assure th e v iability and responsiveness of the preparation. 

IV. Prostaglandi n synthetase activity: Intact ce lls 

The cells were incubated for 75 minutes at 37° C with 1. 0 ml 

MEM containing 
3
H-arachidonic acid (4 µg/ml), in the presence or ab ­

sence of ACTH. Control and stimulated cells were pooled separately , 

centrifu ged at 3000 rpm for 10 minutes at 4° C and th e cell pellets 

washed and re - centrifuged in 0. 5 ml MEM. The supernatants were de ­

canted, acidified to pH 3 with 1 N HCL, and extra cted tw ice each with 

20 ml ethy l acetate. The orga ni c phase was evaporated in vacuo . The 
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cell pel lets were homogenized in 4 ml incubation medium (titrated to pH 3 

with formic acid) and centrifuged for one hour at 20,000 rpm at 4° C. 

The resulting supernatant was decanted into extra c tion tubes and the pellet 

was washed with 1. 0 ml MEM (pH 3) and centrifuged for l O minutes at 

15,000 rpm. The combined supernatants were extracted twice w ith 15 ml 

of ethyl acetate : cyclohexane ( 2: l) and the pooled organ i c phases evap­

orated to dryness in vacuo. 

Chromatograph i c sepa ration of the prostagland in s was performed 

using silicic acid chromatography by a modification of the method of 

Jaffe ~ al. ( 19 7 3). The prostaglandin fractions were obta ined by devel­

oping glass columns (0. 5 x 30 cm) serially with 7 ml solvent 3 (benzene: 

e thyl acetate, 60:40) (PGAB fraction), 18 ml solvent l (benzene: ethyl 

acetate: methanol, 60 :40 :2) (PGE fraction), and 9 ml solvent 4 (benzene : 

ethyl acetate: methanol, 60 :40:20 ) (PGF fraction). The fractions were 

evaporated in vacuo at 42° C. , and recovered from the evapora tion 

flasks by re-suspending them in O. 5 ml distilled absolute ethanol and 

quantitatively transferring them to glass tubes and drying them under 

N
2 

at 37° C. The separation procedure was validated by adding tritiated 

PGE and PGF to incuba tin g cortica l cells and extra c ting them in the 
l 1 a 

same manner as t he experimental samples. Recovery calcula tions on 
3 

t he extracts es timated t ha t 82% of the H-PGE
1 

was e luted in the PGE 

fract ion and less than 4% was recovered in either of the other two frac­

tions. Sixty -six per cent of the 
3

H -PGF
1

a was recovered in the PGF 

fraction, l 5% in the PG E fraction, and 5% in the PGAB fraction. In other 

experiments , 
3

H-PGE was quantitatively converted to 
3

H -PGB (Zusman, 

19 72), with resultant recoveries after silicia acid chromatography of 

65% in the PGAB fraction and 4% in the PGE fraction. Arachidonic acid 

residues were largely removed in the PGAB fraction. 

In preparation for thin la yer chromatography (TLC), the sample 

residues were re-suspended in absolute ethanol and applied on silica 

ge l G (250 microns) coated glass plates and developed in benzene: 
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chloroform: acetone: methanol: acetic acid (20:20:5:5:1 by volume). 

Standards were run in parallel and visualized with phosphomolybdic acid 

(Willis , 1970). A radioactive profile was obtained by scraping the plates 

into 1 cm zones, dissolving them into 10 ml Bray's scintillation solution 

and counting them by scintillation spectrometry. 

V. Prostaglandin synthetase activity: Cell homogenates 

Tritiated arachidonic acid was purified using TLC, and eluted 

from the silica gel with 3. 5 ml methanol; the eluate was dried under N 
2 

at 37° C. and stored -4° C. The purified acid was re-suspended in 

ethanol for use in the incubation procedure. 

The right and left adrenal glands were removed from a male 

cat, rinsed in Ringer 's solution and the capsu l e and fat were trimmed 

away. The glands were hemisected and the medulla was removed as 

completely as possible using forceps; the remaining cortex was sliced 

into 4 mm cubes in a solution of calcium supplemented MEM ( 2. 5mM). The 

cubes of tissue were suspended in 2. 5 mM EDTA, 0. 2 mM reduced gluta­

thione, and 20 µg/ml L-norepinephrine bitartrate (Bauminger et al. , 

1973; Pace -Asciak, 1975). The tissue was kept on ice and homogenized 

using a Polytron at maximum speed for 10 seconds. The homogenate 

was centrifuged at 7500 rpm for 10 minutes at 4° C., and the supernatant 
3 

was decanted and incubated with H - arachidonic acid, for 30 minutes 
3 

at 37° C.; H - arachidonic acid was also incubated in the absence of 

homogenat e to ascertain the spontaneous conversion of the labeled acid. 

The incubation was terminated by acidification to pH 3 with 1 M citric 

acid and the incubates were then extracted twice with 20 ml ethyl acetate: 
3 3 

cyclohexane (2: 1); H-PGF 
1 

and H -PGE 
1 

were extracted separately 

for calculation of recovery. The organic phase was dried in vacuo and 

re-suspended samples were applied to silicic acid columns. The E and 

F fractions were subject to TLC analysis and a radioactive profile was 

obtained as described above. 
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VI. Prostaglandin analysis by radioimmunoassay: Extraction 

and chromatographic separation of prostaglandins 

Aliquots (1. 5-3. 0 ml) of MEM supernatant were acidified to 

pH 3 with O. 5 N HCL, and subjected to XAD-2 column chromatography 

using a modified procedure of Kierse and Turnbull (1973). Following ap­

plication of the samples and 15 ml deionized water, the prostaglandins 

were eluted with 3 ml distilled ethanol. The prostaglandin fraction was 

taken to dryness by evaporation in N
2 

at 55° C , and the dried prosta­

glandins stored at -20° C until radioimmunoassay (RIA) was carried 

out. 

In certain other experiments, in order to eliminate the resin 

eluate contribution to non-specific binding during RIA, acidified aliquots 

( 1. 5 ml) of incubation media were extracted with diethyl ether according 
3 

to the method of Levine et al. (1972). A small amount of H-PGF
1 

( circa 2000 cpm) was added to each sample to calculate the percent 

recovery. The combined ether layers were evaporated under N 2 at 

room temperature, and the dried extracts re-suspended in 50 µl methanol 

and applied to TLC plates (Silica Gel G) which were subsequently devel­

oped in the solvent system dioxane: benzene: acetic acid ( 10:20: 1) 

(Jubiz et al., 1972). The developed plates were air dried, and those 

zones corresponding to PGE and PGF standards were scraped into glass 

tubes and the respective prostaglandins eluted with 1 ml methanol ( 2X) 

by vortexing. After centrifuging the tubes at 4° C, the methanolic super­

natant was removed and dried under N 
2 

at 37° C, and stored at -20° C 

prior to RIA. 

For intracellular estimation of prostaglandins, isolated cortical 

cells which had been incubated were homogenized in 4 ml acidified MEM 

(pH 3) and centrifuged for 15 minutes at 27,000 x g_ at 4° C. The resulting 

supernatant was extracted twice using either ethyl acetate: cyclohexane 

(2: 1) or freshly distilled diethyl ether; extractions with either solvent 

system gave similar results. The extracts were dried in vacuo or under 
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N 2 and subjected to silicic acid chroma tography, or in the case of the 

ether extracts , to thin layer chromatography . Those thin layer zones 

corresponding to PGF and PGE were scraped and the prostaglandins 

e luted with methanol. The eluates were dried under N 
2 

and re-suspended 

in sodium phosphate buffer (pH 7. 4) for prostaglandin analysi.s by RIA. 

VII. Antiprostaglandin antibodies 

Antibodies to PGF 
1 

a and PGF Za were e licited by immunizing 

rabbits to the corresponding prostaglandin protein conjugate prepared 

in the manner described by Caldwell et al. ( 197 1). The animals were 

injected once a week for 4 weeks, with monthly booster injections, 

thereafter. Following the sixth booster , the antibody titer was satis­

factory for use in RIA , and the cross -reactivity of each antibody was 

measured by the percent binding of a variety of prostaglandins and prosta­

glandin metabolites in the presence of a tritia t ed prostaglandin binding 

marker specific for the antibody. PGF la and PGF Za antisera were s t ored 

in O. 2 M Na PO 
4 

-buffer (pH 7. 4) prior to use in RIA , when dilutions of 

1 :7000 and 1 :3000, respectively, were used. 

PGE 
1 

and PGE
2 

antibodies were generated in response to 

prostaglandin-ethyl ch loroformate conjugates of the respective prosta­

glandins (Jaffe et tl-, 197 1). The injection schedule and analysis of 

the cross-reactivity properties were ca rried out as described above. 

The PGE antisera were stored frozen in NaP0
4

-buffer (pH 7. 4) suppl e ­

mented with 0. 1% BSA , at a dilution of 1:10. The PGE
2 

antiserum was 

diluted 1:500 with NaP0
4

-buffer for use in RIA. 

VIII. Radioimmunoas says 

At least 2 ml of cells were pooled and centrifuged at 6000 rpm 

for 10 minutes at 4° C , and the supernatant decanted and frozen at -20° C. 

Aliquots of this medium were either assayed directly for PGF or PGE or 

the prostaglandins were extracted for subsequent assays. 
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All dilutions of haptens and antisera were made in 0. 2 M 

NaP0
4

-buffe r (pH 7. 4). For direct assay of prostaglandins, the following 

cons titu e nts were incubated toge th e r for 1 hour at room temperature: 

unlabeled prostaglandins ( 6 0-900 pg) or 300 - 400 µl of th e unknown sample 

when th e assay was for PGF and 100-200 µl when th e assay was for PGE ; 

tritiat ed prostaglandin (circa 7000 cpm) ; and 50 µ l of PGF or PGF or 
20' 10' 

PG E
2 

antibody. All reaction mixtures wer e made to conta in identical 

amounts of protein by adding appropriate volumes o f MEM, and the final 

reaction volume was adju s ted to 0 . 5 ml for th e PGF assay and 0. 35 ml 

for th e PGE assay w ith Na PO 
4 

bu ff e r. In both assay systems, MEM 

samples incubated in th e absence of cells were processed as "blank" 

va l ues for RIA. Following incubation, bound 
3
H -prostaglandin was 

separated from unbound by nitrocellulose filtration; the filter was d is­

solved in Bray' s solution and counted by liquid scintillati on spectrometry . 

Prostaglandin concentrations were ca l cu la ted by logit analys i s on a 

Hewlett-Packard (98 1 0) programmable calcu lator. 

RIA of PGE
1 

and PGE
2 

was also perform ed following the reduc­

tion of sam ple s w ith sod ium borohydride (NaBH 
4

) (Levine , 197 3). Although 

thi s procedure reduces PGE t o approximate ly equa l concentrati ons of PGF 
Q 

and PGF f3' the concomitant reduction of PGE s tandards ta kes into account 

the incomple t e conversion to PGF in experimenta l samples during quanti-
0' 

tation of prostag land in s . Aliquots of extra c t ed samples (100-150 µl) and 

PGE standa rds were suspended in buffer in a tota l vo lume of 235 µ l; 

5 µ l NaBH
4 

(20 mg/ml) was added , and th e mixture allowed to react fo r 

30 minutes at room temperature. The reacti on was terminat e d by th e 

addit i on of 5 ul c itri c acid (0. 65 mM), followed 15 minutes later by th e 

addition of 5 :.i l NaOH (2 M) t o neu tralize th e soluti on; the sam ples were 

stored a t 4° C for 4 8 hours prior to assay . RIA of a liquots of the NaBH 
4 

reaction mixture was carried out us ing th e PGF 20' or PGF 1 Cl' antiserum. 

Logit analysis of the displacement o f tritiat ed PGF caused by reduced 

PGE in experim e ntal samples was monitored by determining the recovery 
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of nanogram quantities of PGE from MEM. In those samples processed 

through XAD-2 columns but not subject to TLC, the amount of PGF present 

in the RIA aliquot, as previously determined, were subtracted in order 

to gain a more valid es timation of PGE values. In addition, MEM with 

appropriate ACTH and/or other pharmacological agent additions was 

extracted and chromatographed and sub jected to NaBH reduction; this 
4 

provided a blank va lu e which was subtracted from the experimental va lue. 

IX. Characteristics o f prostaglandin antisera 

A. PGF antisera 

Fig. 3 dep icts standard curves showing displacement of radio ­

active PGF la and PGF 
2

a from their corresponding antiserum. The ca li ­

bration curves were linear over a range of 19-600 pg PGF when the percent 

binding was plotted against th e logarithm of un lab e l ed prostaglandin added 

(Fig. 3) . By computer analysis us ing a logit - log plot, th e PGF
2

a antibody 

standard curve was found to have a standard deviation in th e s lope of 

0. 08 for an unweighted regression analysis, and 0. 06 for a weighted 

regress ion analysis. The linearity of the curve was further supported by 

the results of linear and parabolic r egression tests which showed no 

significant nonlinearity in the curve (p < . 05). The correlation coefficient 

of -0. 99 indicates a st rict linea r relationship between th e amount of 

prostaglandin added and t he degree of displacement of radiolabeled 

prostaglandin from the antiserum. 

The PGF antiserum had a high degree of specificity in that 
l Cl' 

220 pg of PGF caused 50% inhibition of 
3
H -PGF

1 
binding, compared 

la a 
to 50% inhibition achieved by 2 l 00 pg PGF 

2
a (Fig. 3a) . Nanogram quanti-

ti es of PGE failed to displace a discernible amount of labe l ed PGF from 
l 

the PGF antibody, resulting in less than 2 percent cross-reactivity 
l Cl' 

(Fig. 3a ; Table 1). However, when PGE
1 

was reduced to PGF
1

a by treat -

ment with sodium borohydride (NaBH 
4

), a 50% displa cement of bound 

tritium was attained with less than 400 pg (Fig. 3a). Prostaglandins of 



Figure 3. Standard c urves for PGF l a and PGF 
2

a antisera. 

Using equimolar concentrations of th e prostaglandins indicated , 

the percent of total binding of radiolabeled PGF is shown as a 

functi on of th e d ispla cement produced by the competing prosta­

g landin for A) PGF 1 a or B) PGF Za -binding sites. 
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th e B series showed a cross -react iv ity w ith the PGF antibody of 20 - 30% 
1 O' 

(Tab le 1). On the other hand pros taglandins of the A series were unabl e 

t o effect a 50% d i splacement even in nanogram concentrations (Table 1). 

Lik ewis e , several PG F and PGE metabolites di splayed littl e affin ity for 

th e PGF antibody as demons trated by a less than 2% cross - reactivity 
1 O' 

with th e antiserum (Tabl e 1). The antibody generated against PGF 2a, 
had a grea ter than two - fo ld higher specifi city for PGF

2 
than PGF . 

3 O' l a, 
W he reas 120 pg PG F

2 
produced a 50% inhibition of H - PGF binding a, 2a, 

to the PG F
2 

antibody , 280 pg PGF was required for a compa rabl e 
O' 10' 

degree of inhib ition (Fig. 3b; Table 2) . Again , PGE
2 

effected a signifi -

cant binding with the PGF
2 

antiserum only after PGE reduc tion by Na BH , 
O' 4 

whi c h resu lted in a 50% d i spla cement w ith 360 pg PGE
2 

(Fig. 3b). Pro s ta-

g landins of the A and B seri es , as we ll as PGF metaboli tes , ha d little 

or no affinity for the PGF 
2

0' anti body, w ith the exception of 13 , 14-dihydro 

PGF 
2

0' , which demons trated a 7% cross - react ivity with the PGF 
2

0' antibody 

(Table 2) . 

B. PGE antiserum 

Ana l ys i s of the PGE an tibody g enerat ed in our la boratory r e ­

vea led that th e standard cu rve was lin e ar over the range of 20-200 pg 

PGE
2 

(Fig. 4) . Although PGE 
1 

was more than twice as e ffective as 
3 

PGE
2 

in d ispla c ing H-PGE
2 

from the PGE antibody , PGA l , PGA 2 , PG B1 , 

PGB , PGF , and 13 , 14 - dihydro PGE s howed negligible cross -reactiv ity 
2 20' 1 

(4% or l ess) (Tab l e 3) . Wh ile the antiserum i s not s pecific for one or 

another of th e prosta g land in s o f the E series , differential assays us ing 

PGF a nd PGF anti sera after NaBH redu c ti on establi s hed that PGE 2 , 
l a 2a, 4 

as opposed to PG E 
1

, i s th e predominant PGE re l eased by fe line corti c al 

ce ll s ; thus all PGE va l ues are expressed as PGE 2 equiva lents . 

X. Drugs and reagents used 

/31-25 Adrenocorticotropin (ACTH) (Ciba); bovine serum a lbumi n 

(fatty acid fr ee) (S igma); cycl oh eximid e (Sigma); Modified Eag le 's 
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Tabl e 1. PGF la antiserum specificity . 

pg required to 
displac e 50% of Re lative cross -

Pros tag landin bound 3H- PGF1a reactivity (%) 

PG Fla 220 100 

PGF2 o- 2100 1 0 

PG E1 >10 , 000 <2 

PGE2 >10, 000 <2 

PGA 1 >10,00© <2 

PGA 2 >10 ,, 00© <2 

PGB1 720 31 

PGB2 107 5 20 

15- keto-F2 o- >10, 000 <2 

13 , l4-dihydro -15- ketoF2a >10, 000 <2 

13, 14-dihydro -F 2a >10,000 <2 

13 , 14-dihydro -PGE1 >10, 000 <2 
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Table 2. PGF2a antiserum specificity. 

pg r equired to 
displace 50% of Relative cross -

Pros tag land in bound 3H - PGF2~ rea c tivity (%) 

PGF2a 120 100 

PGF1a 280 43 

PGE1 7100 2 

PGE 2 7700 
2 

PGA1 >10, 000 <l 

PGA2 >10 , 000 
<l 

PGB1 5000 2 

PGB2 >10, 000 <l 

15- keto -F2 a 3000 4 

13 , 14-dihydro -1 5 - ketoF2a 4 300 3 

13, 14-dihydro-F2a 1700 7 

13, 14-dihydro-PGE1 955 0 



Figure 4. Standard curve for PGEz antiserum. 

Using increasing concentrations of unlabeled PGEz, the 

percent total binding of radiolabeled PGEz is shown as a 

function of the displacement produced by the competing 

prostaglandin for PGE2-binding sites. 
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Table 3. PG E
2 

antiserum specificity . 

pg required to 
displace 50% of Relative cross -

Prostaglandin bound 3H - PGE
2 

reactivity (%) 

PGE
2 

42 100 

PGE
1 

21 200 

PGA
1 

>10,000 <l 

PGA
2 

>10,000 <l 

PGB
1 

3,400 

PGB
2 

7,800 <l 

PGF 2a >10,000 < l 

13 I 14-dihydro -
1,200 4 

PGE
1 
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Medium (GIBCO); 6-monobutyryl cyclic 3', 5' -AMP (Sigma); NPS-ACTH 

from Dr. J. Ramachandran, University of California (San Francisco); 

pregnenolone (Sigma); non-radioactive prostaglandins (Upjohn); trypsin 

and lima bean inhibitor (Worthington); eH]-arachidonic acid (72 Ci/mM) 

(New England .Nuclear); EH]-corticosterone (42 Ci/mM) (New England 

3 ] . 3 Nuclear); [ H -PGE
1 

(87 C1/mM) (New England Nuclear); [ H]- PGE
2 

(117 Ci/mM) (New England Nuclear); c3H]- PGF
1 

(100 Ci/mM) (New 
3 a 

England Nuclear); [ H]- PGF 
2

a ( 175 Ci/mM) (New England Nuclear) , 

Indomethacin (Merck, Sharp & Dohme) and 5, 8, 11, 14-eicosatetraynoic 

acid (RO 3-1428) (Hoffman-La Roche) were dissolved in 95% v/v ethanol 

and added to the final incubation volume ( 1 ml) in 10 µl aliquots; all 

other experimenta 1 samples received 10 1.11 ethanol. 
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RESULTS 

I. Prostaglandin synthetase activity in adrenal cortex 

A. Cell homogenates 

The use of ce ll homogenates to assess th e prostaglandin 

synthesizing activity of se lected tissues has been proven successful 

i n numerous studies. A preliminary in ves tigati on to determine if the 

feline adrena l cortex was act ive in synthesizing prostaglandins involved 

preparative procedures developed for s imilar studies in the rat kidney 

(Pace-Asciak, 1975) and sheep seminal vesic les (Bauminger et al., 197 3). 

The cort ex was initially separated from medulla as well as external fat 

and capsu lar tissue in order to minimize the contribution of extraneous 

cell types to the assessment of prostaglandin synthetase activity. In 

this trial study, the entire cortica l region of the gland was homogenized 

in a KH 
2 

PO 
4 

- Na OH buffer so lution containing reduced glu ta thione for 

its antioxidant activity and norepinephrine bitartrate which preserved the 

activity of prostaglandin synthetase (Pace-Asciak, 197 3) . 

Fig. 5 shows the TLC profile resulting from the convers ion 
3 

of H - arachidonic acid to pro staglandin-like compounds in adrenal 

cortical homogena t es. Two peaks of radioactivity corresponding with 

the rf values for PGF and PGE are evident in the £-fraction from silicic 

acid chroma tography (Fig. Sa). The spontaneous conversion of arachidonic 

acid to prostaglandin-like compounds i s limited to a peak of radioactivity 

in the PGF zone of th e migration profile (Fig. Sa), whereas radiolabeled 

PGE-like compounds appear only in homogenate extracts . Thus, cortical 

homogenates actively synthesize th e PGE product, while th e PGF occur­

ring in the £ - fraction arises at least in part as an artifact of arachidonate 

autoconversion. Uncon vert ed arachidonic acid also appears as a radio-

active peak in the A,B zone on TLC (Fig. Sa). In con tras t, Fig. Sb 

depicts a single peak of radioactivity from the F-fraction migrating in 

the PGF zone on TLC. There is no spontaneous arachidonic acid 



Figure 5. Conversion of 
3
H-arachidonic acid into prostaglandin­

like compounds in adrena l cortica l homogenate. 

3 
Tritiated arachidonic acid ( H-A.A.) (4µCi) was 

incubated in the presence and absence of cortica l homogen­

ate for 30 min at 37°C. The organic extract was dried 

and the prostaglandins of the resuspended samples 

separated by silicic acid and thin layer chromatography . 

A radioactive profile was obta ined as described in 

Methods . 

Fig. l a represents two peaks of radioactivity corres ­

ponding to the rf valuES of PGF and PGE in th e E fraction 

obtained from silicic acid chromatography . Fig. 1 b 

depicts a single peak of radioactivity from the F fraction 

obta ined by silicic acid chromatography. The dotted 

lin e in Fig . 1 represents the radioactive profile obtained 
3 

after incubation of H-arachidonic acid in the absence of 

homogenate. 

Hatched bars indicate prostaglandin migration pattern on 

thin layer chroma t ography . The solvent front is represented 

as S. F. 
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conversion to a similarly migrating PGF substance (Fig. 5b). Thus, 

cortical cell homogenates synthesize a PGF - like compound(s) from a 

fatty acid precursor. These preliminary results point to the presence 

of an enzymatic synthesizing mechanism in the feline adrenal cortex, 

which is responsible for the synthesis of PGF and PGE-like compounds. 

B. Ce ll suspensions 

Since a cortical homogenate preparation was capab le of con ­

verting arachidonic acid into prostaglandin-like compounds, the trypsin 

dispersed feline cortical cell preparation was used to demonstrate whether 

intact cells could perform a similar conversion. In addition , the effect 

of ACTH stimulation of steroidogenesis upon prostaglandin synthesis 

could be investigated in this w hole - cell suspension and a comparison 

made between intracellular products of arachidonate metabol ism and those 

compounds released from cortical cells . Following the incubati on of 

isolated cortica l cells in MEM containing 
3
H-arachidonic acid , in the 

absence or pres e nce of ACTH , the cells and their corresponding suspen ­

sion media were separated by centrifugation for isolation and identifica ­

tion of intracellular and extracellular prostaglandins, respectively . 

The cell pellets were homogen i zed and partitioned and the 

resulting extract was fract ionated by silicic ac id chromatography in t o 

three components corresponding to the prostaglandi n AB , E, and F fractions. 

The AB fraction was discarded since it contained the major por tion of 

the unmetabolized 
3
H-arachidonic acid, which hampers any attempt to 

isolate and quantitate PGA or PGB using TLC methods. When the E fraction 

was subjected to TLC, three major peaks of radioactivity were found 

(Fig. 6a) corresponding to the reference markers PGF (rf 0. 27-0 . 37) and 

PGE (rf O. 46 - 0. 57) and PGA and/or PGB (rf 0 . 77 - 0. 85) . In contrast , 

the F fraction produced a single peak of radioactivity in the reg i on of 

the plate where PGF migrates (Fig. 6b). The occurrence of a radioactive 

peak corresponding to PGF in the E fraction is ascribed to discernible 

amounts of standard PGF being recovered in this fraction fo llowing 



Figure 6. Conversion of radioactive precursor into prostaglandins by 

isolated cat cortical cells. 

Trypsin-dispersed cells (2. 5 x 1 o5 / beaker) were incubated in 

MEM for seventy-five min in th e presence of ACTH (125µU /ml) 

plus 3H-arachidonic acid (4µCi /ml). Contents of six beakers 

were pooled, and following centrifugation, the prostaglandins 

in the pellet were extract ed . The E fraction (A) and F fraction 

(B) were separated by silicic acid chromatography and run 

separately on thin layer plates with the resulting radioactive 

profiles. Each sample was counted for 10 min a nd background 

subtracted from th e total counts. 
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column chromatography (see Methods). 

In order to ascertain the nature and extent of prostaglandin 

re l ease from cortical ce ll s , the incubation medium was extracted separ­

ately from ce ll homogenates and processed through silicic acid and thin 

layer chromatography. Total counts i solated from extra cts of incubation 

media were some ten times higher than those i solated from corti ca l cell 

homogenates (compare Fig. 6 and 7), indicating that prostaglandins 

synthesized intrace llularly are readily extruded into the extracellular 

fluid. Analysis of the E fraction revealed a peak of radioactivity which 

corresponded to that of PGE and a smaller peak with mobility properties 

similar to PGA and PGB (Fig. 7a). The F fraction taken from silicic acid 

chromatography of incuba t ion media produced a single peak of radio­

activity in the PGF zone (Fig 7b). 

Although the prostaglandins conta ined w ithin the first two 

radioactive pea ks were indist ingu i shab l e from PGF and PGE, the prosta­

glandins represented by the third radioactive peak cou ld not be positively 

id enti fi ed. However , th e possibility that the products in this zone were 

derived from biosynthesized PGE rather than arachiconic acid was enter­

tained, s ince PGE is a labile substance which i s convertibl e to other 

derivatives, including PGA and PGB (Levine, 1973). This supposition 

was tested by determining the fate of exogenous PGE after several extrac­

tion and e l ution procedures. 
3
H -PGE

1 
was added to the incubat ion medium 

containing cortica l cells and then extract ed and isolated in the same 

manner as the experimental samples. Fig. 8 depicts the thin layer 

chromatogram of the resulting E fraction. A majority of the count s (57 %) 

was loca lized in the E zone and only 4% was found in the F zone ; however , 

40% of the counts were recovered from the AB zone. By contrast, unpro­

cessed 3H - PGE
1 

gave a singl e radiolabeled peak in the E region of the 

thin layer chromatogram . This indicates that prior to TLC a portion of 

the PGE formed in the ce ll suspension is converted to a derivative with 

a polarity s imilar to PGA and PGB. 



Figure 7. Release of biosynthesized prostaglandins from isolated 

cortical cells. 

The experimental procedure for extracting and isolating 

prostaglandins in the incubation medium was essentially 

the same as described in fig .6 , except that following 

centrifugation the supernatant rather than the pellet was 

processed (see Methods). 
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Figure 8. Isolation of radioactive prostaglandins from medium bathing 

catical cells following the addition of 3H-PGE1. 

Cells were incubated with 3H-PGE1 (0, OZµCi /ml) for seventy­

five minutes; th e medium obtained from beakers was then 

processed for thin laye r chromatography, with th e resulting 

radioactive profile. 
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C . 3 
The effect o f ACTH on H-arachidor,ic acid incorporation 

Hav ing ident ified PGE , PGF, and a third component w ith a 

polarity s imilar to PGA or PGB in cortical cell homogenates and incubation 

medium, ex periment s were carried out to determine wheth er ACTH could 

influence th e conversion of arachidonic acid into one or another of these 

pros tag lan d ins. When fract ions from uns tim ula t ed ce lls were compared 

by thin la yer analysis with th e ir respective fractions obtained from s tim­

u lated cells, submaximal steroidogeni c concentrations of ACTH (12 5-

2 50 µU ) were fo und to augment the con vers ion of arachidonic a c id into 

PGE and PGF (Fig. 9). The amount of labe l incorporated into PGF and 

PGE by ce ll s exposed to ACTH was 158 and 193 percent respectively , 

of that in corporated by unstimulated cells. An ACTH -induced increase 

in t he i ncorporation of label in the third zone was al so observed (Fig. 9) . 

Since this radioactive peak may re presen t degradation products of PGE , 

as discussed previous ly, the increase in PGE turnover induced by ACTH 

may be s i gn ifica ntly greater than indicated by the radioac tiv ity in th e 

E zone alone. 

TLC analysis of radio la beled prostaglandins extra c ted from the 

incubation medium sugges t ed a trend in incorporation similar to that 

described for the ce ll homogenates, although quantitatively the effects 

were less pronounced. The amount of labeled PGE and PGF re leased by 

ACTH-stimu lated cells was 121 (±. 22) and 125 (±. 4) pe rcent respectively, 

of the unstimulated cell basa l release (n=4). The rath er sma ll e ffec t 

of ACTH on prostaglandin release observed by a naly s is of the incubation 

medium sugges t s that a portion of the newly-synthesized prostaglandin 

may be metabolized intra ce llula rly rather than released, and/or that 

the re l ease of substan tia l am oun t s of unlabeled , as well as labeled , 

prostaglandin dilutes the detectable re lease of th e radioa c ti ve produ c t. 



Figure 9. Radiochromatogram of ACTH-facilitated prostaglandin synthesis. 

Cortical cells were incubated with 
3
H-arachidonic acid with 

or without ACTH. The contents of six beakers containing 

unstimulated and stimulated cells were pooled separately 

into two aliquots, and the prostaglandins of the cell homog­

enates were extracted and separated by silicic acid and 

thin layer chromatography. Radioactivity ( cpm) in each 

zone of ACTH-treated cells is expressed as a percent of the 

radioactivity in the corresponding zone of unstimulated cells. 

To simplify representation of the data, the chromatograms 

obtained from the E and F fractions were combined. Each mean 

value(± S. E.) was derived from four different cell preparations. 
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II. Identification of adrenocortical prostaglandins by radioimmunoassay 

A. Prostaglandin F 

Having characterized the PGF antibodies regarding their speci­

ficity to bind PGF la or PGF 
2

a, PGF determinations were carried out on 

samples of media incuba ting control and ACTH-stimulated cat cortical 

ce ll s . The res pons i v ity of these cells to ACTH was evidenced by its 

ability to enhanc e steroidogenesis from 21 (±. 4) to 110 (±. 24) ng/2. 5 x 10
5 

cells. Direct RIA using PGF 
2 

antiserum gave mean PGF values of 450 
5 a 

and 912 pg/2. 5 x LO cells for control and ACTH-stimulated cells, respec -

tively (Table 4). When th e more specific PGF antiserum was used to 
la 

assay the same samples of media, much lower PGF values were obtained 

(Tabl e 4). Thus, the average prostaglandin value determined using the 

PGF la antiserum on samples treated w ith ACTH ( 132 ±. 39 pg/2. 5 x 10
5 

cells) was only 14% of that obtained w ith the PGF 2a antiserum. 

In order to assess the possibility that the higher PGF va lues 

obtained with the PGF 
2

a antiserum cou ld be quantitatively accounted for 

by a PGF cross-reaction, samples of media were analyzed with PGF 2 la a 
antibody and radioactive PGF 

2
a using the PGF 1 a standards, in addition 

to orthodox analysis using the PGF la and PGF 
2

a antis era with homologous 

labeled and unlabeled prostaglandins. Using PGF 2a antis erum the average 

amount of PGF released in response to ACTH was determined to be 
2a 

5 676 (±. 120) pg/2. 5 x 10 cell s (n=3). Conducting parallel assays using 

PGF standards established that 2276 pg of PGF must be released 
la 3 la 

to produce a comparable d i splacement of H -PGF 2a antibody (Table 5). 

However only 6% of this amount of PGF ( 133 pg) was found using 
' la 

the specific PGF antiserum. This indicat es that, most, if not all of 
la 

the PGF measured w ith PGF 
2

a antiserum represents PGF 2 a. Whether 

the prostaglandin measured with the PGF l a antiserum i s truly PGF l a or 

due solely to the obviously larger amount of PGF 2a cannot be unquali­

fiedly ascertained, but it i s clear from this differential analysis that 

PGF i s the predominant species. 
2a 
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Table 4. PGF release by isolated cortical ce ll s in the presence 
and absence of ACTH. 

Expt. PGF1a, PGF2 a, 

Control ACTH Control 

<2 1 1 0 104 7 

2 <3 227 17 8 

3 54 42 308 

4 79 149 270 

Mean <35 1 32 450 - - -
+S . E. .±) 9 _±39 +2 01 

Equa l quantit i es of adrenocor tica l cell s (2. 5 x 10
5
/m l ) were 

incuba ted in MEM fo r 60 min in the presence and absence of ACTH 

ACTH 

1666 

72 1 

608 

652 

9 12 
+252 

(5 0-250 p.U) . The medium was ana lyzed for PGF
1 

and PGF
2 

using 
5 . , Q QI 

the corresponding an tiserum. All va lues are expressed as pg;2 . 5 x 10 
ce ll s . 
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Table 5. Differential analysis of PGF release. 

PGF 
2

a, -Antis erum PGF la, -Antiserum 

PGF 
2

a, (pg) PGF la, (pg) PGF la,(pg) 

Exp. 

652 2147 154 

2 895 3033 150 

3 482 1650 96 

Mean 696 2276 133 

+ S . E. +120 +404 ±_19 

Samples of media incubating cortical cells exposed to ACTH 
( 125 µU) for 60 min were assayed using PGF 

1 
and PGF antisera 

with homologous radiolabeled and unlabeled &ostaglancTiis. }he 
same samples were also analyzed with PGF Z_a,_ antiserum and H-PGF 2 , 
but using PGF standards to calculate the PGF equivalents. All a, 

values are · g{Jen in pg/2. 5 x 10
5 

cells. 
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In order to confirm the reliability of direct RIA of the samples 

of incubation media, the prostaglandins of certain samples were extracted 

and separated by TLC prior to RIA. The samples e luted from the F zone 

contained quantities of prostaglandins which were comparable to those 

measured by direct assay (compare Tables 4 and 6). While these exper­

iments again illustrate th e stimulating effects of ACTH, they also show 

that the enha nced PGF release is antagonized by indomethacin (Table 6). 

The ability of the assay method to d emonstrate a depression of prosta­

glandin synthes is in the presence of the well - known inhibitor of prosta­

glandin synthetase provides additional confirmation of the reliability of 

techniques employed to measure PGF. The parallel displacement of 

labeled prostaglandin from PGF 
2

a antibody in respons e to different size 

sample aliquots (Table 7) also confirms th e reliability of the radioimmuno­

assay technique for accurately determining prostaglandin release from 

adrenal cortical cells. 

B. Prostaglandin E 

Information regarding the relative amounts of PGE
1 

and PGE2 
was initially obtained by the differential assay of media using the PGF la 

and PGF antibodies, after the convers ion of PG Es to their correspond-
2a 

ing PGF equivalents by NaBH
4 

(Table 8). The average PGE
2 

content of 

media incubating stimulated cell s (28 02 pg) was significantly higher 

than that obtained following ether extraction, separation by TLC, and 

RIA measurement using PGE antiserum (428 pg) (Table 9). In order 

to discern th e basis for the quantitative differences obtained using thes e 

two methods for assaying PGE, NaBH
4 

reduction and subsequent assay 

us ing PGF antiserum were carried out on samples which were processed 
2a 

through TLC; the mean PGE content in media with cells exposed to ACTH 
5 

(50-175 uU) for 60 minutes was 409 (±. 140) pg/2. 5 x 10 cells (n=3). 

This indicates that some assayable fa c tor was removed from the PGE 

fraction during TLC. Despite the quantitative differences found w ith 

these two methods, both assays showed that ACTH was able to elicit 



Table 6 . 

Ex pt. 

2 

3 

4 

5 
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ACTH -induced PGF 
2

a re lease and its inhibition by 
indomethacin . 

PGF2a ACTH+ 
Contro l ACTH Indomethacin 

10 8 342 <2 

243 4 39 107 

11 53 14 3 1 799 

11 6 281 

11 5 1 3 1 

Mean 34 7 525 
.±.. S . E. +203 +232 

Adrenocortica l ce lls were incubated in MEM for 60 min in the 
pres en~~ or absence of ACTH ( 50-2 50 µU) and/or indomethacin 
(3 x 10 M) . The samples were extra c ted w ith ether and processed 
through TLC; the PG F was e luted w ith methanol and assved using 
PGF

2
a antiserum. Va lues are expressed as pg/2 . 5 x 10 ce ll s. 



Table 7. 

Sampl e 

2 

3 

Sampl e 

2 

3 
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Paralle l di s place me nt of labeled prostaglandin from antisera 
by in c reasing amounts of sampl e . 

Aliquot (µl) 

50 
100 

50 
100 

50 
100 

Aliquot (µl) 

25 
50 

25 
50 

25 
50 

PG F 2 a, Ant i body 

% binding 

59% 
38% 

5 5% 
29% 

55% 
38% 

PGE
2 

Antibody 

% binding 

18% 
10% 

19% 
11 % 

50% 
34% 

PGF 
2

a, (pg) 

66 
150 

79 
2 19 

78 
155 

4 37 
900 

418 
817 

83 
169 

Vary ing aliquots of adrena l cell in cubation media or samples of 
ether-extracted media sub ject ed to TLC were assayed for pros taglandin 
conten t us ing th e PGF 

2 
or PGE

2 
ant i body , res pective ly . The pe r cent 

binding of label ed pro s faglandin in th e presence of diffe re nt sample 
sizes i s indicated. Picogram (pg) values for each sample have been 
corrected for the 'blank' contribution of va rying size a liquots in the 
assay. 



Table 8 . 

Expt. 

2 

3 
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PGE re lease by cort i ca l ce lls in the presence a nd absence 
of ACTH 

PG E 
1 

lI!.9:1 PGE
2 

iQgJ 

Control ACTH Control ACTH 

77 4 6 1324 2 711 

166 <6 14 66 2463 

158 395 2 339 3234 

Mean 133 149 1710 2802 
±_ S . E. +28 +23 +3 17 +227 

Fo llowing incubation of e qual numbers of ce ll s for 60 min in th e 
presence o r absen ce of ACTH (50 - 250 µU), th e incubation mediu m was 
proce ss ed t hrough XAD - columns ; the ethanoli c e lua t e was dri ed , re­
suspended in buffer and th e PGE e quiva le nt s reduced to their corres ­
ponding PGFs w ith NaBH

4 
(see Me thods ) and assayed using PG F 

. I -~ l a and PGF
2

a ant1sera. All va lues wer e expressed as pg 2. 5 x lu-- ce ll s. 
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Table 9. ACTH - induced PGE2 re l ease and it s inhibition by indom etha c in . 

PGE
2 

(pg) 
ACTH + 

Expt. Contro l ACTH Indome thacin 
l 733 811 2 59 

2 88 165 <2 

3 298 309 

Me.a9- 37 3 428 
'!" ~- E. ± '19(0 ± 196 

Equa l numbers of cell s were incuba t ed in MEM for 60 min in the presence 
or absence of ACTH (50 - 250µU) and/or indometha c in (3 x 10 - 5M). After 
the pros tagla ndins were extra cted w ith e th er , th e E prostaglandins were 
separa t ed on TLC and assayed using anti - PGE antibody. Va l ues are 
expressed in pg/2. 5 x 10 5 ce ll s. 
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a modest enhancement of PGE release (Tables 8 and 9) , and indome tha cin 

blunted this enhancement (Table 9) . 

The development of a suitab le PGE antibody during th e course 

of these stud i es event ua lly allowed PGE analysis by direct assay of th e 

incuba ti on medium ( see Methods). With thi s antibody, a parallel dis­

placement of labe led PGE
2 

was obse rved w ith graded increa ses in sample 

volume (Table 7). The val id ity of thi s method i s furth e r attested to by 

the fact that th e va lues obta ined by direct assay of th e incuba tion medium 
5 

(299 .±. 97 pg/ 2. 5 x 10 ce lls) compa red favorably w ith the RIA quantitation 

of these same samples aft er ether extra c tion and separation of the PG Es 

by thin lay er chromatography (2 09 .±. 106 pg) (n =4). This indicates that 

th e pro stag landin values obtained using this PGE antibody for direct RIA 

of incuba tion media are large ly , if not entire ly , PGE species . 

C. In tra cellula r pros tagland in l evel s 

Although previous s tud ies have c l early establi s hed that prosta ­

g lan d in release i s t he result of de nova prostaglandin synthesis (P iper 

and Va n e , 19 '7/), a few experi ments were carried out to substantiate 

this fact in fe line cortical ce ll s by com paring th e amount of prostaglandin 

remaining in cortical ce ll s to t he amount relea sed t o the medium following 

a 60 minute exposu re t o ACTH (250 µU) . The average am ounts of PGF
2

a 

(44 pg) and PGE
2 

(41 pg) conta in ed intra ce llularly was on ly about 15% 

of th e amount of PGF
2

a (309 pg) and PGE
2 

(278 pg) re leased (Table 10). 

Comparably low amount s of PGF 
2

a ( 36 pg) and PGE
2 

( 55 pg) were meas­

ured intra ce llularly in the absence of ACTH (Table l 0). 

III. T em poral re lation between prostaglandin and steroid release 

Preliminary experimen t s using adrenocortical cell s uspension s 

demonstrated that measurable increases in prostaglandin release occurred 

during the first 15 - 30 minutes of exposure to ACTH. However, earlier 

s tudies using this same preparation (Warner and Rubin, unpublished) 

had shown that increases in s t eroid release also occurred during these 
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same time intervals; thus, isolated cortica l cells were deemed not to 

be the optima l system for studying the temporal sequence of prostaglandin 

and steroid release. An alternative approach to this problem was to 

study the dynami cs of prostag landin and steroid release in the isolated 

intact perfused cat adrenal gland. 

The perfused feline adrenal displays a protracted pattern of 

steroid release , with maximum steroidogenesis occurring some 30 -40 

minutes following exposure to ACTH (Fig. 10). By contrast , PGF
2

a 

release rapidly increased during perfusion with ACTH . After th e stimulus 

was removed, PGF release remained elevated over the next 1 O minutes 
2a 

and then declined to basal levels (Fig. 10). In some experiments , corti -

costeroid secretion rates were still markedly increased some 90 minutes 

after the removal of ACTH, despite the fact that prostaglandin release 

had reverted to basal levels one hour before. Although these experiments 

elucidate the tempora l sequence of PGF release, the barely measurable 

amounts of prostaglandin which were detected in the perfusate from these 

same experiments by direct assay using PGE antiserum made it impos­

sible to quantitate the temporal sequence of PGE release. 

IV. The effects of inhibitors of prostaglandin synthesis 

A. Indometha cin 

1. Basal steroid levels. Since one purpose of this investiga ­

tion was to explore the relationship between steroidogenes i s and prosta­

g land in synthes i s , it was important to determine the effect of prostaglan­

din synthesis inhibitors upon steroid release. Indomethacin in the 
-9 - 5 . 

concentration range of 3 x 10 to 3 x l O M was capabl e of augmenting 

basal steroid release (Table 11). The stimulant effect was small and 
- 9 

incons i stent at the lowest concentration tested (3 X 10 M), but in-
- 7 - 5 

creased approximately two-fold with 3 X 10 and 3 x 10 M indomethacin, 

respectively (Table 11). This facilitatory act ion of indomethacin was 

not demonstrable to the same degree in every experiment , but was 



Figure 10. Time course of PGFza and corticosteroid release from 

the perfused cat adrenal gland. 

Left adrenal glands were perfusedl.Q_ situ with Locke's 

solution for an additional 50 min. The perfusate was 

collected during the 8 min perfusion with ACTH and at 

10 min intervals thereafter. Corticosteroid (solid line) 

was extracted from l ml aliquots and assayed by comp­

etitive protein binding. PGF4a (broken line) determinations 

were made by direct radioimmunoas say of 400 µl aliquots 

of perfusate. All values are expressed as percent of 

basal values obtained from perfusate collected during 

a 10 min interval immediately prior to exposure to 

ACTH. Each point represents the average rate of release 

(± S. E.) during the 8 or 10 min collection period from 

4 different preparations. 
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Table 11. The effect of indomethacin on basal corticosteroid and 

pros tag landin re l ease. 

Indomethacin (x3M) S terCllid : · 1 PGF PGE 
(percent of basal) (percent of basa l ) 

10-9 11 3 :!: 8(4) 

10- 7 215 :!: 65 ( 5) 78 ± 23(4) 75 :!: 14 

10 - 5 174 ±35 ( 5) 87±2 0 (6) 93 ±35 

Mean values (±S. E.) are expressed as percent increase over va lues 
obtained in the absence of drug. 
r-ru\ABe't of o!:is'er'Vations are indica ted by number in parenthes i s; each 
va lue was obtained from a different prepa rat ion. 

( 3) 

(3) 
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generally manifest in those preparations showing a greater responsivity 

to ACTH. 

2. ACTH -induced steroid production. If prostaglandins act 

as modulators of ACTH action, then interference with their synthesis 

should be reflected in changes in the physiological response to ACTH. 

Accordingly, strikingly low concentrations of indomethacin caused marked 

effects on ACTH-induced steroidogenesis in isolated cortical cells. 

Results from a single experiment employing a low ACTH concentration 

(25 µU) are depicted in Figure .l,la; they show a marked facilitation of 

steroid release in the presence of 3 x 10-
8 

M indomethacin. More 

detailed analysis of this potentiation using near maximal ACTH concen ­

trations (75-250 µU) demonstrated that 3 x 10-9 M indomethacin aug ­

mented ACTH-induced steroid release by almost two-fold (Fig. 12a). 

This facilitatory action of the drug was transformed into an inhibitory 

action as its concentration was increased (Fig. l lb; 12a). ACTH - evoked 
-7 

steroid release in the presence of indomethacin (3 x 10 M) was less 

than in its absence and in the presence of 3 X 10-
5 

M indomethacin, a 

slightly greater inhibition was detected (Fig. 12a). Despite the fact 

that low and high concentrations of indomethacin caused marked alter ­

ations in the steroidogenic response to ACTH, these same indomethacin 

concentrations did not elicit similar alterations in the steroidogenic 

response to exogenous PGE
2 

(Fig. l la and l lb). 

3. Basal and ACTH-induced prostaglandin release. Steroido­

genic concentrat ions of ACTH elicited dose-related increases in PGF and 

PGE release (Table 12, expt. 1). An indomethacin concentration 

(3 X 10-9 M) which facilitated ACTH -induced steroid release, likewise 

potentiated the effects of ACTH on PGF and PGE release (Table 12, expt. 2); 

in the same experi ment this facilitatory effect of indomethacin on prosta­

glandin release was converted to inhibition by a high concentration of 

indomethacin (3 x 10-5 M) (Table 12, expt. 2). Experiment 3 of Table 12 

illustrates the potent inhibitory action of indomethacin even in the 



Figure 11. Compari son of the effects of indomethacin on ACTH and 

PGE2-induced steroid re lease from isolated adrena l 

cortica l cells. 

Each vertica l column represents th e total amount of 

hormone released by equal number of cells during a 

90 min incubation period in the presence or absence 

of indomethacin plus: (a) ACTH (25µU) or PGE 2 

(2 x 10-4 M), (b) ACTH (125 µU) or PGE
2 

( 3 x l0- 5M). 

The open columns show basal steroid release from 

unstimu lated cell s ; hatched columns show effects of 

ACTH; solid columns show effect s of PGE2 . These 

results were obtained from 2 different preparations. 
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Figure 12. The effects of indomethacin on ACTH-induced steroid 

and prostaglandin release. 

Prostaglandin (PGE and PGF) and steroid determinations 

were made on aliquots of incubation medium following 

incubations of 60 and 90 min, respectively. Each 

vertical column represents the mean response to 

ACTH ( ± S. E.) elicited in · the presence of a given 

indomethacin concentration; the values are expressed as 

a percent of the response to ACTH in the absence of 

drug. Mean values ("!S. E. ) obtained in the absence of 

both ACTH and indomethacin are also depicted (open 

columns) to illustrate the stimulant effects of ACTH in 

the absence of indomethacin. The number of experiments 

is indicated by the figure in parentheses under each 

column. 
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Table 12. Pros tag land in release from unstimulated cortical cells, and 

from c e lls exposed to ACTH with or without indom e thacin. 

Expt. ACTH Indome thacin PGF PGE 
(µU) (x 3M) (pg) (pg) 

270 1515 
25 301 2201 
250 652 27 37 
425 960 7426 

2 179 1300 
25 165 1363 
25 10 - 9 213 2645 
25 10- 5 79 828 

3 107 633 
250 - 230 12 57 
250 10-7 55 524 

4 72 <6 
250 182 873 
250 10-N <6 <6 

Value s for each experiment were obtained from medium incubating equa l 
numbers of ce lls for l hour at 37°C and are expressed as pg/2. 5xl0 5 ce ll s. 

alndomethacin pres ent for l hour prior to addition of ACTH and then r e moved 

from th e medium. 
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-7 
concentration of 3 x 10 M. The irreversible nature of this inhibition 

is evidenced by the finding that after a 1 hour exposure to indomethacin, 

cells re-incubated in an inhibitor-free medium were unable to release 

measureab l e amounts of PGE or PGF in response to ACTH (Table 12, 

expt. 4), despite large increases in steroid release. 

Figures 12b and c summarize the results of all experiments, 

including those presented in Table 12. Indomethacin at a concentration 
-9 

of 3 x 10 M potentiated ACTH-evoked release of prostaglandins by 

almost two-fold. Higher indomethacin concentrations ( 3 x 1 O -
7 

and 
- 5 

3 X 10 M) depressed ACTH - evoked PGE and PGF values to below basal 

levels; with these same indomethacin concentrations, ACTH still increased 

steroid release by six - fold or more above basal levels (Fig. 12a). Despite 
-7 -5 

the fact that indomethacin in the concentrations of 3 x 10 and 3 x 10 M 

enhanced basal steroid release, these same concentrations were unable 

to e licit a consistent or significant change in basal PGE or PGF release 

(Table 11). 

B. 5, 8 1 11, 14-Eicosatetraynoic acid 

In addition to experimentation probing the actions of indo­

methacin, which inhibits prostaglandin dehydrogenase and thus the 

conversion of prostaglandin to a keto derivative (Flower, 1974), a few 

studies were carried out using the acetylenic analogue of arachidonic 

acid , 5, 8, 11, 14-eicosatetraynoic acid (ETA); this analogue inhibits 

the conversion of arachidonic acid to PGE and PGF (Ahern and Downing, 
-10 

1970). ETA in concentrations as low as 3 x 10 M impaired the steroid -

ogenic response to ACTH (Fig. 13). The inhibition was concentration 
-10 -7 

dependent over the range of 3 x 10 to 3 x 10 M. However, at the 

highest ETA concentration tested (3 x 1 o- 5 
M) , the inhibitory action was 

reversed (Fig. 13). The stimulant action of exogenous PGE was not 
-7 

markedly affected by an ETA concentration as h i gh as 3 x 10 M, but 
-5 

its action, like that of ACTH, was potentiated by 3 x 10 META (Fig. 13). 

Basal steroid release was increased by ETA concentrations as low as 



Figure 13. Comparison of the effects of 5, 8, 11, 14-eicosatetraynoic 

acid (ETA) on ACTH and PGEz evoked steroid release. 

The columns represent the total amount of steroid released 

by a single preparation during a 90 min incubation period 

with varying ETA concentrations, in the presence of 
-4 either ACTH (50µU , hatched columns) or PGE

2 
(2 x 10 M, 

solid columns), or in their absence (open columns) . 
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3 X 10-
7 

M, with the maximum effect observed at 3 x 10-6 M (Table 13). 
-5 

Although ETA 3 X 10 M also augmented basal steroid release (Table 13) 

this same concentration failed to enhance basal PGF release, since prosta­

glandin values remained within 67 % of control values in the presence of 

inhibitor (Table 14). In the presence of ETA ACTH-induced PGF release 
20' 

was only 66 % of that observed in the absence of inhibitor (Table 14). 

In fact, ACTH-evoked PGF release was reduced to below basal 
-5 20' 

values by ETA ( 3 x 10 M) in some experiments. 

V. Comparison of the effects of pregnenolone and ACTH on steroid and 

prostaglandin release 

The use of pregnenolone to stimulate steroid production could 

help to elucidate further the juxtaposition of prostagland in synthesis in 

the train of events which culminates in steroidogenesis , since this 

corticoid precursor circumvents the membrane events triggered by ACTH. 

Isolated cortical cells incubated with pregnenolone ( 3 µM) responded 

with a more than 30 -fold rise in steroid release (Fig. 14). By contrast , 

the potently steroidogenic concentration of pregnenolone failed to augment 

PGF 
2

0' and PGE
2 

release. This lack of effect of pregnenolone was mani­

fest whether the data were expressed in terms of absolute prostaglandin 

concentrations or in terms of prostaglandin released from pregnenolone-

treated cells as a percent of unstimulated controls (Table 15). 

In the same experiments, ACTH ( 125 µU) augmented steroid 

release by 16-fold and also evoked an increase in PGE 2 and PGF 2a 

release (Table 15). Variability in the prostaglandin values from prepar­

ation to preparation hindered statistical analysis of the data when they 

were represented in absolute concentrations; however, when the ACTH­

stimulated prostaglandin value of each experiment was expressed as a 

percent of its unstimulated control, ACTH elicited a 122% increase in 

PGE release and a 17 3% increase in PGF 2 release (Table 15). 
2 O' 
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Table 13 . Basal steroid release in the presence of ETA. 

ETA (x3M) Percent of Control 

10-9 104 ! 7 ( 3) 
10-7 121 i 7 ( 3) 
10- 6 38 li lll ( 3) 
10-5 339:t 14 5 (6) 

Cells were incubated with varying ETA concentrations under 
conditions previously described . After 9 0 min, the incubation 
medium was extract ed with methylene chloride and assayed 
for corticosteroids. Numbers in parentheses indicate number of 
exp eriments. Va l ues represent means! S. E. 
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Tabl e 14. Effect of ETA on basa l and ACTH - evoked PG F release . 
2a 

PGF 
2

a (pg) PGF 
2

a (pg) 

Ex pt. Basal(A) Basa l f ETA(B) B/A ACTH (C) ACTH + ETA (D) D/C 

1.07 53 50 37 5 387 10 3 

2 104 3 8 14 78 166 0 578 55 

3 68 49 72 92 37 40 

Mean 67 66 

+ S. E. .±.9 .±.1 9 

Each experi men tal va lue was obta ined by RIA afte r incubating equa l 
numbers of cell s in MEM for 60 min in -~e presence or absence of 
ACTH ( 125 -2 50 µU) and/or ETA ( 3 x 10 M). Va l ues are expressed as 

5 
pg / 2 . 5X l0 ce ll s. 



Figure 14. The effect of cycloheximide on steroid releas e from isolated 

adrenal cortical cells. 

Cells were incubated for 90 min in the presence or absence of 

ACTH (125µU) or pregnenolone (3µM) ancVor cycloheximide (CX) 

(36 µM) .Each vertical bar represents mean steroid re l ea se(!. SEM) 

derived from 5 different preparations. 
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Table 15 . Comparative effects of pregnenolone and ACTH on 

prostaglandin formation. 

Expt. PGE 

Basal 
ACTH 
Pregnenolone 

205 
225 
122 

2 Basal 218 
ACTH 266 
Pregnenolone 222 

3 Basal 92 
ACTH 117 
Pregnenolone 97 

4 Basal 269 
ACTH 344 
Pregnenolone 2 59 

Mean Basal 
± S. E. ACTH 

196± 37 
2 33± 4 7 

Pregnenolone 17 5±39 

% of basal 

110 
60 

122 
102 

12 7 
10 5 

128 
96 

122 ± 4 
91 ±10 

PGF 

280 
401 
152 

714 
772 
603 

113 
232 
114 

431 
1014 

232 

384! 128 
605± 177 
275'!112 

% of basal 

14 3 
54 

108 
84 

205 
101 

235 
54 

17 3± 29 
7 3± 12 

Values were obtained by RIA of incubation media bathing cells in the 
presence or absence of ACTH (250µU) or pregnenolone ( 3µ M). 
Incubations were for 90 min at 37°C. Values are expressed in 
pg/2. 5 x 10 5 cells. 
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VI. The effects of cyc loheximide 

A. ACTH and pregnenolone-induced steroid release 

Cyclohexim ide i s a potent inhibitor of s t eroidogenesis since 

protein synthes i s is a requ ired event in the processes which control 

s t ero id biosynthesis (Garren~ al., 1971). Incubation of cortical ce lls 

with cyc lohex imid e complete ly blocked the stero idogenic effect s of 

ACTH (F ig. 14). By contrast, the steroidogenic response to pregnenolone 

was unaffected by the same concentrati on of cyc loheximide (Fig. 14), 

indicating that the inhib itor was not impairing the general viability of 

these cells. 

B. Basal prostaglandin l eve l s 

Ce ll s incubated with cycloheximide tended to release less 

PGE
2 

( 15 5 pg) than in its absence (232 pg) (Table 16) , although due to 

variability from experiment to exper i ment this d ifference was not stat i s-

ti ca lly significant (p> 0. 1). When PGE
2 

va lues for the cycloheximide­

treated sampl es in each experiment were expressed as a percent of those 

obtained in the absence of inhibitor the average amount of PGE 2 released 

in the presence of cyclohexi mide was 7 3 .±. 12% of contro l. Treatment 

with cycloheximide resu lt ed in a small decrease in basal PGF 2a, levels 

(Tabl e 16). The difference in the average amount of PGF 2a, released 

in the presence (348 pg) and absence (459 pg) of cycloheximide was not 

s ignificantly different (p> 0. 4); but when in each expe rim en t the va lues 

obtained in the presence of cycloheximid e were expressed as a percent 

of the values obtained in the absence of cyclohex imid e , th e average 

amount of PGF 
2

a, released in th e presence of cycloheximide was 

78 .±. 6% of con trol (p< . 01). 

C. ACTH-stimulated pros taglandin release 

ACTH-enhanced PGE
2 

release was unimpaired by cyclohex imide; 

in fact, in the presence of cycloheximide ACTH produced a slightly greater 

facilitation of PGE release over it s corresponding control value (234%) , 
2 

than in the absence of inhibitor (174%) (Table 16). When the response 
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Table 16. Effect of cycloheximide on prostaglandin release. 

pg PGE 2 Percent pg PGF2a Percent 
of of 

~ Control ACTH Control Control ACTH Control 

205 225 110 280 401 143 
2 218 266 122 714 772 108 
3 92 117 127 113 232 205 
4 269 344 128 431 1014 235 
5 37 5 469 384 759 9 34 123 

Mean 232 284 174 459 670 163 
! S. E. :!:46 :!: 59 ±.53 ± 124 ±152 ± 24 

Percent Percent 
ACTH of ACTH of 

Cyclohex -+Cyclohex Control Cyclohex -+Cyclohex Control 

133 154 115 165 184 1 1 1 
2 184 179 97 530 488 92 
3 93 172 18 5 106 288 272 
4 241 399 166 369 5 51 149 
5 122 743 609 570 69 5 122 

Mean 155 329 234 348 441 149 
!S. E. :!.26 "! 1 1 3 ! 9 5 !94 :!: 92 ± 32 

Values represent the number of pg prostaglandin released by 2. 5 x 10
5 

cortical cells in the presence or absence of ACTH (250µU), cycl oheximide 
(0. 04 mM), or both agents. Incubations were for 90 min at 37°C. 
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to ACTH in the presence and absence of cyc loheximide were compared 

in each experiment , they also were found to be comparable ( 111 .±_ 19%). 

In the presence of cycloheximide ACTH augmented PGF release by an 
2a 

average of 14 9% (Table 16) . This small i ncrease was manifest only if 

the ACTH-induced PGF 20' release in the presence of inhibitor was expressed 

as a percent of basal cycloheximide - treated samples, since the average 

amount of PGF 20' released by ACTH in the presence of inhibitor (441 pg) 

approximated basa l PGF 2a levels in the absence of inhibitor (459 pg) 

(Table 16). Moreover , the mean PGF release induced by ACTH in the 
2a 

presence of cycloheximide (441 pg) was significantly less than that ob-

tained in the absence of cycloheximide (670 pg) , when the data from each 

experiment were analyzed by a paired observation students' t test 

( p =. 0 5) (Table I 6) . When the inhibitory effects of cycloheximide on AC fH ­

fa cilitated PGF2arelease ·were expressed as a percent of ACTH - facilitated 

PGF 
2

0' release in the absence of cycloheximide , ACTH-induced PGF 
2

0' 

release in the presence of inhibitor was 72 .±. 14% of control. 

VII. Cyclic AMP and prostaglandin synthesis 

A. Effect of exogenous cyclic AMP 

A number of investigations have implicated cyclic AMP as a 

mediator of ACTH-induced steroidogenes i s ( Robison et~-, 1971). 

In this regard, previous studies have shown that cyclic AMP and its 

monobutyryl analogue augment steroid production and release from i so ­

lated feline cortical cells in a dose -re lated manner (Rubin~ al. , 1975). 

Hence , experiments were designed to e lucidate the relationship between 

cyclic nucleotide stimu lat i on of steroidogenesis and prostagla ndin syn ­

thesis. Table 1 7 i llustrates conclus i ve ly that the monobutyryl analogue 

of cyclic AMP (BCAMP) (0. 5 mM) dramatically facilitates the cortical 

release of PGF and PGE in to incubation media assayed directly us ing 
20' 2 

the appropriate antisera. In fact, BCAMP was more effective in stim -

ulat ing prostaglandin release than an ACTH concentra tion which had 
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Table 17 . Cyclic AMP and prostag landin synthesis . 

PGF PGE 
____£g__ % basal --29__ % basal 

Expt. l Control 209 169 
BCAMP 3855 1844 694 411 

Expt. 2 Control 309 283 
BCAMP 704 228 489 17 3 

Expt. 3 Control 19 3 324 
BCAMP 1399 725 955 295 

Expt. 4 Control 11 3 92 
BCAMP 2 39 212 1410 1532 

Mean Control 206±40 217 ± 53 
! S. E. B.QJAM P 1549 :!: 805 75z ! 333 887 ±1 99 602 "!: 313 

Cell s were incubated in the presence or absence of monobutyryl cyclic 
AMP (BCAMP) (0. 5mM) for 90 min. RIA for PGF, using anti-PGF 2a 
antiserum , and PGE, using anti - PGE2 anti serum, was carried out on 
400 and 100 µl aliquots , respectively , of incubation medium as descr ibed 
in ~thods . Amounts of prostag landins are expressed as pg/2. 5 x 10 5 ce lls . 
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markedly greater steroidogenic activity (Fig. 15). 

B. Effect of NPS-ACTH 

The steroidogenic action of ACTH on the adrenal cortex appears 

to be mediated not only by activation of adenylyl cyclase and a resultant 

increase in cyclic AMP (Robison g.£.!_., 1971), but as the preceding 

results illustrate, also by an enhanced biosynthesis and release of 

endogenous prostaglandins. The question thus arises as to the inter­

dependence of increases in cyclic AMP and prostaglandin synthesis during 

augmented steroidogenesis. Information pertaining to this problem may 

be gained with the aid of the o-nitrophenyl sulfenyl derivative of ACTH 

(NPS-ACTH). Although the ACTH analogue is approximately one six­

hundredth as potent as ACTH on feline cortical cells, it elicits a dose­

related facilitation o f steroid release; however, unlike ACTH, NPS-ACTH 

fails to induce a measurable increase in cortical cyclic AMP (Rubin, 1975). 

Since NPS-ACTH appears to dissociate the early event of elevated cyclic 

AMP levels from steroid biosynthesis, it was of great interest to ascertain 

whether it, like ACTH, is still capable of altering prostaglandin metab­

olism. Figure 15 illustrates that both ACTH and NPS-ACTH enhanced 

the release of PGE
2 

and PGF zo-· Although the enhanced prostaglandin 

release elicited by both stimulants was completely suppressed by indo­

methacin, ACTH and NPS-ACTH still markedly stimulated steroid release 

(Fig. 16). 

VIII. Calcium deprivation and prostaglandin release 

Incubation of isolated feline cortical cells in a calcium­

deprived medium containing EGTA completely suppresses the steroidogenic 

response to even high ACTH concentrations (Warner and Rubin, 1975). 

This finding was confirmed in the present investigation (Fig. 15), which 

also elaborated the calcium dependency of ACTH stimulation to include 

prostaglandin release. The ACTH-facilitated PGF Zo- and PGE 2 release 

were reduced to below basal levels in calcium-deprived cells (Fig. 15). 



Figure 15 . The effects of calcium deprivation on prostaglandin and 

steroid release induced by ACTH, NPS-ACTH, and BCAMP. 

Isolated cortical cells were incubated for 60 min in normal 

or calcium-free MEM containing EGTA (0. 4mM), in the 

presence or absence of ACTH (250 µU), NPS-ACTH (3. 2 

µM), or BCAMP (0.1 mM). Aliquots of incubation medium 

were assayed for steroid , PGE2 , and PGFza· Each vertical 

bar represents a mean value(!. S. E.), expressed as percent 

of basal values, from 3 or more preparations. 
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Figure 16. The effects of indomethacin on ACTH- and NPS-ACTH­

induced corticosteroid and PGF2a release. 

Equal numbers of cells were incubated for 90 min in MEM. 

ACTH (0. 3 nM) or NPS-ACTH ( 3200 nM) was added as 

indicated in the presence or absence of indomethacin 

(3 x 10-5M). PGF2a determinations were made by direct 

radioimmunoassay of 400 µl aliqwts of incubation medium, 

using PGF2a, antiserum. Values normalized per 2. 5 x 105 

cells are expressed as percent of unstimulated control 

samples. Each vertical bar represents the mean (t S. E.) 

of the number of independent experiments indicated by 

the number in parentheses at the base of the bar. 
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Likewise, calcium lack blunted the enhancement of both steroid and 

prostaglandin release e licited by NPS - ACTH (Fig. 15). By contra s t, 

the stero idogenic action of th e monobutyry l analogue of cycli c AMP 

( BCA MP) was not significantly diminished by calciu m deprivation , although 

calcium lack blocked BCAMP fa c ilitated PGE and PG F release (F ig. 15) . 
2 2a, 

In order to ascertain that calciu m d eprivation was no t irrever-

s i b ly altering the response of cortical cell s t o ACTH, in 2 different 

experi ments cells were incubated for 60 minutes in calc ium - deprived 

medium plus ACTH a n d then re - suspended for th e same tim e interval in 

calc ium conta i nin g med ium plus ACTH. The a verage amount of PGF 
2

a, 

and PGE
2 

released by ACTH (250 µU) in the absence of ca lcium was 

2 12 and 10 5 pg , respectively, and subsequently , in the pres ence of 

ca l c ium was 417 and 2 34 pg, respectively. A s i milar rever s ibility of 

the e ffects of ca lcium lack on steroid production was also demonstrable 

in these same experiments . Thus , the average amount of steroid re l ea sed 

during and following calc ium deprivation was 15 and 182 ng, respective ly . 

Although variability from preparation to preparation somewhat 

limit s sta ti stical analysis of the da ta in terms of absolute concentration s , 

Tabl e 18 gives th e PGF 
2

a, ' PGE
2

, and steroid concentrations when data 

from different ex perimen ts were combined . Certain genera l conclusions 

ca n be drawn from these results wh ich are not r eadily apparent from the 

data expressed as percent of con tro l. Although basal PGF 
2

a, and PGE
2 

level s were genera lly com parabl e , PGF 
2

a, re lease was augme nted to a 

greater extent by ACTH and BCAMP than by NPS -A CTH . NPS-ACTH 

appeared to enha nce PGF and PGE
2 

release to a simila r d egree. Al-
2a 

though basal prostaglandin l evels appeared s li ghtly depressed by ca l c ium 

deprivation, th e addition of stimulating agents genera lly failed to augment 

prestaglandin release above these re s ting level s , w ith the exception 

of a two-fold increase in BCAMP-induced PGE
2 

re l ease; how ever , even 

tht s increa~e is within the limits of variability imposed by the standard 

e·filtor of control and i .timula ted values. It should be not ed that the 
t? 
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amount of PGE
2 

released after BCAMP in the absence of calcium was 

less than the amount released under basal conditions in the presence of 

calcium. 
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DISCUSSION 

The foregoing investigations were carried out to identify and 

quantitate prostaglandins which might be present in the adrenal cortex. 

A thorough knowledge of these proposed cellular mediators might help 

to elucidate the mechanism of action of ACTH and the role of prosta­

glandins in the steroidogenic response to the tropic hormone. The present 

studies have demonstrated that: 1) the adrenal cortex possesses the 

enzymatic machinery to synthesize prostaglandins; 2) at least two 

species of prostaglandins (PGE
2 

and PGF ) are synthesized and released 
2a 

by cortical cells; and 3) ACTH enhances the synthesis and release of 

cortical prostaglandins. This discussion will attempt a comprehensive 

analysis of these basic findings in the hope of elaborating the functional 

role which prostaglandins may play in the tropic action of ACTH. 

I. Prostaglandin synthetase activity in the adrenal cortex 

Implicating a potential intermediate in the action of a given 

hormone dictates that the substance under question be synthesized in 

the responsive tissue, and that some changes in its metabolism be 

demonstrable during the action of the hormone. In exploring the putative 

role of prostaglandins in ACTH-induced corticosteroidogenesis, studies 

have been carried out utilizing adrenal cortical cell homogenates and 

suspensions to demonstrate that cortical cells possess an active prosta­

glandin synthetase responsible for converting radiolabeled arachidonic 

acid into prostaglandins. This is the first demonstration of synthetase 

activity in the adrenal cortex, although it has been identified in a number 

of other tissue types (Pace-Asciak and Wolfe, 1970; Takeguchi and Sih, 

1972). In general, the synthetases found in different tissues exhibit a 

common requirement for the reducing cofactor glutathione (Lands et al., 

19,71;, Samuelsson, 1973), the protective dihydroxybenzene group of 

n;1.t,t0f~pinephrine bitartrate (Pace-Asciak, 197 3), and the chelating agent 

~cp);IUP:!'ace-Asciak and Wolfe, 1979). The prostaglandin synthetase of 
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adrenal cortical cells appears to share the chemical properties of syn­

thetase from other tissues since cortical homogenates successfully 

synthesized prostaglandins from arachidonic acid in the presence of 

these agents. 

h . 3 
T e experiments employing H-arachidonic acid metabolism 

as a measure of prostaglandin synthesis and release indicated that PGE 

and PGFZa' rather than PGE 1 and PGFla' were prominent species of 
2 

prostaglandin in the adrena l cortex, since arachidonic acid is the precur­

sor of the former two prostaglandins (Christ and van Dorp, 1972). Precedent 
3 

for the use of H - arachidonic acid to demonstrate the prostaglandin synthe-

sizing activity of tissues was established by Bergstrom and co - workers 

( 1964) using sheep vesicular gland homogenates, and Pace-Asciak ( 1973, 

1975) using homogenates of rat stomach fundus and kidney papilla. Both 

groups of investigators have identified radiolabeled PGE and PGF 
2 2a, 

after thin layer chromatographic analysis of tissue homogenate extracts. 

While the spontaneous conversion of arachidonic acid to PGF­

like compounds does occur to a limited extent in the adrenal cortical 

homogenate extracts examined on thin layer chromatography, the thin 

layer radioactive profiles indicate that the ce ll homogenate contained an 

active princip l e responsible for the synthesis of PGE and PGF in amounts 

3- and 6 - fo ld, respectively, above the l evel s of arachidonic acid recovered. 

The peak of radioactivity occurring in the PGA/B region of the thin la yer 

chromatographic profile might be described as a mixture of unconvert ed 

arachidonic acid, PGA and/or PGB, and prostaglandin metabolites such as 

the 15-keto-dihydroxy derivatives (Pace-Asciak, 1975). Nevertheless, 

these initial results signified that the feline adrenal cortex contained 

an enzymat i c mechanism for the synthesis of prostaglandins. 

Those experiments in which intact adrenal cortica l cell s were 

allowed to incorporate 3H -arachidon ic acid further demonstrated the 

presence of a functional prostaglandin synthetase in these cells. In 

9-.d.dition, these studies showed that prostaglandins E2 and F Za were 
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synthesized intracellularly from arachidonic acid and released into the 

incuba tion medium. In regard to the tota 1 radioactivity recovered in the 

PGF and PGE zones of prostaglandins extracted from adrenal cells and 

incubation medium , the two-fold higher l eve l of radiolabe led prosta­

glandins in the medium supports the proposal that thes e unsaturated 

fatty acids are releas ed rather than sequestered by the cells (Piper and 

Vane , 19 7/ ). These findin gs sugges tive of de novo synthesis and release 

are corroborated by the quantitation of intrace llular versus released 

adrenal cort ica l prostaglandins us ing radioimmunoassay, since onl y 

15% or less of the PGE 2 and PGF Zo- released into the incubation medium 

was contained within the corti ca l ce ll s. 

A portion of the radiolab e led product found in cells and medium 

with mobility properties simila r to PGA or PGB on thin layer chromatography 

was derived from PGE oxidation products, as evidenced by the fact that 

a portion of the [ 
3

H- PGE] added to incubatin g cortica l cells was con ­

verted to a substance w ith mobility properties indi stingu ishable from th e 

unidentified prostaglandin in the A / B zone. Therefore, the synthesis of 

PGE
2 

may be even more pronounced than is evidenced by the amount of 

tritiat ed product found in the E zone on thin layer chromatography . 

However , this does not ru l e out the possibility that prostaglandin metab ­

olites con tribu te to th e radioactivity found in the PGA/B zone. 

Subsequent to substan tiating the capacity of isolated cortical 

ce lls to synthesize and re lease prostaglandins, th e influ ence of ACTH on 

this synthetic process was sought in order to determine a role for prosta-
3 

glandins in the mechanism of action of ACTH . The results of H-arachidonic 

acid conversion to prostaglandins by ce ll s exposed to ACTH showed that 

prostaglandin synthesis was augmented by as much as twice that occurring 

in control cells . The fact that th e percent increase in r e leased prosta­

glandins in response to ACTH was less than the increase observed for 

intracellular prostaglandins may be expla ined in severa l ways. The 

release of substantial amounts of both labe led and un labeled prostaglandins 



-100-

would tend to dilute the detectable release of radioactive product. The 

release of unlabeled as well as labeled prostaglandin in response to 

ACTH is likely since the adrenal cortex is rich in arachidonic acid. In 

addition, some of the radiolabeled prostaglandins may be metabolized 

intra cellularly rather than released, thus contributing to a diminished 

percent rise in radiolabeled prostag landin release. The fact , however, 

that the same species of prostaglandins increase intracellularly and 

extracellu larly in response to ACTH, supports the concept that these 

unsaturated fatty acids may mediate ACTH-induced steroidogenesis. 

II. Qualitative and quantitative analysis of prostaglandins 

Correlative and more quantitative evidence for PGE and PGF 

synthesis obtained by the studies concerned with the conversion of 

radiolabeled arachidonic acid was sought using RIA techniques. The 

serologic procedure of prostaglandin analysis offers severa l advantages 

over other analytical methods in that it can be highly specific and permit 

estimation of the prostaglandins in fluids without chemical fractionation, 

and it can detect small amounts of antigens in small samples of biologi ­

cal fluids. The RIA analyses of prostaglandin release from isolated 

cortical cells confirm the ACTH-inducible synthesis of PGE 2 and PGF 20,. 

The reliability and specificity of these prostaglandin assays were 

confirmed in a number of ways. The PGF and PGE values of several 

hundred picograms per ml obtained in the present s tudy are in agreement 

with values obtained by assay of other biological fluids (Jaffe and Parker, 

197 3); moreover, the consistent increase in prostag landin synthesis caused 

by ACTH was b locked by indomethacin, a prototype inhibitor of prosta­

glandin synthetase. Also , direct analysis of cellu lar prostag landins 

gave much lower PGF and PGE values than obtained by assay of released 

antigen - a finding consistent with data from other systems which demon ­

strate that the newly synthesized prostaglandin is immediately released 

by the cell (Ramwell and Rabinowitz, 1972). In addition, the results of 

/ 
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the RIA technique are reproducible as indicated by the para llel increase 

in antigen binding with increasing sample s ize , and th e comparable levels 

of prostag landin found in media assayed directly or after extraction with 

organ i c so lvent s . 

The usefu lness of immunologica l methods for assay of prosta­

gland ins is limited by th e specificities of the an tibodies employed . 

The antibod ies used to measure cortical prostaglandins have been described 

as binding one class of prostag landin more strong ly than he terologous 

prostag landins of similar structure , s ince a correlation of chem ica l 

s tru c ture and serologic activity of antibod ies i s mandatory before any 

absol u t e identifica ti on of a prostag landin in a b i o logical fluid can be 

made. 

W ith the r e lative affinities of heterol ogous prostag landins to 

the PGF antibodies known , it was poss ib l e to assay th e amount s of PGF 

and PGF Za released by th e cortica l ce lls. The d irect assay of samples 
1 a 

of i ncuba tion medium using th e PGF Za antibody gave much higher va lues 

than determinations using PGF l a an ti serum. These higher va lues cannot 

be ascribed to cross-rea c tivity by het erologous PGA and PGB which have 

littl e affinity for the PGF Za binding site; moreover , separation of PGF 

from the h e terologous prostaglandins by TLC prior to RIA confirmed that 

PGF equ i va lents in samples of media were ma in ly responsible for th e 

d i splacement of 
3

H - PGF from PG F2 binding sites. 
Za a 

It could still be argued that the determi nation of PGF equiva -

l ents using PGF anti serum gave h igh er va lues than determinations 
Za 

using PGF l a antiserum, because PGF Za anti serum i s capabl e of detect -

ing both PGF and PGF . However, the fact that th e quantity of 
la Za 

PGF as detected with the PGF an tibody was not suff i c ient to cross -
l a l a 

react discernibly w ith the PGF antibody makes it c l ear that PGF 2 is 
Za a 

the predominant species and that the amount of PGF l a re leased must be 

extre me ly low , if indeed , any i s released a t all. Although these experi ­

ments have establi s hed that PGF Za' rather than PGF l a i s the predominant 
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PGF produced by feline cortica l ce lls, they do not exc lud e the possibility 

that PGF metabolites are also concomitantly released. 

The re lati ve specific ities of the PGF and PGF antisera 
la 2a 

also made it possible to identify th e released PGE as PGE after 
2' 

redu c ing the PGE e quivalen t s to their corresponding PGF derivatives. 

Although the estimated quantity of endogenous PGF was subtracted from 

each sample, th e PGE va lues derived by this method were higher than 

those obtained by RIA using PGE antiserum following PGE separation by 

TLC. There is reason to believe that the higher va lu es obtained us ing 

the sodium borohydride (NaBH
4

) reduction of PGE without prior separation 

from th e other prostaglandins are due to the presence of some inte rfe ring 

substance(s) w hich i s removed by ether extraction and TLC. This con­

clusion is based upon the fact that NaBH
4 

reduction and RIA of PGE 

samples which were chromatograph ically separated rendered values which 

clos e ly approximated those obtained using the PGE antiserum. In any 

event, the development of a PGE
2 

antibody which allowed direct assay 

of the incubation me dium, proved to be a r e liable method for the d eter­

mination o f PGE. Although this antibody does not cross-react with 

prostaglandins of the A, B, or F seri es, it does cross-react with PGE 1; 

however, since the amount of PGE
1 

in the felin e cortex is probably 

negligible in comparison to PGE
2

, the inability of the antibody to disting­

uish between PGE
1 

and PGE
2 

does not mitigate its usefulness. 

Il'I. The temporal relation of prostaglandin and steroid release 

Our initial effort to correlate th e synthesis of prostaglandins 

aind ,A.CTH -induced s teroidogenesis involved an examination of the t em poral 

JJ,,ette.rn o.f. prostaglandin and corticosteroid release from the perfus ed 

o'f<aiJWFl®ltgland. Since it has been shown that steroid synthesis increases 

~eiiilif ,~:fter the administration of ACTH, any ACTH-induced alteration 

. ~ -f~;rerial that is to be considered part of the biological machinery 

·~~ lil• .Al[;']H,,sUmulates steroidogenesis must occur within the fir s t 
• ' ~ I 
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several minutes following ACTH administration. Otherwise , the event 

in question follows, rather than precedes , the enhanced synthesis of 

steroid hormones and does not constitute a necessary link in the chain 

of events cu lminating in increased steroidogenesis. The release of 

PGF Za, from the in situ perfused adrena l gland occurred with in 1 O minutes 

following exposure of th e gland to ACTH, and at least 20 minutes prior 

to maximum steroid release. This finding not only confirms the release 

of prostaglandins from isolated cortical ce ll s in vitro in response to 

ACTH, but also suggests that prostag landins are participating in the 

steroidogenic mechanism induced by ACTH. 

The in situ release of prostaglandins raises severa l questions 

regarding the physiological role of these compounds. Prostaglandins 

may exert biochemica l effects related to steroidogenesis prior to their 

releas e fro m the g la nd and their cataboli sm in the circulation (Golub fil 

& , 1975 ). In this regard, it i s interest ing that pro s taglandin release 

in respons e to ACTH precedes the maximum secretion of corticosteroid 

by th e same time interva l reported for the synthesis of adrena l cycl ic 

AMP induced by ACTH (Carchman fil al. , 197 1). Thus, the possibility 

arises that th e formation and/or release of prostaglandins are somehow 

linked to th e cyclic AMP mediation of steroidogenesis. 

The ques tion of th e physiological importance of released 

prostaglandins in the regulation of steroidogenesis a l so deserves con ­

sideration since the pres ence of prostaglandin receptors in adrenal glands 

(Dazord et al., 1974) suggests that membrane receptor coupling is an 

integral part of their mechanism of action. According to Bito (1975), 

prostaglandins or their precu rsors are released into extrace llula r fluids 

of tissues to act on rec e ptors located on the outer surface of cells. 

This int e rpretation of th e fun c tional role of prostaglandins considers 

th em to b e local hormones (autocoids). The close association between 

prostag landin receptors and adeny lyl cyclase (Kueh l, 197 3) further 

indicates that a functional locus of action of prostaglandins may be at 
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the membrane level in adrenal cortical cells where the prostaglandins 

could modulate the action of ACTH by modifying adenylyl cyclase activity. 

Prostaglandins released from adrenal cortical cells in response 

to ACTH might also couple with receptors on cells other than steroid 

secreting cells. While the adjacent glomerulosa cells appear unrespon­

sive to PGE and PGF (Blair-West ~al., 1971; Fichman and Horton, 1973), 

the circulating prostaglandins may influence the release of catecholamines 

from the adrenal medulla (Brody and Kadowitz, 1974; Boonyaviroj and 

Gutman, 1975). Perhaps more importantly, since vascular smooth muscle 

receptors might also be influenced by circulating prostaglandins ( see 

Introduction), the functional role of releasable adrenal cortical prosta­

glandins includes the regulation of adrenal blood flow. In the rat adrenal, 

blood flow and steroid release increase following the intravenous admin­

istration of ACTH (Maier and Staehelin, 1968). The reported increase 

in blood flow is maximum 10 minutes after ACTH and then gradually 

declines to control levels; whereas steroid secretion reaches a maximum 

at 60 minutes and then declines. This temporal relationship between 

blood flow and steroidogenesis in the rat adrenal in vivo mirrors the 

prostaglandin-steroid release profile of the perfused cat adrenal. Thus, 

adrenal cortical prostaglandins may be vasoactive and cause an increase 

in adrenal blood flow in vivo which could activate metabolism and facili­

tate s teroidogenesis. On the other hand, the s teroidogenic effect of 

exogenous prostaglandins on isolated cortical cells indicates that a 

vascular effect of the prostaglandins cannot be its sole mechanism of 

action. 

IV. Prostaglandin inhibitors and steroidogenesis 

In attempting to elucidate further the role of prostaglandins 

in the mechanism of action of ACTH, the use of prostaglandin inhibitors 

was invoked. This approach assumes that if endogenous prostaglandins 

are an integral component of steroidogenesis then not only should ACTH 
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be capab l e of stimulating prostaglandin biosynthesis but inhibitors of 

prostaglandin synthesis shou ld modify the response to ACTH stimulation . 

The competitive and irreversible prostaglandin synthetase inhibitors 

used were indometha c in and the tetraacetylenic acid , ETA . 

High concentrations of indome t hacin caused an irreversibl e 

inhibition of ACTH -induced PGE and PGF re l ease , accompanied by a 

more modes t impairment of ACTH - evoked s teroid release; thus, steroid 

release was still augmented approximate ly 6 - fo ld despite pros taglandin 

release being at or near basa l l evel s . This finding suggests that enhanced 

prostag landin synthesis may not be a sine .9_l,@_ non for the steroidogen i c 

action of ACTH , just as indomethac in -inhi bited prostaglandin synthesis 

was found not to be essentia l to th e s timulatory e ffect of LH on gonadal 

steroidogenesis (Kuehl et al. , 1974) , the action of human chorionic 

gonadotroph in (HCG) in evoki ng corpus lu t ea l progesterone synthesis 

(Santos et ~ - , 1973), or the abi lity of TSH to increase adenylyl cyclase 

activity and promote thyroid hormone r e lease (Mashiter and Field, 1974) . 

In these latte r tissu es as well as in the adrenal cortex, however , exogen ­

ous prostaglandins can mimic th e physiologi ca l effects of th e tropic 

hormone, which suggests a modu latory role, a lb e it not an essential one, 

for t he unsaturated fatty ac ids in hormone action . In this regard, it 
- 5 

i s possible that decr eased prostaglandin synt hesis in response to 10 M 

indomethacin might be responsible for the modest depression of the s t eroid ­

ogenic response to ACTH under these cond ition s . 

In con tra st to the effects of high concentrations of indomethacin 

on corti ca l cell s , indomethacin in l ow concentrations produce d a paralle l 

potentiation of s t eroid and pro s ta g landin r e lease - providing s trong suppor t 

for the concept that prostaglandins play a key physiological role in ACTH ­

induced steroidogenes i s. The likelihood that prostaglandins contribute 

to th e increase in steroid release in the presence of indomethacin 

derives from the evidence that exogenous prostaglandins stimu late 

s t eroidog enes is, not only in t he fe line adrenal, but in the bovine 
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(Saruta and Kaplan, 1972) and rat (Flack et Af·, 1972) adrena l glands 

as well. The converse relationship of steroid synthesis re su lting in 

increased prostaglandin synthes i s is not supported by the finding that 

pregnenolone -induced steroidogenesis fail s to increase PGF or PGE 
2a 2 

in adrenal cort i ca l cell s . In additi on , th e inhibition of adrenal steroido -

genesis by cyclohexim id e did not remarkably i mpair th e synthesis of 

prostaglandins in response to ACTH ; this latter finding is reminiscent 

of th e la ck of an effect of aminogluteth imide in suppressing prosta ­

g landin synthesis whil e inhibiting steroidogenesis in rat ovaries and 

Graafian follicles (Bauminger et Af., 197 5). 

The unexpected finding that indomethacin, a prototype inhibitor 

of prostaglandin synthesis, enhances prostaglandin release in low con ­

cen trations may relate to an ability of the drug to impair th e catabolism 

of endogenous prostaglandins. If prostaglandin dehydrogenase were 

inhibited by indometha cin (Flower, 197 4; Beatty e t a l., 197 6) then th e 

intracellular levels of the prostaglandin might be expected to increase 

and expla i n the potentiated effec t of ACTH on steroidogenesis. 

Another action of low indo methacin concentration s , not related 

to prostaglandin cataboli sm but to the catabolism of cycli c AMP , might 

account for th e potentiating effect of th e drug on stero id and prosta ­

g landin r e lease . Since an increase in adrenal cyc lic AMP occurs in 

res pon se to ACTH (Carchman _tlAf., 197 1; Jaanu s et al., 1972) and is 

believed to med iate the stero idogeni c action of ACTH ( see Introduction), 

the potent phosphodiesterase inhibitory capacity of indo metha cin (Kueh l, 

1974; Beatty e t al. , 197 6) might be expect ed to augment intracellular 

l eve l s of the cyclic nucleotide and thereby enhance steroidogenesis . 

Indeed, th e fact that ba sa l steroid values increa se after treatment of 

adrenal ce ll s w ith indomethacin even though prostaglandin l eve ls are 

depressed to bel ow basal va lues, argues that th e potentiation of basal 

s t eroidogenes i s and possibly ACTH - induced s teroidogenes i s may be at 

least partly due to th e inh ibition of phosphodiesterase act ivity by 
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indomethacin. Moreover, during calcium deprivation cyclic AMP can 

enhance steroidogenesis despite any stimulation of prostaglandin syn­

thesis, suggesting that the steroidogenic activity of supra-physiological 

levels of cyclic AMP does not require the participation of pros tag land ins. 

ETA, the other prostaglandin synthetase inhibitor studied, 

depressed ACTH-evoked steroid release from cortical cells, except 

at high concentrations when ACTH-stimulated steroidogenesis returned 

to normal levels and basal steroid release was increased. These effects 

of ETA on steroid release occur even though prostaglandin release is 

depressed to less than control levels. Therefore, the evidence once 

again substantiates the expendability of these unsaturated fatty acids 

in the steroidogenic process. The reversal of the steroid inhibition 

seen with a high ETA concentration cannot be explained at present; it 

may be another consequence of certain membrane perturbations (Wolfe 

et al., 1976) induced by the drug or nonspecific effects on enzymes 

such as lipoxidases (Ahern and Downing, 1970). 

V. Prostaglandins, steroidogenesis and protein synthesis 

Protein synthesis has been demonstrated to be essential for 

the steroidogenic action of ACTH (see Introduction), while the exact 

role of protein synthesis in controlling steroidogenesis has not been 

precisely defined. Studies using the protein synthesis inhibitor, 

cycloheximide, were conducted to determine the nature of the role of 

protein synthesis in the chain of events linking prostaglandin and steroid 

synthesis. An inhibition of protein synthesis would also answer the 

question of whether the activity of prostaglandin synthetase in response 

to ACTH depends upon de novo enzyme synthesis. 

The data demonstrating that cycloheximide effectively inhibited 

ACTH-induced steroidogenesis while the steroidogenic response to 

pregnenolone remained unaltered, is consistent with the hypothesis 

that the protein-dependent rate-limiting reaction in steroidogenesis 
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occurs prior to th e synthesis of pregnenolone ( see Introduction) . In 

addition , potently s t eroidogen ic concentrations of pregnenolone fai l ed 

to increase prostaglandin release and may even have obtunded the 

release of PGF; an occu rr ence remini scent of the lack of an effect of 

progesterone on uterine prostaglandin level s (Poyser, 1976). 

The pregnenol one studies , which dissociated steroid release 

from prostaglandin formation, indicate that the biosynthesis of steroid 

end - products is not an obligatory precedent event for prostag landin fo r­

mat ion. These data are a biochemical confirmation of that obtained 

from the perfused g land , where maxima l prostag landin release preceded 

max imal s t eroid re lease induced by ACTH . 

Another implication of the experiments :with cycloh eximid e 

relates to the finding that PGE and PG F re lease were not s i gnifi cantly 

altered by protein syn thesis inhibition. Thus , th e increase in prosta ­

glandin release e licited by ACTH is due t o the activation of a preformed 

synthetase compl ex rather than to the tran scription of new enzyme 

protein. It i s a lso apparen t from th ese resu lt s that prostaglandin formation 

~~is not suffi cient for stimu la ting the con version of choles terol to 

corticosteroid , s ince cycloheximid e inhibits s t eroidogene s is in the face 

of increased prostaglandin production. In guinea - pig placenta l slices, 

prostag landins also have no e ffect on the conversion o f pregnenolone 

to progesterone (Bedwani and Ma rley , 197 1). 

VI. Calcium , c ycli c AMP , and pro staglandins 

The assumption has heretofore been made that ACTH augments 

cortica l prostaglandin r e lease by stimu lating de novo syn thes i s from 

fatty aci d precursors. This assumption i s su pported by th e very low 

in tracellula r cortica l prostaglandin level s in the presence and absence 

of ACTH. The added finding tha t the intra cellu lar prostag landin va lues 

obtained after ca l c ium-depriva tion are also quite low, substantiates the 

id ea that the low level s of prostaglandin in the incubat ion medium during 
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calcium deprivation i s the resu lt of an inhibition of syn th es is rath e r than 

re l ease . Thu s , in e lu c idat in g th e ro l e of calcium in the r egu lation of 

prostaglandin formation, yet anoth e r ma jor action of calcium in the 

mechanism of action of ACTH has been uncovered. Th e finding that 

3 diffe re nt a g e nts, ACTH, NPS - ACTH , and SCAMP, each promote prosta­

glandin syn th es is only in the presence of calcium , sugges t s a role for 

thi s ca tion whi c h is intima te ly associated w ith the pro s tag land in b io ­

synthetic mechan ism. 

Th e data showing th e ca l c ium dependency of ACTH- s timulated 

s t ero idogenes is supports the findings of Rubin e t a l. ( 1972) and others 

(Hal kerston, 1975) that the ACTH s timu lation of adeny lyl cy clase and 

steroid synthesis requ ires calcium. The calcium ind ependent BCAMP­

induced s t ero idog enes i s suggests a ma jor regulatory role for calcium in 

feline corti cal cells prior to the formation of cyclic AMP. But, the 

additional requirement for ca lciu m in other bios yn thetic mechanisms 

is apparent from the studies us i ng th e ACTH analogue , N PS -ACTH. 

S in ce NPS - ACTH i s believed t o enhanc e steroidogenesis via a mechanism 

whi ch circumvents significant in c r eases in cycli c AMP (Moy l e ~ al. , 

1973; Rubin, 1975) , th e severe ly obtunded steroidogenic response to 

NPS - ACTH in ca l c ium - deprived media s ugges t s a role for ca lcium in 

s t eroid synth es i s which does not i nvo l ve the adeny lyl cyclase - cyclic AMP 

sys t em. 

Since both SCAMP a nd NPS - ACTH seemingly augment steroid ­

ogenesis by c ircumventing a d eny lyl cyclase , the ability of SCA MP to 

stimulate corticosterone produ c tion in the absence of calcium, wh ile 

th e action of NPS - ACTH i s a l most entirely inhibited unde r id entical 

c onditions, i s difficult to int e rpr e t. High concentrations of SCAMP 

may bypass certain int e rm ediate s t eps of steroidogenesis and so elicit 

s t ero id r e lease much in th e mann er that extremely high ACTH concentra ­

tions s ti mu late the synthesis of rat adrenal corticost eron e in the absence 

of calcium (Haksar e t al. , 19 7 3). 
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This may suggest that the critical action of calcium is associated with 

specific membrane events not necessarily related to adenylyl cyclase. 

Alternatively, if calcium were to be mobilized from a cellular reserve 

by BCAMP, as suggested for ACTH action (Rubin et al. , 1972), this 

might allow for steroid synthesis in calcium- deprived media; however , 

such a pool would appear to be unavailable to the prostaglandin biosyn ­

thetic pathway which remains inhibited in the absence of extracellular 

calcium and the presence of BCAMP. 

The involvement of ACTH - stimulated cyclic AMP formation 

in prostaglandin synthesis has only been suggested heretofore due to 

similarities in their temporal release pattern and the circumstantia l 

evidence suggesting that an inhibition of phosphodiesterase by indometh­

acin might enhance prostaglandin formation by preventing the breakdown 

of cyclic AMP. Although cautioned by the awareness that the steroid ­

ogenic action of exogenous cyclic nucleotide may not necessarily be 

a reflection of a physio logical effect of endogenous cyclic AMP , the 

potent stimulatory effect of BCAMP upon cortical release of PGF Zc,, and 

PGE
2 

point to a role for cyclic AMP in adrenal prostaglandin metabolism. 

Exogenous cyclic AMP also stimulates the synthesis and release of 

prostaglandins from isolated Graafian follicles , mouse ovaries , and rat 

testis ( Marsh et al. , 1974). 

The question of whether or not cyclic AMP, as generated 

during the action of ACTH, is directly responsible for the activation 

of prostaglandin synthetase, or whether it acts via some intermediate 

in the synthesis of prostaglandins is answered, in part, by those exper ­

iments using NPS - ACTH as a steroidogenic agent. NPS - ACTH , while 

not eliciting detectable increases in feline adrenal cortical cyclic AMP 

(Rubin , 1975), elicited an increase in PGF 2c,, release equal to that 

induced by ACTH itself. Thus, while cyclic AMP may not be obligatory 

to the activation of prostaglandin synthetase , these results do not 

negate th e important role cyclic AMP may play in the physiologica l 



-111 -

mechanism of ACTH and prostaglandin synthesis. 

VII. Conclus ions and model of pro s taglandin int e ra c tion in the mechanism 

of ACTH 

The ubiquitou s pro s taglandins , demonstrat ed to b e present 

in almost all ani mal ti ssues , have also been shown to be synthesized 

d e novo and re leas e d fro m i sola ted feline adrenal corti ca l cells . The 

ab ility of ACTH to stimulate th e syn th es is of pro s ta g landins s ugges t s 

a possible interrelationship between prostaglandins and th e other known 

mediators of ACTH action, cyclic AMP and calc ium . The resu lts support 

an int era c tion between the three modulators of steroidogenesis since: 

a ) calcium is require d not only for the ACTH - re ceptor stimu la tion of 

adenyly l cyclase (Rubin .§1 fil. , 1972) and subsequent s teroidogenesis , 

bu t also for t he synthesis of prostaglandins; b) exogenous cyclic AMP 

can stimulate s teroidog enesis as we ll as pros tag landin synthesis in 

th e presence of calc ium . 

The mode l as depi c ted in Figure 17 i s an attempt to summarize 

the data re lating pro stag landin s to s te roidogenes i s and th e tropic action 

of ACTH. Th e model ta kes into account th e presenc e of ACTH receptors 

in adrenal cortica l cell membranes ( Le f kowitz et fil. , 1971; Golder and 

Boyns , 1972) as we ll as the probability t ha t prostaglandin r eceptors 

a l so reside in the membrane (Dazord .§1 al., 1974) . The translated 

form of the message transmitt ed as a result of ACTH - receptor activation , 

as typified by the synthesis of th e second - messenger cyclic AMP , has 

been demonstrated not only for adrenal c e ll s (Hayn es , 19 58; Rub in et al. , 

1972) , but al s o for other s tero idog en ic ce lls (Shaw and Till son , 1974) 

and i s incorporat ed into Figure 17 as a facet of the ac tion of ACTH. It 

must be kept in mind , however, that the experim en t s w ith NPS -ACTH 

ind icate that all ACTH receptors may not activate adenylyl cyclas e 

(Moyle e t fil. , 1973). In addition, the fi gu re depicts the role of cyclic 

AMP primarily as it has been hypothesized to affect prostaglandin and 



Figure 17. Proposed model for the participation of prostaglandins 

in th e mechanism of action of ACTH. 

This scheme depicts the following proposed sequence 

of events in the adrenal cortical cell during ACTH 

stimulation. Interaction of ACTH with its cell membrane 

receptor results in me mbraneous calcium redistribution 

and causes an increase in adenylyl cyclase (a. c.) 

activity, with a consequent rise in tissue cyclic AMP 

(cAMP). The cyclic AMP can then either be converted 

enzymatically by phosphodiesterase (PDE) to 5' -AMP, 

or it can activate cholesterol esterase and a calcium­

dependent phospholipase. Cholesterol esterase can 

cleave fatty acids from the cholesterol ester and thereby 

release free cholesterol for steroidogenesis and fatty 

acids (including arachidonic acid) for metabolism and 

prostaglandin synthesis. Phospholipase catalyzes the 

release of arachidonic acid from phospholipids, and 

arachidonate enters the prostaglandin synthesizing 

pathway. Prostaglandins synthesized can either stim­

ulate steroidogenesis by: 1) affecting mitochondrial 

reactions associated with calcium availability by acting 

as an "ionophore"; 2) mediating the formation of cyclic 

GMP (cGMP); 3) leaving the cell to act as a local hor­

mone either by interacting with the prostaglandin (PG) 

receptor of the cortical cell, or by affecting adjacent 

tissues, such as adrenal vasculature. PG receptor 

binding may influence the activity of the adjacent 

adenylyl cyclase. Indomethacin (Indo.) is indicated 

by dotted lines as inhibiting several enzymatic reactions 

which might alter steroid and prostaglandin synthesis. 
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steroid production , without attempting to illustrate the many other 

possib l e cellular roles of this cyclic nucleotide (Robison et al. , 1971). 

Cholesterol esterase and phospholipase are enzymes likely 

to be influenced by cyclic AMP (Dalton and Hope , 1974; Kuehl, 1974) 

to stimulate steroidogenesis and prostaglandin synthesis. These enzymes 

liberate cholesterol and free fatty acids (including arachidonic acid), 

the substrates for cholesterol desmolase and prostaglandin synthetase, 

respectively. This enzymic stimu latory action of cyclic AMP may be 

mediated by the activation of a protein kinase (Schulster, 1974). As 

noted in the figure, ca lcium may modulate the activity of phospholipase 

(Kunze~ al., 1974; Haye et a l., 1976), thus, accounting for the 

inhibition of pros tag land in syn th es is in calcium - deprived incubation 

media. 

Indomethacin is illustrated in Figure 17 as inhibiting phos­

phodiesterase (Kuehl, 1974). Hence , potentiation of the ACTH - elicited 

release of steroid and prostaglandins in the presence of low indomethacin 

concentrations may be explained by an increase in cellular levels of 

cyclic AMP when the catabolism of the cyclic nucl eotide is inhibited. 

The lipolytic activity of cyclic AMP results in an augmented supply of 

precursor fatty acids for prostaglandin formation as well as cholesterol 

for steroid synthesis. At low levels of indomethacin, therefore , increased 

amounts of substrate fatty ac ids could effectively compete with this 

synthetase inhibitor, resulting in an increased prostaglandin synthesis 

rather than the customary decrease. 

Alternatively , indomethacin may be exerting an inhibitory 

effect upon prostaglandin dehydrogenase (Fig. 17) . The dimin i shed 

cataboli sm of the prostag landins might increase their effective cellu lar 

concentration and account not only for their enhanced release in response 

to ACTH in the presence of low concentrations of indomethacin, but 

a l so account for the increased steroid rel ease under these conditions 

if prostaglandins mediate the synthesis of steroids . 
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Once the phospholipase and esterase are activated and 

liberate fatty acids for prostaglandin synthesis, the role of prostaglandins 

in mediating steroidogenesis can be envisioned in several ways. 

Figure 17 shows newly synthesized prostaglandins being released at 

the cortical cell surface to either function as loca l hormones on adrenal 

vasculature , or to combine with a cortical cell prostaglandin receptor 

(Bito, 1975). The function of an activated prostaglandin receptor can 

only be theorized at present. In human and ovine adrenal glands the 

binding of prostaglandins stimulates adenylyl cyclase, but as in the 

indomethacin-treated feline adrenal, this binding is not obligatory to 

the action of ACTH (Shio et al. , 1971; Dazord et £1., 1974). 

On the other hand , since prostaglandins elicit only minimal 

increas es in feline adrenal cortical cyclic AMP (Warner and Rubin, 197 5) , 

the popular concept of a feedba ck regulatory role for prostaglandins 

(Bergstrom , 1967) deserves consideration. In the renal medulla, for 

example , prostaglandins synthesized in response to vasopressin actually 

decrease the hormone-receptor activation of adenylyl cyclase (Kalisker 

and Dyer, 1972). If, in the model of ACTH action (Fig. 17), prosta­

glandin assumes a modulatory role which is inhibitory, this might account 

for the decline in cyclic AMP within several minutes after the onset of 

ACTH stimulation (Jaanus ~al., 1972). The decline in cyclic AMP 

wou ld then also account for th e temporal decline in prostaglandins due 

to diminished phospholipase and prostaglandin synthetase activity. 

The inhibition of the ACTH-receptor stimulation of adenylyl cyclase 

might reside in the ability of prostaglandins to redistribute calcium 

within the membrane (Kirtland and Baum, 1972; Ca rafoli and Crovetti , 

197 3) since th e activity of adenylyl cyclase is extreme ly dependent upon 

calcium availability (Lefkowitz et al. , 1970; Sayers ~ £1. , 1972; Rubin 

etal., 1972). 

Other possible actions of prostaglandins synthesized by the 

adrenal cortical cell in response to ACTH, include the direct facilitation 



- 115-

of mitochondrial steroidogenesis via changes in calcium availabi lity 

(Malmstrom and Carafoli, 1975) and th e enhanced generation of cyclic 

GMP wh ich has been found to increase steroidogenesis in the rat adrenal 

( Ha lkerston , 197 5). Indomethacin in sufficient ly high concentrations 

to inhibit prostaglandin synthesis wou ld prevent the participation of 

prostag landins in these potentia lly steroidogenic events . Thus, the in ­

hibited mediator role of prostaglandins in the presence of high indomethacin 

concentrations might account for the depressed ACTH - induced steroid 

release. 

The mode l of prostaglandin interaction in the tropic action 

of ACTH , as depicted in Figure 17, is by no means complete regarding 

the roles of cyclic AMP and cyclic GMP. in protein synthesis (Schulster , 

1974) or the role of pros taglandins in altering membrane permeability, 

cholesterogenesis , or other metabo l ic processes (Calandra and Montaguti , 

19 7 3) . It should also be noted that different species of prostaglandins 

can manifest not on l y st imu latory , bu t inhibitory , effec t s on steroido -

genesis (Shaw and Tillson, 1974) . The PGE
2 

synthes ized by cort i ca l 

ce ll s may be concerned with cell membrane regula t ory effects on steroid ­

ogenesis in light of its steroidogenic action in pharmacologic concentra ­

tions (Warner and Rubin , 1975); while the more - weakly steroidogenic 

PGF Za may be involved with metabolic a lterations in cyclic guanosine 

nucleotides (Kueh l , 1973). However, the ce llu la r mechan i sms ou tlined 

in Figure 17 account for most of th e resu l ts reported in the stud ies probing 

the role of prostaglandins in t he mechanism of action of ACTH and adrenal 

cortica l steroidogenesis . 
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SUMMARY 

1. Studies were carried out on the feline adrenal gland to ascertain 

the role of prostaglandins in the mechanism of action of ACTH. 

2. Adrenal cortical homogenates contain an enzyme mechanism for 
3 

converting H - arachidonic acid to prostaglandin-like compounds. On 

TLC, the radiolabeled products are identified as PGE and PGF-like 

substances. 

3, 3 
Prostaglandins synthesized from H-arachidonic acid by trypsin-

dispersed cat adrenocortical cells were isolated by silicic acid and 

thin layer chromatography. PGE, PGF, and a third component with 

mobility properties indistinguishable from either PGA or PGB were identi­

fied both in cortical cell homogenates and incubation medium. 

4. Concentrations of ACTH ( 125-250 µU) which stimulate steroido ­

genesis enhanced the conversion of labeled arachidonic acid to PGE, 

PGF and the PGA/B products extracted from cortical cells and incubation 

media . 

5. Prostaglandin biosynthesis by isolated cortical cells was studied 

by radioimmunoassay (RIA). The antis era generated against conjugates 

of PGE
2

, PGF lo-' and PGF 
2

0' were characterized with respect to binding 

specificity and reliability in assay of cortical prostaglandins. Parallel 

assays of incubation media using PGF
2

o- and PGF lo- antisera established 

that PGF 
2

0' is the primary PGF released by feline cortical cells. Follow­

ing the reduction of PGE to PGF with NaBH
4 

these same two antisera 

were also used to identify PGE
2 

as the primary PGE released. RIA using 

a PGE antiserum confirmed the presence of PGE in the incubation medium. 

6. Steroidogenic concentrations of ACTH (50-250 µU) enhanced in a 

dose-related manner the PGE and PGF release by isolated cells, as 

determined by RIA. Indomethacin suppressed the ACTH facilitated 

release. Evidence for ACTH -induced prostaglandin synthesis supports 

the hypothesis that prostaglandins play some role in the steroidogenic 
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action of ACTH. 

7. The pe rfus ed adrenal gland shows maximum steroidogenesis occur­

ring 30-40 minutes following exposure to ACTH, while PGF 
2

a re leas e 

remained e levated during the 10 minutes following ACTH perfusion and 

th en declined to basal leve ls . 

8. The effects of prostaglandin synth esis inhibitors on s teroid and 

PGE and PGF r e lease from cortical cells were investigated. Low indo ­

methacin concentrations pot en tia t ed ACTH-evoked pros tag land in and 

steroid release, whereas higher concentrat ions depressed both responses 

to ACTH. Th e steroidogenic re sponse to exogenous PGE
2 

was not 

markedly altered over a w id e range of indomethacin concentrations. 

9. Indometha c in enhanced basal s teroid re l ease but did not enhance 

basa l PGE or PGF release . 

10. 5 , 8 , 11, 14 - Eicosa tetraynoic acid (ETA) , another inhibitor of pros ta -

glandin synthesis , e licited a concentration - dependent inhibition of 

ACTH-induced steroid release , but had little e ffect on PGE
2

- induced 

steroid releas e . A high concentration of ETA inhibit ed PGE and PGF 

re l ease . 

11. Pre gnenolone ( 3 µM) e licited a 30-fold rise in s teroid re lease from 

isolated cortical cells but fai l ed to augment PGF 
2

a and PGE
2 

release . 

ACTH , on th e other hand, increased steroid r e lease by 16 - fold and 

also evoked an increase in PGE
2 

and PGF 
2

ll'. 

12 . Cycloheximide com pletely blocked the s t eroidogen ic effect s of 

ACTH, whi l e th e steroidogenic res pons e to preg nenolone was unaffected , 

attes ting to th e v iability of th e cells in the absence of protein synthes is. 

Cycloheximide depressed basal PG F 
2

ll' and PGE
2 

re lease by 27% and 

22 % ,. respectively, while ACTH - fa c ilitate d prostaglandin release was 

not significantly impaired by cycloheximide. 

13 . ACTH , NPS -ACTH , and BCAMP increased PGF
2

a and PGE
2 

and 

steroid re leas e by i solated corti ca l cells . Indomethacin compl e t e ly 

b locked the prostag landin effects of the polypeptides but failed to 
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marked ly suppress steroid release . Calcium - deprivation b locked prosta­

g land in and stero id release evoked by ACTH and NPS -ACTH , but on ly 

i nh i bited prostag land in r e lease e licited by BCAMP w it hout affecting 

s t e ro id r e l ease. 

14. These stud i es suggest a func t iona l ro le for prostag land ins in mech­

an i sm of ac t ion of ACTH. Alt hough the nature of this rol e rema ins t o 

be e lucidated , it appears to invo lve some complex interaction w ith 

calcium and cycl ic nucleotides. 
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Studies were ca rri ed out on th e feline adrena l gland to ascerta in 

th e role of prostaglandins in the mechanism of a ct ion of ACTH. Using 

tritiat ed arachidonic acid as a prostag landin (PG) precursor , it was 

demonstrated by co lumn and thin layer chromatography techniques 

that i so lated trypsinized adre nocorti ca l ce ll s possess an ac tive PG 

synth etase capable of synthes izing ra d iolabe led PGE, PGF, and 

PGA/B-like su b s ta nces . Concentra tion s of ACTH (125 - 250 µU ) which 

s ti mu late s t e roidog e nesis enhanced the conver sion of radiolabeled 

arachidonic acid to PGE, PGF and th e PGA/B products extrac ted from 

corti ca l ce ll s and incubation media. 

PG biosyn thes i s by isolated cortical ce lls was studied by radio ­

immunoassay (RIA) using a nti sera gene rat ed aga in st conj ugates of 

PGE
2

, PGF 
1 

a and PGF 
2

a. PG F 
2

a and PG E
2 

were ident ified as t he 

primary PGs re leased by fe lin e corti ca l ce ll s , and steroidogenic 

concentrations of ACTH (50-250 µU) e nhanced their re lease in a dose ­

rela ted manner. Indomethacin ( 1 o- 5 
M) i nhibit ed PG a nd s t e roid 

- 9 
re lease , whereas low indomethacin conc e ntration s (10 M) potentiated 

ACTH - evoked PG and steroid relea se. Th e s t eroidogen ic response to 

exogenous PGE
2 

was not marked l y a lt e red by ind ome thac in. 5 , 8, 11, 14-

Ei cosatetraynoic acid (ETA) inhibited PGE and PGF release , and e lic it ed 

a concen trat i on -d epe nd ent inhibiti on of ACT H-indu ced stero id r e l ease . 

Therefore, the re appea rs to be a functional relation s hip between PG 

a nd s t eroid releas e. Such a relationship was further supported by 



studies on the perfused adrenal gland, which demonstrated that maximal 

PGF Za release in response to ACTH preceded th e maximal s teroidogenic 

response. Moreover, pregnenolone ( 3 µM) e licited a 30-fold increase 

in steroid re lease from isolated cortical cells but failed to augment 

PGF Za and PGE 2 releas e ; this study further supports the concep t that 

PG synthesis occurs prior to the s teroidogen i c respons e to ACTH. 

Cycloheximide did not block th e s t eroidogenic response to pregnenolone, 

but completely blocked th e stero idogenic effects of ACTH. Cycloheximide 

also depressed basal PGF
2 

and PGE re leas e , while ACfH-facilitated 
Q z 

PG release was not significantly impaired . Thu s, the enzymes responsible 

for in creas ing PG synthesis are activated rather than formed de novo 

in respon se to ACTH. 

Thre e steroidogen i c ag e nts, ACTH, an ACTH ana logue N PS-ACTH, 

and monobutyryl cyclic AMP (BCAMP), increased PGF
2 

a nd PGE release 
Q z 

from isolated adrenocortica l ce lls. Calc ium deprivation blocked PG 

and steroid release evoked by ACTH and NPS-ACTH, but on ly inhibited 

PG relea se e licited by BCAMP without affecting steroid release. These 

studies suggest a functional role for PGs in the mechanism of action 

of ACTH. Although the nature of this role remains to be e lucidated, 

it appears to in volv e some complex interaction with calci um and 

cyclic nucleotides. 
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