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Abstract
In this studywe offer an approach to network physiology, which proceeds from transcriptomic data
and uses gene ontology analysis to identify the biological processesmost enriched in several critical
time points of wound healing process (days 0, 3 and 7). The top-ranking differentially expressed genes
for each process were used to build two networks: onewith all proteins regulating the transcription of
selected genes, and a second one involving the proteins from the signaling pathways that activate the
transcription factors. The information from these networks is used to build a network of themost
enriched processes with undirected linksweighted proportionally to the count of shared genes
between the pair of processes, and directed linksweighted by the count of relationships connecting
genes fromone process to genes from the other. In analyzing the network thus built we used an
approach based on randomwalks and accounting for the temporal aspects of the spread of a signal in
the network (mean-first passage time,MFPT). TheMFPT scores allowed identifying the top influen-
tial, as well as the top essential biological processes, which varywith the progress in the healing pro-
cess. Thus, themost essential for day 0was found to be theWnt-receptor signaling pathway, well
known for its crucial role inwound healing, while in day 3 this was the regulation ofNF-kB cascade,
essential formatrix remodeling in thewound healing process. TheMFPT-based scores correctly
reflected the pattern of the healing process dynamics to be highly concentrated around several pro-
cesses between day 0 and day 3, and becomingmore diffuse at day 7.

1. Introduction

Properties of randomwalks have previously been used in biophysics to characterize various biological processes
[1]. They have also been used as a basis of diverse numerical descriptors of chemical compounds and biological
networks [2–4] like randomwalk betweenness centrality [5], communicability andmodular structure [6, 7], as
well as complexitymeasures [8–10] and descriptors used for evaluating network connections [11–13]. In the
context of biological networks, randomwalks have been intensively used for estimating node influence. The
influence between nodes in protein–protein interaction networks served as away of inferring protein function
[14],finding drivermutations in cancer [15, 16], orfinding disease-related genes [17]. The influence has been
defined in terms of a diffusion kernel [18], diffusionwith loss [19] or a heat kernel [20].However, the diffusion
kernel and heat kernel are both defined for undirected graphs, which reduces their use for directed networks
such as a kinase-substrate protein signaling network or gene regulatory network.More importantly, the above
measures ignore the time axis in theirmeasurements of the spread of signal fromnode to node.

Meanfirst-passage time (MFPT) captures the progression of the randomwalk. In computational biology, it
has been used previously for analyzing state transition graphs in probabilistic Boolean networks to identify gene
perturbations that quickly lead to a desired state of the system [21]. It was also used in physical chemistry for
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finding reaction paths from a reactant to a product [22], for example to uncover the path of excitationmigration
after photon absorption in the photosynthetic complex. The study of statistical properties offirst-passage times
on various domains has a long history in physics [23], including recent results on regimes that led to different
forms of the distribution and different behavior of themean as the size of the complex system increases [24].
Distribution offirst-passage timesMFPTonundirected graphs has beenwell-characterized [25–27] and,
recently, it has been shown that for directed graphs,MFPT can also be obtained analytically [28, 29].

In this study, we build on those results to investigate the nodes which are influential and essential in a
network of biological processes involved in skinwound healing. Focusing on a network of biological processes is
a newdirection forwound healing studies that expands on our previous in-silico analyses of healing [30–32].
Our new approachmight be regarded as a computationally oriented branch of the newly open field of network
physiology [33–35] or,more generally, of the new ‘network of networks’field [36].While each node in network
physiology represents one of a set of interrelated experimentally characterized physiological processes, we focus
on a network linking biological processes, as defined in gene ontology [37] alongwith a set of genes/proteins
characteristic for the process.More specifically, we apply theMFPTmethod to three essential time points during
healing of skinwounds in humans to analyze the interrelation of processes involved, with emphasis on those
significantly enriched during the process of healing.Wound healing is a complex physiological process that
involves extracellular aswell as intracellular signaling and remodeling in an environment composed ofmixtures
of cells of different types. Operating at the level of biological processes instead of at the level of individual genes
or proteins offers a chance for amore comprehensive and compact view of the key characteristics of wound
healing.

2. Analysis of networks of biological processes

2.1.Wound-healing data and enrichment analysis
Weproceeded from a genemicroarray dataset that captures normal epidermal wound healing in eight human
subjects [38]. Thewoundswere a result of harvesting a skin graft frompatients’ thigh.We analyzed three groups
of samples, representing different time points duringwound healing. Thefirst time point refers to acutewound,
and includes samples biopsied from the skin graft site right after harvesting. The second time point characterizes
the inflammatory phase of the healing process, based on samples biopsied on the third day after the skin graft
was harvested. The third time point represents the re-epithelialization phases of healing, and includes samples
biopsied on the seventh day. Samples of a biopsy of intact, unwounded skin from the graft site, collected
immediately prior to harvesting of the skin graft, serve as a control.

For all samples, we used normalized transcriptomic data captured using the AffymetrixHumanGenome
U133 Plus 2.0 array.We used a t-test to detect genes up- and down-regulated in an acutewound (day 0)
compared to control, at day 3 compared to control, and at day 7 compared to control. In all three cases, we
performed enrichment analysis using 1000 top-ranking differentially expressed genes.We used theDAVID [37]
tool to obtain a list of biological processes that were enriched in the top-ranking genes, using a cut-off of p=0.05.
We found 66, 80 and 84 biological processes enriched in thewound versus control for days 0, 3, and 7,
respectively. The top enriched processes are presented in table 1.

2.2. Network of biological processes important inwound healing
Weconstructed networks linking biological processes separately for bioprocesses enriched at days 0, 3 and 7.
The connectivity of the networkswas based on the interactions between the genes that are involved in the
enriched processes. For each biological process, we obtained fromDAVID a set of genes that are involved in the
process, and are present on our list of top-ranking differentially expressed genes for a specific day.Wemapped
those genes onto two networks of different types. The TRANSFACnetwork [39] contains validated information
about transcription regulation. For each gene, it lists all proteins that regulate its expression by acting as
transcription factors and binding to the gene’s promoter region. The PhosphoNet network [40] captures cellular
signaling at the protein level, by providing information about kinases and the substrates they phosphorylate.
Uniting both networks is essential for capturing a comprehensive view ofwound healing, a process that spans
multiple time scales, from immediate processing of stimuli through signaling involving protein–protein
interactions to slower response that involves changes in gene expression through transcription factor-DNA
regulation.

For each pair of biological processes, we counted howmany regulatory and signaling interactions connect
genes fromone process to genes from the other, and added a directed edgewith aweight proportional to the
count.We also counted the number of genes that are present in both processes, and addedweighted
bidirectional edges in both directions between each pair of such processes. Edgeweights were normalized by
dividing the counts by themaximumpossible number of interactions, that is, the product of the cardinalities of
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gene sets related to both biological processes. In effect, we obtained twonetworks, one representing regulation
and signaling, and another representing common genes. For further analyses, we normalized both networks to
have the same total sumof weights, andmerged them into a single weighted directed network of bioprocesses
enriched at a specific day of healing.

The networks obtained for days 0, 3 and 7 are dense networks, with around 50–60%pairs of processes
connected (figure 1). The underlying undirected graphs for both networks each form a single connected
component. The distribution of link strength shows few strong andmanyweak ones, but ismore concentrated
than a power law (figure 2). The distribution of nodeweighted in-degrees, that is, the sumofweights of edges
going into a node, is also highly concentrated, as is the distribution of weighted out-degrees (figure 2).

2.3. Identifying influential and essential biological processes
Identification of important biological processes in a dense enrichment network is not straightforward.While the
enrichment score can point to themost enriched processes based on expression data, it does not take network
topology into account. Here, we propose the use of an approach based on randomwalks that also takes temporal
aspects of spread of signal over a network into account. TheMFPTH i j( , ), known also as expected hitting time,
fromnode i to j in a strongly connected, directed graph is defined as the expected number of steps it takes for a
randomwalker starting fromnode i to reach node j for thefirst time, where thewalk isMarkov chain defined by
transition probabilities resulting from the graph connectivity. The average is taken over the number of
transitions, that is, lengths L of all paths →s i j( ) from i to j that do not contain a cycle involving j, with respect to
probabilitiesP of the paths:

∑= → →
→

H i j P s L s( , ) ( ) ( ). (1)
s

i j i j( ) ( )

i j( )

Compared to the shortest distance from i to j, theMFPT takesmultiple paths and node degrees into
consideration. For example, paths through hub nodes increaseH, since thewalker has a high probability of
moving to nodes connected to the hub that are not on the shortest path to the target.

TheMFPThas beenwell-characterized for undirected graphs [25]. Recently, it has been shown that for
directed graphs,MFPTH i j( , ) can be obtained analytically in closed form given the adjacencymatrix and the
vector node stationary probabilities π in a randomwalk in the graph [28].More specifically, letA be the, possibly
weighted, adjacencymatrix of a strongly connected, directed graph,D the diagonalmatrix of node out-degrees,
and I the identitymatrix. Then the followingmatrices can be defined:

Table 1.Topfivemost highly enriched biological processes for days 0,
3, and 7 compared to control. For each process, we provide the process
name, and the lastfive digits from its gene ontology ID (GO:00xxxxx).

Enrichment rank Biological process

Day 0 versus control

1 08544: epidermis development

2 07398: ectodermdevelopment

3 45935: positive regulation of nucleobase,

nucleoside, nucleotide and nucleic acidmeta-

bolic process

4 51173: positive regulation of nitrogen com-

poundmetabolic process

5 09913: epidermal cell differentiation

Day 3 versus control

1 00279:Mphase

2 22403: cell cycle phase

3 07049: cell cycle

4 22402: cell cycle process

5 00087:Mphase ofmitotic cell cycle

Day 7 versus control

1 22403: cell cycle phase

2 09411: response toUV

3 16055:Wnt receptor signaling pathway

4 06949: syncytium formation

5 22402: cell cycle process

3
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Π π

Π

=
=
= −
=

−

+

P D A

L I P

M L L

Diag( ), diagonal matrix of node stationary probabilities,

, matrix of node transition probabilities,

( ), asymmetric Laplacian,

, Moore–Penrose pseudo–inverse of (2)

1

and the expected hitting time can be calculated as [28]:

∑ π= − + −
∈

H i j M j j M i j M i k M j k k( , ) ( , ) ( , ) ( ( , ) ( , )) ( ). (3)
k V

Figure 1.Networks for days 0 (a), 3 (b), and 7 (c). Rectangular shapewith red border denotes top five biological processes in terms of
essentiality (see table 3 for details). Red fill color denotes topfive nodeswith highest influence score (see table 2).We use the lastfive
digits from the gene ontology ID (GO:00xxxxx) as node ID.
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Tofind themost influential nodes in a network, we calculateH i j( , ) for all pairs of nodes. To satisfy the
assumption of strong connectivity of the graph, and to deal with imperfect knowledge of biological networks, for
each nodewe add a low probability (0.001) of a jump to any other node in the network. Based onH i j( , ), we
calculate for each node themedian of theMFPT to all other nodes, and treat nodes with the lowest values of this
statistic asmost influential. The results are presented in table 2.

There is a general trend of a slight increase in the lowestmedian of theMFPT score of the top five biological
processes fromdays 0 to 3, followed by a considerable decrease with the advancement of the healing process in
day 7. Also, different processes emerge asmost influential during the three different time points in the healing
process. For day 0, four out of the top five biological processes identified usingMFPT are directly related to skin
pointing to differentiation of cells in the epidermis, the outer layer of skin, which is formed by epithelial cells
including karatinocytes. In day 3,NF-κB signaling is identified and it is known to influencematrix remodeling in
wound healing [41]. In day 7, ‘response towounding’ is discovered as the secondmost influential process, and
the topfive also include processes related to immune response that is active throughfirst twoweeks of wound
healing. Interestingly, themost highly enriched processes do not end up being themost influential.

We have also usedMFPT to define essentiality of each biological process, by removing the process from the
network and evaluating the change in the averageMFPTbetween all pairs of nodes. As the graph is smaller by
one node, the times should decrease, except for processes that are highly essential for the spread of signal
through the network. Indeed, the averageMFPTdecreases by 1.05 for the day 0, 1.6 for day 3, and by 1.25 for day
7 network.However, especially for day 0 and 3, removal of some processes results in an increase of themean

Figure 2.Complementary cumulative distribution of edgeweights (a), nodeweighted in-degrees (b), and nodeweighted out-degrees
(c) for days 0, 3, and 7.

Table 2.Top five biological processes with lowestmedian ofMFPT to all other nodes. For each process, we provide the lastfive digits of its
gene ontology ID (GO:00xxxxx).

Rank Biological process Score Enrichment rank

Day 0 versus control

1 31424: keratinization 100.150 52

2 09913: epidermal cell differentiation 100.498 5

3 30216: keratinocyte differentiation 100.744 12

4 30855: epithelial cell differentiation 102.051 14

5 21545: cranial nerve development 102.621 62

Day 3 versus control

1 06358: regulation of transcription from

RNApolymerase II promoter, global 102.379 42

2 01829: trophectodermal cell differentiation 102.406 64

3 09263: deoxyribonucleotide biosynthetic process 104.560 79

4 43122: regulation of 105.045 77

I-kappaB kinase/NF-kappaB cascade 105.045 77

5 43123: positive regulation of

I-kappaB kinase/NF-kappaB cascade 105.045 61

Day 7 versus control

1 06952: defense response 89.004 42

2 09611: response towounding 89.228 47

3 45321: leukocyte activation 89.252 81

4 07169: transmembrane receptor

protein tyrosine kinase signaling pathway 89.273 50

5 02520: immune systemdevelopment 89.408 31

5
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MFPTbetween nodes (see table 3). Effects of system size onMFPTwere studied previously [24], indicating that
depending on the system class,MFPTmay convergemonotonically in the limit of infinite size of the complex
system, ormay diverge in a linear or sublinearway. The non-monotonic behaviorwe observe indicates a
substantial change in the system resulting from the node removal. As can be seen infigure 3, themeasures of
node essentiality and influence are onlymoderately correlated.

TheWnt receptor signaling pathway that is identified as themost essential in day 0 has long been known as
playing crucial role in regulatingwound healing [42]. TheNF-κB signaling pathway discovered as essential for
day 3 is known to influencematrix remodeling inwound healing [41]. The very low scores at day 7 indicate that
no single process is essential to healing at that stage.

3.Discussion

Recent studies of a wide class of undirected graphs have shown thatMFPT is highly influenced by the degree of
the target node of thewalk, and by the source-target distance [27].Our experimental results indicate that this

Table 3.Top five biological processes with positive essentiality score. For each process, we provide the lastfive digits of its gene ontology ID
(GO:00xxxxx).

Rank Biological process Score Enrichment rank

Day 0 versus control

1 16055:Wnt receptor signaling pathway 37.099 32

2 51495: positive regulation of 14.342 58

cytoskeleton organization 14.342 58

3 31344: regulation of cell projection organization 5.117 36

4 01775: cell activation 4.909 63

5 51130: positive regulation

of cellular component organization 4.236 56

Day 3 versus control

1 43122: regulation of 9.746 77

I-kappaB kinase/NF-kappaB cascade 9.746 77

2 43123: positive regulation

of I-kappaB kinase/NF-kappaB cascade 9.746 61

3 44265: cellularmacromolecule catabolic process 9.295 49

4 09057:macromolecule catabolic process 8.909 57

5 06644: phospholipidmetabolic process 8.013 38

Day 7 versus control

1 08104: protein localization 0.167 27

2 15031: protein transport 0.153 29

3 45184: establishment of protein localization 0.153 38

Figure 3.Correlation betweenMFPT-based influence and essentiality of nodes for days 0, 3 and 7.
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relationship also holds for directed, weighted graphs. As seen infigure 4, theMFPT for pairs of nodes is inversely
proportional to the sumofweights of in-edges of the target node.However, the correlation is not perfect being
expressed the best at the end of the 7-day healing period.When theMFPTs are aggregated for each source node,
the resulting node influence score does not correlate to the node’s sumofweights of in-edges (see figure 5).
Recently, a centrality score based on averageMFPT to a target nodewas proposed [29], but it is highly dependent
on the in-degree of the target node. For bioprocess networks analyzed in this study the target-based score
identifies basic cellular processes relating to cell cycle, DNA replication, and eikosanoid signaling.

In addition to node degrees, we also analyzed the relationship between source-target distance and theMFPT
for that node pair. To account for edgeweights thatmodel the probability of transitions in a randomwalk, we
identified themost probable path from source i to target j, and used the negative logarithmof the probability of
thewalk along that path as ameasure of distance, Π= − +d P v vlog ( , )ij k k k 1 , where +P v v( , )k k 1 denotes the
probability of transition from kth to +k( 1)th node on themost probable path. The results show that theMFPT
is influenced by node distance, but the effect ismuch smaller than that of the target nodeweighted in-degree (see
figure 6).

Finally, we also analyzedwhich graph quantities aremost determinant of the node essentialitymeasured as
the average increase ofMFPTupon node removal. The essentiality is inversely correlatedwith the stationary
probability π of a node in a randomwalk on the graph (see figure 7). The relationship is strong for nodes with
negative essentiality, that is, thosewhich slow down the spread of information in the network. Interestingly, this
relationship breaks down for nodes which are essential, that is, their removal increases the averageMFPT
between all nodes in the network.

Results from the experiments show that the response to awound ismore centered around several important
processes early during the healing. Observations for days 0 and 3, while differing in the specific processes that are
most influential and essential, show similar characteristics in terms of network properties. By day 7, the network
undergoes topological transition into a structure with higherweighted in- and out-degrees, andmuch lower
variability of the influence and essentiality scores across nodes. Variance of randomwalk stationary probabilities

Figure 4.Correlation between pairwiseMFPT and the sumofweights of edges incoming into the target node for days 0 (a), 3 (b), and
7 (c).

Figure 5.Node influence score in relation to node in-degree for days 0, 3 and 7.
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of nodes is also lower.While the number of enriched processes is actually growing in time, with 66, 80 and 84
processes at days 0, 3 and 7, respectively, indicating that healing is still in progress, these results show that the
contribution of the processes becomesmore evenly spread at later phases of healing.

Figure 6.Relationship between pairwise source-targetMFPT, target weighted in-degree, and source-target distance expressed as a
negative logarithmof the product of probabilities of edges along themost probable source-target path, depicted for days 0 (a), 3 (b),
and 7 (c). Each point corresponds to a source-target pair, points of the same color correspond to pairs with the same source nodes.

Figure 7.Node essentiality in relation to randomwalk stationary probability for days 0, 3, and 7.
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4. Conclusion

The paradigm for discovery andmodeling of biological systems and their pathologies shifted in the past decade
from focusing on isolated genes to pathways and networks. Knowledge about signaling or regulatory
interactions among genes or proteins improves interpretability of results from statistical analyses of data
capturedwith high-throughput techniques such asmicroarrays or next-generation sequencing. Connectivity
structure ofmolecular networks can also point to novel diagnostic or therapeutic targets, and can serve as a
regularizing factor narrowing the search space for statisticalmodels that discriminate between different states of
biological systems.However, focus onmolecular networks ignores themulti-scale nature of biological systems.
Translation of results from the level of genes and proteins to the level of tissue composed of dynamic populations
of cells atmultiple times is a challenge.

In this studywe presented an approach for translatingmolecular-level networks and experimental data into
a physiological-level network that captures interactions between biological processes.We also proposed how to
useMFPT in these directed networks tomeasure two aspects of each biological process: its influence on other
processes, and its essentiality for interactions between other processes.We demonstrated the proposed approach
by studying the progression of healing of skinwounds. The processes identified as influential or essential in our
analysis are consistent with previous knowledge of wound healing.More importantly, the aggregated analysis of
the networks for this physiological processes allowed formaking quantitative observations at the level above
individual genes or pathways.
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