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Abstract 

THE STUDY OF THE REGULON OF OXYR IN ESCHERICHIA COLI AND 
PORPHYROMONAS GINGIVALIS 

By: Christopher Khoa Pham 

A thesis submitted in partial fulfillment of the requirements for the degree of Master of 
Science at Virginia Commonwealth University. 

Virginia Commonwealth University, 2016 

Major Director: Janina P. Lewis, Ph.D., Philips Institute for Oral Health Research 

The facultative anaerobe, Escherichia coli and the obligate anaerobe, Porphyromonas 

gingivalis are two bacteria that reside in our body. Although they reside in separate 

environments, they are both subject to hydrogen peroxide stress and have mechanisms 

to regulate the stress. OxyR is the primary transcriptional regulator/sensor of oxidative 

stress response caused by hydrogen peroxide. OxyR in P. gingivalis is not well-

characterized compared to OxyR in E. coli. We sought to characterize and compare the 

two forms of OxyR in order to gain a better understanding of the protein. We determined 

the oligomeric state of both proteins: primarily a tetramer for E. coli and primarily a 

tetramer for P. gingivalis OxyR.. We demonstrated DNA binding with E. coli OxyR, 

indicating purification of the functional form of E. coli OxyR.Through pulldown assays 

we discovered potential novel binding targets, mobB for E. coli OxyR and PG1209 for P. 

gingivalis OxyR. Many of the other targets corresponded to intergenic regions within 

genes, which may pertain to small RNAs or small proteins. These results show that 

OxyR in E. coli and P. gingivalis has novel function and properties indicating an 

expanded role in addition to the well-characterized oxidative stress response. 
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Chapter 1 - Background Significance 

1.1 - Microbiome of the Human Body 

 The human body provides various environments suitable for a variety of 

microorganisms. The microorganisms that reside throughout the human body are 

classified as the microbiota of the human body (Turnbaugh et al., 2007). Different 

regions of the body serve as hosts to different types of flora. These environments can 

range anywhere from the outer surface of our skin, the oral cavity, and to even the 

gastrointestinal tract. While these environments are separate from one another and 

possess unique characteristics, microorganisms are not exclusive to just one of these 

environments. The bacteria or microbes are of special interest because of the types of 

relationship they have with the human body.  

 The bacteria that reside throughout the human body are generally part of normal 

human physiology and function. These are the normal flora and do not normally cause 

disease or complications. These are the commensal bacteria. They reap the benefits 

the human body provides—such as a suitable environment for growth as well as various 

nutrients. However, a number of seemingly harmless bacteria are actually opportunistic 

pathogens. They can become pathogenic when the immune system becomes 

compromised—allowing them to cause disease. Without the presence of the immune 

system to keep them at bay, these bacteria are able to cause harm. Another 

mechanism for normal flora to become pathogenic is if they manage to acquire 

virulence factors. Some bacteria are unable to cause harm because they lack virulence 

factors that would allow them to invade host cells. Acquiring virulence factors would 
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allow normal flora bacteria to invade normal cells and cause problems (Escobar-

Páramo et al., 2004). Two important sites of the human body are the oral cavity and the 

gastrointestinal tract. 

1.2 - Gut Microbiome  

 The human gastrointestinal tract is home to an estimated over 100 trilllion 

microorganisms in the intestines alone (Björkstén et al, 2001). Many human gut 

microorganisms are considered to be commensal bacteria. The human gut provides an 

adequate environment for various microorganisms to thrive due to our digestive system. 

The foods we eat and digest are a source of rich nutrients and energy for the gut flora 

(Guarner & Malagelada, 2003). The gut itself also functions as a physically protective 

environment or home for these organisms. By harnessing the nutrients our foods 

provide, the flora in turn generates various nutrients that benefit the human body. For 

example, gut flora produce both vitamin B and vitamin K which are needed for cell 

metabolism and protein synthesis respectively (Cummings & Macfarlane, 1997). Under 

healthy homeostatic conditions, their residency in the human gut helps prevent 

colonization of pathogenic bacteria. Escherichia coli is one of thousands of bacteria that 

reside in human gut as a commensal organism under normal healthy conditions. 

However, if conditions are altered that allow the commensal strains of E. coli to escape 

the gut, they are capable of causing peritonitis or infections elsewhere in the body.  

1.3 - Escherichia coli 

 Escherichia coli is a rod-shaped, Gram-negative facultative anaerobe. It is one of 

the most extensively studied organisms and arguably the most studied microorganism. 

As an intensely studied organism, E. coli is the prime example of a model organism.  
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Model organisms are species that have undergone extensive studies to be used as a 

basis for comparison when studying other organisms. The rapid reproductive rate of E. 

coli allowed for extensive studies to be done further contributing to its status as a model 

organism for microorganisms.   

 E. coli exists in various microbiomes throughout the human body such as the 

skin flora and the gut flora. The GI tract is the primary home to E. coli in the human 

body. The gut E. coli are commensal strains and do not possess adequate virulence 

factors to cause problems such as diarrhea (Katouli, 2010). The pathogenic strains are 

the ones that carry virulence factors that enable them to cause disease. These primarily 

enter the human body via fecal-oral transmission through contaminated food or sub-par 

hygiene.  

 As a facultative anaerobe, E. coli is able to survive in both aerobic and anaerobic 

conditions. Under aerobic conditions, E. coli will utilize normal aerobic respiration. 

Under anaerobic conditions, E. coli is able to switch to anaerobic respiration or 

fermentation with the latter as a last resort in order to survive (Unden, Becker, 

Bongaerts, Schirawski, & Six, 1994).  

1.4 - Oral Microbiome 

 The human oral cavity provides a very suitable environment for microorganisms 

such as bacteria to grow and thrive. There is an estimated over 700 different species of 

bacterium alone in the oral cavity (Aas, Paster, Stokes, Olsen, & Dewhirst, 2005). 

Within the oral cavity there are a number of different surfaces such as the lateral sides 

of the tongue, the subgingival plaque, etc. Each of these unique surfaces has its own 

coats of bacteria making up the bacterial biofilm. Some of the bacteria in the oral cavity 
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are exclusive to certain biofilms, but some can be found throughout most of the oral 

cavity. Many of the bacteria residing in the oral cavity are commensal, but there are 

strains implicated in diseases that range from just the oral cavity to systemic disease 

(Aas et al., 2005; Hasegawa et al., 2007). Porphyromonas gingivalis is one of these oral 

cavity bacteria implicated in diseases pertaining to the oral cavity and can lead to 

systemic disease. 

1.5 - Porphyromonas gingivalis 

 Porphyromonas gingivalis is a Gram-negative, anaerobic, rod-shaped bacterium. 

It produces black colonies when plated on blood agar plates. It is one of the pathogens 

implicated in periodontal diseases like periodontitis. Like E. coli, it also exists in the 

human GI tract. However, it primarily resides in the human oral cavity. P. gingivalis is 

one of the primary agents known to cause periodontal disease (Loesche, Syed, 

Schmidt, & Morrison, 1985; Slots, 1986). Periodontal disease is primarily an 

inflammatory disease of the periodontium of the oral cavity. The inflammation leads to 

all sorts of complications—from aggregation of microbial plaque, bone loss, and 

formation of a periodontal pocket or gap (Newman, Takei, Klokkevold, & Carranza, 

2002). These diseases are caused by the bacterial biofilm or dental plaque that form on 

teeth as a result of bacterial aggregation on various surfaces. 

 Although P. gingivalis is implicated in periodontal disease, it does not cause the 

disease on its own. P. gingivalis is believed to be a “keystone” pathogen in that a low 

amount of bacteria can cause localized or widespread inflammation through 

modification of the normal microbiota into a dysbiotic one (Hajishengallis, Darveau, & 

Curtis, 2012). Essentially a small amount of bacteria can corrupt the whole microbiota. 
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As a result, P. gingivalis also plays a role in systemic diseases such as cardiovascular 

disease and rheumatoid arthritis (Desvarieux et al., 2005; Ogrendik, Kokino, Ozdemir, 

Bird, & Hamlet, 2005) due to the inflammation it causes. Within the oral cavity, P. 

gingivalis localizes into specific areas such as the subgingival pockets and the 

periodontal pockets. In these pockets of the oral cavity, P. gingivalis secretes toxins to 

cause inflammation, which facilitates the progression of periodontitis, a disease 

characterized by inflammation which can lead to alveolar bone loss and other 

complications. The toxins released here cause damage to both the surrounding gum 

tissue and the teeth itself. As a result, neutrophils and other inflammatory response 

agents are activated in response to the inflammation caused by P. gingivalis. This can 

lead to an increase in cytokines, reactive oxygen species and other inflammatory 

responses (Graves & Cochran, 2003).  

1.6 - Environmental Stress 

While the human body provides optimal environments for these bacteria, it is not 

a free ticket to ride. These bacteria must learn to survive against various environmental 

stressors such as oxidative stress, nitrosative stress, and the immune system 

(McMahon, Xu, Moore, Blair, & McDowell, 2007). Bacteria can encounter these 

stressors on a daily basis and must exhibit adaptive or defensive mechanisms in order 

to survive within the human body. Under normal homeostatic conditions, the host 

immune system is more than capable of eradicating unwanted pathogens. A healthy 

immune system is capable of recognizing foreign invaders and eliminating them from 

the body before they are able to cause problems. At the same time, the normal flora of 

the body also serves as another source of protection against these microbes by taking 
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up residency which prevents colonization by pathogenic microorganisms (Edlund & 

Nord, 2000; Sekirov, Russell, Antunes, & Finlay, 2010; H. Wu & Wu, 2012). However, 

invasive bacteria such as P. gingivalis have the ability to invade host cells to hide and 

protect against the host immune system (Singh et al., 2011). Being inside a host cell 

makes it much harder for the immune system to locate and identify the target bacteria. 

There are many different adaptive mechanisms to wide variety of environmental 

stressors. 

1.6.1 - Gene regulation and environmental stress 

 Microbes such as E. coli and P. gingivalis have evolved and developed specific 

mechanisms to combat environmental stress. Of the thousands of genes found in 

microbes, some of these genes and their gene products are dedicated to defense 

mechanisms against external stressors such as oxidative stress. These gene products 

are proteins that function as transcriptional factors or regulators. When these 

transcription factors are induced by stress factors, they induce transcription of genes in 

the genome in order to activate the transcription of these genes as part of the stress 

response (Latchman, 1997). These factors induce transcription by binding to a region 

upstream of these genes known as the promoter region. Binding to this region allows 

these factors to regulate the transcription and thus expression levels of these 

genes.Transcription factors can regulate multiple genes as part of a stress response. 

These stress responses allow the microbe to clear or protect against the environmental 

stressor and thus ensure survival.  

1.7 - Oxidative Stress 



  

8 
 

 Oxidative stress is one of the most common environmental stressors bacteria 

can constantly deal with on a daily basis. There are various sources of oxidative stress 

ranging from their own cellular metabolism to the host cell metabolism. Oxidative stress 

is toxic to both aerobic and anaerobic bacteria. Oxidative stress comes in the form of 

reactive oxygen species, which can occur naturally from the environment or as a 

byproduct of cellular metabolism (Christman, Morgan, Jacobson, & Ames, 1985; Fang, 

2004). Hydrogen peroxide is one of the most common reactive oxygen species that 

results from normal cell metabolism (Fridovich, 1978). 

1.7.1 - Aerobic respiration is a source of oxidativ e stress 

 One of the consequences of aerobic respiration is the production of harmful 

byproducts known as reactive oxygen species (ROS) such as hydrogen peroxide. 

Hydrogen peroxide is generated as a byproduct of aerobic metabolism. Through Fenton 

chemistry (Figure 1), hydrogen peroxide reacts with free intracellular Ferrous (Fe2+) iron 

by oxidizing it and turning it into Ferric (Fe3+) iron. This reaction generates the harmful 

hydroxyl radical (. OH). The hydroxyl radical is toxic to organisms because it is highly 

reactive and can cause intracellular damage—particularly to the organism’s DNA (Imlay, 

Chin, & Linn, 1988; Mancini & Imlay, 2015; Seaver & Imlay, 2001; Varghese, Wu, Park, 

Imlay, & Imlay, 2007). Because hydrogen peroxide is capable of bypassing cell 

membranes, it affects virtually all microorganisms. As a result, many organisms possess 

defense mechanisms specifically to combat hydrogen peroxide stress.   
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Figure 1: Overview of Hydrogen Peroxide Induced Oxi dative Stress 

Hydrogen peroxide from various sources can react with intracellular Ferrous iron to 

generate ferric iron and the toxic hydroxyl radical.
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1.7.2 - Oxidative stress use against foreign invade rs 

 Despite all the self-harm inflicted by reactive oxygen species if left unchecked, 

ROS can be used to combat foreign pathogens and infection (Fang, 2004). Reactive 

oxygen species react with thiols, which can lead to oxidative stress when the ROS are 

released as byproducts. However, there is an alternative use for these ROS. Reactive 

oxygen species can serve as signaling molecules to activate the transduction of various 

pathways leading to a reaction against foreign pathogens. Reactive oxygen species 

also function as a signaling molecule to activate phagocytes such as neutrophils as part 

of the immune response to kill off bacteria via phagocytosis (Fang, 2004; Graves & 

Cochran, 2003). Neutrophils can also kill off bacteria by generating hydrogen peroxide 

which is harmful to the bacteria (Weiss, Young, LoBuglio, Slivka, & Nimeh, 1981). In 

addition to activating phagocytes, the reaction of ROS with thiols can lead to 

antibacterial or antimicrobial challenges that the foreign pathogens and bacteria must 

face. Invasive bacteria like P. gingivalis have virulence factors that allow them to invade 

host cells in order to escape the host immune system (Lamont & Yilmaz, 2002). 

Invading a host cell essentially masks the bacteria against the immune response as well 

as providing a safe environment within the host to reproduce. This gives protection 

against phagocytes, but it does not provide protection against reactive oxygen species 

such as hydrogen peroxide, which can bypass cell membranes.   

1.8 - Escherichia coli response to oxidative stress 

   As a facultative anaerobe, E. coli is exposed to various sources of oxidative 

stress. The bacterium itself will produce reactive oxygen species as a result of its own 

cellular metabolism. Free Ferrous iron is capable of producing reactive oxygen species 
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via oxidation from hydrogen peroxide through Fenton Chemistry. The host body 

environment is also source of reactive oxygen species due to the oxygen in the air as  

well as the host cell metabolism. The host immune system is also a source of reactive 

oxygen species to combat foreign pathogens.  In order to protect against oxidative 

stressors such as hydrogen peroxide, aerobic organisms like Escherichia coli possess 

various methods to clear or break down hydrogen peroxide. One defense mechanisms 

of E. coli against oxidative stress, specifically hydrogen peroxide stress, is through the 

transcriptional regulator OxyR. 

1.8.1 - OxyR in Escherichia coli 

 OxyR in E. coli is a transcriptional regulator that belongs to the LysR family of 

regulators (Zheng, Ming et al, 2001). When activated, OxyR will turn on a variety of 

genes in response to carry out various functions. The primary and most-studied activity 

of OxyR is its role in the oxidative stress response. OxyR is primarily activated via 

oxidation by hydrogen peroxide. Once activated, OxyR is known to turn on at least 30 

different genes including katG, grxA, ahpCF, and dps. Many of the genes under 

regulation of OxyR are part of the oxidative stress response. These genes encode for 

the following proteins respectively: KatG (a catalase), GrxA (a glutathione reductase), 

AhpCF (two subunits since reclassified as a NADH peroxidase instead of an 

alkylhydroperoxide reductase), and Dps (DNA-binding protein). These genes each have 

their own role in the oxidative stress response as a defense mechanism against 

hydrogen peroxide. KatG codes for a catalase-peroxidase that functions as a scavenger 

at high concentrations of hydrogen peroxide.  Once it encounters hydrogen peroxide, 
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KatG functions to reduce hydrogen peroxide to nullify oxidative stress. AhpCF has a 

similar role as a scavenger of endogenous hydrogen peroxide at lower concentrations.  

 When OxyR is in its active form, it binds to the promoter region of these genes it 

regulates (L. Tartaglia, Gimeno, Storz, & Ames, 1992; L. A. Tartaglia, Storz, & Ames, 

1989). How and why OxyR binds to these sequences is not fully understood. There is 

very little sequence similarities between binding targets of OxyR other than a small 

consensus binding motif of ATAGnnnnCTAT (Kullik, Stevens, Toledano, & Storz, 1995). 

Despite the extensive studies and knowledge regarding E. coli OxyR and the oxidative 

stress response, the full extent of its activities outside of this response is not fully 

known. 

 The activity of OxyR depends on its oxidation state (Kullik, Toledano, Tartaglia, & 

Storz, 1995; L. A. Tartaglia, Storz, Brodsky, Lai, & Ames, 1990). When OxyR is 

oxidized, it is in its active form. In this active form, OxyR activates RNA polymerase in 

order to initiate transcription of these genes. Because hydrogen peroxide is an oxidizing 

agent, OxyR becomes activated in response to hydrogen peroxide and thus initiates 

transcription of the oxidative stress response genes. When OxyR is reduced, it 

becomes inactivated and ceases the transcription of these genes. There is a 

conformational change between the oxidized and reduced form of OxyR.  

1.8.2 - The difference in structure of OxyR between  active and inactive forms

 Each monomer of OxyR contains 6 different cysteine residues. The Cys199 

residues play a major role in the activation of OxyR (Kullik, Toledano et al., 1995). 

When exposed to hydrogen peroxide, OxyR is oxidized at the Cys199 residue. The 

oxidation results in the creation of a disulfide bond between Cys199 and Cys208 (Lee et 
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al., 2004). The oxidized form of OxyR is the activated form of OxyR in which it is able to 

turn on the transcription of genes such as those of the oxidative stress response. When 

OxyR binds to its target gene, it binds to both RNA polymerase and DNA, forming a 

transcription intiation complex. This complex gives additional stability in order to further 

stabilize the oxidized form of OxyR.  

 OxyR is inactivated by one of targets in the oxidative stress response—GrxA. 

GrxA is a glutathione reductase that is turned on by OxyR, but will also negatively 

regulate OxyR and turn it off. The byproduct of GrxA negatively regulates OxyR by 

reducing the two cysteine residues (Cys199 and Cys208), which breaks the disulfide 

bond, effectively reducing OxyR. The reduced form of OxyR is the inactivated state in 

which it no longer initiates transcription of the genes it regulates. In addition to reduction 

by GrxA, conformational changes also occur when OxyR releases itself from the 

transcription initiation complex after it has turned on a gene. When OxyR is released 

from the complex, the additional stability lent by binding with DNA and RNA polymerase 

is no longer present—giving favor to a reduced conformation. When OxyR is reduced at 

the Cys199 residue, there is a separation of approximately 17 Angstroms between Cys 

199 and Cys 208. This distance is small, but still great enough so that a disulfide bond 

cannot be formed in the reduced forms. The combination of reduction by GrxA and the 

physical changes instilled by release of the transcription initiation complex favor the 

reduced form, which inactivates OxyR. 

1.8.3 The redox switch of OxyR 

 Most of current literature regarding OxyR describes the mechanism of OxyR 

activation and inactivation relying on the redox state of two Cysteine residues—Cys199 
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and Cys208. It is believed that when these two Cysteines are oxidized, this results in 

the creation of a disulfide bridge between the two residues (Storz, Tartaglia, & Ames, 

1990a; Svintradze, Peterson, Collazo‐santiago, Lewis, & Wright, 2013; Zheng, Åslund, 

& Storz, 1998). The formation of this bridge activates OxyR and to regulate transcription 

of other genes. Reduction of these cysteines, often through the byproduct of GrxA, 

breaks the disulfide bridge, thus inactivating OxyR (Choi et al., 2001). This so-called 

redox switch is the means in OxyR activates the transcription of other genes and thus 

regulating the OxyR regulon in the oxidative stress response. 

 However, there is also data that does not argue with the formation of the disulfide 

bridge. It is reported that the distance between Cys199 and Cys208 is approximately 17 

Angstroms (Choi et al., 2001; Kim et al., 2002). It is believed by some that this distance 

is too far to allow for disulfide bridge formation. The exact mechanism of this disulfide 

bond formation is not fully understood and requires speculation. During bridge 

formation, there are disulfide intermediates that can actually occur naturally and exist as 

stable intermediates (Kim et al., 2002). Because these intermediates form stably in wild-

type E. coli, there is reason to believe there are other mechanisms of OxyR outside of 

the oxidative stress response. There was also previous work (data not shown) 

performed in this lab that also disagreed with the redox switch mechanism of OxyR. No 

matter what was tried, there was no evidence of the creation of a disulfide bridge (Oog, 

Kimet 2002; Lewis, Janina et al). The lack of evidence in bridge formation combined 

with stable reaction intermediates leads to the belief that OxyR may have other 

unknown roles aside from the typical oxidative stress response. The formation of 

disulfide intermediates may implicate unknown functions. 
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1.9 - The expanded role of OxyR in Escherichia. coli  

 Oxidative stress through hydrogen peroxide is a caused by reactions between 

the hydrogen peroxide molecules and ferrous iron. As a result, there is evidence and 

growing belief that implicates iron pathology as the driving force behind oxidative stress 

(Bresgen et al., 2010; Mancini & Imlay, 2015). E. coli OxyR has been shown to play a 

role in iron homeostasis as part of the oxidative stress response. When activated 

through oxidation, OxyR has been shown to induce the expression of Fur. Fur is a 

ferritin uptake regulator in that it regulates various iron-uptake mechanisms by acting as 

a repressor for iron-importer proteins (Varghese et al., 2007). By repressing these 

importers during influx of hydrogen peroxide stress, Fur regulates iron levels by limiting 

the activity of iron-importers to reduce the amount of intracellular ferrous iron. This 

minimizes the availability of ferrous iron for Fenton Chemistry. OxyR has also been 

shown to directly regulate hemH, a gene which encodes for HemH, a ferrochetalase, 

which plays a significant role in the biosynthetic pathway to generate heme. HemH is 

responsible for the final step in the generation of heme by inserting iron into 

protophoryin ix in order to generate heme (Mancini & Imlay, 2015; Varghese et al., 

2007). During hydrogen peroxide stress, the levels of intracellular iron is nearly depleted 

by the activity of Dps, which sequesters intracellular iron in order to prevent Fenton 

chemistry. This limits the availability of iron for heme synthesis, which is problematic 

because heme is an important molecule for a variety of functions. At the same time, 

KatG, a catalase part of the regulon of OxyR that detoxifies hydrogen peroxide, requires 

heme for its activities. OxyR regulates the expression of hemH in order to maintain 

adequate levels of heme. OxyR has a role in iron homeostasis as an indirect response 
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to hydrogen peroxide stress as evident by the regulation of the expression of fur and 

particularly hemH. 

 The majority of studies conducted on OxyR in E. coli has been done under and 

focused on the aerobic aspect. These studies focused on the redox state of the protein 

because OxyR was shown to be activated when it becomes oxidized by hydrogen 

peroxide. However, E. coli is a facultative anerobe—meaning that it is capable of 

surviving and functioning through anaerobic metabolism. 

 OxyR purified under anaerobic conditions from E. coli grown under anaerobic  

conditions display functions relating to nitrosylation and nitrosative stress of OxyR (Kim 

et al., 2002; Seth, Hausladen, Wang, & Stamler, 2012). These studies indicate a 

distinctly different function and regulon from the standard oxidative stress response 

caused by hydrogen peroxide. It was shown that modification of these cysteine residues 

via nitrosylation can occur in E. coli OxyR (Kim et al., 2002). They engineered stable 

modifications on these cysteines via nitrosylation to show these thiol groups can form S-

NO, S-OH, and S-SG bonds (Kim et al., 2002). These conformational changes were 

shown to occur both in vitro and in vivo. These modifications created both structural and 

conformational differences from OxyR under aerobic conditions. Recent studies indicate 

that OxyR has a regulatory role in endogenous S-nitrosylation during anaerobic 

respiration (Seth et al., 2012) when E. coli is grown under anaerobic conditions on 

nitrate. Much like the oxidative stress response, OxyR appears to play a role in the 

nitrosative stress response when under anaerobic respiration. These findings indicate 

that despite extensive studies conducted on the redox aspect of OxyR, perhaps there 

are other functions of OxyR that are currently unknown. 
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1.10 - OxyR in Porphyromonas gingivalis 

 As a resident in the oral cavity where oxygen constantly passes through, P. 

gingivalis can be subjected to reactive oxygen species on a consistent basis. The air we 

breathe is just one of the sources of oxidative stress that P. gingivalis can encounter. 

Because P. gingivalis causes inflammation in the oral cavity, the human body will 

activate the inflammatory response agents such as neutrophils (Graves & Cochran, 

2003). As mentioned previously, reactive oxygen species can serve as signaling 

molecules for phagocytes such as neutrophils. As a result, P. gingivalis can come under 

duress from oxidative stress from both the environment of the oral cavity as well as the 

inflammatory response trying to fight it off. It is logical to assume P. gingivalis has 

adapted to these oxidative conditions and likely has defense mechanism to survive 

under such regular oxidative stressors.   

 As a homolog to OxyR found in E. coli, it is reasonable to believe OxyR in P. 

gingivalis has similar functions to the form in E. coli. As mentioned previously, OxyR in 

E.coli is responsible for regulating the oxidative stress response to hydrogen peroxide 

and will activate a variety of genes in response to hydrogen peroxide stress (Storz, 

Tartaglia, & Ames, 1990b; Tao, Makino, Yonei, Nakata, & Shinagawa, 1991). The OxyR 

homologues found in other bacteria such as P. aeruginosa and S. typhimurium share 

similar functions—inducing the expression of genes pertaining to hydrogen peroxide 

regulation. Many of the genes are the same or similar homologs across these different 

aerobic organisms.  Despite being tucked away in the periodontal pockets, P. gingivalis 

can still be exposed to hydrogen peroxide produced by the immune response 

(neutrophils) or by other oral bacteria. However, the presence of hydrogen peroxide 
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does not result in increased expression of common OxyR-regulated genes such as 

ahpCF and dps in P. gingivalis compared to other bacteria.(Diaz et al., 2006). However, 

these genes appear to still be under OxyR regulation because mutant studies show that 

regular expression of these genes require fully-functional OxyR.  

 Current literature indicates that OxyR in P. gingivalis has additional roles outside 

of regulating the common OxyR-regulated genes (Henry, McKenzie, Robles, & Fletcher, 

2012).  P. gingivalis OxyR has been shown to regulate both sod and fimA under aerobic 

conditions. The aerotolerance of P. gingivalis has been shown as a function of sod 

through mutagenic studies (J. Wu, Lin, & Xie, 2008). Thus OxyR in P. gingivalis has a 

role in aerotolerance of P. gingivalis because it regulates the expression of sod evident 

by the increased gene expression of sods. On the other hand, fimA encodes for one of 

the subunits for the major or long Fimbriae. P gingivalis has both major (long) and minor 

(short) fimbriae which are used for attachment or colonization to various surfaces such 

as the oral cavity (Amano, Nakagawa, Okahashi, & Hamada, 2004). Fimbriae are one of 

many virulence factors that P. gingivalis has in its arsenal. It is theorized that OxyR 

represses fimA during aerobic conditions in order to focus its energy on survival rather 

than unnecessary activities. Aside from these findings, the role and regulon of OxyR in 

P. gingivalis still remains a mystery. 

 1.11 - Comparison of OxyR in Escherichia coli and  Porphyromonas gingivalis 

 The state and function of OxyR in Escherichia coli is determined by the redox 

state of two cysteine residues (Cys199 and Cys208). When oxidized, a disulfide bridge 

is formed and OxyR becomes activated to turn on other genes. When the products of 

GrxA reduces these two cysteines, OxyR is inactivated and no longer intiates 
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transcription of the genes it regulates. The redox state of OxyR in E. coli is 

accompanied by conformational changes in the structure of OxyR. Between the reduced 

and oxidized forms, there is an approximately 30o rotation between the monomers in the 

dimer of OxyR (Choi et al, 2001). The reduction by GrxA causes a physical 

conformation change that disrupts and breaks the disulfide bond in OxyR in Escherichia 

coli, causing a structural difference between oxidized and reduced forms of OxyR. 

 However, these structural changes and rotations are not seen in OxyR in 

Porphyromonas gingivalis. There is no major change between oxidized and reduced 

forms of OxyR in P. gingivalis. Rather, both the oxidized and reduced forms of OxyR in 

P. gingivalis resemble the oxidized form of OxyR in E. coli (Svintradze et al., 2013). It 

was determined that OxyR in P. gingivalis contains a short insert at residue 215. It was 

believed this insert conferred additional structural stability resulting in similar oxidized 

and reduced forms in P. gingivalis. The conformational change between the two forms 

is not as significant compared to the changes seen in E. coli OxyR. Nevertheless, the 

similarity in structures in both organisms makes it reasonable to believe that OxyR has 

a similar role in both organisms. 

 When E. coli OxyR is exposed to hydrogen peroxide, OxyR is activated and 

induces expression of a number of genes belonging to the oxidative stress regulon. The 

OxyR-induced genes that have a role in the oxidative stress response include katG, 

grxA¸ahpCF and dps. However, when P. gingivalis is exposed to the same 

concentration of hydrogen peroxide, there was only a minor up-regulation of nine 

different genes. Of these genes, none of them were genes linked to the oxidative stress 

response. Instead, the typical OxyR-mediated genes were found to only require a 
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functional OxyR in P. gingivalis and appeared to be constitutively active (Diaz et al., 

2006). 

 The oligomeric state of E. coli OxyR is currently believed to exist as a tetramer in 

solution (Choi et al., 2001; Kullik et al., 1995). However, other studies have reported it 

exists as a dimer in solution(L. Tartaglia et al., 1992). The oligomeric state of the protein 

has not been thoroughly investigated compared to the regulatory domain of OxyR. 

Despite extensive studies conducted on the regulatory domain of OxyR, there can still 

be other unknown functions or properties as evidenced by S-nitrosylation of OxyR under 

anaerobic respiration. Evidence supports the conformation of a tetramer in solution 

because E. coli OxyR was found to interact with DNA at four major grooves with the 

conesus binding motif of ATAGnnnnCTAT (Kullik et al., 1995; Toledano et al., 1994) 

which indicates a tetramer in solution.  The C-terminal domain is believed to play a role 

in the oligomerization of the protein (Kullik et al., 1995). 

 On the other hand, the oligomeric state of full-length P. gingivalis OxyR is 

unknown. The truncuated form of the protein has been crystallized (Svintradze et al., 

2013). The truncuated form is missing the N-terminal or DNA-binding domain. As a 

result, the conformation of the full-length protein is currently unknown. The 

conformations of the regulatory domain of reduced and oxidized forms of P. gingivalis 

OxyR are very similar to the oxidized form of E. coli OxyR (Svintradze et al., 2013) of 

which there is evidence suggesting it is a tetramer in solution.  

Due to similarities in structure to E. coli OxyR which has been implied to exist as a 

tetramer, perhaps P. gingivalis OxyR  also exists as a tetramer in solution. 
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 Chapter 2 – Hypothesis and Aims  

2.1 Hypothesis 

If we are able to purify OxyR and show that is fully functional in both Escherichia coli 

and Porphyromonas gingivalis, we can determine both full-length oligomeric state of the 

protein as well as its regulon and make any comparisions between the two forms. 

 

2.2 Aims 

The main purpose of this project is to better characterize the function of OxyR in both E. 

coli and P. gingivalis. While its role in the oxidative stress response is well-documented, 

there is reason to believe OxyR has other regulatory mechanisms.  

 

Aim 1 : Determine the oligomerization states of OxyR in E. coli and P. gingivalis.  

There are conflicting reports on the oligomerization state of OxyR. We believe E. coli 

OxyR exists as a tetramer in solution. The oligomeric state of full-length P. gingivalis 

OxyR is unknown. However, we believe P. gingivalis OxyR also exists as a tetramer in 

solution. By determining the oligomeric state of both forms of OxyR, we can better 

characterize the mechanisms of OxyR. Gel filtration and sedimentation velocity 

experiments will allow us to determine the states. 

 

Aim 2 : Examination of DNA binding and comparison of E. coli and P. gingivailis OxyR.  

We sought to verify that we purified fully functional protein by demonstrating binding 

with known targets of OxyR. By knowing the oligomeric state of the OxyR produced by 

each purification method, we can also infer which form of the protein is the DNA-binding 
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form. We also wanted to compare the different purification methods to determine which 

which method is better to use for pulldown assays. We also wanted to determine and 

optimize the binding conditions for OxyR to use in the pulldown assays. Electromobility 

shift assays (EMSAs) will be performed for these studies. 

 

Aim 3 : Determine the OxyR regulon in vitro in E. coli and P. gingivalis.  

We believe OxyR in E. coli regulates the expression of other unknown genes outside of 

the oxidative stress response. We believe OxyR in P. gingivalis is responsible for the 

expression of genes pertaining to survival in the event of oxidative stress. Performing an 

in vitro pulldown assay followed by genomic library sequencing will be conducted for 

these studies.   
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Chapter 3 – Materials and Methods 

3.1 - Cloning and Expression of Escherichia coli OxyR 

 The sequence of oxyR was obtained using the Ecogene 3.0 database for E. coli 

(ecogene.org). Forward and reverse primers were generated for oxyR (IDT). The 

primers were used to PCR amplify oxyR from E. coli genomic DNA (Table 1). The 

primers were designed to contain specific restriction sites to use in restriction digestion. 

The forward primer was designed to have a restriction site for BamH1. The reverse 

primer was designed to have the restriction site for Xho1. A modified pET21d vector 

was used (provided by Darrell Peterson for the Lewis Lab) for cloning and expression of 

oxyR (Table 2). The m-pET21d vector contains a 6x His-Tag for protein purifications. 

The vector also contains a TEV cleavage site in order to cleave the His-Tag via TEV 

protease. The T7 region on the vector allows for induction via IPTG to overexpress the 

target protein, OxyR.  

 A double digestion was performed on the PCR amplified oxyR and the m-pET21d 

vector. The digestions were run on a 1% agarose gel and gel extracted (QIAGEN) after 

positive verification. The oxyR insert and vector were T4 DNA ligated (NEB) to generate 

m-pET21d-oxyR (Figure 2). The m-pET21d-oxyR was transformed into DH5-alpha cells. 

The transformed DH5-alpha-oxyR cells were screened for successful insertion of oxyR 

via restriction digest using BamH1 and Xho1. After confirmation of the insertion of oxyR, 

the vector was transformed into BL21(DE3) for expression. 

 A Halo-tagged OxyR strain was created previously in the Lewis lab. The OxyR 

gene was cloned into a pFC20K vector, (Table 2) which adds a Halo-tag to the protein 

in order to generate Halo-oxyR. The pFC20K vector contains a T7 site for 
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overexpression of protein via IPTG induction. The pFC20K-oxyR also contains a TEV 

cleavage site to remove the Halo tag from purified OxyR. The OxyR gene was PCR 

amplified and then successfully cloned and transformed into DH5-alpha competent 

cells. The cells were screened for successful insertion using Kanamycin for antibiotic 

screening. A successful clone was transformed into BL21(DE3) cells for expression.  

3.2 - Cloning and Expression of Recombinant Porphyromonas gingivalis OxyR 

 P. ginigvalis OxyR was cloned into m-pET21d and pFC20K vectors for His-tag 

and Halo-tag purification tehchniques. The recombinant P. gingivalis OxyR strains were 

created previously in the Lewis lab using the similar methods described in Lewis, 

Yanamandra et al., 2012. 
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Table 1 - Primers used for cloning E. coli OxyR 
 

Name Sequence Description 
oxyR-Forward CTT CCA GGG ATC CAT GAA TAT TCG TGA TC Forward primer for oxyR 
oxyR-Reverse CAG CGC ACT CGA GTT AAA CCG CCT GTT TT Reverse primer for oxyR 

BamH1 

Xho1 
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Table 2 - Vectors used in this study 

E. coli OxyR  Description 
m-pET21d-oxyR Modified pET21 vector with E. coli OxyR insertion 

Contains a 6x His-tag on N-terminal 
Contains a TEV cleavage site to remove His-tag 

pFC20K-oxyR pFC20K vector with E. coli OxyR insertion 
Attaches a Halo-tag to C-terminal 
Contains a TEV cleavage site to remove Halo-tag 

P. gingivalis OxyR Description 
m-pET21d-oxyR Modified pET21 vector with P. gingivalis OxyR insertion 

Contains 6x His-tag on N-terminal 
Contains a TEV cleavage site to remove His-tag 

pFC20K-oxyR pFC20K vector with P. gingivalis OxyR insertion 
Attaches a Halo-tag to C-terminal 
Contains a TEV cleavage site to remove Halo-tag 
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Figure 2 – Cloning strategy to insert E. coli oxyR into m-pET21d vector 

A double digestion was performed using BamH1 and Xho1 restriction enzymes were 

used to cleave the vector at the specified restriction sites. T4 DNA ligation was used to 

insert E. coli oxyR into the m-pET21d vector. The oxyR insert was PCR amplified using 

primers designed to contain restriction sites for BamH1 and Xho1. 
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3.3 Purification of OxyR 

 The m-pET21d-oxyR and pFC20K-oxyR (both E. coli and P. gingivalis) were 

grown in either auto-induction (AI) media or Luria-Bertani (LB) with 10% Glycerol 

overnight at 37oC at 225 RPM.  When grown in LB media, the cultures were induced 

with 1mM IPTG at the mid log phase (0.6 OD at 660nm). 

3.3.1 - His-Tag Purification of OxyR 

 After overnight growth, cell cultures were spun down at 8,000 RPM. The cells 

were washed with PBS buffer and then resuspended in His Binding Buffer (50mM 

NaH2PO4, 300mM NaCl, and 10mM Imidazole adjusted to pH 8). Lysozyme (10mg/mL) 

was resuspended in the His Binding Buffer when resuspending the cells. To facilitate 

lysis, CelLytic B cell Lysis Reagent (Sigma) was added. Benzonase was used to 

degrade the genomic DNA. The cells were incubated for 30 minutes at room 

temperature. After lysis, the cells were spun down at 15,000 RPM and the lysate 

(supernatant) was collected. The cell lysates were passed through a flow column 

containint Ni-NTA Resin (Qiagen) equilibrated with His Binding Buffer. The column was 

washed with His Wash Buffer (50mM NaH2PO4, 300mM NaCl, and 20mM IMD adjusted 

to pH 8). The His-tagged protein was eluted from the Ni-NTA Resin using His Elution 

Buffer (50mM NaH2PO4, 300mM NaCl, and 250mM IMD adjusted to pH 8). The elutions 

were run on a 10% Bis-Tris Denaturing gel to assess purity of protein. 

3.3.2 - Halo-Tag Purification of OxyR 

 Cell cultures of pFC20K-oxyR were spun down at 8,000 RPM. The pellets were 

washed with PBS and then resuspended in Halo Binding Buffer (25mM HEPES, 150mM 

NaCl, and 1mM DTT adjusted to pH 7.5). The cells were lysed with Lysozyme 
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(10mg/mL) and CelLytic B cell lysis (Sigma). Benzonase was used to degrade the 

genomic DNA. The cells were incubated for 30 minutes at room temperature. The lysed 

cells were spun down at 15,000 RPM and the cell lysates collected. Halo Link Resin 

(Promega) was prepared and equilibrated with Halo Binding Buffer. The cell lysates 

were incubated with equilibrated Halo Link Resin with inversion for 1 hour at room 

temperature. The resin was added to a flow column and then washed with Halo Binding 

Buffer. The resin was incubated overnight with AcTEV protease (Thermo Fisher) at 

room temperature to cleave the Halo-tag off OxyR.  The eluted protein was 

electrophoresed on a 10% Bis-Tris denaturing gel to assess for purity. 

3.3.3 - Heparin-Affinity Chromatography Purificatio n of OxyR 

 Cell cultures of m-pET21d-oxyR were spun down at 8,000 RPM. The pellets 

were washed with PBS and resuspended in Heparin binding buffer (200mM NaCl, 

25mM Tris, 10% Glycerol, and 1mM DTT adjusted to pH 8). The cells were lysed with 

Lysozyme (10mg/mL), Cellytic B cell lysis reagent, and Benzonase to degrade the 

genomic DNA. The cells were incubated in lysis solution for 30 minutes at room 

temperature. The cells were spun down at 15,000 RPM and the cell lysates collected. 

The cell lysate was loaded into a Superloop 50mL column (GE) and run across a HiTrap 

Heparin column equilibrated with binding buffer on an ÄKTA pure HPLC machine. The 

Heparin column was washed with the Heparin binding buffer. OxyR was eluted using 

Heparin Elution Buffer (1M NaCl, 25mM Tris, 10% Glycerol, and 1mM DTT adjusted to 

pH 8). An elution profile was generated and the corresponding fractions collected and 

run on a 10% Bis-Tris denaturing gel to assess purity. After electrophoresis, the gel was 

stained using a Pierce 6x His Protein Tag Stain Reagent kit (ThermoFisher) to detect 
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the presence of the His-tagged protein. The elutions containing the 6x His tag were 

saved for further studies. 

3.4 - Size Exclusion Chromatography Studies 

 Proteins were purified from the three methods detailed above (His tag, Halo, and 

Heparin).  The purified protein was run on a Superdex 200 (10/300 GL) column (GE 

Healthcare) on an ÄKTA pure HPLC machine. The Superdex 200 column was 

equilibrated with binding buffer (200mM NaCl, 25mM Tris, 10% Glycerol, and 1mM 

DTT).  The protein was collected off the column using the generated elution profile 

based on UV absorption at 280nm. The collected elutions were run on a 10% Bis-Tris 

denaturing gel. The His-tag and Heparin purified elutions from the Superdex 200 

(purified from the m-pET21d-oxyR) were stained for the presence of the His-tag. 

 Molecular weight markers were run on the Superdex 200 using the same binding 

buffer to generate a calibration curve based on the volume at which the markers and 

proteins eluted off the column. Using the curve, an equation was derived and used to 

determine the experimental molecular weight of eluted proteins. The following molecular 

markers were used: Blue Dextran (2000 kda), Beta-Amylase (200 kDa), Alcohol 

Dehydrogenase (150 kDa), Albumin (66 kDa), and Carbonic Anhydrase (29 kDa). 

3.5 – Sedimentation Velocity Experiment of OxyR 

 OxyR was purified from both His-tag and Halo-tag purification systems. The His-

tagged OxyR was dialyzed into the Halo binding buffer: 25mM Hepes, 150mM NaCl, 

and 1mM DTT adjusted to pH 7.5. The Halo buffer was used to prepare the sample in a 

buffer that did not interfere with the optics and absorption profiles. Samples were 

prepared at various concentrations (0.1 – 1.06 mg/mL). The samples were analyzed on 
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a Beckman Optima XL-I analytical ultracentrifuge. The samples were run at either 

45,000 or 50,000 RPM.  

3.6 - Electromobility Shift Assay (EMSA) with OxyR 

 Fluorescent and nonfluorescent primers were designed using the EcoGene 3.0 

database for E. coli genes for binding targets of OxyR (Table 3). The primers were 

designed to amplify the promoter region for each gene of interest. A set of forward 

primers were designed with a 5' IRDye® 700 tag (IDT).  A set of identical forward 

primers were designed without the fluorescent tag for inhibition studies. Reverse 

primers were designed without a fluorescent tag. The binding targets were PCR 

amplified for gel shift studies. Both the His-tagged and Tagless OxyR were used for 

these assays. HcpR from P. gingivalis was purified using the His-tag purification system 

from a pET30 vector to run as a negative control. Two types of shifts were performed: 

uninhibited shifts and shifts with competitive inhibitor. 

3.6.1 - Uninhibited Shift Assays 

 OxyR was purified from the His-tag and the Halo-tag purification systems. 

Increasing concentrations of OxyR ranging from 0-100pM was incubated with only the 

fluorescent-tagged target DNA under the following binding conditions: 0.1pM fluorescent 

DNA, 25mM Tris (pH 8), 6mM MgCl2, 10% Glycerol, 0.5mM EDTA, 50mM NaCl, and 

1mM DTT to a final volume of 25uL (adapted from Tartaglia, et al. 1992). The protein 

was incubated with the target DNA in binding buffer for 30 minutes at room temperature 

with minimal exposure to light. After incubation, the samples were electrophoresed on a 

thin 1% Agarose gel. The gel was imaged on an Odyssey Clx imager (Li-COR), to 

visualize the shifts.  
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3.6.2 - Competitive Inhibitor Shift Assays 

 Purified OxyR was incubated with fluorescent and nonfluorescent (cold) target 

DNA. The fluorescent and nonfluorescent target sequences were identical with the 

exception of the 5’ IRDye® 700 fluorescent tag. OxyR at a working concentration of 

100pM was incubated with fluorescent and nonfluorescent DNA under the following 

binding conditions: 0.1pM fluorescent DNA, 0.025-0.2pM nonfluorescent DNA, 1ug/uL 

Poly Poly (dI•dC), 25mM Tris (pH 8), 6mM MgCl2, 10% Glycerol, 0.5mM EDTA, 50mM 

NaCl, and 1mM DTT at a final volume of 25uL. The concentration of nonfluroescent 

DNA increased with each reaction—starting from 25% of the fluorescent DNA 

concentration all the way to 200% (0.025, 0.05, 0.075, 0.1, and 0.2pM). The reactions 

were incubated in the dark for 30 minutes. Following incubation, the reactions were 

electrophoresed on a thin 1% Agarose gel and imaged on an Odyssey Clx imager to 

visualize the shifts. 
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3.7 - in vitro Pulldown of OxyR 

 Tagless OxyR was purified using the Halo purification system. The protein was 

dialyzed into Epoxy buffer A (0.1M Sodium phosphate adjusted to pH 7.4). Dynabeads 

M-270 Epoxy (Invitrogen) was prepared and equilibrated with Epoxy binding buffer. The 

dialyzed protein was incubated with the equilibrated Epoxy beads with Epoxy buffer A 

and Epoxy buffer B (3M ammonium sulfate) overnight with inversion at 37oC to 

immobilize the proteins on the beads according to protocol. A working concentration of 

100ug protein per 5mg of beads was used. The beads were washed and equilibrated 

with Pulldown Binding Buffer (200mM NaCl, 25mM Tris, 10% Glycerol, and 1mM DTT 

adjusted to pH 8). 

 Genomic DNA was prepared and sonicated to generate fragments <1kb in size 

using a Branson 250 Sonicator (6 minutes at 30% power, 30% duty cycle, at 20 

seconds on and off). The equilibrated Epoxy-OxyR beads were incubated with the 

sonicated (<1kb) DNA in binding buffer (6mM MgCl2, 1mM DTT, and 10% glycerol) with 

inversion for 1 hour at room temperature.  Beads immobilized with E. coli OxyR were 

incubated with E. coli genomic DNA. Beads immobilized with P. gingivalis OxyR were 

incubated with P. gingivalis genomic DNA.  

 Following incubation, the beads were washed with wash buffer (200mM NaCl, 

25mM Tris, 5% Glycerol, and 1ug/mL BSA adjusted to pH 8). The target DNA was 

eluted using elution buffer (1M NaCl, 25mM Tris, and 5% Glycerol adjusted to pH 8). 

The eluted DNA was PCR purified for genomic library generation. 
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3.8 - in vitro Pulldown of HcpR 

 P. gingivalis HcpR was purified from pET30-hcpR using His-tag purification. The 

protein was immobilized on the Epoxy beads using the same methods described above. 

The Epoxy-HcpR beads was incubated with sonicated P. gingivalis DNA. The pulldown 

assay was performed as described above. 

3.9 - Genomic Library Generation  for Pulldowns 

 The elutions from in vitro pulldown experiments were used to generate a 

genomic library to determine the regulon of the target proteins. The libraries were 

generated the ThruPlex DNA-Seq Kit and according to the protocol provided. The 

cycles during the library amplification step were adjusted accordingly based on 

concentration of input DNA (i.e. 5 cycles for 50ng input DNA). The samples were run on 

a Bio-Analyzer (VCU Sequencing Center) to assess for quality of the libraries generated 

before processing. Following adequate bio-analyzer reads, qPCR was performed on the 

genomic libraries and sent for sequencing. The samples were sequenced on a NextSeq 

Series System (Illumina). 

 The results were demultiplexed and aligned with the whole genome of the 

respective organism. E. coli OxyR libraries were aligned with the E. coli genome. The P. 

gingivalis OxyR and HcpR librares were both aligned with the P. gingivalis genome. The 

peaks were analyzed to determine what gene targets the proteins interacted with. The 

size of the peaks indicated the relative number of reads for that particular region on the 

genome. The larger the peak, the more number of reads, which indicates strong 

interactions between protein and DNA at that particular sequence on the genome. 
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Chapter 4 – Results 

4.1 - Cloning and Expression of Escherichia coli OxyR 

 The OxyR gene was cloned into the m-pET21d vector to generate m-pET21d-

oxyR. A restriction digest was performed on both the m-pET21d vector and oxyR. The 

results were run on a 1% Agarose gel. The m-pET21d vector is approximately 5.4 kB in 

size. The OxyR gene is approximately 900 bp in size. Following digestion, a gel 

extraction was performed to clone oxyR into the m-pET21d vector. T4 DNA ligation was 

performed to insert oxyR into the m-pET21d vector. The result were run on a 1% 

agarose gel to verify successful cloning of OxyR into m-pET21d vector (Figure 3). 

Successful clones were screened using Carbenicillin for antibiotic screening. A 

successful clone was also plasmid purified and sent for sequencing to verify the identity 

the oxyR insertion. When the sequence was verified for successful generation of m-

pET21d-oxyR, the m-pET21d-OxyR was transformed into Top10 cells and subsequently 

into BL21(DE3) cells for expression. 
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Figure 3: Insertion of E. coli oxyR into the m-pET21d vector 

A double digestion of m-pET21d-oxyR using BamH1 and Xho1 restriction enzymes to 

determine insertion of oxyR into the vector. Lane 1 contains the ladder. Lane 2 contains 

the digestion of the m-pET21d-oxyR vector. The vector is approximately 5.4kb in size. 

The oxyR insert is 918bp in size. The digestion was electrophoresed on a 1% agarose 

gel and illuminated on a UV transilluminator.  
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4.2 Purification of E. coli OxyR  

4.2.1 – His-Tag Purification of E. coli OxyR  

 OxyR was purified via His-tag purification system using Ni-NTA resin. The 

purified OxyR was run on a 10% Bis-tris denaturing gel with MES running buffer. The 

purified OxyR with a 6x His tag appears approximately 34 kDa in size on a denaturing 

gel, indicating a monomeric form (Figure 4a).  

4.2.2 – Halo-Tag Purification of E. coli OxyR 

 E. coli OxyR was purified using HaloTag Affinity Purification from pFC20K-oxyR. 

The HaloTag was cleaved off from OxyR using AcTEV Protease to generate the tagless 

form of the protein. The tagless protein was ran on a 10% Bis-Tris denaturing gel to 

assess purity. The purified OxyR from the pFC20K vector was approximately 34 kDa in 

size (Figure 4b). 

 4.2.3 – Heparin Affinity Chromatography Purificati on of E. coli OxyR 

 E. coli OxyR was purified using Heparin Affinity Chromatography from m-

pET21d-oxyR.  An elution profile was generated and the corresponding elutions run on 

a 10% Bis-tris denaturing gel. Two major bands appeared on the gel, indicating a 

potentially overexpressed protein (Figure 4c). One of the major bands appearing on the 

gel runs at approximately 34 kDa in size. This band size matches the band sizes for 

OxyR purified from both His-tag and Halo-tag purifications. The other major band runs 

much higer at approximately 100 kDa in size.  

 The elutions were stained using a 6x His Protein Tag Stain kit to detect for the 

presence of the His-tag. The His-tag was detected in both major bands (Figure 4d).  
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Figure 4 – Purification results of E. coli OxyR 

The results for each of these purifications were run on a 10% Bis-tris denaturing gel in 

MOPS running  buffer. Tris-Glycine SDS was added to each sample. A) Lane 1 contains 

the His-tag purified E. coli OxyR. Lane 2 contains protein ladder. B) Lane 1 contains 

protein ladder. Lane 2 contains the Halo-tag purified (tagless) E. coli OxyR after 

overnight TEV treatment. C) Lane 1 contains the Heparin purified E. coli OxyR with a 

two major bands at approximately 34 and 100 kDa. Lane 2 contains protein ladder D) 

Lane 1 contains protein ladder. Lane 2 contains the His-tag stain of the Heparin purified 

E. coli OxyR of Gel C to detect the presence of a His-tag. The protein was concentrated 

down before electrophoresis in order to get a working concentration usable to detect for 

the presence of the His-tagged protein. The His-tag appears in both major bands.
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4.3 Purification of P. gingivalis OxyR 

4.3.1 – Bioinformatic Comparison between E. coli and P. gingivalis OxyR 

 Comparisons were made between the amino acid sequences of OxyR of E. coli 

and P. gingivalis OxyR. These comparative studies revealed a 34% sequence similarity 

(Supplemental S1). 

4.3.2 – His Tag Purification of P. gingivalis OxyR 

 Recombinant P. gingivalis OxyR was purified from m-pET21d-oxyR. The purified 

P. gingivalis OxyR with the 6x His-tag is approximately 34 kDa in size (Figure 5a). The 

purified protein appears as a monomer according to protein size on the denaturing gel.  

4.3.3 – HaloTag Purification of P. gingivalis OxyR 

 Recombinant P. gingivalis OxyR was purified from pFC20k-oxyR. AcTEV 

protease was used to cleave the HaloTag from the protein to purify the tagless form. 

The purity of the protein was verified on a 10% Bis-Tris denaturing gel. The purified P. 

gingivalis OxyR runs at approximately 34 kDA in size (Figure 5b). 

4.3.4 – Heparin Affinity Chromatography Purificatio n of P. gingivalis OxyR 

 OxyR was purified using Heparin affinity chromatography from m-pET21d-oxyR. 

An elution profile was generated and the elutions run on a 10% Bis-tris denaturing gel to 

assess purity. Many bands appear on the denaturing gel, however a rather large major 

species band runs at approximately 100 kDa in size (Figure 5c). The gel was stained 

using a 6x His Tag Stain kit to detect the presence of a 6x His tag in order to identify 

which band contained the His-tagged OxyR. The major band appearing at 100 kDa was 

shown to contain a His-tagged protein which indicates this is the His-tagged OxyR 

(Figure 5d). 
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Figure 5 – Purification Results of P. gingivalis OxyR  

The results for each of these purifications were run on a 10% Bis-tris denaturing gel in 

MOPS running  buffer. Tris-Glycine SDS was added to each sample. A) Lane 1 contains 

the His-tag purified P. gingivalis OxyR. Lane 2 contains protein ladder. B) Lane 1 

contains protein ladder. Lane 2 contains the Halo-tag purified (tagless) P. gingivalis 

OxyR after overnight TEV treatment. C) Lane 1 contains the Heparin purified P. 

gingivalis OxyR with a major band at approximately 100 kDa. Lane 2 contains protein 

ladder D) Lane 1 contains protein ladder. Lane 2 contains the His-tag stain of the 

Heparin purified P. gingivalis OxyR of Gel C to detect the presence of a His-tag. The 

protein was concentrated down before electrophoresis in order to get a working 

concentration usable to detect for the presence of the His-tagged protein. The His-tag 

appears in the major band seen in Gel C.
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4.4 – Size Exclusion Chromatography Studies of E. coli OxyR  

 E. coli OxyR was purified from the three methods: His tag, Halo tag, and Heparin 

affinity. The resulting purifications were run on a Superdex 200 (10/300GL) column 

using an ÄKTA pure HPLC machine. Molecular weight  

markers were also run on the Superdex 200 column. An elution profile was generated 

(Figure 6) and used to create a standard calibration curve (Figure 7) based on the 

volume at which the markers eluted off the column (Table 4). The molecular weight of 

OxyR was calculated using both the standard calibration curve equation and the volume 

at which the protein elutes off the column (Table 4). 

4.4.1 – His-Tag Purified E. coli OxyR on Superdex 200 column 

 His-tagged E. coli OxyR was purified from the His-tag purification system and run 

on a Superdex 200 column. An elution profile was generated and the fractions collected 

(Figure 8). The protein was found to elute at approximately 13.1mL (Table 4). Using the 

equilibration curve and the volume at which OxyR eluted, the protein was calculated to 

be approximately 154 kDa in size, indicating it runs as a tetramer. This elution had the 

largest peak based on absorbance at the 280nm wavelength. All the elutions were run 

and run on a 10% Bis-tris denaturing gel. Two major bands appeared on the gel. The 

larger band appears to run at approximately 80kDa and the other at approximately 34 

kDa (Figure 9a). 

4.4.2 – Halo-Tag Purified E. coli OxyR on Superdex 200 column 

 Tagless E. coli OxyR was purified from pFC20k-oxyR. The purified protein was 

run on the S200 column. An elution profile was generated (Figure 8) and the fractions 

collected. The tagless protein eluted at a volume of 13.5 mL (Table 4). Using the 
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Standard calibration curve, the tagless OxyR was calculated to be approximately 140 

kDa in size, which indicates it runs as a tetramer. This elution had the largest peak 

based on the absorbance at the 280nm wavelength. However, this was a rather weak 

and small absorbance peak. All the collected fractions were run on a 10% Bis-tris 

denaturing gel. However, the eluted protein was not concentrated enough to be 

visualized on the gel. 

4.4.3 – Heparin Affinity Purified E. coli OxyR on Superdex 200 column 

 E. coli OxyR was purified using Heparin Affinity Chromatography from m-

pET21d-oxyR. The elution containing the larger major band at 100 kDa (verified to 

contain His-tagged OxyR) was chosen to run on the S200 column. An elution profile 

was generated and all the fractions collected. Using the equilibration curve, the heparin 

affinity purified OxyR eluted from the Superdex 200 column was calculated to be 

approximately 170 kDa in size. Though larger than expected, the results indicate OxyR 

purified through a Heparin column runs as a tetramer in solution. 

 The collected fractions were run on a 10% Bis-tris denaturing gel (Figure 9b). A 

major band appeared at approximately 100 kDa in size from the fraction containing the 

elution with the largest peak based on absorbance at the 280nm wavelength. Boiling the 

protein and the addition of reducing agents (DTT) produced a new band at 

approximately 34 kDa. The samples were run concentrated down (Figure 9c) and 

stained to detect the presence of the 6x His tag. After staining the gel, both major bands 

contained a His tagged protein, indicating these bands contain the His-tagged OxyR 

(Figure 9d). 
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Figure 6 – Superdex Elution Profile of E. coli OxyR and Molecular Weight 

Standards 

The elution profiles of E. coli OxyR (circled) purified from His-tag, Halo-tag, and Heparin 

affinity chromatography run on the Superdex 200 column overlaid with the elution 

profiles of the molecular weight standards. The elution profiles were overlaid to 

determine the approximates molecular weights using the markers as reference points.  

Blue Dextran (2000 kDa) was used to determine the void volume. The molecular weight 

for the His-tag and the Heparin purified protein lies between 150 and 200 kDa. The 

molecular weight for the Halo-tag purified protein is slightly below 150 kDa.  
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Figure 7 – Superdex 200 Standards Curve for E. coli OxyR 

A standard calibration curve was generated using the Ve/Vo ratio (Table 5) for the 

molecular weight standards. Ve is the elution volumes of the markers and Vo is the 

elution volume for the voild volume. A best fit line was generated and the derived 

equation used to calculate the molecular weight of the OxyR elutions. The “Halo E. coli 

OxyR” was the smallest protein in size when compared to the His-tag and Heparin 

purified protein. 
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Table 4 - Gel Filtration Chromatography Elution Vol umes for E. coli OxyR 

Name kDa 

Elution 

Volume  

Ve/Vo 

Value 

Blue Dextran 2000 8.28 1 

B-Amylase 200 12.23 1.48 

Alcohol Dehydrogenase 150 13.35 1.6 

Albumin 66 14.72 1.78 

Carbonic Anhydrase 29 17 2.05 

Calculated 

kDa 

His-Tag Purified E. coli OxyR 155.92 13.1 1.58 

Heparin Purified E. coli OxyR 171.06 12.7 1.53 

Tagless E. coli OxyR 140.78 13.5 1.63 
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Figure 8 – Superdex 200 Elution Profiles for E. coli OxyR 

The elution profiles for His-tag, Halo-tag, and Heparin affinity purified E. coli OxyR 

samples run on the Superdex 200 were overlaid with one another for comparison. The 

major peak containing the OxyR protein all occurred around the same elution volume. 

The proteins eluted at between 12.5-13.5 mL. The size of the peaks indicate the 

absorption strength at 280nm. A larger peak corresponds to a more concentrated 

protein. 
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Figure 9 – Gel Filtration Results of E. coli OxyR on S200 column  

The protein elutions were collected and run on a 10% Bis-tris denaturing gel. Tris-

Glycine-SDS was added to each sample. A) Lane 1 contains the protein ladder. Lane 2 

contains the His-tagged OxyR concentrated down to ensure detection on the gel. Lane 

3 contains the protein taken straight from the column. B) Lane 1 contains protein ladder. 

Lane 2 contains OxyR that was boiled with the addition of reducing agents.  Lane 3 

contains the protein eluted straight from the column without any modifications.C) Lane 1 

contains the Heparin- purified OxyR elution after it was concentrated down for His-tag 

detection. Lane 2 contains protein ladder. D) This Gel C that has been His-tag stained. 

Lane 1 contains the Heparin-purified OxyR elution. The His-tag appears at 

approximately 100 kDa. Lane 2 contains the protein ladder.  
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4.5 – Size Exclusion Chromatography Studies of P. gingivalis OxyR 

  P. gingivalis OxyR was purified from three methods: His-tag, Halo, and Heparin 

affinity. Following purification, the samples were run on a Superdex 200 (10/300GL) 

column using an ÄKTA pure HPLC machine.  A standard calibration curve (Figure 10) 

was generated using molecular weight markers to determine the size of the protein 

eluting from the column. The elution profiles of the proteins were overlaid with the 

elution profile of the markers to determine the relative molecular weights (Figure 11a). 

4.5.1 – His Tag Purified P. gingivalis OxyR on Superdex 200 

 His-tagged OxyR was purified from m-p21d-oxyR using the His-tag purification 

system. The protein ran at approximately 34 kDa. The purified protein was run on the 

Superdex 200 column. An elution profile was generated (Figure 11b) and the fractions 

collected. The protein eluted at approximately 12.8mL. Using the standard calibration 

curve, the molecular weight of the protein was calculated to be approximately 167 kDa 

in size (Table 5), indicating that OxyR runs as a tetramer. The fractions from the S200 

column were run on a 10% Bis-tris denaturing gel. The protein was found to run at 

approximately 34 kDa (Figure 12a).  

4.5.2 – Halo Tag Purified P. gingivalis OxyR on Superdex 200 

 Tagless P. gingivalis OxyR was purified from the pFC20k-oxyR and run on the 

Superdex 200. The protein was found to elute at approximately 12.8mL. It was 

calculated to be approximately 167 kDa in size (Table 5). This indicates that OxyR runs 

as a tetramer. This elution had the largest absorbance peak at the 280nm wavelength. 

The protein ran at approximately 34 kDa on a denaturing gel (Figure 12b).  
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4.5.3 – Heparin Affinity Purified P. gingivalis OxyR on Superdex 200 

 OxyR was purified from m-pET21d-oxyR using the Heparin affinity purification 

system on an ÄKTA pure HPLC machine. An elution containing a major bad at 100 kDa 

containing the His-tag protein (verified through His tag stain) was chosen and run on the 

Superdex 200 column. The elution profile showed that the protein eluted at 

approximately 12.88 mL (Table 5). This elution had the largest absorbance peak at the 

280nm wavelength. Using the Standards calibration curve, the protein was calculated to 

be approximately 161 kDa in size. 

 The S200 elutions were run on a 10% Bis-tris denaturing gel. The eluted protein 

was found to run at approximately 100 kDa in size (Figure 12c). Boiling the protein and 

the addition of reducing agents (DTT) did not affect the protein (Figure 12c). The eluted 

protein was concentrated down stained for the presence of the His-tag to verify the 

identity of the protein. The major band at 100 kDa contained the His-tag, which 

indicates that the major band contains the OxyR (Figure 12de). 
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Figure 10 – Superdex 200 Standards Curve for P. gingivlais OxyR  

The calibration curve was generated from the molecular weight markers using the Ve/Vo 

ratio. A best fit line was created and the derived equation used to calculate the 

molecular weight of the P. gingivalis OxyR samples eluted from the Superdex 200 

column. All three forms of the protein appeared to be of the similar molecular weights. 
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Figure 11 – Superdex 200 Elution Profiles for P. gingivalis OxyR 

A) The elution profiles generated for P. gingivalis OxyR from His-tag, Halo-tag, and 

Heparin affinity purifications run on the Superdex 200 column. The elution profile from 

each of these purification sources were overlaid with each other  for comparision. The 

proteins all eluted at approximately 12.8mL from the column. When comparing the 

profiles, the results indicate the proteins are all very similar in size.  B) The elution 

profiles of His-tag, Halo-tag, and Heaprin affinity purified P. gingivalis OxyR run on the 

Superdex 200 overlaid with the the profiles for the molecular weight markers. The 

profiles were overlaid with the markers to determine the approximate molecular weight. 

All three forms of the protein are between 150 and 200 kDa.
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Table 5 - Gel Filtration Chromatography Elution Vol umes for P. gingivalis OxyR 

Name kDa 

Elution 

Volume  

Ve/Vo 

Value 

Blue Dextran 2000 8.28 1 

B-Amylase 200 12.23 1.48 

Alcohol Dehydrogenase 150 13.35 1.6 

Albumin 66 14.72 1.78 

Carbonic Anhydrase 29 17 2.05 

Calculated kDa  

His-Tag Purified P. gingivalis OxyR 168.03 12.8 1.54 

Heparin Purified P. gingivalis OxyR 161.97 12.88 1.56 

Tagless P. gingivalis OxyR 168.03 12.8 1.54 
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Figure 12 – Gel Filtration Results of P. gingivalis OxyR on S200 column 

The protein elutions were collected and run on a 10% Bis-tris denaturing gel. Tris-

Glycine-SDS was added to each sample. A) Lane 1 contains the protein ladder. Lane 2 

contains the His-tagged OxyR concentrated down to ensure detection on the gel. Lane 

3 contains the protein taken straight from the column. B) Lane 1 contains the protein 

ladder. Lane 2 contains Fraction 1 from the Halo-tag purified OxyR. Lane 3 contains 

Fraction 2 from the Halo-tag purified OxyR. These fractions were chosen based on the 

elution profile generated for the Halo-tag purified OxyR. C) Lane 1 contains protein 

ladder. Lane 2 contains Heparin-purified OxyR that was boiled with the addition of 

reducing agents.  Lane 3 contains the protein eluted straight from the column without 

any modifications.D) Lane 1 contains the Heparin- purified OxyR elution after it was 

concentrated down for His-tag detection. Lane 2 contains protein ladder. E) This Gel C 

that has been His-tag stained. Lane 1 contains the Heparin-purified OxyR elution. The 

His-tag appears at approximately 100 kDa. Lane 2 contains the protein ladder.  
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4.6 – Sedimentaion Velocity Experiment Studies of E. coli OxyR  

4.6.1 – Sedimentation Velocity Experiment of tagles s E. coli OxyR 

 A sedimentation velocity experiment was performed on the tagless form of OxyR 

purified from pFC20k-oxyR using the Halo-tag purification. The OxyR was prepared at a 

concentration of 0.55 mg/mL. The results reveal two distinct forms of OxyR. One form 

exists at approximately 145 kDa and the other form at approximately 40-45 kDa (Figure 

13). This indicates that E. coli OxyR exists as a tetramer or monomer in solution. Based 

on the size of the peaks, it appears the tetramer form is favored over the monomer.  

 

4.6.2 – Sedimentation Velocity Experiments of His-T ag Purified E. coli OxyR 

 A sedimentation velocity experiment was performed on the His-tagged E. coli 

OxyR from m-pET21d-oxyR. The results from this experiment with the His-tagged OxyR 

were inconclusive due to salt or solvent interactions. Initial sedimentation values hinted 

at a tetramer in solution. 
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Figure 13  – Sedimentation Velocity Experiment with tagless E. coli OxyR 

Sedimentation velocity experiment results of tagless E. coli OxyR purified from pFC20k-

oxyR. The concentration of protein was 0.55 mg/mL. The top graph (color) depicts the 

OD absorbance data. The middle graph is the interference data. The gray color 

indicates the standard of error for the interference data is very little to no error. The 

interference data validates the results produced. The bottom graph is the sedimentation 

coefficient graph. The [s]-values were determined and used to calculate the 

approximate size of the protein. Bufer: 25mM HEPES, 150mM NaCl, 1mM DTT 

adjusted to pH 7.5. 
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4.7 – Sedimentation Velocity Experiment Studies of P. gingivalis OxyR 

4.7.1 – Sedimentation Velocity Experiment of Tagless P. gingivalis OxyR 

 Tagless OxyR was purified from pFC20k-oxyR using the Halo-tag purification 

under anaerobic conditions. An undiluted sample of OxyR (1.06 mg/mL) and a 1:2 

dilution (0.59 mg/mL) of OxyR sample was prepared for these experiments (Figure 14). 

The results from both samples reveal that P. gingivalis OxyR exists primarily as a 

tetramer (approximately 137-145 kDa) in solution (Figure 14). The absorbance peaks 

for OxyR appear very sharp and strong. Tagless P. gingivalis OxyR (0.66 mg/mL) was 

also purified under aerobic conditions.  The result from this sample also shows that P. 

gingivalis OxyR exists as a tetramer in solution. 

4.7.2 – Sedimentation Velocity Experiment of His-Ta g Purified P. gingivalis OxyR 

 His-tagged OxyR was purified from m-pET21d-oxyR using the His-tag purification 

method. The centrifugation was performed on a dilute sample of His-tagged OxyR. The 

results show three species existing at various molecular weights: 40 kDa, 80 kDa, and 

140 kDa (Figure 15). These results suggest His-tagged P. gingivalis OxyR exists as a 

tetramer, dimer, and monomer in solution when at low concentration. The absorbance 

peaks for these three species are connected, indicating transition between the three 

forms. The 140 kDa species possesses the greatest peak. The 40 kDa species has the 

second greatest whereas the 80kDa species has the smallest peak. 
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Figure 14 – Sedimentation Velocity Experiment with tagless P. gingivalis OxyR 

Absorbance profile for tagless P. gingivalis OxyR. Cell 1 and 2 are tagless P. gingivalis 

OxyR purified under anaerobic conditions at 0.59 mg/mL and 1.06 mg/mL respectively. 

Cell 3 is OxyR purified under aerobic conditions at 0.66 mg/mL. Buffer: 25mM HEPES, 

150mM NaCl, and 1mM DTT adjusted to pH 7.5). 
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Figure 15 – Sedimentation Velocity Experiment of Hi s-tagged P. gingivalis OxyR 

The interference profile for His-tagged P. gingivalis OxyR at 0.1 mg/mL. His-tagged 

OxyR was dialyzed into 25mM Hepes, 150mM NaCl, and 1mM DTT adjusted to pH 7.5. 

This profile shows P. gingivalis OxyR at 3 different sizs: ~40 kDa, 90 kDa, and 140 kDa. 
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4.8 Electromobility Shift Assay s (EMSA) with E. coli OxyR  

 Purified OxyR was tested for binding with 4 gene promoters:  the ahpCF 

promoter, the hcp promoter, the katG promoter and the hemH promoter. Each forward 

primer was designed with a fluorescent tag. After incubating increasing concentrations 

of OxyR with target DNA in binding buffer for 30 minutes in the dark, the reactions were 

run on a thin 1% agarose gel. OxyR was purified from both His-tag and Halo-tag 

purifications.  

4.8.1 – Shift Assays with tagless OxyR 

4.8.1.1 – Shift Assay with the ahpCF promoter 

 For the uninhibited shift assays, increasing concentrations of tagless OxyR (0 – 

120 pM) was incubated with just the fluorescent-tagged ahpCF gene promoter in 

binding buffer. A visible shift was seen between OxyR and ahpCF gene promoter 

(Figure 16a). A shifted band appears when OxyR at a concentration of 60pM is 

incubated with the fluorescent promoter. The shifted bands showed increased 

fluorescence intensity with increasing concentrations of OxyR. Likewise, the nonshifted 

or unbound DNA bands had a decrease in fluorescence intensity with increasing 

concentrations of OxyR. 

 For the competitive inhibition studies, increasing concentrations of OxyR was 

incubated with both fluorescent and nonfluorescent ahpCF gene promoter in binding 

buffer. Both promoter sequences were identical with the only difference being the 

fluorescent tag.  A visible shift was seen between OxyR and the ahpCF gene promoter. 

With the addition of the competitive inhibitor, there is a visble difference in fluorescence 

intensity when compared to the uninhibited shift assays (Figure 16b). The free or 
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unbound DNA bands in the competitive inhibition shift assays fluoresced more intensely 

compared to unbound DNA bands in the uninhibited shift assay at the same 

concentration of OxyR.  The shifted DNA bands in the competitive inhibition shift assays 

were less intense than the uninhibited shift assays. The same concentration of 

fluorescent DNA was used in both uninhibited shift assay and competitive shift assay. 

4.8.1.2 – Shift Assay with the hcp promoter 

 For the uninhibited shift assay, a visible shift is seen between OxyR and 

fluorescent hcp promoter in binding buffer (Figure 16c). The visible shift appears when 

OxyR at a concentration of 40pM is incubated with the hcp promoter. The shifted bands 

show an increase in fluorescence intensity with increasing concentration of OxyR. At the 

same time, the shifted bands appear higher in the gel with increasing concentration of 

OxyR. The higher the concentration of OxyR, the higher up the shifted band is on the 

gel. The corresponding free DNA bands decrease in intensity as the concentration of 

OxyR increases.    

 Competitive inhibition studies with the hcp promoter and OxyR was performed 

with fluorescent and nonfluorescent (cold) hcp promoter. The fluorescence of the free 

DNA bands increased as the concentration of nonfluorescent hcp increased (Figure 

16d). Likewise, the intensity of the shifted DNA did not fluoresce as intensely when 

compared to the uninhibited shift assays at the same concentration of fluorescent DNA. 

The cold probe outcompetes for binding with the fluorescent DNA.  

4.8.1.3 – Shift Assay with the katG promoter 

 A visible shift was seen between OxyR and the katG promoter in an uninhibited 

shift assay. The visible shift appears when OxyR is at a working concentration of 60pM 
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(Figure 16e). The unshifted free DNa decrease in fluorescence as the concentration of 

OxyR increases. The shifted DNA bands appear to increase in intensity as the 

concentration of OxyR increases. 

4.8.1.4 – Shift Assay with the hemH promoter 

 A visible shift was also seen between OxyR and fluorescent-tagged hemH 

promoter when performing the uninhibited shift assay (Figure 16f). The shifted DNA 

bands appear when hcp is incubated with OxyR starting at a concentration of 20pM. 

There is an increase in fluorescence intensity in the shifted bands as the concentration 

of OxyR increases. The shifted bands appear higher in the gel as the concentration of 

OxyR increases. The higher the concentration of OxyR, the higher up the shifted band 

appears on the gel. The free DNA band decreases in intensity as the concentration of 

OxyR increases.  

 The addition of competitive inhibitor appears to show a decrease in the shifted 

band fluorescence as the concentration of nonfluorescent inhibitor increases. However, 

the shift is poorly resolved (Figure 16g). 
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Figure 16 – Electromobility Shift Assays with tagle ss E. coli OxyR 

Details of binding conditions can be found under “Materials and Methods”. Reactions 

were electrophoresed on a thin 1% agarose gel imaged on an Odyssey Clx imager. 

Control lanes contain just the fluorescent-tagged target DNA in binding buffer. 

A) Fluorescent-tagged ahpCF promoter DNA was incubated with increasing amounts of 

tagless E. coli OxyR. Lane 1 is the control lane. B) Competitive inhibition study with 

ahpCF promoter. In addition to 0.1pM fluorescent-tagged ahpCF promoter, Lanes 1-3 

contain 0.025, 0.05, and 0.075pM nonfluorescent DNA incubated with increasing 

amounts of OxyR. Lane 4 serves as a control. Lanes 5-7 contain just 0.1pM fluorescent-

tagged ahpCF promoter DNA with increasing [OxyR]. C) Fluorescent-tagged hcp 

promoter DNA was incubated with increasing concentrations of tagless E. coli OxyR. 

Lane 1 serves as a control. D) Competitive inhibition study with hcp promoter. Lane 1 

serves as the control. Lanes 2-7 all contain 100pM E. coli OxyR and 0.1pM fluorescent-

tagged hcp promoter with increasing concentrations of nonfluorescnet hcp promoter (0, 

0.025, 0.05, 0.075, 0.1 and 0.2pM). E) Fluorescent-tagged katG promoter DNA was 

incubated with increasing amounts of OxyR. Lane 7 serves as a control. F) Fluorescent-

tagged hemH promoter DNA was incubated with increasing amounts of OxyR. Lane 1 

serves as the control. G) Competitive inhibition study with hemH promoter. Lane 6 

serves as a control. Lanes 1-5 contain 0.1 pM fluorescent DNA and 100pM OxyR wich 

decreasing amounts of nonfluroescent hemH promoter DNA (0.1, 0.075, 0.05, 0.025, 

and 0pM). 
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4.8.2 – Gel Shift Assay with His-tagged E. coli OxyR 

 For each of these shift assays, the His-tag purified OxyR still contained the 6x 

His-tag on the N-terminal.  

4.8.2.1 – Shift Assay with the ahpCF promoter 

 For the uninhibited shift assay, a potential shift was seen between His-tag 

purified OxyR and fluorescent-tagged ahpCF promoter (Figure 17a). As the 

concentration of OxyR increases, the intensity of the unbound DNA decreases. The 

potential shifted bands were very faint, but appear to increase in intensity as the 

concentration of OxyR increases ranging from 0 – 100pM. The supposed shifted bands 

appear in the same region on the gel.  

4.8.2.2 – Shift Assay with the hcp promoter 

 A potential shift was seen between the His-tag purified OxyR and fluorescent-

tagged hcp promoter (Figure 17b) in the uninhibited shift assay. The intensity of the free 

DNA bands appear to get fainter as the concentration of OxyR increases. However, the 

presence of shifted DNA is hard to discern. The potential shifted bands ran very close to 

the free DNA and have poor resolution. The appearance of the alleged shifted DNA 

bands may simply be the result of smearing in the gel or some kind of nonspecific 

interaction 

4.8.2.3 – Shift Assay with the katG promoter 

 A potential shift was seen with His-tagged OxyR and the fluorescent-tagged katG 

promoter. A shift was seen when the His-tagged OxyR is at a concentration of 60pM 

(Figure 17c). The potential shifted bands are faint, but appear to increase in intensity as 

the concentration of OxyR is increased. 
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4.8.2.4 – Shift Assay with the hemH promoter 

 When incubating hemH promoter with His-tagged OxyR at concentrations 

ranging from 0-100pM, a potential shift is seen on the gel (Figure 17d). Increasing the 

concentration of OxyR resulted in a decrease in fluorescent intensity of the unbound, 

free DNA bands. Within this same range, a very faint band appears higher up in the gel 

starting at 40pM of OxyR. These bands do appear to increase in intensity as the 

concentration of OxyR increase, which indicates a potential shift.  

 To better resolve these bands higher up in the gel, the concentration range of 

OxyR was increased from 0-100pM to 100-250pM OxyR (Figure 17e). Despite the large 

increase in OxyR, no definitive shift was produced. The faint bands at the top of the gel 

did not increase in intensity despite the increase in the concentration of OxyR. These 

faint bands appear even lighter and only appear at 200-250 pM OxyR. No faint bands 

were seen when OxyR is at a concentration of 100pM despite appearing on the gel 

previously at this concentration. It is possible these faint bands are a result of gel 

composition and orientation.  As a result, there was no definitive shift between the His-

tag purified OxyR and the fluorescent-tagged hemH promoter in the uninhibited shift 

assay. 
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Figure 17 – Electromobility Shift Assays with His-t agged E. coli OxyR 

Binding conditions can be found under “Materials and Methods”. Reactions were 

electophoresed on a thin 1% Agarose gel. Control lanes contained fluorescent target 

DNA only in binding buffer. A) Fluorescent-tagged ahpCF promoter DNA with increasing 

amounts of E. coli OxyR. Lane 5 serves as a control. B) Fluorescent-tagged hcp 

promoter DNA was incubated with increasing amounts of E. coli OxyR. Lane 1 serves 

as a control. C) Fluorescent-tagged katG was incubated with increasing amounts of E. 

coli OxyR. D) Fluroescent-tagged hemH promoter DNA was incubated with increasing 

amounts of E. coli OxyR. Lane 6 serves as a control. Fluorescent-tagged hemH  

promoter DNA was incubated with increased amounts of His-tagged E. coli OxyR. 

Concentrations were greatly increased from the standard amount. Lane 1 serves as a 

control.
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4.9 – Electromobility Shift Assay (EMSA) with P. gingivalis OxyR 

4.9.1 – Gel Shift Assay with tagless P. gingivalis OxyR 

 P. gingivalis OxyR was purified from the Halo-tag purification system. The Halo-

tag was cleaved off resulting in the tagless form of P. gingivalis OxyR. When incubated 

with the same promoters under the same binding conditions, no visible shifts occurred 

with any of the four promoters (Figure 18a-d). Longer incubation time did not produce a 

shift either (data not shown). Increasing the concentration range of the tagless P. 

gingivalis OxyR did not produce any shifts either. 
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Figure 18 – Electromobility Shift Assay with tagles s P. gingivalis OxyR 

Binding conditions can be found under “Materials and Methods”. Reactions were 

electrophoresed on a thin 1% Agarose gel and imaged on an Odyssey Clx. Control 

lanes contained only fluorescent target DNA. A) Fluorescent-tagged ahpCF promoter 

was incubated with increasing amounts of OxyR. Lane 6 was the control. B) 

Fluorescent-tagged hcp promoter DNA was incubated with increasing amounts of 

OxyR. Lane 1 was the control. C) Fluroescent-tagged hemH was incubated with 

increasing amounts of OxyR. Lane 1 was the control. D) Fluorescent-tagged katG was 

incubated with increasing amounts of OxyR. Lane 6 was the control.
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4.9.2 – Gel Shift Assay with His-Tag purified P. gingivalis OxyR  

 For each of these assays, the purified OxyR still retains the 6x His-tag on the N-

terminus. 

4.9.2.1 – Shift Assay with ahpCF promoter 

 When running the uninhibited shifts with His-tagged P. gingivalis OxyR with the 

ahpCF promoter, it seems that a nonspecific or potential shift occurs. The shift appears 

at when OxyR is running at a concentration of 20pM (Figure 19a).  These shifted bands 

all appear in the same region of the gel. The shifted bands increase in intensity as the 

concentration of OxyR increases. The nonshifted free DNA bands decrease in intensity 

as the concentration of OxyR increases. 

4.9.2.2 – Shift Assay  with the hcp promoter 

 When incubating P. gingivalis OxyR with the hcp promoter, it appears that a very 

weak shift occurs (Figure 19b). The shifted bands start to appear very faintly when the 

concentration of OxyR is at 40pM. These bands appear to increase in intensity as the 

concentration of OxyR increases. The nonshifted free DNA bands decrease in intensity 

as the concentration of OxyR increases. 

4.9.2.3 – Shift Assay with the hemH promoter 

 A shift appears to occur when performing a shift assay with P. gingivalis OxyR 

and the hemH promoter. The shift appears when the concentration of OxyR is at 20pM 

(Figure 19c). The shifted bands increase in intensity and vise versa the unbound DNA 

bands decrease in intensity as the concentration of OxyR increases. The shifted DNA 

bands all appear at the same region in the gel. In order to better resolve the potential 

shifted bands, the working concentration range of OxyR was increased from 0 – 100pM 
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to 100 – 250pM. However, there was no discernible effect on the shift assay (data not 

shown). 

4.9.2.4 – Shift Assay with the katG promoter 

No visible shift occurs when between His-tagged P. gingivalis OxyR and the katG 

promoter (Figure 19d).  
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Figure 19 – Electromobility Shift Assay with His-ta gged P. gingivalis OxyR 

Binding conditions can be found under “Materials and Methods”. Each reaction 

contained increasing concentrations of OxyR (0-100pM). Control lanes contained just 

the fluorescent-tagged DNA in binding buffer. A) Fluorescent-tagged ahpCF promoter 

DNA was incubated with increasing amounts of OxyR. Lane 6 was the control. B) 

Fluorescent-tagged hcp promoter DNA was incubated with increasing amounts of 

OxyR. Lane 1 is the control C) Shift assay with hemH promoter DNA with increasing 

amounts of OxyR. Lane1 is the control. D) Shift assay with katG promoter DNA with 

increasing OxyR. Lane 6 is the control lane.
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4.10 – Electromobility Shift Assay (EMSA) with P. gingivalis HcpR 

 P. gingivalis HcpR was purified from pET30-hcpR using the His-tag purification 

method. The pET30 vector contains a larger His-tag than the His-tag found in the m-

pET21d vector used for OxyR. The HcpR used in these experiments still retained the 

His-tag. HcpR was incubated with the same promoters used for OxyR under the same 

binding conditions in order to test for nonspecific binding. No visible shift occurred when 

HcpR was incubated with the promoters (Figure 20a-d).  
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Figure 20 – Electromobility Shift Assays with His-t agged P. gingivalis HcpR 

Gel Shift assays with His-tagged HcpR. Binding conditions can be found under 

“Materials and Methods”. Reactions were electrophoresed on a 1% Agarose gel in the 

dark. Reaction controls contained just the fluorescent-tagged DNA in binding buffer. 

A) Fluorescent-tagged ahpCF promoter DNA was incubated with increasing amounts of 

His-tagged HcpR. Lane 1 served as the control. B) Fluorescent-tagged hcp promoter 

DNA was incubated with increasing amounts of His-tagged HcpR. Lane 1 was the 

control. C) Fluorescent-tagged hemH promoter DNA was incubated with increasing 

amounts of His-tagged HcpR. Lane 1 served as the control.  D) Fluorescent-tagged 

katG promoter DNA was incubated with increasing amounts of HcpR.Lane 1 served as 

the control. 
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4.11 - in vitro Pulldown Genomic Libraries with E. coli OxyR 

 A total of 6 genomic libraries were generated from pulldown assays with Epoxy-

OxyR generated from tagless E. coli OxyR. Each library was generated with a distinct 

barcode or index containing a specific sequence of nucleotides in order to identify each 

sample (Table 6).  The quality of each library generated was assessed on a Bio-

analyzer (Figure 21). All 6 of the genomic libraries generated appeared to have quality 

data based on Bio-analyzer results (see Supplemental for the rest of the data).  

After running the libraries on a Bio-analyzer, qPCR was performed on each 

sample to further assess the quality of the samples (Table 7). Of the samples 

generated, only 4 out of 6 libraries had sequenceable results. The concentrations of 

these 4 libraries were all >1nM. The concentration of the rest the libraries (3 out of 7) 

were deemed too low for sequencing (<1nM). 

 The genomic sequencing data was aligned with the whole genome of BL21 E. 

coli in order to assess which genes had increased number of reads (Figure 22). The 

peaks correspond to OxyR-DNA interactions on the genome that were pulled down. The 

larger the size of the peak, the increased interaction between OxyR and DNA. Of the 

peaks examined, one peak at 3,946,260 on the genome, pertained to the promoter 

region of mobB (Figure 23). The gene codes for molybdenum cofactor protein, which 

has a role in GTP-binding and GTPase activity. The rest of the peaks examined 

pertained to intergenic regions within genes. Analysis of these peaks can be found in 

the Supplemental Data. 
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Table 6 -  List of Indexes used for Library Generat ion 

Sample 
Name Index  Sequence 
EC 1 2 CGATGTTT 
EC 12.4 8 ACTTGATG 
EC 211 9 GATCAGCG 
EC 219 11 GGCTACAG 
EC 225 1 ATCACGTT 
EC 226 4 TGACCACT 

PG 218 10 TAGCTTGT 
PG 219 12 CTTGTACT 
PG 226 3 TTAGGCAT 
PG 229 5 ACAGTGGT 

HcpR 1 6 GCCAATGT 
HcpR 2 7 CAGATCTG 

HcpR 3 A1 
TATAGCCT;  
ATTACTCG 
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Figure 21 – Bio-analyzer result for E. coli OxyR Library: EC 226 

Example of results expected when running genomic library on an Bio-analyzer to asses 

quality the genomic libraries. See supplemental data for the bio-analyzer results of all 

the samples. 
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Table 7 - qPCR results of genomic libraries  

    Name nM 
EC 1 0.0312 
EC 12.4 2.315 
EC 211 1.23 
EC 219 0.072 
EC 225 1.435 
EC 226 1.14 

PG 218 3.12 
PG 219 2.9 
PG 226 1.98 
PG 229 0.0177 

HcpR1 1.94 
HcpR2 2.26 
HcpR3 2.34 
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Figure 22 – Genomic Library Sequencing Data of E. coli OxyR 

Sequencing data reads for each genomic library generated with E. coli OxyR are 

aligned with the whole genome of E. coli. Experimental reads are the top layer (dark 

blue) in each figure. The peak sizes indicate the number of hits for individual genes. The 

larger the size of the peaks, the more number of reads for that particular region, which 

indicates increased interaction and thus gene expression. 
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Figure 23 – Peak Analysis of EC 225 Genomic Library   

Sequencing data for “EC 225” genomic library lined up with the genome of BL21 E. coli. 

The coordinates of the OxyR-DNA interactions were examined to determine the binding 

targets of OxyR. Three interesting peaks are shown here: mobB, oxyR, and aceK. The  

mobB peak pertains to the promoter region. The two other peaks pertain to intergenic 

regions within those genes. Peak analysis for the rest of the peaks can be found in the 

Supplemental data.
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4.12 - in vitro Pulldown Genomic Libraries with P.gingivalis OxyR 

 A total of 4 genomic libraries were generated from Epoxy-OxyR generated from 

Halo-tag purified P. ginigvalis OxyR. Distinct barcodes were used for each library 

generated (Table 5). Bio-analyzer results showed that all 4 libraries submitted had 

quality data (Figure 25). The results from qPCR showed that 3 of the 4 libraries 

submitted had concentrations high enough for sequencing (>1nM) (Table 6).  

 Sequencing data for P. ginigvalis OxyR was demultiplexed to sort out the 

libraries based on index sequence. The genomic library sequencing data was aligned 

with the whole genome of P. gingivalis in order to assess the approximate number of 

peaks for individual genes of interest (Figure 26). The larger the peak, the more number 

of reads for that particular gene indicating increased expression of that gene. 

 The exact location of OxyR-DNA binding pertaining to the various peaks was 

closely-examined. The sequencing results of P. gingivalis OxyR libraries were 

reproducible across the various samples submitted. Of all the peaks examined, the 

peak coming in at 1,287,432 on the genome showed that P. gingivalis OxyR appeared 

to bind to the promoter region of the PG 1209 gene (Figure 27). The rest of the peaks 

examined appeared to be nonspecific binding to various genes rather than the gene 

promoter. 
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Figure 24 – Bio-analyzer result for P. gingivalis OxyR Library: PG 226 

Example of bio-analyzer results for P. gingivlalis OxyR libraries. See supplemental data 

for the rest of the libraries. 
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Figure  25 – Genomic Library Sequencing Data for P. gingivalis OxyR 

Sequencing data reads for each genomic library generated with P. gingivalis OxyR is 

overlaid with the whole genome for P. gingivalis. The experimental reads are shown in 

dark blue for each figure. The peaks indicate the number of reads for individual genes. 
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Figure 26 – Peak Analysis of PG 218 Genomic Library   

Sequencing data for “PG 218” genomic library lined up with the genome of P. gingivalis. 

The location of OxyR-DNA interactions was examined to determine the binding targets 

of OxyR. See supplemental figures for analysis of the other peaks.
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4.13 - in vitro Pulldown Genomic Libraries with P.gingivalis HcpR 

 Three genomic libraries were generated from Epoxy-HcpR. HcpR purified using 

His-tag purification and immobilized on Epoxy beads. Distinct barcodes were used for 

the libraries (Table 5). Bio-analyzer results showed that all 3 libraries contained quality 

data (Figure 27). The qPCR results (Table 6) showed that all 3 of the libraries had 

concentrations high enough for sequencing (>1nM). 

 Sequencing data for HcpR Libraries was demultiplexed to sort out the libraries 

based on index sequence. The genomic library sequencing data was aligned with the 

whole genome of P. gingivalis in order to assess the approximate number of peaks for 

individual genes of interest (Figure 28). The larger the peak, the more number of reads 

for that particular gene and thus increased expression for those genes. 

 The exact location of HcpR-DNA binding pertaining to the various peaks was 

closely-examined. The sequencing results of P. gingivalis HcpR were largely similar 

with the exception of a very large peak in the HcpR 2 library (Figure 29). The HcpR 2 

Library was chosen for close-examination. The large peak coming in at 955,987 on the 

genome showed that HcpR binds to the promoter region of PG0893, which encodes for 

hydroxylamine reductase (Figure 28). 

 Side-by-side comparisons were made between the PG 218 and the HcpR 2 

libraries (Figure 30). There was a large number of reads for the promoter region of 

PG0893 or hcp in the HcpR 2 library. This finding was not seen in the PG218 library. At 

the same time, there was a large number of reads for the promoter region of PG1209 

that was not seen in the HcpR 2 library. The other major peaks are present in both 

libraries. 
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Figure 27 – Bio-analyzer esult for P. gingivalis HcpR Library: HcpR 1 

Example of bio-analyzer results of HcpR. See supplemtanl figures for the rest of the bio-

analyzer results. 

 

 

 

 

 

  

 



  

91 
 

 

Figure 28 – Genomic Library Reads for P. gingivalis HcpR 

Sequencing data reads from libraries generated from P. gingivalis HcpR was aligned 

with the whole genome of P. gingivalis. The experimental reads are shown in dark blue 

for each figure. The peak sizes indicate the approximate number of reads for individual 

genes. 
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Figure 29 – Peak Analysis of HcpR 2Genomic Library  

Sequencing data for the “HcpR 2” genomic library lined up with the genome of P. 

gingivalis. The location of HcpR-DNA interactions was examined to determine the 

binding targets of HcpR. (See supplemental figures for analysis of the other peaks) 
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Figure 30 –  Comparison of PG 218 and HcpR 2 Genomi c Libraries 

Side-by-side comparison of the PG218 and HcpR2 Sequencing Data. Both were 

generated using P. gingivalis genomic DNA. The circled peaks are similar peaks found 

in both the OxyR and HcpR libraries for P. gingivalis. When the peaks for these peaks 

were examined, they contained similar coordinates on the genome. 
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Chapter 5 – Discussion 

 The majority of the studies conducted of E. coli OxyR focus primarily on the 

redox switch and the oxidative stress response regulated. The oligomeric state of E. coli 

OxyR has not been extensively studied and thus not not well-defined. Evidence exists 

suggesting that E. coli OxyR behaves as a tetramer in solution (Kullik et al., 1995). As a 

transcriptional regulator, OxyR binds to the promoter region upstream of the genes it 

regulates. OxyR appears to recognize a binding motif made of an ATAG sequence 

followed by CTAT thereafter and another repeat of ATAGnnnnCTAT shortly after 

(Toledano et al., 1994). The oxidized or active form of OxyR appears to interact with 

DNA at four major grooves at these ATAGnnnCTAT binding motifs (Kullik et al., 1995; 

Toledano et al., 1994). This evidence suggests OxyR exists as a tetramer in solution. 

However, the reduced or inactive form of OxyR was shown to interact with DNA at two 

points at these binding motifs. This evidence suggests the possibility of a dimer in the 

reduced form. Crystal structures of the regulatory domain (redox switch) of OxyR have 

shown both dimer and tetramer forms (Choi et al., 2001). In addition, cross-linking 

indicated  that OxyR exists as a dimer in solution (L. Tartaglia et al., 1992). Because 

there are different reports regarding the conformational structure of OxyR, we sought to 

determine the oligomeric state of E. coli OxyR. 

 After successful insertion of E. coli m-pET21d-oxyR into BL21 cells, OxyR was 

purified using His-tag purification in large scale for extensive studies. His-tag 

purifications produced an over-expressed protein that we verified as E. coli OxyR 

through Mass Spectrometry. The protein runs as a monomer at approximately 34-35 

kDa on a denaturing gel (Figure 4a). The attempts to cleave the 6x His-tag from the N-
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terminal using TEV protease treatment failed to remove the His-tag to generate the 

tagless form of OxyR. While this should not be a problem, the N-terminal domain has 

been identified as the DNA-binding domain of OxyR (Kullik et al., 1995). The presence 

of the His-tag on the DNA-binding domain of the protein may interfere with DNA binding 

and oligomerizaiton studies. The presence of the His-tag could also cause the protein to 

behave or fold differently as well. As a result, an alternative purification method was 

used to purify OxyR. 

 Tagless E. coli OxyR was purified from pFC20k-oxyR using the Halo-tag 

purification method. Halo-tag purification produced a highly expressed and very pure 

sample that runs as a monomer on a denaturing gel (34-40kDa) (Figure 4b). 

Unfortunately, the Halo-tag purification method is a rather time-consuming method 

because it requires overnight TEV protease treatment. At the same time, this method 

does not produce large quantities of protein compared to His-tag purifications. 

 E. coli OxyR was also purified using Heparin Affinity Chromatogrpahy in an 

attempt to purify the DNA-binding form of OxyR for our studies. Because Heparin can 

mimic the negatively-charged phosphate backbone of DNA, heparin affinity 

chromatography can be used to purify the DNA-binding form of proteins (Fenner, 

Oppegard, Hiasa, & Kerns, 2013; Ishii, Futaki, Uchiyama, Nagasawa, & Andoh, 1987). 

The resulting purification produced number of species when run on a denaturing gel due 

to the nature of the purification. This purification method was not as selective compared 

to the His-tag and Halo-tag purification methods in purifying the protein of interest. Two 

major species appeared more concentrated, indicating an over-expressed protein 
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(Figure 4c). His-tag stain confirmed that these bands contained the His-tagged protein 

(Figure 4d).  

 The gel filtration studies show that E. coli OxyR exists as a tetramer in solution. 

OxyR from all three purification methods all eluted at similar volumes (12.7mL – 

13.5mL) from the S200 column (Table 4). All three purifications produced proteins that 

gave similar elution profiles despite different purification methods (Figure 8). Molecular 

weight markers were run on the S200 column to determine the approximate molecular 

weight of the eluted proteins. When comparing the OxyR elution profiles to the profile of 

the molecular weight standards, the data indicates OxyR exists as a tetramer in 

solution. Likewise, molecular weight calculations using the equation generated from the 

standards calibration curve support these results. The tagless OxyR has a moleccular 

weight of approximately 140 kDa, which is what the expected tetramer is calculated to 

be. 

 Despite similar elution profiles, interesting variations arise when the eluted 

proteins are electrophoresed on a denaturing gel (Figures 9a-d). When tagless OxyR 

was run on the Superdex 200, the absorbance peak produced was very small (>5mAU) 

compared to the absorbance profiles of the His-tagged OxyR. However, the peak was 

very sharp and defined which indicates that it is very likely our protein of interest. A low 

absorbance indicates the sample coming off the column is very dilute which was evident 

by an empty gel (data not shown). Perhaps a more concentrated sample of tagless 

OxyR is needed to run on gel filtration using the S200 column in order to detect the 

results on a denaturing gel.  
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 The eluted His-tag purified OxyR appears to run as both at both 34-40 kDa and 

100 kDa on a denaturing gel which indicates it runs as a monomer and a dimer (Figure 

9a). The Heparin purified OxyR runs at primarily at 100 kDa. However, boiling the 

protein sample and the addition of reducing agents produced a band running at 35-40 

kDa (Figure 9b). It is interesting to note that despite boiling the sample and adding 

reducing agents, Heparin-purified OxyR run on an S200 column still runs primarily at 

100kDa. His-tag staining confirms that the band appearing at 100 kDa contains the His-

tagged protein (Figure 9d). A faint band can be seen for the band running between 30-

50 kDa which indicates this second band also contains the His-tagged protein. 

However, the majority of the protein runs at approximately 100 kDa. 

 Sedimentation velocity experiments of the tagless form of E. coli OxyR show that 

it exists as both a tetramer at approximately 140-145 kDa and a monomer at 

approximately 45 kDa in solution (Figure 13). The top (colored) graph depicts the 

absorbance values, which are nice and clean. The middle graph depicts the interference 

data. The grey color indicates standard error, in which there is little to no error. The 

bottom graph depicts the S-values for our protein. The expected value of a tetramer is 

approximately 137.6 kDa. The expected value of the monomer is approximately 34 kDa. 

The molecular weights are right around the expected weights with room for error. The 

peaks of the tetramer and monomer species are spread apart from one another, which 

indicates the protein is very stable at these configurations. If there were any transitions 

between the two forms, it would occur very slowly. This result is both very interesting 

and very unusual. It is rare in nature for a protein to transition from a monomer to 

tetramer or vice versa with no intermediates in between. Perhaps the dimer form does 
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exist, but too brief to be detected during centrifugation. Based on peak size, it appears 

that the tetramer form of E. coli OxyR is the more favored form of the two.  

When comparing the amino acid sequences between E. coli OxyR and P. 

gingivalis OxyR, there is only a 34% sequence similarity (Supplemental S1). However, 

the regulatory domain of P. gingivalis OxyR has been studied and a truncated form has 

been crystallized (Svintradze et al., 2013). The structure of the regulatory domain of P. 

gingivalis OxyR has been shown to be very similar to the regulatory domain of E. coli 

OxyR. Beyond the crystallization these studies of the truncuated form, the oligomeric 

state of the full-length P. gingivalis OxyR has not been determined. Because we 

showed that the oligomeric state of E. coli OxyR is a tetramer in form, we have 

increased reasons to believe P. gingivalis OxyR also exists as a tetramer in solution. In 

our study, we sought to characterize the oligomeric state of P. gingivalis OxyR to better 

understand the protein. 

 P. gingivalis OxyR was purified from m-pET21d-oxyR using His-tag purification. 

This method produced a highly concentrated and pure protein that runs as a monomer 

(35kDa) on a denaturing gel (Figure 5a). Like E. coli OxyR from m-pET21d-oxyR, TEV 

cleavage to remove the His-tag was not successful. Once again, we turned to using 

Halo-tag purification to purify P. gingivalis OxyR from pFC20k-oxyR. Halo-tag 

purification produced a very pure and concentrated sample of OxyR (Figure 5b). 

 P. gingivalis OxyR was also purified from m-pET21d-oxyR using Heparin Affinity 

chromoatogrpahy in hopes of obtaining the DNA-binding form. Like the Heparin 

purification with E. coli OxyR, many species appeared when the elutions were run on a 

denaturing gel (Figure 5c). However, one of the bands on the gel appeared to be more 
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concentrated indicating the possibility of an over-expressed protein. His-tag staining 

confirmed that these bands contained the His-tagged protein (Figure 5d).   

 Gel Filtration Chromatography shows that P. gingivalis OxyR exists as a tetramer 

in solution.  The results from all three purifications (His-tag, Halo-tag, and Heparin 

affinity) generated similar elution profiles (Figure 11a). Purified protein from all three 

purification systems elutes off the column at approximately 12.8mL. When comparing 

the elution profiles to the elution profiles of molecular weight markers, the data indicates 

OxyR exists as a tetramer in solution. Molecular weight calculations using the standard 

calibration curve also shows that OxyR exists as a tetramer in solution (Table 5). 

 When the S200 elutions of P. gingivalis OxyR were run on a denaturing gel, there 

was a small difference with OxyR purified from Heparin compared to the tagless and 

His-tag purified OxyR. The His-tagged OxyR runs as a monomer on a denaturing gel at 

approximately 35 kDa (Figure 12). Tagless OxyR also runs as a monomer on a 

denaturing gel at approximately 35 kDa (Figure 12b). The S200 elutions of Heparin 

purified OxyR were run on a denaturing gel, runs at approximately 100 kDa on the 

denaturing gel. Boiling the sample and addding reducing agents had no effect on the 

protein (Figure 12c). This result is different from the Heparin-purified E. coli OxyR run 

on the S200 column.  Boiling and the addition of reducing agents to the E. coli OxyR 

sample resulted in a second band appearing at approximately 35 kDa. 

 Sedimentation velocity experiments also show that P. gingivalis OxyR exists as a 

tetramer in solution. Tagless OxyR was purified both aerobically and anaerobically 

using the Halo-tag purification system and run on an analytical ultracentrifugation. The 

protein was purified anaerobically in order to obtain a more biologically relevant form of 
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OxyR because P. gingivalis is an anaerobic bacterium.  Only one major peak appears 

on the absorbance profile for both aerobic and anaerobic purified OxyR (Figure 14). The 

results indicate that this protein has a molecular weight of approximately 140 kDa, 

indicating that P. gingivalis OxyR exists as a tetramer in solution.  

 Sedimentation velocity experiments show that the His-tagged P. gingivalis OxyR 

appears to exists in three oligomeric states: tetramer (140 kDa), dimer (90 kDa), and 

monomer (40kDa) (Figure 15). The peaks of the His-tagged OxyR are not as sharp 

compared to the tagless OxyR results. Rather, these peaks are connected to one 

another indicating a dynamic equilibrium between the three conformational states. Of 

the three states, the tetramer form has the largest peak, indicating it is the most favored 

or abundant form. The monomer peak is the next largest peak with the dimer running as 

the smallest peak. We believe the dynamic equilibrium favors the monomer form over 

the dimer form due to the size and strength of the peaks. Two conclusions can be 

drawn from this result. Either the equilibrium favors more rapid change from dimer to 

monomer or there is a slower change from monomer to a dimer.  However, it is 

interesting to note that this is only seen when the His-tagged OxyR is run at a much 

lower concentration compared to the tagless OxyR. Further studies at various 

concentrations can help clarify and better define the oligomeric state of His-tagged 

OxyR. Nevertheless, the results from both analytical ultracentrifugation and gel filtration 

indicate that P. gingivalis exists primarily as a tetramer in solution. 

 E. coli OxyR is a transcriptional regulator that is oxidized in the presence of 

hydrogen peroxide. The oxidized form of OxyR is the active form in which it begins turns 

on transcription of the genes it regulates. OxyR has been shown to bind upstream at the 
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promoter regions of the genes it regulates to initiate transcription (Zheng et al., 2001). 

Most of the known OxyR binding targets are the oxidative stress response (Storz, 

Tartaglia et al., 1990b; Tao et al., 1991). We wanted to confirm that we purified fully 

functional OxyR by showing DNA-binding through gel shift assays. At the same time, we 

wanted to compare the protein purification methods to determine which method to use 

for regulon studies. We chose and designed primers for the gene promoters of ahpCF, 

hcp, and katG because they have been shown to be under OxyR regulation as part of 

the oxidative stress response (Almeida, Romão, Lindley, Teixeira, & Saraiva, 2006; 

Seth et al., 2012; L. A. Tartaglia et al., 1989). By showing binding, we hoped to 

determine and optimize the binding conditions for OxyR for regulon studies. We also 

designed a gene promoter for the hemH gene, which was recently found to be induced 

by E. coli OxyR (Mancini & Imlay, 2015). This gene codes for ferrochetalase, which 

plays a role in heme synthesis. This ferrochetalase is responsible for the final step in 

heme synthesis by inserting iron into the protoporphyrin ring to generate heme B. We 

wanted to demonstrate binding with this gene, which has not been shown previously. 

 Gel shift assays were performed with both the His-tagged and tagless forms of E. 

coli OxyR. The shifts with the tagless form of OxyR are more physiologically relevant 

the His-tagged forms which retain the His-tag on the DNA-binding domain of OxyR (the 

N-terminal).  The presence of the tag on the DNA binding may or may not affect the 

binding activities of OxyR. 

 Reproducible shifts were shown between tagless OxyR and gene promoters we 

designed: ahpCF, hcp, and katG (Figure 16a-g). These results indicate the tagless 

OxyR from Halotag purification yields a functional protein that is capable of binding 
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DNA. The addition of nonfluorescent or cold DNA of same gene promoter served as 

competitive inhibitors. The competitive inhibitors competed with binding of the 

fluorescent-tagged DNA as indicated by the increased fluorescence intensity in the free 

DNA bands as the concentration of cold DNA increased. The competitor studies also 

demonstrate that tagless E. coli OxyR is specifically binding to the promoters rather 

than nonspecific binding.  

 After showing binding with the known binding targets of OxyR, we tested for 

binding between OxyR and the gene promoter for hemH in order to confirm OxyR 

regulation. A reproducible shift was produced with tagless OxyR and hemH (Figure 16f). 

This was an interesting result because it shows the iron pathology side of the oxidative 

stress response. hemH is plays a role in heme synthesis by inserting free ferrous (Fe2+) 

iron into the protoporphyrin IX (PPIX) ring to generate heme. This is beneficial because 

it limits the availability of free iron to react with hydrogen peroxide. At the same time, 

heme is required by KatG, which is the main catalase to drive down hydrogen peroxide 

when it reaches higher levels. By directly regulating hemH, OxyR is regulating another 

method to drive down levels of iron to prevent Fenton chemistry. This also helps 

promote KatG (catalase) activity to help detoxify the hydrogen peroxide.   

 Possible shifts are seen between His-tagged OxyR with ahpCF, hcp, and hemH 

gene promoters (Figure 17a-e). However, these shifts are not as well-defined as the 

shifts seen with the tagless form of OxyR and are thus inconclusive. The His-tag 

purifications do not yield as pure of a sample as the Halo-tag purifications. Any residual 

contaminant may cause a shift. At the same time, the His-tag may also affect the 

behavior of the protein, especially since the tag exists on the DNA-binding domain. 
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Even when the concentration of His-tagged OxyR is greatly increased, the purported 

shifts are still not well-defined and seems to be abolished (Figure17d and e).  The 

addition of Poly Poly (dI•dC) did not seem to affect the shifts. Nevertheless, the shifts 

seen with the tagless form of OxyR are more physiologically relevant. We determined 

that Halotag purification method is the better method to purify OxyR because DNA-

binding was shown. We also determined the best binding conditions for regulon studies. 

 The regulatory domain of P. gingivalis OxyR has been shown to very similar in 

structure to the regulatory domain of E. coli OxyR (Svintradze et al., 2013). We were 

curious if P. gingivalis OxyR would bind to the same promoters we used in the E. coli 

OxyR shift assays due to similarities between the structures. Shift assays were 

performed using both tagless and His-tagged P. gingivalis OxyR.  No visible shifts were 

produced between tagless P. gingivalis OxyR with the E. coli gene promoters (Figure 

18a-d). This result was expected because these genes are designed from E. coli DNA 

and not P. gingivalis DNA.  

 However, of these shifts performed, we were most interested the results of shifts 

performed with ahpCF and hemH. P. gingivalis relies on alkyl hydroperoxidase (from 

ahpCF) to combat hydrogen peroxide stress (Henry et al., 2012). It was shown that 

OxyR in P. gingivalis is required for the expression of ahpCF (Diaz et al., 2006). 

Because hemH plays a role in heme synthesis, we were curious to see if P. gingivalis 

OxyR regulates hemH because P. gingivalis is not capable of synthesizing heme. 

Unfortunately, no visible shifts were seen between P. gingivalis OxyR and the E. coli 

gene promoters.  This was expected due to the shifting targets coming from different 

host organisms. 
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 A possible shift was shown between His-tagged P. gingivalis OxyR with ahpCF, 

katG, and the hemH gene promoter (Figure 19a-d). However, these shifts are rather 

weak and poorly defined and thus are not conclusive. Doubling the concentration of His-

tagged OxyR did not resolve the shifts any better. No shift was seen with the hcp gene 

promoter. The shifs seen with His-tagged P. gingivalis OxyR is most likely due to 

nonspecific binding because P. gingivialis does not have a katG homolog (Henry et al., 

2012). Nonspecific binding is likely because tagless P. gingivalis OxyR did not produce 

shifts with any of these promoters. At the same time, the His-tagged P. gingivalis 

samples were not as pure as the tagless form. Any contaminants present may bind 

nonspecifically with the gene promoters. Nevertheless, the lack of shifts seen with the 

tagless P. gingivalis OxyR is more physiologically relevant. 

 The same shift assays were performed with P. gingivalis HcpR as a negative 

control. We wanted to make sure these probes we designed were not shifting with any 

protein we add. HcpR should not shift with any of these probes because of different 

regulons. As expected, no visible shifts were seen between HcpR and any of the gene 

promoters (Figure 20a-d), indicating these promoters are not binding to everything. 

 The pulldown assays were performed using the tagless E. coli and P. gingivalis 

OxyR because we were able to show binding with the tagless E.coli OxyR. The 

pulldown was also performed using His-tagged P. gingivalis HcpR as a negative control 

for the P. gingivalis libraries. The pulldown assays were performed using the same 

binding conditions used in the gel shift studies.  Attempts to generate a library using P. 

gingivalis OxyR and E. coli genomic DNA as a negative control failed.  
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 The sequencing data from the libraries generated from E. coli OxyR were 

reproducible. Each of the libraries generated similar peaks with similar coordinates. 

When these peaks were analyzed, one peak pertained to the promoter region of mobB. 

The gene product has a role in GTP-binding and GTPase activity. How and why OxyR 

may regulate this gene is unknown and will require further experimentation. The binding 

can be verified through gel shift assays. The oxidative stress response through OxyR 

may induce some unforeseen metabolic pathways. The rest of the peaks analyzed in 

from these libraries pertain to intergenic regions within various genes. Some of these 

genes include oxyR and aceK. The latter was recognized as a potential binding target 

through microarray data from previous members of the Lewis lab. The gene codes for 

an isocitrate dehydrogenase, which plays a role in the Krebs cycle. The Krebs cycle 

generates GTP as an energy source. These findings combined with the mobB findings 

(GTP-binding) may implicate OxyR having a role in cellular metabolism, possibly to 

regulate it to prevent further generation of reactive oxygen species. This is an 

interesting target and needs to be studied further. We believe these binding targets of E. 

coli OxyR may correspond to small RNAs or small proteins that are currently unknown. 

The databases for these targets is not complete and will require further investigation. 

 The sequencing data from the libraries generated from P. gingivalis OxyR appear 

to be reproducible.  All four of the libraries generated contained similar peaks. When 

analyzing these peaks, only one peak stood out. This peak occurs at the 1,287,432 

base pair on the genome and appears to pertain to the promoter region of the PG1209 

(NCBI) gene (Figure 26). The exact function of this gene is unknown, but it is believed 

to involve NAD metabolism and is an ATPase/kinase (Nelson et al., 2003). If these 
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indings hold true, this may indicate that P. gingivalis OxyR may have role in regulating 

cellular metabolism. Further investigation of this binding target as well as its gene 

product needs to be conducted. The rest of the peaks appear to be nonspecific binding 

when compared to the results of libraries generated from P.gingivalis HcpR (Figure 30).  

 Sequencing data from all three libraries appear to be the same, with the 

exception of a very prominent peak seen in the HcpR 2 library. Analysis of this peak 

shows that it pertains to the promoter region of hydroxylamine reductase or PG0893, 

which encodes for Hcp, a hybrid cluster protein (Figure 27). HcpR has been shown to 

upregulate PG0893 (Lewis, Yanamandra, & Anaya-Bergman, 2012). It is interesting to 

see that this peak only appears in one out of the three libraries generated from HcpR. 

The purpose of generating libraries with HcpR was to serve as a negative control to 

determine nonspecific binding when comparing to the libraries generated from P. 

gingivalis OxyR. We found peaks present in libraries generated from both proteins, 

indicating these peaks are the result of nonspecific binding. 
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Chapter 6 – Conclusion 

 We were able to determine the oligomeric states for both E. coli and P. gingivalis 

OxyR. Our studies show that E. coli OxyR exist primarily as a tetramer in solution, but 

can also exist as a monomer in solution. We showed that P. gingivalis OxyR exists 

primarily as a tetramer in solution, which has not been shown before. We were able to 

show binding with the tagless E. coli OxyR. We discovered a potential binding target, 

PG1209 for P. gingivalis OxyR. We confirmed that HcpR regulates PG0893 or hcp as a 

byproduct of our studies. We discovered a potential binding target, mobB for E. coli 

OxyR. Many other targets were discovered for E. coli OxyR, all pertaining to the 

intergenic regions within various genes. Our findings indidcate that there are still 

unknown binding targets for OxyR. We sought to study OxyR to help us better 

understand the physiological characteristics of these bacteria. Before P. gingivalis can 

carry out its pathogenic functions, it must first survive in the ever-changing environment 

of the oral cavity during which it can be exposed to various reactive oxygen species. By 

understanding how it reacts to and survives with stressors such as oxidative stress can 

can help us better understand its pathogenicity in periodontal disease.  
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Supplemental Figures 

Figure S1 – Sequence Similarity of E. coli and P. gingivalis OxyR 

 

 

 

 

 

Figure S2 – Bio-analyzer result for E. coli OxyR Library: EC 1  
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Figure S3 – Bio-analyzer Result for E. coli OxyR Library:  EC 124 

 

 

 

 

 

 

 

Figure S5: Bio-analyzer Result for E. coli OxyR Library: EC 211 
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Figure S6: Bio-analyzer Result for E. coli OxyR Library: EC 219 

 

 

 

 

 

 

 

 

Figure S7: Bio-analyzer Result for E. coli OxyR Library: EC 225 
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Figure S8: Bio-analyzer Result for P. gingigvalis OxyR Library: PG 218 

 

 

 

 

 

 

 

 

 

 

 

Figure S9: Bio-analyzer Result for P. gingivalis OxyR Library: PG 219 
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Figure S10: Bio-analyzer Result for P. gingivalis OxyR Library: PG 229 

 

 

 

 

 

 

 

 

 

 

 

Figure S11: Bio-analyzer Result for P. gingivalis HcpR Library: HcpR 1 
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Figure S12: Bio-analyzer Result for P. gingivalis HcpR Library: HcpR 2 

 

Figure S13: Bio-analyzer Result for P. gingivalis HcpR Library: HcpR 3 
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Table S1 – Seq Data for PG 218 Library 

 

Table S2 – Seq Data for PG 219 

Table S3 – Seq Data for PG 226 
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Table S4 – Seq Data for PG 229 
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Table S5 – Seq Data for HcpR 1 

Table  S6 – Seq Data for HcpR 2 
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Table S7 - HcpR Genomic Libraries  
 

Peak Genome 
Location  Description 

1 378827 PG0344 interior; "Purple acid phosphatase" 
2 955987 PG 0893; Promoter region for Hydroxylamine Reductase 
3 1535172 PG1451 interior 

4 1938129 
 
PG1841 interior; nearest gene is PG1842 (acetyl transferase); 
200bp away 

5 1966480 

 
PG1870 interior; nearest gene is PG1871, but going opposite 
direction 
 

6 2073807 PG1984 interior 

7 2106207  
cas3 interior; CRISPR-associated Cas3 
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Table S8 – Ec OxyR Genomic Libraries 

   

 
Region  

   
0 315067 insF inside region of gene 

1 817046 moaA inside region of gene 

2 1251297 dhaR inside region of gene 

3 1454479 paaE inside region of gene 

4 1725388 nemA inside region of gene 

5 2390709 nuoM inside region of gene 

6 2566003 eutH inside region of gene 

7 2908624 mazG inside region of gene 

8 3247260 yqjC inside region of gene 

9 3522153 mrcA inside region of gene 

10 3709399 yhjX inside region of gene 

11 3808998 mutM inside region of gene 

12 4048036 spf inside region of gene 

13 4267153 yjbS  
promoter region; blank region near possible promoter for yjbS 
which starts at 4267035; so it is about 118 bp away; no known 
function 

14 4426512 ytfB inside region of gene 
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Table S9 - Pg OxyR Genomic Libraries 
 

Peak 

Gene 

Location  Description 

1 139488 PG 0116 interior 

2 243490 PG 0209 interior; which is a formate/nitrate transporter 

3 657534 ribBA interior; riboflvin biosynthesis protein 

4 698743 PG0 646 interior; it is an iron abc transporter 

5 1046069 PG 0982 interior; encodes for hypothetical protein 

6 1287432 PG1209 promoter region; NAD metabolism ATPase/kinase 

7 1534681 PG 1450 interior; encodes for integrase 

8 1934989 PG 1837 interior; encodes for hemagglutin A 

6 1966386 PG 1870 interior; methyltransferase UbiE 

10 2003670 PG 1903 interior; encodes for hypothetical protein 

11 2068426 Blank region; nearest is PG 1980 but approximately 400bp away 

12 2107670 cas3 interior; CRISP-associated protein Cas3 
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