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Abstract

In this study we offer an approach to network physiology, which proceeds from transcriptomic data
and uses gene ontology analysis to identify the biological processes most enriched in several critical
time points of wound healing process (days 0, 3 and 7). The top-ranking differentially expressed genes
for each process were used to build two networks: one with all proteins regulating the transcription of
selected genes, and a second one involving the proteins from the signaling pathways that activate the
transcription factors. The information from these networks is used to build a network of the most
enriched processes with undirected links weighted proportionally to the count of shared genes
between the pair of processes, and directed links weighted by the count of relationships connecting
genes from one process to genes from the other. In analyzing the network thus built we used an
approach based on random walks and accounting for the temporal aspects of the spread of a signal in
the network (mean-first passage time, MFPT). The MFPT scores allowed identifying the top influen-
tial, as well as the top essential biological processes, which vary with the progress in the healing pro-
cess. Thus, the most essential for day 0 was found to be the Wnt-receptor signaling pathway, well
known for its crucial role in wound healing, while in day 3 this was the regulation of NF-kB cascade,
essential for matrix remodeling in the wound healing process. The MFPT-based scores correctly
reflected the pattern of the healing process dynamics to be highly concentrated around several pro-
cesses between day 0 and day 3, and becoming more diffuse at day 7.

1. Introduction

Properties of random walks have previously been used in biophysics to characterize various biological processes
[1]. They have also been used as a basis of diverse numerical descriptors of chemical compounds and biological
networks [2—4] like random walk betweenness centrality [5], communicability and modular structure [6, 7], as
well as complexity measures [8—10] and descriptors used for evaluating network connections [11-13]. In the
context of biological networks, random walks have been intensively used for estimating node influence. The
influence between nodes in protein—protein interaction networks served as a way of inferring protein function
[14], finding driver mutations in cancer [ 15, 16], or finding disease-related genes [ 17]. The influence has been
defined in terms of a diffusion kernel [ 18], diffusion with loss [ 19] or a heat kernel [20]. However, the diffusion
kernel and heat kernel are both defined for undirected graphs, which reduces their use for directed networks
such as a kinase-substrate protein signaling network or gene regulatory network. More importantly, the above
measures ignore the time axis in their measurements of the spread of signal from node to node.

Mean first-passage time (MFPT) captures the progression of the random walk. In computational biology, it
has been used previously for analyzing state transition graphs in probabilistic Boolean networks to identify gene
perturbations that quickly lead to a desired state of the system [21]. It was also used in physical chemistry for

© 2015 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft


http://dx.doi.org/10.1088/1367-2630/17/2/025002
mailto:tarodz@vcu.edu
mailto:dgbonchev@vcu.edu
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/17/2/025002&domain=pdf&date_stamp=2015-02-04
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/17/2/025002&domain=pdf&date_stamp=2015-02-04
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0

I0OP Publishing

New J. Phys. 17 (2015) 025002 T Arodz and D Bonchev

finding reaction paths from a reactant to a product [22], for example to uncover the path of excitation migration
after photon absorption in the photosynthetic complex. The study of statistical properties of first-passage times
on various domains has along history in physics [23], including recent results on regimes that led to different
forms of the distribution and different behavior of the mean as the size of the complex system increases [24].
Distribution of first-passage times MFPT on undirected graphs has been well-characterized [25-27] and,
recently, it has been shown that for directed graphs, MFPT can also be obtained analytically [28, 29].

In this study, we build on those results to investigate the nodes which are influential and essential in a
network of biological processes involved in skin wound healing. Focusing on a network of biological processes is
anew direction for wound healing studies that expands on our previous in-silico analyses of healing [30-32].
Our new approach might be regarded as a computationally oriented branch of the newly open field of network
physiology [33—35] or, more generally, of the new ‘network of networks’ field [36]. While each node in network
physiology represents one of a set of interrelated experimentally characterized physiological processes, we focus
on a network linking biological processes, as defined in gene ontology [37] along with a set of genes/proteins
characteristic for the process. More specifically, we apply the MFPT method to three essential time points during
healing of skin wounds in humans to analyze the interrelation of processes involved, with emphasis on those
significantly enriched during the process of healing. Wound healing is a complex physiological process that
involves extracellular as well as intracellular signaling and remodeling in an environment composed of mixtures
of cells of different types. Operating at the level of biological processes instead of at the level of individual genes
or proteins offers a chance for a more comprehensive and compact view of the key characteristics of wound
healing.

2. Analysis of networks of biological processes

2.1. Wound-healing data and enrichment analysis

We proceeded from a gene microarray dataset that captures normal epidermal wound healing in eight human
subjects [38]. The wounds were a result of harvesting a skin graft from patients’ thigh. We analyzed three groups
of samples, representing different time points during wound healing. The first time point refers to acute wound,
and includes samples biopsied from the skin graft site right after harvesting. The second time point characterizes
the inflammatory phase of the healing process, based on samples biopsied on the third day after the skin graft
was harvested. The third time point represents the re-epithelialization phases of healing, and includes samples
biopsied on the seventh day. Samples of a biopsy of intact, unwounded skin from the graft site, collected
immediately prior to harvesting of the skin graft, serve as a control.

For all samples, we used normalized transcriptomic data captured using the Affymetrix Human Genome
U133 Plus 2.0 array. We used a t-test to detect genes up- and down-regulated in an acute wound (day 0)
compared to control, at day 3 compared to control, and at day 7 compared to control. In all three cases, we
performed enrichment analysis using 1000 top-ranking differentially expressed genes. We used the DAVID [37]
tool to obtain alist of biological processes that were enriched in the top-ranking genes, using a cut-off of p = 0.05.
We found 66, 80 and 84 biological processes enriched in the wound versus control for days 0, 3, and 7,
respectively. The top enriched processes are presented in table 1.

2.2.Network of biological processes important in wound healing

We constructed networks linking biological processes separately for bioprocesses enriched at days 0, 3 and 7.
The connectivity of the networks was based on the interactions between the genes that are involved in the
enriched processes. For each biological process, we obtained from DAVID a set of genes that are involved in the
process, and are present on our list of top-ranking differentially expressed genes for a specific day. We mapped
those genes onto two networks of different types. The TRANSFAC network [39] contains validated information
about transcription regulation. For each gene, it lists all proteins that regulate its expression by acting as
transcription factors and binding to the gene’s promoter region. The PhosphoNet network [40] captures cellular
signaling at the protein level, by providing information about kinases and the substrates they phosphorylate.
Uniting both networks is essential for capturing a comprehensive view of wound healing, a process that spans
multiple time scales, from immediate processing of stimuli through signaling involving protein—protein
interactions to slower response that involves changes in gene expression through transcription factor-DNA
regulation.

For each pair of biological processes, we counted how many regulatory and signaling interactions connect
genes from one process to genes from the other, and added a directed edge with a weight proportional to the
count. We also counted the number of genes that are present in both processes, and added weighted
bidirectional edges in both directions between each pair of such processes. Edge weights were normalized by
dividing the counts by the maximum possible number of interactions, that is, the product of the cardinalities of
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Table 1. Top five most highly enriched biological processes for days 0,
3,and 7 compared to control. For each process, we provide the process
name, and the last five digits from its gene ontology ID (GO:00xxxxx).

Enrichment rank Biological process

Day 0 versus control
1 08544: epidermis development
2 07398: ectoderm development
3 45935: positive regulation of nucleobase,
nucleoside, nucleotide and nucleic acid meta-
bolic process
4 51173: positive regulation of nitrogen com-
pound metabolic process
5 09913: epidermal cell differentiation

Day 3 versus control

00279: M phase

22403: cell cycle phase

07049: cell cycle

22402: cell cycle process

00087: M phase of mitotic cell cycle

U W N =

Day 7 versus control

22403: cell cycle phase

09411: response to UV

16055: Wnt receptor signaling pathway
06949: syncytium formation

U o W N =

22402: cell cycle process

gene sets related to both biological processes. In effect, we obtained two networks, one representing regulation
and signaling, and another representing common genes. For further analyses, we normalized both networks to
have the same total sum of weights, and merged them into a single weighted directed network of bioprocesses
enriched at a specific day of healing.

The networks obtained for days 0, 3 and 7 are dense networks, with around 50-60% pairs of processes
connected (figure 1). The underlying undirected graphs for both networks each form a single connected
component. The distribution of link strength shows few strong and many weak ones, but is more concentrated
than a power law (figure 2). The distribution of node weighted in-degrees, that is, the sum of weights of edges
going into a node, is also highly concentrated, as is the distribution of weighted out-degrees (figure 2).

2.3.Identifying influential and essential biological processes

Identification of important biological processes in a dense enrichment network is not straightforward. While the
enrichment score can point to the most enriched processes based on expression data, it does not take network
topology into account. Here, we propose the use of an approach based on random walks that also takes temporal
aspects of spread of signal over a network into account. The MFPT H (i, j), known also as expected hitting time,
from node i tojin a strongly connected, directed graph is defined as the expected number of steps it takes for a
random walker starting from node i to reach node j for the first time, where the walk is Markov chain defined by
transition probabilities resulting from the graph connectivity. The average is taken over the number of
transitions, that is, lengths L of all paths s;_, i) from i to j that do not contain a cycle involving j, with respect to
probabilities P of the paths:

H(i, j) = D) P (simp) L (sim)- (1)

S(i—j)

Compared to the shortest distance from i to j, the MFPT takes multiple paths and node degrees into
consideration. For example, paths through hub nodes increase H, since the walker has a high probability of
moving to nodes connected to the hub that are not on the shortest path to the target.

The MFPT has been well-characterized for undirected graphs [25]. Recently, it has been shown that for
directed graphs, MFPT H (i, j) can be obtained analytically in closed form given the adjacency matrix and the
vector node stationary probabilities 77 in a random walk in the graph [28]. More specifically, let A be the, possibly
weighted, adjacency matrix of a strongly connected, directed graph, D the diagonal matrix of node out-degrees,
and I the identity matrix. Then the following matrices can be defined:

3
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Figure 1. Networks for days 0 (a), 3 (b), and 7 (c). Rectangular shape with red border denotes top five biological processes in terms of
essentiality (see table 3 for details). Red fill color denotes top five nodes with highest influence score (see table 2). We use the last five
digits from the gene ontology ID (GO:00xxxxx) as node ID.

II = Diag(x), diagonal matrix of node stationary probabilities,

P=D74, matrix of node transition probabilities,
L=1(I—-P), asymmetric Laplacian,

M=1L"%, Moore—Penrose pseudo—inverse of L (2)

and the expected hitting time can be calculated as [28]:
H(i, j) = MG, j) = MGy j) + Y (M(i, k) = M (j, k))z (k). (3)

kev
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Figure 2. Complementary cumulative distribution of edge weights (a), node weighted in-degrees (b), and node weighted out-degrees
(c) for days 0, 3,and 7.

Table 2. Top five biological processes with lowest median of MFPT to all other nodes. For each process, we provide the last five digits of its

gene ontology ID (GO:00xxxxx).
Rank Biological process Score Enrichment rank
Day 0 versus control
1 31424: keratinization 100.150 52
2 09913: epidermal cell differentiation 100.498 5
3 30216: keratinocyte differentiation 100.744 12
4 30855: epithelial cell differentiation 102.051 14
5 21545: cranial nerve development 102.621 62
Day 3 versus control
1 06358: regulation of transcription from
RNA polymerase II promoter, global 102.379 42
2 01829: trophectodermal cell differentiation 102.406 64
3 09263: deoxyribonucleotide biosynthetic process 104.560 79
43122: regulation of 105.045 77
I-kappaB kinase/NF-kappaB cascade 105.045 77
5 43123: positive regulation of
I-kappaB kinase/NF-kappaB cascade 105.045 61
Day 7 versus control
1 06952: defense response 89.004 42
2 09611: response to wounding 89.228 47
3 45321:leukocyte activation 89.252 81
4 07169: transmembrane receptor
protein tyrosine kinase signaling pathway 89.273 50
5 02520: immune system development 89.408 31

To find the most influential nodes in a network, we calculate H (i, j) for all pairs of nodes. To satisfy the
assumption of strong connectivity of the graph, and to deal with imperfect knowledge of biological networks, for
each node we add a low probability (0.001) of a jump to any other node in the network. Based on H (3, ), we
calculate for each node the median of the MFPT to all other nodes, and treat nodes with the lowest values of this
statistic as most influential. The results are presented in table 2.

There is a general trend of a slight increase in the lowest median of the MFPT score of the top five biological
processes from days 0 to 3, followed by a considerable decrease with the advancement of the healing process in
day 7. Also, different processes emerge as most influential during the three different time points in the healing
process. For day 0, four out of the top five biological processes identified using MFPT are directly related to skin
pointing to differentiation of cells in the epidermis, the outer layer of skin, which is formed by epithelial cells
including karatinocytes. In day 3, NF-«B signaling is identified and it is known to influence matrix remodeling in
wound healing [41]. In day 7, ‘response to wounding’ is discovered as the second most influential process, and
the top five also include processes related to immune response that is active through first two weeks of wound
healing. Interestingly, the most highly enriched processes do not end up being the most influential.

We have also used MFPT to define essentiality of each biological process, by removing the process from the
network and evaluating the change in the average MFPT between all pairs of nodes. As the graph is smaller by
one node, the times should decrease, except for processes that are highly essential for the spread of signal
through the network. Indeed, the average MFPT decreases by 1.05 for the day 0, 1.6 for day 3, and by 1.25 for day
7 network. However, especially for day 0 and 3, removal of some processes results in an increase of the mean
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Table 3. Top five biological processes with positive essentiality score. For each process, we provide the last five digits of its gene ontology ID
(GO:00xxxxX).

Rank Biological process Score Enrichment rank

Day 0 versus control

1 16055: Wnt receptor signaling pathway 37.099 32
2 51495: positive regulation of 14.342 58
cytoskeleton organization 14.342 58
3 31344: regulation of cell projection organization 5.117 36
01775: cell activation 4.909 63
5 51130: positive regulation
of cellular component organization 4.236 56
Day 3 versus control
1 43122: regulation of 9.746 77
I-kappaB kinase/NF-kappaB cascade 9.746 77
2 43123: positive regulation
of I-kappaB kinase/NF-kappaB cascade 9.746 61
3 44265: cellular macromolecule catabolic process 9.295 49
09057: macromolecule catabolic process 8.909 57
06644: phospholipid metabolic process 8.013 38

Day 7 versus control

1 08104: protein localization 0.167 27
2 15031: protein transport 0.153 29
3 45184: establishment of protein localization 0.153 38
40
4 A day O
o day 3
30 + day7
e
8 20l
=
5 A
§ 10 a g
3 A o
2 o ié el
9 I o [mann]
2 ‘ﬁ" o “%
e
10 o 4
F
_20 1 1 1 1 [l
80 90 100 110 120 130 140
node's median MFPT to all other nodes
Figure 3. Correlation between MFPT-based influence and essentiality of nodes for days 0,3 and 7.

MFPT between nodes (see table 3). Effects of system size on MFPT were studied previously [24], indicating that
depending on the system class, MFPT may converge monotonically in the limit of infinite size of the complex
system, or may diverge in a linear or sublinear way. The non-monotonic behavior we observe indicates a
substantial change in the system resulting from the node removal. As can be seen in figure 3, the measures of
node essentiality and influence are only moderately correlated.

The Wnt receptor signaling pathway that is identified as the most essential in day 0 has long been known as
playing crucial role in regulating wound healing [42]. The NF-«B signaling pathway discovered as essential for
day 3 is known to influence matrix remodeling in wound healing [41]. The very low scores at day 7 indicate that
no single process is essential to healing at that stage.

3. Discussion

Recent studies of a wide class of undirected graphs have shown that MFPT is highly influenced by the degree of
the target node of the walk, and by the source-target distance [27]. Our experimental results indicate that this
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Figure 4. Correlation between pairwise MFPT and the sum of weights of edges incoming into the target node for days 0 (a), 3 (b), and
7 (c).

5
A dayo0
o day3
| + + day7
4._
g |
5 +
S
£ 3r %
5 1 R
2 ++
2 "_;_0-
[}
z 2r e =
12}
2 Y
] + o
Tt e 4% 4
e i Aol 4
++ Al A
++ 5&?%%%
0’ 1 + L 0 Aﬁ%l 1 . ?
80 90 100 110 120 130 140

node's median MFPT to all other nodes

Figure 5. Node influence score in relation to node in-degree for days 0,3 and 7.

relationship also holds for directed, weighted graphs. As seen in figure 4, the MFPT for pairs of nodes is inversely
proportional to the sum of weights of in-edges of the target node. However, the correlation is not perfect being
expressed the best at the end of the 7-day healing period. When the MFPTs are aggregated for each source node,
the resulting node influence score does not correlate to the node’s sum of weights of in-edges (see figure 5).
Recently, a centrality score based on average MFPT to a target node was proposed [29], but it is highly dependent
on the in-degree of the target node. For bioprocess networks analyzed in this study the target-based score
identifies basic cellular processes relating to cell cycle, DNA replication, and eikosanoid signaling.

In addition to node degrees, we also analyzed the relationship between source-target distance and the MFPT
for that node pair. To account for edge weights that model the probability of transitions in a random walk, we
identified the most probable path from source i to target j, and used the negative logarithm of the probability of
the walk along that path as a measure of distance, d;; = —log ITx P (vk, vi41), where P (vg, vi41) denotes the
probability of transition from kth to(k + 1)th node on the most probable path. The results show that the MFPT
is influenced by node distance, but the effect is much smaller than that of the target node weighted in-degree (see
figure 6).

Finally, we also analyzed which graph quantities are most determinant of the node essentiality measured as
the average increase of MFPT upon node removal. The essentiality is inversely correlated with the stationary
probability 7 of anode in arandom walk on the graph (see figure 7). The relationship is strong for nodes with
negative essentiality, that is, those which slow down the spread of information in the network. Interestingly, this
relationship breaks down for nodes which are essential, that is, their removal increases the average MFPT
between all nodes in the network.

Results from the experiments show that the response to a wound is more centered around several important
processes early during the healing. Observations for days 0 and 3, while differing in the specific processes that are
most influential and essential, show similar characteristics in terms of network properties. By day 7, the network
undergoes topological transition into a structure with higher weighted in- and out-degrees, and much lower
variability of the influence and essentiality scores across nodes. Variance of random walk stationary probabilities
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Figure 7. Node essentiality in relation to random walk stationary probability for days 0, 3, and 7.

of nodes is also lower. While the number of enriched processes is actually growing in time, with 66, 80 and 84
processes at days 0, 3 and 7, respectively, indicating that healing is still in progress, these results show that the
contribution of the processes becomes more evenly spread at later phases of healing.
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4. Conclusion

The paradigm for discovery and modeling of biological systems and their pathologies shifted in the past decade
from focusing on isolated genes to pathways and networks. Knowledge about signaling or regulatory
interactions among genes or proteins improves interpretability of results from statistical analyses of data
captured with high-throughput techniques such as microarrays or next-generation sequencing. Connectivity
structure of molecular networks can also point to novel diagnostic or therapeutic targets, and can serve as a
regularizing factor narrowing the search space for statistical models that discriminate between different states of
biological systems. However, focus on molecular networks ignores the multi-scale nature of biological systems.
Translation of results from the level of genes and proteins to the level of tissue composed of dynamic populations
of cells at multiple times is a challenge.

In this study we presented an approach for translating molecular-level networks and experimental data into
aphysiological-level network that captures interactions between biological processes. We also proposed how to
use MFPT in these directed networks to measure two aspects of each biological process: its influence on other
processes, and its essentiality for interactions between other processes. We demonstrated the proposed approach
by studying the progression of healing of skin wounds. The processes identified as influential or essential in our
analysis are consistent with previous knowledge of wound healing. More importantly, the aggregated analysis of
the networks for this physiological processes allowed for making quantitative observations at the level above
individual genes or pathways.
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