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Abstract

This dissertation introduces a novel model for solving the L2 support vector machine

dubbed Direct L2 Support Vector Machine (DL2 SVM). DL2 SVM represents a new

classification model that transforms the SVM’s underlying quadratic programming

problem into a system of linear equations with nonnegativity constraints. The devised

system of linear equations has a symmetric positive definite matrix and a solution

vector has to be nonnegative.

Furthermore, this dissertation introduces a novel algorithm dubbed Non-Negative

Iterative Single Data Algorithm (NN ISDA) which solves the underlying DL2 SVM’s

constrained system of equations. This solver shows significant speedup compared to

several other state-of-the-art algorithms. The training time improvement is achieved

at no cost, in other words, the accuracy is kept at the same level. All the experiments

that support this claim were conducted on various datasets within the strict double

cross-validation scheme. DL2 SVM solved with NN ISDA has faster training time on

both medium and large datasets.

In addition to a comprehensive DL2 SVM model we introduce and derive its

three variants. Three different solvers for the DL2’s system of linear equations with

nonnegativity constraints were implemented, presented and compared in this disser-

tation.
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CHAPTER 1

INTRODUCTION

Support vector machines (SVM) are powerful supervised learning algorithms widely

used for classification and regression analysis. They represent a major development

in machine learning algorithms. The main advantages of SVMs are high generaliza-

tion ability, adaptability to various problems by changing kernel functions and nice

theoretical property of having a unique global optimum. However, in the case of large

scale problems (say, hundreds of thousands samples and more) SVM’s computation

and storage requirements increase rapidly, making many problems infeasible. In prac-

tice, SVMs are reduced to a quadratic programming (QP) problem which identifies

support vectors from non-support vectors. The training time required to obtain a

solution of a QP solver is very much dependent on the topology of training data,

that is, the surface of the cost function and constraints. For an extremely hard QP

(with a badly conditioned matrix) QP solvers may not even converge to a solution.

It is said that the training time complexity of a QP problem is O(n3) (where n is

the number of training patterns) and its space complexity is at least quadratic [1].

Hence, a major stumbling block is in scaling up QP problems to large data sets.

As has become apparent in the last few years, the sizes of datasets are growing

steadily and will continue to do so. These datasets provide huge statistical samples

which have the power to enhance the analytical results. The general rule is that the

larger the data sample, the more accurate the analysis. Data analysis will be inher-

ently diminished if we make a compromise of sampling when we have the potential to

explore the entire dataset. This expedites the development of training algorithms that
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scale well with the number of samples. The challenges of developing such algorithms

involves two aspects. One of them is a thorough theoretical analysis of a problem

and the second is a proper implementation that will achieve required computational

complexity.

There have been several different approaches to large scale learning problems.

First attempts at speeding up the training time and decreasing the memory require-

ments were aimed at decomposing the underlying SVM’s quadratic programming

(QP) problem. Vapnik et al. in [2] suggested first such method which became known

as chunking, where subsets of the training data are optimized iteratively, until the

global optimum is reached. Another such strategy was introduced by Osuna et al. [3].

Sequential minimal optimization (SMO) by Platt [4] where the chunk size is reduced

to 2 is another approach to decomposing a QP problem. Several of the most popular

software packages out there such as SVMlight [5] and LIBSVM [6] are based on these

algorithms. Efficient SVM implementations incorporate various heuristics to speedup

the training time even more, one such strategy is called shrinking and is used for de-

tecting the non-support vectors early on in the computation. Another strategy that

leads to a significant savings in computation is caching of the kernel data.

Recent approaches to large scale problems involve parallelization of the learning

task. This idea has been exploited in several different ways and on several different

hardware architectures ([7, 8, 9, 10]). Improving speed through parallelization is a

difficult task due to the high interdependencies of the steps. CPU and GPU parallel

frameworks offer enormous computation power, and have the potential to provide

huge speedups. However, algorithms must be carefully decomposed and the problem

must be approached in a fundamentally different way in order to effectively utilize a

specific parallel architecture. Therefore, parallelization of SVMs requires significant

effort in fine-tuning the level of parallelization and the overhead induced, and this
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fine-tuning must be done for a particular distributed architecture.

Another recent advancement in handling large scale problems is based on geo-

metric interpretation of the SVM model in the kernel induced feature space. These

geometric approaches include solving the SVMs learning problem by convex hull [11]

and/or minimum enclosing ball [1]. The novel algorithms by Strack et al. [12] known

as the Sphere Support Vector Machine (SphereSVM) and Minimal Norm Support

Vector Machine (MNSVM) combine the two techniques (convex hull and enclosing

ball) and demonstrate high capability for handling large datasets.

All of these algorithms have their advantages and disadvantages. Nonetheless, a

careful study of the problems posed by large scale data is not fully investigated which

is the main motivation for this dissertation. Additional motivation is the fact that

these algorithms are readily applicable to small and medium sized datasets, which is

still of practical interest.

This dissertation tackles both challenges mentioned previously when dealing with

large data. First, it gives a new theoretical insight into L2 SVM learning task. Sec-

ond, it introduces a new algorithm for solving a system of linear equations with

nonnegativity constraints.

Direct L2 Support Vector Machine introduced here can be viewed as a compre-

hensive model from which several other L2 SVM approaches can be derived with

very few adaptations. Namely, DL2 SVM has almost the same problem setting as

the geometrical approaches introduced in [1] and [12]. Furthermore, it is similar to

Least-Squares Support Vector Machine proposed by Suykens et al. [13] and Prox-

imal Support Vector Machine (PSVM) by Mangasarian et al.[14] in a sense that it

leads to a set of linear equations. NN ISDA which is a novel algorithm for solving

the DL2’s underlying problem shows significant speedup compared to several other

state-of-the-art algorithms.
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1.1 Contributions of the dissertation

The major contributions of the dissertation are:

• the introduction of a Direct L2 Support Vector Machine

• the introduction of three variants of Direct L2 SVM’s

• the introduction and implementation of a novel algorithm Non-Negative Itera-

tive Single Data Algorithm

• implementation of the over-relaxation technique for NN ISDA

• implementation of the probabilistic speed-up technique for NN ISDA
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CHAPTER 2

BACKGROUND

The Generalized Portrait algorithm introduced by Vapnik [15] in mid 1960’s gave

a foundation to modern maximum margin classifiers. Support vector machines, in

simple terms, involve finding a hyperplane that best separates two classes of points

with the maximum margin. Essentially, it is a constrained optimization problem

where the goal is to maximize the margin subject to the constraint that it perfectly

classifies the data. For a long time SVMs went largely unnoticed until 1990’s when

(based on the work of Aizerman et al. [16]) Boser, Guyon and Vapnik [2] generalized

the original linear problem, the so called Hard-Margin Support Vector Machine, to a

nonlinear case. Finally, Cortes and Vapnik [17] introduced the Soft-Margin Support

Vector Machine which allowed classification in the case of non-separable (overlapped)

data.

In training an SVM classifier the goal is to maximize the classification perfor-

mance on the training data, while keeping the generalization error (i.e., the classifi-

cation error on unseen data) low. In other words, if a classifier is fitting the training

data too well, its generalization ability might be degraded.

This chapter gives theoretical background of SVMs. First, the hard-margin sup-

port vector machines are discussed where the training data are linearly separable

in input space. Afterwards, we extend the hard-margin classifier to the case of lin-

early non-separable training data, and give a derivation of soft-margin support vector

machine.
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2.1 Hard-margin support vector machine

Let χ = {xi} be a training dataset containing m input vectors xi from d-

dimensional input space i.e., xi ∈ Rd, and let yi represent their associated class

labels. In the simplest classification problem, yi has two possible values. Without the

loss of generality we can denote these two values with 1 and -1. This type of clas-

sification is called binary classification. From now on we assume the input training

dataset χ is given as a matrix X of size (m, d) consisting of m input vectors xi given

as rows, and the output label vector y is given as a column vector of length m.

The function d(x) is a linear decision function defined as:

d(x) = x ·w + b, (2.1)

where w is a d-dimensional weight vector, and b is a bias term. To ensure correct

classification, both w and bias b must satisfy the following condition:

yi(xi ·w + b) ≥ 1 i = 1, ...,m. (2.2)

If the data are linearly separable, there exist w and b such that 2.2 is always satisfied.

The goal of the classification is to assign the output value 1 or -1 to the given input

vector x, therefore, the classification function is given as:

sign(d(x)) :=


class +1 if d(x) > 0

class -1 if d(x) < 0

(2.3)

The hyperplane defined as d(x) = x ·w+ b = 0 forms the separating hyperplane.

There is an infinite number of separating hyperplanes that satisfy the condition given

by 2.2 but the location of this hyperplane has a direct influence on the classifier’s

generalization ability. Namely, SVMs try to maximize the margin (see Fig. 1) between

6



Fig. 1.: Maximum margin hyperplane in a two-dimensional space

the separating hyperplane and the samples from the opposite classes. Intuitively,

large distance between the decision boundary and the samples makes the probability

of misclassification lower. Mathematically, the width of the margin is always equal

to the 2/ ‖w‖. The hyperplane with the maximum margin is called the optimal

separating hyperplane. The training data nearest to the separating hyperplane (circled

points in Fig. 1) whose decision function equals exactly 1 or -1 are called the support

vectors.

In order to maximize the margin we need to minimize the norm of the weight

vector w. Therefore, the optimal separating hyperplane for the hard-margin SVM

problem is obtained by solving the following optimization problem for w and b:

minimize Q(w) =
1

2
‖w‖2 , (2.4)

subject to yi(xi ·w + b) ≥ 1, i = 1, ...,m, (2.5)

where xi is the input vector, yi is the class label, b represents the bias term and m
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stands for the size of the dataset (the number of samples). The assumption of linear

separability means there exist w and b that satisfy 2.5, but in the case of overlapping

classes there is no feasible solution to this optimization problem. To overcome this

problem Cortes and Vapnik introduced the soft-margin SVM.

2.2 Soft-margin support vector machine

In the case of soft-margin SVMs, constraints yi(xi ·w+b) ≥ 1 are relaxed to allow

some errors during the classification. This is done by introducing the nonnegative

slack variables ξi:

yi(xi ·w + b) ≥ 1− ξi i = 1, ...,m. (2.6)

By introducing the slack variables ξi the solution to overlapped data always exists.

Fig. 2 shows the situation where we have inseparable data in 2-dimensional input

space. For the training point x3 the value of slack variable is between 0 and 1, and

the data does not lie on the margin but it is still correctly classified. In the case of x1

and x2 the values of their corresponding slack variables ξ1 and ξ2 are greater than 1

and so the points are misclassified. Point x4 lies on the margin and is on the correct

side of the separating boundary so its slack value is 0.
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Fig. 2.: The case of inseparable data in a two-dimensional space

By including the slack variables, the SVM’s optimization problem has changed.

Now, to obtain the optimal separating hyperplane, the following minimization prob-

lem needs to be solved:

minimize Q(w, ξ) =
1

2
‖w‖2 +

C

p

m∑
i=1

ξpi , (2.7)

subject to yi(xi ·w + b) ≥ 1− ξi, i = 1, ...,m. (2.8)

and ξi ≥ 0, i = 1, ...,m. (2.9)

where C is the penalty parameter controlling the trade-off between the maximization

of margin and minimization of the classification error. If we set parameter C to some

small value we make the cost of misclassification low thus allowing more errors for the

sake of larger margin (wider cushion), in other words we are more flexible about the

margin. As we increase C we punish errors more (misclassifications are considered

bad) and thus we are forcing the SVM algorithm to explain the data stricter.
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The obtained separating hyperplane is called the soft-margin hyperplane. The

value of p in 2.7 is selected to be either 1 or 2 [18]. When the value for p is chosen to be

1 the corresponding support vector machine is called L1 SVM since it is minimizing

the L1 distance of the points on the wrong side of the boundary to their corresponding

margin (in the input space). When p = 2 the support vector machine is called L2

SVM. Both L1 and L2 SVMs will be explained in details in the following subsections.

Linear soft-margin SVM explained here is capable of dealing with inseparable

data because it is allowing some classification errors to be made by including the

slack variables, however it is still not fully equipped to handle highly complex input

topological structures. This problem is solved by mapping the input space to a high-

dimensional feature space in order to enhance linear separability in that feature space.

This process will be further explained in 2.2.1.1.

2.2.1 L1 support vector machine

L1 SVM is a special type of soft-margin support vector machine that has p value

set to 1 (see 2.7). The optimization problem is given as follows:

minimize Q(w, ξ) =
1

2
‖w‖2 + C

m∑
i=1

ξi, (2.10)

subject to yi(xi ·w + b) ≥ 1− ξi, i = 1, ...,m. (2.11)

and ξi ≥ 0, i = 1, ...,m. (2.12)

The given optimization problem with constraints can be solved by converting it into

the equivalent dual problem by using the idea of Lagrangian. This has a consequence

of decreasing the number of unknown variables. Particularly, the number of unknown

variables becomes equal to the number of training data. To perform this conversion,
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first the primal Lagrangian is formed:

Lp(w, b, ξ,α,β) =
1

2
‖w‖2 +C

m∑
i=1

ξi−
m∑
i=1

αi(yi(xi ·w+b)−1+ξi)−
m∑
i=1

βiξi, (2.13)

where

αi ≥ 0 i = 1, ...,m, (2.14)

βi ≥ 0 i = 1, ...,m, (2.15)

are the nonnegative Lagrange multipliers.

For the optimal solution, the following Karush-Kuhn-Tucker (KKT) conditions

must be satisfied:

∂Lp(w, b, ξ,α,β)

∂w
= 0, (2.16)

∂Lp(w, b, ξ,α,β)

∂b
= 0, (2.17)

∂Lp(w, b, ξ,α,β)

∂ξi
= 0, (2.18)

αi(yi(xi ·w + b)− 1 + ξi) = 0 i = 1, ...,m, (2.19)

βiξi = 0 i = 1, ...,m, (2.20)

αi ≥ 0, βi ≥ 0, ξi ≥ 0 i = 1, ...,m. (2.21)

The equations 2.16 to 2.18 can be reduced to

w =
m∑
i=1

αiyixi, (2.22)

m∑
i=1

αiyi = 0 i = 1, ...,m, (2.23)

αi + βi = C i = 1, ...,m. (2.24)
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Now, substituting 2.22 to 2.24 into the formula for primal Lagrangian 2.13 we obtain

the following dual problem for L1 SVM:

minimize Ld(α) =
1

2

m∑
i,j=1

αiαjyiyj(xi · xj)−
m∑
i=1

αi, (2.25)

subject to
m∑
i=1

αiyi = 0, i = 1, ...,m, (2.26)

and 0 ≤ αi ≤ C i = 1, ...,m. (2.27)

As can be seen in the expression above, the optimization problem depends on the dot

product of samples (xi · xj). This idea will be used in the next section, as it brings

a very useful feature. The constraints given by 2.27 are called the box constraints.

For quadratic programming problems, the values of the primal and dual objective

functions coincide at the optimal solution, if it exists. Therefore, once we find α we

have found the solution to the L1 SVM problem. Dual form of a hard-margin SVM

is very similar to L1 SVM’s, the only difference is that the Lagrange multipliers αi

do not have an upper bound.

In matrix notation dual Lagrangian is equivalent to:

Ld(α) =
1

2
αT (yyT ◦XXT )α− 1Tα, (2.28)

where the operator ◦ represents element-wise matrix multiplication (Hadamard prod-

uct).

From the KKT conditions given by 2.19, 2.20 and 2.24 there are three possible

cases for the values of αi:

1. αi = 0 then ξi = 0. A training point xi is correctly classified.

2. 0 < αi < C then yi(xi ·w+ b)− 1 + ξi = 0 and ξi = 0, so yi(xi ·w+ b) = 1 and

thus xi is a support vector. These support vectors are called unbounded (free)
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support vectors and they lie on the margin.

3. αi = C then yi(xi · w + b) − 1 + ξi = 0 and ξi ≥ 0, and so xi is a support

vector. These support vectors are called bounded support vectors. In this case

if 0 ≤ ξi < 1, xi is correctly classified, but if ξi ≥ 1, the input data xi is

misclassified.

Finally, the decision function for L1 SVM classifier is calculated as:

d(x) =
m∑
i=1

αiyi(xi · x) + b =

#SV∑
sv=1

αsvysv(xsv · x) + b. (2.29)

Note that the summation is performed over the support vectors only because only for

support vectors the value of αi is positive (0 < αi ≤ C), otherwise αi is zero.

From the KKT condition 2.19 one can derive that the bias term satisfies:

b =
1

|U |
∑
i:xi∈U

yi − ∑
j:xj∈S

xj ·w)

 , (2.30)

where S represents the set of all support vectors, and U represents the set of all

unbounded support vectors (for which 0 < αi < C and ξi = 0).

2.2.1.1 Kernel L1 SVM

Even though the L1 SVM hyperplane is determined optimally, if the training data

are not linearly separable, the classifier may not have good generalization ability. In

order to enhance linear separability, the original input space is mapped into a high-

dimensional feature space. When a linear SVM is applied in that feature space (that

is, applied to those transformed points) the solution corresponds to a non-linear

function in the original space.

An easy way to interpret a kernel is to think of it as a “distance function”, it

takes in two points from the input space (scalars, vectors) and gives their distance.
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According to Mercer’s theorem if a kernel is positive definite then it has an associated

transformation of input points into some high dimensional “feature space”usually de-

noted as ϕ(xi) . In practice, kernels calculate the scalar product of those transformed

feature vectors ϕ(xi) and ϕ(xj) which turns out to be a quite simple operation on

input space vectors:

k(xi,xj) = ϕ(xi) · ϕ(xj). (2.31)

The advantage of using a kernel function k(xi,xj) during training and classification,

as opposed to just using ϕ(xi), is that we do not need to deal with high-dimensional

feature space explicitly. This technique is called the kernel trick. Using this trick the

L1 SVM dual problem becomes:

minimize Ld(α) =
1

2

m∑
i,j=1

αiαjyiyjk(xi,xj)−
m∑
i=1

αi, (2.32)

subject to
m∑
i=1

yiαi = 0 i = 1, ...,m, (2.33)

and 0 ≤ αi ≤ C i = 1, ...,m. (2.34)

Note that the scalar product xi ·xj in 2.25 was simply replaced by a kernel function.

We say that K is a kernel matrix or simply kernel if k(xi,xj) = xi · xj. If a kernel

matrix satisfies a Mercer’s condition, it will be symmetric positive semidefinite, and

thus the optimization problem is a quadratic programming problem which brings up

the important consequence - the objective function always has a global minimum,

[18]. This is one of the important advantages of SVMs over neural networks which

have numerous local minima.

In matrix notation the optimization function for L1 SVM is now equivalent to

Ld(α) =
1

2
αTHα− 1Tα, (2.35)
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where H = [yiyjk(xi,xj)]i,j is called the Hessian matrix, which is, same as kernel

matrix K, positive semidefinite.

Finally, we can calculate the decision function for L1 support vector machine as

d(x) =
m∑
j=1

αiyik(xi,x) + b. (2.36)

For the unbounded support vector xi the bias term satisfies

b = yi −
∑
j:xj∈S

αjyjk(xj,xi), (2.37)

where S is the set of all support vectors. To ensure higher precision of the bias we

take the average:

b =
1

|U |
∑
i:xi∈U

yi − ∑
j:xj∈S

αiyik(xi,xj)

 , (2.38)

where U is a set of unbounded support vectors.

Table 1.: Most frequently used kernel functions

Kernel function Name Properties

k (xi,xj) =
(
xix

T
j

)
Linear CPD1

k (xi,xj) =
(
xix

T
j + 1

)d
Polynomial of degree d PD2

k (xi,xj) = e−γ‖xi−xj‖2 Gaussian RBF PD2

k (xi,xj) = tanh
(
xix

T
j + b

)
Multilayer Perceptron CPD1

If data are linearly separable in the input space then the linear kernel is used

(k(xi,xj) = xi ·xj), but if the mapping function ϕ(x) is nonlinear, then the obtained

1Conditionally Positive Definite
2Positive Definite
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decision function will be nonlinear as well. Table 1 shows the most popular kernel

functions used in support vector machines. In addition, many other kernels were

developed to suite specific applications, such as image processing, text classification,

speech recognition, etc. More on classification of kernels, from a statistical point of

view, can be found in [19].

2.2.2 L2 support vector machine

L2 support vector machine is a soft-margin SVM which optimizes the sum of

squared errors. The L2 SVM’s optimization function is given as follows:

minimize Q(w, ξ) =
1

2
‖w‖2 +

C

2

m∑
i=1

ξ2i (2.39)

subject to yi(xi ·w + b) ≥ 1− ξi i = 1, ...,m. (2.40)

where w is a d-dimensional weight vector, b is the bias term, ξi are the slack variables,

and C is the penalty parameter. Just as in L1 SVM, the first term in the objective

function minimizes the margin, the second term controls the number of misclassifica-

tions and C represents the trade-off between the two. The only difference between L1

and L2 SVM is that L2 SVM uses the sum of squared slack variables. This difference

leads to some interesting properties in dual space.

To solve this QP problem we will start by introducing the Lagrange multipliers

αi (≥ 0) and forming the primal Lagrangian:

Lp(w, b, ξ,α) =
1

2
‖w‖2 +

C

2

m∑
i=1

ξ2i −
m∑
i=1

αi(yi(xi ·w + b)− 1 + ξi), (2.41)

To get the optimal solution the following Karush-Kuhn-Tucker conditions must be
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satisfied:

∂Lp(w, b, ξ,α)

∂w
= w −

m∑
i=1

αiβixi = 0, (2.42)

∂Lp(w, b, ξ,α)

∂b
=

m∑
i=1

yiαi = 0, (2.43)

∂Lp(w, b, ξ,α)

∂ξi
= Cξi − αi = 0, (2.44)

αi (yi(xi ·w + b)− 1 + ξi) = 0 i = 1, ...,m. (2.45)

Substituting 2.42 to 2.44 into the primal L2 SVM Lagrangian (2.41) we can obtain

its dual form:

minimize Ld(α) =
1

2

m∑
i,j=1

αiαjyiyj(xi · xj +
δij
C

)−
m∑
i=1

αi, (2.46)

subject to
m∑
i=1

yiαi = 0, (2.47)

and αi ≥ 0 i = 1, ...,m, (2.48)

where δij is Kronecker’s delta function in which δij = 1 for i = j and δij = 0 otherwise.

There are two differences with respect to L1 support vector machine worth pointing

out here. One of them is the addition of δij/C term in 2.46 and the second is the

removal of the upper bound C on αi (see 2.27).

Matrix notation for the L2 SVM dual form 2.46 is:

Ld(α) =
1

2
αT (yyT ◦XXT +

1

C
I)α− 1Tα, (2.49)

where I is an identity matrix and the operator ◦ represents element-wise matrix

multiplication.

The decision function for L2 SVM is the same as for L1 SVM given in 2.29, but

17



the bias term b is calculated in a slightly different way:

b =
1

|S|
∑
i:xi∈S

yi − ∑
j:xj∈S

αjyj((xi · xj) +
δij
C

)

 , (2.50)

Note the addition of a
δij
C

term.

2.2.2.1 Kernel L2 SVM

It is possible to apply the kernel trick for L2 SVMs as well by simply substituting

the scalar product xi · xj in 2.46 and 2.50 with a kernel function:

k(xi,xj) = ϕ(xi) · ϕ(xj). (2.51)

Now, the dual objective function for L2 SVM becomes:

minimize Ld(α) =
1

2

m∑
i,j=1

αiαjyiyj(k(xi,xj) +
δij
C

)−
m∑
i=1

αi, (2.52)

subject to
m∑
i=1

yiαi = 0, (2.53)

and αi ≥ 0 i = 1, ...,m. (2.54)

Note the difference in respect to L1 support vector machines, namely, if we simply

replace k(xi,xj) with k(xi,xj)+
δij
C

and remove the upper bound on αi we can obtain

the L2 support vector machine. Kernel matrix K is now expressed as

K =

[
k(xi,xj) +

δij
C

]
ij

. (2.55)

The addition of 1
C

element on a diagonal of the kernel has an important consequence in

that now, the kernel is a symmetric positive definite matrix and thus the optimization

problem is more computationally stable than that of L1 SVM. Also, by changing the

value of parameter C we are directly changing the condition number of a kernel 2.55.
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In matrix notation dual L2 SVM problem can be rewritten as

Ld(α) =
1

2
αT (H +

1

C
I)α− 1Tα, (2.56)

where H = [yiyjk(xi,xj)]i,j is the Hessian matrix. The Hessian matrix is positive

definite leading to a unique solution α.

Finally, the decision function is the same as for L1 SVM and is given as

d(x) =
m∑
i=1

αiyik(xi,x) + b, (2.57)

where the bias term b is given by

b =
1

|S|
∑
i:xi∈S

yi − ∑
j:xj∈S

αjyj(k(xi,xj) +
δij
C

)

 . (2.58)

Following subsections will discuss some variants of L2 SVM which relate to the

ideas presented in this dissertation.

2.2.2.2 Least-Squares SVM

Besides the widely used classic L2 SVM presented above, few other variants have

been developed. One of them is Least-Squares Support Vector Machine (LS SVM)

proposed by Suykens et al. [13].

Least-Squares SVM is a support vector machine in which the training is per-

formed by solving a set of linear equations as opposed to solving a quadratic pro-

gramming problem. The LS SVM is formulated as follows,

minimize Q(w, ξ) =
1

2
‖w‖2 +

C

2

m∑
i=1

ξ2i (2.59)

subject to yi(xi ·w + b) = 1− ξi i = 1, ...,m. (2.60)

xi and yi (i = 1, ...,m) are m training input/output pairs, ξi are slack variables and C
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is the penalty parameter, same as in the soft-margin SVMs presented previously. In

the case of LS SVM slack variables ξi can be negative, so, when ξi ≥ 1, input vector

xi is misclassified, otherwise it is correctly classified. Note that the only difference

between L2 and LS SVM is that inequality constraints in L2 soft-margin support

vector machines (see 2.40) are converted into equality constraints here. Decision

function and all the parameters in this problem are the same as for L2 support vector

machine.

Multiplying both sides of the equality constraints 2.60 by yi we can get:

xi ·w + b = yi − yiξi i = 1, ...,m, (2.61)

because ξi can take either positive or negative value and |yi| = 1 the equation above

can be rewritten as:

xi ·w + b = yi − ξi i = 1, ...,m. (2.62)

Introducing Lagrange multipliers we obtain the unconstrained objective function for

Least-Squares support vector machine,

Lp(w, b, ξ,α) =
1

2
‖w‖2 +

C

2

m∑
i=1

ξ2i −
m∑
i=1

αi(xi ·w + b− yi + ξi), (2.63)

note that, unlike in L1 and L2 SVMs, Lagrange multipliers can be negative. KKT

conditions for this problem are given as,

w =
m∑
i=1

αixi, (2.64)

m∑
i=1

αi = 0, (2.65)

αi = Cξi i = 1, ...,m. (2.66)

xi ·w + b− yi + ξi = 0 i = 1, ...,m. (2.67)
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Substituting equations 2.64 and 2.66 into equality constraint 2.67 and expressing it

together with 2.65 in a matrix form leads toΩ 1

1T 0


α
b

 =

y
0

 (2.68)

where

Ωij = xixj +
δij
C
, (2.69)

and δij represents Kronecker’s delta function, y is a vector of y values, and α a vector

of α values. Therefore, the original QP problem is transformed into a system of linear

equations 2.68 for α and b. The size of this system is (m+ 1,m+ 1). The linear LS

support vector machine can be extended to a nonlinear case by replacing the scalar

product in Ωij with a kernel function k(xi,xj) which leads to a nonlinear decision

function.

To summarize, by changing the inequality to equality constrains the training

results in solving a set of linear equations. The downside of this approach is that it

produces a non-sparse, i.e. dense solutions. In terms of SVM, this means that all the

data points will be support vectors. Note that matrix Ω scales with the number of

training samples so 2.68 shows that LS SVM cannot be used for large and ultra-large

datasets because solving this system of linear equations is not feasible when m goes

over a dozen of thousands of data points (of course, depending on the platform and

condition number this number can be higher).

2.2.2.3 Proximal SVM

Another variant of L2 support vector machine is Proximal Support Vector Ma-

chine (PSVM) by Mangasarian et al. [14]. Proximal SVM has a different geometrical
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interpretation than other L2 SVMs. Instead of assigning a training point xi to one of

the disjoint half-spaces (in the case of binary classification), PSVM assigns it based

on the proximity to closer of the two parallel planes.

The Proximal SVM is formulated as follows:

minimize Q(w, b, ξ) =
1

2
‖w‖2 +

C

2

m∑
i=1

ξ2i +
1

2
b2 (2.70)

subject to yi(xi ·w + b) = 1− ξi i = 1, ...,m. (2.71)

Note that, the cost function has additional term related to bias b here. The inequality

constraints seen in L2 SVM are replaced by equality constraints here (same as in LS

SVM). This modification changes the nature of optimization problem in a similar way

as LS SVM does. In other words, PSVM avoids solving the quadratic programming

problem, instead, it reduces a set of linear equations which will be derived here.

The primal Lagrangian for PSVM is given as:

Lp(w, b, ξ,α) =
1

2
‖w‖2 +

C

2

m∑
i=1

ξ2i +
1

2
b2 −

m∑
i=1

αi(xi ·w + b− yi + ξi), (2.72)

KKT conditions ensure the optimal solution, so setting the gradients of Lp(w, b, ξ,α)

with respect to w, b, ξi and αi to zero gives the following:

w =
m∑
i=1

αixi, (2.73)

b =
m∑
i=1

αi, (2.74)

αi = Cξi i = 1, ...,m. (2.75)

xi ·w + b− yi + ξi = 0 i = 1, ...,m. (2.76)

Substituting the values for w, b and ξ obtained from the first three equations above,
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into the 2.76 gives:

Ωα = y, (2.77)

where y = (y1, ..., ym)T , α = (α1, ..., αm)T and elements of a matrix Ω are given as,

Ωij = xixj + 1 +
δij
C
, (2.78)

where δij represents a Kronecker’s delta function. Hence, the original problem is

simply solved by solving a system of linear equations 2.77 for α. The size of this

system is (m,m).

This has a similar consequence as commented above for LS SVM, which is - this

problem setting does not have a sparse solution. In other words, it gives a model in

which all the data are support vectors. Needless to say, such model would be not

applicable for massive datasets.

2.2.2.4 Geometric L2 SVM

Geometric L2 support vector machines represent a relatively new and different

approach to SVM learning problem. They utilize existing geometric algorithms to

solve not only separable, but also non-separable classification problems, accurately

and efficiently. These algorithms utilize some geometric properties of the maximum

margin classifiers in the feature space. Basically, the idea is that SVMs can be

equivalently formulated as certain problems from computational geometry. Some

of these geometric SVMs use convex hull [11] and minimum enclosing ball approach

[1]. The most recent and advanced methods by Strack et al. [12] known as the Sphere

Support Vector Machine (SphereSVM) and Minimal Norm Support Vector Machine

(MNSVM) combine the two techniques (convex hull and enclosing ball). This novel

approach has displayed significant speedup with respect to all the other state-of-the-
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art algorithms for handling large datasets.

In order to approach finding a solution to L2 SVM in a geometric way Tsang et

al. [1] modified the original L2 SVM optimization function as follows:

minimize Q(w, b, ξ, ρ) =
1

2
‖w‖2 +

C

2

m∑
i=1

ξ2i +
1

2
b2 − ρ, (2.79)

subject to yi(ϕ(xi) ·w + b) ≥ ρ− ξi i = 1, ...,m. (2.80)

The optimization function for geometric L2 SVM given here is extended with two

terms: the term relating to the bias 1
2
b2 and the term regarding the parameter ρ. Note

that the ρ is also found on the right-hand side of the constraints. Using the Lagrange

multipliers method this constrained optimization problem can be transformed into its

primal form:

Lp(w, b, ξ,α, ρ) =
1

2
‖w‖2 +

C

2

m∑
i=1

ξ2i +
1

2
b2 − ρ−

m∑
i=1

αi (yi(ϕ(xi) ·w + b)− ρ+ ξi) ,

(2.81)

where αi represent the nonnegative Lagrange multipliers. For optimal solution the

following KKT conditions must be satisfied,

∂Lp(w, b, ξ,α, ρ)

∂w
= w −

m∑
i=1

αiyiϕ(xi) = 0, (2.82)

∂Lp(w, b, ξ,α, ρ)

∂b
= b−

m∑
i=1

yiαi = 0, (2.83)

∂Lp(w, b, ξ,α, ρ)

∂ξi
= Cξi − αi = 0, (2.84)

∂Lp(w, b, ξ,α, ρ)

∂ρ
= 1−

m∑
i=1

αi = 0, (2.85)

αi (yi(ϕ(xi) ·w + b)− ρ+ ξi) = 0 i = 1, ...,m. (2.86)

Plugging in the first four equations above into the last one, the parameter ρ can be

defined as a function of a dual space variable α. More importantly, using equations
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for w and b from 2.82 and 2.83 respectively, and the fact that
∑m

i=1 αi = 1 the primal

Lagrangian can be transformed into its dual form,

minimize Ld(α) =
m∑

i,j=1

αiαjyiyj

(
k(xi,xj) + 1 +

δij
C

)
, (2.87)

subject to
m∑
i=1

αi = 1, i = 1, ...,m, (2.88)

and αi ≥ 0, i = 1, ...,m. (2.89)

In matrix form this optimization problem can be expressed as follows,

minimize Ld(α) = αTHα, (2.90)

subject to |α|1 = 1, (2.91)

and α ≥ 0, (2.92)

where elements of a Hessian matrix H are given asH = [yiyjk(xi,xj) + 1 + δij/C]i,j.

The importance of the optimization problem defined above is that it is possible to

treat it as a geometrical problem of finding a minimal norm (finding a point belonging

to a convex hull that is closest to the origin, see Fig. 3) or a minimal enclosing ball

(finding a center of a smallest sphere that encloses all the points, see Fig. 4). Relation

of these computational geometry problems to SVMs and algorithms for solving them

can be found in [12].

Finally, the decision function for geometric SVM is the same as for L1 and L2

support vector machines and is given as

d(x) =
m∑
i=1

αiyik(xi,x) + b, (2.93)
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Fig. 3.: Minimal norm problem Fig. 4.: Minimal enclosing ball

or, after substituting b from 2.83 it can be rewritten as,

d(x) =
m∑
i=1

αiyik(xi,x) +
m∑
i=1

αiyi. (2.94)

To summarize, the addition of terms relating to ρ and b in the optimization func-

tion enable the transformation of L2 SVM into a corresponding geometric problem

and without them this approach would not be possible. This new terms give rise to

some important facts. Namely, the constraints in soft-margin L2 SVM
∑m

i=1 αiyi = 0

(2.53) have been replaced by
∑m

i=1 αi = 1 here. Also, the dual form of a geometric

SVM has discarded the −
∑m

i=1 αi term which can be found in 2.52. Another discrep-

ancy is the addition of element ’1’ to a kernel matrix in 2.87, which is a consequence

of adding a bias term 1
2
b2 to the optimization function. These differences made this

computational geometry approach feasible.
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CHAPTER 3

DIRECT L2 SUPPORT VECTOR MACHINE

For the sake of comprehensiveness and in order to have a common model from which

all the other L2 SVM approaches mentioned in previous chapter (section 2.2.2) can be

derived, we present the most general L2 Support Vector Machine (L2 SVM) learning

model as introduced in [20]:

minimize Q(w, b, ξ, ρ) =
1

2
‖w‖2 +

C

2

m∑
i=1

ξ2i +
kb
2
b2 − kρρ, (3.1)

subject to yi(ϕ(xi) ·w + b) ≥ ρ− ξi i = 1, ...,m, (3.2)

where xi and yi are m training input and output pairs, ξi are slack variables, w is

the weight vector and C is the penalty parameter resolving the trade-off between the

maximization of the margin and minimization of the classification error as previously

defined. This general DL2 SVM problem setting differs from the classic soft-margin L2

SVM by having two additional terms in the objective function. These two additions

are: the term involving the bias b and the term relating to parameter ρ, which are

multiplied by scalar values kb and kρ, respectively. Default values for kb and kρ are 1.

DL2 SVM leads to a new approach of finding a solution to L2 support vector

machine which enables a variety of algorithms, both iterative and non-iterative, to be

used for searching the optimal solution. Detailed steps for to DL2 SVM’s underlying

problem will be explained in this section. The algorithms for finding a solution to

DL2’s underlying problem that were discussed in this dissertation will be explained

in the succeeding chapter.

L2 SVM models that were mentioned in section L2 Support Vector Machine 2.2.2
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(all well accepted in practice), can be considered as special cases of DL2 SVM. To be

more specific, we give basic similarities and differences between DL2 SVM and all of

the previously mentioned L2 SVM models:

• Least-Squares SVM (described in section 2.2.2.2) minimizes the same objective

function as DL2 SVM but with both kb and kρ set to zero, meaning, there

are no additional terms relating to bias nor ρ in the cost function of LS SVM.

Another difference is that LS SVM uses equality constraints (see 2.60) instead

of inequality. Furthermore, instead of using the variable parameter ρ on the

right-hand side of the constraints, Least-Squares SVM works with a fixed value

for it, namely ρ is set to 1. As derivations given in section 2.2.2.2 show, such

a setting leads to a system of linear equations. Thus, it is similar to DL2

SVM in a sense that it avoids the QP problem and leads to a set of linear

equations, but the major difference is that LS SVM produces dense solutions

due to the fact it replaces inequality constraints with equality. In other words,

it produces a model where all the data are support vectors. The number of

support vectors determines the memory footprint of the learned classifier, as

well as the computational cost of using it. In order for SVMs to be practical

in large scale applications, it is therefore important to have a small number of

support vectors.

• Proximal SVM (described in section 2.2.2.3) poses a similar learning problem

to LS and DL2 SVM. PSVM minimizes the same cost function as DL2 but with

kρ = 0 (there is no additional term related to ρ in the cost function). Also, on

the right-hand side of the constraints, ρ is always set to 1. Same as LS SVM,

PSVM replaces the inequality sign with equality in the equation for constraints.

To summarize, PSVM does have an additional term in the cost function relating
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to bias, however it uses a fixed value for scalar kb (kb = 1). This problem setting

has similar consequences as in LS SVM, in a sense that one has to solve a system

of linear equations which is the main similarity to DL2 SVM. However, same

as in LS SVM, this problem setting leads to a dense solution.

• several geometric approaches presented in [1] and [12], dubbed as Core Vec-

tor Machine (CVM), Sphere (SphereSVM) and Minimal Norm Support Vector

Machines (MNSVM) have almost identical objective function as given in 3.1

subject to 3.2. The only difference is that geometric approaches use fixed val-

ues for scalars kb and kρ (kb, kρ = 1). These algorithms solve the equivalent

geometric problems of finding a minimal enclosing ball or a convex hull in the

feature space defined by a kernel function. Because of their iterative nature in

obtaining the solution, meaning there is no need to have a whole Hessian matrix

stored in a memory at any point, these geometric approaches are well suited for

large classification problems. As of now, it seems that Minimal Norm SVM has

an edge over the other algorithms in terms of both speed and scalability.

Detailed derivation steps of DL2 SVM model which lead to a new approach of

finding the solution to L2 SVM will be discussed bellow. First, we give the summary

of a derivation.

DL2 SVM model defined by a QP problem (3.1) and (3.2) is ultimately trans-

formed into the following system of linear equations subject to inequality constraints:

Kfβ = 1, (3.3a)

subject to βi ≥ 0 i = 1, ...,m, (3.3b)
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where β represents a vector of nonnegative dual variables βi (≥ 0) defined as,

βi =
αi
ρ

i = 1, ...,m,

and α represent the nonnegative Lagrange multipliers. Kf denotes the altered kernel

matrix K and is defined as follows:

Kf =

[
K +

1

kb
1m,m + diagm,m(

1

C
)

]
◦ yyT. (3.4)

The second term in a summation above denotes a matrix where every element is equal

to 1/kb. In addition, the original kernel matrix K has an element 1/C added to each

diagonal term. This element acts as a regularization parameter because adding 1/C

to a diagonal leads to a better conditioned problem. The size of Kf is the same as for

the original kernel matrix (m x m). Another important characteristic of Kf is that

it is a symmetric positive definite (SPD) matrix which makes this problem strictly

convex, leading to a unique solution. Elements of the kernel matrix Kf are related

to an altered feature space defined by a kernel function:

k̃(xi,xj) = yiyjk(xi,xj) +
yiyj
kb

+
δij
C

i, j = 1, ...,m,

where δij is a Kronecker’s delta function in which δij = 1 when i = j and δij = 0

otherwise while k(xi,xj) stands for the original kernel function.

Solving the problem given by (3.3a) subject to (3.3b) gives the values for a

nonnegative β vector which in turn allows the computation of a parameter ρ

ρ =
kρ∑m
i=1 βi

. (3.5)

After computing the value for ρ, dual variables αi of the comprehensive DL2 SVM

model are calculated as:

αi = βi · ρ i = 1, ...,m. (3.6)
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Vector α allows the calculation of the bias b using a formula obtained from Karush-

Kuhn-Tucker conditions:

b =
1

kb

m∑
i=1

yiαi. (3.7)

And so, given some input vector x the Direct L2 SVM’s output d(x) would be

calculated as follows,

d(x) =
m∑
i=1

αiyik(xi,x) + b.

Note that, when computing the output, we use the original kernel function k(xi,x)

as opposed to its altered version k̃(xi,x).

Since any system of linear equations with nonnegativity constraints that has an

SPD matrix can be posed as a QP problem, the equations given by (3.3a) and (3.3b)

are in fact equivalent to:

minimize
1

2
βTKfβ − 1Tβ,

subject to βi ≥ 0 i = 1, ...,m.

This implies that various existing QP solvers can be used to solve DL2 SVM. How-

ever, solving the QP problem is a highly expensive computational task and hence

prohibitive for large datasets.

3.1 Detailed derivation of DL2 SVM

What follows is the detailed derivation of a novel Direct L2 SVM model, which

leads to a new approach of finding a solution to L2 support vector machine.

DL2 SVM’s constrained optimization problem ((3.1) and (3.2)) can be solved

using the Lagrange multipliers method. Introducing the nonnegative Lagrange mul-
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tipliers (α) we first form the primal Lagrangian:

Lp(w, b, ξ, ρ,α) =
1

2
‖w‖2 +

C

2

m∑
i=1

ξ2i +
kb
2
b2 − kρρ

−
m∑
i=1

αi(yi(ϕ(xi) ·w + b)− ρ+ ξi), (3.8)

where α = (α1, α2, ..., αm)T are the nonnegative Lagrange multipliers. The optimal

solution to this problem is a saddle point where 3.8 is minimized with respect to w,

b and ξ and maximized with respect to ρ and α.

There are two basic ways one can avoid solving the QP problem of a comprehen-

sive DL2 SVM task posed by (3.1) and (3.2) which we call here: the classic and the

less orthodox approach. Both ways result in the same solution, that is, they lead to

the same solution vector α. First, we will describe the classic way.

After forming the primal Lagrangian given by (3.8) one can go to a dual problem

in a classic way by making derivatives of a primal Lagrangian:

∂Lp(w, b, ξ, ρ,α)

∂w
= w −

m∑
i=1

αiyiϕ(xi) = 0, (3.9)

∂Lp(w, b, ξ, ρ,α)

∂b
= b− 1

kb

m∑
i=1

yiαi = 0, (3.10)

∂Lp(w, b, ξ, ρ,α)

∂ξi
= Cξi − αi = 0, (3.11)

∂Lp(w, b, ξ, ρ,α)

∂ρ
= kρ −

m∑
i=1

αi = 0, (3.12)
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(3.9) - (3.12) can be reduced, respectively, to:

w =
m∑
i=1

αiyiϕ(xi), (3.13)

b =
1

kb

m∑
i=1

yiαi, (3.14)

ξi =
αi
C

i = 1, ...,m, (3.15)

m∑
i=1

αi = kρ. (3.16)

Plugging these expression back into the primal Lagrangian we get the following dual

problem:

minimize Ld(α) =
m∑

i,j=1

αiαjyiyj

(
k(xi,xj) +

1

kb
+
δij
C

)
, (3.17a)

subject to
m∑
i=1

αi = kρ, i = 1, ...,m, (3.17b)

and αi ≥ 0, i = 1, ...,m. (3.17c)

Note that similar derivations which resulted in a less comprehensive dual have been

presented in [21], [22] and [12].

Before presenting the faster way to solve (3.17a-c), let’s point out a few important

characteristics of this QP problem. First, the (1,m) matrix of equality constraints

1T has a full row rank. Next, the Hessian matrix defined as ZTKfZ (where Z is a

null-space basis matrix of 1T ) is positive definite. Under such properties the unique

global solution to (3.17a-c) can be found in a faster way by transforming the QP

problem into a system of linear equations [23]. First, we need to define matrix Kn:

Kn =

Kf −1

1T 0

 (3.18)
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where Kf is given by (3.4). Then, we solve the following system of equations,

Knx =

 0

kρ

 (3.19a)

subject to xi ≥ 0 i = 1, ...,m, (3.19b)

where x = [α λ]T . Note that λ value equals the value of DL2 SVM’s parameter

ρ. Important thing to mention here is that matrix Kn is not SPD. However, it is

nonsingular so the problem posed above in (3.19a) - (3.19b) can, for example, be

solved with the Non-Negative Least Squares (NNLS) approach as introduced in [24]

or by its various variants. However, NNLS is an active set approach and not suitable

for large datasets.

In this dissertation we propose a less orthodox way of transforming the QP

problem given by (3.1) and (3.2) into a system of linear equations with a symmetric

positive-definite matrix. This, more efficient and suitable, approach proposed here

starts with the equation for the primal Lagrangian shown in (3.8). Here, in addition

to finding where the primal Lagrangian is stationary (i.e. by taking derivatives of it

as given in:(3.9) - (3.12)) we introduce the so-called complementary conditions:

αi ≥ 0 and, (3.20a)

αi = 0 if yi(ϕ(xi) ·w + b) ≥ ρ− ξi i = 1, ...,m. (3.20b)

The complementary conditions state that αi are nonnegative, or equal to zero if the

classifier output multiplied by the class label yi is bigger than ρ − ξi. Consequently,

if αi > 0, the following must hold true: yi(ϕ(xi) · w + b) = ρ − ξi. An alternative

formulation, and the one more frequently used in the machine learning community is
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this:

αi [yi(ϕ(xi) ·w + b)− ρ+ ξi] = 0 (3.21)

αi ≥ 0, i = 1, ...,m, (3.22)

Remember that the two inequalities αi ≥ 0 and yi(ϕ(xi) ·w+b) ≥ ρ−ξi i = 1, ...,m

are complementary. This means that, for a given data point, at least one constraint

is active. In other words, at least one must be an equality. Also, notice that no

other variable in the equation for primal Lagrangian (3.8) has any other constraints

imposed. The negative values of ξi and ρ cannot occur at the optimal solution (see

3.5 and 3.15).

In DL2 SVM, by enforcing the nonnegativity of αi and by using the equality

yi(ϕ(xi) ·w + b) = ρ − ξi, the optimal values for αi will be obtained. This leads to

the following system of equations which must be satisfied at the optimal point:

yi (ϕ(xi) ·w + b)− ρ+ ξi = 0 i = 1, ...,m. (3.23)

αi ≥ 0 i = 1, ...,m. (3.24)

Now, after plugging in the equations (3.13) - (3.16) into (3.23) we get the following

system:

yi

(
ϕ(xi) ·

m∑
j=1

αjyjϕ(xj) +
1

kb

m∑
j=1

yjαj

)
+
αi
C

= ρ i = 1, ...,m. (3.25)

which can be expanded as follows:

yiϕ(xi)
Tα1y1ϕ(x1) + yiϕ(xi)

Tα2y2ϕ(x2) + ...+ yiϕ(xi)
Tαmymϕ(xm)+

+ yi
1

kb
y1α1 + yi

1

kb
y2α2 + ...+ yi

1

kb
ymαm +

αi
C

= ρ i = 1, ...,m,
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this, in fact, represents a system of linear equations of the form:

y1y1k(x1,x1)α1 + y1y2k(x1, ,x2)α2 + ...+ y1ymk(x1,xm)αm + y1y1
1
kb
α1

+y1y2
1
kb
α2 + ...+ y1ym

1
kb
αm + α1

C
= ρ

y2y1ϕ(x2,x1)α1 + y2y2k(x2,x2)α2 + ...+ y2ymk(x2,xm)αm + y2y1
1
kb
α1

+y2y2
1
kb
α2 + ...+ y2ym

1
kb
αm + α2

C
= ρ

...

ymy1ϕ(xm,x1)α1 + ymy2k(xm,x2)α2 + ...+ ymymk(xm,xm)αm + ymy1
1
kb
α1

+ymy2
1
kb
α2 + ...+ ymym

1
kb
αm + αm

C
= ρ.

Dividing this set of linear equations by a scalar value ρ and introducing new nonneg-

ative dual variables βi:

βi =
αi
ρ

i = 1, ...,m,

the original comprehensive DL2 SVM quadratic programming problem is transformed

into the following system of equations:

Kfβ = 1, (3.26a)

subject to βi ≥ 0 i = 1, ...,m. (3.26b)

The matrix Kf is given earlier in 3.4. Computing the values for nonnegative β allows

the computation of parameter ρ (3.5), and finally, of the dual variables αi (3.6).

Few remarks are now in order. The steps starting with equation (3.23) and

resulting in a model (3.26a) - (3.26b) are equivalent to the procedure from [23] in

obtaining (3.19a) - (3.19b) where one transforms all the equality constraints first and

the nonnegativities of the variables are accounted for only during solving these two

systems of linear equations obtained. Needless to say, they produce the same values

for dual variables αi and parameter ρ, meaning they result in the same SVM model.
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Finally, solving both of these systems (3.19a) - (3.19b) and (3.26a) - (3.26b) leads to

the sparse SVM model. Our extensive experiments have shown that a slightly simpler

model (3.26a) - (3.26b) is faster.

3.2 Variants of DL2 SVM

Basic DL2 SVM defined by 3.1 and 3.2 represents a comprehensive version of

this model. Three additional variants of this model can be expressed and derived, all

of which are explained in this section.

3.2.1 No parameter ρ in the cost function

As the title suggests one possible variant of the comprehensive DL2 SVM is given

as follows:

minimize Q(w, b, ξ, ρ) =
1

2
‖w‖2 +

C

2

m∑
i=1

ξ2i +
kb
2
b2, (3.27)

subject to yi(ϕ(xi) ·w + b) ≥ 1− ξi i = 1, ...,m. (3.28)

The only difference in respect to the original DL2 SVM model is the absence of

parameter ρ in the cost function. This changes the inequality constraints given in

3.2 to the ones given here, where on the right-hand side we use 1 instead of ρ. After

similar derivations as in the case of general DL2 SVM, a slightly altered system of

linear equations for the model without parameter ρ is obtained:

Kfα = 1, (3.29)

subject to αi ≥ 0 i = 1, ...,m. (3.30)

As it can be seen, this model is very similar to the basic DL2 SVM. Namely, by

excluding the term ρ in the cost function and setting the value of 1 on the right-hand
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side of the constraints, there is no need to introduce dual variables β at all. This

means that we can directly find the nonnegative Lagrange multipliers α. Matrix Kf

is the same as in the case of a general DL2 SVM.

It is important to mention the similarity of this model to Proximal SVM which

solves quite a similar learning problem with only one difference: the inequality con-

straints are replaced by the equality in Proximal SVM. Setting this equality has a

consequence of finding a dense solution. DL2 SVM model proposed here avoids that

problem and leads to a sparse solution.

3.2.2 No bias in the cost function

The second variant of a comprehensive DL2 SVM is the one without the bias

term in the cost function:

minimize Q(w, b, ξ, ρ) =
1

2
‖w‖2 +

C

2

m∑
i=1

ξ2i − kρρ, (3.31)

subject to yi(ϕ(xi) ·w + b) ≥ 1− ξi i = 1, ...,m. (3.32)

Following the same steps in deriving the solution as before, we arrive at the following

problem:

Kf ′β = 1, (3.33)

subject to βi ≥ 0 i = 1, ...,m. (3.34)

Just as in the original problem setting, this version introduces new dual variables β

that are used to calculate α using the same formulas as in the original DL2 model,

namely 3.5 and 3.6.

However, the matrix Kf ′ is different from the Kf used in the previous two

38



variants of the DL2. The matrix Kf ′ for this variant of DL2 SVM is given as:

Kf ′ =

[
K + diagm,m(

1

C
)

]
◦ yyT. (3.35)

The only difference in respect to the original Kf matrix is the absence of 1
kb

1m,m

element in a summation. Just as Kf , matrix Kf ′ is symmetric positive definite, but

due to the absence of the 1/kb term in a summation it is better conditioned than Kf .

3.2.3 No bias b and no ρ in the cost function

Final DL2 SVM problem setting is the one that neither has bias term b nor

parameter ρ in the cost function. In fact, this is a very similar problem to the basic

L2 SVM as given in section 2.2.2 except that, in this variant of DL2 SVM, we do not

use b in the model either. This setting can also be solved as a set of linear equations

with the nonnegativity constraints given as:

Kf ′α = 1, (3.36)

subject to αi ≥ 0 i = 1, ...,m. (3.37)

The matrix Kf ′ for this problem is the same as previously defined in 3.35. Also,

similar to the previous variant we can directly solve for α.

Least-Squares SVM mentioned previously has a similar cost function as the the

basic L2 SVM (and this variant of DL2 SVM), only difference is that the linear

inequality constraints are replaced by the equality constraints in LS SVM. As already

mentioned, this small difference in LS SVM leads to a dense solution, which is not

the case in any of the DL2 SVM models introduced here.

To generalize, DL2 SVM solves a system of equations Ax = b subject to the

constraint that the solution vector x has nonnegative elements, xi ≥ 0, i = 1, ...,m.
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This can be solved in a least squares sense, so that the solution vector x minimizes

‖Ax− 1‖ (3.38)

subject to xi ≥ 0 i = 1, ...,m. (3.39)

This represents a well known Non-negative Least Squares (NNLS) problem. In the

case of DL2 SVM A is always a symmetric positive-definite matrix. Table 2 gives the

summary of all four versions of DL2 SVM models.

Table 2.: Summary of DL2 SVM variants

DL2 SVM model

basic
no ρ in

the cost function

no bias in

the cost function

no bias and no ρ

in the cost function

matrix A= Kf Kf Kf ′ Kf ′

solve for x= β α β α

Extensive comparison of all four variants of DL2 SVM was given in [25].

3.2.4 Summarization of L2 SVM models

Solution to the comprehensive L2 SVM problem and its variants can be found

using three different algorithms (discussed in the next chapter). All three produce

the exact, sparse and the same SVM model given as d(x) = ϕ(x) ·w + b except for

the variant given in section 3.2.3 which doesn’t use the bias term b. For this variant,

the final model is calculated as o(x) = ϕ(x) ·w.

Table 3 gives the summary of different representations of the five L2 SVM mod-

els. In the second column we give dual QP problems, and in the column 3 we show

the transformed duals. The fourth column gives the DL2 SVM’s posing of the corre-
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sponding problems.

The classic SVM solution approach, and the one typically used in the SVM

community, leads to solving a dual QP problem as presented in the second column.

Obviously, this is not a convenient training method for large datasets. However, in

this setting the (1, m) matrix of equality constraints 1T has a full row rank and

the reduced Hessian matrix ZTKfZ (where Z is a null-space basis matrix of 1T ) is

positive definite, meaning a dual QP problem can be transformed into a system of

linear equations with nonnegative constraints. The models given in column 3 show

the dual QP problems transformed into their corresponding constrained systems of

linear equations.

The contribution of this dissertation is the fourth column where the solution can

be obtained by directly solving the system of linear equations with an SPD matrix.

Column 4 shows the models for all the L2 SVM variants except the classic L2 SVM

which can’t be transformed into a linear SPD system of equations with nonnegative

constraints. DL2 SVM models lend themselves perfectly to iterative solvers, one of

which is a highly efficient NN ISDA introduced in the next chapter.

It can be useful to make one historic remark regarding Least Squares and Prox-

imal SVM in solving the classic L2 SVM problem. Inability to transform the classic

L2 SVM problem into a system of linear equations with SPD matrix led to proposing

LS SVM (by replacing inequality constraints with equality) and introducing Proximal

SVM (by adding b2 term to the cost function and also, by replacing inequality con-

straints by the equality ones). As shown in the table above, the classic L2 SVM can

be transformed into a system of linear equations albeit without SPD matrix. Such

system can be solved with the NN LS algorithm introduced in [24].

Hence, as the Table 3 shows, the major original contribution of this dissertation

is a replacement of dual QP problem of DL2 SVM and all its variants by the linear sys-
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Table 3.: Three different model representations for five L2 SVM variants

Cost Function

Variant
QP Dual

Transformed QP Dual

Solve:

DL2 SVM

Solve:

b2, ρ
min Ld(α) = 1

2
αTKfα

s.t. 1Tα = kρ, αi ≥ 0

Kf −1

1T 0


α
λ

 =

 0

kρ


s.t. αi ≥ 0, λ ≥ 0

Kfβ = 1

s.t. βi ≥ 0

b2, No ρ
min Ld(α) = 1

2
αTKfα− 1Tα

s.t. αi ≥ 0

Kfα = 1

s.t. αi ≥ 0

Kfα = 1

s.t. αi ≥ 0

No b2, ρ
min Ld(α) = 1

2
αTKf ′α

s.t. 1Tα = kρ, αi ≥ 0

Kf ′ −1

1T 0


α
λ

 =

 0

kρ


s.t. αi ≥ 0, λ ≥ 0

Kf ′β = 1

s.t. βi ≥ 0

No b2, No ρ

No b in

the model

min Ld(α) = 1
2
αTKf ′α− 1Tα

s.t. αi ≥ 0

Kf ′α = 1

s.t. αi ≥ 0

Kf ′α = 1

s.t. αi ≥ 0

No b2, No ρ

L2 SVM, b is

in the model

min Ld(α) = 1
2
αTKf ′α− 1Tα

s.t. yTα = 0, αi ≥ 0

Kf ′ −y

yT 0


α
γ

 =

1

0


s.t. αi ≥ 0

No DL2 SVM

model

tem of equations with an SPD matrix where the only constraint is the nonnegativity

of dual variables αi (i.e. βi).

3.3 Geometric insights

Recently, several publications have been pointing out the similarity between com-

putational geometry and the L2 SVM learning task. This research has been driven

by a desire to develop learning algorithms that can handle ultra-large datasets and it
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succeeded in a sense that geometric approaches are showing better scalability than all

the other L2 SVMs as well as the classic L1 SVMs. As mentioned before, geometric

approaches related to L2 SVMs are utilizing the fact that finding dual variables is

a task equivalent to finding the minimal enclosing/interpolating sphere around the

image points in kernel induced feature space.

Before proceeding into the geometric insights of DL2 SVM and other L2 SVM

models we will give a brief introduction to kernel induced feature spaces. It is said that

every positive semidefinite kernel implicitly defines a feature map ϕ(x) : χ→ Φ into

some Hilbert space (more on reproducing kernel Hilbert space and positive semidef-

inite kernels can be found in [26]). SVMs utilize the fact that positive semidefinite

kernels have associated feature space for determining the optimal hyperplane in this

induced space. In other words, when a linear SVM is applied in that feature space

(that is, applied to those transformed points) the solution corresponds to a non-

linear function in the original space. In practice, kernels calculate the scalar product

of transformed feature vectors ϕ(x1) and ϕ(x2) which turns out to be quite a simple

operation on input space vectors:

k(x1,x2) = ϕ(x1) · ϕ(x2) (3.40)

For example, Gaussian RBF kernel is given as:

k (xi,xj) = ϕ(xi) · ϕ(xj) = e−γ‖xi−xj‖2 . (3.41)

It is important to see here that this inner product in feature space is computed

as a function k which takes as input two vectors x1 and x2 in the original space

and returns one number. Since the inner product means a projection of ϕ(xi) on

ϕ(xj), or in simple terms how much overlap those two vectors have, we can think of

kernels as similarity functions of two vectors in their feature space. Since we are only
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computing the inner product there is no need to perform the feature transformation

explicitly. So, SVM uses kernel function which enables it to operate in this high-

dimensional (potentially infinite-dimensional) feature space without ever computing

the coordinates of the data in that space, instead, they simply compute the inner

product between the images of all pairs of data in the feature space. This operation

is of course, less computationally expensive than the explicit computation of the

coordinates.

The fact that kernels use a scalar product of mapping functions ϕ(xi) gives rise to

some important geometrical properties, see [27] for more details. Namely, when using

positive-definite Gaussian kernel all transformed points ϕ(xi) lie on a hypersphere

around the origin with a radius R that can be derived from:

k(xi,xi) = ϕ(xi) · ϕ(xi) = R2, (3.42)

Hence, for a Gaussian kernel it holds that a radius equals 1. Another important

property of Gaussian kernels is that the kernel matrix has a full rank, thus all points

in a feature space are linearly independent.

The feature space induced by Gaussian kernels is infinite dimensional, however in

order to show some geometric properties it is sufficient to look at only m-dimensional

subspace which is spanned by m points in feature space. In Fig 5 we show the example

of a geometric setup in a feature space for the simple case of three points.

After the mapping, feature points ϕ(x1), ϕ(x2) and ϕ(x3) lie on a 3-dimensional

sphere with a center at the origin 0 and a radius defined by a kernel, that is to say:

R =
√
k(xi,xi) = 1.

For the most commonly used coefficient value kb = 1 in our comprehensive DL2

SVM model, the data points will be mapped onto a hypersphere with a radius not 1

44



Fig. 5.: Visualization of a feature space with three sample points; caff represents the

center of the (hyper) sphere interpolating ϕ(xi)

but:

R =
√
k(xi,xi) =

√
1 +

1

kb
+

1

C
=

√
2 +

1

C
. (3.43)

Note another highly important feature of a kernel induced space. Suppose that

x1,x2, ...,xm are distinct points in the original space, therefore, their transformed

feature vectors are linearly independent, and since any m independent points lie on

a m − 1 dimensional hypersphere, the feature vectors also lie on m − 1 dimensional

hypersphere. In example given in Fig 5, three feature points thus lie on a circle

(marked with cyan color) with a center at caff (subscript aff stands for affine which

will be explained bellow).

Some basic findings about the inequalities and/or similarities of various ap-

proaches for solving L2 SVM problem will be pointed out now.

Proposition 1: Learning algorithms presented in several geometric approaches
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Fig. 6.: Visualization of a convex hull in feature space spanned by ϕ(xi) points

dubbed as Core (CVM), Sphere (SphereSVM) and Minimal Norm (MN) SVM have

the same solution as comprehensive Direct L2 SVM1.

Proof: The cost function given in 3.1 subject to 3.2 is equal in all four models.

Geometric algorithms that solve this problem are iterative by nature and their con-

vergence to the unique solution has been proven. Matrix Kf (see 3.4) of our DL2

SVM model is a positive definite matrix, meaning, it guarantees the same unique

solution, the only difference is that a solution is found by solving the NNLS problem.

Since the solution to DL2 SVM learning problem, whether it is solved as NNLS or

a corresponding geometric problem is the same, we can geometrically represent it as

one point in our simple example: point cCH in Fig 6 (CH stands for convex hull).

1under the condition that coefficients kb, kρ = 1
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The point cCH is a linear combination of feature points:

cCH =
3∑
i=1

αiϕ(xi), (3.44)

further more, constraints on coefficients α (namely,
∑3

i=1 αi = 1) restrain this point

to belong to a convex hull spanned by ϕ(xi). Therefore, in the example above,

α1 = 0, α2 = 0.5 and α3 = 0.5. In our comprehensive DL2 SVM model the sum of α

values must be equal to kρ.

Another interesting geometric property of this problem is that for normalized

kernels the problem of finding a point cCH is in fact equivalent to a problem of finding

a center of minimal enclosing hypersphere for ϕ(xi) that is closest to the origin. The

center of minimal enclosing hypersphere is thus the same as the point cCH .

Proposition 2: Least-Squares SVM finds the affine solution to the L2 SVM

learning task, in other words, it finds the center cAFF of the interpolating hypersphere

for ϕ(xi) points.

Proof: LS SVM solves the system of linear equations (see 2.68) which is solved

by a regular matrix inversion, always resulting in a dense (here called affine) solution.

This solution is thus the same as the center cAFF which interpolates all the ϕ(xi)

points, as depicted in Fig 5.

As already pointed out, Least-Squares SVM replaces the inequality constraints

with the equality constraints. Important consequence of that setting is that it allows

dual variables α to be negative. Consequently, the linear combination of feature

points ϕ(xi) can fall outside of the convex hull, which is the situation shown in Fig.

7a. So LS SVM arrives at the affine solution even if ϕ(xi) points do not enclose the

affine center (again, see Fig. 7a). In addition, LS SVM has no bias term b in the cost

function, as a result, b can not be eliminated from the learning phase of LS SVM.
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(a) caff and cCH do not match (b) caff and cCH do match

Fig. 7.: Affine and convex hull solutions

To sum up, LS SVM’s system of linear equations must be solved by a regular matrix

inversion, always resulting in a dense (here called affine) solution for the interpolating

hypersphere centered at cAFF . In DL2 SVM problem formulation, the use of bias term

b in the cost function and keeping 3.2 as a set of inequality equations enables both,

the elimination of b during the learning phase and a formulation of the novel Non-

Negative Least-Squares problem that enables finding the sparse solution.

Remark: For very small values of coefficient kb (say, whenever kb < 1e−5) dual

variables β in DL2 SVM and α in L2 and LS SVM are numerically equal as long

as the feature points ϕ(xi) surround the center of the affine space cAFF . This is the

case when the convex hull solution cCH coincides with the affine solution cAFF , as

shown in example in Fig. 7b. Stating it differently, DL2, L2 and LS SVM solutions

are equal as long as all the data are support vectors. The only difference is that, in

the LS SVM model, dual variables αi corresponding to negative class have a negative

sign. Remember that the decision function d(x) for DL2 and L2 SVMs is obtained

by multiplying dual variables by their class label yi, hence, this sign difference is

compensated. Also note that, the ’true’ dual variables of DL2 SVM αi(DL2) are scaled

by parameter ρ (they are calculated as αi(DL2) = βi · ρ). In other words, when all
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the data are support vectors and the value of kb is small (< 1e− 5), the connections

between dual variables in L2, LS and DL2 SVMs are related via parameter ρ as

follows,

αi(L2,LS) =
αi(DL2)
ρ

. (3.45)

When using a default value for kb = 1, αi(DL2) values are no longer related to the

solutions αi(L2,LS) in a given way. This is a consequence of the DL2 problem formula-

tion, specifically when kb is bigger, DL2 SVM 3.1 minimizes bias term b as well, while

L2 and LS SVM minimize the norm of the weights w only.

Remark: For small values of Gaussian RBF kernel’s variance (i.e., its shape

parameter σ) and penalty parameter C, the original points are mapped onto the affine

space enclosing the center of interpolating hypersphere cAFF , as depicted in Fig. 7b,

and therefore solutions for DL2 SVM (β′is), LS and standard L2 SVM (αi(L2,LS)) are

numerically equal except for the negative sign in αiLS as commented in the previous

paragraph. As both, the shape σ and penalty C parameter increase in value, the

points converge to one side of the affine space and cease to enclose its center (see Fig.

8). In this scenario, the center cAFF moves closer towards the origin O but it never

reaches it. This leads to the sparse solution for both DL2 and L2 SVM, i.e., to the

cCH solution and the 3.45 still holds for these two models. However, LS SVM in this

case still finds the affine center cAFF as the non-sparse solution for LS SVM system

of equations.
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Fig. 8.: Feature space for a fixed value of C and varoius σ
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CHAPTER 4

ALGORITHMS FOR SOLVING DIRECT L2 SUPPORT VECTOR

MACHINE

In this chapter three different algorithms for finding a solution to DL2 SVM’s under-

lying problem will be explained. Before we start describing the three different solvers,

note that all four variants of DL2 SVM essentially solve a similar problem. Namely,

both matrices, Kf and Kf ′ , introduced in chapter 3 are square, symmetric and posi-

tive definite, and solution vectors α and β have the same nonnegativity constraints.

Therefore, all the algorithms presented bellow are readily applicable to all four DL2

SVM models. Refer to the table 2 to see differences in these four models.

In the following sections in order to generalize, we will refer to finding a solution

to the following system of linear equations:

Ax = 1, (4.1)

subject to xi ≥ 0 i = 1, ...,m, (4.2)

Three different algorithms for solving DL2’s problem that have been compared in this

dissertation are:

• a variant of Lawson and Hanson algorithm [24] which uses a Cholesky decom-

position,

• Conjugate Gradient method with nonnegativity constraints by Hestenes [28],

and

• a novel algorithm dubbed as Non-Negative Iterative Single Data Algorithm (NN
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ISDA) first introduced in [29]

The performances of the first two algorithms were presented in [30]. In [29] we show

a comparison of all three algorithms for finding a solution to DL2 SVM.

4.1 Lawson and Hanson solution

The design and implementation of least-squares algorithms has been the subject

of considerable work of Lawson and Hanson [24]. Their book contains the first widely

used algorithm for solving NNLS problems. The algorithm belongs to a group of so

called ”active set methods”. An active set algorithm is based on the fact that if the

true active set is known, the solution to the least squares problem will simply be the

unconstrained least squares solution. Or in different words: if the active set is known,

the solution to the NNLS problem is obtained by treating the active constraints as

equality constraints rather than inequality constraints, [31].

As already pointed out, constrained system of linear equations 4.1-4.2 posed by

DL2 SVM can be solved in a least-squares sense, thus the problem becomes of the

following form:

minimize
x

f(x) =
1

2
‖Ax− 1‖2 , (4.3)

subject to xi ≥ 0 i = 1, ...,m. (4.4)

Lawson-Hanson NNLS algorithm (Chapter 23 in [24]) finds a solution vector x that

satisfies the given conditions, in an iterative manner. Meaning, the algorithm updates

the current solution with the use of a previously calculated one. This sequence simply

repeats itself with the addition of one or more support vectors in each iteration until

the solution satisfies a well-defined termination condition. Lawson-Hanson NNLS

algorithm is an active-set algorithm that has been proven to be optimal according to
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Karush-Kuhn-Tucker (KKT) conditions.

As mentioned before, matrix A of our problem is a symmetric positive definite,

which allowed us to increase the efficiency and numerical stability of Lawson-Hanson

algorithm by using a Cholesky factorization [32] with update. Cholesky factorization

with update is used to solve a subproblem in each iteration of the algorithm.

The pseudocode for the algorithm is given in Alg. 1.

Algorithm 1: NNLS Algorithm with Cholesky Decomposition

Result: x that minimizes 4.3 subject to 4.4

1 Initialization: x← 0, w ← 1 , Z ← {1, 2, ...,m}, P ← NULL ;

2 while Z 6= NULL or ∃i ∈ Z : wi ≥ 0 do

3 u← argmax
i∈Z

wi % find the maximum violator;

4 Z ← Z − {u} , P ← P + {u};

5 APx
′ ∼= 1 % use Cholesky decomposition to find the new

active-set solution x′;

6 while x′i 6> 0,∀i ∈ P do

7 % solution does not satisfy NN constraints;

8 q ← argmin
j∈P

xj

xj−x
′
j

;

9 α← xq
xq−x′q

;

10 x← x+ α(x′ − x) % adjust the solution vector;

11 Z ← Z + {∀j ∈ P : xj = 0};

12 P ← P − {∀j ∈ P : xj = 0};

13 APx
′ ∼= 1;

14 x := x′;

15 w = 1−Ax;

53



Upon termination, elements of a dual vector w, which is introduced in the ini-

tialization step, will satisfy:

wi = 0, ∀i ∈ P (4.5)

wi ≤ 0, ∀i ∈ Z, (4.6)

where sets P and Z are index sets introduced in the algorithm and are being modified

throughout the course of execution. Sets P and Z represent active and non-active

sets, respectively. In SVM terminology set P will hold indexes of all support-vectors

and set Z indexes of all non-support-vectors.

Initialization: The algorithm starts with the feasible starting point, i.e., the

solution vector x set to 0. Index sets Z and P are initialized as well. Variables

indexed in set Z have values set to zero, while those indexed in P can take values

different from zero, however, if a value indexed in P takes on a non-positive value,

the algorithm will either move the variable to a positive range or set it to zero and

move its index to set Z.

Stopping Criteria: Step 2 of the algorithm above represents the starting point

of the main loop. The condition for exiting the algorithm, i.e. stopping criteria, is

met when either set Z is empty or a dual vector w computed as,

w = 1−Ax, (4.7)

has values less than zero for all indexes contained in set Z.

Finding a violator: Step 3 of the algorithm above represents the search for the

maximum violator. The maximum violator is the variable indexed in set Z that has

maximum value of a vector w (i.e. max wi,∀i ∈ Z). This variable is chosen to be

introduced into the solution. Furthermore, the index of max violator is moved from
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set Z to set P (step 4). In other words, this variable is moved to the active set.

In support vector machine terminology this step chooses the maximum violator and

adds this data to the set of support vectors.

Solving the subproblem: Step 5 represents the most time-consuming part of

the algorithm, and thus, to achieve speed up it is necessary to implement this step

efficiently. In this particular step, the new ’tentative’ solution vector x′ is computed

to satisfy

APx
′ ∼= 1. (4.8)

In each iteration this step is executed with slightly altered matrix AP which contains

only those components of matrix A that are indexed in set P ., i.e., we let AP denote

the matrix defined by

column i of AP :=

 column i of A if i ∈ P

0 if i ∈ Z
(4.9)

Note that in this step only the ith components of the tentative solution vector x′ are

computed, where i ∈ P . In the end, the solution vector x′ is a vector of length m

having zeros for all i indexed in set Z.

Adjustment Step: As Step 6 of the algorithm states, if tentative solution vector

satisfies the nonnegativity conditions, that is, if x′i > 0,∀i ∈ P then we set x := x′

and repeat the entire process (if stopping criteria is not met).

Otherwise, we adjust the subproblem and find a new tentative solution vector x′

that does satisfy the nonnegativity constraints. This is done by ’moving’ the vector

x so that every value that is indexed in set P becomes positive. This move replaces
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the x by

x+ α(x′ − x), 0 < α ≤ 1, (4.10)

where coefficient α is chosen to be as large as possible while keeping the new x

nonnegative. In this step indexes of violators are moved from set P to Z and new

subproblem with different matrix AP needs to be solved inside the while loop (step

13). This loop repeats until all variables indexed in P are positive. In many examples

the algorithm rarely enters this while loop, usually the sequence of simply adding the

new support vectors repeats itself until the termination is eventually satisfied.

Finiteness of two loops given in Alg. 1 have been proven by Lawson and Hanson,

[24]. It is also said that for small test cases the main loop typically required ∼ 1
2
m

iterations.

Very important feature of a NNLS problem formulated in DL2 SVM, is that the

matrix A is square, symmetric and positive definite which allows efficient computa-

tion and guarantees a unique solution. Also, as mentioned in step 5 of Alg. 1, in

each iteration a subproblem given as APx
′ ∼= 1 is computed, where matrix AP gets

augmented by one linearly independent vector (or diminished in case nonnegativity

conditions are not satisfied). This particularity enables the use of Cholesky decompo-

sition with an update. Namely, by retaining the previously found decomposition we

can simply append one new column/row vector to a triangular decomposition matrix.

Thus, a very efficient way for finding a new tentative solution vector x′ for the newly

altered matrix AP in step 5 was achieved.

4.2 Conjugate gradient solution

The conjugate gradient method is an iterative method which allows us to ap-

proximately solve the system of linear equations where the size of a problem is too
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large and therefore slow for a direct method implementation, [28]. General Conjugate

Gradient (CG) algorithm (without constraints) can be modified to accommodate the

case of nonnegative constraints as explained by Hestenes [28]. Here we give a brief

explanation of CG method with nonnegative constraints adjusted to DL2 SVM no-

tation. DL2 SVM’s problem as given in 4.1 subject to 4.2 is the problem of finding

a minimum point x(∗) of f(x) such that each component of x(∗) has a nonnegative

value.

Lets first assume that x(0) is the initial guess for solution vector x(∗) and that

x(0) = 0. Starting with this initial guess the algorithm searches for the solution

with the help of a certain metric that tells if the guess is closer to the solution or

not. The metric used here is the residual vector r which becomes smaller as the

algorithm gets closer to the unique solution vector x(∗). Fig. 9 shows the comparison

of a steepest (gradient) descent and CG descent. As one can see, conjugate gradient

method converges faster, it only takes at most n steps (assuming no round-off errors)

where n is the size of the matrix (here n = 2). However, every iteration of gradient

descent method is cheaper than that of conjugate gradient’s.

Fig. 9.: Conjugate Gradient vs Steepest Descent method
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Before we present the algorithm it is important to introduce the set I and the

residual vector r. Let I be the set of all indexes i ≤ m such that x
(k)
i = 0. Then, at

a point x(k) residual vector can be calculated as

r(k) = −f ′
(x(k)) = 1−Ax(k). (4.11)

As one can see, the residual vector r is in fact the negative gradient of f(x) at point

x(k). The algorithm can be explained through the following steps:

Step 1: Select an initial point x(∗) = x(0) that satisfies the nonnegativity con-

straints, e.g. x(0) = 0. The residual vector r(∗) = r(0) used as the first search direction

is calculated as r(0) = 1−Ax(0).

Step 2: Let I be the set of all indexes i ≤ m such that

x
(∗)
i = 0, r

(∗)
i ≤ 0 ∀i ∈ I. (4.12)

If residual value r
(∗)
i = 0,∀i /∈ I (or equivalently

∣∣∣r(∗)i ∣∣∣ < τ , where τ is some small stop-

ping criteria) then x(∗) is the solution of the optimization problem and the algorithm

terminates.

Step 3: Set the conjugate direction vector p(0) = r̄(0), where r̄(0) is the vector

having

r̄
(0)
i =


0 : i ∈ I

r
(∗)
i : otherwise

(4.13)

Step 4: Start with k = 0 and perform the standard CG step by computing:

s(k) = A · p(k), (4.14)

a(k) =
p(k)T · r(k)

p(k)T · s(k)
. (4.15)
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where scalar value a(k) is used to adjust the solution and residual vector as follows:

x(k+1) = x(k) + a(k) · pk, (4.16)

r(k+1) = r(k) − a(k) · s(k). (4.17)

Step 5: If x(k+1) lies outside of the feasible region, i.e., some x
(k+1)
i violate the

nonnegativity constraint then go to Step 6 of the algorithm.

Otherwise, if residual value r
(k+1)
i = 0, ∀i /∈ I (or equivalently

∣∣∣r(k+1)
i

∣∣∣ < τ), reset

x(∗) and r(∗) as follows:

x(∗) = x(k+1), (4.18)

r(∗) = r(k+1) = 1−Ax(k+1), (4.19)

set k = k + 1 and go to Step 2.

Else, set the new residual r̄(k+1) and update the conjugate direction vector p(k+1)

as described bellow:

r̄
(k+1)
i =


0 : i ∈ I

r
(k+1)
i : otherwise

(4.20)

p(k+1) = r̄(k+1) − s(kT ) · r̄(k+1)

p(kT ) · s(k)
· p(k). (4.21)

Set k = k + 1 and go to Step 4.

Step 6: Let J be the set of indexes j such that x
(k+1)
j < 0 and define some scalar

value ā(k) to be the smallest of the ratios:

ā(k) = min

(
−
x
(k)
j

p
(k)
j

)
,∀j ∈ J. (4.22)
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Once we have the value of ā(k) we can reset the solution and residual vector as follows:

x(∗) = x(k) + ā(k) · p(k), (4.23)

r(∗) = r(k) − ā(k) · s(k). (4.24)

Redefine set I to be the set of all indexes i ≤ m such that x
(∗)
i = 0. If residual vector

r
(∗)
i = 0,∀i /∈ I go to Step 2, else go to Step 3.

The algorithm presented above finds the solution vector in a finite number of

steps. It starts with a point x(0) that lies in a feasible region (nonnegative). If

x(0) is not a minimum point of f in set S which represents a set of points x whose

components are nonnegative, the algorithm locates a pseudo-minimum point x(1) such

that f(x(1)) < f(x(0)). If x(1) 6= x(∗), we locate a new pseudo-minimum point x(2)

that minimizes the function on feasible area, such that f(x(2)) < f(x(1)). If x(2) 6= x(∗)

the process is repeated again until the minimum point has been found. Since there

are only a finite number of pseudo-minimum points of F on S, this procedure will

eventually terminate when minimum point x(∗) has been found.

Conjugate gradient method, in the absence of round-off errors, produces the

exact solution after a finite number of iterations, which is not larger than the size

of the matrix. However, the conjugate method is unstable with even small errors,

so the exact solution is never really obtained. The error developed in calculating

the direction can be detrimental to the convergence. To overcome this drawback,

Fletcher and Reeves [33] suggested to revert to the direction of steepest descent after

every n or (n + 1) iterations. To complicate things, accumulated roundoff error in the

recursive formulation of the residual 4.17 may yield a false zero residual or a value

that is within a predefined stopping criterion. This problem could be resolved by

restarting with equation 4.11.
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To summarize, the CG method monotonically improves the approximation vector

until the exact solution is reached within some tolerance. The speed of improvement

depends on the condition number of matrix A, larger the number slower the conver-

gence.

4.3 Non-Negative Iterative Single Data Algorithm solution

In this section we introduce a novel Non-Negative Iterative Single Data Algorithm

(NN ISDA) [29] that finds a solution to DL2 SVM’s underlying problem introduced

in chapter 3. NN ISDA is a coordinate-descent algorithm that iteratively improves

the tentative solution vector until it converges to the optimal one. It is a variant of

Iterative Single Data Algorithm (ISDA) which was originally introduced in [34] as a

solver for L1 SVM. Here, by combining ISDA from [35, 34] along with some insights

from [36], a new, simple and efficient NN ISDA algorithm will be derived.

In [35] and [34] it has been shown that L1 SVM learning problem, without the

box constraints coincides with the Gauss-Seidel method which is known to converge

if the matrix A is positive definite. Likewise, without the positivity constraint, NN

ISDA coincides with the Gauss-Seidel method, and converges to a unique solution

if A is positive definite. In the case of DL2 SVM, matrix A is always symmetric,

positive definite, therefore, the convergence of NN ISDA is guaranteed.

NN ISDA and ISDA are iterative algorithms that find a solution vector by iter-

atively optimizing the cost function with respect to a single point at a time (which

corresponds to solving a system of linear equations with Gauss-Seidel method). The

use of a single data in dubbing the algorithm is aimed at stressing the difference

in respect to the popular Sequential Minimal Optimization (SMO) algorithm which

optimizes two data points at a time.

DL2 SVM problem does not have box constraints on a solution vector x, it only
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Fig. 10.: The method of NN ISDA. The gray lines represent steps toward convergence

for a simple problem defined by 4.25 and 4.26.

has nonnegativity constraints, which makes the modification of ISDA to the case of

DL2 SVM fairly easy.

Before we go into the algorithm, to help visualize the solution steps lets take a

look at an example of a 2D problem, let’s say that matrix A is given as: 1.1 −0.8

−0.8 1.1

 ∗
x1
x2

 =

1

1

 (4.25)

subject to x1 ≥ 0, x2 ≥ 0 (4.26)

Fig. 10 shows how the NN ISDA finds a solution to this problem. It starts from a point

(0, 0) and searches for a solution by moving in the direction of a steepest descent and

thus iteratively updates both gradient and solution vector. In this simple 2D example

we can observe alternations in two coordinates being updated. The affine solution to

this problem is given as an intersection of two straights lines (blue and red line in Fig.

10) given as 1.1x1 − 0.8x2 − 1 = 0 and −0.8x1 + 1.1x2 − 1 = 0. This is the solution

that Least-Squares SVM finds.
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The pseudo-code of the Non-Negative Iterative Single Data Algorithm (NN ISDA)

for finding a solution to DL2 SVM’s underlying problem is given in Alg. 2.

Algorithm 2: Non-Negative Iterative Single Data Algorithm

Result: β that solves Kfβ = 1 subject to βi ≥ 0, i = 1, ...,m

1 Initialization: β ← 0, g ← −1, Z ← {1, ...,m} ;

2 while abs(gi) ≥ stopping criterion do

3 i← argmax
i∈Z

|gi|√
Kf (i,i)

% find the maximum violator;

4 if βi == 0 and gi ≥ 0 then

5 Z ← Z − {i};

6 else

7 β
(k+1)
i = max

(
β
(k)
i − ω

gki
Kf (i,i)

, 0
)

% update the solution

vector;

8 gk+1 = gk + kfi
(
βk+1
i − βki

)
% update the gradient vector;

Following Huang et al. [34], the iterative update of components βi of vector β

should be done in the following way

β
(k+1)
i = max

(
β
(k)
i − ω

gki
Kf (i, i)

, 0

)
, (4.27)

where β
(k+1)
i and β

(k)
i stand for the i-th dual variable βi at the iteration steps k + 1

and k, respectively. gki is the gradient in the i-th direction at the step k. Kf (i, i) is

a diagonal element of a positive definite matrix Kf , and ω represents the so-called

over-relaxation parameter. When ω = 1, we can find the optimal βi value for which a

gradient in i-th direction equals 0 by dividing the gradient gki with Kf (i, i). As long

as ω < 2 a convergence of the iterative Gauss-Seidel algorithm for positive definite

matrix Kf is guaranteed. The ’proper’ value of the over-relaxation parameter ω can

speed up the training time up to the order of magnitude (see example in Fig. 11), but
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(a) ω = 1.25 (b) ω = 1.5

(c) ω = 1.75 (d) ω = 1.95

Fig. 11.: The convergence rate of NN ISDA with respect to different values of ω. The

gray lines represent the steps to the solution given by x∗.

such a ’proper’ value of ω is not known in advance. Fortunately, for the DL2 SVM,

ω can quite satisfactorily be estimated as the function of penalty parameter C. The

basic strategy in estimating a proper value for ω is to increase it with an increase of

a condition number of the matrix Kf . The later will happen with the increase of a

penalty parameter C.

In order to create an efficient algorithm for solving a linear system by NN ISDA

method we followed instructions from Fadeev and Fadeeva [36] which point out two
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important things ” ... it is necessary at each step to compute all components of

the residual vector, but then to determine the leading index for the following step

... ”. As for the first part, note that the gradient vector g of a (hyper)-quadrics

Q = 1
2
βTKfβ − 1Tβ defined as g = Kfβ − 1 equals the negative of residual r in

[36]. Here, instead of r we use g, as shown in (4.27).

First, from the expression for a gradient vector g above one can easily show that

its iterative update can be calculated as

gk+1 = gk +Kf

(
βk+1 − βk

)
.

However, this would be a very expensive operation because it involves a matrix vector

multiplication in each iteration step. In order to make the gradient vector g update

feasible, note that after an update of the i-th component of a dual variables vector g by

(4.27), the vector difference βk+1−βk is a zero vector except for the i-th components

βi. This fact simplifies, and significantly speeds up, the gradient update by rewriting

it as follows

gk+1 = gk + kfi
(
βk+1
i − βki

)
,

where kfi is the i-th column of the matrix Kf . This expression for updating the

gradient vector g differs from the update of r given in [36, sec. 38]. The difference is

a consequence of a clipping operation, expressed by the max operator, in (4.27).

Next, following the second part of the instruction from [36], the iterations must

not go in a cyclic order. The iterative scheme must ensure that the best variable, i.e.

component βki , is selected for an update. The obvious choice is to choose the variable

for which the gradient vector has the biggest absolute value. (Note that this also

means picking up the coordinate with the highest absolute error i.e., residual). Such

a choice ensures the fastest convergence to the minimum value of the (hyper)quadrics
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Q over the nonnegative (hyper)quadrant.

Finally, note that the clipping defined by max operator in (4.27) suggests that

there won’t be any update whenever βki = 0 and gki ≥ 0. In other words, only an

often small fraction of data known as support vectors, for which βki > 0 (disregarding

the value of their gradient gki ) will be updated. The nonsupport vectors for which

βki = 0 will also be updated but only if gki < 0. Such a checking will also speed up the

training phase of DL2 SVM particularly when a fraction of support vectors is small.

For further speed-up, whenever there is no update, i.e. βki = 0 and gki ≥ 0 we

eliminate the current index from further calculation and shrink the gradient and dual

variable vector by one. This elimination shows no impact on accuracy, but does show

a significant speed up, particularly when a fraction of support vectors is small.

One more remark regarding the selection of a variable which should be updated

is now in order. Note that for Gaussian kernel all the diagonal elements of matrix Kf

are equal to 1 + 1/kb + 1/C and in the line 3 of Alg. 2 one can select i based on the

value of a maximal absolute gradient only. However, when this is not the case (say,

when using a polynomial kernel) according to Householder [37] one should examine

the quotients of absolute gradient values divided by the corresponding
√
Kf (i, i) and

select the largest quotient, as given in Alg. 2. (Note that the selection of the worst

violator in step 3 is the same, but faster, if used |gi|
Kf (i,i)

).

Since ISDA (and thus NN ISDA) is an iterative Gauss-Seidel method the conver-

gence of this algorithm is guaranteed because both Kf and K ′f are symmetric and

positive definite.

The basic working principle of NN ISDA is i) find the maximum violator from the

entire gradient vector, ii) recalculate the solution vector, and iii) update the gradient

vector and repeat the process again. In classical learning setup as presented in Alg.

2, the search for the most informative instance (maximum violator) is performed over
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the entire gradient vector. Note that, for large datasets, searching the maximum

absolute value of the entire vector is a very time consuming and computationally

expensive task. We believe that we do not have to search the entire vector at each

iteration.

By using the probabilistic speed-up technique [38], we implemented a selection

method, which does not necessitate a full search through the entire gradient vector.

Instead, it locates an approximate most informative sample by examining a small

constant number of randomly chosen samples. The theory states that by randomly

sampling only dlog(.05)/log(.95)e = 59 instances, regardless of the training set size,

there is 95% probability that the max violator in this group will be among the top 5%

max violators in the entire gradient vector. This approach scales well since the size

of the randomly chosen subset is independent of the training set size. This requires

significantly less training time and does not have an adverse effect on the classification

performance of the learner. In our experiments, we pick 59 random instances to form

the subsample pool at each learning step and pick the maximum violator from this

pool.

Although NN ISDA guarantees the convergence and does not require entire kernel

matrix to be stored in memory, it does help to have the matrix precomputed so that

we don’t have to re-compute the kernel vector at each learning step. Note that we do

require an i ’th column of a kernel matrix Kf in each iteration step in order to update

the gradient. Having entire matrix in memory is not feasible for large-datasets, just

consider a binary problem with 100,000 training points - if we store each element in an

8-byte representation the kernel matrix would require 80GB of space. Consequently,

the storage of the entire matrix becomes the bottleneck in training large-scale SVM

problems.

To reduce the total number of kernel evaluations we use the Least-Recently-Used
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(LRU) caching technique. In LRU-based caching the least-recently-used kernel row is

deleted in order to free up the space for new one if the cache is full. It is based on an

assumption that the least-recently-used item may not be used in the future. When

the size of the cache is smaller than the size of the problem hit ratio is quite low. In

the case of NN ISDA, especially for a well conditioned problem where the number

of support vectors is quite low, the non-support-vectors that become support vectors

will be kept in memory, while the rest of the non-support-vectors might never even

be included in kernel computation.
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CHAPTER 5

RESULTS

All the results presented in [12] and [22] serve as a starting point to a performance

analysis shown here. Extensive investigations of SphereSVM and MN SVM imple-

mented in open-source framework called GSVM - Command Line Tool for Geometric

SVM Training showed considerable training time speedups in respect to L1/L2 SVM

from the SMO based LIBSVM as well as BVM from LibCVM. Impressive training

speedup going over a few orders of magnitude for complex datasets, along with com-

parative accuracy as the other three algorithms, puts the open-source framework

GSVM ahead of the curve. The work done in [22] supports these claims since it gives

the comparison of MN SVM with LIBSVM’s implementations of L1 and L2 SVM

as well as BVM. Tables given there clearly show that MN SVM has the best perfor-

mance of all in terms of training time, especially when data sizes go into large domains.

Besides, this algorithm shows comparative accuracies and it usually generates very

sparse model (having small number of support vectors). For your convenience we

give the comparisons of MN SVM with L1/L2 SVM from LIBSVM and BVM from

LibCVM in Appendix A.

5.1 Datasets and experimental environment

To evaluate proposed models and compare their performances we used some

benchmark datasets that are available on LIBSVM1 or UCI Machine Learning Repos-

1available at http://www.csie.ntu.edu.tw/∼cjlin/libsvm/
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itory2 sites. Prokaryotic and eukaryotic datasets can be found in [39]. Checkers is

a two-dimensional artificial dataset consisting of two classes that are distributed in

form of the checker board having four rows and four columns.

Table 4 lists all the datasets used in this dissertation. For each dataset table

lists the number of inputs (instances), the number of features or the dimensionality

of data and the number of classes. As can be seen, datasets are ”divided” into three

groups: small, medium and large based on their size, i.e. number of instances. Note

that these are (almost) the same datasets as used in [12] where the aforementioned

geometrical algorithms SphereSVM and MNSVM were compared to BVM implemen-

tation taken from LibCVM package [1], and L1 and L2 SVM implementation from

LIBSVM software package [6].

Comparison of models was obtained using a strict double (nested) cross-validation

(CV) procedure. Such experimental environment is computationally expensive but

is the only way to fairly assess the model’s performance. Double CV procedure is

structured as two nested loops where the inner cross-validation is used to pick the

best hyper-parameters (best model), whereas the outer cross-validation estimates the

performance of the resulting model. In the outer loop, the dataset is separated into

J1 roughly equal-size parts. In all the experiments performed in this dissertation we

used J1 = 5. Each part is held out in turn as the test set, and the remaining four

parts are used as the training set. In the inner loop, J2-fold CV is performed over the

training set only, to determine the best values for the hyper-parameters (here, J2 = 5

too). The best model obtained in the inner loop is then applied on the outer test set.

2available at https://archive.ics.uci.edu/ml/datasets.html
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Table 4.: Dataset information

Dataset # instances # features # classes

Small Datasets

sonar 208 60 2

dermatology 366 33 6

heart 270 13 2

prokaryotic 997 20 3

eukaryotic 2427 20 4

Medium Datasets

optdigits 5620 64 10

satimage 6435 36 6

usps 9298 256 10

pendigits 10992 16 10

reuters 11069 8315 2

letter 20000 16 26

Large Datasets

adult 48842 123 2

w3a 49749 300 2

shuttle 58000 7 7

web 64700 300 2

ijcnn1 141691 22 2

covtype 581012 53 7

checkers 3000000 2 2

intrusion 5209460 127 2
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Double CV ensures that the model performance is not optimistically biased as

would have happened if we used only one cross-validation. This approach is also

consistent with the real-world applications scenario. Obviously, such a rigorous pro-

cedure is done in many runs, which slows down the learning phase but if the main

goal is to compare different algorithms on the same datasets and under the same

conditions, then double cross-validation must be used [12].

The only preprocessing performed on the datasets is a feature normalization,

in other words, the range of features was rescaled from 0 to 1. Then, double CV

was performed to search for the best hyper-parameters and to objectively assess the

obtained model. In the case of Gaussian RBF kernel the hyper-parameters are the

Gaussian ”bell curve” shape and the penalty parameter C. These parameters were

selected among 8x8 possible combinations of the shape parameter γ and penalty

parameter C. The same values for parameter C and γ as in [12] were used here and

they are:

C ∈ {4n}, n = −2,−1, ..., 5, (5.1)

γ ∈ {4n}, n = −5,−4, ..., 2. (5.2)

Different experiments conducted in this dissertation were run on different computer

architectures and they will be commented in further sections. Although the imple-

mentation of these algorithms does not support multi-threaded execution, we utilize

the multi-core architecture by running independent training and testing processes in

parallel. To deal with multi-class classification problems we used one-vs-one (aka

pairwise) approach. Pairwise training procedure trains c(c−1)
2

binary classifiers (each

possible pair of classes) where c is the number of classes. Then, during the predic-

tion, a simple voting scheme is used, namely, all c(c−1)
2

models predict the unseen data
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sample and the class that got the highest number of ”votes” is considered to be the

true class for a given sample.

5.2 Comparison of three DL2 SVM solvers

In this section we present comparison of three different solvers for DL2 SVM:

1. NNLS with Cholesky Decomposition (section 4.1),

2. NN Conjugate Gradient algorithm (section 4.2) and

3. NN ISDA (section 4.3)

The main motivation for the following experiments was to examine the training

speed achieved by three different DL2 SVM solvers. Figures 12, 13 and 14 show the

results obtained through nested CV for the nine selected datasets from the small and

medium groups. The experiments were performed on a computer with Intel Core

i7-930 processor (4-core, 2.80GHz) and a 6 GB of RAM, the code was written in

C++.

Fig. 12 is the most informative here, showing clearly that the NN ISDA is the

obvious choice for DL2 SVM learning algorithm. For small datasets NN ISDA is, on

the average, 360 times faster than CG NNLS algorithm and 256 times faster than

the NNLS based on Cholesky factorization. For datasets from the medium group NN

ISDA is on the average 38 times faster than the implementation of a NNLS solver

with Cholesky decomposition. And it is 75 times faster than the NN CG algorithm

for medium sized datasets. Based on such large differences and clearly visible trends,

one can expect that NN ISDA will outperform the other two algorithms as the sizes

of datasets increase as well.
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Fig. 12.: Total cross validation time for three different implementation algorithms

Fig. 13 shows the accuracies achieved with three nonnegative algorithms. First

remark about the accuracies achieved is that all three learning algorithms are solving

the same DL2 SVM problem posed by 3.1 subject to 3.2 and that all three have shown

convergence property. The three algorithms show some differences in accuracies, espe-

cially with small datasets, namely, NN ISDA and NNLS with Cholesky decomposition

seem to have similar accuracies and also slightly higher than CG NNLS. On the av-

erage, NN ISDA has a negligible edge in respect to other two DL2 SVM solvers.

Differences in accuracies can be attributed to two different factors, one is the random

number generator used for splitting the data into folds during the cross-validation,

and the other is stopping criteria of these algorithms. All three algorithms perform

a successive approximation until some stopping criteria are reached. The path each

algorithm takes toward the unique solution is a trait of that algorithm. So, when the

stopping criteria are applied, different algorithms can stop in different places near the

true solution.
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Fig. 13.: Accuracy for three different implementation algorithms

Fig. 14.: Percentage of support vectors for three different implementation algorithms

The average percent of support vectors for three algorithms is shown in the last

figure, Fig. 14. On average, NNLS CG has the smallest number of support vectors,
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followed by NN with Cholesky, and finally NN ISDA has the largest number of support

vectors. However, the differences in number of support vectors are never too extreme

and are attributed to the iterative nature of these algorithms.

5.3 Comparison of different variants of Direct L2 SVM

In this section we give the performance observed on medium datasets (the same

trend is seen on the small datasets as well) for four different variants of DL2 SVM.

In the following three figures where we give total CV time, accuracy and percentage

of support vectors you will find the following notation:

• Model 11: this is the original DL2 SVM model with both bias term b and a

parameter ρ in objective function, as given in 3.1 subject to 3.2.

• Model 10: model of DL2 SVM without the parameter ρ as explained in section

3.2.1.

• Model 01: model of DL2 SVM without the bias in objective function as intro-

duced in section 3.2.2.

• Model 00: finally, this represents a model that has neither bias nor parameter

ρ in minimization function (section 3.2.3)

It is important to note what these models have in common. To recap, the first

two models have one important thing in common - they work with the same kernel

matrix Kf . The difference is that the first model’s solution is vector β through which

we find the real dual variables α and the second model calculates α vector directly so

the second model has one additional step towards the solution. The last two models

also have one similarity - the same kernel matrix Kf ′ . Difference is the same as

between the first two models, one calculates β and then the real solution vector α
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and the other calculates α vector directly.

Fig. 15.: Total cross validation time for medium datasets

The hardware used for the comparison of four variants of DL2 SVM was composed

of 13 nodes each with four AMD Opteron 6282 SE CPUs with 256 GB RAM.

First figure, Fig. 15 shows the time required to complete the nested cross-

validation for medium datasets. Model 11 and model 10 perform better than other

two in all cases except for usps dataset where model 00 seems to be the winner (the

only such case). For the most complex dataset, i.e. letter dataset, the original model

(model 11) outperforms the others, especially the model without both bias and ρ.

The second figure here, Fig. 16 gives the accuracies obtained during the nested

cross validation scheme. Important remark about the accuracies achieved is that all

four models have shown convergence property. It can be seen that accuracies for all

four models are highly similar. There seems to be no major distinction except for the

satimage where the model 01 shows a slightly lower accuracy.

77



Fig. 16.: Accuracy for medium datasets

Fig. 17.: Percentage of support vectors for medium datasets

The average number of support vectors (in percentages) is given in Fig. 17. One

can observe there is a certain relation between the models with bias term and those
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without it - models with the bias term in the objective function give a model with

less support vectors in all six datasets.

The conclusion here is that the original model of DL2 SVM and the version

without the parameter ρ in objective function are faster than other two models in

the majority of cases. The accuracies of all models are practically the same, however

there is slight distinction in the number of support vectors - the latter two models

have larger numbers of SVs.

5.4 Comparison of Direct L2 and Minimal Norm SVM

Here we present the comparison of DL2 SVM solved with NN ISDA with MN

SVM both implemented in GSVM toolkit (written in C++ programming language).

As section 5.2 shows, the choice of NN ISDA for DL2 SVM was obvious since it

performs better in terms of training speed and accuracy. We used the original DL2

SVM variant with both bias b and parameter ρ in the cost function, and with kb and

kρ set to their default value 1. The performance was evaluated based on the average

nested CV classification accuracy, CPU time required to complete the cross-validation

and the percentage of support vectors or complexity of a model. The following three

figures show the results obtained through nested CV for all fourteen datasets from

medium and large groups.

These experiments were performed on a computer cluster composed of 6 nodes.

Each node was equipped with 2 E5520 Intel Xeon CPUs (4-core, 2.27 GHz) and 24

GB of RAM. As mentioned before, the multi-threaded execution is not available for

these algorithms but we did utilize the multi-core environment by decomposing the

nested cross-validation procedure into several independent processes.

Figure 18 shows the CPU time needed to complete the nested CV procedure for

DL2 SVM (NN ISDA) and MN SVM. One can readily see that the DL2 SVM model
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solved by NN ISDA outperforms MN SVM in terms of CPU time in all datasets

but one, namely intrusion. Note that both algorithms are implemented within the

GSVM platform, meaning that the calculation of kernels and double cross-validation

procedure are same for both models. Hence, the results presented here are pointing

to the very core of numeric and algorithmic characteristics and capacities of the two

algorithms.

Based on the results from [12] (which are repeated here in Appendix A for your

convenience), this means that the new DL2 SVM algorithm using the NN ISDA is

significantly faster than the LIBSVM implementations of L1 and L2 SVMs as well

as all the other geometric SVM algorithms represented by the fastest one, BVM. As

for the comparisons with the SMO based algorithms note that neither L1 SVM nor

L2 SVM algorithm implemented in LIBSVM were able to finish the training in a

reasonable time. As per Section 7.1.2.2 in Strack (2013), their simulation runs have

Fig. 18.: Total nested cross-validation time
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Fig. 19.: Average cross-validation accuracy

been aborted after not being able to finish the training for a single pair of hyper-

parameters C and gamma in 60 hours.

Notice that the time axis is in logarithmic scale, that is to say, NN ISDA is in

the range of 20− 80% faster than MN SVM, depending on the dataset.

The average accuracies obtained through nested CV are given in Figure 19. Ac-

curacies for both models are highly similar. Out of fourteen datasets there are only

three for which one can notice any difference (usps, adult and covtype). However,

even in those cases the differences are negligible (less than 1%).

Model’s size, or the number of support vectors is given in Figure 20 where we

can see that MN SVM has lower number of support vectors in majority of datasets

(i.e., 11/14). However, this difference is rather small (in most cases within 1%). The

only exception is the shuttle dataset where DL2 SVM has much less support vectors.

To summarize, Figure 18 is the most informative here, showing clearly that DL2

SVM outperforms MN SVM and thus several other state-of-the-art algorithms in
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Fig. 20.: Percentage of support vectors obtained in one-vs-one training

terms of training speed. The second figure shows that accuracy is kept at the same

level as MN SVM. Therefore, there is no trade-off here between training speed and

accuracy which is typical in these scenarios. The size of a DL2 SVM model is only

slightly larger than that of MN SVM.

In the following experiment we measured the Receiver Operator Characteristic

(ROC) curves, which show how the number of correctly classified positive examples

varies with the number of incorrectly classified negative examples. The results are

shown on four different datasets: adult, reuters, web and w3a, see Figure 21. For

this experiment we first computed the best hyper-parameters for both MN SVM and

DL2 SVM separately using the 5-fold cross validation and then used the best pair

of parameters to evaluate the ROC curve. Area Under Curve (AUC) which is often

used as a metric to define how an algorithm performs over the whole ROC space tells

us that MN SVM performs only slightly better than DL2 SVM. For this experiment
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(a) adult (b) reuters

(c) web (d) w3a

Fig. 21.: The ROC analysis for adult, reuters, web and w3a datasets

we used MATLAB’s function perfcurve to plot the ROC curve and to compute the

AUC (perfcurve uses trapezoidal approximation to estimate the area).

5.5 Influence of kb and kρ on learning

In this section we describe the influence of parameters kb and kρ on cross-

validation accuracy and training time of the original DL2 SVM model with both
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bias and parameter ρ in the cost function. All the experiments were run on checkers

data, a two-dimensional artificial dataset consisting of two classes that are distributed

in a form of checkers board.

Figures 22, 23 and 24 show the accuracy, training time and the average number of

SVs obtained through 5-fold cross-validation for 4 different values of Gaussian shape

parameter sigma and six different values for parameter kb which multiplies the bias

term b2 in the cost function of DL2 SVM. To obtain these results we used the NN

ISDA solver and a fixed value of 1 for the parameter kρ.

What the experiments show is that increasing the value of parameter kb positively

impacts the accuracy of our model. Namely, setting the kb to a too small value (say

1e-04) directly corresponds to adding a large value to a matrix K (see 3.4) which

means that our system matrix Kf becomes too ill-conditioned, which is why we

observe such low accuracies for the entire range of sigma values. Slightly larger value

of 0.001 performs better, however not as good as what we observe for kb ≥ 0.1. For

the larger values of kb the cross-validation accuracies increase (they even overlap for

this dataset). For larger values of sigma parameter none of the kb values give a good

solution.

Fig. 23 tells us that larger values of kb (namely, 1 and above) correspond to a

faster training time. The smaller the value for kb the more ill-conditioned matrix Kf

becomes which directly affects the time it takes to find a solution. Fig. 24 shows

that for small values of kb the average number of support vectors is bigger, which

reinforces the opinion that larger kb values should be used.
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Fig. 22.: Influence of kb on CV accuracy

Fig. 23.: Influence of kb on CV training speed
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Fig. 24.: Influence of kb on number of support vectors

Figures 25, 26 and 27 show the accuracy, training time and the average number of

SVs obtained through 5-fold cross-validation for 4 different values of Gaussian shape

parameter sigma and six different values for parameter kρ which multiplies parameter

ρ in the cost function of DL2 SVM. To obtain these results we used the NN ISDA

solver and a fixed value of 10 for the parameter kb.
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Fig. 25.: Influence of kρ on CV accuracy

Fig. 26.: Influence of kρ on CV training speed
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Fig. 27.: Influence of kρ on number of support vectors

Parameter kρ is not as influential on learning as the parameter kb explored above.

Namely, the parameter kρ has no affect on the accuracy nor the number of support

vectors of the final model, as the results in figures 25 and 27 show. Theoretically, this

is not a surprise since the parameter kρ only serves as a scaling factor for ρ and thus

for the solution vector α (see 3.6). The larger the value of kρ means larger parameterρ

and consequently the larger norm of the solution vector α.
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CHAPTER 6

CONCLUSIONS

The dissertation presents a new formulation of an L2 SVM problem, dubbed Direct

L2 SVM (DL2 SVM), in which the minimization of an underlying L2 SVM’s QP prob-

lem is replaced by a system of linear equations subject to nonnegativity constraints.

Starting from the geometric L2 SVM problem setting in primal domain, the novel

DL2 SVM model is derived in dual domain. Furthermore, the new Non-Negative It-

erative Single Data Algorithm (NN ISDA) is devised and used as a learning algorithm

for DL2 SVM.

DL2 SVM represents a comprehensive L2 SVM model that has strong relations

to several other popular and well-established models. In this dissertation we have

shown its relations to Least-Squares SVM and Proximal SVM. The main difference

and an advantage to DL2 SVM, with respect to these two popular and established

L2 SVM algorithms, is that the vector of dual variables for DL2 SVM is sparse. This

makes DL2 SVM an algorithm of choice when facing large datasets and when a direct

solution to a system of equations without constraints (as required for training in both

LS and Proximal SVM) is not feasible.

Another strong connection worth pointing out is the one between DL2 SVM

and several other geometric SVMs: Core, Ball, Sphere and Minimal Norm. Namely,

the cost function in primal domain is the same for all of them when parameters

kb and kρ in DL2 SVM are set to 1. Having flexible scalar values for these two

parameters allows further optimization in the case of DL2 SVM. Difference between

these models is that DL2 SVM solves the problem algebraically, while previously
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mentioned geometric SVMs solve the minimization task by utilizing some geometric

structure in kernel-induced feature space.

The performance comparisons using the double (nested) cross validation scheme

show that for the fourteen datasets DL2 SVM can be up to 80% faster than MN SVM.

At the same time DL2 SVM achieves the same accuracy. The choice of MN SVM

for comparison is not by chance. Under the entirely same experimental conditions as

here, a series of extensive simulations in [12] have shown that MN SVM is faster than

both L1 SVM and L2 SVM implementations in LIBSVM. The same experimental

runs have also shown that MN SVM is faster than the fastest geometric SVM: BVM

implemented in LibCVM platform.

The training time, size of the model and accuracy of DL2 SVM obtained through

thorough comparisons with the state-of-the-art SVM algorithms aimed for large datasets

make DL2 SVM the strongest candidate for nonlinear SVMs when the number of

training data goes to millions.
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Appendix A

COMPARISON OF MINIMAL NORM SVM WITH L1, L2 SVM AND

BVM

Fig. 28.: Total nested cross validation time. For each dataset the bars represent train-

ing time of (bars from left to right): L1 and L2 SVM implementations in LIBSVM,

BVM and MNSVM.
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Fig. 29.: Accuracy obtained during nested cross validation. For each dataset the bars

represent accuracy of (bars from left to right): L1 and L2 SVM implementations in

LIBSVM, BVM and MNSVM.

92



Fig. 30.: Average percent of support vectors obtained in one-vs-one training. For

each dataset the bars represent the model size for (bars from left to right): L1 and

L2 SVM implementations in LIBSVM, BVM and MNSVM.
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