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ABSTRACT 

 

ELECTROPHYSIOLOGY OF BASAL GANGLIA (BG) CIRCUITRY AND DYSTONIA 

AS A MODEL OF MOTOR CONTROL DYSFUNCTION 

By Deepak Kumbhare 

A Dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR 

OF PHILOSOPHY at Virginia Commonwealth University. 

 

Major Director: PAUL A. WETZEL, PH.D. 

Associate Professor, Department of Biomedical Engineering 

Virginia Commonwealth University, Richmond, VA 

 

 

The basal ganglia (BG) is a complex set of heavily interconnected nuclei located in the 

central part of the brain that receives inputs from the several areas of the cortex and projects via 

the thalamus back to the prefrontal and motor cortical areas. Despite playing a significant part in 

multiple brain functions, the physiology of the BG and associated disorders like dystonia remain 

poorly understood.  Dystonia is a devastating condition characterized by ineffective, twisting 

movements, prolonged co-contractions and contorted postures. Evidences suggest that it occurs 

due to abnormal discharge patterning in BG-thalamocortocal (BGTC) circuitry. The central 

purpose of this study was to understand the electrophysiology of BGTC circuitry and its role in 

motor control and dystonia. 



 

xiii 
 

Toward this goal, an advanced multi-target multi-unit recording and analysis system was 

utilized, which allows simultaneous collection and analysis of multiple neuronal units from 

multiple brain nuclei. Over the cause of this work, neuronal data from the globus pallidus (GP), 

subthalamic nucleus (STN), entopenduncular nucleus (EP), pallidal receiving thalamus (VL) and 

motor cortex (MC) was collected from normal, lesioned and dystonic rats under awake, head 

restrained conditions. The results have shown that the neuronal population in BG nuclei (GP, 

STN and EP) were characterized by a dichotomy of firing patterns in normal rats which remains 

preserved in dystonic rats. Unlike normals, neurons in dystonic rat exhibit reduced mean firing 

rate, increased irregularity and burstiness at resting state. The chaotic changes that occurs in BG 

leads to inadequate hyperpolarization levels within the VL thalamic neurons resulting in a shift 

from the normal bursting mode to an abnormal tonic firing pattern.  

During movement, the dystonic EP generates abnormally synchronized and elongated burst 

duration which further corrupts the VL motor signals. It was finally concluded that the loss of 

specificity and temporal misalignment between motor neurons leads to corrupted signaling to the 

muscles resulting in dystonic behavior. Furthermore, this study reveals the importance of EP 

output in controlling firing modes occurring in the VL thalamus.   
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CHAPTER 1 
 

INTRODUCTION 

 

Movement control in vertebrates is a complex neural process that includes generation, 

modulation and transmission of motor signals controlling various temporal and spatial aspects of 

the desired movement. This requires a high level of coordination between different parts of brain.  

The final output is the relay of selective information to different muscles for precise movement 

with predetermined amplitude (strength), speed, selectivity and phasic relationship with other 

muscles (Aldridge et al., 2004) (Mink & Thach, 1991). Each element of this neural network is 

important for the proper functioning of this assiduous process. Damage or loss in any of these 

elements may cause impairment in movement quality. One of the most crucial element in the 

motor control pathway is the basal ganglia (BG) (Herrero et al., 2002) that plays a significant 

role in many brain functions including motor control. This important subcortical structure is 

located in the central part of the neuronal loop that receives inputs from the several areas of the 

cortex and projects via the thalamus back to the prefrontal and motor cortical areas (Nambu, 

2011). Abnormality in BG function contributes to many neurological disorders including 

Parkinson’s disease and dystonia. Although the BG anatomy has been studied extensively, to 

date, the functional mechanism and its role in motor control are still unknown. The 

electrophysiology of BG nuclei in normal and motor dysfunction states provides valuable 

information about the various intrinsic and extrinsic factors involved in the process. The central 

purpose of this study was to understand the physiology of BG and its role in motor control and 

BG associated disorders. This would include studying the neuronal activity of the BG using 

dystonia as a model of motor control dysfunction.  
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1.1. Basal Ganglia  

The basal ganglia (BG) is a set of interconnected subcortical nuclei which influence cortical 

motor functioning through the cortico-BG-thalamo-cortical neural pathway (Steine, 2010). It 

consists of four main nuclei; striatum (STR), globus pallidus (GP), subthalamic nucleus (STN), 

and substantia nigra (SN), that are connected to each other, cerebral cortex and other mid brain 

structures through a complex series of circuits. The GP contains internal and external segments 

(GPI and GPe respectively), while SN contains distinct areas designated compacta (SNc) and 

reticulate (SNr). BG receives motor related cortical inputs via STR and STN, modulates the 

signal, and then, per current modeling, relays the processed inhibitory output via GPi and SNr to 

the pallidal receiving thalamus (VL-TL), which in turn excites the prefrontal/ motor cortical 

areas and brain stem (Leh et al., 2007). BG nuclei primarily employ three neurotransmitters, 

Gamma aminobutyric acid (GABA), glutamate, and dopamine (DA).   

 

STR is the main input nucleus of BG, which receives excitatory inputs from the entire cortex, 

especially from the sensorimotor and the frontal cortex (fig 1.1). STR can be further divided into 

caudate, putamen, and ventral STR. Putamen is the primary site for motor related inputs. The 

majority of the afferent projections to STR synapse with medium spiny neurons (MSN). MSN 

constitute about 96% of the STR neuronal population. The output of MSN is diversely 

modulated by the presence of dopamine (DA), which has a differential effect on two major DA 

receptors found in MSNs of STR, namely D1 and D2. D1 receptors, which are predominately 

present in cells in the direct pathway, get excited in presence of DA, while D2 receptors which 

are mostly present in indirect pathway get inhibited by DA. Through these direct and indirect 
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pathways, STR regulates the activities of downstream BG via inhibitory GABA 

neurotransmitter. Subthalamic nucleus (STN) is the second major input nuclei of STR and plays 

an important role in modulation of the BG output signals. It primarily receives inputs from 

frontal and somatosensory cortex and STR. STN chiefly innervates the pallidum and SNr via 

excitatory glutamatergic projection neurons. STR forms a dual projection loop with GPi and 

GPe, an auto-stabilizing loop with GPe, and forms the hyper-direct pathway in the BG. The GP 

consist of two nuclei; Globus pallidus externus (GPe; or GP in rodents) and globus pallidus 

internus (GPi; entopenduncular nucleus, EP in rodents).  The GP is a major relaying component 

of the indirect pathway of BG and projects inhibitory GABAeric outputs to both STN and GPi. 

GPi/ EP is the major output nuclei of BG, which is anatomically and physiologically similar to 

GPe/ GP. GPi receives inhibitory inputs from STR (via direct pathway) and GPe (via indirect 

pathway), and excitatory inputs from STN. GPi primarily relays its GABAergic projections to 

the pallidal receiving thalamic nucleus (ventro-lateral thalamus, VL). Substantia nigra 

(consisting of SNr and SNc) is presumed to play important roles in reward, addiction, and 

movement. The SNr is the second major output nuclei of BG, which in unison with GPi, 

innervates thalamus and superior colliculus. The Pars compacta (SNc) produces the DA, which 

influences D1 and D2 type receptors in STR, and thus is very significant in maintaining balance 

in the striatal pathway.         

 Modulation of incoming motor signal within BG is an intricate process, which includes 

interaction of various elements of intrinsic BG nuclei. The BG is thought to have an essential 

role in motor control due to its unique anatomical centralized position in the brain’s motor 

control system, and it being a recipient of a variety of input information from different parts of 

cortex and thalamus. BG is presumed to be involved in action selection (Mink, 1996), motor 
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Fig 1.1. Left figure: Location of basal ganglia in human brain (image by Author - John Henkel, from the Food and 

Drug Administration}} |Source=Transfered from [http://en.wikipedia.org en.wikipedia] |Date=2006-08-31 

(original upload). Middle and right figure: coronal view of human brain showing BG. Anterior slice (middle 

figure): striatum, globus pallidus (GPe and GPi). Posterior slice (right figure): subthalamic nucleus (STN), SN 

(substantia nigra). (Permission is granted to copy, distribute and/or modify this document under the terms of 

the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software 

Foundation). 

learning (Turner & Desmurget, 2010) (Graybiel, 2005) (Grahna et al., 2009), cognition (Grahn et 

al., 2008), channeling information and modulation of motor parameters, and contribution to some 

non-motor aspects (like motor context, reinforcement etc.). However, the exact functional role 

and the underlying mechanism of the BG are yet to be unveiled. 

 

 

1.2. Basal Ganglia Functional Mechanism 

 The BG is a highly complex set of parallel and integrative networks (Haber, 2003) (fig 1.2). The 

classical basal ganglia (box and arrow) rate-models (Albin et al., 1989) (DeLong, 1990) simplify 

BG circuitry by emphasizing changes in discharge rates over relatively long periods of time, and 

by largely emphasizing direct and indirect STR to GPi pathways. The excitatory cortical inputs 

to STR stimulate the ‘direct’ monosynaptic and ‘indirect’ pathways by inhibiting and exciting 

the GPi respectively. The net reduced inhibitory output from GPi to the ventrolateral (VL) 

thalamus is thought to release thalamo-cortical activation. This model has limitations with 

https://en.wikipedia.org/wiki/en:GNU_Free_Documentation_License
https://en.wikipedia.org/wiki/en:Free_Software_Foundation
https://en.wikipedia.org/wiki/en:Free_Software_Foundation
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respect to explaining many lesion and DBS effects (Lozano et al., 1995) (Baron et al., 1996) 

(Leh et al., 2007). Additionally, although the models continue to expand at the expense of 

simplicity, they are arguably still restrictive and do not account for changes in patterned activity 

regularly occurring over 10’s of milliseconds, and do not generally give comparable 

consideration to many potentially equally important basal ganglia projections. Depending upon 

the diffused nature of STN projection to the BG output nuclei, Mink and others suggest that the 

STN might be an equally critical BG input nuclei (Worbe et al., 2010) (Mink, 2003). STN 

includes ‘hyperdirect’ cortical-STN pathway to suggest an inhibitory center-surround 

organization for focusing action selection. Nambu put forward a dynamic model (Nambu, 2004), 

which extends Mink’s space surround model in the temporal domain. According to this model, 

first the fast hyperdirect inhibitory pathway resets the network for further action, then the slightly 

slower direct excitatory pathway executes the signal, and finally the slowest indirect pathway 

acts to terminate the action. In addition to these models, SNc produces dopamine (DA) which 

controls the differential modulation of STR output by increasing the excitatory effect of the 

direct pathway (causing movement) and reducing the inhibitory effect of the indirect pathway 

(preventing full inhibition of movement) and thus helps maintain balance in striatal pathways in 

normal state (Hiromi et al., 2013). Also, it is well established that the STN forms a strong dual 

projection loop with GPe and GPi (Yoshinori et al., 2013). Furthermore, GPe, which receives 

dual inputs from STR and STN, in turn, not only projects to the STN forming an auto-stabilizing 

feedback loop, but projects directly to GPi, as well as to STR (Hanley & Bevan, 2000) (Bevan et 

al., 1998). Furthermore, Delong and Alexander describes the cortico-BG information 

transmission via parallel reciprocal circuits (those associated with same functions) projecting 

from different functional territories (Alexander et al., 1986). However, anatomical evidence 
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Fig 1.2. Basal ganglia-Thalamo-cortical motor circuitry. GP: Globus Pallidus, EP: Entopeduncular nucleus,   VL: 
ventrolateral (pallidal receiving) thalamus, SNr: substantia nigra pars reticulate, SNc: substantia nigra Pars compacta. Red 
arrows = excitatory (glutamate) pathways, blue arrows = inhibitory (GABA) pathways. Blue curved lines = inhibitory effect 
of DA, Red curved lines = excitatory effect of DA 
 

reveals non-reciprocal connections forming a wide integrative network which channels 

information between different functional  

 

 

subdivisions of BG (Haber, 2003) (McFarland & Haber, 2002). Thus, in BG, different input 

components of information (like motor, limbic, and associative signals) influence the processing 

of each other. To add more to the BG complexity, the somatotopically organized BG nuclei tend 

to converge as compared to their cortical counterparts, i.e. the number of neurons representing 

each functional subdivision is reduced (Rivlin-Etzion, 2009). Based on this information, Bar-Gad 
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et al introduce a ‘reinforcement driven dimension reduction model’ (Bar-Gad et al., 2000a) 

suggesting compression of cortical information via DA modulation. Some recent work also 

reports disynaptic interface between BG and cerebellum as well. The cerbello-thalamo-straital 

pathway projects signals from deep cerebellum to STR (Hoshi et al., 2005). Additionally, STN 

projects cerebellum via pre-cerebellar nuclei of the brain stem (Boston et al., 2010). This 

portrays BG as a highly complex and interconnected information processing network. Loss or 

damage in any element of this network would disrupt the normal functioning of BG. This in turn 

relays abnormal signals to thalamocortical circuit resulting in motor dysfunction. Thus, each 

element in the above network has its own role in modulating the motor signal.  

 

Additional BG models to explain motor control in BGTC circuit  

The basis of the majority of models is combination of the detection of cortical contexts with the 

selection, modification, and integration of cortical inputs to generate the sequences of patterns. 

The above section describes some of the initial attempts used to model the functional mechanism 

of BG circuitry. The concept of ‘Direct-Indirect-Hyperdirect’ pathways and differential 

modulation of striatal output by DA explains the space surround (center facilitation- surround 

inhibition) model for action selection. Nambu then extends this model to temporal domain, 

explaining the sequence initiation, execution, and termination of ‘a single action’ (Nambu, 

2004). Although, the above models provide an invaluable framework for conceptualizing basal 

ganglia connections, these rate-based models have major limitations.  Instead, Gurney et al 

introduced the concept of selection pathway (similar feed-forward off center-on surround 

network) and an additional control pathway with synergistically complementary DA modulation 

(which regulates the selection pathway to ensure its effective operation) (Gurney et al., 2001) 
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(Gurney et al., 2001). Many researchers also consider the role of BG as not just mere selection of 

a particular action, but also in control of sequence of actions and learning (Turner & Desmurget, 

2010; Turner & Desmurget, 2010). For a series of actions required to be executed in a particular 

sequence, the system may need external or internal cues to control the reward based signal flow  

(Terra et al., 2011). Beiser’s model (Houk & Beiser, 1995) explains this through a series of 

encoding cortical inputs at the STR level. Although each MSN in STR receives about thousand 

afferents, only few of them get activated by an initial pattern of cortical activation due to the 

mesh of lateral inhibition. STR thus acts as a context detector; and the spatiotemporal pattern 

generated in STR accounts for the further modifications in the cortical pattern (Beiser & Houk, 

1998). On the other hand, the model introduced by Berns, explains how BG produces action 

sequences, based on the assumption that the local working memory exists in the form of 

reciprocal connections between GPe and STN (Sejnowski, 1998). According to this model, the 

action selection takes place at the STRGP projections based on a lateral inhibition by 

neighboring cells, and sequence learning is sensitive to the ratio of strength of STR↔nigral and 

STN↔GP learning loops. Another model, the Actor-Critic model is based on a reward based 

reinforcement of connections of actor (action execution) networks by a critic network. This 

accounts for the DA response and is mediated by direct and indirect pathways (Barto, 1995).  

 

Other than anatomical connections and type (inhibitory-excitatory) of inputs, yet another 

important aspect considered during modeling is the type of information (i.e. the voltage features 

of discharge spikes and the discharge patterns associated with the information). It is not well 

understood how the motor information sent by different functional regions of the cortex is 

processed in the BG (Bar-Gad et al., 2000a). Additionally, another challenge is to associate the 
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firing pattern of a neuron with the type of information it is relaying. The challenge here is 

twofold; estimating the cause of a particular firing pattern and then evaluating the effect of 

altered firing pattern in the target nuclei and the network. Connolly describes coupling between 

MSN signals by relating the cortico-striatal projection signal features, trough and peak voltages, 

with the goal and boundary conditions  (Burns, 1993 a). Similarly, Contreras models (Contreras-

vidal, 1995) BG circuits as a ‘go’ signal relay for movement. The model calculates the reaction 

time and movement strength according to the difference between the target and the present 

position vector.  

 

Lesion and motor disorder modeling helps in simulating additional controlled computation in 

the neural network and in exploring the theories of basal ganglia function. Berns et al. tested 

their learning model by introducing a model of a lesion in GP to observe the increase in STN 

gain (Sejnowski, 1998). The point process models (PPM) described by Saxena et al. investigate 

the physiological connections between different sites in GPe and GPi (Saxena, 2010). The GPi 

PPM generalize the firing rate of a ‘Poisson process’ based on the independent activity of 

neighboring neurons of the subpopulation, spiking history of  the neuron itself, spiking history of 

the projecting GPe neurons, and the relative contribution of intrinsic and extrinsic factors (DBS). 

Rubin and McIntyre studied the downstream effects of parkinsonism in BG to establish its 

relationship with increased GPi output, increased synchrony, burst discharges, and oscillations 

(McIntyre & Wichmann, 2012).  
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1.3. Dystonia  

Dystonia is a devastating condition characterized by ineffective, twisting movements, prolonged 

co-contractions and contorted postures (Geyer & Bressman, 2006) (Grosse et al., 2004) (Raike et 

al., 2005) (Yanagisawa & Goto, 1971). The neural mechanism behind dystonia is not yet fully 

understood. However, evidence suggests that it occurs due to abnormal discharge patterns in the 

BGTC circuitry. The dystonic state is characterized by loss of neural inhibition of unwanted 

contraction sustained in agonist-antagonist muscle pairs. The EMG burst in dystonia is sustained 

for 100-300 ms.  

 

Various forms of dystonia have been reported based on anatomical distribution, age of onset, and 

etiology. Dystonia can be focal, multifocal, segmental, unilateral, or generalized based on its 

anatomical distribution in the body. If dystonia arises during or before adolescence, it spreads 

throughout the body, achieving a generalized state, causing severe twisting of trunk and limbs. 

However, if the symptoms begin at an older age, it remains localized. Inherited or sporadic cases 

of dystonia are called primary dystonia, while dystonia caused by stroke, drug effects, or is work 

related, then it is called secondary dystonia. There is no treatment to completely cure dystonia at 

present. However, treatment options like pharmacological, surgical and physical therapy are used 

frequently to reduce the severity of symptoms. Patients with severe dystonic symptoms, with no 

to minimal response to pharmacological treatments, can benefit from deep brain stimulation 

(DBS) of GPi. DBS effect on patients with primary dystonia shows fair success rate for 

improvement of dystonic symptoms. However, patients with secondary dystonia exhibit high 

variability in DBS results. This variability indicates involvement of different brain regions and 

pathology within multiple pathways causing secondary dystonia.  
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Fig 1.3. Examples of dystonia: (a) Dystonia in human being (picture by James Heilman, MD (Own work) [CC BY-SA 3.0 
(http://creativecommons.org/licenses/by-sa/3.0) or GFDL (http://www.gnu.org/copyleft/fdl.html)], via Wikimedia Commons). (b)  
Dystonic Gunn rat. Rat’s age is 18 days and was injected on day 16. Note the impaired righting reflex, contorted body and 
multiple co-contractions in limbs. (c) A dystonic lesioned rat. Note the hind limb extension of the contralateral side (more details 
on lesioned animal in Chapter 5).   

     

 

 

GP, EP and STN under dystonia 

Under pathology of dystonia, various BG nuclei behave abnormally and relay corrupted 

information to target nuclei. A common observation in various dystonias is that the GP (GPe) 

exhibits reduced neuronal discharge activity with abnormal bursts in both primates and rodents 

(Vitek et al., 1999) (Nambu et al., 2011)  (Baron et al., 2011). Similar reduced firing rate and 

abnormal burst pattern is observed in EP (GPi) also (Lenz et al., 1998) (Merello et al., 2004) 

(Sanghera et al., 2003) (Zhuang et al., 2004). In STN, however, the firing pattern is also found to 

become more irregular and bursty but no clear change in firing rate was observed (Starr et al., 

2005). Another most contrasting feature on pallidal firing pattern in dystonia is the level of 

synchrony found among their neuronal population during movement (Sharott et al., 2008) (Chen 

et al., 2009). This excessive oscillatory activity in GP and EP is also synchronized with the 

dystonic EMGs at 3-12 Hz i.e. the dystonia frequency (fd). The preliminary results also show 
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synchronized pausing and bursting in GP and EP respectively during dystonic movement 

(Chaniary et al., 2008)  (Baron et al., 2011). In summary, the pathology of dystonia causes 

drastic change in the firing pattern of BG nuclei accompanied by loss in their sub-population 

functional specificity (LOS) (Bar-Gad et al., 2011), which is reflected in their reorganized 

somatotopy. This pathologically can alter both spatial and temporal information when relayed 

back to motor cortex via the thalamus, leading to dystonic motor symptoms.   

 

1.4. Dissertation Overview 

The central purpose of this research was to study a common neurological movement disorder 

‘dystonia’ as a model of motor control dysfunction, and to compare the related BG dysfunction 

to normal conditions.  The objective of this study was twofold: improvement in the current 

recording-analysis techniques for neuronal data to ensure reliability of the results, and 

electrophysiological characterization of neurons found in BGTC circuitry. This would further 

lead to development of a more robust model of the BGTC circuitry explaining the mechanism of 

pathophysiology of disorders of BG. Based on the literature review and the preliminary studies, 

the principal hypothesis was that the BG is critical to programming normal movement, and that 

unless BG neurons can independently fire at precise times, abnormal movements will occur. In 

the case of dystonia, an additional hypothesis is that abnormal signaling patterns and increased 

neuronal synchrony leads to simultaneous or untimely activation of antagonistic muscles and 

undesired joints. These hypotheses were systematically tested using the following specific aims 

during the course of this study:-   

Specific Aim 1: Qualitatively evaluate the electrophysiological changes in basal ganglia 

nuclei, VL-thalamus and primary motor cortex in normal rats during limb movements. 
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Specific Aim 2: Define and relate the abnormal neuronal discharge pattern and motor 

symptoms in dystonic, lesioned, and spontaneously recovered dystonic rats.   

Specific Aim 3: To interpret the information coded in the neuronal firing patterns in 

various nuclei and model the basal ganglia functionality.    

        

The first part of this project was to develop sophisticated and robust techniques to increase the 

reliability of the collected and analyzed data. Towards this aim, a modified head holder system 

was developed facilitating simultaneous multi-nuclei recording from large exposed brain area in 

an awake head restrained rat. Various geometrical orientations of the electrode manipulator were 

tested, and recording cannula spacers were designed to maximize number of recorded neurons  

from multiple nuclei. Sophisticated algorithms and GUIs were developed in MATLAB for spike 

detection-sorting-processing of multineuronal data recorded from seven-core electrodes (Chapter 

#2). A novel tri-component algorithm was developed for robust discrimination of neuronal firing 

patterns (Chapter #3).  Statistical modeling and hot spot analysis of efficacy of DBS and ibotenic 

brain lesions was implemented (Chapter #4). Additionally, novel GP lesion based rat models 

were separately developed for parkinsonism and dystonia (Chapter #5). Thorough recording and 

analysis of the electrophysiological signals from normal and kernicterus dystonic rats were 

conducted utilizing above advancements. The neuronal populations in basal ganglia nuclei (GP, 

STN and EP; Chapter #4) and in recovered rats (Chapter #6) were characterized. The neuronal 

population in BG receiving thalamus (VL) and motor cortex (MC) (Chapter #7) were then 

systematically characterized. Finally a novel model of BGTC network accounting for GPi 

modulation of thalamic firing modes (Chapter #8) was proposed.                      
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CHAPTER 2 
ADVANCEMENTS IN MULTI-TARGET MULTI-UNIT  

RECORDING SYSTEM  

 

2.1. INTRODUCTION  

This chapter describes the set of tools employed and developed in the lab to facilitate multi-

target multi-neuronal recoding from a head restrained rat.  

Simultaneous recording and analysis of multiple neurons from multiple targets in awake animals 

is an important tool for neuroscience. This capability allows characterization of the neuronal 

population and evaluation at the network level. There are many hardware as well as software 

limitations and challenges in this field that need to be resolved in order to get a convenient, 

reliable, and efficient system. 

Many neuronal data gathered from live animals in this field are recorded from animals under ear 

bar restraint requiring anesthesia. The neuronal data under such anesthetized state does not 

represent the ideal baseline network activity, because many cortical and other inputs to the 

network nuclei are altered under anesthesia. On the other hand, recording from freely moving 

animals induces additional nondeterministic and confounding variables that, along with 

enhanced possibility of electrode drift, influence the output of the control studies. Recordings 

performed during awake head restrained conditions, therefore provides a more practical method 

to analyze neuronal behavior in steady state as well as during controlled movement. In this 

chapter, modifications to the previously developed stereotaxic device used for head restraint 

recording from awake rats are described. The head chamber used in the present study was 

redesigned to be considerably lighter and wider allowing easier targeting of a wide range of brain 

regions. This leads to the next challenge of this study, which was to develop an ‘electrode 
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Fig 2.1. Light microscopic view of the silver stained brain slides indicating damage due to single 
heptode track. A. Track mark in thalamus, zona incerta and STN at magnified at 10X. B. Same track 
magnified at 20X.  
 

tracking manipulation system’ and develop strategies that can facilitate accurate targeting of 

motor territories in multiple regions. This includes spacers to redirect cannula and optimization 

of trajectories for targeting different nuclei. An additional goal for targeting strategies was to 

optimize that the number of tracks to maximize the amount of neuronal data collected while 

minimizing damage to the brain tissue. Fig 2.1 shows the damage caused by a single electrode 

track. Numerous electrode tracks can cause considerable damage to the tissue resulting in 

abnormal alterations in network activity and introducing additional variables in the control study.  

 

                  

 

 

 

 

 

 

 

 

 

 

 

 

Furthermore a MATLAB based application, Processing-Analysis-Modeling of Neuronal system, 

(NeuroPAM) was created. This application provides an additional heptode mode for data 

analysis. NeuroPAM provides exhaustive tools for analysis of continuous and point processes for 

rest and movement data. In addition, NeuroPAM provides tools for simulation of a wide variety 
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of spike firing patterns, including regular, irregular, and burst firing rasters. NeuroPAM also 

provides preliminary tools for simple modeling of neural network behavior.    

 

2.2. METHODS AND OUTCOMES 

2.2.1. Heptodes and data acquisition system 

Toward more reliable and flexible spike data recording techniques, the neural laboratory is 

equipped with a sophisticated multichannel multicore microelectrodes called heptodes. Heptodes 

are seven core microelectrodes which are well suited for single unit isolation from multi-unit 

recordings. A specialized Thomas RECORDING Inc (TR; Fig 2.4B) seven heptode manipulator 

system was used, which provides a total of 49 recording sites/ channels. These 100µm thick 

multi-core electrodes impart less tissue damage than standard microelectrodes. Heptode 

recording enables reliable and easy separation of spikes originating from different neurons. 

Additionally, using specialized targeting strategies and a linear head electrode manipulator 

system (TR), simultaneously recording from more than two target nuclei was facilitated. The 

Alphaomega SnR data acquisition system ensures high resolution data recording from 64 

channels. In this chapter, the aim was to develop sophisticated and robust spike sorting and 

analysis techniques for multiunit-multicore microelectrode recordings. The different recording 

sites of a heptode are situated at a slightly different distance with respect to the neuron. This 

induces an amplitude and temporal distinction between the channels. This feature can be used for 

efficient spike sorting. The ratio of spike amplitude of a cell on different heptode channels 

remain the same, while this ratio remains different for other cells. 
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2.2.2. Novel stereotaxic device for neuronal recording and customized multiple brain region 

targeting strategies  

A novel stereotaxic device was introduced, which provides a safe way to record from a head 

restrained awake animal without any confounding effects of anesthesia. This involves a novel 

stereotaxic system designed and developed previously in the lab which facilitates recording 

from an awake head restrained rat. This system includes a stereotaxic positioner (fig 2.2A) and 

a head holder (fig 2.2B). Since, this assembly, provided limited exposure to the brain, more 

lateral and posterior targets were not accessible. Moreover targeting simultaneous multiple 

nuclei was difficult to achieve. To address these issues, the head holder was further modified 

to make it wider and lighter (fig 2.2C, D), allowing more exposed brain area for easy targeting 

and reduced mass load for the rat.  

 

The principal aims of the intended neuronal studies in rats were to record from (i) one nuclei at 

a time; (ii) from three basal ganglia nuclei (EP, GP, STN) simultaneously; and (iii) from the 

principal output nucleus of the basal ganglia (EP), BG receiving thalamus (VL), and motor 

cortex (MC) simultaneously using 5-7 heptodes. Fig 2.3A indicates all the target regions used 

in this study. Different head configurations were analyzed and customized for simultaneous 

neural recordings from two or more different locations. Two cannula configurations for 

targeting aim (ii) and (iii) are shown in fig 2.3.B and C respectively. For multiple nuclei 

targeting, new customized spacers were designed to direct the electrode cannulas to 

predetermined coordinates. The linear spacer was designed to simultaneously target GP, STN, 

and EP (fig 2.4B). A second spacer to target outflow of the BGTC circuit, EP, VL, and MC is 

shown in fig 2.4C.     
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   A 

    
B 

 
C 

 
 
Fig 2.2. Stereotactic system for head restraint recoding from rats. A. Previously developed Stainless steel 
stereotaxic positioner system. And head fixture.  C. modified design of the wider and lighter head holder 
(permission obtained from Custom Design & Fabrication, Inc.) D. Modified stainless steel head fixture for 
head restraint recording.    
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Fig 2.3. Multiple regions to target. (A) Target nuclei in 3d, MC: Motor cortex, GP: globus pallidus, STN: 
subthalamic nuclei, EP: entopenduncular nuclei, VL: ventrolateral thalamus. (B) Linear electrode arrangement for 
targeting GP, STN and EP. (C) 3d spacer configuration to target EP, VL and MC. 
 

 

 

                   
Fig 2.4. Modifications  from Thomas recordings. (left) Thomas recording plastic spacers to direct the electrode cannula to 
different configurations. (right) Scanning Electrode microscope photo of the seven core heptode tip. (The pictures are 
published with permission of “Thomas RECORDING GmbH, Germany, www.ThomasRECORDING.com.) 

http://www.thomasrecording.com/
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The next step was to develop different strategies to accurately target the motor territories of two 

or more brain regions in the BG circuitry. In order to find the correct motor related regions in the 

nuclei, an extensive literature review was performed to assess the somatotopy and to determine 

the spatial coordinates for targeting. These coordinates were further confirmed by movement 

related alterations in neuronal responses during head restraint studies (extensive details are 

provided in Chapters 4, 5, and 7). The exact location of the electrode placement were cross 

confirmed by histology of rat’s brain (details in Chapter 4 and 5).  Finally, various geometrical 

and statistical techniques were used to estimate the appropriate head piece arrangement and the 

geometrical orientation of the electrode manipulator. Table 2.1 indicates coordinates of the 

targets in sagittal plane. Although, there are particular sagittal planes where all five nuclei can be 

observed, the motor territories of basal ganglia nuclei are located in the more lateral-posterior 

part of the nuclei.     

  

Table 2.1. Locations of the targets in different sagittal planes 
Lateral 
Plates  

EP (MGP) STN LGP VL CX (MC) 

L 1.40  -- -- -- B -2.0 to -3.4  
(-2.6) 

B 0.8 to -3.4  
(-1.2) 

L 1.90  B -3.7 to  -4.5  
(-4.0) 

-- B -2.0 to -3.4 
 (-2.6) 

B 3.0 to -0.6 (1.4) 

L 2.40 B -2.3 to -3.1  
(-2.6) 

B -3.2 to - 4.4 
 (-3.6) 

B -0.6 to - 1.4  
( -1.0) 

B - 2.0 to -3.0 (-
2.5) 

B 3.5 to 0.6 (2.6) 

L 2.90 B -2.3 to - 3.1 
 (-2.6) 

B -3.2  to -4.0  
(-3.6) 

B -0.8 to -1.7  
(-1.3) 

 B 4.0 to 0.2 (2.2) 

L 3.40 B -2.4 to - 3.1 
(-2.5) 

 B -1.0 to -1.9  
(-1.6) 

 B 3.4 to 1.0 (2.1) 

L 3.90   B -1.2 to -2.1 
 (-1.6) 

 B 4.6 to 2.0  (3.4) 

L4.20   B -1.8 to -3.0  
(-2.4) 

 B 3.8 to 2.2 (3.4) 

L 4.60    B -2.2 to -3.0   
(-2.5) 

 B 3.2 to 2.8 (3.0) 

L 1/2  L 2.9 L 2.4 L 3.4 / 3.9 L 1.9 c L 1.4 (1.6) 
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Using polynomial curve fitting, three dimensional geometry, and minimum mean square error, 

the optimal orientation of the manipulator head piece, the entrance angles for the electrode were 

estimated (Table 2.2). Table 2.3 indicates optimal bregma points to target multiple nuclei. Table 

2.4 indicates the optimal angles required to reach the targets, when the entrance coordinates 

(laterality and AP coordinates) are fixed. 

Fig 2.5A shows the software application developed for online tracking of location of the 

electrode with respect to the target nuclei. Fig 2.5B shows the two trajectories to target various 

BG and thalamic nuclei.  To maximize the number of neurons recorded from single nuclei, a 

concentric head configuration with 305 μm intra-electrode spacing was used.  

    

 
Table: 2.2. Required angles to reach the targets:  

 
 EP (MGP)  

(400 µm AP) 
STN 
(600 µm AP) 

LGP  
(600 µm AP) 

VL  
(800 µm AP) 

CX (MC) (800 
µm AP) 

L 1/2  L 2.9 L 2.4 L 3.4 / 3.9 L 1.9 L 1.4 (1.6) 
B (0,0) 20º 25º 14º /14º 23º 45º 
B (-1,0) 14º 20º 4-5º / 5º 16º 15º 
B (0,-1) 17º 23º 10º /11º -12º 20º 30º 
B (-1,-1)  10º 17º 4º /5º 14º 10º 
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Table 2.3: Bregma point for targeting GP, STN, EP, VL and MC 
 

Electrode 
number 

Targeting GP, STN and EP 
 
Lateral 2.40 mm at 20º.  
Separations: 0.6 mm (600 µm) 
and 0.4 mm (400 µm) 
 

Targeting EP, VL and MC 

Lateral 2.40 mm at 20º 
Separations: 0.8mm (800 µm), 0.6 mm (600 
µm) and 0.4 mm (400 µm) 

Location  Target  Location  Target  

1 B (2.0) GP1 B (3.0) CX (MC) 1 

2 B (1.4) GP2 B (2.4) CX (MC) 2 

3 B (0.8) EP1 B (1.6) CX (MC) 3 

4 B (0.4) EP2 B (0.8) EP1 

5 B(-0.2) STN1 B(0.4) EP2 

6 B(-0.8) STN2 B(-0.2) VL1 

7 -- -- B (-0.6) VL2 

 
 

 
 
Table 2.4. Required angles to reach the targets:  
 
 EP (MGP) 

(400 µm AP) 
VL  
(800 µm AP) 

CX (MC) (800 
µm AP) 

L 1/2  L 2.9 L 1.9 L 1.4 (1.6) 
B (0,0) 20º 23º 45º 
B (-1,0) 14º 16º 15º 
B (0,-1) 17º 20º 30º 
B (-1,-1)  10º 14º 10º 
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Fig 2.5. Strategies to target multiple brain regions simultaneously. (top) Electrode tracking software for online 

tracking of location of the electrode with respect to the target nuclei. (bottom) Tracking strategies. 
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2.2.3. Advanced multicore microelectrode spike sorting technique: 

(a) Single channel spike detection and offline sorting 

The discharge spikes were extracted online via manual amplitude thresholding of continuous 

signals during the recordings and saved for offline spike sorting (fig 2.5, 2.6) in MATLAB 

R2012a and Offline Sorter V 3.2.4, Plexon Inc. Only the signals with at least a 3:1 signal to noise 

ratio were considered for further analysis. Any invalid waveforms were manually removed 

before sorting. Generally, the first three principal components were used for spike sorting and 

clustering (fig 2.6 top row, second plot), but other waveform shape parameters (peak-to peak, 

waveform width, etc.) were also employed if needed. Final sorting included clustering into the 

2D or 3D feature space using manual (K-means clustering, contours and waveform crossing 

method) and automated valley-seeking sorting techniques (fig 2.6 top row, third plot). This 

permitted excellent separation of waveforms collected from single or multiple electrodes (fig 2.6 

top row, fourth plot). The separated waveforms were then inspected for potential loss of the 

neuron and for quality of neuronal isolation (fig 2.6 middle and bottom row). Any obvious 

artifacts in the signal were removed. Neuronal units were included only if a unit displayed a high 

quality of separation from background noise, the number of recorded potentials exceeded 300, 

and the activity was recorded for a minimum of 120 s. Neuronal units whose location could not 

be assured from the plotted tracks were excluded from all further analysis.  
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Fig 2.6. Software for spike sorting and pattern analysis of single channel recordings.    
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Fig. 2.7. An example of spike sorting and clustering from a recording in STN in a normal rat. Illustrated are raw 
traces (duration, 3 sec) of a portion of (a) continuously recorded extracellular neuronal signals from a single 
microelectrode with (d) simultaneously recorded EMGs from the gluteus superficialis (EMG1) and gluteus medius 
(EMG2) muscles. The red line in (a) indicates the threshold set for spike detection. (b) The unsorted spikes and (c) 
associated PC distribution are shown. (e) Valley-seeking sorting revealed two separate neurons, which (f) appear as two 
distinct clusters in the feature-space. The spike raster, mean waveform (with SDs), and ISI histogram of unit 1 (g-i) shows 
it to be a typical regular, moderate frequency neuron (mean rate: 35 spikes/sec, irregularity metric: 0.03), while unit 2 (j-l) 
can be seen to be a representative slower, irregular unit (mean rate: 10 spikes/sec, irregularity metric: 0.80). The fact that 
dissimilar neurons were regularly recorded simultaneously supports the presence of neuronal dichotomy in the 
investigated basal ganglia nuclei. 
 

 

(b) Spike detection in heptode mode, waveform validation and alignment 

Spikes were detected using manual amplitude thresholding in the heptode mode (fig 2.7). 

Whenever the signal from any channel exceeded the set threshold, the system would record data 

from all seven channels for a duration of 0.8 ms (32 samples for a signal with 40 KHz sampling 
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Fig 2.8. Display of high frequency spike signal from a seven channel heptode.  

  

rate). Following a dead time of 0.2 ms, the detection algorithm continues until the last sample of 

the signal. 

       

(c) Waveform parameters for feature space. 

After waveform validation of the recorded action potentials, the spike data were then plotted in a 

multi-dimensional feature space with various waveform parameters at each coordinate (fig 2.9). 

For single core electrode recording, principal component analysis (PCA) is predominantly used 

for spike sorting. However, for multi-core electrodes such as with the heptode system, various 

other waveform parameters are also helpful.  Spikes from the same neuron tend to cluster in 

separate groups in the feature space.  
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Some of the important waveform features used are as follows:-   

1. Waveform Shape: Principal component analysis (PCA) is supposed to be best feature for 

sorting spikes from single core electrode. PCA is a dimensionality reduction technique that 

reduces the number of variables using orthogonal transformation. This method translates the 

origin and rotates the orthogonal axes, such that most of the variability in the data points lie 

along the single axis (called first principal component, PC1) and rest in PC2 and PC3. 

Variances reduces with the order of PCs, thus higher order PCs are noise. In context of spike 

sorting, the first three PCs holds more the 95% of the spike waveform shape information (i.e. 

variability among all the waveforms collected from an electrode site). Thus, when these 

components are plotted in a two or three dimensional feature space, the waveforms with 

similar shape tend to cluster together (Fig 2.8). For multicore mode, PCs of different channels 

can be plotted on different axes for sorting.      

 
2. Waveform Size: Different neurons in the vicinity of the recording electrode tip manifest 

different amplitudes. This variation depends upon the distance between the neuron and 

electrode tip, properties of the surrounding fibers, and the membrane properties of the neuron 

itself. Changes in the size of the waveform can be then used to sort the different units. The 

most commonly used features are waveform peak (maximum amplitude above zero crossing), 

valley (minimum amplitude below zero crossing), Peak-valley (distance between peak and 

valley), spike width (temporal distance between the start and end of the waveform) and peak-

valley full width at half maximum.  

For the multicore electrode mode, the same waveform size feature for each channel can be 

used on different axes for sorting. This feature increases the reliability of the spike sorting, 
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since the relative change in amplitude of a neuronal unit between adjacent electrode sites will 

show corresponding changes based on distance between the neuron and the sites.  

 

3. Window discriminator: This technique is also used for online spike sorting. For waveforms 

that show clear distinction in amplitude and/or waveform shape. The user defines 2-4 

windows within the waveform space, and all the waveforms are assigned to particular 

category if the waveform crosses all the user-defined windows.  

   

4. Template Matching: A set of characteristics of waveform(s) are selected as the template(s). 

This is then followed by assigning the rest of the spikes using template matching.   

 
5. Damping vector (DV): This  sorting parameter considers properties like the volume 

conduction, attenuation effect and electrode impedance for spike sorting. This feature 

depends upon the position of electrode with respect to electrode channel/ site.   

 

𝑆𝑝𝑖𝑘𝑒 𝑤𝑎𝑣𝑒𝑓𝑜𝑟𝑚, 𝑣(𝑛) = ℎ(𝑡) × 𝑤(𝑡) + 𝐸𝑛(𝑡)   

Where, h(t) is the damping vector and En(t)  is the error of nth electrode.  

h(t) is obtained by minimizing energy of error of each electrode.  This indicates position of 

target nuclei and then can be used as the feature for spike sorting in feature space. Different 

clusters are formed with DV at different neurons. 

The damping vector technique is used for multi-core electrodes and use the fact that the ratio 

of two spikes amplitudes detected at adjacent electrodes remains constant for a neuronal unit 

and varies for different units. This feature helps in separation of overlapping spikes and 

treatment of burst spikes.  
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(d) Spike Clustering: 

Once distinct clusters are produced in the feature space (fig 2.8 and fig 2.9) the clusters are then 

separated using different clustering techniques. For sorting various clustering techniques are 

used: manual, semi-automatic and automatic. The manual clustering technique includes user 

designed contours around each cluster. Any data points that lie within the contour boundaries are 

considered action potentials from the same neuronal unit. Semiautomatic techniques like K-mean 

clustering require the user to define number of clusters and the initial centers of the clusters. An 

iterative algorithm is then used to assign each waveform to one of the user-defined cluster 

centers, based on nearest Euclidian distance in the feature space. This is followed by the re-

computation of the cluster centers based on the center of mass for the sorted data points. The re-

computaion of cluster centers and the reassignment of the data points is repeated until no more 

waveform changes clusters. Details of the K-mean clustering can be found in Chapter 3. Some 

fully automatic clustering techniques are also utilized, which includes a mean shift clustering 

technique and a valley seeking technique which applies to inter-point distances to automatically 

determine the number of clusters and the cluster memberships.  
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(e) Post clustering cleaning and validation 

Once all the waveforms are sorted, the validation of sorted spikes is important. Limitations of 

waveform sorting, level of background noise, electrode drifting with time due to movement, and 

change in neuronal baseline with varying conditions (lesion, movement, etc) could increase 

variability in the waveform shape as well as discontinuity in the temporal relationships. In order 

to overcome these errors, the waveforms are further validated and cleaned:- 

(i) The waveforms with inter spike interval (ISI) is less than the absolute and relative refractory 

period of the neuron were invalidated.  

(ii) The waveforms of a single unit are aligned and overlaid over each other. In case the width of 

the waveforms is abnormally wide, the spike sorting-clustering technique are rechecked or 

 
 
 
 

Fig 2.9. Feature space showing waveform valley data for different combinations of heptode channels. A. 
Waveform data from data from signals shown in fig 2.7. The figure also shows clustering technique used to sort 
the clusters (mean-shift).  
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Fig 2.10. Output of the heptode mode spike detection (left) and post-clustering waveform groups.  

repeated with stricter limitations (fig 2.10. bottom). The high variability in the waveform 

shapes of a single neuron indicates discontinuity or drifting of the electrodes or invalid 

sorting technique. 

 

 

 

2.3. CONCLUSION 

The above results helped in accurate localization of the desired targets. Although the 

circumference of the heptodes are in the order of 100 μm, considering the small size of the rat’s 

brain, any electrode track could produce considerable damage to the brain and ultimately will 

result in altered brain signals. Thus, in order to avoid collecting unreliable data, optimized 

targeting strategies need to be pre-planned to collect ‘simultaneous data’ with minimum tracks. 
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The track plans and orientation estimate in MATLAB helped target the desired regions with 

minimal error to reduce tissue damage as much as possible. The spike sorting technique is 

important for reliable estimation of the spike train, firing rate, and discharge pattern of the 

neurons. The NeuroPAM software implements many sophisticated techniques currently present 

in the field with additional modification and innovations particularly for seven core heptodes.   
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Fig 3.1.  Tri-component scheme 

CHAPTER 3 

A NOVEL TRI-COMPONENT SCHEME FOR CLASSIFYING NEURONAL 

DISCHARGE PATTERNS 

 

3.1. INTRODUCTION 

The pattern of neuronal spike trains has commonly been thought to be a largely stochastic 

process with information chiefly coded by the discharge rates. More recently however, 

increasingly, researchers have recognized that information is conveyed to a major extent by the 

temporal patterns of occurrence of discharges. As such, reliable objective metrics are needed to 

characterize neuronal discharge patterns to understand the intricate signaling between different 

nuclei. Such metrics must be able to effectively delineate three main features in the spike train: 

Poissonian irregularity, burstiness, and non-stationarity. Possionian irregularity indicates the 

level of randomness in spike occurrence, which can be modeled as Poisson point process. 
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Burstiness is the property of a spike train to intermittently increase in firing rate. Irregularity and 

burstiness are required to classify the spike pattern, while non-stationarity is needed to define the 

variability and extent of noise in the signal. Presently, no published analysis programs allow 

satisfactory categorization of the greatly varying neuronal discharge patterns encountered 

throughout the brain.  

 

Limitations posed by subjective neuronal classification schemes (Kaneoke & Vitek, 1996) have 

led to the development of objective metrics. Since spike trains can be modeled as a Poisson 

process and defined by their inter-spike interval (ISI) distribution (Mitra & Bokil, 2007), several 

metrics have been introduced based on objective characterization of the ISI distribution. 

Coefficient of variation (CV) of ISI (Feng & Brown, 1999) (Christodoulou & Bugmann, 2001) is 

commonly used to describe the variability in discharge activity over the spike train, though it 

does not differentiate the various ISI patterns. Other metrics, including asymmetric index (AI), 

skewness (Sk) (Doane & Seward, 2011) and kurtosis (kr), have been used to define the shape of 

ISI histogram. Global measures, such as CV and AI, are however limited due to their sensitivity 

to discharge rate (Holt, et al., 1996) (Shinomoto, et al., 2009) and further, do not adequately 

account for non-stationary signals and corruptions in the spike train. To overcome these 

limitations, local variables have been developed, which compare adjacent ISIs, and as such, are 

relatively insensitive to rate variations. The local ISI metrics include CV2, the coefficient of 

variation for a sequence of two ISIs (Holt, et al., 1996) (Taube, 2010); IR, the difference of the 

log of two adjacent ISIs (Davies, et al., 2006); LV, local variation of ISIs (Shinomoto, et al., 

2003); and LVr, a local variation parameter with refractory period information (Shinomoto, et 

al., 2009).  
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Another technique for measurement of regularity and burstiness is based on inspection of the 

shape and the location of peaks of the autocorrelation histogram (ACH) of spike trains (Paladini, 

et al., 2002; Perkel, et al., 1967). Markus et al. (2011) objectified this technique by quantifying 

the shape defining features of the ACH. However, the reliability is limited for non-oscillatory 

irregular trains and for non-stationary trains, including trains with varying underlying firing rates 

(Holt, et al., 1996). ACH techniques are limited in their ability to detect the multiple features 

which define burstiness. Because these classification techniques are robust and reliable for 

oscillatory spike trains, they were used for additional support for the initial visual subjective 

classifications. However since ACH classification parameters would not have strengthened the 

classification scheme, this methodology was not incorporate into the final objective algorithm. 

 

Towards the present aim of defining robust metrics for characterizing diverse neuronal discharge 

patterns, available classification metrics on representative simulated spike trains and on a large 

data set of extracellular neuronal recordings from the primary motor cortex (MC), several basal 

ganglia nuclei, hippocampus, and thalamus in normal and dystonic rats were extensively tested. 

To account for non-stationarity in spike trains, Fano factor (FF) (Eden & Kramer, 2010) 

(DeWeese, et al., 2003) and Allan factor (AF) (Gaudry & Reinagel, July 25, 2007) were also 

assessed, which estimate spike count variability and provide additional measures of the 

burstiness of the spike train (Anteneodoa, et al., June 12, 2010). Since FF and AF are sensitive to 

Poissonian noise and to across trial variability (Churchland, et al., 2010), these metrics are able 

to detect local variations in pattern or rate. Two additional novel metrics, post spike suppression 

(PSP) (Benhamou, et al., 2012) and residual metrics (Maimon & Assad, 2009) were also 
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assessed, but were found not to be particularly useful. Because current metrics, including CV, 

LVr, and density histogram (Leblois, et al., 2010), were also inadequate for delineating 

burstiness, a new burst discrimination metric was developed. In the prior study (Baron, et al., 

2011), reliable burst detection parameters for the customizable interval method (Plexon Inc. 

Neuroexplorer MaxInterval Method) were established. It was also determined that other 

popularized burst detection metrics, including the Poisson surprise method (Legéndy & Salcman, 

1985) (Kaneoke & Vitek, 1996), were unreliable. The burst discrimination metric introduced 

here first delineates bursts in the spike train using the interval method and then defines the 

burstiness of the spike train based on burst parameters (‘burst percentage’ (BP), ‘burst tendency’ 

(BT), and ‘burst entropy’ (BE)).  

 

It was establish here that individual metrics cannot reliably classify diverse neuronal discharge 

patterns. Therefore, a novel tri-component classification scheme was developed based on 

weighting combinations of desirable metrics using multiple metric optimization (MMO) and 

feature space clustering. Furthermore, transitions from regular to irregular discharge firing and 

form non-bursty to bursty lack clear unique designations. Therefore, rather than defining specific 

threshold cut-offs, this issue was obviated by utilizing multiple metrics to initially approximate 

the relevant features of the spike trains and applied then to multidimensional semi-supervised 

clustering to finalize the classifications of the spike trains. The comprehensive tri-component 

classification methodology is demonstrated here to dependably classify neuronal spike trains 

from diverse regions of the brain in the normal and in a representative diseased state. 
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Fig 3.2. Parameters to delineate burst. 

3.2.METHODS  

3.2.1. Delineation of bursts and development of novel burstiness metrics 

As mentioned in the introduction, after determining from the simulations that available metrics 

could not adequately delineate burstiness, three new burstiness metrics: ‘BP’, ‘BT’, and ‘BE’ 

were developed. These new metrics, as well as the parameters chosen to define neuronal bursts 

using the interval method, are detailed below: 

 

3.2.1.1. Detection of bursts using the interval method: 

The interval method (Chen, et al., 2009) (Plexon Inc. Neuroexplorer MaxInterval Method) 

incorporates five definable parameters to delineate individual bursts (fig 3.2). Based on previous 

extensive visual inspection of spike trains in rats, values for each of these parameters were 

chosen and subsequently modified until they proved to be highly reliable in delineating 

individual bursts in the spike train (Baron, et al., 2011). The final derived values are as follows: 

max. interval to start a burst = 6 ms, max. inter-spike interval in a burst = 9 ms, min. interval 
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between bursts = 20 ms, min. burst duration = 5 ms, and min. number of spikes in a burst = 3 (fig 

3.2). Using these parameters, the interval method was demonstrated to provide superior detection 

of bursts compared with the also popular Poisson surprise method (Legéndy & Salcman, 1985) 

(Kaneoke & Vitek, 1996). 

 

3.2.1.2. Novel metrics to estimate burstiness:  

 (i) Burst percentage (BP): percentage of spikes in bursts: 

  

𝐵𝑃 =  𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑝𝑖𝑘𝑒𝑠 𝑖𝑛 𝑏𝑢𝑟𝑠𝑡𝑠
𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑝𝑖𝑘𝑒𝑠

                                   EQ (3.1) 

 

(ii) Burst tendency (BT): tendency to discharge in bursts versus in single spikes or doublets:  

 

𝐵𝑇 =  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑢𝑟𝑠𝑡 𝑒𝑣𝑒𝑛𝑡𝑠
𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑝𝑖𝑘𝑒𝑠 

                                        EQ (3.2) 

 

            [0: non-bursty to 1: max. bursty] 

 

  (iii) Burst entropy (BE): measures the quantity of information, which is conveyed by the 

temporal sequence of burst events within the spike train. (Strong, et al., 1997). According 

to information theory, the information content of series of events (e.g., burst events) can be 

estimated using Shannon entropy (Shannon, 1948) (Borst & Theunissen, 1999) by the 

following formula: 

 

𝐵𝐸 =  −  ∑ 𝑓𝑏 log2
𝑓𝑏
𝑙

𝑘
𝑏=1                                               EQ (3.3) 
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Fig. 3.3. Spike rasters and ISI histograms of the three principal spike train patterns. Examples of the standard 
simulated spike trains (first column) and extracellular neuronal recordings (third column) for the three principal 
spike train patterns are shown, along with their corresponding ISI histograms. The ISI histogram of the simulated 
regular standard train is a straight line (since all of the ISI’s are equally spaced), while that of regular, tonic 
discharging neurons are narrow unimodal. The ISI histograms of irregular trains (simulated and neuronal) are 
skewed, generally with a late trailing tail, while burst trains are largely bimodal, with an early short interval peak. 
 

 

    where, fb = normalized burst count in bth window, ɭ = length of window, k = total number 

of windows 
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3.2.2. Testing of objective metrics on simulated data sets. 

Although many of the aspects of their performance were either already well-established or 

predictable, objective metrics on simulated data was systematically tested. For consistency, each 

simulated spike train was generated for 60 s in duration. Any simulated spikes occurring within 

the designated absolute natural neuronal refractory period (2 ms) (Heeger, 2000) (Anon., 2012) 

were rejected. Refer to the appendix for details on the methods used to generate the simulated 

spike trains and for simulation examples. 

 

Stationary rate. Performance of each metric was first assessed on 10 spike train iterations (mean 

firing rate = 50 Hz) of each of the three principal basic firing patterns: 1) an equally spaced 

regular spike train, 2) a Poissonian irregular train, and 3) a third order (i.e., three spikes per 

burst) burst train (fig 3.3). The performance of each metric was assessed from its ability to assign 

distinct values to the three sets of examples of the basic firing patterns, as determined by the non-

parametric Kruskal-Wallis test. 

 

Varying frequency. The influence of spike rate on individual metrics was assessed by simulating 

the three basic patterns of discharge activity while varying the mean spike frequencies in 10 Hz 

increments from 1 to 101 Hz (10 iterations for each of the 11 frequencies for each of the three 

patterns, total 330 trains). Metrics which showed excessive firing rate sensitivity preventing 

adequate pattern discrimination, based on the Kruskal-Wallis test, were rejected from further 

consideration. Subsequently, Tukey-Kramer multiple comparison tests (MATLAB function: 
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multcompare) were run on each accepted metric to determine which pairs of the patterned groups 

(regular, irregular, and bursty) were specifically well discriminated.  

 

Varying irregularity. To assess a representative spectrum of varying spike train regularity, a 

continuum of spike trains was simulated from very irregular to regular spiking. The present 

trains were generated by randomly generating ISIs from a gamma distribution by varying its 

shape parameter (κ) while adjusting the scale parameter to maintain the desired mean rate 

(Miura, et al., 2006) (Miura, et al., 2007) (Maimon & Assad, 2009). Using each of the 11 

frequencies tested above (1:10:101), 12 κ levels were generated (0.25, 0.5, 1, 4, 8, 16, 32, 64, 

128, 256, 512 and 1024) for 10 iterations each for a total of 1320 trains. Correlation coefficient 

(MATLAB function: corrcoef) was then used to assess the ability of individual metrics to define 

the irregularity in the spike train. 

 

Varying burstiness: The following representative burst train scenarios were simulated: 1) 11 

burst trains with a Poissonian background irregularity and varying frequencies (1:10:101), 2) 11 

burst trains with similar burst spike arrangements and varying frequencies, 3) 11 burst trains with 

a similar oscillatory background and varying frequencies, 4) 8 burst trains with varying mean 

burst order (BO; spikes per burst: 1-8), 5) 8 burst trains with varying inter-burst events and 

similar timing and characteristics of the bursts, and 6) 8 burst trains with varying burst 

percentages (total number of spikes in bursts/ total number of spikes, 10%-60%). Each burst train 

here was ranked on the basis of total burst content (as defined by burst events/total events) 

predetermined during programming of the burst-generator. Correlation coefficients between each 



 

43 
 

metric value and the different programmed burst content were then used to determine the ability 

of individual metrics to delineate the level of burstiness of the trains. 

 

Non-stationarity and noise.  Non-stationary and corrupt signals were subsequently generated by 

randomly varying the firing rate and pattern throughout the simulation by randomly introducing 

events from another pattern (for instance, corrupting a Poissonian spike train by randomly 

introducing 10-50% epochs of burst events). One hundred different simulated non-stationary and 

corruption trains (no corruption, regularity variations, rate variation, burst corruption) were then 

assessed here for each of the three discharge patterns (regular, irregular and bursty). The 

Kruskal-Wallis test and the Tukey-Kramer multiple comparison test were then used to estimate 

the extent to which individual metrics could still reliably differentiate between the three basic 

spike patterns in the face of the imposed interferences in the signal.  

 

Each of the simulate spike trains were also visually inspected for confirmation of objective 

classifications. Such features as linearity between consecutive ISIs, clustering of spikes, and 

inconsistencies in pattern along the length of the train were considered (Martinson, et al., 1997). 

Additionally, the shapes of each corresponding ISI histogram and ACH were inspected to verify 

the accuracy of the initial subjective classifications. A characteristic unimodal narrow ISI 

histogram curve indicates a regular train, while a skewed long tail histogram indicates an 

irregular train. For burst trains, ISI histograms show bimodal peaks, while a central peak in the 

ACH correspondingly signifies a burst train. 
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Most of the ISI based metrics (CV and local variables, CV2, IR, LV and LVr) measure 

normalized dispersion in the ISI distribution, thereby generating values of ~1 for Poissonian, < 1 

for regular, and > 1 for bursty and non-stationary trains. Similarly, FF values are ~ 1 for 

Poissonian, < 1 for sub-Poissonian, and > 1 for super-Poissonian trains. AI (mode/mean ISI) is 

equal to one when an ISI histogram fits a Gaussian distribution. Kr of a standard normal ISI 

distribution is 3. A positive value of Kr indicates a peak and a negative value indicating a flat 

distribution. Sk is zero for a symmetric ISI distribution, with negative and positive values 

indicating leftward and positive skewedness, respectively. The shape parameter of the Gamma 

distribution ‘k’ is equal to 1 for an exponential distribution that indicates a Poisson process, 

while larger k values indicate increasing regularity. Threshold levels for classification of the 

trains was set for each of the metrics based on comprehensive comparison of their outputs and 

classifications derived from visual inspection. For example, the following final criteria was 

established for CV and the local variables: regular < 0.66, Poissonian irregular = 0.66-1.2, and 

bursty and non-stationary > 1.2. Similarly, for FF, the criteria were set as: regular < 0.52, 

Poissonian irregular = 0.52-1.51, and bursty and non-stationary > 1.51. For AI, the measurable 

criteria was set as: regular > 0.80, irregular 0.3-0.8, and < 0.3 bursty. 

 

3.2.3. Multiple metric optimization 

Based on the results of the simulations, it is affirmed that combinations of metrics are required to 

adequately characterize spike trains into the desired categories. After rejecting inadequate 

metrics, each of the chosen metrics was assigned to its relevant category: regularity, burstiness, 

or corruption. Then for each of these three categories, proxy metrics, combining and weighting 



 

45 
 

individual metrics, were derived using multiple metric optimization (MMO) based on linear 

regression (Shah, 2009).   

 

(i) Each of the three proxy metrics was formulated to best define the corresponding 

feature of spike trains. The training datasets for MMO of each metric was obtained 

from a subset of the above data pool, with independent control of the corresponding 

feature. For instance, for the regularity metric, a total 168 spike trains were generated 

by varying the rate and regularity levels of the train (Appendix) were utilized. Since 

the shape parameter κ controls the regularity level of a train, it was used as the 

response variable for the regression. Similarly, for the burstiness and corruption 

metrics, the trains simulated by varying the total burst percentage (n = 140 trains) or 

degree of corruption in the train (n = 90 trains), respectively, were used for regression 

with burst percentage and corruption percentage as the response variables, 

respectively (Appendix).  

 

(ii) Some metrics tend to generate abnormally high values for particular spike trains, for 

example, those with super-Poissonian structures. Since the maximum values of these 

metrics still indicate a super-Poissonian feature even after excluding these outliers, 

95% winsorization was applied to reduce the difference between the extreme outliers 

and the second largest value in the dataset. Winsorization is the transformation of data 

by limiting extreme values to reduce the effect of possible unauthentic outliers. 

Subsequently, to highlight the difference between regular and non-regular and burty 

and nonbursty metric values, maximum-minimum normalization was carried out. 
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This normalization permits reliable comparisons between the values generated from 

different metrics and integrates the chosen sets into single optimized metrics. 

 

(iii) To estimate the coefficients of the new proxy metrics, generalized linear model 

(GLM) regression (MATLAB function ‘glmfit’) on the training datasets (step i above) 

was applied. The response variable was assumed to be normally distributed. The 

significance of the regression coefficients was estimated by dividing the estimated 

weights by the standard deviation of the estimate (α =0.05). 

 

Subsequently, the reliability of the proxy metrics will be cross-validated based on their 

performance separately on simulated data and recorded neuronal data. The simulated test data set 

here consist of 600 spike trains generated by varying regularity level, mean firing rate or various 

burst parameters in the three principal spike train; 200 different spike trains corrupted with 10% 

corruption; and 200 spike trains corrupted with 20% corruption. Similarly, for the real test 

dataset, neuronal spike trains (n = 147), recorded from the globus pallidus (GP, rodent equivalent 

of GP externa, entopeduncular nucleus (EP, rodent equivalent of GP internus), subthalamic 

nucleus (STN), MC, hippocampus, and thalamus in 10 head restrained, unsedated normal and 

dystonic rats were used. 

 

3.2.4. Neurophysiological recordings 

On the day of recording, the rat’s head was immobilized by clamping a custom stainless steel 

head fixture into a custom stereotaxic positioner (Chaniary, et al., 2011). Inhalation anesthesia 

(isofluorane 2-2.5%) was briefly delivered and a 3.5 mm burr hole (2 mm caudal, 1.5 mm lateral 
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to the bregma) was drilled into the skull exposing the underlying duramater. After 30 min., 

allowing for full recovery from effects of anesthesia, neuronal recording sessions were initiated. 

A mini-xyz-manipulator or an Eckhorn heptode manipulator (both from Thomas Recording, 

Giese, Germany) was mounted onto a Kopf stereotactic arm and single-unit extracellular activity 

was recorded using ultra-fine 100 μm Thomas Recording microelectrodes. Each nucleus was 

readily identified by its characteristic neuronal firing patterns. The location and firing patterns of 

neurons and the borders of encountered nuclei along each microelectrode track were plotted with 

the aid of superimposable transparencies generated from sections of a Paxinos and Watson atlas 

(Paxinos & Watson, 2007). The locations of microelectrode tracts were later confirmed 

histologically from silver-stained sections. Neuronal spike activity was collected for a minimum 

of 120 sec at a sampling rate of 40 kHz and was amplified and band pass filtered (gain = 50, 

bandwidth 0.07-8 kHz) using Sort Client (Plexon Inc., Dallas, TX). The quality of neuronal 

isolation was continuously monitored online using Sort Client. All experiments were approved 

and monitored by the McGuire Veterans Affairs Institutional Animal Care and Use Committee 

(IACUC) and performed in accordance with regulatory guidelines. 

 

3.2.5. Offline analysis and spike sorting 

All stored spike data were analyzed offline using Offline Sorter (Plexon Inc.) and MATLAB 

(Mathwork Inc. version 7.14). Recording epics with movement related artifacts were removed. 

For each data set, the 3-D feature space based on the Principal Component Analysis (PCA) of the 

waveforms was visualized and individual units were sorted into distinct clusters using a 

combination of automated (valley-seeking) and manual (K-means clustering, contours and 

waveform crossing method) sorting techniques. The individual waveforms of separated clusters 
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Fig. 3.4. Normalized color coded metric values derived from simulated spike trains for the three basic firing patterns 
(regular, irregular and bursty), with varying mean firing rates. (a) Performance of analyzed objective metrics show 
variable quality discrimination of the three principal spike patterns. (b) The distinct regularity and burstiness values of 
the new metrics indicate their superior discrimination, regardless of rate, while the consistently low corruption values 
for the simulated non-corrupt trains indicate the reliability of the corruption metric. 

were then inspected for potential loss of the neuronal signal and any artifacts in the signal were 

removed. Neuronal recordings were accepted only if a unit had more than 300 discharge 

potentials and showed high quality separation from background noise and from other units. The 

timestamps of the selected spike trains were saved for further analysis. 

 

3.2.6. Tri-component and subjective neuronal classification  

 

Each recorded neuronal spike train was plotted in a three dimensional feature space with the axes 

representing the three proxy metrics (irregularity, burstiness and corruption). Subsequently, the 

unsupervised learning algorithm K-mean clustering (MacQueen, 1967) (Amorim, 2011) was 

used to classify the spike trains into regular tonic, irregular, and bursty, and non-stationary based 
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on the nearest centroid. The simulated standard spike trains would serve as the initial group 

centroids for this clustering. After assigning all the recorded spike data points to the nearest 

centroid, the new positions of the cluster centroids were recalculated. The data point assignments 

and centroid recalculations would then be repeated until the centroids were fixed at their final 

positions. 

 

Each of the recorded neuronal spike trains were also subjectively classified by extensive visual 

inspection of their complete spike trains as described above for the subjective classifications of 

the simulated trains (refer to Section 2.2). For the occasional units with conflicting 

classifications, the spike trains were re-inspected, and if still uncertain, such spike trains were 

rejected from further analysis. The final subjective classifications were designated as the gold 

standard for purposes of cross-validating the tri-component classifier. 

 

3.2.7. Data processing and statistical analysis 

Neuroexplorer and Offline Sorter (Plexon Inc.) were used for preliminary data processing, spike 

sorting and analyses. MATLAB (Mathwork Inc., version R2012A) was used for further data 

processing and statistical analysis. MATLAB was also used for scripting spike train simulation 

algorithms, as well as for evaluation of the metrics, application of MMO, and cluster based 

categorization of the data sets. The performance evaluation of the analyzed metrics and the 

generated new proxy metrics on each of the simulated data sets were based on calculation of 

correlation coefficient between the independent varying feature of the spike train (ex. rate, 

regularity, stationarity) and the metric generated values. The significance level for all the 

statistical tests in this paper were set at α = 0.05 (5%). The classification performance and 
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discriminatory power of the newly generated algorithm were then cross-validated against the 

subjective classifications using the following parameters and ratings (Demsar, 2006) (Sokolova 

& Lapalme, 2009): 

 

𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝐶𝐴) = 𝑇𝑃+𝑇𝑁
𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁

                                                     EQ (3.4) 

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝐴𝐴) =
∑ 𝑇𝑃𝑖+𝑇𝑁𝑖

𝑇𝑃𝑖+𝑇𝑁𝑖+𝐹𝑃𝑖+𝐹𝑁𝑖
𝑙
𝑖=1

𝑙
                                                           EQ (3.5) 

 

  

𝐷𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑜𝑟𝑦 𝑃𝑜𝑤𝑒𝑟(𝐷𝑃) = √3
𝜋
�𝑙𝑜𝑔 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

1−𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦
+ 𝑙𝑜𝑔 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

1−𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
�                EQ (3.6) 

 

DP <1 poor, ~3 good, fair otherwise 

 

Where, TP is true positive, TN is true negative, FP is false positive and FN is false negative. 

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃
𝑇𝑃+𝐹𝑁

 ; and 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁
𝑇𝑁+𝐹𝑃

                                                               EQ (3.7) 

 

𝑙 Indicates number of different firing patterns, in this case, regular, irregular and bursty. 
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3.3. RESULTS 

3.3.1. Performance of the classification metrics on simulated data sets 

3.3.1.1. Performance on principal spike patterns (stationary and different mean 

frequencies) 

For standard homogeneous simulations, a majority of the metrics, including CV, FF, AF, and the 

local variables (CV2, LV/LVr and IR) generated largely discriminatory values (Kruskal–Wallis 

test, p < 0.005) for the three basic spike patterns (regular, irregular, and bursty), regardless of 

mean firing rate (Fig. 3.4a values are normalized to a 0–1 scale); Fig. 3.4a. CV, AI and local ISI 

variables were able to discriminate between regular and non-regular trains (Tukey–Kramer, all p 

< 0.05). Among the ISI metrics, only LVr fully discriminated between irregular and bursty 

patterns (Tukey–Kramer, p = 0.040). LL and PSP uniformly performed poorly, with LL not 

showing appreciable discrimination variance (Kruskal–Wallis, p = 0.356) and PSP values being 

largely dependent on the mean firing rate (Kruskal–Wallis, p = 0.432). Sk and residual were also 

universally ineffective (p > 0.053). The latter four metrics were rejected from further analysis. 

As anticipated, BP, BT, and BE distinguished bursty from non-bursty trains (multicompare, p < 

0.05) with different firing rates, but did not distinguish between regular and irregular trains (p > 

0.056). 

 

3.3.1.2. Performance on varying properties of firing patterns.   

Global variables. Using the methodology described by Hosimoto et al., regular, Poissonian, and 

bursty patterned spike trains were simulated by generating equally spaced, random, and 

alternating small and long ISIs, respectively (Fig. 3.5a and c), while maintaining a constant ISI 

distribution (Fig. 3.5b). In contrast, CV and AI were sensitive to the overall ISI distribution and 
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thereby could not discriminate between the three patterns (CV: p = 0.67).Additionally, CV and 

AI generated abnormal and inconsistent values in the presence of noise or non-stationarity in the 

signal.CV, for example, ranged from 0.74 to 1.7 for the same spike train with increasing levels of 

corruption from 0 to 20%. Although kr discriminated the standard trains (p < 0.05), it was too 

sensitive to extreme outlier values in the ISI distribution. Thus the global metrics were rejected 

from further consideration. 

 

Local variables. The local variables were all favorably sensitive to the arrangement of the spikes 

sequences in the train and overall, generated higher values for trains with clustered spikes (fig 

3.5a). They reliably discriminated regular from irregular simulated trains with corruption levels 

of up to 25% of the entire train (Kruskal-Wallis test, p < 0.05; classification accuracy of > 85%) 

and effectively defined the level of simulated irregularity (Appendix, Section 5) (cross-

correlation coefficient, r ranges from -0.702 to -0.805, p < 0.005) (fig 3.6a and 3.6b). Their 

effectiveness in discriminating highly diverse irregular from bursty trains was however more 

limited. As the mean rate or the total burst content of the spike train increases, the instantaneous 

probability of a spike to occur increases and thus, the variance of a spike train reduces. The 

reduced instantaneous variance leads to a reduction in the local metric values, thus overlapping 

with the metric values for near-Poissonian trains (fig 3.4 and 3.7).  Similarly, a burst train 

generates lower values for the ISI metrics if an equally spaced single type BO is superimposed 

on a regular baseline. Moreover, highly irregular (low κ = 0.25-0.5 of the gamma distribution), 

non-bursty trains generate higher metric values and further prevent adequate discrimination 

between irregular and bursty trains (fig 3.7). 
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Burst metrics. BP, BT and BE effectively discriminated the burst content of the signal (r = 0.76-

0.88, p < 0.005) irrespective of the intra-burst variability and any noise in the signal. Since these 

metrics chiefly measure the frequency of burst events, their values remained relatively constant 

with increasing BO (fig 3.8a), and declined with increasing numbers of non-burst events (fig 

3.8). BP and BT had higher values for pure burst trains, while BE, which reflects both burst and 

non-burst activity, oppositely, had lower values for pure burst trains. Moreover, increasing the 

spike rates while maintain the spike/burst arrangement produced reductions in BE, but not BP 

and BT values (fig 3.8c). 

 
 

Fig. 3.5. Comparison of coefficient of variance and local variation of ISI’s. The figures illustrate (a) 
discriminatory performance of CV and LV on three representative simulated spike trains (regular, Poissonian, 

and bursty), with (b) equivalent ISI distributions, but (c) highly dissimilar spike trains. The local variables, 
including LV, are able to effectively discriminate between the three spike arrangements, while the global 

variable CV is unable to discriminate between such trains with similar ISI distributions. Error bars indicate 
standard error. 
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FF and AF. FF and AF were observed to complement each other and together, to effectively 

delineate non-stationary events in spike train. FF and AF effectively discriminated supra-

Poissonian (spike count variance larger than a Poisson process with the same mean) features in 

spike trains, by generating distinctly high values for spike trains with intermediate corruption 

events (short duration changes in the spike pattern or rate) (fig 3.9). In contrast to FF, AF was 

more sensitive to transient alterations in the pattern (κ) than to rate fluctuations. Additionally, in 

the presence of burst epochs, AF generates lower values, while FF generate higher values (fig 

3.4). 

 

3.3.2. Development of tri-component classification metric: 

The experiments on the simulated spike trains affirmed that to effectively extract pertinent 

signalling information from diverse natural spike trains, multiple metrics would need to be 

integrated in combinations. As each of the local variables were largely effective and 

complementary in distinguishing regular from irregular spike trains, regardless of noise and non-

stationarity, these metrics were combined using MMO to formulate a “regularity metric”. 

After normalizing each of the three metrics, relative statistical weightings were derived using 

“generalized linear model” (GLM) regression. The final proxy ‘regularity metric’ is as follows: 

 

regularity = 0.125 + 1.119(𝐶𝑉2) + 0.9468(𝐼𝑅) + 0.718(𝐿𝑉𝑟)                         EQ (3.8)  
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BP, BT and BE were observed to be effective and complementary burst detection metrics and 

upon weighting their relative strengths, the following ‘burstiness metric’ was derived:  

 

burstiness = 0.1234 +  0.501(𝐵𝑃) +  0.510(𝐵𝑇) + 0.496(𝐵𝐸)                        EQ (3.9)  

 

Lastly, as FF and AF were affirmed to be effective and complementary indicators of non-

stationarity, a “corruption metric” was generated upon weighting these two metrics: 

 

corruption = 1.6677 + 1.5371(𝐹𝐹) + 0.9523(𝐴𝐹)                                           EQ  (3.10)  

 

Analyses of regression indicate that each of the predictor metrics has a positive and significant 

impact on the corresponding discharge features (all p < 0.05). Refer to Table 3.2 for statistics for 

the GLM regressions. 
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Fig. 3.6. Discriminatory effectiveness of local variables and new regularity metric on a continuum from 
irregular to regular patterned spike trains. (a) With exponentially increments in _ (shape variable of gamma 
distribution, red histogram) and rate held at 50 Hz, CV2, IR, and LVr values can be seen to define the extent of 
irregularity in the simulated spike trains. (b) Although the correlation coefficients of the local ISIs and the new 
regularity metrics all indicate desirable insensitivity to rate, the new metric can be seen to show superior 
delineation of the regularity level of spike trains. 

 

 

 

3.3.3. Performance of the tri-component classification metric on simulated data 

Fig 3.4b demonstrates the outputs of the tri-components on the three principal spike patterns with 

varying rates. The regularity metric effectively discriminates the three patterns irrespective of the 
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rate variations (p = 0.0023). Similarly, the burstiness metric effectively generates discriminatory 

values for burst trains (p = 0.0123). Fig 3.6b demonstrates the cross-correlations of the local ISI 

and the new weighted regularity metric with respect to the underlying dependent variable ‘κ’ of 

the gamma ISI distribution. The correlation coefficients of these metrics are all effectively 

insensitive to mean rate (all p>0.05). Further, the correlation coefficients of the tri-component 

regularity metric are greater than the individual ISl local metrics, thereby demonstrating its 

superiority in delineating the level of regularity of spike trains(r =0.87, p = 0.007). Fig 3.9b 

demonstrates that the tri-component classification algorithm provides superior overall 

classification accuracy over individual metrics at different levels of corruption. The new 

algorithm provides an average accuracy of > 83% even with corruptions of up to 30%. Fig 3.11 

compares the classification accuracy of various metrics on a large simulated data pool (n= 1000), 

further demonstrating the superiority of the tri-component classification in discriminating all 

three principal patterns (av. accuracy = 0.93; CI: 0.91-0.95). 
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Fig. 3.7. Limitations of local variables in discriminating irregular from burst trains. As illustrated for simulated 
spike trains, the local variables CV2, IR, and LVr have limited ability to distinguish irregular from bursty trains. 
LFR = low frequency (1–40 Hz), STR = standard (50–60 Hz), and HFR = high frequency (70–100 Hz) regular 
spike trains; LFIr = low frequency (1–30 Hz), STIr = standard (50–60 Hz), HFIr = high frequency (70–100 Hz), 
and LkIr = low kappa (highly) irregular (_: 0.0625–0.5) spike trains; LFB = low frequency (1–30 Hz), STB = 
standard third order (50–60 Hz), HFB = high frequency (70–100 Hz), HCB = high content (BP > 68%), and 
REGB = regular baseline (50–60 Hz) burst trains. Error bars indicate standard error. 
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 Table 3.1 : Cross-validation of tri-component classification of neuronal spike data set  
  Regular Irregular Bursty Non-

stationary 
Total 

Subjective 
characterization 57 51 39 0 147 
Objective 
classification 56 49 37 5 147 
Tri-component 
concordant 
classification  
(true positives) 54 46 35 0 135 
classification 
accuracy  0.96 0.95 0.96 -- 0.96 
error rate 0.03 0.05 0.04 -- 0.04 
precision  0.96 0.94 0.95 -- 0.92 
discriminatory 
power (DP)^ 2.90 2.45* 2.67* -- 2.60 

   * These relatively lower values to a large extent reflect that several of these trains were only correctly classified 
as highly non-stationary and rendered uncategorizable by the tri-component classifier.       
  ^ DP <1 poor, ~3 good, fair otherwise 
                                                                                          
 
 
 
  
Table 3.2. Statistics for the estimated coefficients of the GLM regression 
Proxy 
metrics 

Constituent 
predictor 
metrics  

Coefficient 
estimates  

Standard 
error 

P value 95% Confidence 
Interval 

Regularity 
Dfe = 164 
 

CV2 1.119 0.134 0.0087 0.851 1.387     
IR 0.946 0.021 0.0299 0.904 0.988     
LVr 0.781 0.035 0.0012 0.689 0.873     
Constant  0.125 0.010 0.0098 0.104 0.146     

Burstiness 
Dfe = 136 
 

BP 0.501 0.036 0.0079 0.429 0.573     
BT 0.510 0.087 0.0331 0.337 0.683     
BE 0.496 0.124 0.0291 0.247 0.744     
Constant  0.123 0.023 0.0021 0.077 0.169     

Corruption  
Dfe = 87 
 

FF 1.531 0.028 0.0000 1.474 1.587     
AF 0.952 0.148 0.0063 0.656 1.247     
Constant  1.667 0.062 0.0422 1.543 1.791     

* Dfe = degree of freedom. 
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3.3.4. Assessment of the tri-component classification metric on real neuronal spike data 

The table 3.1 shows the cross-validation results comparing the classification of the tri-component 

metric to that of the subjective classifications of the neuronal recordings. The tri-component 

algorithm showed 95.9% (CI: 0.91-0.98) overall concordance with the subjective classifications 

with a high discriminatory power of 2.6 (defined in Section 2.7). Five recorded spike trains were 

highly non-stationary and rendered uncategorizable by the MMO classifier, thereby lowering the 

 
 
 
Fig. 3.8. Performance of novel burst metrics (burst percentage, burst tendency, and burst entropy). (a) The 
left figure illustrates that BP and BT generate higher values for pure burst order (BO) simulated spike 
trains, while BE generates higher values for mixed BO trains. All three metrics can be seen to be largely 
independent of the BO. Note: BO of a pure burst train indicates the number of spikes in the burst, while a 
mixed third BO train, for example, has single spikes, doublets, and triple spike events. (b)The middle 
figure illustrates that all three metrics increase appreciably with increasing percentage of the total spikes 
in bursts (burst spikes/total spikes). (c) The left figure illustrates that BP and BT values increase to a 
modest extent, while BE values reduce appreciably with simulated increasing event rates (‘events’ refer to 
individual spikes, doublets or bursts). 
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Fig. 3.9. Performance of discriminatory metrics under non-stationary conditions. (a) FF, AF and combined 
novel corruption metric performance on different types of corrupt spike trains. The figures show means and SEs 
for ‘nil’, representing a range of principal simulated spike patterns (regular, irregular and burst) of non-
corrupted trains; kappa (k), representing a range from 10 to 40% pattern corruption in a Poissonian train; rate, 
representing ranges of 10–40% rate corruption in a Poissonian train; and burst, representing ranges of 10–40% 
burst corruption in a Poissonian train. The combined figures illustrate that FF and AF each are good at 
distinguishing particular aspects of corruption, while the novel corruption metric, which combines both FF and 
AF, is able to take advantage of the different merits of each metric. Error bars indicate standard error. (b) The 
tri-component classifier is demonstrated to provide better overall classification accuracy than other metrics. 

 

apparent accuracy of the cross validations. Fig 3.10 illustrates the K-mean clustering results from 

the recorded spike data. The receiver operating characteristic (ROC) curve (Swet, 1996) 

parameterized by true and false positive rates illustrated in fig 3.11b demonstrates the 

appreciably better performance of the tri-component classifier compared to individual popular 

metrics. 
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3.4. DISCUSSION  

The purpose of this chapter was to develop an algorithm which can reliably define the basic 

underlying discharge patterns of neuronal spike trains recorded in real time irrespective of local 

variations in the signal. Results showed that the tri-component algorithm introduced here is able 

to effectively discriminate among the highly diverse spike arrangements encountered throughout 

the brain, even in the presence of natural and artificial corruptions in the recorded spike trains. 

The reliability of the algorithm was affirmed by cross-validation on 147 neuronal spike trains 

 
 
 

Fig. 3.10. 3 D scatter plot classification of representative neuronal recordings. The figure illustrates K-mean 
clustering distributions of multi-site extracellular neuronal recor-dings (n = 147) from normal and dystonic rats 
with the novel proxy classification metrics (‘regularity’, ‘burstiness’, and ‘corruption’) plotted on each axis. 
Blue dots = regular, green = irregular, orange = bursty, and brown = non-stationary trains.  
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recorded in vivo from diverse regions of the brain in both the normal and a representative 

diseased state. The algorithm offers a much needed robust, rapid, and automated means to 

categorize neurons into the three basic encountered discharge patterns: regular, irregular and 

bursting. The algorithm, in turn, obviates the need for time consuming, subjective estimation of 

neuronal discharge patterns. 

 

From systematic testing of available classification metrics on simulated spike data, it can be 

affirmed that individual metrics were limited in their ability to discriminate the multiple features 

of the spike trains. Many of the popular metrics were unacceptably sensitive to such features as 

the rate or spike arrangements, such that they generated different values for similar pattern 

configurations. Such metrics were rejected from further consideration. Additionally, different 

simulated spike configurations were often observed to alter various metrics in equivalent ways, 

thereby limiting the robustness of individual metrics. For instance, FF was found to effectively 

delineate transient changes in the baseline rate and unusual burst events (Lerchner, et al., 2004) . 

In contrast, AF, which has low sensitivity to slower variations (Gebber, 2006) was found to be 

more sensitive to transient changes in the regularity pattern. Such examples lead to recognize the 

need to develop an algorithm incorporating multiple metrics dedicated to detecting each of the 

three identified patterned features of the spike train: regularity, burstiness, and corruption.   

 

After identifying desirable metrics from their performance on the simulation spike trains, 

multiple metric optimization on the spike simulations to weight the relative strengths of the 

metrics towards developing the novel tri-part classification algorithm was used. Subsequently, a 

large data set of highly diverse normal and pathological neuronal recordings from diverse 
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regions of the brain in normal and dystonic rats were extensively inspected and subjectively 

classified. These classifications were used as the gold standard to validate the proposed 

algorithm. Ultimately, the three proxy metrics developed here were affirmed to effectively 

isolate the desired features in the feature space and to very closely approximate the results of this 

 
 
 

Fig. 3.11. Receiver operating characteristic (ROC) curve comparing performances of classification metrics. (a) 
The tri-component classifier is demonstrated on a large simulated data pool to provide superior discrimination 
of all three principal patterns over individual metrics (CV and the local metrics). True and false positive rates 
indicate the performance verses that of an ‘optimal’ classifier derived from user controlled simulations. (b) The 
tri-component classifier is demonstrated here to well outperform the individual metrics in classifying diverse 
representative neuronal spike trains. The performance of the objective metrics is cross-validated with respect to 
subjective “gold standard” classifications. 
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meticulous subjective analyses. 

The ‘regularity’ metric (equation 3) detects the local variability between adjoining spikes in the 

train and as such, is able to discriminate any sub-Poissonian tonic arrangement in the spike train. 

Although, the contributing local ISI metrics generate higher values (>1) for typical burst 

patterns, their tendency to also generate misleading high values for particular non-regular trains 

(e.g., irregular and high frequency burst trains and non-homogeneous bursty trains) limits its use 

for discriminating bursty from irregular spike trains.  The ‘bursty’ metric (equation 4) 

incorporates several burst metrics which assess the burst content of spike trains and together 

were shown to provide a reliable metric for discriminating bursty trains from non-bursty trains. 

Although such properties as BO (average number of spikes in a burst), intraburst spike pattern 

(Brochini, et al., 2011), bursts per minute, and average burst duration are defining burst 

properties of neurons, they do not specifically address the burstiness of neurons and so were not 

incorporated into the burstiness metric. All popularized metrics initially tested here, including 

ACH based parameters, CV, local ISI metrics, and FF and AF, assess burstiness based on 

defining cluster tendencies in the spike train, but all ultimately proved to be unreliable. For 

instance, in the clustered spike simulations, none of these metrics could reliably distinguish ISIs 

below the absolute refractory limits or greater than an acceptable intra-burst interval range. 

Ultimately, these techniques proved to be too restricted to be used to detect the multiple features 

which define burstiness. The third (‘corruption’) metric (equation 5) measures the spike count 

variability across the spike train, such that non-stationary trains generate higher discriminable 

values than stationary trains.  
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The tri-component 3D feature space defines the pertinent features of spike trains from multiple 

perspectives. Further, the semi-supervised K-mean clustering incorporates two particular 

advantages to the algorithm. First, the user has control over defining the centroids for each 

pattern defining category, while the ultimate designation of each train is automated. Second the 

technique is adaptable to any shift in population response and introduction of noise. Moreover, 

the final centroids of the clusters reveal useful insight into the instability and variability of the 

studied neuronal populations. 

 

The estimated classification accuracies of at least 94% for each of the three proxy metrics on 

highly diverse representative neuronal recordings support the reliability of the developed 

algorithm. This assertion though largely relies on the contention that the intensive, subjective 

characterization of the recorded spike data used as the gold standard here was itself highly 

accurate. Although the subjective assessments were meticulously performed by experienced and 

skilled investigators, it can be acknowledged as a limitation to validating the discrimination 

algorithm. Nevertheless, the fact that the two independent means of classifying these data 

produced very similar results is most supportive of each other. Furthermore, in at least some 

instances, the algorithm was likely to be more reliable than the subjective categorizations. For 

instance, while five spike trains were subjectively characterized as irregular or slightly bursty, 

these appeared, upon re-inspection, to be correctly designated by the tri-component classifier as 

non-stationary/ uncategorizable. It can be further suggested that the purported slightly lower 

discriminatory power of the algorithm for irregular versus bursty trains may in fact be accounted 

for by false negatives due to apparent limitations in the ability to fully subjectively discriminate 



 

67 
 

non-stationary spike trains. Moreover, the non-stationarity in the recorded signals chiefly 

reflected the natural changing environment of the biological system. 

 

As discussed, the classification algorithm was ultimately validated on representative neuronal 

recordings from multiple brain regions in both the normal and a pathological state.  The neuronal 

sample included recordings in dystonic animals, a condition associated with highly irregular 

discharge patterns and prominent bursting (Baron, et al., 2011). Nevertheless, considering the 

vast variability in biological systems and the focus here on rodents, it cannot be exclude that 

additional naturally occurring spike train features were omitted which could have altered the 

final algorithm. Therefore the proxy metrics should be carefully assessed by others and modified, 

if necessary, to best capture any newly encountered biological features. Additional 

considerations will be to specifically modify the algorithm to account for phasic alterations in the 

spike train associated with, for example, movement. 

 

The presented algorithm could provide a much needed automated and universally accepted 

neuronal pattern discriminatory method. As such, the algorithm could importantly advance 

comparisons of data between laboratories studying similar and different pathological conditions 

or investigating different species and animal models; for example comparing data from rodents 

with data collected from more restrictive investigations in humans. Also, the application of the 

present algorithm and its component metrics can be extended to provide more detailed insight 

into numerous aspects of complex signaling. For instance, because the regularity metric and its 

components linearly follow the level of irregularity (as was shown in fig 3.6), these metrics can 

be used to determine whether a particular nucleus contains a single versus two or more distinct 
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neuronal populations or alternatively, a continuous spectrum of discharge types. Additionally, 

identified bursty neuronal populations can be further sub-categorized based on the mean BO of 

the neuron, burst rate, inter-burst, and intra-burst properties. Further, the regularity metric and 

corruption metric can be used to define localized variations in signaling and thereby help to 

characterize changes in signaling related to salient biological features. 
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CHAPTER 4 

PRESERVED DICHOTOMY BUT HIGHLY IRREGULAR AND BURST DISCHARGE 

IN THE  

BASAL GANGLIA IN ALERT DYSTONIC RATS AT REST 

 

 

4.1. INTRODUCTION 

Dystonia is a devastating condition characterized by ineffective, twisting movements, prolonged 

co-contractions, and contorted postures (Kernich, 2003). Despite its prevalence, the etiology for 

two-thirds of dystonia cases is not known and the underlying pathophysiology remains poorly 

understood. Although some investigators suggest a role for the cerebellum, most evidence from 

strokes (Münchau et al., 2000), from microelectrode recording studies in humans undergoing 

globus pallidus internus (GPi) ablation or deep brain stimulation (DBS) surgery (Vitek et al., 

1999) (Lenz et al., 1999) (Zhuang,  Li and  Hallett, 2004) (Starr et al., 2005), and in animal 

models of dystonia (Chiken,  Shashidharan and  Nambu, 2008) (Nambu et al., 2011) (Baron et 

al., 2011) (Richter and Loscher, 1993) (Loscher et al., 1989) suggest a principal role of the basal 

ganglia in most forms of dystonia. Compared to normal monkeys, neuronal discharge activity in 

the GP externus (GPe), subthalamic nucleus (STN) and GPi in humans with dystonia shows 

reduced rates and prominent discharge irregularity (Lozano et al., 1997) (Zhuang,  Li 

and  Hallett, 2004) (Vitek et al., 1999). In one study (Zhuang,  Li and  Hallett, 2004), 

approximately 80% of neurons in GPe and STN were found to show irregular and grouped 

discharge activity with intermittent pauses and low frequency burst activity. Comparable 

abnormal alterations have also been reported in GPi in humans with dystonia relative to the 
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discharge characteristics in normal monkeys (Hashimoto, 2000) (Lenz et al., 1999) (Lozano 

1997) (Zhuang,  Li and  Hallett, 2004). Although specific alterations in basal ganglia neuronal 

discharge activity are likely to account for most of the characteristic motor features of dystonia, 

to date, the abnormally patterned discharge activity has not yet been systematically 

investigated in animal models of dystonia.  

 

The present study was designed to define and compare single cell activity in GP (rodent 

equivalent of GPe), STN, and the entopeduncular nucleus (EP, rodent equivalent of GPi) in alert, 

head restrained jaundiced dystonic Gunn rats (Chaniary et al., 2009) and healthy control rats at 

rest. Although normal and abnormally patterned basal ganglia discharge activity have been 

described previously in many rodent studies, these reports were regularly compromised by a 

number of technical limitations, including the frequent use of anesthesia, infrequent control for 

the influence of movement in alert animals, and inadequate methodology to effectively 

differentiate different types of neurons. A novel multiple metric optimization neuronal classifier 

based on a representative large set of simulated spike trains was developed previously. 

Subsequently, a subset of the data from the present study, along with diverse representative 

neuronal recordings from the cerebral cortex, hippocampus and thalamus, were used to validate 

the algorithm (Kumbhare and Baron, 2015). The new algorithm as described in chapter 3, in 

turn, was used here to classify an extensive normal and dystonic neuronal pool in GP, STN and 

EP as regular, irregular, or burst predominant. 

 

While DBS surgery is highly beneficial for treating primary dystonias, the surgery is largely 

ineffective for most secondary forms of dystonia, including kernicterus and thus, alternative 
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mechanistic based strategies for reversing the underlying pathophysiology are critically needed. 

Presently, It’s been postulated that definable changes in neuronal rates and, in particular, in 

patterned discharge activity, in GP, STN and EP would correlate with the severity of dystonia.  

 

4.2. EXPERIMENTAL PROCEDURES 

4.2.1. Animals and induction of dystonia. 

A total of 34 juvenile non-carriers and non-jaundiced heterozygous (Jj) Wister rats, affirmed as 

clinically normal, were used for control studies. A total of 65 juvenile homozygous (jj) Wister 

Gunn rats were used to generate the dystonia model (Byers, Paine and and Crothers, 1955) 

(Perlstein, 1960) (Günay, Edgerton and Jaeger, 2008) (Volpe, 2008). The induction, clinical, and 

EMG features of the dystonia model have been described previously (Chaniary et al., 2008) 

(Chaniary et al., 2009) (Shaia & Shapiro, 2002). The jaundiced Gunn rat is a well-established 

clinical and pathological model which closely resembles human kernicterus (Byers, Paine and 

Crothers, 1955) (Perlstein, 1960) (Volpe, 2008). Gunn rats are genetically deficient of UDP 

glucuronosyl transferase, the principal liver enzyme responsible for bilirubin clearance. 

Homozygous recessive (jj) pups appear normal apart from being jaundiced in the first weeks of 

life. Free unbound bilirubin blood levels are highest at 16–17 days of age when levels of blood 

albumin, which binds bilirubin and normally keeps it out of brain, are relatively low (Schutta and 

Johnson, 1969). At 16 days of age, the animals received an intraperitoneal injection of 

sulfonamide (100 mg/kg) to displace bilirubin from albumin, allowing appreciable quantities of 

bilirubin to cross the blood-brain barrier (Diamond and Schmid, 1966) (Diamond and Schmid, 

1968). The rats became prominently dystonic within minutes to hours after injection. Of these 

animals, 25 developed very mild to moderate generalized dystonia and comprised the 
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experimental group. Of the remaining animals, 14 were severely affected and did not survive the 

acute bilirubin encephalopathy, 10 with a clinical score (CS) > 3.5 (described below) were 

deemed too weak to survive the surgery, 9 were unaffected and not further studied, and 7 

spontaneously recovered from the dystonia and were not included in this study. The experimental 

group was compared with homozygous jj controls given saline and heterozygous Nj controls 

given either sulfonamide or saline. All experiments were approved and monitored by the Hunter 

Holmes McGuire Veterans Affairs Institutional Animal Care and Use Committee (IACUC) and 

performed in accordance with regulatory guidelines. 

 

4.2.2. Scoring of dystonia and EMG recordings 

The behavior of the animals was subjectively assessed daily and a CS between 0 and 5 was 

assigned on the day of surgery based on the severity of the movement disorder (0 – normal, 1 – 

slight limb dystonia and gait abnormality, 2 – mild limb dystonia and gait abnormality and a 

prolonged righting reflex, 3 – moderate limb dystonia and gait abnormality and an impaired 

righting reflex, 4 – severe dystonia with failure of ambulation and no righting reflex, and 5 – 

moribund, including seizures and agonal respiration (Chaniary et al., 2008) (Chaniary et al., 

2009). For scores midway between categories, 0.5 was added. The animals were also video 

recorded while ambulating in a Plexiglass box with gridlines and hindlimb paw spread was later 

determined as an objective measure of the severity of the dystonia (Chaniary et al., 2009). 

Additionally, EMGs were recorded from surgically implanted thin Teflon coated (50 μm bare, 

110 μm coated) stainless steel wires (A-M systems, Carlsborg, WA, USA) in hip and stifle 

(‘knee’) antagonist muscle pairs and monitored on and off-line for evidence of movement of the 
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animal and for objective confirmation of dystonia and its severity. Due to frequent technical 

issues with maintaining the wires, EMGs were variably recorded from 0-4 muscles. 

 

4.2.3. Surgery 

Surgeries were carried out under 1.5-4% general isoflurane anesthesia (with 1 L/min O2) on day 

30-47. Throughout the surgery, the body temperature was maintained at 35 ± 1 oC with a 

regulatory heating pad and respiratory rate was constantly checked using an audio monitor. 

Ophthalmic ointment was applied to protect the eyes. The head and hip area were shaved and 

disinfected using Betadine scrub solution.  After the animal was draped, an incision was made 

along the sagittal plane of the head using sterile techniques. The exposed area of the skull was 

thoroughly cleaned and dried to assure no soft tissue or fluid covered the site of implantation. A 

custom stainless steel head fixture was firmly secured to the animal’s skull using miniature 

screws positioned just below the ridges of the parietal bone of the skull. The fixture was further 

secured using epoxy to seal the bone-fixture interface. Relevant hindlimb muscles were 

surgically exposed and Teflon coated 50 μm stainless steel fine wire electrodes (A-M systems, 

Carlsborg, WA) were inserted via a 30 gauge needle and sutured into antagonistic hip muscles, 

the gluteus superficialis (hip flexion) and the gluteus medius (hip extension) (Chaniary et al., 

2008). To assure correct placement of the wires, the wires were stimulated electrically (Grass 

Technologies, West Warwick, RI, USA) and the expected hindlimb responses verified. The 

EMG wires were tunneled together subcutaneously and passed through the opening over the 

skull and then soldered to a micro-circuit board. The board in turn was secured to a removable 

Teflon cap, which covered the head holder in-between experiments and was secured to the 

stereotaxic apparatus during the recording sessions. The incision was sutured and cleaned with 
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3% hydrogen peroxide solution. Local anesthetic, bupivacaine (0.1-0.55 ml) was injected into the 

incision. The analgesic, buprenorphine (0.25-1.6 mg/kg, i.p.) was administered prior to 

discontinuing the isoflurane. After the surgery and subsequent recording sessions, the head 

fixture chamber was filled with saline and sealed using a plastic cap holder. After the initial 

surgery, the animal was returned to its cage and allowed 24 h for recovery. No overt signs of 

stress, pain or change in behavior were evident after implantation of the head fixture. 

 

Generally, the following day, the rat’s head was immobilized by clamping the head fixture into a 

custom stereotaxic positioner (Chaniary, et al., 2011). A dial test indicator (Chaniary, et al., 

2011) was used for precise positioning and alignment of the skull. Under isoflurane anesthesia, a 

3.5 mm burr hole, centered at 2 mm caudal and 1.5 mm lateral to the bregma reference point, 

was drilled into the skull exposing the underlying dura mater, targeting the hemisphere 

contralateral to the study hindlimb. Buprenorphine (0.25-1.6mg/kg, i.p.) was administered prior 

to discontinuing the isoflurane. In most rats, after 30-50 min., allowing for full behavioral 

recovery from effects of anesthesia, neuronal recording sessions were initiated with additional 

substantial time transpiring during initial target delineation prior to data collection. The animals 

all appeared fully alert during the subsequent neuronal recordings, requiring brief interruptions 

of data collection during periods of motor activity. However, to control for potential residual 

drug effects and a lack of acclimation to the head restraint, the recording sessions were delayed 

for ~48 hrs after placement of the burr holes in two non-carrier rats, during which time the rats 

underwent 2-3 hrs/ day of acclimation to head restraint. All rats were regularly monitored for 

apparent signs of pain, discomfort or altered sensorium following the surgery and during and 

after the recording sessions. 
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4.2.4. Neurophysiological Recordings 

A mini-xyz microelectrode manipulator (Thomas RECORDING GmbH, Giese, Germany) was 

mounted onto a KOPF stereotactic arm. The posterior-lateral motor territories of GP, STN and 

EP based on findings in primates (Baron et al., 2002) were specifically targeted from online 

assessment of relations between neuronal discharge and active and passive limb movements and 

offline correlations between neuronal discharge and EMG activity. GP was chiefly targeted with 

a 10-15° medial-to-lateral approach in the coronal plane, while the STN and EP were mostly 

targeted with a 10-15° anterior-to-posterior approach in the sagittal plane (fig 4.1a). Extracellular 

neuronal activity was recorded using high impedance (1-2 MΩ), 100 μm Thomas RECORDING 

quartz-platinum microelectrodes. The location and firing patterns of cells and the borders of 

encountered nuclei along each microelectrode track were plotted (fig 4.1b) and transparencies 

generated from sections of the Paxinos and Watson atlas (Paxinos and Watson, 1982) were 

superimposed upon these plots. Each nucleus was identified by the electrode depth position (fig 

4.1a-c) and characteristic neuronal firing patterns. For instance, although STN and EP showed 

similar discharge patterns, STN generally shows greater background activity and appreciably 

greater probability of encountering more than one neuron on a single microelectrode due to its 

comparatively higher neuronal density. Additional landmarks, including the optic track, internal 

capsule and length of cortex, thalamus, striatum and hippocampus, were used to precisely locate 

the targeted nuclei and specifically, their posterior-lateral regions. To reduce potential effects 

from damage due electrode passage, the number of penetrations was generally limited to 4-5 

tracks per rat.  
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Fig. 4.1. Planning and plotting of recording tracks and histological reconstruction. (a) Illustrated is an example 
of STN targeting from one of the study experiments using custom programmed 3-D representations. The targeted 
electrode track (red line) depicts an appropriate planned trajectory for the initial microelectrode (using brain surface 
coordinates for microelectrode entrance, lateral = 2.9, posterior = 1.6, sagittal angle = 150. (b) Shown is the 
laboratory notebook plots of the two actual recording tracks, including designation of encountered nuclei. Each 
encountered neuron and its location are separately detailed in the notebook (not shown). (c) The tracks were 
subsequently superimposed on the Paxinos and Watson atlas (Paxinos and Watson, 1982) very close to their initial 
planned trajectories within the targeted motor territory of STN (at lateral 2.9 mm). (d) The histological silver stained 
sagittal reconstructions affirmed the illustrated microelectrode tracks to be accurately plotted during the recording 
sessions. 
 

The recorded neuronal activity was displayed over an oscilloscope screen (Hameg Instruments, 

Mainhausen, Germany) and connected to an audio amplifier for aural monitoring of the signal. 

Neuronal spike activity was collected for a minimum of 120 sec at a sampling rate of 40 kHz and 

amplified and band pass filtered (gain = 50, bandwidth 0.07-8 kHz) using Sort Client 3.2.4 

(Plexon Inc., Dallas, TX). Quality of neuronal isolation was continuously monitored online using 

Sort Client. The animals and EMGs were continuously monitored to assure that the animals were 

fully alert but not moving during data collection. Data collection was interrupted in the event of 

detected movement or changing background activity, most frequently indicating undetected 
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chewing movements. Any recorded movement epics were separated and not considered for the 

present further analyses.  

 

The animal was intermittently hydrated and fed during the recording sessions. A laboratory 

veterinarian technician constantly monitored the rat during the entire experiment for apparent 

movement, agitation or change in level of alertness. The animals for the most part rested 

comfortably with occasional grooming movements, without signs of agitation or sleepiness 

throughout the 2-3 hour recording sessions. Infrequently, when a rat displayed excessive 

movement, recording sessions were terminated early and the rat was released and returned to 

cage. Only infrequently, recordings were carried out on a second day. In such cases, typically the 

rat was briefly anaesthetized and the dura mater was superficially scraped. Subsequently, 

Buprenorphine (0.25 mg/kg, i.p.) was administered prior to discontinuing the anesthesia. After 

the recording session, the animals consistently exhibited normal behavior (grooming, exploring 

naturally and eating) immediately after they were released into the gait assessment apparatus or 

cage, indicating showing no signs of overt distress, excessive sleepiness, or gait disturbances (in 

normal animals). 

 

4.2.5. Histology 

At the completion of the experiments, the rats were euthanized with pentobarbital (0.1 ml, 390 

mg/ml i.p.) and immediately perfused via the ascending aorta with 200 ml of saline followed by 

200 ml of 10% formalin. After fixation, the brains were frozen, blocked in the parasagittal plane, 

sliced in 50 μm sections on a cryostat, and alternate sections were silver stained (FD 

NeuroSilverTM kit II, FD Neurotechnologies, Ins.). Silver staining (fig 4.1d) permitted excellent 
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post-mortem visualization of the microelectrode tracks. The location of recorded neurons were 

then affirmed by identifying the location of the microelectrode tracks with the use of the Paxinos 

and Watson atlas and comparing these findings to that determined during the physiological 

recording experiments. 

 

4.2.6. Spike Detection and Offline Sorting 

The discharge spikes were extracted online via manual amplitude thresholding of continuous 

signals during the recordings and saved for offline spike sorting (fig 2.7) in MATLAB R2012a 

and Offline Sorter V 3.2.4, Plexon Inc. For more details please refer to section 2.2.2(a)  

EMG signals were pre-processed and decomposed as described previously (Chaniary et al., 

2008). Since the focus of the present manuscript was on analyzing neuronal activity during rest, 

the EMGs were used here (off- and online) chiefly to discard any movement epics from the 

analysis.   

 
4.2.7. Pattern Discrimination and Classification 

The spike rasters generated from the spike sorting were initially pre-analyzed by inspection of 

their mean waveforms and ISI histograms (fig 4.4 middle and bottom row). Spike trains were 

rejected if more than 5% of the ISIs were less than the absolute refractory period (2 ms) or the 

variance in the waveform shape were abnormally high. Subsequently, all adequate spike raster 

were subjected to the novel pattern discrimination algorithm. The formulation of the spike 

pattern discrimination algorithm and support for its accuracy were detailed in a previous 

manuscript (Kumbhare and Baron, 2015). Briefly, in order to characterize neurons into the three 

basic discharge patterns (regular, irregular and bursty), it is necessary to define three main 

features in the spike trains: Poissonian irregularity, burstiness and non-stationarity. The first two 
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features classify the spike trains and the third feature describes the level of noise and non-

stationarity in the signal. The discrimination algorithm was developed utilizing multiple metric 

optimizations (MMO), which combines the weighted values of various discriminating metrics 

into new metrics that act as proxy metrics for each of the above three features. Local ISI 

variables (CV2, the coefficient of variation for a sequence of two ISIs; IR, the difference of the 

log of two adjacent ISIs, and LVr, local variables with refractory period information) are 

combined to form a new “irregularity metric” which distinguishes regular from non-regular 

trains. Novel burst percentage (BP), burst tendency (BT) and burst entropy (BE) metrics define 

the burst content in the spike train and are combined to generate “burstiness metric”. Lastly, as 

Fano factor (FF) and Alan factor (AF) were affirmed to be effective and complementary 

indicators of non-stationarity, a “corruption metric” was generated upon weighting these two 

metrics. The assigned statistical weights of each of these metrics were determined from 

generalized linear model (GLM) regression using normal distributions on a large training data 

set. The final three proxy metrics are described in EQ (3.8)*, (3.9) and (3.10) 

*redesignated ‘irregularity’ rather than ‘regularity’ for clarity. 

 

After calculating the tri-component values for each spike train, these data were plotted in a 3-D 

feature space. K-mean clustering (Macqueen, 1967), an unsupervised learning algorithm, was 

subsequently implemented as follows: 1) standard spike train simulations generated in the prior 

study (Kumbhare and Baron, 2015) served as the initial group centroids for clustering, 2) based 

upon the closest Euclidean distance from the group centroids, the neuronal recording data were 

assigned distinct clusters of firing patterns, 3) when all the observations were assigned, the 
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positions of the cluster centroids were recalculated, and 4) lastly, the object assignment and 

centroid re-calculations were repeated until the centroids were fixed at their position. 

 

4.2.8. Further characterization of spike trains and correlation analyses 

Burst detection and characterization: For each bursty neuron, individual burst epochs were 

delineated using the interval method, implementing the following previously established criteria 

(Baron et al., 2011) (Kumbhare and Baron, 2015): Maximum interval to start burst = 6 ms, 

maximum interval to end burst = 9 ms, minimum interval between bursts = 20 ms, minimum 

duration of burst = 5 ms, and minimum number of spikes in a burst = 3. Subsequently, the 

following parameters were defined: burst rate (or bursts per minute (BPM)), burst percentage 

(BP, percentage of spikes in bursts), intra-burst spike frequency, mean inter-burst interval, and 

burst order (BO, average number of spikes per burst). 

Pause Detection: Pauses in neuronal discharge activity were defined based on following 

criteria: ISI duration > 300 ms, one spike only for duration > 500 ms, or ISIs > 25 times the 

median interspike interval of the cell (Ko, et al., 2013) (Elias, et al., 2007).  

Stationarity test: In addition to generating non-stationarity metric values, an additional 

stationarity test was employed to further address potential changes in rate or pattern activity 

(Tuckwell, 1989). Long stable spike recording periods of 15-20 min. during which the rat 

remained completely at rest were assessed here. Smoothened firing rate and regularity curves 

were plotted (bin size = 500 ms) to detect any significant transients or changes. 

Oscillation trends: To assess for oscillatory activity, autocorrelations and power spectrums 

were determined for the spike trains using a bin size of 1/2*maximum frequency. The time axes 

were divided into small intervals and power spectrums for each interval were calculated. 
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Correlations with severity of dystonia: Effected animals were readily grouped into those with 

milder and those with more prominent dystonia. As such, to assess for correlations between the 

neuronal discharge activity and the severity of dystonia, affected rats were divided into two 

groups: ‘dyst-1’: CS 1-2 and ‘dyst-2’: CS 2.5-4. Also for purposes of assessing neuronal 

correlations of dystonia, neuronal recording data from normal animals (‘dyst-0’) were utilized 

here for control data. 

 

4.2.9. Statistics 

Statistical analyses were performed using MATLAB. Indifference between means of 

characteristic metrics of the two phenotypically similar groups (non-carriers and non-jaundiced 

heterozygous Gunn rats) and between different recording conditions were assessed with two one-

sided tests (TOSTs) for equivalence (Schuirmann, 1987) (Wellek, 2010). The mean values were 

considered to be significantly equivalent (α = 0.05) if the 90% confidence interval was within the 

defined zone of indifference (± 5 spikes/sec for discharge rates and ± 0.2 for the tri-components). 

The presence of unimodality versus bimodality was assessed using biomodality coefficient (BC) 

(Ellison, 1987) and Hartigan’s dip statistics (HDS) (Hartigan and Hartigan, 1985). Values of BC 

> 5/9 implies a bimodal or multimodal distribution. Similarly, HDS values < 0.05 indicate 

significant bimodality, with values 0.05-0.10 suggesting bimodality with marginal significance. 

Differences in population distributions within the same and between different groups (nuclei, 

neuronal types, or dystonia level) were assessed with one and two sample t-Tests. Difference 

between means of discharge rates, tri-component metrics, and burst parameters between groups 

were assessed using independent two sample t-Tests. Differences were determined to be 
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statistically significant for p values less than 0.05. Significance is designated in the tables and 

figures as follows: *p < 0.05, **p < 0.01, ***p < 0.005, ****p < 0.001. 

 

4.3. RESULTS 

4.3.1. Clinical characteristics of dystonic animals 

Table 4.1 summarizes the clinical features of the animals. Of 49 dystonic animals, 7 rats were 

subjectively scored as slight to mildly dystonic (dyst-1) and 18 as moderate (dyst-2) and together 

compromised the dystonic recording cohort. The remaining 24 dystonic rats were severely 

affected (dyst-3) and either died or were considered too moribund to tolerate the surgery. EMG 

recordings from hip and stifle muscles in all rats were silent at rest and exclusively, in dystonic 

rats, showed characteristic 4-7 Hz co-activation of antagonistic muscle pairs during spontaneous 

movement (Chaniary et al., 2008). 

 

Table 4.1. Summary of clinical characteristics and data collection 
Groupings Dyst-0 Dyst-1 Dyst-2 Dyst-3 

Number of rats 34 7 18 24 

Dystonia severity None Slight to mild Moderate Severe 

Gait Normal gait Mild gait 
abnormality 

Prominent spread 
of hindlimbs 

Moribund with 
inability to ambulate 

Righting reflex Normal Prolonged Impaired Absent 

Final clinical score 
(mean + SD (range)) 0 1.2 + 0.2D0*** 

(1-2)  
2.8 + 0.3D0&D1***   

(2.5-3) 
4.0 + 0.33D0,D1&D2*** 

(3.5-5) 

EMG during limb 
movement 

No co-
contractions 

Occasional co-
contractions in 

antagonistic muscle 
pairs 

Frequent co-
contractions of 
antagonist pairs 
and multi-joint  

NA 

Hind paw spread 
(mm) 35.4 ± 3.7 40.2 ± 2.3D0*** 47.2 ± 4.6D0&D1*** NA 
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Mean number of 
nuclei (GP, STN, EP) 

recorded per rat 
1.6 + 0.3 1.9 + 0.2 1.3 + 0.2 NA 

Number of 
analyzable neurons 344 70 184 NA 

  

*p < 0.05, **p < 0.01, ***p < 0.005, ****p < 0.001 (for all figures and tables). 
 
D0, D1, D2denote significant differences from dyst-0, dyst-1, and dyst-2 groups, respectively. 
 

 

 
 Table 4.2. Patterned activity of neurons  

Pattern GP  STN EP 

 Normal  Dyst-1 Dyst-2 Normal Dyst-1 Dyst-2 Normal Dyst-1 Dyst-2 

Total 122 31 70 102 13 42 120 26 72 

Regular 68 (55.7%) 1 (0.03%) 2 (0.03%) 51 (50.0%) 0  0 64 (53.3%) 1 (0.04%) 0 

Irregular 51 (41.8.7%) 20(64.5%)  31 (44.3%) 46 (45.1%) 7 (53.8%) 23 (54.7%) 54 (45%) 17 (65.3%)  36 (50%) 

Bursty 1 (0.01%) 9 (29.0%) I* 36 (51.4%) D1* 1 (0.01%) 6 (46.1%) 19 (45.2%) 0 7 (26.9%) I* 31 (43%) 

Non-stationary 2 (0.02%) 1(0.03%) 1 (0.03%) 4 (0.04%) 0 0 2 (0.02%) 1 (0.04%) 5(0.07%) 
 

Data expressed as number of neurons and values in parenthesis represent population percentage in the nuclei.  
D1denotes significant differences compared to dyst-1, Icompared to irregular populations of the same nuclei. 

 

4.3.2. Assessment for influences of strains of rats and recording conditions. 

The two clinically normal groups, non-carriers (n = 15) and non-jaundiced heterozygous Gunn 

rats (n = 19), showed equivalent pattern metrics (irregularity, burstiness and corruption) and 

mean rates (all p < 0.05, two one-sided test for equivalency). After affirming that these neuronal 

properties were indistinguishable between these two groups, the data were combined for further 

analyses. Additionally, neuronal spike trains (n = 19) collected in GP in two drug free, non-

jaundiced heterozygous Gunn rats after acclimating them to the head restraint for 2-3 hrs per day 

for 2 days were compared to GP recordings (n = 103) collected under the standard protocol of 

recording beginning 2-3 hrs after placement of burr holes under brief general anesthesia and 2-3 

hrs after buprenorphine administration. The tri-component mean values and mean rates were 
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equivalent between both testing conditions (each p < 0.05, two one-sided test for equivalency), 

thereby supporting a lack of significant influence of drugs or head restraint on the neuronal 

recordings. These data were thus combined for further analyses. 

 

4.3.3. Distinctive neuronal dichotomy in normal and dystonic rats. 

Tri-component metrics histograms. In total, in the three basal ganglia nuclei, 344 neurons were 

recorded in 34 normal rats and 254 neurons in 25 dystonic rats (Tables 4.1 and 4.2). In normal 

and dystonic alert rats at rest, all three nuclei showed two physiologically distinct neuronal 

populations, with modest differences between nuclei (fig 4.2a-f). However, the neuronal 

properties differed markedly between normal and dystonic rats. In normal rats, the bimodalities 

of the three nuclei were apparent in the regularity spectrums (fig 4.2a; bimodality coefficient, 

BC: GP = 0.786, STN = 0.763, EP = 0.803; Hartigan’s dip statistics (HDS): GP = 0.033, STN = 

0.030, EP = 0.036, with each HDS, p < 0.05), while in dystonic rats, the bimodalities were 

revealed by the burstiness spectrums (fig 4.2e,f; dyst-1: BC: GP = 0.687, STN = 0.609, EP = 

0.677; dyst-2: BC: GP = 0.792, STN = 0.777, EP = 0.806; HDS: each p < 0.05). While the 

normals had left-sided unimodal thin-tailed burstiness histograms indicating a scarcity of burst 

firing in these nuclei (fig 4.2d), the dystonics showed right-sided regularity distributions 

indicating a scarcity of regular tonic units (fig 4.2b,c). 

 

K-mean clustering and additional pattern characterizations. Using K-mean clustering, the tri-

component classifier grouped the combined normal rat populations into two distinct categories 

(fig 4.3a): 1) moderately fast and regular (38.1 ± 16.7 spikes/sec) and 2) slow and irregular (18.7 

± 7.9 spikes/sec). In individual nuclei, the numbers of regular tonic units exceeded irregularly 
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patterned neurons, but these differences did not reach significance (GP = 15.7%, p = 0.107; STN 

= 4.9%, p = 0.612; EP = 8.3%, p = 0.359). 

 In marked difference, in dystonic rats, regardless of clinical severity (fig 4.3b,c), neurons in 

all three nuclei were characterized as 1) slow and irregular (12.4 ± 6.4 spikes/sec) or 2) slow and 

bursty (14.8 ± 7.5 spikes/sec). Accordingly, large differences in mean burstiness metric values 

were evident between irregular and bursty neuronal populations in all three nuclei (0.03-0.17 vs. 

0.87-0.95, each p < 0.05) in dystonics. The total burst percentage (BP) for bursty neurons was 

greater than 42% in all three nuclei vs less than 8% in the irregular dystonic populations (each p 

< 0.05). None of 23 bursty neurons in dyst-1 and 3/86 in dyst-2 rats showed oscillatory activity. 

None of these oscillatory neurons showed a dominant peak in their power spectra to indicate 

rhythmic discharge activity. No neurons in dystonic or normal rats exhibited significant pauses. 
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Fig. 4.2. Tri-component metrics histograms for GP, STN and EP grouped by severity of dystonia. Top row: 
(a) in normal (dyst-0) rats, distinct bimodalities in the regularity spectrums define two different populations (HDS 
all p < 0.05). In distinction from normal rats, in (b) slight to mild (dyst-1) and (c) moderately dystonic (dyst-2) rats, 
most units show relatively large irregularity values, indicating a scarcity of regular tonic units. Middle row: (d) in 
normal rats, the leftward short-tailed burstiness distributions indicate a paucity of normal burstiness in resting rats in 
all 3 nuclei. In contrast, in dystonic rats, (e,f), distinct bimodalities in the burstiness spectrums define two different 
populations (HDS all p < 0.05), with the level of burstiness increasing with increasing severity of dystonia. Bottom 
row: leftward, short-tailed corruption metric distributions (g-i) indicate that the discharge properties of these 
neurons are highly stationary without appreciable change in discharge patterns over time, supporting a true 
physiological bimodality in these nuclei in normal and dystonic rats in the alert resting state. 
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Fig. 4.3.  K-mean clustering and rate distributions in 3D feature space.  (a) In normal rats, the grouped neurons 
(GP, EP and STN) can be seen to be chiefly 1) moderately fast and regular or 2) slower and irregular, while (b,c) in 
dystonic rats, the neurons are overall abnormally slow and 1) highly irregular or 2) bursty. Because the semi-
automated 3D K-mean clustering method simultaneously uses three independent metric properties to classify 
neuronal populations based on closest distance from adaptive group centroids (and not specific thresholds), modest 
overlap in single discriminatory metric spectrums is apparent. 
 

Support for two distinct neuronal populations. Frequent simultaneous recordings of two distinct 

neuronal units from the same microelectrode (e.g., regular and slower irregular neurons in 

normal rats, fig 4.4) support the unlikelihood that the two defined neuronal patterns represent 

different behavioral conditions or levels of alertness or that the two types of neurons are spatially 

dispersed in the nuclei. Further, the leftward and short tailed corruption histograms (fig 4.2g-i) 

indicate low overall corruption values and that the neurons in all three nuclei in both normal and 

dystonic rats exhibited stable firing patterns without appreciable change in their characteristic 

firing patterns over time. Additionally, during longer recordings of 15-20 min from 

representative neurons (n = 6), the patterns and mean rates continued to remain fully stable 

(maximum deviation from mean value: instantaneous rate < 5 spikes/ sec and irregularity < 0.2) 

in alert rats at rest (fig 2.7). 

Refer to Table 4.2 for a summary of the distribution of recorded neurons for each nuclei 

separated by severity of dystonia (dyst-0, dyst-1 vs dyst-2), to Table 4.3 for the details on 

discharge rates, and to fig 4.5 for examples of the characteristic discharge patterns, along with 

grouped interspike interval (ISI) histograms. 
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Fig. 4.4 Representative spike raters in normal and dystonic rats at rest. The figures illustrate two examples of spike 
rasters for each of the two principal types of neurons observed in each nucleus in normal and dystonic rats. (a) As 
evident from the raster profiles and ISI histograms, neurons recorded from the motor territories of GP, STN, and EP 
in normal alert, resting states were characterized by either moderately fast and regular or slow and irregular 
discharge activity, without appreciable bursting. (b) In contrast, in dystonic animals, neurons can be seen to 
discharge slowly in either an irregular or bursty pattern, with modest differences between nuclei. 
 

4.3.4. Comparisons between nuclei and influence of severity of dystonia  

Population distributions. In dyst-1 rats, GP and EP showed greater numbers of irregulars than 

bursty neurons (both GP and EP, p < 0.05; Table 4.2). In STN, the number of recorded neurons 

in dyst-1 rats was insufficient to adequately assess for potential similar differences (p = 0.785). 

In contrast, in dyst-2 rats, irregular and bursty neurons were distributed in comparable numbers 

in each nucleus (each p > 0.539). Among dystonic rats, 29% of neurons in GP, 46% in STN, and 

27% in EP were classified as bursty in dyst-1 rats compared to 51%, 45%, and 43%, respectively 

in dyst-2 rats (Table 4.2), with differences reaching significance in GP (p < 0.05), but not in EP 

(p = 0.152) and STN (p = 0.955). 

 

Rates. In normal rats, mean discharge rates were significantly higher in GP (37.4 ± 14.8) than in 

STN (28.8 ± 14.4, p < 0.001) and EP (32.0 ± 14.3, p < 0.005), with no differences between STN 

and EP (p = 0.099). The average grouped discharge rates for regular and for irregular patterned 

neurons did not differ significantly between nuclei. 

Mean discharge rates were reduced by 51.3% in GP, 44.8% in STN, and 46.8% in EP in 

dyst-1 compared to normal rats and by 64.8%, 41.6%, and 62.4%, respectively, comparing dyst-2 

to normal rats (all p < 0.001; fig 4.6a). Discharge rates were reduced by 23.8% in GP and 24.2% 

EP (both p < 0.05) in dyst-2 (av. 17-18 spikes/sec) compared to dyst-1 rats (12-13 spikes/sec), 

but did not differ in STN with increasing severity of dystonia (p = 0.321).  
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Among dyst-1 and dyst-2 rats, overall mean firing rates were significantly slower specifically 

in EP compared to STN in dyst-2 rats (by 41.6%, p < 0.01; fig 4.7a). Average discharge rates of 

irregular vs bursty neurons differed specifically in STN and EP in dyst-2 rats (dyst-1, GP, STN 

and EP: each p > 0.411; dyst-2, STN: p < 0.05, EP: p < 0.01, GP: p = 0.171; Table 4.3. Also, 

refer to fig 4.3b and c for collected rate distributions in dyst-1 and dyst-2 rats, respectively). 

 

Fig. 4.5: Stability of discharge patterns and rates during prolonged recordings. a. The regularity-time and b. 
rate-time curves of 6 representative neurons from GP, STN and EP all demonstrate highly constant properties in rats 
in a resting state (14 min displayed). The prolonged recordings support the unlikelihood that a single neuronal 
population could account for the two distinct types of neurons demonstrated here in vivo. 
 

Irregularity. In normal rats, in each nuclei, irregularity correlated strongly with discharge rates of 

regular discharging neurons (r = -0.74 to -0.82, all p < 0.001) and weakly with rates of irregular 

units (r = -0.29 to -0.35, all p < 0.001). In all three nuclei, neurons showed appreciably greater 
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overall irregularity in dyst-1 compared to normal rats (each p < 0.001; fig 4.6b). In GP and EP, 

but not in STN, neurons showed further increased irregularity in dyst-2 vs dyst-1 rats (GP: p < 

0.05, EP: p < 0.01, STN: p = 0.867). 

 

Fig. 4.6. Influence of severity of dystonia on neuronal discharge properties in GP, STN and EP. (a) Neuronal 
discharge rates were overall greatly reduced in dyst-1 compared to normal rats in all 3 nuclei, and mildly further 
reduced in GP and EP in dyst-2 compared to dyst-1 rats. (b) Neuronal discharge activity was appreciably more 
irregular in dyst-1 than normal rats, with the irregularity level in GP and EP increasing mildly in relation to 
increasing severity of dystonia. (c) With induction of dystonia, burstiness became prevalent in all 3 nuclei and was 
more prominent in GP and EP in dyst-2 vs dyst-1 rats. (d) With the induction of dystonia, non-stationarity levels 
increased, but remained within acceptable limits. Error bars indicate standard errors (for all figures). *p < 0.05, **p 
< 0.01, ***p < 0.005, ****p < 0.001 (for all figures and tables). 
 

In dyst-1 rats, no significant differences in irregularity were observed between nuclei (each p 

> 0.302; fig 4.7b). Among dyst-2 rats, neurons showed greater overall irregularity in EP than in 
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GP and STN (both p < 0.05), without significant differences between GP vs STN (p = 0.314). 

Among irregular neurons, EP alone showed significant increment in irregularity in dyst-2 

compared to dyst-1 rats (EP: p < 0.05, GP and STN: p > 0.154; fig 4.8a) and among irregular 

neurons, EP showed greater irregularity compared to STN (p < 0.01) and GP (p < 0.05) in dyst-2 

rats. 

 

Fig. 4.7. Inter-nuclei comparisons at different levels of severity of dystonia (a) EP showed significantly slower 
mean firing rates than STN in dyst-2 rats. (b) EP showed greater irregularity than GP and STN in dyst-2 rats. (c) GP 
and STN showed significantly greater burstiness than EP in both dyst-1 and dyst-2 groups. GP showed significantly 
greater overall burstiness than STN in dyst-2 rats. 

 

Burstiness. With increasing severity of dystonia, overall burstiness increased significantly in GP 

(p < 0.001) and EP (p < 0.005), but not in STN (p = 0.429; fig 4.6c). Comparing nuclei (fig 

4.7c), GP and STN showed significantly greater burstiness than EP in both dyst-1 (GP vs EP: p < 

0.005, STN vs EP: p < 0.001) and dyst-2 rats (GP vs EP: p < 0.001, STN vs EP: p < 0.01). While 

showing comparable burstiness in dyst-1 rats, GP showed greater burstiness than STN in dyst-2 

rats, attributable to the increment in burstiness in GP (GP vs STN, dyst-1: p = 0.304, dyst-2: p < 

0.05; fig 4.7c). 

 Among bursty neurons, no significant differences were evident in the level of burstiness 

between dyst-2 vs dyst-1 groups or between nuclei (fig 4.8b), except for modest greater 
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burstiness in EP than in STN in dyst-2 rats (p < 0.05; all other comparisons, p > 0.160). On the 

other hand, BP of bursty neurons was significantly greater in GP (av. 66-68%) vs STN (42-46%) 

and vs EP (49-51%; GP vs STN: p < 0.001 for both dyst-1 and dyst-2; GP vs EP: p < 0.05 for 

dyst-1 and p < 0.01 for dyst-2; table 4.4). EP bursty neurons had significantly higher BP than 

STN in dyst-2 (p < 0.05), but not in dyst-1 rats (p = 0.336). GP bursty neurons had considerably 

faster mean intra-burst discharge frequencies (av. 262-271 spikes/sec) than STN (190-241 

spikes/sec) and EP neurons (189-230 spikes/sec) in dyst-2 rats (both p < 0.001), without 

significant differences between STN and EP (p = 0.693). Burst per minute (BPM) was greater for 

bursty neurons in STN (122/min) than in GP (av. 94/min) and EP (78/min) (GP vs STN: p < 

0.05; STN vs EP: p < 0.001), while no differences were evident between GP vs EP (p = 0.154). 

The average burst order (BO) of bursty neurons was greater in GP and EP (both av. > 5 spikes 

per burst) compared to STN (av. 4 spikes per burst), with both differences p < 0.05. Average 

burst durations did not differ significantly between bursty neurons of different nuclei (p > 0.23). 

 

  Table 4.3. Resting discharge rates 

Dystonia levels Pattern GP STN EP 

Normal  Regular 41.17 ± 13.5I****  38.21 ± 18.1I****  35.22 ± 18.8I**** 

 Irregular 19.52 ± 7.4 19.01 ± 7. 4  17.07 ± 8.9 

Dyst-1 Irregular 15.25 ± 3.9 14.61 ± 6.7 13.60 ± 5.1 

 Bursty 16.85 ± 6.8 16.13 ±7.8 14.24 ± 9.2 

Dyst-2 Irregular 14.60 ± 4.3  14.49 ± 7.8 11.6 ± 6.7 

 Bursty 16.70 ± 7.4  18.84 ± 5.9 D1*I*  14.4 ± 5.3 I**   
 

Data expressed as mean discharge rate (spikes/sec) ± SD.  
D1indicates significant differences compared to dyst-1, Icompared to irregular populations of the same nuclei. 
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Fig. 4.8. Influence of increasing severity of dystonia on patterned activity in irregular and bursty neurons. 
With increasing severity of dystonia, (a) irregular neurons in EP, but not in GP and STN, were more highly 
irregular, while (b) bursty neurons in EP, STN, and GP did not show further increases in burstiness in dyst-2 
compared to dyst-1 rats. EP is modestly burstier than STN in dyst-2 rats (p < 0.05, not indicated in figure). 

 

Table 4.4. Characterization of bursty trains in GP, STN and EP in dystonic rats 

Dystonia 

Level Nuclei 

Burst percentage 

(%)  

Burst  

Order 

Burst 

Duration 

(ms) 

Mean Freq. in 

burst (spikes/sec) 

Bursts Per 

Minute  

Dyst-1  GP  68.1 ± 9.5 5.3 ± 2.2 24.2 ± 3.0 262.5 ± 57.2 109.1 ± 17.6 

 

STN 46.3 ± 10.4G*** 4.1 ± 1.8 17.3 ± 5.6 241.2 ± 52.6 108.6 ± 27.0 

 

EP 51.2 ± 16.5G* 5.3 ± 1.3 23.5 ± 3.2 230.0 ± 60.1 82.4 ± 45.7 

Dyst-2 GP 65.7 ± 29.0 5.7 ± 1.6 21.1 ± 7.9 271.4 ± 42.1 93.7 ± 53.1 

 

STN 41.8 ± 5.7G*** 3.8 ± 0.7G* 20.2 ± 5.8 190.0 ± 45.4G*** 122.0 ± 28.8G* 

 

EP 48.6 ± 11.0G**S* 5.3 ± 1.2S* 28.3 ± 6.6 189.3 ± 56.1G*** 78.2  ± 29.1S*** 

 
Gdenotes significance compared to GP, Scompared to STN, and Ecompared to EP. 
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4.3.5. Histology 

Silver stain reconstructions of recording tracks affirmed that the microelectrode tracks were 

localized within the targeted lateral half (purported motor regions) of GP, STN and EP. Fig 4.1d 

shows examples of two silver stained recording tracks traversing STN. 

 

4.4. DISCUSSION 

Due to such influences as anesthesia and inadequate control for movement in previous in vivo 

recording studies in rodents, the numbers of types and physiological characteristics of neurons 

in GP, STN, and EP has been controversial. While many in vitro physiological recording studies 

in rats suggested that GP is comprised of two types of neurons (Nambu and Llinaś, 1994) 

(Cooper and Stanford, 2000) (Urbain et al., 2000) (Bugaysen et al., 2010), equally many studies 

suggested that GP contains a single type of neuron (Chan et al., 2004) (Chan, et al., 2011) 

(Hashimoto and Kita, 2006) (Günay, Edgerton and Jaeger, 2008). In distinction, previous studies 

carried out in vivo largely revealed two distinct principal neuronal discharge patterns in GP 

(Mallet et al., 2012) (Benhamou et al., 2012). In STN, recording studies performed utilizing 

anesthesia had chiefly suggested STN to be comprised of a single population of neurons in rats 

(Hammond and Yelnik, 1983) (Hollerman and Grace, 1992) (Magill, Bolam and Bevan, 2000) 

(Kita, Chang and Kitai, 1983). Urbain et al. (Urbain et al., 2000) recorded in unanesthetized rats 

and also observed a single homogenous population of neurons in STN under varying levels of 

alertness. In difference from most in vivo descriptions in primates, anatomical and in vitro 

studies in rats and primates have largely suggested that EP and GPi are comprised of two distinct 

types of neurons (Tokuno et al., 1988) (Parent, 2001) (Nakanishi, Kita and Kitai, 1990). In the 
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only previous investigation of EP performed without anesthesia (Benhamou and Cohen, 2014), 

neurons were characterized in freely moving rats by a single irregular discharge pattern. 

 

Presently, extracellular neuronal discharge activity was recorded from motor territories of GP, 

STN and EP in jaundiced dystonic Gunn rats and compared with that of normal rats under 

similar well-controlled, alert resting states without movement. Using  the novel pattern 

classification algorithm, neuronal activity was defined by two dominant discharge patterns, 

which were similar for the three nuclei, but markedly differed between normal and dystonic 

conditions. In normal rats, neuronal activity in the three nuclei was heralded by moderately fast 

and regular (av. 35-41 spikes/sec) or slow and irregular (av. 17-20 spikes/sec) discharge activity 

compared to generally slower and highly irregular (av. 12-15 spikes/sec) or burst predominant 

(av. 14-17 spikes/sec) activity in dystonic rats. Burstiness was not a characteristic of neurons in 

normal rats at rest, while regular tonic discharge activity was not a feature of even mildly 

dystonic animals. Also, pauses in discharge activity were not a feature of neurons in normal and 

dystonic rats at rest. Further, burst neurons were largely non-oscillatory, and never rhythmical.  

Low corruption metrics values for each nucleus indicated that neuronal discharge properties 

remained stable throughout the recordings, supporting that the dichotomous patterned neurons 

represent two physiologically distinct populations. Extensive recordings from 344 neurons, each 

for at least 2 minutes and from 6 neurons for 15-20 min in the rest state affirmed that these 

neurons do not switch between the two basic discharge patterns defined in normal and dystonic 

rats. 
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The extent to which differences in intrinsic properties of neurons might contribute to the 

dichotomous in vivo grouping of neurons in the basal ganglia in rats at rest is not clear. Bugaysen 

et al. (Bugaysen et al., 2010), for instance, investigating cell-attached and whole-cell recordings, 

differentiated neurons in GP into 2 or 3 groups based on the width of action potentials and other 

cellular parameters. In contrast, Deister et al. (Deister et al., 2009) observed GP neurons in vitro 

to show the full spectrum from fast regular to slow irregular discharge firing over prolonged 

recordings. A harmonious explanation could be that GP, as well as EP and STN neurons have the 

capability of discharging from a spectrum of slower and irregular to faster and regular patterned 

activity, but that different afferent inputs dictate which of these two predominant normal 

discharge patterns are displayed at rest. With, for example, motor activity, and associated cortical 

afferent drive, these neurons show additional features of movement-related bursts and pauses in 

discharge activity. 

 

Although GP, STN and EP showed similar resting discharge rates and patterns under normal and 

dystonic states, modest differences in patterned activity were evident between these 

interconnected nuclei. In dystonic rats, among irregular neurons, the discharge patterns were 

overall more irregular in EP compared to those in GP and STN, which was more evident in more 

effected (dyst-2) rats. Among bursty neurons, EP was modestly burstier than GP and STN. For 

bursty neurons, BPs were modestly greater in GP (av. 66-68%) compared to EP (49-51%) and 

STN (42-46%), while intra-burst frequencies of burst neurons in GP were considerably faster 

(av. 262-271 spikes/sec) compared to STN (190-241 spikes/sec) and EP (189-230 spikes/sec). 

BPM was however greater for bursty neurons in GP (av. 94-109/min) and STN (108-121/min) 
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than in EP (78-82/min), while BO was greater for GP and EP (both av. > 5 spikes per burst) 

compared to STN (av. 4). Average burst durations did not differ significantly between nuclei. 

 

In all 3 nuclei, marked reductions in neuronal discharge rates occurred with induction of even 

mild dystonia. With increasing severity of dystonia, discharge rates in GP and EP were further 

mildly reduced. With increasing severity of dystonia, further moderate increases in burstiness 

and more modest increases in irregularity were evident in GP and EP, but not in STN. With the 

exception of reduced mean intra-burst frequencies in STN and EP, burst properties of bursty 

neurons (BP, BPM, BO, and burst duration) did not change with increasing severity of dystonia. 

While exceedingly rare in normal rats, 32% of neurons in GP and 27% in EP were classified as 

bursty in dyst-1 rats compared to 50%, and 43%, respectively in dyst-2 rats. Therefore, the 

increases in proportions of bursty neurons with worsening dystonia could chiefly account for the 

observed increases in burstiness and irregularity in GP and EP with worsening dystonia. The 

number of neurons recorded in STN in dyst-1 rats was insufficient to adequately assess for 

potential similar increases in the percentage of bursty neurons with worsening dystonia. Because 

kernicterus is associated with a loss of neurons in these nuclei, the alterations in the ratios of 

burst to irregular neurons with worsening dystonia may represent differential vulnerability of 

these two populations to the effects of bilirubin toxicity. Although the possibility that the 

observations here represent non-pathological epiphenomena cannot be excluded, the findings of 

prominent, highly abnormal burstiness in mildly affected Gunn rats and appreciably greater 

burstiness with increasing severity of the dystonia implicate burstiness as likely to be playing a 

principal pathological role in the manifestation of dystonia and its progression. 
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In mature organotypic cortex-striatum-STN-GP cultures prepared from normal rats, Plenz and 

Kital (Plenz and Kitai, 1999) observed that GP and STN neurons discharged in a burst fashion 

with prominent synchrony within and between these nuclei. Severing GP-STN connecting fibers 

altered the discharge of STN neurons to a regular tonic pattern. Because sectioning the cortical 

inputs to STN did not significantly impact this relation or the discharge rates in GP, the 

investigators suggested that GP-STN reciprocal connections serve as a basal ganglia pacemaker. 

Others however, have provided contrary evidence to suggest that cortical inputs might be 

necessary to drive burst activity between GP and the STN (Baufreton et al., 2005). Moreover, 

because the organotypic cultures lacked dopamine (DA) input and because burst activity is 

prevalent in Parkinson’s disease (PD), a DA deficient condition, spontaneous burst activity in the 

basal ganglia has been suggested to be pathological. The findings of prominent bursting in GP, 

STN, and EP in dystonic Gunn rats and a lack of bursting in normal rats in an alert resting state 

support contentions that cortical or other external drive is normally required for bursting in these 

nuclei and that spontaneous bursting is therefore indicative of a pathological state. Bevan and 

colleagues (Sidibe et al., 1997) showed that electrical stimulation of GABA inhibitory potentials 

in GP in vitro hyperpolarizes STN neurons, producing rebound depolarization and in turn, 

prominent burst discharge activity. While the origin of spontaneous bursting in the basal ganglia 

in such conditions as dystonia and PD remains to be determined, this observation provides at 

least one plausible mechanism by which GP could contribute to pathological burst activity. 

 

The present findings of slow, irregular burst discharge activity in dystonic Gunn rats are 

consistent with most observations in humans with various forms of dystonia undergoing DBS 

surgery (Lenz et al., 1998) (Merello et al., 2004) (Sanghera et al., 2003) (Vitek et al., 1999) 
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(Zhuang,  Li and  Hallett, 2004) (Starr et al., 2005) (Moll et al., 2014) (Schrock et al., 2009). 

Although modest differences have been reported between primary and secondary forms of 

dystonia, this has not been comprehensively investigated in part due to limitations of human 

studies, and the findings have differed between studies (Zhuang,  Li and  Hallett, 2004) (Lozano 

et al., 1997). Because GPi is by far the most commonly targeted nucleus for treating dystonia, it 

has been most extensively investigated in humans with dystonia. The discharge pattern has been 

described as dominated by grouped burst discharges on a particularly silent background, in 

difference from irregular tonic discharge activity in normal monkeys (Vitek et al., 1999). In one 

investigation of GPe (Vitek et al., 1999), the neuronal activity similarly showed reduced 

discharge rates and prominent burst activity compared to normal monkeys. In contrast, another 

group (Starr et al., 2005) did not find definite abnormalities in GPe apart from occasional 

atypical oscillations. In another study (Moll et al., 2014), patients with cervical dystonia showed 

reduced mean discharge rates in GPi, but not in GPe, on the side ipsilateral relative to the side 

contralateral to the direction of head turning. Of note, while the motor portion of GPi is 

specifically targeted during the DBS surgeries, the microelectrode tracks however may not 

necessarily similarly traverse the affected motor territory of GPe. 

In one investigation of STN in dystonic patients (Starr et al., 2005), the neuronal discharge 

activity was dominated by irregular grouped discharges, but without clear alterations in the 

discharge rates compared to normal monkeys. In a larger investigation of STN in primary 

dystonias (Schrock et al., 2009), the discharge rates were found to average 26 spikes/sec 

compared to 36 spikes/sec in patients with PD. Prominent bursting was evident in both dystonia 

and PD subjects. Oscillatory activity was also evident in both groups, but was comparatively less 

prominent in dystonic subjects. Other groups have also reported neuronal oscillatory activity in 
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GPi, and to a lesser extent in GPe, in dystonic patients (Chen et al., 2006) (Moll et al., 2014). 

While oscillatory activity was not a characteristic feature of neurons in dystonic Gunn rats, this 

could potentially represent differences between various primary and secondary dystonias, 

differences in dystonia severity, or species differences. With respect to severity of dystonia, none 

of the rats had fixed dystonia or other features of more severe dystonia and oscillations were 

evident in 3/85 bursty neurons in moderately dystonia versus 0/23 bursty neurons in mildly 

affected rats. However, the sample sizes here were insufficient to adequately assess for potential 

correlations between oscillations and severity of dystonia. 

 

In contrast to the extensive neurophysiological investigations in rodent and primate models of 

PD, only a paucity of studies have been previously conducted in animal models of dystonia. In 

MPTP-treated monkeys, Perlmutter and colleagues showed that transiently induced dystonia was 

temporally correlated with transient reductions in DA D2-like receptor binding in MPTP-treated 

monkeys (Perlmutter et al., 1997). This would be expected to produce disinhibition of striatal 

medium spiny GABAergic neurons and in turn, cause excessive inhibition of GP, consistent with 

findings of reduced discharge rates in GPe/GP in humans and dystonic Gunn rats. Early 

investigations of dystonia in rodents were limited to neurophysiological recording studies 

performed utilizing anesthesia in dtsz hamsters, which exhibit paroxysmal dystonia in response to 

prolonged stress (Richter and Loscher, 1993) (Merello et al., 2004) (Loscher et al., 1989). 

Nambu and colleagues (Chiken,  Shashidharan and  Nambu, 2008) (Nambu et al., 2011) more 

recently recorded neuronal activity in a mouse model of human DTY1 genetic dystonia without 

the use of sedation. These mice however show prominent hyperkinesia with modest evidence of 

dystonia. The investigators reported reduced discharge rates, as well as bursts and pauses in GP 
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and EP, though did not control for movement or assess specifically for dystonia during the 

neuronal recordings. 

 

In summary, in the present investigation of dystonic Gunn rats at rest, neurons in GP, STN and 

EP were found to exhibit marked reductions in discharge rates, an absence of regular tonic 

discharge activity, and prominent abnormal burst activity. The extent of neuronal burstiness, in 

particular, correlated with the severity of dystonia. As for normal rats, a distinct neuronal 

dichotomy (albeit, pathological) was evident in each of these nuclei, further supporting that, at 

least in vivo, two principal types of neurons exist in each of these nuclei. A number of groups 

have observed in humans that patterned discharge activity in GPi (Vitek et al., 1999) 

(Zhuang,  Li and  Hallett, 2004) and the thalamus (Zhuang,  Li and  Hallett, 2004) (Lenz et al., 

1999) correlate with dystonic EMG activity. Further, Lenz and colleagues (Lenz et al., 1999) 

showed that the thalamic neuronal activation preceded the correlated dystonic EMG activity. 

Preliminarily, as it was reported (Baron et al., 2011) that, GP appears to show prominent 

abnormal synchronized neuronal silencing, while EP predominately shows abnormal 

synchronized activation preceding dystonic motor activity in Gunn rats. It was therefore 

postulate that on a background of highly irregular and bursty discharge activity, cortical motor-

related signals lead to excessive non-selective silencing of GP/GPe neurons, which causes 

excessive, unselective disinhibition of EP/GPi and, in turn, produces excessive, unselective 

cortico-thalamic motor drive as the physiological basis of dystonia. Additional studies in humans 

and animal models will be important towards defining pathological differences in primary and 

secondary dystonias to account for the contrasting responses to DBS surgery in these conditions. 
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CHAPTER 5 

PARKINSONISM AND DYSTONIA ARE DIFFERENTIALLY  

INDUCED BY MODULATION OF DIFFERENT TERRITORIES 

 IN THE BASAL GANGLIA 

 

 

5.1. Introduction 

Despite their outward differences, the pathophysiology of PD and dystonia appear to be closely 

related. For instance, degeneration of dopaminergic neurons in the substantia nigra pars 

compacta causes the principal parkinsonian motor features in PD, while genetic defects in 

dopamine (DA) production lead to dopa-responsive dystonia (Knappskog, Flatmark, Mallet, 

Ludecke, & Bartholome, 1995). Further, dystonia is a common symptom of PD, while 

parkinsonism is often a feature of dopa-responsive dystonia. Both parkinsonism (Kuoppamaki, et 

al., 2005) and dystonia (Münchau, et al., 2000) have been reported subsequent to strokes in the 

globus pallidus (GP). Unfortunately, these reports do not however adequately define the 

involvement of GP externus (GPe) versus GP internus (GPi). Furthermore, besides destroying 

the local neurons, strokes equally damage often extensive fiber projections traversing the 

involved region. 

 Per the longstanding classical basal ganglia model (Albin, Young, & Penney, 1989) 

(DeLong, 1990), reduced DA levels cause DA D2 receptor mediated disinhibition of GABAergic 

indirect pathway striatal projection neurons, which, in turn, induces excessive inhibition of GPe. 

In support, neurons show reduced (and abnormally patterned) discharge activity in GPe in 

primate models of PD (Filion & Tremblay, 1991). Similarly, reduced and abnormally patterned 

activity is seen in GPe in patients with dystonia undergoing stereotactic surgery (Vitek, et al., 
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1999). Consistent with these observations, we found that GP (rodent equivalent to GPe) neurons 

in jaundiced dystonic rats at rest show marked reductions in discharge rates, with increased 

irregularity and novel burstiness compared to normal rats (Kumbhare et al., 2015). With 

movement, multi-unit recordings of GP neurons in normal rats showed similar proportions of 

autonomous movement related activation or inactivation. In contrast, in dystonic rats, GP 

neurons showed highly synchronous, near universal silencing, preceding and persisting during 

abnormal dystonic motor activity (Baron M. , Chaniary, Rice, & Shapiro, 2011). 

 Alexander and colleagues (1986) proposed that the basal ganglia contribute to anatomically 

segregated motor, associative and limbic cortico-basal ganglia-thalamocortical loop circuits. 

Hoover and Strick (1993) further elegantly demonstrated the extent of anatomical segregation of 

basal ganglia-thalamocortical motor and pre-motor sub-circuits. We previously showed that local 

pharmacological inactivation of specific, discrete hotspots in GPi and the subthalamic nucleus 

(STN) ameliorated hypokinesia in parkinsonian monkeys (Baron, Wichmann, Ma, & Delong, 

2002). In patients undergoing radiofrequency GPi ablation (pallidotomy), anteromedial motor 

territory lesions were observed to most effectively ameliorate dyskinesia, while central motor 

territory lesions most effectively improved akinesia (Gross, Lombardi, Lang, Duff, & Hutchison, 

1999). In GPe, local injections of the (activating) muscarinic antagonist bicuculline in motor 

regions induced dyskinesia, in associative regions induced hyperactivity, and in limbic regions 

induced stereotypical behavior (François, et al., 2004). 

From these observations, we postulated that on a markedly slow and highly irregular and 

bursting neuronal resting state in GPe, cortical drive produces profound regional inhibition of 

GPe as the basis for dystonia. Because of our present laboratory focus on understanding 

dystonia, our initial goal here was to determine whether silencing of GP outflow via neurotoxic 
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ibotenate lesions in rats would induce dystonia. Although prior studies in monkeys failed to 

demonstrate behavioral effects from reversible pharmacological inhibition (Baron, Wichmann, 

Ma, & Delong, 2002) or destructive lesioning (Soares, et al., 2004) of GPe, these studies were 

rather restrictive. If initially successful, we then planned to define the specific dystonia locus in 

GP via restricted lesions and assess the resultant alterations in neuronal discharge activity in STN 

and the entopeduncular nucleus (EP, rodent equivalent of GPi). Because the initial large 

injections variably induced dystonia and parkinsonism, we modified subsequent experiments, 

aiming to separately induce hemidystonia and hemiparkinsonism. If successful, this would 

implicate a principal role for reduced GPe activity in parkinsonism and dystonia and suggest that 

these conditions originate from similar physiological disturbances along separate basal ganglia 

sub-circuits. Additionally, to extend our findings to humans, we compared the anatomical sites in 

GPi for treating PD versus dystonia via deep brain stimulation (DBS) with that for inducing 

parkinsonism versus dystonia via GP lesions in rats. 

 

5.2. Methods 

Animals. Wistar heterozygous (non-jaundiced) Gunn rats (n = 14, seven males and seven 

females) and non-carriers (n = 5 females) were used for the animal studies. Animals were 

obtained from Harlan Sprague Dawley Inc., IN, USA and Charles River, MA, USA and 

maintained in the Hunter Holmes McGuire Veterans Affairs Medical Center animal facility for at 

least seven days prior to any procedures. Heterozygous Gunn rats and non-carriers show 

equivalent baseline behavior and neuronal properties (Kumbhare et al., 2015). Upon affirming 

that these groups show equivalent post-lesion behavioral and neuronal effects, these data were 

combined for the present analyses. All experiments were approved and monitored by the Hunter 



 

106 
 

Holmes McGuire Veterans Affairs Institutional Animal Care and Use Committee (IACUC) and 

performed in accordance with regulatory guidelines. 

 

Surgery and target localization. The surgical procedures were described in detail previously 

in Chapter 4.  

Prior to lesioning, the posterolateral motor territory of GP was initially mapped typically over 

2-3 penetrations using ultrafine 100 μm microelectrodes (Thomas RECORDING GmbH, Giese, 

Germany) introduced via a Thomas RECORDING Eckhorn microelectrode manipulator. The 

location and firing patterns of neurons and the borders of encountered nuclei along each 

microelectrode track were plotted on graph paper. Transparencies generated from sections of the 

Paxinos and Watson atlas (1982) were superimposed upon these plots to determine the location 

of the recording tracts. The motor territory of GP was affirmed by identifying neurons whose 

discharge activity correlated with spontaneous rat movement. 

 Lesioning. Ibotenic acid (MW: 180.63, Sigma-Aldrich, MO, USA) was dissolved in 

phosphate buffered saline (0.12-0.15 M) to a pH of 7.4. A quartz glass microinjection pipette 

(outer diameter: 100 µm; Thomas RECORDING Inc.) was connected via a short tube to a 

Hamilton syringe (Model #705, 0.05 ml volume and 1.03 mm inner diameter) and the system 

was filled with the ibotenic acid solution. The syringe pump was set to deliver a volume of 0.4-

1.2 µl at rates ranging from 0.08- 0.12 µl/min over an interval of 10 min. After the targeted 

portion of GP was well defined, the microelectrode was replaced with the pipette and ibotenate 

(0.12-0.15 M, 0.7-2.1 µl) was injected into GP over 1 to 2 tracks, at 1-2 depths (1-4 sites), at 

varying laterality (L3.2-4.2) (Table 5.1). The micropipette was left in place for an additional 10 

minutes prior to removal. The rat was closely monitored for any signs of distress during the 
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entire injection session. After removal of the micropipette, the head chamber was sealed using 

the Teflon cap and the rat was returned to the laboratory observation cage. 

Pre- and post-lesion neuronal recording. Baseline neuronal spike activity was initially 

recorded from GP, EP and STN (Kumbhare et al., 2015). Post-lesion neuronal activity was 

recorded from STN and EP beginning 4-18 hrs after symptom exhibition. Neuronal and EMG 

data were recorded during resting and movement epics for 60-120s at a sampling rate of 40-44 

kHz and amplified and band pass filtered (gain=50, bandwidth 0.07–8 kHz) via an AlphaLab 

SnR data acquisition system (Alpha Omega Co. USA Inc., Alpharetta, GA). Neuronal signal 

processing and pattern analysis were detailed previously (Kumbhare & Baron, 2015) (Kumbhare 

et al., 2015). Pattern analysis was accomplished utilizing our tri-component classification 

algorithm to distinguish regular, irregular and bursting neurons. 

Behavioral assessments. Between 3-4 hrs after ibotenate injection, the behavior of the 

animals was formally assessed and separate parkinsonian and dystonia severity clinical scores 

between 0 and 12 were assigned. Refer to Table 5.2 for behavioral scoring criteria. Also, EMGs 

recorded at the time of the neuronal recordings and in the home cage were assessed off-line for 

objective confirmation of dystonia and its severity. 
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Histology. At the completion of the experiments, the rats were euthanized with pentobarbital 

(0.1 ml, 390 mg/ml i.p.) and immediately perfused via the ascending aorta with 200 ml of saline 

followed by 200 ml of 10% formalin. After fixation, the brains were frozen, blocked in the 

parasagittal plane, sliced in 50 μm sections on a cryostat, and alternate sections were silver 

stained (FD NeuroSilverTM kit II, FD NeuroTechnologies, Inc., Columbia, MD, USA).  
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Table 5.2. Parkinsonian and dystonia rating 
Motor Disorder  Feature Scores (total range: 0-12 each for parkinsonism and dystonia) 
Parkinsonism  Forelimb/paw flexion posturing  0: none 

1: rare forelimb/paw posturing; places paw when ambulates 
2: occasional posturing; limited placement of paw 
3. frequent posturing; without placement of paw 
4: fixed posturing 

Spontaneous movement 
 

0: Normal behavior, ambulation, sniffing, grooming. 
1: mildly slower or reduced general activity 
2: moderately reduced activity 
3: severely reduced activity 
4: near complete absence of spontaneous activity 

Activity response to mild audio 
or tactile stimuli 0: responds normally 

1: mildly reduced overall response 
2: moderately reduced response 
3: severely limited response 
4: no response 

Dystonia  Hindlimb extension 
 0: never 

1: rare and mild extension of hindlimb 
2: common and moderate extension 
3. frequent and prominent extension 
4: fixed extension 

Truncal posturing 
 0: perfectly upright normal posture 

1: slight and infrequent abnormal truncal posture 
2: mild to moderate and frequent truncal flexion 
3: moderately prominent truncal flexion and twisting 
4: marked, fixed truncal flexion and twisting. 

Falling in response to impaired 
ambulation due to hindlimb 
spread and twisting of trunk 

0: none 
1: rare associated falls 
2: occasional associated falls 
3: frequent associated falls 
4: fixed dystonia (no falls, but without attempts at ambulation) 

 

Reconstruction of lesion volume. Using a light microscope (Nikon Eclipse E400), the silver 

stained sections were examined for confirmation of the location of the microelectrode tracks and 

definition of the ibotenic lesions. Individual lesions were reconstructed based on the location of 

silver stained cells and secondary inflammatory damage (Fig. 5.1A-A”). The defined lesions 

were then drawn on corresponding sagittal atlas sections (Fig. 5.1B-B”). The lesion coordinates 

were registered, interpolated, and reconstructed in a 3D region of interest, which includes GP 
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and surrounding regions (Fig. 5.1C-C“). 

Development of lesion-effect probability model. A novel score-based spatial modeling 

algorithm was developed to define the distribution of efficacious lesions in the region of interest 

(ROI) for induction of parkinsonism and dystonia. The ROI was limited to the explored GP 

lesioned area in the 19 study rats. The following algorithm was applied separately for 

parkinsonism and dystonia symptom score sets: 

1. The entire ROI was selected to encompass the lateral half (approximated motor region) of 

GP and the extent of lesion spread within GP, corresponding to lateral 2.1 - 4.8 mm, 

posterior 0.2 - 2.4 mm, and depth 1.8 – 6 mm.  The approximated motor territory was 

based on extensive prior and current recordings and assessments for correlations between 

neuronal activity and active animal movement. The ROI was in turn modeled by a 

28 × 23 × 43 point grid system divided it into 27692 voxels, each of dimensions 

0.1 × 0.1 × 0.1 mm3.  

2. For each lesioned rat, parkinsonism and dystonia scale scores were separately assigned to 

each voxel that lies within the volume of lesion spread. Therefore, each voxel was 

assigned 19 different scores, equal to the number of lesioned animals. A NaN (not a 

number) score was assigned to any voxel outside of the lesion. 

3. For each voxel, mean and standard deviation (SD) of the assigned scores was calculated. 

Voxels deemed sparsely sampled (< 3 non-NaN values) or with coefficient of variation 

(CV) > 1 were assigned NaN values, thereby excluding these data from further analysis 

(Fig. 5.2A-A”, B-B”)).  

4. Next, Global Moran’s I function (GMI) (Moran, 1950) (Ferstl, 2007), modified for 3d 

data, was used on the voxelated data to assess spatial autocorrelation. GMI classifies the 
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overall spatial distribution as clustered (GMI ~+1), dispersed (GMI ~-1) or random (GMI 

~ 0). 

5. Next, Getis-Ord GI* statistic (Getis & Ord, 1992) (Ferstl, 2007) (Mitchell, 2005), 

modified for 3D data, was calculated providing a statistical hot-spot analysis using the 

local pattern of spatial association to identify local spatial clusters with high or low 

efficacy values in the ROI (Fig. 5.2B-B”,C-C”). For a statistically significant positive Z-

values (GI*; z-score > 1.96 (p < 0.05)), the larger the Z-values, the more intense the 

clustering of hot spots.   

6. The efficacy distribution maps (generated in steps 1-3) were subsequently filtered to 

include only significant z-scores (GI*) and generate final maps revealing the statistically 

significant hot spots (Fig. 5.2E-E”,F-F” and Fig. 5.3A). 

7. Lastly, to assess the strength of the relationship between the location of the lesions and 

the severity of the induced motor behavior, parkinsonian and dystonia clinical scores for 

each rat were correlated with the degree of overlap of the corresponding hot spot (Fig. 

5.3B,B”). 

DBS surgery and post-operative programming optimization. Nine patients with dystonia (6 

males, 3 females; 3 DYT1, 3 generalized idiopathic, 1 task-specific, and 2 torticollis) and 12 

successive patients with PD (all males) who had undergone GPi DBS surgery at the Virginia 

Commonwealth University Medical Center or at the Hunter Holmes McGuire Veterans Affairs 

Medical Center in Richmond, VA were included in this study. Using microelectrode and intra-

operative CT guidance (Vega, Holloway, & Larson, 2014), DBS electrodes (Medtronic Inc., 

Fridley, MN, USA) were implanted bilaterally or unilaterally (PD: n = 9 bilateral, 3 unilateral; 

dystonia: 7 bilateral, 2 unilateral). Preoperatively, stereotactic computerized tomogram (CT) and 
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a magnetic resonance image (MRI) were obtained with volumetric flair, FGATIR, and 

volumetric T1 with and without contrast sequences. The default targeting coordinates of 21 mm 

lateral, 2 mm anterior to and 4 mm deep to the midpoint of the anterior-posterior commissure 

plane were modified based on direct visualization of the GPi as seen on the FGATIR and flair 

sequences. The entry point was chosen to maximize targeting of a first microelectrode through as 

much of the motor GPi as possible, while avoiding sulci, vessels, and the ventricles. A second 

track was chosen for simultaneous passage of a second microelectrode 2 mm posterior or 

posterior-lateral from the first. 

The surgical procedure was carried out with frameless stereotaxy utilizing the Medtronic 

Nexframe system and intraoperative O-arm image guidance (Kelman, Ramakrishnan, Davies, & 

Holloway, 2010). After making a burr hole, simultaneous recording along the 2 microelectrode 

tracks was carried out to assess the GPi boundaries and presence of motor responsive cells.  The 

recording findings were marked on graph paper and compared with parasagittal Schaltenbrand 

and Wahren (S-W) transparency maps. An O-arm image was then obtained to image the 

microelectrodes and the image was merged with the pre-op CT and MRI images to determine the 

actual MER trajectories. At this time, the microelectrodes were withdrawn within its cannula and 

test macro-stimulation was conducted with the macrostimulation collars of the micro-cannulas. 

Finally, the MER data, clinical responses to the macro-stimulation, and the imaged locations of 

the trajectories were reviewed and the optimal track was identified.   

Standard DBS 3389 and 3387 model leads (Medtronic Inc.) were inserted. Both model leads 

have  four 0.5 x 1.5 mm contacts, with the contacts separated by either 0.5 mm (3389 model) or 

1.5 mm (3387 model). Post-operatively, the programming nurse and physician used the 

Medtronic N'Vision clinician programmer to optimize the DBS stimulation parameters over 
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multiple sessions. This is done by assessing the effect of stimulation with each of the 4 electrode 

contacts using the various potential monopolar and bipolar (distal contact negative and the 

adjacent more proximal contact positive) settings, as well as optimizing the pulse width and 

frequency. 

Reconstruction of optimized GPi DBS territories for PD vs dystonia. The location of the tip 

of the implanted DBS electrodes was determined using Medtronic’s StealthMerge and Stealth3D 

visualization software by fusing a post-operative CT with a merged pre-operative CT and MRI. 

The coordinates of the post-operatively optimized electrode stimulation contact(s) were 

determined retrospectively from the location of the tip of the electrodes, the sagittal and coronal 

angles of the trajectory, and the geometry of the (shorter vs longer) stimulating electrode 

surfaces. For monopolar stimulation, the stimulation coordinate was determined by the center of 

the stimulating contact and for bipolar stimulation, by the geometric center of the two adjacent 

stimulation contacts. Delaunay triangulations were computed each for the Parkinson disease and 

dystonia DBS contact data sets.  

 Statistics. Statistical analyses were performed in MATLAB R2012. Indifference in 

neuronal discharge features between groups showing similar features were assessed with two 

one-sided tests (TOSTs) for equivalence (Schuirmann, 1987) (Wellek, 2010). The mean values 

were considered to be significantly equivalent (α=0.05) if the 90% confidence interval was 

within the defined zone of indifference (±5 spikes/s for discharge rates and ± 0.2 for the tri- 

components).  One and two sample T-tests were used to compare population percentages within 

same and different groups. Two-way chi-square test was used to compare neuronal counts in 

different neuronal populations. Independent two-sample t-Test were used to assess for group 

differences in mean discharge rates, pattern discriminatory measures, and burst parameters. 
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Figure 5.1.  Ventral lesions in GP produce dystonia and dorsal lesions produce parkinsonism. A-A”, Silver stained 
sagittal sections from A a rat (#6) with multi-site dorsal and ventral ibotenate GP lesions, A’ a rat (#19) with an 
isolated dorsal lesion, and A” a rat (#15) with a ventral lesion. B-B”, Corresponding lesions in A-A” superimposed 
on rat brain atlas sections (Paxinos & Watson, 1982).  C-C”, 3D figure of GP created from atlas sections depicting 
the full extent of the lesions. D-D”, Photographs of resultant D mixed parkinsonism and dystonia from the combined 
lesions shown in A. D’, predominant parkinsonism from the dorsal lesion shown in A’ and D”, predominant 
dystonia from the ventral lesion shown in A”. The rats with dystonia in D and D” can be seen to display 
characteristic extension and spreading of the hindlimb, while the rats with parkinsonism (D and D’) show 
characteristic forelimb flexion posturing and fist clenching. E-E”, Corresponding EMG recordings from 
antagonistic hip muscles, gluteus medius and gluteus superficialis show E’, normal alternating agonist-antagonist 
contractions in the rat with predominate parkinsonism, E”, characteristic dystonic co-contractions during movement 
in the rat with predominant dystonia, and E a mixed EMG pattern in the rat with parkinsonism and dystonia. 
 

5.3. Results 

Dystonia and parkinsonism induced by neuronal toxic lesions in GP 

Between 30-60 min after the drug injections, all animals exhibited contralateral rotation and 18 

of 19 rats developed dystonia and/or parkinsonism, with the clinical features reaching maximum 

intensity within 4 hrs. Refer to Table 5.1 for details of the individual injections and resultant 

clinical effects. To initially maximize the possibility of inducing behavioral effects, relatively 

large lesions (0.12 M, 0.8-2.1 µl over 2-4 sites) were made in the first 10 rats. Nine of these 10 

rats developed mild to severe contralateral dystonia and parkinsonism (Fig. 5.1A-D and Movie). 

A single animal (#3), with the most laterally placed lesion (at L4.2), developed a relatively mild 
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rotation bias without additional overt behavioral features. By rat #8, it became evident that the 

severity of parkinsonism and dystonia correlated with more medial placement of the lesions 

within the motor territory. In response, all subsequent lesions were targeted to this region. In the 

last 9 rats (#11-19), single dorsal (n = 4) or ventral (n = 5) lesions (0.12-0.15 M, 0.7-1.2 µl) were 

made. Predominant prominent parkinsonism was consistently induced by the circumscribed 

dorsal lesions (Fig. 5.1A’-D’) and prominent dystonia by the ventral lesions (Fig. 5.1A”-D”).   

Apart from predominant unilateral involvement, dystonia in GP lesioned (dyst-L) rats 

appeared identical to that in jaundiced Gunn rats (Chaniary et al., 2009). In both groups, with the 

head restrained, dystonia was not evident during periods of motor inactivity for up to 5-10 min. 

While unrestrained, dystonia was consistently evident during self-initiated movement in the 

hindlimb and to a lesser degree in the forelimb (Movie). In more severe animals, the affected 

hindlimb would often fully extend during contralateral rotation and frequently cause the animal 

to fall. All parkinsonian lesioned (park-L) rats showed prominent flexion posturing of the 

affected forelimb with mild to moderately reduced overall movement. The paw was held 

clenched with a paucity of movement of the forelimb. In contrast, the hindlimb was only more 

mildly affected. 

Park-L rats consistently showed a normal pattern of alternating contractions of antagonistic 

hip muscle pairs during movement (Fig. 5.1E’). In contrast, dyst-L rats and to an extent mixed 

parkinsonian/dystonia rats showed characteristic dystonic co-activations of antagonistic muscle 

pairs (Fig. 5.1E,E”). In further objective support of parkinsonism and dystonia, respectively, 

neuronal activity in EP and STN in park-L and dyst-L rats demonstrated characteristic 

neurophysiological findings of these conditions (described below). 
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Figure 5.2.  Parkinsonism and dystonia are induced by lesions in circumscribed, non-overlapping regions of GP. 
A,B, 2D efficacy distributions for inducing parkinsonism A-A” and dystonia B-B” via GP lesions, plotted on three 
representative sagittal planes (L3.2, L3.5 and L3.8). The color bars indicate the color coded efficacy values. C,D, 
Getis-Ord GI* statistics maps illustrate the z score values (color bar) for the efficacy distribution plots. E,F, Masked 
maps created by thresholding the efficacy maps (z score threshold cut-off > 1.96) indicate the statistically significant 
hotspots for inducing parkinsonism E-E” and dystonia F-F” via GP lesions. 
 

Hotspot delineation for inducing parkinsonism and dystonia with GP lesions 

2-D efficacy distribution maps demonstrated the high efficacy dorsal region for inducing 

parkinsonism and ventral region for inducing dystonia within the medial portion of the 

(posterolateral) motor territory of GP (Fig. 5.2A-A”,B-B”). High global Moran’s I function 

values for the parkinsonism (0.821) and dystonia (0.886) efficacy maps indicated strong spatial 

autocorrelations, both p < 0.05 (i.e., with less than a 5% probability that the distinct clusters 

resulted randomly). Getis-Ord Gi* statistics (Z scores) for the distribution maps revealed 
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progressively more strongly associated regions for selectively inducing parkinsonism and 

dystonia via GP lesions (Fig. 5.2C-C”,D-D”). Masked distribution maps demonstrated the two 

statistically significant high efficacy hotspots to be non-overlapping and to occupy closely 

similar anteroposterior and mediolateral regions (Fig. 5.2E-E”,F-F”). The hot spot for 

parkinsonism was centered at L3.59, P1.62, D4.04 and that for dystonia at L3.55, P1.64, D2.92 

(for reference, D = 10 mm for bregma; GP is centered at approx. L3.3, P1.7, D3.4). Finally, after 

masking out insignificant and low efficacy spots, the final 3D model demonstrated 100% 

anatomical segregation of the parkinsonian and dystonia hotspots (Fig. 5.3A). For each lesion, 

the resultant clinical severity scores were highly correlated with the extent of overlap of the 

hotspots for both parkinsonism (r = 0.899, p < 0.005; Fig. 5.3B and dystonia (r = 0.924, p < 

0.005); Fig. 5.3B’), affirming a strong relationship between the induced movement features and 

the specific regional involvement of GP. 

 

Baseline neuronal properties in dorsal versus ventral motor regions of GP 

We reasoned that regional differences in baseline neuronal discharge properties in GP could 

potentially contribute to the different behavioral features induced by dorsal versus ventral motor 

territory lesions. We thus compared the discharge properties of neurons (n = 58) encountered at 

variable depths within the motor territory of GP in normal rats (n = 12). These analyses revealed 

no relation between the discharge rates (r = -0.130, p = 0.33) or patterns (r = 0.039, p = 0.76) and 

the recording depth (Fig. 5.3C,C’). This suggested that the clinical differences between 

parkinsonism and dystonia are not attributable to the removal of physiologically different signals 

at the level of GP. 
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Neuronal discharge properties in EP and STN in dyst-L and park-L rats 

We next considered that if GP silencing plays a principle role in various dystonias, then the 

resultant ‘downstream’ alterations in STN and EP in dyst-L rats should closely resemble those in 

other experimental dystonia models, including kernicterus. Towards this aim, 26 neurons were 

recorded in the motor territories of EP (n = 16) and STN (n = 10) in 4 dyst-L rats at rest. 

Previously reported neuronal recordings collected under the same conditions in normal and 

dystonic kernicterus rats (dyst-K) (Kumbhare et al., 2015) were used for comparison. The 

induction, clinical, and EMG features of the jaundiced dystonia model were described in detail 

previously (Chaniary et al., 2008) (Chaniary et al., 2009) (Shaia, et al., 2002). In normal rats 

Figure 5.3.  Parkinsonism and dystonia are produced by silencing of identically characterized neurons in GP along 
distinct motor sub-circuits. A, 3D figure illustrating the distinct hotspots for inducing parkinsonism (blue) and dystonia 
(red) via ibotenate lesions in GP. B,B’, Correlation between the extent of overlap of the hotspot for individual lesions (n = 
19) and the severity of induced parkinsonian B and dystonic B’ features. The linear regression and the confidence 
intervals (CI) are shown. C,C’, Correlation between the discharge rates C and irregularity properties C’ of neurons in GP 
(n = 58 neurons) and the depth of the corresponding recordings in GP in normal rats 
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(Fig. 5.4A), the neuronal populations in GP, STN and EP are similarly characterized by regular 

tonic (range across the three nuclei: 52-56%) and slower irregular populations (42-46%), without 

notable bursty neurons (<1%). In dyst-K rats, discharge rates in GP, STN and EP are appreciably 

slower (Fig. 5.4B), and while a dichotomous distribution is maintained (Fig. 5.4A), the patterns 

are highly irregular (52-57%) or bursty (41-46%). 

 Similar to dyst-K rats, average resting discharge rates were appreciably reduced in EP (51%, 

p < 0.001) and STN (37%, p = 0.002) in dyst-L rats vs controls (Fig. 5.4B). As for dyst-K rats, 

neurons were distributed between highly irregular and bursty populations (irregular vs bursty: 

EP, 56% vs 37%; STN, 51% vs 42%; Fig. 5.4A). Also similarly, neuronal irregularity was 

moderately increased and burstiness markedly increased in STN and EP in dyst-L compared to 

normal rats (all p < 0.001; Fig. 5.4C,D). None of the principal neuronal properties, including 

discharge rates, irregularity, and burstiness, differed in STN and EP between dyst-K and dyst-L 

rats (two one-sided tests for equivalence TOST, all p < 0.05). The findings of equivalent 

neuronal properties in EP and STN in dyst-L and dyst-K rats thus strengthen our clinical and 

EMG impressions of dystonia and support a common pathological role for GP silencing in 

various forms of dystonia. 
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Figure 5.4.  Neuronal properties in STN and EP are nearly identical between dyst-L and dyst-K rats, while neuronal 
properties are distinguished in park-L rats by oscillatory burst activity in EP. Neuronal recordings in GP in normal 
and dyst-K rats and recordings in STN, and EP in normal, dyst-K, dyst-L, and park-L rats, illustrating: A, 
percentages of regular, irregular, and bursty populations, B, mean firing rates, C, irregularity, D, burstiness, E, burst 
percentages (percentage of burst discharges/ total discharges) for bursty neurons and F, burst order (average number 
of discharges per burst) for bursty neurons. *p < 0.05, **p < 0.001. The error bars indicate SEM.  
 

Although baseline discharge properties were similar throughout the motor territory of GP, we 

were interested in establishing whether dorsal and ventral lesions produced different effects on 

‘downstream” neurons in STN and EP, as predicted from recording studies in humans with PD 

and dystonia. Towards this aim, 22 neurons were recorded in EP (n = 13) and STN (n = 9) in 3 

park-L rats at rest and compared to the recordings collected in dyst-L rats. Similar to dyst-L rats, 

mean discharge rates in park-L rats were highly reduced in EP (56%, p < 0.001) and STN (25%, 

p < 0.05) vs controls (Fig. 5.4B). Compared to dyst-L rats, park-L rats showed similar neuronal 
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populations, except for a higher percentage of bursty neurons in EP (bursty = 64%, irregular = 

27%, regular = 9%; Fig. 5.4A), though this did not reach significance (p = 0.209). As for dyst-L 

rats, neuronal irregularity was highly increased and burstiness dramatically increased in STN and 

EP in park-L compared to normal rats (all p < 0.001; Fig. 5.4C,D). Except for a trend (p = 0.072) 

towards faster discharge rates in STN in park-L vs dyst-L rats (21.4 + 4.5 vs 18.1 + 2.9), no 

significant differences in discharge rates (EP: p = 0.323) or irregularity (EP: p = 0.798, STN: p = 

0.371) were evident between park-L and dyst-L rats. Burstiness (reflective of the proportion of 

burst neurons, burst percentages (BP) and burst tendencies (Kumbhare & Baron, 2015)) was 

moderately greater among EP (p < 0.001), but not STN neurons (p = 0.569) in park-L compared 

to dyst-L rats (Fig. 5.4D). Burst neurons in EP in park-L rats exhibited a particular high mean BP 

(82% vs 48% in dyst-L; difference, p < 0.001; Fig. 5.4E), indicating a tendency to fire in a 

relatively pure burst mode. Burst neurons in STN also showed a significant (p < 0.05), though 

comparatively small increase in overall BP in park-L (60%) vs dyst-L rats (51%). Moreover, 

exclusively in EP in park-L rats, 42% of the burst trains were oscillatory (freq. range = 0.5-7 Hz; 

representative neuron in Fig. 5.5A-D). Additionally, the average burst order (discharges/ burst) of 

burst neurons in EP and STN were greater in park-L than dyst-L rats (EP: 6.5 vs 5.2, STN: 6.0 vs 

5.1, each p < 0.001; Fig. 5.4F). The neuronal features in park-L rats are consistent with those in 

humans with PD and therefore support our impression of parkinsonism in these animals. 
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Figure 5.5.  Example of an oscillatory neuron in EP in a park-L rat. A, 22 sec segment of a raw EP signal, B, 
corresponding spike raster, C, autocorrelation histogram (ACH) of the spike train, and D, power spectral density 
(PSD) of the spike train. 
 

GPi DBS efficacy sites in PD versus dystonia patients 

Comparing the location of the DBS contacts utilized to treat 12 subjects with PD and 9 subjects 

with dystonia revealed the efficacious region for PD to be located relatively dorsal to that for 

treating dystonia (Fig 5.6). The density of stimulation across subjects for treating PD was 

centered at L21.5, A5.1, D2.0, while that for dystonia was centered at L21.4, A3.6, D-0.05. The 

relative DBS efficacy distributions for PD and dystonia are thus anatomically consistent with the 

dorsal-ventral distributions for inducing parkinsonism and dystonia via GPe lesions in rodents. 
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Figure 5.6.  GPi DBS efficacy distributions for patients with PD versus dystonia. GPi DBS efficacy density regions 
for 12 subjects with PD (blue) versus 9 subjects with dystonia (red). The GPi representation (green) was created 
from multi-dimensional Schaltenbrand and Warran atlas sections (Schaltenbrand & Wahren, 1977).  
 

 

5.4. Discussion 

Results from this chapter showed that parkinsonism and dystonia can be induced via neuronal 

toxic lesions in GP, thereby demonstrating that silencing of GP neuronal signaling is sufficient to 

induce both of these common clinical conditions. Moreover, we demonstrated that these two 

movement features can be independently induced by pinpointed lesions in distinct sites within 

the motor territory of GP. Additionally, we found the in vivo baseline properties of neurons in 
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these two functionally distinct territories to be indistinguishable. Therefore, these disparate 

clinical conditions appear to originate from similar physiological disturbances along 

anatomically distinct basal ganglia motor sub-circuits. 

Ultimately, however, major differences in neuronal properties result at the output level of the 

basal ganglia (EP/GPi) in these two conditions and almost certainly contribute to the dissimilar 

motor features. 

 As developed in the introduction, numerous previous clinical and experimental observations 

predicted that abolishing GP output should induce dystonia, as well as parkinsonism. However, 

most compelling to us, and leading to the present investigations, was our prior discovery in 

jaundiced dystonic rats of widespread neuronal silencing in GP preceding and persisting with 

dystonic motor activity. Thus, whether produced by excessive extrinsic inhibition via the 

putamen (Perlmutter, et al., 1997) (Black, et al., 2014) or by destruction of GP neurons, as 

demonstrated here, loss of GPe neuronal signaling appears to be a principal cause of dystonia. 

By showing largely indistinguishable clinical features and neuronal properties in EP and STN in 

GP lesioned and kernicterus rats, this supports a similar pathological role for GP silencing in 

various secondary forms of dystonia. However, in light of the large disparity between the 

responses to GPi pallidotomy and DBS in primary versus secondary dystonia  (Holloway, Baron, 

Brown, Cifu, & Ramesh, 2006) (Eltahawy, Saint-Cyr, Giladi, Lang, & Lozano, 2005), major 

pathophysiological differences must exist between primary and secondary dystonias.  

 Delong and Georgopolous (1981) initially proposed that the basal ganglia contributes to 

segregated ‘sensorimotor’ and ‘association’ cortical-basal ganglia-thalamocortical circuits. The 

motor circuit of the basal ganglia has since been considered to encompass multiple anatomically 

distinct sub-circuits (Schell & Strick, 1984) (Hoover & Strick, 1993). Previous observations in 
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humans undergoing GPi pallidotomy and DBS suggested that these motor sub-circuits 

differentially contribute to various movement disorder features. For example, in PD subjects, 

lesions in the dorsal motor territory of GPi were observed to most effectively benefit akinesia 

(Krack, et al., 1998), while ventral lesions or DBS stimulation most effectively ameliorated 

levodopa-induced dyskinesia (Krack, et al., 1998) (Kisore, Panikar, Balakrishnan, Joseph, & 

Sarma, 2000). In patients with primary dystonia, DBS stimulation in the ventral motor territory 

of GPi was reported to most effectively improve dystonia (Houeto, et al., 2007) (Tisch, et al., 

2007). Presently, we retrospectively compared the sites of efficacious DBS stimulation among 

groups of our patients with PD and dystonia. Consistent with prior single group observations, we 

found that stimulation of more dorsal DBS contacts most effectively ameliorated symptoms of 

PD, while relatively more ventral contracts were more efficacious for treating dystonia. The 

differential dorsal-ventral distributions for treating PD versus dystonia with GPi stimulation or 

lesions are consistent with the dorsal-ventral distribution we found for inducing parkinsonism 

and dystonia via GP lesions. These combined observations support our contention that excessive 

silencing of GPe along specific dorsal and ventral basal ganglia motor sub-circuits differentially 

disinhibits GPi to produce parkinsonism and dystonia, respectively, which, in turn, can be 

ameliorated by reducing pathological GPi discharge signaling via GPi pallidotomy or DBS 

targeting the specifically pathologically involved sub-circuit. 

Using transsynaptic viral labeling techniques, Hoover and Strick (1993) injected arm regions 

of the supplementary motor area (SMA), primary motor cortex (MC) and premotor cortex in 

primates and, demonstrated retrograde labeling, via the thalamus, of neurons in non-overlapping 

regions of GPi. Using similar techniques, Saga et al (2011) injected separate dorsal and ventral 

regions of the premotor cortex and labeled neurons in non-overlapping regions of GPi. Both of 
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these studies also showed that GPi-thalamocortical projections to specific motor-related regions 

of the cortex originate from mirror regions in the internal and external portions of GPi (divided 

by the accessory lamina). Thus, while it is tempting to conclude here that parkinsonism 

originates from one specific motor sub-circuit and dystonia another, it is also conceivable that 

these conditions might originate along mirror parallel circuits located in outer and inner portions 

of GPi, respectively. Using diffuse tensor imaging, Rozanski et al. (2014) mapped the effective 

ventral GPi DBS stimulation contacts for treating dystonia to MC and SMA and the dorsal 

ineffective contacts to pre-SMA and premotor cortex. While these findings require replication, 

such novel techniques could allow us to accurately define in humans the responsible sub-circuits 

for dystonia and PD. Another consideration however is that extensive arborizing of pallidal 

dendritic trees, for example, may permit considerable communication across the various basal 

ganglia subcircuits (Percheron & Filion, 1991) (Haber, 2003). Along these lines, even though we 

induced parkinsonism and dystonia via restricted lesions in GP, only a small portion of neurons 

in EP and STN retained normal appearing neuronal activity.        

The finding here of prominent oscillatory bursting exclusively in EP in parkinsonian but not 

dystonic rats is consistent with findings of tremor-related oscillatory activity in GPi in patients 

undergoing DBS surgery (Hutchison, Lozano, Tasker, Lang, & Dostrovsky, 1997). Although the 

0.5-7 hz frequency of the burst oscillations overlaps that of typical 3-7 Hz rest tremor in PD, 

park-L rats do not exhibit tremor. It can be suggested that in dystonia, extensive, unabated 

activation of GPi-thalamocortical signals leads to uncontrolled co-activation of antagonist 

muscles and spread to unintended muscles. In contrast, in PD, burst and irregular discharge 

activity at the output level of the basal ganglia may act to disrupt normal thalamocortical 

signaling and in turn, produce such features as bradykinesia and akinesia. On the other hand, 
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burst oscillatory activity may drive motor activity and produce tremor. The present novel GP 

lesioned parkinsonian and dystonia models provide potentially valuable experimental models to 

further work out the precise pathological mechanisms contributing to these movement disorders. 

In summary, we have shown that silencing of GP neurons in isolation is sufficient to both 

induce parkinsonism and dystonia.  Further, our findings indicate that these two movement 

conditions originate along separate basal ganglia motor pathways and involve different 

pathophysiological features at the output of the basal ganglia. Additional studies are needed to 

define the specific motor sub-pathways involved in producing these conditions and to establish 

more specifically how the distinct neurophysiological abnormalities at the level of GPi 

differentially contribute to each of these conditions. Also, further studies are needed to define the 

mechanistic differences between primary and secondary forms of dystonia and parkinsonism to 

account for why pallidotomy and GPi DBS, with exceptions, only appreciably benefit primary 

forms of these disorders. The selective induction of hemi-parkinsonism via dorsal motor territory 

lesions and hemi-dystonia by ventral lesions in GP provide new focused animal models, which 

can provide the means to further address these and other many remaining uncertainties about 

normal and pathological basal ganglia functioning. 

 

 
Movie .  Behavioral responses to GP lesions in rats. 0-20 sec: Normal control rat behavior. 20-40 
sec: mixed parkinsonism and dystonia following combined dorsal and ventral motor territory 
lesions. Note the parkinsonian forelimb paw flexion and dystonic hindlimb extension on the 
affected side. 41-58 sec: parkinsonism after a dorsal GP lesion. Note the forelimb paw flexion 
and reduced generalized activity. 60-75 sec: dystonia after a ventral GP lesion. Note the hindlimb 
extension and truncal posture.       
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CHAPTER 6 

PERSISTENTLY ABNORMAL NEURONAL DISCHARGE ACTIVITY  

IN THE BASAL GANGLIA AND THALAMUS IN SPONTANEOUSLY RECOVERED 

DYSTONIC RATS 

 

6.1 INTRODUCTION 

It was previously reported that neuronal discharge activity in the globus pallidus (GP), 

subthalamic nucleus (STN), and entopeduncular nucleus (EP) in dystonic Gunn rats is 

characterized by 1) highly irregular or 2) slow, burst activity, in distinction from 1) regular tonic 

or 2) irregular discharge in normal rats. Further, abnormally synchronized movement related 

pauses across neurons in GP and synchronized bursts in EP correlated with EMG recorded co-

contractions. Presently, neuronal activity in animals who had spontaneously recovered from after 

developing prominent dystonia was examined.  We hypothesized that the neuronal activity in the 

basal ganglia-thalamocortical circuit would be largely normalized in recovered, previously 

dystonic animals. The recent findings of persistently abnormal pallidothalamic discharge activity 

in rats who had spontaneously recovered from dystonia were surprising [6].  Additional 

investigation would help to recognize any critical discharging feature in the network which 

regardless of abnormal activity in other components relays compensatory normal signals to the 

muscles. We further, hypothesize that, restoration of normal motor functions in these animals is 

due to downstream recovery of normal information processing at some point in BG-thalamo-

cortical network indicating a potential bypass/ compensation (to some extent) of the abnormal 

pallidothalamic activity.  
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6.2. METHODS 
 
Homozygous recessive jaundiced (jj) Gunn rats lack uridine diphosphate glucuronosyl 

transferase and cannot effectively conjugate and excrete bilirubin.  The pups are mildly 

jaundiced at birth, but remain motorically normally.  At 16 days of age, at the peak of bilribubin 

levels, jj and non-jaundiced (Nj) rats were injected (i.p) with sulfadimethoxine and saline, 

respectively.  Sulfadimethoxine displaces bilirubin from serum albumin into the brain and in 

turn, induces dystonia.  Behavioral activity, including dystonia, was accessed using a custom 

grid lined Plexiglas chamber and with surgically implanted fine EMG wires.  The animals’ heads 

were immobilized by securing a surgically implanted head fixture to a custom-designed 

stereotaxic system (Fig. 1A). Multi-neuronal activity was recorded in non-sedated rats using 

ultra-thin microelectrodes or heptodes (80 -100 µm) from motor regions of STN, EP, VL 

thalamus, and primary motor cortex (MC).  Validated waveforms were sorted using various 

clustering techniques and the  firing patterns were then discriminated based on various 

classification metrics, like coefficient of variation and local variables.  

 
 
6.3. RESULTS 
 
Behavioral and motor activities, including dystonia, were assessed using a custom grid lined 

Plexiglass chamber and with surgically implanted fine EMG wires. Multi-neuronal activity was 

recorded in awake, head-restrained rats at rest using up to seven heptodes inserted into motor 

regions of STN, EP, VL pallidal-receiving thalamus, and layer 5 primary motor cortical (MC) 
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burst neurons. Neuronal activity in the STN and EP in recovered rats was heralded by slow rates 

with highly abnormally patterned activity, approximating that seen in dystonic animals. 

Basal Ganglia Nuclei 

STN and EP neurons in normal rats were characterized by regular (STN 43.32 + 13 Hz / EP 

48.73 + 18 Hz) or irregular (STN 16.01+ 5 Hz / EP 19.69 + 6.9 Hz) patterned activity, while 

dystonic and recovered animals showed irregular (dystonic: STN 13.41+7.8 Hz /EP 8.61+6.7 Hz 

; recovered: STN 9.81+ 3.97 Hz /EP 11.42+2.7 Hz ) or burst (dystonic: STN 21.00+15.6 Hz /EP 

13.20+5.5 Hz; recovered: STN 16.90+8.7 Hz /EP 13.61+ 3.7 Hz) patterned activity. With 

increasing severity of dystonia, discharge rates in GP and EP are progressively slower and GP 

neurons become more bursty. In recovered animals, the numbers of regular tonic neurons are 

appreciably higher than in dystonics and the extent of burstiness is less. Although STN neurons 

showed marked alterations in discharge rates and patterned activity with induction of dystonia, 

most of these abnormalities did not differ between recovered, mild and more severely dystonic 

conditions. Dystonic rats however did show considerably more spike count variability within 

irregular spike trains compared to recovered rats. 

 

VL thalamus and MC.  

Preliminarily, discharge activity in VL thalamus was appreciably slower (18.37 +  4.2 Hz) in 

recovered compared to normal rats (25.34 + 12 Hz), while burst (purported pyramidal) neuronal 

activity in MC in recovered rats did clearly differ from that of normal rats. 

Synchrony. In recovered rats, 1/18 pairs of basal ganglia neurons showed synchronized discharge 

activity at rest, compared to 10/27 pairs in dystonic rats, and 0/13 in normals.  The incidence and 
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the degree of synchrony between pairs of neurons did not evidently increase with worsening 

severity of dystonia. 

 
Table 6.1. Resting discharge rates and patterned activity (n = 10 controls, 10 dystonic (7 
mod to severe, 3 slight) and 3 spontaneously recovered Gunn rats) 
 
Nuclei  Pattern  Normal Recovered Rates  

GP Regular  (62) 45.9 ±13.47 (10) 27.6 ± 18.33 

  Irregular  (42) 19.9 ±7.39 (30) 17.0 ± 10.08 

  Bursty  (0) - (7) 45.0 ± 19.39 

  Non-stationary  (1) 43.3 ± 0 (2) 21.3 ± 0 

EP Regular  (64) 48.7 ± 18.80 (8) 35.6  ± 19.20 

  Irregular  (54) 19.69 ± 6.9 (11)14.8 ± 5.63 

  Bursty  (1) 20.7 ± 0 (14) 25.0 ± 9.12 

  Non-stationary  (0) - (1) 29.4  ± 0 

STN Regular  (52) 43.3 ± 13.37 (0) - 

  Irregular  (48)  16.01 ± 5.43 (7) 13.2  ± 5.32 
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  Bursty  (1)  22.4 ± 0 (10) 22.7 ± 7.4 

 
  Non-stationary  (1) 19.5 ± 0 (0) -  

 
 
 
Table 6.2. Synchronized spike train pairs in GP and EP in normal, recovered, & dystonic 
rats 
 
 
  # pairs  CC 

z>4 
# pairs  CC z>4 # pairs  CC z>4 # pairs  CC z>4 

GP 
   7 0   8 0   5  2  7  

3 

EP 
   6 0  10 1  7  2  8  3 

 
 
 
 
6.4. DISCUSSION 
 
 

Findings of persistent but lesser severe abnormal neuronal activity in the basal ganglia of 

spontaneously recovered animals suggest a specific threshold requirement to induce clinical 

dystonia.  Further investigations are necessary to elicit how these specific abnormalities 

contribute directly to the induction of dystonia.  The progressive changes in GP and EP neurons 

from normal to severely dystonic, compared to that of STN neurons, suggest a greater role for 

the GP-EP signaling pathway in secondary dystonia. The paucity of synchronized neuronal 
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discharge activity in the basal ganglia in rats recovered from acute dystonia compared to the high 

frequency for all severities of dystonia suggests that a loss of independent neuronal signaling in 

the basal ganglia is an integral feature of dystonia, but probably does not appreciably contribute 

to worsening severity of dystonia. 

 
 
 

Importantly, our observation of abnormal discharge pattern in STN and EP in spontaneously 

recovered dystonic rats, suggest that to some extent, the abnormality of EP output to VL 

thalamus, is somehow probably is bypassed/ fixed at a level outside BG. Simultaneous recording 

from EP, VL and MC, would help explore the information transfer/ modulation at each of these 

level. The combined information collected from dystonic and recovered dystonic rats will help us 

to understand which abnormal signals are critical to inducing dystonic movements, as well as to 

provide preliminary insight into understanding auto-recovery in recovered animals. 
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CHAPTER 7 

 

REFINED BASAL GANGLIA MODEL ACCOUNTING FOR GPI MODULATION OF 

THALAMIC TONIC AND BURST MODES. 

 

 

7.1. INTRODUCTION 

 

The basal ganglia (BG) integrates a wide range of cortical signals, processes them internally and 

then relays these modulated signals to the motor cortex via thalamus. The pallidal receiving 

ventrolateral (VL) thalamic nucleus is the major relay nucleus for the BG influence on the motor 

cortex. The BG has long been recognized as the key structure in the pallidothalamocortical 

circuit that receives inhibitory GABAergic signal from main output nuclei of the BG, globus 

pallidus internus (GPi; or its rat equivalent entopeduncular nucleus, EP), and transmits excitatory 

signals back to cortex. Despite its importance, the mechanism by which GPi regulates 

thalamocortical drive has not been satisfactorily scrutinized (less is known about how the basal 

ganglia influences motor behavior and learning through the thalamocortical output pathway). 

Although the classical BG rate model suggests that the inhibitory effect of GPi/EP has a direct 

proportional influence on the level of thalamocortical drive, the model cannot account for the 

benefits of GPi pallidotomy and DBS on both the hypo- and hyperkinetic features. According to 

the rate model, the reduced GABAergic activity in EP during rest activity should disinhibit 

thalamocortical drive. This explanation cannot readily account for our findings of excessive 

GABAergic activity in EP with movement, which oppositely should reduce not induce excessive 
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dystonic motor activity, per the model. The explanation lies behind the corresponding alterations 

or response in VL activity to EP GABAergic inputs.   

 

Thalamic neurons in rats switch frequently between two distinct discharge patterns; a tonic mode 

and a burst mode. The tonic mode is highly dependent on synaptic inputs and is thought to be 

better graded and more responsive to the intensity of depolarizing inputs, while the burst mode is 

assumed to provide high detectability and throughput to the cortex (58, 59). The role of the burst 

mode remains controversial. Some investigators have claimed that the burst mode serves as the 

principal alerting mode, while others suggest that it is principally related to sleep activity (60). 

The burst mode is itself differentiated into two further patterns: 1) arrhythmic, occurring in both 

first-order (relay neurons, including pallidal-receiving) and higher-order (cortical-thalamic-

cortical) neurons and 2) rhythmic, thought to be chiefly restricted to higher order neurons. 

Rhythmic bursting is common during quiet wakefulness and fast (13-15 Hz) thalamic oscillations 

have been associated with sleep-related learning (61).  

 

The normal shift from the tonic to burst mode of firing in thalamic neurons has been attributed 

largely to synaptic-related hyperpolarization of the basal resting membrane potential (62, 63). 

This in turn, has been attributed to hyperpolarization-induced inactivation of voltage-gated T-

type Ca2+ channels (64-66). Based on this and previous findings in EP and VL thalamus, it has 

been additionally hypothesize that excessive and abnormally synchronized dystonic movement 

related burst signaling in EP induces GABAergic-induced hyperpolarization of VL neurons, 

which in turn, leads to high throughput of crude basal ganglia movement related signals to the 

motor cortex instead of normal precision movement related pallidothalamocortical signals. Since 
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kernicterus and lesion models both induce dystonia, it was interesting to observe if the 

‘downstream’ features at the level of VL and MC are similar in these two rodent models. While 

recordings at rest provide invaluable insight into normal and pathological signaling, we were 

interested in determining the normal role of burst and tonic signaling in VL and in MC, and in 

determining the abnormalities at the level of VL and MC during dystonic motor activity.  

 

7.2. METHODS 

 

7.2.1. Rats 

In this chapter recordings from two different dystonic models, kernicterus model of dystonia 

(described in section 4.2.1)  and lesion model of dystonia (described in Chapter 5) are 

investigated. Briefly, the kernicterus model is obtained from homozygous jaundiced Gunn rats. 

These rats are genetically deficient of UDP glucuronosyl transferase, the principal liver enzyme 

responsible for bilirubin clearance. All rats were injected with sulfhonamide at the age of 15-16 

days, when their blood bilirubin levels are at their highest. The sulfonamide displaces the 

bilirubin from blood into the brain. The rat becomes dystonic within hours of injection. The 

prominent characteristics of dystonia in these rats include contorted posture, hind limb spread, 

and impaired righting reflex due to co-contracting antagonistic muscles. The lesion model of 

dystonia is obtained by lesioning the ventral-lateral part of motor territory of GP, which results in 

generation of contralateral dystonic symptoms within 4-5 hrs. The symptoms include contorted 

posture and hind limb spread similar to the kernicterus model of dystonia.          
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7.2.2. Surgery 

Details of animal surgery, lesioning, neurophysiological recording and histology can be found in 

Sections, 4.2.3, 5.2, 4.2.4 and 4.2.5 respectively. Please refer to Chapter 2 for different strategies 

for multi-target and multi-nuceli recordings. All surgeries were carried out under isoflurane 

anesthesia. The rat’s head and hip area were shaved and cleaned. An incision was then made 

along a sagittal plane and a custom stainless steel head fixture was firmly screwed into animal’s 

skull. Relevant hindlimb muscles were surgically exposed and Teflon coated 50 μm stainless 

steel fine wire electrodes were inserted via a 30 gauge needle and sutured into the antagonistic 

hip muscles, while the other end of the micro-wire was soldered to a microcircuit board.    

The following day, the rat’s head was immobilized by clamping the head fixture into a custom 

stereotaxic positioner (Chaniary, et al., 2011). Under isoflurane anesthesia, a burr hole was 

drilled into the skull exposing the underlying duramater, targeting the hemisphere contralateral to 

the study hindlimb. Allowing for full behavioral recovery from effects of anesthesia, neuronal 

recording sessions were initiated 30-50 minutes after the surgery.  

 

7.2.3. Data Processing and rest analysis 

Spike detection and sorting techniques are detailed in Chapter 2. Firing pattern discrimination of 

neuronal population is described in Chapter 3. Further burst characterization and correlation 

analysis is detailed in section 4.2.8. In brief, the action potentials from continuous neuronal data 

were detected using a threshold detection method. Different sorting features (Section 2.2.2) of 

spikes data were plotted on a 2 or 3-D feature space and similar waveform originating from same 

neuronal unit are clustered using manual, K-mean or valley seek clustering techniques. The 

sorted waveforms were further validated for noise. Spike trains were rejected if more than 5% of 
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the ISIs were less than the absolute refractory period of 2 ms or the variance in the waveform 

shape was abnormally high.  

Subsequently, all adequate spike rasters were subjected to a novel pattern discrimination 

algorithm. To characterize neurons into the three basic discharge patterns (regular, irregular and 

bursty), it was necessary to define three main features in the spike trains: Poissonian irregularity, 

burstiness and non-stationarity. The discrimination algorithm then calculated three proxy 

metrics; ‘irregularity’, ‘burstiness’, and ‘corruption’ for each of the above three features (Chapter 

3). After calculating the tri-component values for each spike train, these data were plotted in a 3-

D feature space and clustered into above three categories using K-mean clustering. Bursty spike 

trains were further characterized based on burst order and burst duration. 

 

7.2.4. Movement analysis 

During the awake head restraint condition, the rat’s tail was gently pinched to stimulate active 

movement responses. The hind limb movements were registered via 1-4 hip and knee muscle 

EMGs (bicep femoris, vastus lateralis, gluteus superficialis, and gluteus medius). EMGs were 

simultaneously recorded with neuronal activities at a 40,000 sampling rate. Each unit was then 

recorded for 60-120 min, during which the rat was intermittently stimulated to perform active 

hind limb movement. Movement analysis was then performed using following methods.   

 

7.2.4.1. Correlation of neuronal units with changes in EMGs 

The correlation between the neuronal train and the processed EMG was calculated to assess the 

level of movement response of the neurons. The entire recording with both rest (baseline) and 

movement epochs was considered for analysis.   The EMGs and the simultaneously saved 
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reliable neuronal units were recorded from all active channels were used for analysis. EMGs 

were first filtered (high pass filter with 5 Hz cut off and low pass filter with 500 Hz cutoff) and 

then rectified. The signal was then further processed using a derivative based algorithm with a 

window length of 0.2 sec followed by normalization. This processed EMG signal showed high 

amplitude only during muscle contractions. The sorted neuronal units were then placed into bins 

of 0.2 sec window and local variables (LVr, CV2, IR), instantaneous rate, and  burst percentage 

were then determined. The cross-correlation function was then estimated for each unit and the 

corresponding EMG. Only r > 0.5 (p < 0.05) were considered to be movement related. 

 

7.2.4.2. Type of observed movement responses (Peri-movement time analysis) 

Peri-movement time analysis involves analysis of a segment of neuronal recording that is 

centered at the movement epoch. Each neuronal channel was isolated for each observed 

movement epoch of 3 sec duration with movement onsets aligned at 1.2 sec. Each of these 

epochs were subdivided into bins of 0.2 sec. Peridata (spike count per bin) was calculated for 

each bin. All peridata epochs were aligned with respect to the movement onset. Mean and SD of 

the baseline zone was then calculated. Each post baseline bin was categorized into baseline offset 

categories (BOC). The BOC is calculated based on level of increment, decrement, or neutral 

response with respect to baseline mean as follows 

Condition  BOC 

< (baseline - (2×SD)) -2 

< (baseline - SD) AND  > (baseline - (2×SD)) -1 
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> (baseline - SD) AND  < (baseline + SD) 0 

> (baseline + SD) AND  < (baseline + (2×SD)) +1 

> (baseline + (2× SD))   +2 

 

The ‘mode’ (defined as most frequent or dominant offset category of any bin) was estimated. 

 
7.2.5. Statistics 

Statistical analyses were performed using MATLAB. Indifference between means of 

characteristic metrics of the two dystonic similar groups (kernicterus and lesioned rats) were 

assessed with two one-sided tests (TOSTs) for equivalence (Schuirmann, 1987) (Wellek, 2010). 

The mean values were considered to be significantly equivalent (α = 0.05) if the 90% confidence 

interval was within the defined zone of indifference (± 5 spikes/sec for discharge rates and ± 0.2 

for the tri-components). Differences in population distributions within the same and between 

different groups were assessed with one and two sample t-Tests. Difference between means of 

discharge rates, tri-component metrics, and burst parameters between groups were assessed using 

independent two sample t-Tests. Differences were determined to be statistically significant for p 

values less than 0.05.  

 
7.3. RESULTS 

 

7.3.1. Baseline properties during rest activity  

 

Neuronal discharge activity was recorded from pallidal-receiving VL thalamus in normal and 

dystonic rats (n = 27 normal and 22 dystonic neurons) and in motor cortex (MC) layer V (n = 7 
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normal and 10 dystonic neurons) at rest and during movement. At rest, normal VL neurons 

showed a predominance of burst mode activity (71%). Tonic mode showed a comparatively rare 

occurrence (regular: 14% and irregular: 12%). In contrast, the tonic mode predominated in both 

dystonic rats (Kernicterus rats: irregular: 45%, regular: 32%; lesioned rats: irregular: 35%, 

regular: 35%). The population percentage of bursty neurons reduced greatly in VL in both 

kernicterus (16%) and dystonic rats (24%). MC shows a higher population of irregular neurons 

in normal rats (64%), while burst neurons were found to be scarcer (23%). The total population 

of bursty neurons increases to about 50% when the rat is dystonic (kernicterus: 52%; lesion: 

50%). Figure 7.1.b indicates the feature histograms of neuronal population in VL and MC.  The 

irregularity and burstiness spectrum in all three types of rats does not indicate any strong 

evidence for clear dichotomy of population in VL (all three populations, p > 0.05). The overall 

mean firing rate is reduced by ~40% in dystonic rats as compared to normal rats (kernicterus vs 

normal: 41.2%, p< 0.05; lesioned vs normal: 48.5%, p< 0.05).  In distinction, cerebellar-

receiving VPL thalamic neurons were not altered in dystonic rats (not shown in figures). 
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Figure 7.1: Characterization of neuronal patterns in different population in VL and MC: Tri-component feature space 
representation for VL thalamus and MC in normal, kernicterus and lesioned rats. Pie charts showing population distribution in 
above groups. Histogram showing variability in the characteristic features of each category: Rate, irregularity, burstiness and 
corruption.  
 



 

143 
 

 

 

Table 7.1: Population distribution of firing patterns in EP, VL and MC 

Pattern 
EP* VL MC 

Normal Dystonia Lesion Normal Dystonia Lesion Normal Dystonia Lesion 

Total 120 98 9 49 31 17 56 31 12 

Tonic 118 
(98%) 

55 
(56%) 

4 
(44%) 

13 
(27%) 24 (77%) 12 

(71%) 
43 

(77%) 14 (45%) 4 (33%) 

Bursty 0 38 
(39%) 

4 
(44%) 

35 
(71%) 5 (16%) 4 (23%) 13 

(23%) 
16 

(52%) 6 (50%) 

Un-
categorized 

2 
(1.7%) 5 (5%) 1(11%) 1 (2%) 2 (6%) 1 (1%) 0 1 (3%) 2 (16%) 

 

 

 

7.3.2. Movement analysis 

 

7.3.2.1. Correlation of neuronal units with movement related changes in EMGs 

 

In VL in normal rats, tonic units showed weak to moderate correlation with movement. None of 

the regular neurons indicated strong movement, while three of the six slow irregular neurons 

have moderate correlation (r = 05.8-0.6, p<0.05). Out of 35 bursty neurons, 21 (60%) neurons 

showed moderate to high correlation with movement (r = 0.621-0.761, p<0.05). In MC, on the 

other hand, 78% (41 out of 52) of its neuronal population showed stronger movement 

correlation.  In dystonic rats, in VL, only one regular neuron (out of 16) showed a correlation of 

0.531. Five neurons (out of 20) showed correlation greater than 0.5 (range: 0.513-0.612). Four 

bursty (out of 9) neurons showed stronger correlation (range: 0.61-0.69). In MC, on the other 

hand, 31 out of 45 neurons were movement related.   

    

 



 

144 
 

7.3.1.2. Movement type (Peri-movement time analysis) 

Since the rest and movement related activities (irregularity, burstiness, and response selectivity) 

in dystonia models of kernicterus and GP lesion model were equivalent (p < 0.05, two one-sided 

test for equivalency), further analyses were performed by combining the two groups. 

 

Response selectivity  

In VL of normal animals, 11 bursty and 2 slow irregular neurons showed higher response 

selectivity (+2), six bursty neurons showed response selectivity of +1, four bursty neurons and 

one slow irregular neuron indicated negative response selectivity (-1). In VL of dystonic animals, 

three bursty neurons and two irregular neurons showed response selectivity of +2, one bursty 

neuron and three irregular neurons indicated response selectivity of +1, while one regular neuron 

showed response selectivity of -1. In MC of normal rats, 19 neurons showed response selectivity 

of +2, six neurons showed +1 and 16 units showed -1. While in dystonia, 13 neurons showed 

(+2), 10 neurons showed (+1), and eight neurons had a response selectivity of (-1). 

 

Zone-wise movement response  

In normal rats, VL neurons showed a prominent step ramp in spike counts preceding EMG onset, 

compared to a flatter response in dystonic rats (Fig 7.2). VL neurons predominately maintained 

the burst mode under resting state in normal rats. During movement, the neuron’s response 

preceded the movement onset by 0.4± 0.15 sec. All movement related VL neurons in normal rats 

responded by modulating the inter- and intra-burst properties by: (i) increasing the burst order 

(BO) from 2.6± 0.4 to 5.05±0.23; (ii) increasing the burst duration (BD) from 0.015± 0.005 s to 

0.03±0.004s; and (iii) reducing the intraburst frequency by 22%. The overall burstiness in VL do 
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not change significantly with the movement onset, but show a transient decrement indicating the 

end of epoch (fig 7.2.b). None of the normal VL neurons showed any changes in mode with 

movement.  In dystonic rats, with movement, VL neurons largely switched to the burst mode, but 

neuronal firing only poorly followed EMG activity and ‘erroneously’ resembled burst activity of 

normal rats at rest. The intraburst properties of movement related burst discharge in dystonic 

firing are erroneously similar, especially IBF, to that of rest activity in normal rats. 

The burst properties during movement in dystonia did not reach the normal movement levels 

(BO: 3.1±0.04 and BD: 0.02±0.003). Further, in dystonic rats, the plateau for the spike counts 

abnormally extend during the prolonged EMG co-contractions with the normal sharp offset at the 

end of the EMG epochs. 

 

 In MC, dystonic rats showed attenuated increments in spike counts (slope of increment) prior to 

movement onset and an abnormal reduction in burstiness after the onset of movement (fig 7.3). 

In MC, pyramidal neurons failed to achieve peak discharge frequencies in relation to movement 

as shown in fig 7.3. These neurons, in contrast to normals, begin to silence early with respect to 

the end of movement, though in line time-wise with normals. Burstiness levels in MC correlate 

poorly with the movement in dystonic rats. MC in normal rats, has moderately more positive 

selectivity, however in dystonics negative selectivity goes down.  
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Fig 7.2. VL neuronal-EMG correlations and LTS bursts in normal vs dystonic rats. a. Neuronal spike 
activity in VL can be seen to poorly modulate with movement and fail to achieve peak spike intensity in 
dystonic rats b. Burstiness of VL neurons approaches that of normal rats with movement. c. However, the intra-
burst features (likely to be integral to accurate movement signaling) are highly abnormal in dystonic rats. In 
figs a, b, black, green, and red lines indicate onset of movement, offset of normal and offset of dystonic motor 
activity (data are averaged over multiple movement epics and time axis is normalized for comparison). 
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 DISCUSSION 
 
The principal finding in this study was the dominance of burst discharge activity at rest in normal 

rats and the tonic mode in dystonic rats in pallidal receiving thalamus (VL). Normally with 

moderate GABAergic ‘pacemaker’ rest-state input from EP, neurons in VL are chiefly in burst 

mode. However, in dystonia, with reduced EP rates and associated GABAergic input chaotic 

pattern, the neurons are erroneously in the tonic mode. This finding discounts the classical rate 

model hypothesis, that inputs from EP ‘directly’ inhibit the neurons in VL. Instead it can be 

suggested that normally GABAergic resting input from EP hyperpolarizes a majority of VL 

neurons and holds them chiefly in the baseline ‘ready’ burst mode. The reduced GABAergic 

input from EP under dystonic condition, results in inadequate hyperpolarization of the cell 

membrane in VL neurons. This results in switching of the membrane potential of low threshold 

 
Fig 7.3. MC neuronal-EMG correlations in normal vs dystonic rats. A. spike count/ bin B. Burstiness 
level per bin. Black, green, and red lines indicate onset of movement, offset of normal and offset of dystonic 
motor activity (data are averaged over multiple movement epics and time axis is normalized for comparison). 
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spike (LTS) neurons of VL to Na+/K+ driven tonic mode.  

 

Reduced excitability of the neuronal membrane or in this case increased presynaptic inhibition 

from EP (caused by initial ohmic leakage current, Na+ and K+) causes sustained 

hyperpolarization of the thalamic neurons (<-60 mV). T-type Ca2+ channels de-inactivates under 

this hyperpolarized state, and an influx of Ca2+ current (IT) starts, which causes large transient 

membrane depolarization. This activates Ca2+ activated K+ conductance (delayed rectifier) 

allowing efflux of K+, hyperpolarizing the membrane. If this hyperpolarized state is sustained for 

at least 100 ms it de-inactivates IT, resulting in a long lasting Ca2+ spike, called low threshold 

spike (LTS). These LTS are crowned by LT burst of Na+ and K+ spikes. The amplitude of Ca2+ 

spikes primarily depends upon the level of hyperpolarization. The depolarizing input, however, 

is presumed to be important for initial activation. The delayed K+ channel also influences the 

amplitude of LTS. However, if there is reduced presynaptic inhibition, the LTS would switch to 

tonic mode.   

 

From this study it was also concluded that in VL, burst mode is the more important and more 

responsive mode in thalamic function. Loss of bursty units in dystonia results in less response 

selectivity to movement epochs. A finding from this work is that the burst mode is the principal 

mode for motor signaling. Under dystonic tonic state, VL would necessarily need to then switch 

to the burst mode to signal movement. Since this switch requires 50-100 ms, this would be 

expected to be associated with a significant delay in the reaction time and affect the overall 

coordinated temporal timing of motor signaling. Additionally, in particular, with movement, VL 

neurons in dystonic rats are able to largely shift from the erroneous tonic to the desired burst 
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mode, but many facets of the temporal timing of the burst activity and the details conveyed by 

the intra-burst features, including BO, BD, and IBF, are highly abnormal. Thus, in dystonia, 

reduced GPi GABAergic resting output largely places VL LTS neurons erroneously in the tonic 

mode with delayed and inaccurate switching to the desired burst mode. These findings suggest 

that interventions aimed to correct these defined abnormalities at the level of the motor thalamus 

could offer a good approach to reversing the underlying signaling abnormalities and ameliorating 

dystonia.  

 

The findings in MC reveal changes of increased burstiness and discharge rates. The 

neuronal/EMG correlations here revealed high signaling abnormality in VL, which translate to 

abnormal signaling in MC, which in turn leads to poor muscle control in dystonia.  
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CHAPTER 8 

CONCLUSION AND FUTURE WORK 

 

Although traditional basal ganglia circuitry models provide an invaluable framework for 

conceptualizing basal ganglia connections, rate-based models have major limitations. Firstly, the 

models necessitate that various movement disorders can be attributed specifically to pathological 

alterations in neuronal discharge rates. Yet, discharge rates in GP (Bezard et al., 1999) (Boraud 

et al., 2001) (Raz et al., 2000), EP (Raz et al., 2000) (Bergman et al., 1994) (Wichmann & 

DeLong, 1999), and thalamus (Pessiglione et al., 2005) are not clearly altered in animal models 

of PD. Secondly, while rate models correctly predict that pallidotomy (GPi ablation) should 

improve hypokinesia (reduced movements) in PD patients (by disinhibiting thalamocortical 

activity), current models cannot likewise account for comparable surgical benefits of pallidotomy 

on medication-induced dyskinesias (excessive movements) in these patients (Lozano et al., 1995) 

(Baron et al., 1996). Thirdly, in PD patients undergoing deep brain stimulator (DBS) surgery, 

intra-operative induction of dyskinesias can be associated with alterations in phasic patterned 

neuronal activity in GPi without corresponding changes in the discharge rates (Lee et al., 2007). 

In this work the contribution of alterations in discharge rates, as well as that of patterned 

discharge activity to normal and dystonic motor activity in Gunn rats was investigated. These 

studies have major implications not only for dystonia, but also for understanding other 

movement disorders and the normal control of motor function. 

 

Towards this aim, a system was developed and modified to facilitate appropriate recording and 

analysis of neuronal-EMG signals from normal and dystonic rats. This is a very important step as 
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this dictates the reliability and robustness of the data and analysis. Considering the damage 

caused by multiple electrode tracks, different targeting strategies were developed which allows 

to simultaneously recording from multiple targets and multiple neurons, reducing the 

requirement to make unwanted additional tracks. Unlike many other in vivo studies which were 

performed under anesthesia and had inadequate control for movement during recording, the 

current study used awake head restrained system for recording.  

To allow comprehensive and reliable analysis of the multi-channel neuronal data a MATLAB 

based application, ‘NeuroPAM’, was developed. The current version of NeuroPAM provides the 

possibility of a complete operation using a graphical-User Interface (GUI). It provides quick and 

reliable tools for processing continuous data, such as EMG, LFP, and EEG as well as spike 

detection-sorting-clustering. It also offers automated implementation of several point process and 

other statistical techniques and algorithms. Notable applications include a tool box for 

comprehensive spike data analysis toolbox, Moran I and GI* values for spatial statistics, peri-

event movement analysis pack, and tri-component algorithm. The tri-component algorithm is a 

robust and reliable method for discriminating firing patterns in different neuronal populations. 

Finally, NeuroPAM also offers various neuronal simulation and modeling tools for testing and 

implementing new algorithms.  

 

The next step, in this study was to test the proposed hypothesis. The primary hypothesis of this 

study was that the BG is an important component in motor control network and abnormality in 

its components causes various motor dysfunctions. First, the neuronal behavior in BG of normal 

and dystonic rats were characterized. It was concluded that the BG neurons, under dystonic 

condition, fires abnormally slow and further is irregular and bursty. Under burst dominated 
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input-output condition, the auto-stabilizing and dual projection loops within BG, generate 

abnormal synchrony among neurons. This synchrony is prominent with movement related 

cortical inputs. Many motor related GP (or GPi) neurons goes silent with dystonic movement 

epochs. Reduction in overall rest firing rate and synchronized movement related silencing of GP 

indicates its importance in dystonic pathophysiology. To further test this hypothesis, GP outputs 

were blocked using ibotenic lesions. Interestingly, based on the location of the lesion within GP 

motor territory, the animal acquired varying motor disorders. The dorsal lesions generated 

parkinsonism, while ventral lesions generated dystonia. This finding suggest that anatomically 

different circuits within GP regulate different aspects of motor control. Also, the neurons of the 

main output nuclei of BG, EP (or GPi), showed elongated synchronous bursting with dystonic 

movement epochs. Additionally, the prominent alterations in neurons in pallidal receiving VL 

thalamus, under dystonia, results in a change in firing mode from burst to tonic. This discounts 

the classical rate model, as the alterations in EP output are not inversely proportional to the 

alterations in thalamic rate. This highlights a major drawback in classical BG rate model that EP 

is not ‘directly’ inhibiting VL neurons. The novel hypothesis based on in vivo experimental 

observations, is that EP is controlling the hyperpolarization level of the cell membranes of VL 

neurons. This ultimately designates EP as the primary firing mode modulator of the VL neurons. 

Moderate and regular presynaptic inputs from EP, sustains the hyperpolarization state of VL LTS 

neurons, thus generating low threshold Ca2+ spikes crowned by Na+/K+ bursts. Under dystonic 

conditions, the EP resting output is reduced and is more chaotic. This leads to inadequate 

hyperpolarization and thus a mode shift of the VL neurons to the tonic mode.              
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Our observations in neuronal recordings in basal ganglia nuclei, thalamic nuclei and motor 

cortex in normal, dystonic and lesioned rats lead to the development of a ‘novel basal ganglia 

thalamocortical (BGTC) circuitry model’ (Fig 8.1) that also illustrates the pathophysiology of 

dystonia. Under dystonic conditions, the nuclei of basal ganglia alter their normal baseline 

activities and fires in an abnormal reduced, increased irregular and bursty mode. From our 

studies with dystonic rats, it was observed that during motor dysfunction, the involuntary 

abnormal movements are preceded by different abnormal neuronal firing patterns. We previously 

observed that highly synchronized movement related alterations in neuronal discharge activity in 

globus pallidus (GP ~ external globus pallidus, GPe in primates) and entopenduncular nucleus 

(EP ~ internal globus pallidus, GPi in primates) were associated with co-contractions of 

antagonistic muscles and overflow contractions of the nearby muscles. The abnormal movement 

related silencing in GP is relayed to EP directly or via indirect pathway (STN). The auto-

stabilizing loop between GP and STN, causes abnormally enhanced synchronized movement 

related neuronal firing. This enhanced synchrony leads to a loss of specificity among the BG 

neurons.    

Ultimately the abnormal EP (main BG output nuclei to thalamus) signaling causes inadequate 

VL hyperpolarization. The abnormal reduced hyperpolarization of VL resulting in the loss of 

appropriate normal burst signaling causing it to fire ‘mostly’ in abnormal tonic mode. In 

addition, the movement related synchronized bursting in EP results in abnormally signaled 

movement related burst activities. These abnormalities when relayed back to motor cortex 

leading to imprecise bursting activities. The loss of specificity and phase relationship ultimately 

leads to simultaneous or untimely activation of the antagonistic and other undesired muscles.  
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Fig 8.1. Novel BGTC model 
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8.2. FUTURE WORK 

Based on the current findings following future studies are suggested: 

 

1. Optogentics in rat models  

Optogenetics is a new, powerful technique, which will permit to greatly enhance the 

understanding of dystonia by simulating dystonic neuronal signals in normal animals and to test 

therapeutic approaches by modulating the pathological signals in dystonic rats. Optogenetics is a 

relatively new field that offers a tremendous advancement over electrical stimulation. Opsins 

with properties similar to those in the human retina are naturally ubiquitous in various bacteria 

and algae. Their utility to experimentally depolarize or hyperpolarize neurons via illumination 

was also reported. By transfecting opsins into neurons with viral vectors, neuronal spiking and 

synaptic events can be controlled with very high spatial and temporal resolution. 

Photostimulation permits delivery of continuous, highly controllable subthreshold photocurrents 

to more naturally mimic synaptic activity. Photostimulation can precisely target neurons of 

interest without confounding electrical stimulation of fibers of passage. Additionally, 

photostimulation obviates intrusive stimulation artifacts, which limit combined electrical 

stimulation and recording studies. Because electrical stimulation could nevertheless offer faster 

applicability via DBS in humans, we will use electrical stimulation, as applicable, to test any 

potential control and therapeutic discoveries. 
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2. Closed loop control and coordinated reset in DBS in Parkinson and dystonic patients 

Deep brain stimulation is a neurosurgical procedure used to treat different neurological disorders, 

including basal ganglia related motor disorders, like Parkinson’s disease and dystonia. A neuro-

stimulation electrode is implanted in a particular target nuclei in brain and high frequency 

electrical impulses are sent which have striking therapeutic effects. We intend to implement our 

findings and understandings from our rat studies in improvements and modifications in DBS 

treatments in patients. The project will focus on development of brain computer interface and 

closed loop control of deep brain stimulation. The project will utilize a multidisciplinary 

approach to characterize and restore normal basal ganglia functioning in movement disorders 

(PD, dystonia) using complex stimulation control algorithms. The algorithms will include 

detection of abnormal LFP and spike firing characteristics and stimulate with different pulse 

patterns in order to reduce the power in certain frequency bands. This would also include 

coordinated reset (CR) neuromodulation (independent differential stimulation of two regions in 

the basal ganglia) that improves DBS benefits on PD via strategically interrupting 

synchronization, with persistent therapeutic effects. 
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APPENDIX  

Modeling of Spike Trains 

1. Basics of baseline sample sequencing 

Considering the vast range of observed neuronal firing patterns in different conditions and 

species, generation of an enriched neuronal spike train data pool requires complex spike train 

modeling with control over various discharge features, like refractory limitations, level of 

irregularities, burstiness and temporal non-homogeneity. Since the overall firing pattern of a 

neuron can be described anywhere on the regularity spectrum, we employed a renewal point 

process with a gamma ISI distribution to model the neuronal spiking. 

A gamma distribution represents a probability distribution based on two free parameters, 

allowing regulation of both regularity level and firing rate. The probability density function 

(PDF) of gamma distribution is as follows:    

𝑝(𝑡) = 1
𝛤(𝑘)

𝜆𝑘𝑡𝑘−1 𝑒−𝜆𝑡                                                                                              …A1 

where, Γ is the gamma function with shape parameter (𝑘) and rate parameter (λ). Exponential 

distribution is a special case of gamma with 𝑘 = 1,𝑝(𝑡) =   𝜆𝑒−𝜆𝑡,  which indicates a Poissonian 

interval distribution. For 𝑘 > 1, the process is more regular (sub-Poissonian statistics) and for 

𝑘 < 1, the process is more irregular (supra-Poissonian statistics). 

The Poisson PDF is given by   

𝑝(𝑛 𝑠𝑝𝑖𝑘𝑒𝑠 𝑑𝑢𝑟𝑖𝑛𝑔 𝑡) = 1
𝑛 !
𝜆𝑡𝑛 𝑒−𝜆𝑡                                                                          …A2 

The Poisson process will serve as a baseline for simulation of irregular spike train and burst 

trains, as described in next section.  

The probability of a spike train during a short interval is given by: 
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𝑃 (1 𝑠𝑝𝑖𝑘𝑒 𝑑𝑢𝑟𝑖𝑛𝑔 𝛿𝑡) = 𝜆𝑡𝛿𝑡                                                                                    …A3 

2. Generation of near-Poissonian trains 

(i) Homogeneous (rate-stationary) principal irregular train: inter-spike intervals (ISIs) 

were randomly choosen from exponential distribution with each successive spike time 

equal to the previous spike time plus the randomly drawn ISI. In addition, absolute 

refractory limitations were employed by not allowing any ISI less than or equal to the 

natural refractory period (2 ms).  

(ii) Homogenous irregular trains with different rate: This was achieved by increasing the 

number of spikes (n) and reducing the total time (T), such that rate parameter (𝜆) is 

constant (𝜆 = 𝑛 𝑇 ⁄ ).   

 

3. Generation of Regular firing trains 

Principal regular trains were formulated using MATLAB ‘linspace’ function to generate linearly 

spaced spike rasters. By varying the total time (T) and number of spikes (n), a pool of regularly 

firing trains were generated with different firing frequencies. Regular trains were also be 

generated from Gaussian probability distributions with very high values for shape parameter 

(𝑘 > 20). Refer to Appendix figures 1 and 2 for examples. 

 

4. Generation of Burst Trains 

Burst trains were generated by replacing each spike in a baseline Poissonian train (section 1 and 

2 above) with burst/ non-burst epics. The example program for burst train generator is as 

follows: 
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(i) Using control parameters of the intended train, total firing rate (R Hz) of the train, 

total recording duration (T), percentage of spikes in bursts (BP), mean burst order 

(BO = number of spikes per burst event ranging from three spikes to nine spikes per 

burst), NBO (spikes per non-burst), the total event rates were calculated as follows 

 

𝑇𝑜𝑡𝑎𝑙 𝑏𝑢𝑟𝑠𝑡 𝑒𝑣𝑒𝑛𝑡𝑠 (𝑇𝐵𝐸) =
�𝐵𝑃 100� �  × 𝑅 × 𝑇 

𝐵𝑂
 

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜𝑛𝑏𝑢𝑟𝑠𝑡 𝑒𝑣𝑒𝑛𝑡𝑠 (𝑇𝑁𝐸) =
�1 − 𝐵𝑃

100� �  × 𝑅 × 𝑇 
1.2

 

 

𝐸𝑣𝑒𝑛𝑡 𝑟𝑎𝑡𝑒 = 𝑇𝐵𝐸+𝑇𝑁𝐸
𝑇

= 𝑅 �(𝐵𝑃)  
𝐵𝑂

+ (1−𝐵𝑃)   
𝑁𝐵𝑂

�                                              …A4 

 

(ii) The baseline Poissonian and regular event trains (rate = event rate above) were 

generated as described in section 2(i) and 3, respectively. 

(iii) Two sets of Poissonian random numbers (MATLAB function: poissrnd) were 

generated with mean parameter equals of BO and NBO, indicating number of spikes 

for each event in the train. Note, in case of trains with homogenous BO, all spikes in a 

burst event will be equal to BO. 

(iv) Next, each of the above events were allotted randomly to train sequence (MATLAB 

function: randperm) generated in (ii). 

(v) The Poissonian model of spike generation was again used for intra-sample 

sequencing of multi-spikes event. The within-burst ISIs set for ranges from 3-9 ms 

(excluding the refractory limitations). 
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Similar simulations were employed to generate a variety of burst trains by varying different 

control parameters. Refer to Appendix figures 8 and 9 for examples.  

 

5. Generation of a spike train data pool with different regularity levels 

This was achieved by randomly drawing ISIs from gamma distribution (equation A3) generated 

with different shape parameters (MATLAB fuction: gamrnd). Refer to Appendix figures 1- 7 for 

examples.  

 

6. Generation of different spike trains from same ISI distribution 

At first a third order non-oscillatory burst train was generated as described in #4 with its ISI 

distribution. ISIs was randomly drawn from this distribution to generate a near-Poissonian train. 

Similarly, from the same ISI distribution, all ISIs were arranged in decreasing order to generate a 

regular train (figure 3, main paper).   

 

7. Generation of non-stationary trains 

To generate non-stationarity in a spike train, epochs of different pattern-rate features were 

randomly replaced. Each of the three principal trains was corrupted by randomly introducing 0-5, 

6 s corruption epochs (with train duration 60 s, the corruption varied from 0- 50% of the total 

train). The corruption epochs were defined as burst or non-burst epochs, with varying rate and 

baseline regularity. For burst corruption, BO, event rate, burst type (mixed or pure BO) were 

randomly varied for each epoch. Refer to Appendix figures 10-12 for examples. 
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