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%, Assessing how disruption of methanogenic communities and their syntrophic relationships David Berrier, Scott Neubauer,

d Rima Franki
s in tidal freshwater marshes via saltwater intrusion may affect CH, emissions conact oo

Introduction Experimental design The functional response and recovery of microbial

« Tidal freshwater wetlands (TFW), which lie at the interface of saltwater and freshwater communities to SO -2 availability
ecosystems, are predicted to experience moderate salinity increases due to sea level rise. Initial sampling Treatment sampling Recovery sampling 4

* |Increases in salinity generally suppress CH, production, but it is uncertain to what extent Stabilization: 50,2 / NaCl treatment: Recovery: SRB competition was introduced in v . .

g . L. . ! . anllzation: 4 /T Hreatment: SeOVery: . e Fresh Methane production rates  The CH, production rate was decreased b
elevated salinity will affect CH, cycling in TFW. It is also unknown whether CH, production 21.7 days 25 days 28 days the SO, / NaCl treatment (Fig. 3). — S;P]f P 4 PO 0 ¥ v 2 4
. - — — — The SRB competition was then 020 | greater than 75% in the 4 mM SO, = treatment
will resume when freshwater conditions return. p - mmm Sulfate T oup relative to the fresh control for both the
N - | S S S removed using the SRB inhibitor N = Recovered grotip |

» The ability to produce CH, is limited to a monophyletic group of the Euryarchaeota phylum MoO,2 to allow MG and syntrophic s T treatment samplmg event and the recovery

called methanogens (MG), who are limited to a small number of substrates (e.g., acetate, 1.) Fresh Control bacteria to recover (Fig. 3). 2 | T sampling event (Fig. 5).
H,, and formate) produced from the breakdown of fermentation products. =
n fresh bi Is. the d dat ” o . - | ; ; « At each sampling event, the gas 2_ 0.10 - * The CH, production rates did not recover to

* Infreshwater anaerobic solis, the egra ation of certain erm.entatlon products (e.g., production rates from the T similar levels of the fresh control after SRB
butyrate,.proplonate) IS only energetlcallly favorable whe.n t.helr ca.tabollc byproduct, I_.IZ or 2) 4 mM SO, 2 Treatment microcosms (n=5) from the “S” o competition had been removed. However, CH,
formate, is consumed to low concentrations by MGs. This is considered a form of obligate Y = | labeled treatment groups were taken oroduction rates were also lower in the salt
syntrophy (Table 1). | S (Fig. 3). . control indicating that the inability of CH,

. ' i ili7i ' | roduction rates to recover may be a result of
Sulfa.te red.ucmg bacteria (SRB) are capable of utlllz_lng a larger variety of substrates than )25 M Mo Tremtment The ability of the microcosms (n=3) Initial  Treatment Recover Fs)alinity irocs tathor fham the Iaysting g
MG, .mcludlng substrates degraded by methanogenic syntrophy (e.g., butyrate, ) 2. 4 from the “S” labeled treatment Figure 5. The CH, production rates for each of the treatment > |
propionate) groups to breakdown 2.5 mM groups at each sampling event. Colors correspond to the SRB competition (Fig. 5).

+ The introduction of sulfate (SO,2) into TFW via saltwater intrusion events may allow SRB S S zit#é';z;et am?grgieia?c;?(t)r&%“st'\?vgsf the treatment groups in figure 2.
to disrupt syn’Frophic relat_ionships between hydrogenotrophic .MG a.nd syntrophic 4.} 12 mM NaCl Treatment Seizined At ceeh sanraling e Treatment sampling butyrate assay:
fermenters (Figure 1). This may select for MG taxa that differ in their rate of CH, (Fig.3) 120 120 - -

- 9 a.) Fresh Control b.) SO, 28 25mM MoO, 2 mmmm Butyrate
production. . - . . ) 100 | 100 | s Acetate
Figure 3. Green bottles indicate 1.) fresh controls receiving no treatment. Blue bottles received 2.) SO, treatment. S == Formate
Brown bottles received 4.) NaCl treatment. Purple bottles received 3.) MoO,? treatment. Treatments marked marked “S” 'cg 80 - 80 - — g(H)Z
ijectives were sampled during the respective sampling event T E Unl‘(‘onwn
£ 60- 60 -
1. Determine the effect of oligohaline SO, concentrations on MG community functions (i.e., = ‘0. 10| IP—
CH, production and syntrophic butyrate degradation). . . ] 5 2
Demonstrating Syntrophy in a Tidal Freshwater Marsh = 20 20 - o
2. Assess whether these functions recover after competition with SRB has been removed. — DAY . . DS
Fresh control microcosms from the the initial sampling event were incubated in 2.5 mM 120 _2 120 3.5 - : : :

Approach butyrate and 50 mM BESA to inhibit MG activity (Fig. 4b), H, > 100 Pa to inhibit syntrophic 0 |55 I e " &50 mM BESA 3| &) Formate

» Freshwater 30% (wt/vol) anaerobic microcosms were constructed with soil and pore water bacteria (Fig. 4c), or in no inhibitor as a control (Fig. 4a). g . 8 25
from Cumberland Marsh, a TFW located on the Pamunkey River, Virginia. | - | = = 209

. Treated usi . binat £ the followi q . Butyrate remained above 80% of total initial measured carbon for more than 10 days in MG 2 60 60 - 2 15

reated using various combinations or the foflowing amendments. inhibited soil slurries (Fig. 4b) . In contrast, fresh control slurries brought butyrate concentrations *GEJ ‘0. ‘0. *GE) 10 .
4 mM Na2S04 to increase [SO4-4] as would occur with saltwater intrusion below 8% over the same time period indicating that methanogens are critical to butyrate o S 05 .
* 12 mM NaCl to control for the effect of [ breakdown In freshwater environments (Fig 4a). T e - 0.0 |
increased ionic strength without increasing | | Additions of H, >100 Pa did not inhibit butyrate breakdown (Fig 4c). This likely reflects the use of 10 12 14 16 0 2 4 6 8 10 12 14 16
SO4-2 availability [t] or [Formate ' formate as an alternative molecule for interspecies electron transport. Formate production was Days Days Days
measurable byproduct of butyrate breakdown (Fig 4d). Fi 6. Th t f bl b i lative to the initial total carb d for mi d
+ 25mM MoO42 (Na2MoO4), a SRB inhibitor .1 N ) o 49 during the treaiment sampling event, Fresh conrol microcosms were incubated in 2.5 mM butyrate with no inhibitor(a). The
S>R‘B< Conclusion: The important role of methanogens in butyrate breakdown and the (?04 treatmint QZOUF:CKV/I? (ing'bated if;}ﬁ-5 mM bUt?/Ea;e Tar?d(2-)5 thMd004'2 t?c determine the role of SRI?C (b), 5|0 mlla\/l BFSAhtO
. . D : PR : : : etermine the role o , or no inhibitor control (c). The (e) graph depicts formate as a percentage of initial carbon for the
« Additions of 2.5 mM butyrate (n-butyric acid) in M¥O4 | ;cl:eclg:rl:‘lgtelﬁralncg :ic;ranll?:eeslazlacte;e; ;I::hbutyrate is degraded by syntrophic fermenters in putyrate assays in (a-d).
combination with inhibitors were used to determine ' SRB ! :

. o > ,
the role of SRB and MG in butyrate breakdown. While the uninhibited SO, treatment broke butyrate down the fastest (Fig. 6¢), the breakdown appeared

120 2) Frosh control 120  Eroon 50 mM BESA to be mediated through both SRB and syntrophy. This is evident by the appreciable accumulation of CH,
» 5 mM BESA (2-Bromoethanesulfonic acid) ) Fres and formate (fig. 6¢ & 6e) in the SO,2 treatment. The inhibition of MG via BESA (Fig. 6d & 6e) in the
. MG infibitor _ 100 - - 100 1 SO,? treatment resulted slower butyrate breakdown and significantly less formate production than when
@) @) . T : .
£ oo £ oo both MG and SRB were uninhibited in the SO, treatment (Fig. 6¢).
« 5mM MoO,? (Na,MoO,) [ O m—utyrate O
© cetate © . . . R
. H,>100 Pa Figure 1. Pathways of butyrate breakdown in 2 60 E E%r;nate 2 60 AIthoggh SRB are capable of utilizing acetate, M(_B seem to b_e the primary agent as significantly larger
anaerobic environments, the microbial groups g — CH, £ guantities of acetate accumulated when MG was inhibited (Fig. d)
responsible, and the pathways affected by inhibitors % 40 1 unkown % 40 R i but t
. . . o ecovery sampling butyrate assay.
« We followed the response of the microbial community by monitoring: P 0 Y DING DUty Y
_ 120 120 Figure 7. The percentage of
« CH, and CO, production - gas chromatography o a.) Fresh Control o b.) Recovery from 4 mM SO47% (29 days) == Bubyrale | easurable carbon species
. . 0 - | | | 0 S N % ||=— Fomate |re|ative to the initial total
« Butyrate, acetate, and formate concentrations - ion chromatograph 120 Frosh H. >100 P 300 e === CO,
(3)  (Organic macromolecules ) (b) (O ) Table 1. The Gibb’s free energy of syntrophic butyrate 100 - 250 - ~@- Fresh Control 3 50 - 50 | == Unkonwn | MICrOCOSMS assaye.d during
,\_(proteins, polysaccharides and lipids)_/, [proteins, polysaccharides and lipids) degradaﬁon.* Table modified from Stams and Plugge S —~/~ H2>100 Pa E the recovery Samp“ng event.
) - C
lH)’drol)/sis lHydrolysis (2009) and Muyzer and Stams (2008). 'c% 80 - s 200 - § 40 1 40 1 :::reih CO??E)' (a) and recovery
O = G reatmen microcosms
(lMonor:ers éatr?mo z:jads sugars and ’_ lMonorr:wers f(a:"uno e:jcuds sugars and | _ Reaction AG® AG at 1 ._f__E 60 - 9 150 T2 20 I were incubated in 2.5 mM
e J CRe J Pa H; = g 0 . 1 0 | butyrate indicates no gas
lFermentation . lFermentation Proton-reducing bacteria £ 10 . S 100 - 0 2 4 6 8 10 12 14 12 14 measurement were taken.
'/i’\educed compounds ) Sulphat; '/-Reduced compounds y E;?_Fionate_ + 2H,0 — acetate™ + CO; +72 kJ —21 kJ d:df
(Jactete, utyrateand propioste] ] |\yeduction AR Al RO Butyrate™ + 2H,0 — 2 acetate™ + H* + 20 - 50 - Although soil slurries recovering from SRB competition produced slightly less CH,, and broke down butyrate
50, : | 2H, Has k) —22kd 0 at slightly slower rate, these differences were not great enough to conclude that the syntrophic bacteria and
f:ﬂ@ rermentation Methanogens 0 . . . . . . = . . . . . . MG had not recovered similar function to the fresh control (Fig. 7).
: 4H, + CO, — CHy + 2H,0 131 kd =15kJ 0 2 4 6 8 10 12 0 2 4 6 8 10 12

ﬁv S Shf;; | (_\v : ( — 7 Acetogenesis v v Days Days Conclusions: The syntrophic bacteria, MG, and SRB all seem to be active in breaking down butyrate

U ction Acetate” | iy =3 ) Acetate” + H" — CO, + CH, -36kJ  —36kJ 4 . ity of . : :

" N\ o Sulfate red Figure 4. The percentage of measurable carbon species relative to the initial total carbon measured for when 4 mM S_(_)4 1S prese_nt..The ability of the N_lG ar_‘f‘ syntrol?hlc_ bacteria to functlon.ally RS ENALLS fr.om
Sphte ehanogene e JEOLkels microcosms assayed during the initial sampling event. Fresh control microcosms were incubated in 2.5 mM SRB competitive stress is likely a result of their ability to maintain a metabolic functions during this
reduction Propionate™ + 0.75 SO, ~ —Acetate’t o000 377kl butyrate and 50 mM BESA to inhibit MG activity (b), H, > 100 Pa to inhibit syntrophic bacteria (c), or in no competitive stress. There is a decrease in CH, production rates but it is difficult to determine whether

\ ( HCO3™+ 0.75 HS™ + 0.25 H inhibitor as a control (a). Graph (d) depicts the formate concentrations over these butyrate assays. this is a result of changes in the MG community as a result of SRB competition or salinity affecting
(o, ) _ Gmio, Buiyirelior & 05 807 = 2Reelelie™ 05 op oy e _ metabolic activity.
HS™+0.5H Work Cited
Figure 2. The degradation of organic matter in wetlands, ,;r?oclaj(asr;[gncial]crzﬂIStiebc??ofrr?-le ?:?ggy Zzzgii)sitsateexz:efiead i:nl(‘j‘] Muyzer, G., & Stams, A. J. (2008). The ecology and biotechnology of sulphate-reducing bacteria. Nature Reviews Microbiology, 6(6), 441-454.
both in the presence of sulfate (a) and in freshwater (b). CH, and CO, in the gaseozus stategat 104 Pa. All other ’ Stams, A. J., & Plugge, C. M. (2009). Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nature Reviews ACkn()WledgementS: SpeCiaI thankS tO the VCU Rice Center fOr' their generOUS fu nding .

Diagram from Muyzer and Stams (2008). compounds are calculated at 10 mM. Microbiology, 7(8), 568-577.
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