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Traumatic brain injury (TBI) leads to short-term and long-term consequences that 

can cause many different life-long disorders. Studies of TBI have generally focused on 

the acute stage; however, it is now becoming important to investigate chronic responses 

following TBI as clinical reports of dementia and cognitive impairments have been linked 

to a history of TBI. Recent data have established that cognitive function is associated 

with hippocampal neurogenesis. Chronic injury induced changes in the brain may affect 

this endogenous process. Chronic responses following TBI include cell death pathways 

and inflammatory responses that are persistent in the brain for months to years after 

injury. In this study we investigate the chronic consequences of TBI on adult 

neurogenesis and the possible involvement of chronic-inflammation in regulating adult 

neurogenesis. We used two popular TBI animal models, Control Cortical Impact (CCI) 



	 xiii	

and Lateral Fluid Percussion Injury (LFPI) models, to examine focal and diffuse injury 

responses respectively. Adult rats received CCI, LFPI, or sham injury and were sacrificed 

at either 15 days or 3 months after injury to examine either subacute or chronic TBI-

induced responses respectively. We found no change in levels of proliferation activity at 

both time points in both TBI models compared to sham animals. Using Doublecortin 

immunolabeling we found an enhanced generation of new neurons at 15 days after injury 

and by 3 months this activity was significantly reduced in both TBI models compared to 

sham animals. We also found persistent inflammation in the injured brains at both time 

points. Morphological assessment showed that LFPI model of TBI causes shrinkage of 

the ipsilateral hippocampus. Our results show that moderate TBI induced hippocampal 

neurogenesis in both models at the early time post-injury. However, at chronic stage, 

reduced hippocampal neurogenesis is observed in both models and this is accompanied 

by chronic inflammation. These results suggest that persistent inflammatory responses 

maybe detrimental to normal neurogenic activity, leading to cognitive impairment and 

neurodegeneration in long-term TBI survivors.   
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Chapter 1 - Introduction and Background 

Traumatic Brain Injury (TBI) is a major cause of death and life-long disability 

worldwide. It is defined as a physical insult to the brain, which disrupts normal brain 

functions and can be caused by a bump, blow, or jolt to the head (Marr and Coronado, 

2004). Various accidents such as car crashes, sports injuries, war related injuries, etc., 

could lead to TBI. Damaging factors of TBI can have acute and chronic consequences 

leading to many neurological disorders such as memory loss, behavioral dysfunction, 

epilepsy, dementia, and sleep disorders. 

 

Various animal models have been developed to study TBI. These models work by 

replicating specific aspects of a TBI to study acute and/or chronic injury mechanisms. 

Using various TBI animal models, many studies have shown an injury-induced up-

regulation in adult neurogenesis (Sun et al., 2005; Sun, 2016). These study have found an 

increase in proliferation of neural stem cells (NSC) and neural progenitor cells (NPC) in 

response to injury in the subventricular zone (SVZ) of the lateral ventricles and the 

dentate gyrus (DG) of the hippocampus (Dash et al., 2001; Rice et al., 2003). This 

neurogenic response after injury indicates that the brain has a limited ability to initiate 

mechanisms for repair and regeneration. Our lab has shown that injury-induced changes 

in hippocampal neurogenesis are related to innate cognitive recovery (Sun et al., 2015). 

Spontaneous cognitive recovery seen in many TBI patients may be a result of this 

endogenous neurogenic response.  
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Most TBI studies focus on acute and subacute changes after injury. However, 

there are growing number of clinical reports of long-term TBI patients that have 

developed neurodegenerative diseases and cognitive dysfunction (Mayeux et al., 1995; 

Castriotta et al., 2007). We hypothesize that neurodegeneration and cognitive dysfunction 

maybe a consequence of long-term injury-induced changes in adult neurogenesis. We 

suspect persistent secondary injury mechanisms of chronic-TBI such as 

neuroinflammation may be responsible for these neurogenic changes.  

 

Studies have shown that chronic-neuroinflammation can have a detrimental 

impact on adult neurogenesis (Fuster-Matanzo et al., 2013). In this study we used two 

popular TBI animal models, controlled cortical impact (CCI) injury and lateral fluid 

percussion injury (LFPI) models, to explore changes in adult neurogenesis in the chronic-

TBI stage and the association of these changes to neuroinflammation.  

 

Epidemiology  

  TBI affects millions of people worldwide every year. According to the Centers 

for Disease Control and Prevention (CDC), in the United States alone, 16% of all injury 

related emergency department (ED) visits are diagnosed as TBI. About 1.7 million people 

each year are affected by TBI in the United States. Many people that survive the injury 

develop life long disabilities. In the beginning of 2005 about 3.17 million people in the 

United States were living with long-term disability resulting from TBI (Zaloshnja et al., 

2008). In 2010 the economic burden of TBI was about $76.5 billion, not including TBIs 

managed in non-hospital locations and at federal institutions (Finkelstein et al., 2006). 
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Highest rate of TBI related hospitalizations and deaths occur in adults over 75 

years of age and 775,000 elderly adults develop life-long disabilities (Zaloshnja et al., 

2008). With pre-existing medical conditions and slower rates of functional 

improvements, elderly adults are more likely to have longer hospital stays and higher risk 

of mortality (Mosenthal et al., 2004; Thompson et al., 2006).  

 

The leading cause of TBI related ED visits is due to falls, and leading causes of 

TBI related deaths is motor vehicle accidents and suicides (Coronado et al., 2012). In 

2010, TBI caused about 50,000 total deaths, not accounting for people that did not 

receive medical care or people diagnosed at federal facilities (Faul et al., 2010). 

According to the Department of Defense, about 5.6 million United States military 

members from 2000 – 2011 were diagnosed with TBI (CDC, 2015). Combat situations 

that result in mild TBI may lead to increased risk of post-traumatic stress disorder 

(Bryant et al., 2010) which can further increase risk for various post-concussive 

symptoms (Brenner et al., 2010).  

 

Since 1980, hospitalization rate for mild TBI has significantly decreased due to 

improved safety and accident prevention programs whereas hospitalization rate for severe 

TBI has increased mainly due to improved availability and quality of medical treatments 

leading to greater survivability (Summers et al., 2009). This increase in survival rate 

leads to a greater number of people suffering from long-term disabilities after TBI. It is 

important to address these concerns of chronic-TBI by studying the mechanisms 
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regulating the spread of injury damages and developing treatments to reduce and/or 

reverse these damages.  

 

Biomechanics and mechanisms of TBI   

The cause of a TBI is a physical force that acts on the head resulting in structural 

damages and eventually causes damages to the brain at the cellular and biochemical 

levels. These cellular and biochemical changes then lead to cognitive and behavioral 

dysfunction. The underlying damages of a TBI can vary depending on the type and way 

injury is induced. The mechanical insults to the head can be characterized in three general 

categories: impact, impulse, and static. Impact occurs to the head with high magnitude 

and short duration of 50 ms or less causing deformation of the skull and brain tissue 

damage (Davis, 2000). Impulse occurs when there is a sudden change of head motion due 

to acceleration or deceleration of the body and does not involve deformation of the skull 

(Davis, 2000). Static involves long duration, greater than 200 ms of compressive force to 

the head causing skull deformation (Davis, 2000).  

 

The injuries caused to the brain tissue can be focal or diffuse. Focal injury occurs 

when the injury is focused on a particular area of the brain caused by a direct blow to the 

head and involves contusion, brain laceration, and hemorrhage (Gennarelli, 1993). 

Diffuse injury usually involves widespread microscopic damages caused by sudden head 

movement and involves concussion and diffuse axonal injury (Gennarelli, 1993).  
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The magnitude and duration of the mechanical force determines the extent of 

brain injury along with accompanying damages such as brain hemorrhage and swelling 

(Xiong et al., 2013). The resulting immediate damages are referred to as the primary 

injury. Besides the skull fracture and brain tissue damage, primary injury can also cause 

the initiation of secondary injury mechanisms (Xiong et al., 2013). Secondary injury 

involves non-mechanical damages such as increased intracranial pressure, reduced 

cerebral blood flow, blood brain barrier damage, bleeding, edema, diffuse axonal injury, 

cell death, and neurovascular damage (Xiong et al., 2015). A complex interplay of 

cellular and biochemical mechanisms such as excitotoxicity, mitochondrial damage, 

changes in gene expression, inflammatory responses, and oxidative stress are involved in 

the spread of secondary injury (Xiong et al., 2013). However, the onset of secondary 

injury mechanisms can happen seconds to months after injury, providing a therapeutic 

window of opportunity for treatment against the spread of damages after TBI.   

 

Pathology of TBI 

Physical damages to the brain can lead to long-term cognitive impairments and 

significantly increase chances of developing neurological diseases (Koponen et al., 

2002). Diffuse axonal injury serves as a clinical hallmark of human TBI and studies show 

that damage to white matter tracks correlate with declined cognitive function (Kraus et 

al., 2007). For example, using diffuse tensor imaging and neurophysiological testing, one 

study showed that TBI patients with greater white matter pathology had greater cognitive 

deficits (Kraus et al., 2007). Memory and attention are commonly impaired at all levels 

of TBI injury (Lovell and Franzen, 1994).  
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Cognitive deficits can have a devastating impact on social behavior and lifestyle, 

which also affects the lives of caregivers such as family and friends. Furthermore, 

behavioral changes in TBI patients may implicate the development of psychiatric 

disorders (Castriotta et al., 2007). Studies have reported that as many as half of TBI 

outpatients may be suffering from psychiatric disorders, and patients with pre-existing 

conditions have a higher likelihood of developing other disorders such as depression, 

anxiety, sleep disorders, and substance abuse (Koponen et al., 2002; Hibbard et al., 

1998). Disruption of the normal sleep cycle, causing various sleep disorders such as 

obstructive sleep apnea, posttraumatic hypersomnia, and narcolepsy, has also been linked 

to post-TBI consequences in about half of TBI outpatients (Castriotta et al., 2007). TBI 

also increases chance of death from other diseases. In some studies, TBI patients were 

more likely to die from seizures, septicemia, pneumonia, digestive disorders, and 

circulatory disorders compared to patients without a TBI history (Harrison-Felix et al., 

2006; Harrison-Felix et al., 2009; Shavelle et al., 2001).  

 

Surviving TBI patients often suffer from long-term neurological disorders such as 

epilepsy and dementia. There is a rising concern about the relationship between TBI and 

dementia. For example, TBI patients who have the ApoR E4 allele, which has been 

implicated in Alzheimer’s disease, are 10 times more likely to develop Alzheimer’s 

disease than healthy people (Mayeux et al., 1995). Studies have reported that TBI induces 

up-regulation or activation of certain biochemical mechanisms that have also been found 

to play a role in these degenerative diseases (Uryu et al., 2007). Although the detailed 

mechanisms of these processes are unclear, secondary injury mechanisms such as damage 
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to the blood brain barrier, free oxygen radicals causing oxidative stress, and other 

biochemical changes may be responsible for the onset of degenerative processes in the 

brain inducing dementia and other chronic diseases (Lye and Shores, 2000; Zhang et al., 

2000).   

 

Adult Neurogenesis 

In 1928 Ramon y Cajal proposed the idea that the brain loses the ability of growth 

and cellular regeneration after development (y Cajal, 1959). However, there is now 

overwhelming evidence indicating certain areas of the mammalian brain retain the ability 

to regenerate neural and glia cells. Evidence of adult neurogenesis in mammalian brain is 

largely found in rodent studies although it is also shown in many primate studies 

including humans (Rakic et al., 1985). 

 

The most active neurogenic regions in the adult mammalian brain are restricted to 

the SVZ of the lateral ventricles and the subgranular zone (SGZ) of the DG in the 

hippocampus (Lois and Alvarez-Buylla, 1993; Altman and Das, 1965). Some studies 

have also reported evidence of adult neurogenesis in the neocortex, striatum, and 

hypothalamus although these findings are controversial (Cameron and Dayer, 2008; 

Gould, 2007).  

 

The neurogenic process starts with the NSC proliferation, giving rise to more 

NSC and sometimes asymmetrically dividing into NPC, which are more determined to 

differentiate into either the neural or glial lineage (Gage, 2000). NSC division involves 
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both asymmetric and symmetric division. During asymmetric division, one NSC divides 

to produce one NSC and one NPC (Kriegstein and Alvarez-Buylla, 2009). Symmetric cell 

division can be proliferative, where one NSC divides into two identical NSCs, or 

differentative, where one NSC divides into two NPCs (Kriegstein and Alvarez-Buylla, 

2009). NPC then migrate to their destinations where they can differentiate and have 

functional potential. In the SVZ, most NPC migrate to the olfactory bulb, via the rostral 

migratory stream, where they differentiate into olfactory interneurons (Gritti et al., 2002). 

In the DG, migration is much more restricted, however, NPC do travel a short distance 

from the SGZ to the granular cell layer, where they can differentiate into granular 

neurons (Kempermann and Gage, 2000; van Praag et al., 2002). In both regions, 

migration of the cells and extension of dendrites and axons is guided by extracellular 

matrix molecules (Bovetti et al., 2007) and chemoattractive and repulsive molecules 

similar to migratory signaling pathways of development (Wu et al., 1999).  

 

In the DG, differentiation from NPC to mature functional granular neurons 

involves transition through several cell types. The proliferation stage of neurogenesis 

involves Type 1 and Type 2 progenitor cells. Type 1 cells, also called radial glial cells, 

divide slowly and asymmetrically into Type 2 cells, and Type 2 cells divide rapidly into 

more Type 2 cells or differentiate into neuroblasts (Bonaguidi et al., 2012). Neuroblasts 

then differentiate into immature neurons which, if allowed to survive, mature into 

granular neurons that extend their dendrites into the molecular layer and extend axons 

into the correct area of the CA3 region of the DG (Figure 1.1, Aimone et al., 2014; 

Hastings and Gould, 1999). 
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In both the SVZ and DG, pre-existing neurons are continuously replaced by 

newly generated neurons (Gage, 2000). In the DG, this amount of neuronal turnover 

varies in different regions such as the superficial granular cell layer, where 50% of the 

existing cells are replaced by late postnatal neurogenesis, and the deeper granular cell 

layer, where almost all pre-existing granular neurons are replaced (Imayoshi et al., 2008). 

The addition of these new neurons in the DG is significant enough to impact network 

function and has been shown to be important in normal cognitive function and behavior 

(Sun, 2016).  

 

During the maturation period of immature neurons, when they are undergoing 

morphological and physiological changes, their survival and potential for integration into 

the existing network is modulated by experience and on-going activity of the animal 

(Tashiro et al., 2007; Kee et al., 2007). Studies inhibiting adult neurogenesis in DG of 

rodents show that although inhibition may not cause depletion of existing neuron 

populations, it does retard the formation and integration of new neurons into the existing 

population which causes defects in spatial memory learning tasks such as Morris Water 

Maze (MWM) (Imayoshi et al., 2008; Jessberger et al., 2009). This supports the idea that 

the role of neurogenesis in the DG is for modulation of existing neural networks for 

hippocampal-dependent learning and memory functions, important during postnatal 

cognitive development.  
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Additionally, many studies show that cognitive function is affected by the level of 

adult neurogenesis which can be modulated by environmental experience, activity, and 

drugs, further confirming that adult neurogenesis plays an important role in hippocampal-

dependent learning and memory functions. Animals placed in enriched environment or 

given physical exercise show increased levels of granule cell proliferation and improved 

performance in spatial memory tasks such as MWM (Brown et al., 2003; Van et al., 

1999). Similar results have been found with exogenous administration of growth factors 

such as Basic Fibroblast Growth Factor (bFGF) (Wagner et al., 1999; Sun et al., 2009).  
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Figure 1.1. Adult neurogenic process in the dentate gyrus. Image extracted from 

Aimone et al., 2014. Proliferation step involves Type 1 cells asymmetrically dividing into 

neuroblasts by day three. By one week these neuroblasts become immature neurons, 

which then enter a survival period to mature into integrated granular neurons extending 

their dendrites into the molecular layer and axon into the CA3 region by 3-4 weeks.  
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TBI Induced Neurogenesis 

Modulation of adult neurogenesis has also been confirmed in TBI studies. This 

TBI stimulated endogenous neurogenesis is a natural response of the brain to promote 

repair (Sun, 2016). Although the exact mechanisms underlying the TBI-induced 

neurogenic response are unclear, studies have reported the up-regulation of growth 

factors such as Vascular Endothelial Growth Factor (VEGF), p75 NTR, bFGF, and 

Epidermal Growth Factor (EGF) following injury may regulate this process (Lee and 

Agoston, 2010; Catts et al., 2008; Sun et al., 2009; Sun et al., 2010). TBI animal models 

have shown increased proliferation of new cells in both the DG and SVZ (Dash et al., 

2001; Rice et al., 2003). In the DG, cell proliferation peaks at 2 days post-injury 

thereafter gradually declining and reaches baseline level at 14 days post-injury (Figure 

1.2, Sun et al., 2005). In terms of differentiation and survival of new neurons, studies 

have reported different results and these differences could be attributed to many different 

experimental factors such as different injury models or species used (Sun et al., 2007; 

Villasana et al., 2014). In the DG, almost half of all TBI-induced newly generated cells 

are able to survive to 10 weeks post-injury and most of these cells become mature 

neurons integrated into the functional hippocampal network, leading to cognitive 

recovery (Figure 1.3, Sun et al., 2007). In TBI animal studies, newly generated cells take 

about 14 days to fully mature and integrate into the functional network, which at that time 

animals begin to show cognitive recovery in MWM test, and by 60 days their 

performance is not significantly different from sham animals (Sun et al., 2007). This 

structural and functional recovery, via the neurogenic response of the brain following 
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injury, can be exogenously stimulated to promote regeneration and repair as a strategy for 

TBI treatment. 

 

Current developments for TBI treatment include different methods of further 

stimulating neurogenesis following injury. Exogenous administration of growth factors 

such as bFGF and EGF has shown increased proliferation in the DG and SVZ compared 

to untreated animals after injury (Sun et al., 2009; Sun et al., 2010). Similar treatments of 

other growth factors such as Insulin-like growth factor 1, brain-derived neurotrophic 

factor, VEGF, and S100B in injured animals have shown increased generation of new 

neurons and improved cognitive and functional recovery compared to untreated animals 

(Carlson et al., 2014; Gao et al., 2009; Thau-Zuchman et al., 2010; Kleindienst et al., 

2005). Pharmacological agents have also been developed to target post-TBI neurogenesis 

such as Cerebrolysin, 7,8-Dihydroxyflavone, LM11A-31, and carbamylated 

erythropoietin, showing increased neurogenesis with improved cognitive and functional 

recovery (Zhang et al., 2015; Chen et al., 2015; Shi et al., 2013; Xiong et al., 2011). 

Simple exercise such as running or putting animals in an enriched environment can also 

stimulate neurogenesis and improve recovery after injury (Gaulk et al., 2005; Piao et al., 

2013). 
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Figure 1.2. Proliferation timeline in the dentate gyrus. Results image extracted from 

Sun et al., 2005. The number of BrdU positive cells in the SGZ of the DG are shown at 2, 

7, and 14 days after injury. Animals received I.P. injections of BrdU at 2, 7, or 14 days 

after injury and were sacrificed 24 hours after the last injection. Injured juvenile and 

injured adult groups show peak proliferation at 2 days post injury and no difference in 

proliferation compared to sham animals at 14 days. Also, injured juveniles had almost 

twice the proliferation level as that of the adults at 2 days post injury.  
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Figure 1.3. New cells survive long time after injury. Results image extracted from Sun 

et al., 2007. Animals received I.P. BrdU injections at 5 days post injury. Injured animals 

show 4-fold increase of the number of BrdU cells at 5 days post injury. At 10 weeks post 

injury the number of BrdU cells was 3-fold higher than sham animals indicating that a 

significant number of BrdU cells survive even at 10 weeks post injury.  
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Animal models of TBI 

Our current understanding of TBI, mechanisms regulating damages, and 

development of potential treatments can be attributed to the use of animal models of TBI. 

To understand the heterogeneity of TBI, different animal models are in use that mimic 

specific aspects about the injury and resulting damages. These various models include 

fluid percussion injury (FPI), CCI, penetrating ballistic-like brain injury, weight-drop, 

Blast, and repeated mild TBI (Xiong et al., 2013). The most popular and widely used 

models are FPI and CCI.  

 

Since TBI can be caused in various situations including car accidents, sports, and 

military grounds, these models are set up to replicate primary and secondary injuries to 

the brain. For example, the FPI models are designed to replicate focal cortical contusion 

with diffuse subcortical neuronal injury, without skull fracture (Xiong et al., 2013). The 

CCI model is designed to replicate mostly focal injury mechanisms (O'Connor et al., 

2011). These models bypass the skull fracture, which allows for specific replication of 

injury aspects and control of injury parameters without randomized damages created by 

skull fragments. 

 

Both the CCI and FPI models allow for control of the injury causing parameters. 

In the FPI model, injury severity can be controlled by the height of the pendulum, which 

hits the fluid tube exerting a fluid pressure pulse to the brain (Kabadi et al., 2010). The 

CCI model has an advantage over the FPI model in that it allows for more control of 

parameters such as time, velocity, and depth of impact (O'Connor et al., 2011). 
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Nevertheless, both models have been successfully used to reproduce TBI and also to 

study the modulation of neurogenesis following injury.  

 

TBI-induced Neuroinflammation 

One of the several pathological conditions of TBI includes neuroinflammation. 

The complexity of many different molecular interactions and signaling pathways 

involved in neuroinflammation makes it difficult to elucidate the detailed mechanisms 

regulating this condition (Morganti-Kossmann et al., 2002). However, studies have 

reported that the immune system and central nervous system (CNS) resident glia cells are 

involved in inflammatory immune response after injury (Morganti-Kossmann et al., 

2007). Although the CNS is considered to be unaffected by the immune system, the 

disruption of the blood brain barrier after injury causes an increased expression of 

endothelial adhesion molecules and disruption of endothelial tight junctions leading to 

increased migration of immune cells such as leukocytes from systemic circulation into 

the brain parenchyma via interaction of endothelial adhesion molecules with integrins on 

the surface of leukocytes (Figure 1.4, Ziebell and Morganti-Kossmann, 2010; Morganti-

Kossmann et al., 2007). Tissue damage also triggers non-infection immune reactions that 

are activated by the release of damage associated molecular pattern molecules (DAMPs) 

from the injured tissue, which participate in the activation of the innate immune system 

(Matzinger et al., 1994; Manson et al., 2004). TBI-induced neuroinflammation, however, 

has been a controversial topic as studies suggest both beneficial and detrimental 

outcomes (Morganti-Kossmann et al., 2002).  
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Microgila, the resident immune cells of the CNS, are a major source of cytokine 

and chemokine release after injury. Conflicting evidence has been reported about the role 

of cytokines and chemokines, whether they promote repair functions or exacerbate the 

damages (Morganti-Kossmann et al., 2002). Enhanced tumor necrosis factor (TNF) levels 

in the brain after TBI has been associated with neurologic deficits, neuronal cell death, 

and blood brain dysfunction (Shohami et al., 1999). On the other hand, TNF knockout 

studies demonstrate that TNF may contribute to an early neurotoxic effect and a 

neuroprotective effect later in post-traumatic phase (Scherbel et al., 1999). TNF also 

triggers a rise in IL-6, which is a multifunctional factor that has anti-inflammatory 

effects, neurotrophic properties, induces nerve growth factor, promotes neuronal 

differentiation and survival, and counteracts excitotoxicity (Morganti-Kossmann et al., 

2001). This suggests that there is a feedback loop balancing the release of pro- and anti-

inflammatory cytokine release, further complicating the roles of these molecules 

(Morganti-Kossmann et al., 2002). IL-10, another anti-inflammatory cytokine, is well 

studied for its beneficial role in neuropathology and has also shown to diminish TNF 

synthesis (Morganti-Kossmann et al., 2000). However, a study in human TBI showed that 

high levels of IL-10 were associated with increased mortality (Bell et al., 1997). Other 

cytokines that have shown this dual nature include TGF-β, IFN-γ, and IL-18 (Fuster-

Matanzo et al., 2013). The complicated roles of these molecules may be a result of a 

complex interplay of molecular signaling and a fundamental importance of timing and 

concentration of their expression.  

 

Neuroinflammatory Effects on Neurogenesis 
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As for the effects of neuroinflammation on adult neurogenesis, whether it is 

beneficial or detrimental, seems to depend on the magnitude and duration of the 

inflammation (Fuster-Matanzo et al., 2013). Microglia play a critical role in the 

regulation and balance of these effects. In the normal uninjured brain, microglia regulate 

the balance of neurogenesis by releasing factors that instruct proliferated cells to 

differentiate into neurons, survival of immature neurons, or phagocytosis of apoptotic 

new cells (Sierra et al., 2010; Walton et al., 2006). Microglia are involved in releasing 

both anti-inflammatory and pro-inflammatory molecules providing pro-neurogenic and 

anti-neurogenic effects respectively (Fuster-Matanzo et al., 2013). However, there is 

strong evidence suggesting that chronic-inflammation leads to decreased neurogenesis 

through the accumulation of cytotoxic substances such as oxidative stress molecules and 

pro-inflammatory cytokines (Choi et al., 2009). Over-activation of microglia disturbs the 

homeostatic balance of pro- and anti-inflammatory cytokines inducing cell death 

pathways and leading to neurodegenerative diseases such Alzheimer’s and multiple 

sclerosis (Gao and Hong, 2008). Also, these apoptotic-mediating molecules are sustained 

long after TBI (Raghupathi et al., 2000). These effects have also been demonstrated in 

aging studies where aged mice have greater neurogenic deficits from neuroinflammation 

(Russo et al., 2011). Studies have shown that age is a critical factor that determines the 

level of endogenous neurogenesis as older animals show lower levels of neurogenesis 

(Sun et al., 2005).  

 

Although the immune response is a way for the body to restore homeostasis, after 

TBI, a sustained immune activation can ultimately lead to the blockage of restoration and 
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repair functions that otherwise could lead to a better outcome (Corps et al., 2015). These 

studies suggest that despite the initial benefits of inflammation after TBI, chronic 

inflammation may be detrimental to adult neurogenesis.  
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Figure 1.4. Immune system involvement in TBI. Image extracted from Ziebell and 

Morganti-Kossmann, 2010. Injury-induced blood brain barrier damage causes infiltration 

of leukocytes into the brain parenchyma via interaction of endothelial adhesion molecules 

with integrins on the surface of leukocytes, which can cause immune activation and 

inflammation in the brain.   
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Hypothesis  

In this study, we examine the differences in the neurogenic response following 

TBI in the subacute and chronic TBI stage using the CCI and LFPI models. Post-TBI 

cognitive decline or dementia is a significant issue. As hippocampal neurogenesis plays 

an important role in cognitive function, we speculate that TBI may have a long lasting 

effect on hippocampal neurogenesis, which may be affecting cognitive function. 

Specifically, we propose that in the chronic TBI stage there is a decline of neurogenesis 

below the baseline level and this decline is due to either the exhaustion of the NSC pool, 

from over stimulation of symmetrical differentiative divisions during neurogenesis, or 

persistent neuroinflammation.  

 

Because TBI is such a complex and complicated neurological disorder with 

impact on other neurological diseases, it is difficult to study TBI using one animal model. 

Since TBI encompasses a vast array of complex mechanisms and each type of animal 

model is used to study specific aspects of TBI, it is practical to use multiple different 

animal models when studying TBI and treatments. However, in terms of studying TBI-

induced neurogenesis, there are no studies that compare the levels of injury-induced 

neurogenesis among different animal models. In this study we used two popular TBI 

animal models, CCI injury and LFPI models, to study focal and diffuse injuries responses 

respectively.  
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Chapter 2 - Materials and Methods 

Experimental Animals 

All animals used in this study were 3 months old male Sprague-Dawley rats that 

weighed around 300g and were purchased from Harlan Inc., Indiana. A total of 25 rats 

were included in this study. All animals were housed in pair at the Virginia 

Commonwealth University animal care facility and were given a 12 hour light/dark cycle 

at room temperature with adequate food and water ad libitum. Proper maintenance and 

animal care procedures were followed, which were approved by the Institution of Animal 

Care and Use Committee (IACUC) of Virginia Commonwealth University and the Guide 

for Care and Use of Laboratory Animals by the U.S. Department of Health and Human 

Services.  

 

Experimental Setup  

Animals were divided into two groups. Group one included 15 total rats and 

group two included 10 total rats. All animals received the same housing and care. Group 

one animals included four animals that received LFPI, seven animals that received CCI 

injury, and four sham animals. All group one animals were sacrificed 15 days after 

injury. Group two animals included four LFPI animals, four CCI injury animals, and two 

sham animals. All group two animals were given one BrdU injection 2 hours before 

sacrifice and were sacrificed 3 months after injury. The experimental set up is also 

described in Table 2.1. 
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Table 2.1. Experimental Setup 

 Group 1 Group 2 
Sham 4 Rats 2 Rats 
LFPI 4 Rats 4 Rats 
CCI 7 Rats 4 Rats 
Sacrifice Time After Injury 15 Days 3 months 
BrdU Administration  2 Hours before 

sacrifice 
Immunostaining DCX, Ki67, 

OX6, ED1 
DCX, Ki67, BrdU, 
OX6, ED1 

Hippocampus Size 
Comparison 

 Cresyl violet 
stained sections 
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Table 2.1. Experimental setup. Animals were divided between Group 1 and Group 2. 

Group 1 includes 4 shams, 4 LFPI, and 7 CCI rats, which were sacrificed 15 days after 

injury. Hippocampal sections of these rat brains were used for DCX, Ki67, OX6, and 

ED1 immunostaining. Group 2 included 2 shams, 4 LFPI, and 4 CCI rats, which received 

BrdU injections 2 hours before sacrifice and were sacrificed 3 months after injury. 

Hippocampal sections of these rat brains were used for DCX, Ki67, BrdU, OX6, and ED1 

immunostaining as well as hippocampal size comparison.  
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Surgical procedures  

Animals were randomly assigned to receive LFPI, CCI, or Sham injuries. Before 

surgery, all surgical tools and instruments were sterilized and aseptic procedures were 

followed during surgery. Animals were first put in a Plexiglas chamber with 5% 

isoflurane to be anesthetized. Once the animal was unconscious, the animal’s head was 

shaved to remove excess fur. Then the animal’s head was fixed in a stable position in a 

stereotaxic apparatus while the animal was intubated and kept anesthetized throughout 

surgery with 2.5% isoflurane in a gas mixture of 30% O2 and 70% N2. Betadine was 

applied to sterilize the head at the surgical site. Paralube ointment was applied to both 

eyes of the animal to prevent the eyes from drying. Using a scapula, a midline incision 

was made on the head and hemostats were used to retract the skin on both sides of the 

head to expose the skull. Connective tissue was removed by rubbing the skull with 

sterilized cotton tip applicators. A 4.0 mm craniotomy was made half way between the 

lambda and bregma sutures on the left parietal bone using a trephine and a Dremel drill 

fitted with a small dental drill bit. After cutting the bone, it was removed and any bone 

shards were removed from the craniotomy. All animals, including shams received the 

above surgical procedures. For LFPI and CCI injury animals, appropriate injuries were 

performed as described below. After surgery, the surgical incision was sutured in a 

simple continuous pattern using a sterilized stainless steel suture needle and a 5-0 

polyamide surgical suture. Lidocaine hydrochloride jelly, which is a local anesthetic, and 

a triple antibiotic ointment were applied to the closed suture. Then, the isoflurane was 

turned off and intubation was removed. The animal was monitored until it regained 

normal breathing pattern. The animal’s cage was lined with surgical drape and once the 
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animal righted, it was placed back into the cage and observed for three hours before 

returning to the animal housing facility.  

 

Lateral Fluid Percussion Injury 

A total of 8 animals received LFPI in this study. After the craniotomy, a Luer lock 

hub was cemented over the craniotomy using cyanoacrylic. Dental acrylic was used to 

seal the base around the hub and allowed to dry. To test the seal, the hub was filled with 

0.9% saline solution, which also served as a medium for the injury pulse from the FPI 

device. Then, for 4 minutes, the isoflurane rate was reduced to 1%. During this time the 

FPI device (Figure 2.1, Thompson et al., 2005) was prepared by measuring the height of 

the pendulum that was needed to produce the target pressure pulse. This was done by 

calibrating the device by repeated test uses to produce pressure pulses around a target 

value of 2.0 atm. The pressure was measured by an oscilloscope (Tektronix) and a 

pressure transducer amplifier, which were connected to the FPI device. The isoflurane 

was turned off and the Luer lock hub on the animal was connected to the injury device 

and the injury was administered. Then the hub was disconnected from the injury device 

and the animal was returned to the surgical preparation area. The Luer lock hub and 

acrylic base were detached from the animal’s head and the animal was placed on the 

surgical mat. The animal was observed until it righted and the righting time was recorded. 

Once the animal regained normal breathing, it was placed back on to the stereotaxic 

frame and was anesthetized with 5% isoflurane before the surgical site was sutured.  
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Figure 2.1. Lateral fluid percussion injury setup. (A) All injuries were made on the 

left hemisphere in the middle of bregma and lambda sutures as represented in this image. 

(B) This cartoon depicts the LFPI device used in this study and the position of the animal 

during injury.  
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Controlled Cortical Impact Injury 

A total of 11 animals received CCI injury in this study. After the craniotomy, 

animals were kept anesthetized. A Leica Benchmark Stereotaxic Impactor was connected 

to the stereotaxic frame (Figure 2.2, Galgano et al., 2015). The 3 mm rigid impactor tip 

was positioned above the craniotomy and the zero point of impact was obtained by 

lowering the tip of the impactor until it touched the dura mater. The tip was driven by an 

electromagnetic piston and moved at 4 m/sec and remained on the tissue for 500 ms. A 

2.5 mm depression in the tissue was set to cause a moderate level of focal injury. After 

the tip retracted, it was raised away from the animal. The animal was then sutured and 

monitored for normal breathing before returning to home cage.  
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Figure 2.2. CCI device.  Photographs representing the (A) Controlled Cortical Impact 

injury device and (B) position of the animal during injury.  
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BrdU injections 

BrdU (Sigma-Aldrich Co.), a thymidine analog that incorporates into DNA during 

cell division, is used to permanently label dividing cells. Group 2 animals received one 

dose (50 mg/kg of body weight) via intraperitoneal (I.P.) injection at 2 hours before 

sacrifice.  

 

Sacrifice and Tissue Processing  

Group one animals were sacrificed 15 days after injury while group two animals 

were sacrificed 3 months after injury. Each animal was placed in a Plexiglas chamber 

with 5% isoflurane and deeply anesthetized. The animal was taken out and a surgical 

gauze pad soaked in 100% isoflurane was placed on the animals nose to keep it 

anesthetized while it was transcardially perfused with 400 mL phosphate-buffered saline 

(PBS) and then with 400 mL of 4% paraformaldehyde in PBS fixative. The brains were 

removed and stored at 4°C in 4% paraformaldehyde in PBS fixative. After 48 hours, the 

brains were sliced into 60 µm coronal sections using a vibratome (Leica). The sections 

were stored in 24 well plates filled with 0.01% sodium azide in PBS and stored at 4°C. 

Brain sections were used as needed for different immunostaining protocols.  

 

BrdU Immunostaining 

Six sequential hippocampal brain sections from each brain of group two animals 

were selected for BrdU immunostaining. Sections were first washed in 1X PBS two times 

for five minutes each. Then they were incubated in a denatured solution with 50% 

formamide, 37.5% H2O, and 12.5% 20X saline sodium citrate (SSC) buffer for one hour 
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at 65°C. Then the sections were rinsed in 2X SSC two times for 5 minutes each, and 

further denatured in 2N hydrochloric acid for 30 minutes at 37°C. Then they were rinsed 

with 1X PBS two times for 5 minute each, and placed in 3% hydrogen peroxide for one 

hour. The sections were then rinsed with 0.3% Triton X-100 in 1X PBS (washing buffer) 

for 10 minutes and placed in 5% normal horse serum in washing buffer (blocking buffer) 

overnight at 4°C. Then the sections were placed in the BrdU antibody solution for 48 

hours at 4°C. The antibody solution was prepared with monoclonal mouse anti-BrdU 

antibody (Dako) diluted in blocking buffer at a 1 to 200 dilution. The sections were then 

allowed to come back to room temperature and rinsed in washing buffer three times for 

10 minutes each, before placing them in blocking buffer for three hours at room 

temperature. Then the sections were placed in secondary antibody solution overnight at 

4°C. This solution was prepared with the Biotin-conjugated anti-mouse IgG antibody 

(Vector) diluted in blocking buffer at a 1 to 200 dilution. The sections were then allowed 

to come back to room temperature and rinsed in washing buffer three times for 10 

minutes each, before placing them in Avidin-biotin Complex reagent for two hours at 

room temperature. This solution was prepared 30 minutes before use from the Avidin-

biotin Complex kit (Vector Labs, Burlingame, CA) and diluted in 1X PBS at a 1 to 200 

dilution. Then the sections were rinsed in washing buffer three times for 10 minutes each, 

before placing them in 3,3’ diaminobenzadine tetra-hydrochloride (DAB) (Sigma) 

solution. Once the sections were properly stained by the reaction, which was noted by 

visible stained cells under the microscope, the sections were rinsed with 1X PBS three 

times and mounted onto glass slides and allowed to air dry. Then they were 
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counterstained with 0.1% cresyl violet, dehydrated through gradient ethanol and cover 

slipped with Permount.  

 

DCX, Ki67, OX6, ED1 Immunostaining 

Sequential brain sections of all animals were processed for Doublecortin (DCX), 

Ki67, OX6, and ED1 immunostaining. Similar steps were taken as described in BrdU 

immunostaining, with the exception of denaturing procedure. After sections were rinsed 

with PBS, they were directly placed in 3% hydrogen peroxide solution for one hour, 

thereafter, BrdU immunostaining protocol was followed. For DCX immunostaining, the 

primary antibody solution was prepared with polyclonal goat anti-DCX (1:1000, Santa 

Cruz) and the secondary antibody solution was prepared with the Biotin-conjugated anti-

goat IgG antibody (1:200, Vector). For Ki67 immunostaining, the primary antibody 

solution was prepared with rabbit anti-Ki67 (1:500, Abcam) and the secondary antibody 

solution was prepared with Biotin-conjugated anti-rabbit IgG antibody (1:200, Vector). 

For OX6 immunostaining, the primary antibody solution was prepared with mouse anti 

rat MHC Class II OX6 antibody (1:1000, AbD Serotec) and the secondary antibody 

solution was prepared with the Biotin-conjugated anti-mouse IgG antibody (1:200, 

Vector). For ED1 immunostaining, the primary antibody solution was prepared with 

mouse anti rat ED1 (1:1000, AbD Serotec) and the secondary antibody solution was 

prepared with the Biotin-conjugated anti-mouse IgG antibody (1:200, Vector).  

 

Densitometry 
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The intensity of OX6 and ED1 staining was quantified by densitometry analysis 

using Image J program. Briefly, images of selected regions of OX6 or ED1 stained 

section was taken using the 4x objective on an inverted light microscope (1X71, 

Olympus) and Olympus controller program. Images were taken with automatic adjusted 

white balance, and exposure was set to produce the best image. Exposure was kept same 

for all sections of animal brains to be compared. ImageJ program was used to measure 

the optical density of the staining in a selected region of interest at a 0.621 pixels/um 

scale. The images were first converted to a RGB stack image. The threshold for detection 

was determined by selecting automatically according to the image exposure. For each 

brain, two sections were used and the average of measurements was taken. Measurements 

were recorded as percentage of selected area stained.  

 

Stereology 

All stained hippocampal sections were observed under an inverted light 

microscope (1X71, Olympus) microscope for quantifying the number of stained cells. For 

all cell counting, the Visiopharm program (Olympus) was used. First, a 4x objective was 

used to outline the region of interest. The stereological optical fractionator method was 

used to count the number of stained cells in the outlined region. For Ki67 and BrdU 

stained sections, the granular zone (GZ), which includes the SGZ and granular cell layer 

(GCL), were outlined. For DCX stained sections, cells were separately counted in the 

SGZ plus inner 1/3 GCL, middle 1/3 GCL, and outer 1/3 GCL. To derive the total DCX 

positive cell count of the GZ, cell counts of following three regions were added: the SGZ 

plus inner 1/3 GCL, middle 1/3 GCL, and inner 1/3 GCL. For Brdu, Ki67, and DCX 
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sections, stained cells were also counted in the hilus region. Cells outside of the optical 

dissector counting frame were omitted. The dissector height (h) was set to 15 µm. 

Measuring the focal plane at five different locations on each section and then taking the 

average, the average thickness (t) of each brain section was calculated. These averages 

were then averaged for the total five sections per brain. Total cell counts (n) were 

estimated to be n= ΣQ ¯· (t/h)(1/asf)(1/ssf), were ΣQ ¯ represents the number of counted 

cells. asf is the average sampling fraction and because the entire region was counted in 

these sections, it is set to one. ssf is the sample sectioning fraction and it is set to 0.125 

because five sections were used from each brain, representing 1/8 of the total 

hippocampus.  

 

Hippocampal Size 

To examine the injury-induced change of the hippocampus size, the ipsilateral and 

contralateral hippocampal perimeters were measured using the Visiopharm program. 

Cresyl violet stained sections from group two animal brains were observed under the 

light microscope. The ipsilateral and contralateral hippocampi were separately outlined 

using a 4X objective and perimeter of the outline was obtained. Due to inter-animal 

variability of brain structures, we compared ipsilateral to contralateral hippocampi within 

the same animal by taking a percent ratio of ipsilateral to contralateral hippocampal 

perimeters. For each animal brain, 5 sections were used and their measurements were 

averaged to calculate the hippocampal size percent change of each animal.  

 

Statistical Analysis 
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We performed One-Way ANOVA using SPSS software to determine statistical 

significant difference of three injury groups, sham, CCI injury, and LFPI, in all 

experiments. To compare pairwise statistical significance of any two groups, we 

performed a post hoc Fisher Least Significant Difference (LSD) test. A p value of 0.05 or 

less was considered statistically significant.  
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Chapter 3 - Results 

The purpose of this study was to evaluate the differences in TBI-induced 

neurogenic responses in subacute and chronic-TBI using different TBI animal models. 

Two popular TBI animal models, CCI and LFPI, were compared at two different injury 

time points, 15 days after injury and 3 months after injury. The degree of neurogenic 

difference was evaluated by comparing levels of proliferation, generation of new 

neurons, and neuroblast migration after injury in the DG.  

 

Experiment 1. TBI-Induced Subacute and Chronic Proliferation 

We used the cell proliferation markers Ki67 and BrdU to identify newly 

proliferating cells after injury in three groups: sham, CCI, and LFPI groups. Ki67 is a 

popular marker for proliferating cells because during interphase the Ki67 protein is 

located in the nucleus whereas during the mitotic cell phases it is relocated to the surface 

of the chromosomes where it can be detected by Ki67 antibodies (Scholzen and Gerdes, 

2000). We also used BrdU, which is a thymidine analogue that incorporates into 

replicating DNA during the S phase of cell cycle, taking place of thymidine, and can later 

be detected by BrdU antibodies in cells that were proliferating during the time of BrdU 

incorporation (Kee et al., 2002). 

 

Proliferative responses in Subacute-TBI 

At 15 days after injury, we observed similar proliferative levels in all three groups 

(Figure 3.1) and stereological quantification demonstrated that the number of Ki67 

positive cells between the three groups in the granular zone and hilus regions of the DG 
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remained relatively similar (Figure 3.2). This was true for both ipsilateral and 

contralateral side. We used One-Way ANOVA to compare statistical significant 

difference of all three groups and found no significant difference in the ipsilateral GZ 

(p=0.325), ipsilateral hilus (p=0.465), contralateral GZ (p=0.826), and contralateral hilus 

(p=0.376) regions of the three groups.  
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Figure 3.1. Cell proliferation at 15 days after injury. Images of a coronal section of 

Sprague Dawley rat brain showing Ki67 staining pattern of the ipsilateral dentate gyrus. 

The arrows indicate Ki67 positive cells. Using the (A) 4X objective the entire staining 

pattern of the dentate gyrus can be seen and using the (B) 40X objective the individual 

stained cells are identified. This staining pattern is consistent in all injury groups 

indicating similar levels of proliferation.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	 47	

 

 

 

 

0	

500	

1000	

1500	

2000	

2500	

Ipsilateral	 Contralateral	

K
i7
6+
	C
el
ls
	

Proliferation	in	GZ	15	Days	Post	
Injury	

Sham	

CCI	

LFPI	

A.	

0	

100	

200	

300	

400	

500	

600	

700	

800	

900	

Ipsilateral	 Contralateral	

K
i6
7+
	C
el
ls
	

Proliferation	in	Hilus	15	Days	Post	
Injury	

Sham	

CCI	

LFPI	

B.	



	 48	

Figure 3.2. Quantification of Ki67 positive cells at 15 days after injury. The number 

of Ki67 positive cells in the dentate gyrus of ipsilateral and contralateral sides of the 

injury were quantified in the sham, CCI, and LFPI injury groups. At 15 days after injury, 

the level of proliferation in the (A) GZ was not significantly different in injured groups 

from sham animals. This was also true for proliferation levels in the (B) hilus region.  
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Proliferative responses in Chronic-TBI 

To understand long-term effects of TBI on adult neurogenesis, we examined the 

level of proliferation at 3 months after injury. In our results, we did not observe a 

difference in the level of proliferation in injured animals compared to sham animals at 3 

months after injury (Figure 3.3). Stereological quantification analysis using One-Way 

ANOVA demonstrated that there was no significant difference in the levels of Ki67 

positive cells in the ipsilateral (IP) and contralateral (CT) dentate gyrus of injury and 

sham animals (IP: GZ p=0.838, hilus p=0.605; CT: GZ p=0.885, hilus p=0.785) (Figure 

3.4). To further verify these findings, we used another cell proliferation marker, BrdU, to 

label proliferating cells, and also found no difference in proliferation in sham and injured 

groups. Stereological quantification analysis demonstrated that there was no significant 

difference in the levels of BrdU positive cells in the ipsilateral (IP) and contralateral (CT) 

dentate gyrus of injury and sham animals (IP: GZ p=0.438, hilus p=0.143; CT: GZ 

p=0.627, hilus p=0.371) (Figure 3.5). 
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Figure 3.3. Cell proliferation at 3 months after injury. Images of coronal sections of 

Sprague Dawley rat brain showing Ki67 and BrdU staining patterns of the ipsilateral 

dentate gyrus. The arrows indicate stained positive cells. Using the (A) 4X objective, the 

Ki67 staining pattern of the entire dentate gyrus can be seen and using the (B) 40X 

objective the individual stained cells are identified. The observed Ki67 staining pattern is 

consistent in sham, CCI injury, and LFPI animals, indicating similar levels of 

proliferation. Immunolabeled images of BrdU staing using (C) 4X objective to show the 

entire dentate gyrus and (D) 40X objective to show individual stained cells also indicate 

consistent proliferation levels in sham, CCI injury, and LFPI animals. 
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Figure 3.4. Quantification of Ki67 positive cells at 3 months after injury. The number 

of Ki67 positive cells in the dentate gyrus of ipsilateral and contralateral sides of the 

injury were quantified in the sham, CCI, and LFPI injury groups. At 3 months after 

injury, the level of proliferation in the (A) GZ was not significantly different in injured 

groups from sham animals. This was also true for proliferation levels in the (B) hilus 

region. 
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Figure 3.5. Quantification of BrdU positive cells at 3 months after injury. The 

numbers of BrdU positive cells in the ipsilateral and contralateral dentate gyrus were 

quantified in the sham, CCI, and LFPI injury groups. At 3 months after injury, the level 

of proliferation in the (A) GZ was not significantly different in injured groups from sham 

animals. This was also true for proliferation levels in the (B) hilus region. 
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Experiment 2. TBI-Induced Generation of New Neurons 

After proliferation, surviving cells in neurogenic regions differentiate into either 

neuronal or glial cell lineage. Cells that become determined for a neuronal lineage 

express certain biomarkers including DCX. To determine the impact of TBI on the 

generation of new neurons, we used the DCX antibody to label newly generated neurons. 

DCX is a microtubule binding protein expressed in immature neurons and migrating 

neuroblasts in neurogenic regions of the adult mammalian brain (Brown et al., 2003). We 

compared levels of newly generated neurons at 15 days after injury and 3 months after 

injury in the DG of animals that received sham, CCI, or LFPI injury.  

 

Generation of New Neurons in Subacute-TBI 

In our results, we observed an increase in the number of newly formed neurons at 

15 days after injury in the ipsilateral dentate gyrus of the injured animals compared to 

sham animals (Figure 3.6). We used One-Way ANOVA to compare significant 

difference of all three groups and found statistically significant difference of the levels of 

DCX positive cells in the ipsilateral GCL (p=0.002) and ipsilateral hilus region (p=0.001) 

(Figure 3.7). We used a post hoc LSD test to determine pair wise significance of the 

group means, which revealed that although there was a significant increase of DCX 

positive cells in the ipsilateral GCL of injured animals compared to sham (sham vs. CCI, 

p=0.001; sham vs. LFPI, p=0.015), there was no significant difference between the CCI 

injury and LFPI groups (p=0.061). In the ipsilateral hilus region, a pairwise comparison 

of each injury group to sham showed significant increase of DCX positive cells (sham vs. 
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CCI, p<0.001; sham vs. LFPI, p=0.03) and CCI injury animals had significantly more 

DCX positive cells than LFPI animals (p=0.005).  
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Figure 3.6. Generation of new neurons at 15 days after injury. Images of a coronal 

section of Sprague Dawley rat brain showing DCX staining pattern of the ipsilateral 

dentate gyrus. The arrows indicate DCX positive cells. In (A) sham animals, there is less 

observable DCX staining compared to (B) CCI injury and (C) LFPI. To determine 

neuronal migration, (D) the GZ was divided into three regions, the SGZ and 1/3 of the 

inner GCL, middle 1/3 of the GCL, and outer 1/3 of the GCL as shown.  
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Figure 3.7. Quantification of DCX positive cells at 15 days after injury. In the (A) 

ipsilateral GZ, both types of injuries resulted in significantly higher level of DCX 

positive cells indicating more generation of new neurons compared to sham animals 

(sham vs. CCI, p=0.001; sham vs. LFPI, p=0.015).  In the (B) ipsilateral hilus region, 

both types of injuries resulted in significantly higher level of DCX positive cells 

compared to sham animals (sham vs. CCI, p<0.001; sham vs. LFPI, p=0.03), and the CCI 

injury had a significantly higher number DCX positive cells compared to LFPI (p=0.005) 
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Differences in neuronal migration was determined by using the Visiopharm 

program to trace and divide the GZ into 3 regions, the SGZ plus inner 1/3 GCL, middle 

1/3 of the GCL, and outer 1/3 of the GCL, and count the number of DCX positive cells in 

each region (Figure 3.6). Stereological quantification demonstrated that both types of 

injuries induced an increased number of DCX positive cells in the ipsilateral SGZ plus 

inner 1/3 GCL, but only CCI injury induced an increase of DCX positive cells in the 

ipsilateral middle 1/3 of the GCL, and ipsilateral outer 1/3 of the GCL. Using a post hoc 

LSD test to compare pairwise significance, we found that in the SGZ plus inner 1/3 GCL, 

each type of injury compared to sham had a statistically significant increase in DCX 

positive cells (sham vs. CCI, p=0.005; sham vs. LFPI, p=0.021), but there was no 

significant difference between CCI and LFPI groups (p=0.418) (Figure 3.8). In the 

ipsilateral middle 1/3 GCL, we found that CCI injury produced a statistically significant 

increase in DCX positive cells compared to sham and LFPI (sham vs. CCI, p<0.001; CCI 

vs. LFPI, p<0.001), but there was no significant difference between sham and LFPI 

groups (p=0.52) (Figure 3.8). In the ipsilateral outer 1/3 GCL, we found the same pattern 

of increase in DCX positive cells where CCI injury produced a statistically significant 

increase compared to sham and LFPI (sham vs. CCI, p=0.034; CCI vs. LFPI, p=0.021), 

but there was no significant difference between sham and LFPI groups (p=0.948) (Figure 

3.8).  

 

 

 

 



	 63	

 

 

 
 



	 64	

Figure 3.8. Migration of neuroblasts at 15 days after injury. In sham and injured 

animals, majority of the DCX positive cells of the GZ were located in the (A) SGZ plus 

inner 1/3 GCL, with a significantly higher number of DCX positive cells in injured 

animals compared to sham (sham vs. CCI, p=0.005; sham vs. LFPI, p=0.021) and no 

significant difference between CCI injury and LFPI groups (p=0.418). In the (B) middle 

1/3 GCL, CCI injury resulted in a significantly higher number of DCX positive cells 

compared to sham and LFPI (sham vs. CCI, p<0.001; sham vs. LFPI, p=0.52; CCI vs. 

LFPI, p<0.001). Also in the (C) outer 1/3 GCL, CCI injury resulted in a significantly 

higher number of DCX positive cells compared to sham and LFPI (sham vs. CCI, 

p=0.034; sham vs. LFPI, p=0.948; CCI vs. LFPI, p=0.021). 
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Generation of New Neurons in Chronic-TBI 

To further evaluate long-term effects of TBI on adult neurogenesis, we examined 

the generation of new neurons at 3 months after injury by DCX immunolabeling. In our 

results, we observed a decrease in the number of newly formed neurons at 3 months after 

injury in the ipsilateral and contralateral DG of the injured animals compared to sham 

animals (Figure 3.9). Stereological quantification analysis demonstrated that injured 

animals and sham animals had statistically different levels of DCX positive cells in the 

ipsilateral GZ (p=0.002), contralateral GZ (p=0.016), and ipsilateral hilus region 

(p=0.001) (Figure 3.10). Although we saw an observable difference between the three 

groups in the contralateral hilus region, the data was not statistically different. A pairwise 

comparison using post hoc LSD between two groups reveled that there was a significant 

decrease of DCX positive cells in the ipsilateral and contralateral GZ of injured animals 

compared to sham (IP: sham vs. CCI p=0.001, sham vs. LFPI p=0.002; CT: sham vs. 

CCI p=0.009, sham vs. LFPI p=0.013), however, there was no significant difference 

between the CCI injury and LFPI groups (IP: p=0.781; CT: p=0.823) (Figure 3.10). In 

the ipsilateral hilus region, a pairwise comparison of each injury group to sham revealed 

a statistically significant decrease of DCX positive cells in animals that received LFPI 

(sham vs. LFPI, p=0.006) but not in animals that received CCI injury (sham vs. CCI, 

p=0.118) (Figure 3.10). There was also no statistical difference between the two types of 

injuries (CCI vs. LFPI, p=0.097).  
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Figure 3.9. Generation of new neurons at 3 months after injury. Images of a coronal 

section of Sprague Dawley rat brain showing DCX staining pattern of the ipsilateral 

dentate gyrus. The arrows indicate DCX positive cells. In (A) sham animals, there are 

more observable DCX stained cells compared to (B) CCI injury and (C) LFPI.  
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Figure 3.10. Quantification of DCX positive cells at 3 months after injury. In the (A) 

ipsilateral and contralateral GZ, both types of injuries resulted in significantly lower 

levels of DCX positive cells indicating less generation of new neurons compared to sham 

animals (IP: sham vs. CCI p=0.001, sham vs. LFPI p=0.002; CT: sham vs. CCI p=0.009, 

sham vs. LFPI p=0.013).  In the (B) ipsilateral hilus region, animals that received LFPI 

resulted in significantly lower level of DCX positive cells compared to sham animals 

(sham vs. LFPI, p=0.006). 
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Differences in neuronal migration were determined by dividing the GZ into 3 

regions as previously described (Figure 3.6). Stereological quantification demonstrated 

that both types of injury groups had reduced number of DCX positive cells in the 

ipsilateral and contralateral SGZ plus inner 1/3 GCL and middle 1/3 GCL compared to 

sham. Using a post hoc LSD pairwise comparison, in the ipsilateral and contralateral 

SGZ plus inner 1/3 GCL, we found that each type of injury compared to sham had a 

statistically significant decrease in DCX positive cells (IP: sham vs. CCI p=0.001, sham 

vs. LFPI, p=0.002; CT: sham vs. CCI p=0.011, sham vs. LFPI, p=0.018), but there was 

no significant difference between CCI and LFPI groups (IP: CCI vs. LFPI p=0.676; CT: 

CCI vs. LFPI p=0.782) (Figure 3.11). In the ipsilateral and contralateral middle 1/3 

GCL, we also found that each type of injury compared to sham had a statistically 

significant decrease in DCX positive cells (IP: sham vs. CCI p=0.011, sham vs. LFPI, 

p=0.001; CT: sham vs. CCI p=0.026, sham vs. LFPI, p=0.008), but there was no 

significant difference between CCI and LFPI groups (IP: CCI vs. LFPI p=0.1; CT: CCI 

vs. LFPI p=0.5) (Figure 3.11). In the ipsilateral and contralateral outer 1/3 GCL, we did 

not find a statistical difference in DCX positive cells in the three groups (IP: p=0.878; 

CT: p=0.996) (Figure 3.11).  
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Figure 3.11. Migration of neuroblasts at 3 months after injury in the dentate gyrus. 

In sham and injured animals, majority of the DCX positive cells of the GZ were located 

in the (A) SGZ plus inner 1/3 GCL, with a significantly higher number of DCX positive 

cells in Sham animals compared to injured animals (IP: sham vs. CCI p=0.001, sham vs. 

LFPI, p=0.002; CT: sham vs. CCI p=0.011, sham vs. LFPI, p=0.018). In the (B) middle 

1/3 GCL, Sham animals had a significantly higher number of DCX positive cells 

compared to injured animals (IP: sham vs. CCI p=0.011, sham vs. LFPI, p=0.001; CT: 

sham vs. CCI p=0.026, sham vs. LFPI, p=0.008). In the (C) outer 1/3 GCL, there was no 

difference in the number of DCX positive cells between any group. 
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Experiment 3.  Factors Which Are Associated to Post-TBI Neurogenesis  

From experiments 1 and 2, our results indicate that TBI does not have an effect on 

the level of proliferation in the subacute and chronic-TBI stage. However, we did find 

that TBI does reduce the level of new neuron generation in the chronic stage, which is 

opposite of that in the subacute TBI stage. To investigate mechanisms that maybe 

associated to this change in neurogenesis in the chronic TBI stage, we examined 

neuroinflammatory responses of subacute and chronic TBI. We used two TBI animal 

models, CCI injury and LFPI, to study focal and diffuse injury effects at 15 days after 

injury and 3 months after injury. Inflammatory response was examined by markers for 

microglial activation in the brain. We used ED1 antibody to label ED1 proteins expressed 

in activated microglia that become phagocytic in the rat CNS during an inflammatory 

response (Damoiseaux et al., 1994). We also used the OX6 (anti-MHC class II) antibody 

to identify immunoreactive cells in the CNS. We checked for inflammation in the cortex, 

dentate gyrus, and thalamus.  

 

Inflammation in subacute-TBI 

At 15 days after injury, sham animals showed only scant amount of inflammation 

in the brain as detected by ED1 staining in the thalamus and OX6 staining in the DG. 

However, using both inflammatory markers, we show that injured animals had a 

significant inflammatory response in the ipsilateral side of injury in the cortex, dentate 

gyrus, and thalamus (Figure 3.12). 
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ED1 staining in the cortex revealed that CCI injured animals had a staining 

optical density of 10% +/- 1.8%, LFPI animals had a staining optical density of 14.5% +/- 

11%, and both injury groups were not significantly different from each other (p=0.531) 

(Figure 3.13). In the dentate gyrus, CCI injured animals had a staining optical density of 

4.7% +/- 3.3%, LFPI animals had a staining optical density of 0.57% +/- 0.28%, and both 

injury groups were significantly different from each other (p=0.002) (Figure 3.13). In the 

thalamus, sham animals had a staining optical density of 0.2% +/- 0.03%, CCI injured 

animals had a staining optical density of 2.7% +/- 1.8%, LFPI animals had a staining 

optical density of 9.3% +/- 1.17%. Both injury groups had significantly more 

inflammation in the thalamus compared to sham (sham vs. CCI, p<0.038; sham vs. LFPI, 

p<0.001) and both injury groups were significantly different from each other (p<0.001) 

(Figure 3.13). Both injury groups produced different inflammatory responses in the 

ipsilateral dentate gyrus and thalamus, with CCI injured animals having a more ED1 

staining in the dentate gyrus and LFPI animals having more ED1 staining in the 

thalamus.   

 

Similar trends were found with OX6 staining. In the cortex, CCI injured animals 

had a staining optical density of 2.3% +/- 0.98%, LFPI animals had a staining optical 

density of 12.5% +/- 9.9%, and both injury groups were significantly different from each 

other (p=0.016) (Figure 3.14). In the dentate gyrus, sham animals had a staining optical 

density of 0.29% +/- 0.29%, CCI injured animals had a staining optical density of 5.3% 

+/- 2.4%, LFPI animals had a staining optical density of 1.8% +/- 1.57%. Although both 

injury groups showed a greater inflammatory response in the DG compared to sham, only 
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CCI injury group had a statistically significant increase (sham vs. CCI, p=0.004; sham vs. 

LFPI, p=0.325). Also, both injury groups were significantly different from each other 

(p=0.017) (Figure 3.14). In the thalamus, CCI injured animals had a staining optical 

density of 11.3% +/- 2.76%, LFPI animals had a staining optical density of 26% +/- 

1.76%, and both injury groups were significantly different from each other (p<0.001) 

(Figure 3.14). Both injury groups produced different inflammatory responses in the 

ipsilateral cortex, dentate gyrus, and thalamus, with CCI injured animals having a more 

OX6 staining in the dentate gyrus, and LFPI animals having more OX6 staining in the 

cortex and thalamus. 
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Figure 3.12. ED1 and OX6 Staining Patterns In the Injured Brain. The top panel of 

images shows ED1 inflammatory marker expression in the cortex, dentate gyrus, and 

thalamus brain regions after CCI injury or LFPI. The bottom panel of images shows OX6 

inflammatory marker expression in the cortex, dentate gyrus, and thalamus brain regions 

after CCI injury or LFPI. Both inflammatory markers show inflammation in the injured 

brains. There is a noticeable difference of inflammatory responses between CCI injury 

and LFPI, with CCI injury producing more inflammation in the dentate gyrus, and LFPI 

producing more inflammation in the thalamus.  

 

 

 

 

 

 

 

 



	 78	

 



	 79	

Figure 3.13. ED1 staining optical density at 15 days after injury. Optical density of 

ED1 staining was used to measure level of inflammation in the (A) cortex, (B) dentate 

gyrus, and (C) thalamus in sham and injured animals. Sham animals did not show ED1 

staining in the cortex and DG and had scant inflammation in the thalamus. Animals of 

both types of injuries showed inflammation in all ipsilateral structures. CCI injury 

animals had significantly more inflammation in the dentate gyrus compared to LFPI 

animals (p=0.002). LFPI animals had significantly more inflammation in the thalamus 

compared to CCI injury animals (p<0.001). 
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Figure 3.14. OX6 staining optical density at 15 days after injury. Optical density of 

OX6 staining was used to measure level of inflammation in the (A) cortex, (B) dentate 

gyrus, and (C) thalamus in sham and injured animals. Sham animals did not show OX6 

staining in the cortex and thalamus and had scant inflammation in the DG. Animals of 

both types of injuries showed inflammation in all ipsilateral structures. CCI injury 

animals had significantly more inflammation in the dentate gyrus compared to LFPI 

animals (p=0.017). LFPI animals had significantly more inflammation in the cortex 

(p=0.016) and thalamus (p<0.001) compared to CCI injury animals. 
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Inflammation in Chronic-TBI 

At 3 months after injury, using both inflammatory markers we assessed 

inflammatory responses in sham and injured animals. Injured animals showed more 

inflammation compared to sham animals.  In the cortex, sham animals did not show ED1 

staining. In the ipsilateral cortex, CCI injured animals had a staining optical density of 

4.55% +/- 1.73%, LFPI animals had a staining optical density of 6.38% +/- 4.88%, and 

both injury groups were not significantly different from each other (p=0.507) (Figure 

3.15). In the ipsilateral dentate gyrus, sham animals had a staining optical density of 

0.16% +/- 0.03%, CCI injured animals had a staining optical density of 1.25% +/- 0.13%, 

and LFPI animals had a staining optical density of 0.56% +/- 0.1%. Both injury groups 

had significantly more inflammation in the dentate gyrus compared to sham (sham vs. 

CCI, p<0.001; sham vs. LFPI, p=0.004) and CCI injury group had significantly more 

inflammation compared to LFPI group (CCI vs. LFPI, p<0.001). Although ED1 staining 

was detected in the contralateral dentate gyrus in sham and injured groups, One-Way 

Anova comparison of the three groups showed no significant difference (p=0.604) 

(Figure 3.15). In the ipsilateral thalamus, sham animals had a staining optical density of 

0.42% +/- 0.07%, CCI injured animals had a staining optical density of 1.22% +/- 0.22%, 

and LFPI animals had a staining optical density of 3.94% +/- 2.19%. LFPI group had 

significantly more inflammation in the thalamus compared to sham and CCI injury group 

(sham vs. LFPI, p=0.026; CCI vs. LFPI, p=0.032;), and CCI injury group was not 

significantly different from sham (p=0.542). Although ED1 staining was detected in the 

contralateral thalamus in sham and injured groups, One-Way ANOVA comparison of the 

three groups showed no significant difference (p=0.739) (Figure 3.15). 
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We also checked for inflammation in these brain regions with OX6 marker at 3 

months after injury (Figure 3.16). In the cortex, sham animals did not show OX6 

staining. In the ipsilateral cortex, CCI injured animals had a staining optical density of 

3.08% +/- 1.61%, LFPI animals had a staining optical density of 3.7% +/- 3.5 %, and 

both injury groups were not significantly different from each other (p=0.76). In the 

contralateral cortex, OX6 staining was detected with both injury groups having 

significantly more inflammation compared to sham (sham vs. CCI, p=0.035; sham vs. 

LFPI, p=0.001) and LFPI group had significantly more inflammation compared to CCI 

injury group (CCI vs. LFPI, p=0.002). In the dentate gyrus, sham and injured animals 

showed OX6 staining, however, using One-Way ANOVA to compare all three groups, 

we found no significant difference in ipsilateral and contralateral sides (IP: p=0.686; CT: 

p=0.819). In the ipsilateral thalamus, sham animals had a staining optical density of 

0.22% +/- 0.19%, CCI injured animals had a staining optical density of 0.2% +/- 0.08%, 

and LFPI animals had a staining optical density of 1.24% +/- 0.31%. LFPI group had 

significantly more inflammation in the ipsilateral thalamus compared to sham and CCI 

injury group (sham vs. LFPI, p<0.001; CCI vs. LFPI, p<0.001;), and CCI injury group 

was not significantly different from sham (p=0.936).  
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Figure 3.15. ED1 staining optical density at 3 months after injury. Optical density of 

ED1 staining was used to measure level of inflammation in the (A) cortex, (B) dentate 

gyrus, and (C) thalamus in sham and injured animals. Injured animals showed 

significantly more inflammation in ipsilateral cortex, dentate gyrus, and thalamus, 

compared to sham animals. CCI injury animals had significantly more inflammation in 

the dentate gyrus compared to LFPI animals (p<0.001). LFPI animals had significantly 

more inflammation in the thalamus compared to CCI injury animals (p=0.032). 

 

 

 

 

 

 

 

 

 

 

 

 

 



	 86	

 



	 87	

Figure 3.16. OX6 staining optical density at 3 months after injury. Optical density of 

OX6 staining was used to measure level of inflammation in the (A) cortex, (B) dentate 

gyrus, and (C) thalamus in sham and injured animals. Injured animals showed 

significantly more inflammation in the ipsilateral and contralateral cortex, and only LFPI 

group showed significantly more inflammation in ipsilateral thalamus, compared to sham 

animals.  
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Experiment 4. Morphological Changes of the Hippocampus in Chronic-TBI. 

Apart from cellular changes that happen after TBI, morphological changes of 

overall brain structures such as the hippocampus have also been evaluated to assess 

injury characteristics. The purpose of this experiment was to evaluate TBI-induced 

morphological changes of the hippocampus in chronic-TBI stage using different TBI 

animal models. The CCI and LFPI models were used to compare changes of the 

hippocampal size after injury. The parameters of ipsilateral and contralateral hippocampi 

were measured in injured and sham animal groups. Percent change was calculated by 

taking a percentage of the ratio of ipsilateral to contralateral parameters.  

 

In our results we found that only animals that received LFPI show reduction of 

hippocampal size at 3 months after injury (Figure 3.17). These animals had a 12% +/- 

7.64% reduction of ipsilateral hippocampal size (Figure 3.18). Animals that received 

CCI injury and sham animals did not show changes in hippocampal size. Using One-Way 

ANOVA to compare change in all groups, we found that there is a statistically significant 

change (p=0.047). A post hoc LSD pairwise comparison, reveled that animals that 

received LFPI had statistically reduced ipsilateral hippocampal size compared to sham 

and CCI (Sham vs. LFPI, p=0.047; CCI vs. LFPI, P=0.027). Sham animals and CCI 

injury animals were not statistically different (p=0.894). 
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Figure 3.17. TBI-induced hippocampal size change at 3 months after injury. We 

observed the ipsilateral and contralateral hippocampal size differences of sham, CCI 

injury, and LFPI animal groups (scale bar= 900 µm). In sham animals, ipsilateral and 

contralateral hippocampal sides were similar in size. In CCI injury animals, ipsilateral 

hippocampus showed changes in shape but not in size compared to contralateral 

hippocampus. In LFPI animals, we found observable reduction in ipsilateral hippocampus 

size compared to contralateral hippocampus.  
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Figure 3.18. Quantification of hippocampal size change at 3 months after injury. 

Percentage of the ratio of ipsilateral to contralateral hippocampus perimeter reveals the 

injury-induced change in ipsilateral hippocampal size. CCI injury animals and sham 

animals do not have a change in ipsilateral hippocampus size. Only animals that received 

LFPI show a reduction of ipsilateral hippocampal size with an average percent ratio of 

88% +/- 7.64%, which is significantly different from sham animals (p=0.047) and CCI 

injury animals (p=0.027). 
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Chapter 4 - Discussion 

TBI poses significant short and long-term challenges to millions of people around 

the world (Zaloshnja et al., 2008). According to the CDC, majority of these patients are 

either younger than 24 years old or over 65 years old. Clinical evaluations have shown 

that TBI patients are more likely to develop many other neurological complications over 

time than people without a TBI history (Koponen et al., 2002). Recently much attention 

has been drawn to the relationship between TBI and dementia, as TBI patients commonly 

develop neurodegenerative diseases later in life such as Alzheimer’s and CTE (Smith et 

al., 2013). Over the past few decades we have learned a great deal about the mechanisms 

that regulate TBI, however, a central question still remains unanswered; what is causing 

these long-term TBI deficits?  

 

One possibility could be that there is a change in adult neurogenesis in the chronic 

TBI stage. In the past few decades we have discovered evidence of lifelong adult 

neurogenesis, mainly in the SVZ and DG of the mammalian brain (Sun, 2016). Our lab 

and many others have demonstrated that adult neurogenesis can be stimulated and one of 

these stimuli is TBI (Sun et al., 2005; Gao and Chen, 2013). Following TBI, the brain 

initiates endogenous neurogenic responses in an attempt to repair the physical damages. 

Some studies suggest that TBI induced neurogenesis in the DG contributes to the short-

term spontaneous cognitive recovery seen in clinical patients (Sun et al., 2015; León-

Carrión and Machuca-Murga, 2001). Because the hippocampus is linked to cognitive 

function and memory consolidation, TBI induced cellular changes in this structure may 

explain cognitive and behavioral changes seen in TBI patients (Deng et al., 2009). 
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However, the neurogenic stimulus following injury is not continuous and does not fully 

repair the damages. Majority of these studies have focused on acute and subacute 

neurogenic changes following TBI. For this reason, we investigated the neurogenic 

changes from subacute to chronic-TBI stage, and the mechanisms that may regulate long-

term neurogenic changes.    

 

Summary of Results 

To accurately study neurogenic responses after TBI, we used two different TBI 

animal models. Previous studies have reported conflicting results of TBI-induced 

neurogenic responses, particularly regarding cell differentiation and generation of new 

neurons (Sun et al., 2005; Kleindienst et al., 2005; Kernie et al., 2001; Rice et al., 2003; 

Gao and Chen, 2013). Some of these differences may be due to the use of different TBI 

animal models. Because TBI is a complex process involving both focal and diffuse 

injury, we used CCI and LFPI models to induce focal and diffuse injuries respectively, 

and bring attention to any differences that can be attributed to using different animal 

models. Brain tissue was collected 15 days after injury to evaluate subacute TBI, and 3 

months after injury to evaluate chronic TBI.  

 

In the subacute stage, TBI had no effect on the rate of proliferation in the GZ and 

hilus region. However, DCX immunolabeling showed that TBI induced an increase in the 

number of immature neurons in the ipsilateral side of injury in the GZ and hilus region. 

Further analysis showed that CCI injury resulted in more immature neurons in the hilus 
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than LFPI injury. Analysis of neural migration in the GZ revealed that TBI does cause 

more lateral migration but this is specific to focal injury induced by the CCI model.  

 

In the chronic stage of TBI, proliferation was no different after injury compared to 

sham, similar to what we found in the subacute stage. Interestingly however, we found a 

significant reduction in the generation of new neurons at 3 months after injury in the 

ipsilateral and contralateral granular zone. In the hilus region a significant reduction was 

seen only in the diffuse injury model in the ipsilateral side of injury. Neuronal migration 

in the GZ was also reduced in chronic-TBI stage; however, this was only seen in the 

middle 1/3 of the GCL.  

 

To investigate the mechanisms that may regulate the activity of generating new 

neurons in chronic-TBI, we examined neuroinflammation in the cortex, DG, and 

thalamus at both subacute and chronic-TBI stage. In the subacute-TBI stage, 

inflammation was seen only in the ipsilateral hemisphere of injured animals while sham 

animals show no inflammatory responses. Also, CCI injury model induces a significantly 

higher inflammatory response in the DG, while LFPI model induces a higher 

inflammatory response in the thalamus, which is indicative of focal injury caused by CCI 

model and diffuse injuries caused by LFPI model. In the chronic stage of TBI, we found a 

similar trend in inflammatory response. We found low levels of inflammation in the DG 

and thalamus of sham animals and significantly higher inflammatory responses in injured 

animals in cortex, DG, and thalamus. These inflammatory results indicate that TBI-

induced inflammation is persistent long after TBI injury.  
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Further assessment of TBI induced changes in chronic stage involved 

morphological analysis of the hippocampus. Our results indicate a changed morphology 

of the hippocampus after injury that can be seen at 3 months after injury. CCI injury 

model produced an observed change in shape of the ipsilateral hippocampus while LFPI 

model caused shrinkage of the ipsilateral hippocampus.  

 

Subacute-TBI neurogenic response  

The TBI-induced neurogenic response involves all aspects of neurogenesis 

including proliferation, differentiation, survival and integration (Sun, 2016). Our lab and 

others have shown that TBI-induced proliferative activity peaks at 2 days post injury and 

gradually returns to baseline by 14 days post injury (Sun et al., 2005; Gao and Chen, 

2013). In this study, at 15 days after injury, we found baseline proliferation levels in 

injured animals, consistent with previous reports. However, the ability of TBI to 

stimulate an endogenous neurogenic response in the brain has been controversial. Most 

studies agree that TBI induces an up-regulation in proliferation in the DG and SVZ (Sun 

et al., 2005; Gao and Chen, 2013). However, discrepancies arise in discussion about the 

fate of these newly proliferated cells. Some studies report that increased proliferation in 

the neurogenic regions results in several fold increase of the number of new neurons that 

can be seen as long as 60 days post injury (Sun et al., 2005; Kleindienst et al., 2005; 

Kernie et al., 2001; Richardson et al., 2007). Other studies have found that TBI does not 

change the production of new neurons (Rice et al., 2003; Gao and Chen, 2013) or may 

even have a reductive effect on neuronal production (Rola et al., 2006). These 
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discrepancies may be due to many factors including different injury models used, 

assessment at different post injury time points, quantification methods, and/or human 

error. In our results, we found that at 15 days after injury using either CCI or LFPI model, 

TBI causes a significant increase in the number of immature neurons in the ipsilateral DG 

of the adult rat brain. This is in disagreement with another study that used similar 

approach, looking at the number of DCX positive cells after injury, to assess TBI-induced 

generation of immature neurons, in which they report a significant decrease (Rola et al., 

2006). The difference in results may be due to different animals used as their study used 

mice. Also, cell counting methods were different as they only examined the number of 

DCX positive cells in the SGZ, excluding a major portion of cells that may have migrated 

into the inner 1/3 GCL after injury. Other studies that have shown a TBI-induced increase 

in the generation of new neurons, have not directly analyzed cell counts of immature 

neurons after injury.  

 

Chronic-TBI Neurogenic Response 

TBI-induced proliferation involves a robust increase in cell divisions of NSC into 

more NSCs and NPCs (Sun et al., 2005; Bonaguidi et al., 2012). We hypothesized that 

the acute-TBI neurogenic stimulus would exhaust the NSC pool through rapid 

symmetrical differentative cell divisions, where one NSC divides into two NPCs, 

resulting in reduced proliferative activity over time. Our proliferation results using both 

pulse BrdU paradigm and Ki67 staining at 3 months after injury however, did not match 

our expectations, as we did not find a reduction of proliferative activity in chronic TBI, 

indicating that the NSC pool may not be exhausted over time. Our results are inconsistent 
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with a previous study that reported reduction of proliferating cells 2 month after injury 

(Acosta et al., 2013). Although they used similar TBI model and immunohistochemical 

staining procedures, their cell counting method involved only examining the number of 

Ki67 positive cells in the SGZ, whereas we included proliferating cells of the entire 

granular zone.  

 

To fully understand chronic-TBI impact on neurogenesis, we also looked at the 

generation of new neurons at 3 months after injury. Although proliferative activity is not 

impacted by TBI in the chronic stage, our results show significant reduction in the 

number of DCX positive cells, suggesting that TBI causes a long-term reduction in the 

ability to generate new neurons in the DG. Studies have suggested that chronic 

neuroinflammation may negatively regulate adult neurogenesis (Gao and Hong, 2008). In 

a rodent TBI study, sustained neuroinflammation was detected more than 8 weeks post-

injury and showed hippocampal cell loss and down-regulation of proliferation in the SGZ 

of the hippocampus when compared to sham animals (Acosta et al., 2013). Considering 

that TBI-stimulated hippocampal proliferation returns to baseline levels by 14 days post-

injury, at 8 weeks post-injury the baseline neurogenic stimulus may not be strong enough 

to overcome the negative effects of chronic-neuroinflammation, which could result in 

decreased neurogenesis below baseline levels in the chronic-TBI stage. One study shows 

that increasing the stimulation of neurogenesis through environmental enrichment and 

exercise rescues the neurogenic suppression via lipopolysaccharide-induced 

inflammatory conditions (Wu et al., 2007). This suppression of neurogenic activity via 

inflammatory responses would also explain many of the long-term pathological 
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conditions of chronic-TBI that are reported after injury such as neurodegenerative 

diseases, psychiatric disorders, and sleep disorders. These findings indicate that TBI-

induced inflammatory responses may be active at 3 months post-injury, affecting the 

normal neurogenic activity.  

 

TBI-induced Inflammation Affects Long-term Neurogenesis 

Concurrent with stimulated neurogenic activity that induces benefits following 

TBI, studies show that other TBI induced mechanisms are also activated that are 

detrimental to recovery and normal function such as progressive cell death and 

inflammation in the brain (Bramlett and Dietrich, 2015). Especially in the hippocampus, 

these mechanisms can be responsible for some of the cognitive deficits, sensory and 

motor dysfunction, and neuropathology such as seizures seen in TBI patients (Fujimoto et 

al., 2004; Gupta and Gupta, 2005). Studies have found significant cell death in the DG 

after acute-TBI, especially of immature neurons (Gao et al., 2008). Inflammatory 

responses after injury have been demonstrated to play a role in the regulation of 

hippocampal cell death and reduced neurogenic activity through activation of microglia 

that release inflammatory mediators such as IL-1, IL-6, TNF-α, reaction oxygen species 

etc. (Monje et al., 2003; Ekdahl et al., 2003). These pro-inflammatory mediators are 

detrimental for survival of newly generated neurons (Ekdahl et al., 2003). For example, 

studies have shown that the number of activated microglia and the levels of pro-

inflammatory cytokines, particularly IL-6 and TNF-α, produced by microglia are 

correlated with decreased survival of new hippocampal neurons, and inhibition of 

microglia activation with anti-inflammatory drug treatment increase the number of newly 
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formed neurons (Monje et al., 2003; Ekdahl et al., 2003). It is likely that the persistent 

inflammation following TBI, especially after the TBI-induced acute neurogenic stimulus 

is returned to baseline, curtail the neuronal differentiation or survival of newly generated 

cells. Future study using combination of BrdU with cell type specific markers is needed 

to answer this question. In this study we found inflammatory responses during subacute-

TBI, and this inflammation is persistent at 3 months after injury. In a previous study, 

TBI-induced inflammatory responses have been detected in the striatum, thalamus, and 

cerebral peduncle at 2 months after injury in conjunction with reduced levels of immature 

neurons in the SGZ (Acosta et al., 2013). Our study adds to these findings showing that 

inflammatory responses are extended to 3 months post injury and also detected in the DG 

and cortex regions, concomitant with reduction of immature neurons in the DG.  

 

Hippocampal morphological changes following TBI  

Apart from cellular and biochemical changes, chronic assessment of TBI also 

involves morphological changes. Temporal studies of histopathological changes after TBI 

in rats demonstrate progressive cell death mechanisms in the cerebral cortex and 

hippocampus over one year after injury (Smith et al., 1997). These cell death mechanisms 

have also been linked to neurodegenerative changes.  Clinical studies show changes in 

white matter tracts and progressive atrophic changes in TBI patients at one year after 

injury (Williams et al., 2001; MacKenzie et al., 2002). The hippocampus is particularly 

vulnerable to TBI as evident from morphological changes seen in the temporal lobe, 

specifically hippocampal atrophy (Ariza et al., 2006). In the present study we found TBI-

induced morphological changes of the hippocampus; particularly in the LFPI model at 3 
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months post-injury we found shrinkage of the hippocampus. This is consistent with 

previous findings showing reduced hippocampal volume at 2 months following LFPI in 

rats (Bramlett et al., 1997). Studies suggest that these morphological changes may 

contribute to cognitive and behavioral changes seen in many TBI patients (Jorge et al., 

2007). Atrophy of the hippocampus may also be a contributing factor to the chronic 

changes of adult neurogenesis that we found in this study.   

 

Conclusion and Future Direction  

TBI induces both acute and chronic neurological consequences that can lead to 

pathological conditions such as cognitive deficits, neurodegenerative diseases, psychiatric 

disorders, and seizures among many other problems (Koponen et al., 2002; Castriotta et 

al., 2007; Uryu et al., 2007). The complex interplay of mechanisms that regulate these 

acute and chronic conditions is not completely understood. The present study in 

combination with previous studies shows involvement of a neurogenic response to TBI, 

in an endogenous effort to initiate brain repair mechanisms (Sun, 2016; Sun et al., 2005). 

This endogenous neurogenic response is stronger than the normal baseline adult 

neurogenic activity, however, it is not continuous (Sun et al., 2005). Once this TBI-

induced neurogenic response returns to baseline levels, other persistent TBI induced 

mechanisms may affect normal adult neurogenic activity. In the present study we show 

the involvement of inflammatory mechanisms that may regulate normal neurogenic 

activity in chronic-TBI. Our study shows persistent inflammation concurrent with 

reduced generation of immature neurons in chronic TBI stage.  
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Further investigation is required to understand the true nature of this interaction 

between chronic inflammation and reduced neurogenic activity. It is also necessary to 

elucidate the phenotype of microglial activation in chronic-TBI. Studies have shown that 

specific microglial phenotypes have specialized functions, such as the M1 phenotype that 

has pro-inflammatory properties and the M2 phenotype that has anti-inflammatory 

properties (Hsieh et al., 2013). Distinguishing the phenotype of microglia activation will 

determine the nature of the inflammatory response in chronic stage of TBI.   
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