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The genus Anaplasma consists of tick-transmitted obligate intracellular bacteria that

invade white or red blood cells to cause debilitating and potentially fatal infections.

A. phagocytophilum, a human and veterinary pathogen, infects neutrophils to cause

granulocytic anaplasmosis. A.marginale invades bovine erythrocytes. Evidence suggests

that both species may also infect endothelial cells in vivo. In mammalian and

arthropod host cells, A. phagocytophilum and A. marginale reside in host cell derived

pathogen-occupied vacuoles (POVs). While it was recently demonstrated that the

A. phagocytophilum-occupied vacuole (ApV) intercepts membrane traffic from the

trans-Golgi network, it is unclear if it or the A. marginale-occupied vacuole (AmV)

interacts with other secretory organelles. Here, we demonstrate that the ApV and AmV

extensively interact with the host endoplasmic reticulum (ER) in endothelial, myeloid,

and/or tick cells. ER lumen markers, calreticulin, and protein disulfide isomerase, and

the ER membrane marker, derlin-1, were pronouncedly recruited to the peripheries of

both POVs. ApV association with the ER initiated early and continued throughout the

infection cycle. Both the ApV and AmV interacted with the rough ER and smooth ER.

However, only derlin-1-positive rough ER derived vesicles were delivered into the ApV

lumenwhere they localized with intravacuolar bacteria. Transmission electronmicroscopy

identified multiple ER-POV membrane contact sites on the cytosolic faces of both

species’ vacuoles that corresponded to areas on the vacuoles’ lumenal faces where

intravacuolar Anaplasma organisms closely associated. A. phagocytophilum is known

to hijack Rab10, a GTPase that regulates ER dynamics and morphology. Yet, ApV-

ER interactions were unhindered in cells in which Rab10 had been knocked down,

demonstrating that the GTPase is dispensable for the bacterium to parasitize the ER.

These data establish the ApV and AmV as pathogen-host interfaces that directly engage

the ER in vertebrate and invertebrate host cells and evidence the conservation of ER

parasitism between two Anaplasma species.
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INTRODUCTION

Anaplasma phagocytophilum and Anaplasma marginale are tick-
transmitted obligate intracellular bacterial pathogens of the
Family Anaplasmataceae that cause debilitating and potentially
fatal diseases (Carlyon, 2012). A. phagocytophilum infects
neutrophils to cause granulocytic anaplasmosis in humans
and animals (Truchan et al., 2013). Over the decade leading
up to 2012, the most recent year for which United States
Centers for Disease Control (CDC) statistics are available,
the number of human granulocytic anaplasmosis (HGA) cases
reported annually to the CDC rose nearly seven-fold (CDC,
2013). The disease also continues to emerge in Europe and
Asia (Truchan et al., 2013). HGA is an acute febrile illness
that can be accompanied by non-specific symptoms including
headache, malaise, myalgia, elevated liver enzymes, leukopenia,
and thrombocytopenia (Truchan et al., 2013). A. marginale is a
strict bovine pathogen that is endemic throughout the southern
Atlantic, Gulf coast, and several Midwestern and Western U. S.
states, as well as Mexico, Central and South America, and the
Caribbean Islands. It infects erythrocytes, which can result in
anemia, weight loss, reduced growth, and milk production, and
abortion in pregnant cattle (Kocan et al., 2010; Suarez and Noh,
2011). Following resolution of acute disease, bovine anaplasmosis
can remain chronic for the life of the animal and is estimated to
cost the U.S. and South American cattle industries hundreds of
millions of dollars each year (Kocan et al., 2003; Suarez and Noh,
2011).

A. phagocytophilum and A. marginale replicate within
host cell-derived vacuoles (Carlyon, 2012). Both will infect
mammalian and tick cell lines, including human promyelocytic
HL-60 cells (A. phagocytophilum only), Ixodes scapularis
embryonic ISE6 cells (both Anaplasma spp.), and primate
RF/6A endothelial cells (both species) (Goodman et al., 1996;
Woldehiwet et al., 2002; Munderloh et al., 2004; Zivkovic et al.,
2009). RF/6A cells are particularly useful models for studying
the cellular microbiology of these bacteria because they are large
and flat, making them ideal for imaging (Munderloh et al.,
2004; Sukumaran et al., 2011; Beyer et al., 2014; Truchan et al.,
2016). Moreover, A. phagocytophilum and A. marginale have
been detected in endothelial cells of tissue sections recovered
from experimentally infected animals (Herron et al., 2005;
Wamsley et al., 2011). During growth in tissue culture cells, both
Anaplasma spp. cycle between a dense-cored (DC) morphotype
that binds and invades host cells and a reticulate cell (RC)
morphotype that replicates inside the pathogen-occupied vacuole
(POV) (Munderloh et al., 2004; Troese and Carlyon, 2009). Like
many professional vacuolar bacterial pathogens (Brumell and
Scidmore, 2007; Sherwood and Roy, 2013), A. phagocytophilum
selectively recruits a subset of Rab GTPases to its vacuole
(Huang et al., 2010a). We recently reported that one such
GTPase, Rab10, is critical for the pathogen to parasitize exocytic
traffic from the trans-Golgi network (Truchan et al., 2016).
Whether the A. phagocytophilum-occupied vacuole (ApV) or
A. marginale-occupied vacuole (AmV) hijacks other arms of
the secretory pathway in mammalian or tick host cells is
unknown.

Nascent proteins that are destined for either secretion or
for the plasma membrane, secretory, or endocytic organelles
are first translocated into the endoplasmic reticulum (ER)
where they are processed and subjected to quality control.
Once thought of as a single large organelle, the ER is actually
an assemblage of several membrane domains—the ribosome
studded rough ER (RER), smooth ER (SER), mitochondria
associated membrane (MAM), ER exit sites (ERESs), and ER
quality control compartment (ERQC) (Lynes and Simmen,
2011; Benyair et al., 2015). Proteins are synthesized, N-
terminally glycosylated, and translocated into the RER. Here, the
glycoproteins are initially processed and begin the quality control
process wherein they are cycled among the RER, SER, MAM, and
ERQC. Properly folded secretory glycoproteins are segregated
into ERESs, transported to the ERGIC (ER-to-Golgi intermediate
compartment) and subsequently to the Golgi. In the ERQC,
terminally misfolded glycoproteins are targeted for ER associated
degradation (ERAD), a process by which the misfolded proteins
are retrotranslocated to the cytosol, where they are degraded by
the ubiquitin proteasome system (Benyair et al., 2015).

Rab10, which is important for A. phagocytophilum TGN
parasitism (Truchan et al., 2016), not only directs exocytic traffic
from the TGN (Liu and Storrie, 2012) but also regulates ER
dynamics andmorphology (English andVoeltz, 2013).Moreover,
Rab1, a GTPase that directs vesicular traffic from the ER to the
Golgi apparatus (Stenmark, 2009), is also recruited to the ApV
(Huang et al., 2010a). Given these phenomena, the paucity of
information on AmV-host cell interactions, and the dearth of
knowledge on the cellular microbiology ofAnaplasma spp. in tick
cells, we investigated if the ApV and AmV engage the ER during
infection of mammalian and tick host cells. Our data reveal
that both POVs interact with the ER and that derlin-1-positive
vesicles are delivered into their lumen. Thus, the ability to hijack
the secretory pathway is conserved between A. phagocytophilum
and A. marginale.

MATERIALS AND METHODS

Cultivation of Uninfected and Anaplasma

spp. Infected Cell Lines
Uninfected and A. phagocytophilum (NCH-1 strain)-infected
human promyelocytic HL-60 cells (CCL-240; American Type
Culture Collections [ATCC, Manassas, VA]), RF/6A rhesus
monkey choroidal endothelial cells (CRL-1780, ATCC), and
ISE6 cells were cultured as described (Huang et al., 2010a,
2012; Beyer et al., 2014). A. marginale (St. Maries strain)-
infected RF/6A cells and uninfected and A. marginale infected
ISE6 cells were gifts from Ulrike Munderloh (University of
Minnesota, Minneapolis, MN). A. marginale infected ISE6 cells
were cultured identically to A. phagocytophilum infected ISE6
cells. A. marginale infected RF/6A cells were maintained in
25 cm2 cell culture flasks as follows. When > 80% of the cells had
lysed and themedia contained infectiousA.marginale organisms,
5ml of the bacteria laden media was transferred to a 25 cm2

cell culture flask containing naïve RF/6A cells that were nearly
confluent. Uninfected RF/6A cells were grown to near confluency
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in 25 cm2 cell culture flasks. Human embryonic kidney HEK-
293T cells were cultured in Dulbecco’s Modified Eagle’s Medium
with L-Glutamine, 4.5 g/L D-Glucose, and 100 mg/L sodium
pyruvate (DMEM; Invitrogen, Carlsbad, CA) supplemented with
10% fetal bovine serum (FBS), 1X MEM Non-Essential Amino
Acids (Invitrogen), and 15mM HEPES (4-(2-hydroxyethyl)-1-
piperazineethanesulfonic acid) (Affymetrix, Cleveland, OH) at
37◦C with 5% CO2.

Immunofluorescence Microscopy and
Western Blot
Cells for immunofluorescence assays were grown and infected
on #1½12 × 12-mm glass coverslips for laser-scanning
confocal microscopy (LSCM; Electron Microscopy Sciences,
Hatfield, PA) or #1½HP (i.e., 0.17 ± 0.005mm thick) high
performance glass coverslips (Zeiss, Thornwood, NY) for
structured illumination microscopy (SIM). The cells were fixed
in 4% paraformaldehyde (Electron Microscopy Sciences) for
30min followed by permeabilization with 0.5% Triton X-100
for 10min. Immunofluorescence labeling was performed as
previously described (Beyer et al., 2014). For LCSM, coverslips
were mounted with Prolong Gold Anti-fade reagent with
DAPI (4′,6-diamidino-2-phenylindole, Invitrogen) and images
were obtained using a Zeiss LSM 700 laser-scanning confocal
microscope. Three-dimensional rendering and movies were
generated using Volocity Image Analysis Software (PerkinElmer,
Waltham, MA). For SIM, coverslips were stained with 1µg/mL
DAPI in 1X PBS for 5min and mounted with Prolong Gold Anti-
fade reagent lacking DAPI (Invitrogen). Images were obtained
using a Nikon N-SIM super resolution microscope. Lysates of
HL-60 cells, host cell-free A. phagocytophilum organisms, or
gradient centrifugation fractions were analyzed by SDS-PAGE
and Western blot as described (Troese et al., 2011). Primary
antibodies used for immunofluorescence and Western blot
analyses targeted calreticulin (Sigma-Aldrich, St. Louis, MO),
derlin-1 (Sigma-Aldrich and Santa Cruz Biotechnologies [Santa
Cruz, CA])), protein disulfide-isomerase (PDI; Sigma-Aldrich),
kinectin-1 (Sigma-Aldrich), reticulon-4 (LifeSpan Biosciences
Inc, Seattle, WA), A. phagocytophilum APH0032 (Huang et al.,
2010b), A. phagocytophilum P44 (Huang et al., 2010b), and
A. marginale major surface protein 5 (Msp5) (Visser et al., 1992)
(monoclonal antibody clone AnaF16c1, kindly provided by
Beverly Hunter and Guy Palmer, Washington State University,
Pullman, WA). Alexa Fluor fluorochrome- or horseradish
peroxidase-conjugated secondary antibodies were obtained from
Invitrogen or Cell Signaling, respectively.

Infection Assays
HL-60 cells were infected with A. phagocytophilum DC
organisms released from infected HL-60 cells by sonication
as described (Seidman et al., 2015). ISE6 cells were infected
with A. phagocytophilum and A. marginale as described for
A. phagocytophilum (Huang et al., 2012). RF/6A cells were
infected with A. phagocytophilum and A. marginale organisms
that had been naturally released from infected RF/6A cells
into the culture media as follows. Adherent host cells to be
infected were seeded onto #1½12 × 12-mm glass coverslips

(Electron Microscopy Sciences) and overlaid with 200µl of
A. phagocytophilum or A. marginale laden media from heavily
infected RF/6A cells. Twenty four-well plates containing the
coverslips and bacteria laden media were centrifuged at 1000
g for 3min to spin the bacteria onto the host cell surfaces
followed by a 1 h incubation at 37◦C with 5% CO2. The cells
were washed with 1X PBS to remove unbound bacteria and fresh
media was added. The cells were returned to 37◦C with 5%
CO2 for various time periods, after which they were fixed in 4%
PFA and examined using immunofluorescence microscopy. To
assess the effect of ectopic overexpression of mCherry-derlin-1
on theA. phagocytophilum load, HEK-293T cells were transfected
with plasmids to enable expression of mCherry-derlin-1 (Nery
et al., 2011) (a kind gift from Xandra O. Breakefield [Harvard
Medical School, Boston, MA] and Iona A. Armata [Florida State
University, Tallahassee, FL]), mCherry (mCherry2-C1 plasmid
#54563; originally fromMichael Davidson; Addgene, Cambridge,
MA) or mock-transfected as previously described (VieBrock
et al., 2014) for 6 h followed by incubation with host cell-free
A. phagocytophilum organisms for 8 or 24 h prior to processing
for LSCM analysis. Alternatively, HEK-293T cells were first
infected with A. phagocytophilum or mock infected, transfected
for 6 h, and processed for LSCM analysis.

Density Gradient Centrifugation
2× 107 uninfected or infected HL-60 cells were washed with ice-
cold 1x PBS twice followed by one wash in cold homogenization
buffer (250mM sucrose, 10mM Tris-HCl, pH 7.4,1mM EDTA).
The cells were suspended in 1mL ice-cold homogenization
buffer with protease inhibitors (Roche, Indianapolis, IN) and
homogenized in a type B dounce homogenizer (Gerresheimer
Kimble Chase LLC, Vineland, NJ) for approximately 30 strokes
until > 90% of the host cells were lysed, as verified by the trypan
blue exclusion assay. The homogenate was centrifuged at 500
g for 5min to remove nuclei and unbroken cells. The post-
nuclear supernatant was overlaid on a 5, 15, 25% continuous
Opti-prep (Sigma-Aldrich) gradient and centrifuged at 200,000
g for 3 h in an Optima XE-100 ultracentrifuge (Beckman
Coulter, Indianapolis, IN). Twelve 1-ml fractions were collected
and concentrated by trichloroacetic acid precipitation. Equal
volumes of fractions 1–9 wereWestern blotted and screened with
calreticulin and P44 antibodies.

siRNA Knock Down
4 × 105 HEK-293 cells were seeded onto #1½12 × 12-mm
glass coverslips (Electron Microscopy Sciences). After 16–20 h,
80 ul of 5 uM ON-TARGETplus human Rab10 or derlin-1
siRNA SMARTpool or non-targeting siRNA (GE Dharmacon,
Lafayette, CO) was mixed with 320 ul of media and added to the
wells. After 72 h, 200 ul of media containing A. phagocytophilum
organisms that had been released from infected RF/6A cells was
added and the bacteria were spun onto the cells as described
above. At 24 or 48 h post-infection, cells were harvested for
Western blot analysis to confirm knockdown, processed for
microscopy analyses, or processed for quantitative PCR (QPCR)
analyses as described previously (Truchan et al., 2016). Statistical
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significance (P < 0.05) was evaluated using the Prism 5.0
software package (Graphpad, San Diego, CA).

RESULTS

A. phagocytophilum-Occupied Vacuoles
(ApVs) Interact with the Host ER
To investigate if ApVs engage the host ER, A. phagocytophilum
infected RF/6A cells were fixed, screened with antibodies specific
for the ER lumen markers, calreticulin and PDI (Benham,
2012), and examined by LSCM. Both antibodies revealed a
characteristic ER network-like pattern in uninfected and infected
cells (Figure 1A). Calreticulin and PDI were considerably
enriched in patch-like patterns at the peripheries of ApVs.
To determine when ApV-ER association occurs, RF/6A cells
were synchronously infected and examined at multiple post-
infection time points using antibodies against calreticulin and
APH0032, an A. phagocytophilum vacuolar membrane marker
that the bacterium expresses predominantly late during the
infection cycle (Huang et al., 2010b). As expected (Huang
et al., 2010b), APH0032-positive vacuoles were most abundantly
detected at 24 and 32 h (Figure 1B), validating that the infection
cycle had proceeded normally. For time points at which
APH0032 was not detectable, ApVs were readily visualized
due to the presence of DAPI stained bacteria within them.
Calreticulin accumulated around all ApVs beginning at 4 h and
remained associated throughout the remainder of the time course
(Figures 1B,C). To assess for ApV-ER interactions in another
mammalian host cell line, uninfected or A. phagocytophilum
infected HL-60 cells were fractionated by a continuous density
gradient fractionation method that keeps the ApV intact (Niu
et al., 2012). Western blot analysis revealed altered distribution
of calreticulin in the fractions of infected vs. uninfected cells, as
the ER marker pronouncedly co-migrated to fractions in which
the A. phagocytophilum outer membrane protein, P44 (Truchan
et al., 2013), was most abundant (Figure 1D). This observation
was similar to our previously reported finding that the trans-
Golgi marker, TGN46, but not cis-Golgi marker, GM130, is
specifically redistributed to ApV containing fractions. Together,
these data demonstrate that the ApV associates with the host
ER early and maintains this association throughout the infection
cycle.

Derlin-1-Positive ER Derived Vesicles are
Delivered into the ApV Lumen Where They
Associate with A. phagocytophilum

Organisms
Given that two ER lumen markers accumulate around the
ApV, it was next assessed if the ER membrane associated
protein, derlin-1, exhibited a similar recruitment pattern. Derlin-
1 is an ER resident protein that is recruited to the ERQC
to form part of a membrane-associated complex that directs
terminally misfolded proteins to the cytosol for ERAD (Benyair
et al., 2015). Derlin-1 displayed a vesicular labeling pattern
that, analogous to that observed for calreticulin and PDI,
accumulated around ApV peripheries (Figures 2A,B). Notably,
derlin-1 signal was also detected within ApVs in close proximity

to DAPI-stained A. phagocytophilum organisms. To more closely
examine the possible delivery of derlin-1 positive vesicles into
the ApV lumen, a representative APH0032-positive ApV was
subjected to z-section image analysis and three-dimensional
(3D) rendering. Derlin-1-positive vesicles were observed in close
proximity to intravacuolar bacteria within the ApV throughout
the stack of z-section images (Figures 2C,D; Supplementary
Movie 1). The timing of derlin-1-positive vesicle localization
to and within ApVs was similar to that of calreticulin
and PDI immunolabeling of the cytosolic face of the ApV
(Figure 1B), as both were modest at 4 h and considerably
more pronounced at all subsequent time points examined
(Figures 2E,F).

Derlin-1 Immunolabeling of Intravacuolar
A. phagocytophilum Bacteria is Specific
and is Reproducible among Different
Derlin-1 Antibodies
To ensure that derlin-1 immunolabeling of intravacuolar
A. phagocytophilum organisms was not due to cross-reactivity
of the antibody with a bacterial protein, anti-derlin-1 was used
to probe Western blotted lysates of uninfected HL-60 cells and
host cell-free A. phagocytophilum bacteria. A single band of
the expected size for derlin-1 (22 kDa) was detected for the
HL-60 cell sample, while no band was detected for the A.
phagocytophilum sample (Figure 3A). Stripping and reprobing
the blot with ß-actin and P44 antibodies confirmed sample
purity. As a complementary approach, derlin-1 expression was
knocked down in HEK-293T cells using siRNA. HEK-293T cells
were necessary for this purpose because they not only support
A. phagocytophilum infection, but also are highly amenable
to transfection, whereas RF/6A and HL-60 cells are not (Niu
et al., 2012; Beyer et al., 2014; Truchan et al., 2016). HEK-
293T cells treated with derlin-1-targeting or non-targeting siRNA
were infected with A. phagocytophilum followed by Western
blot analysis using derlin-1 antibody at 24 h post-infection.
Uninfected HEK-293T cells were included as a control. If derlin-
1 antibody non-specifically recognized an A. phagocytophilum
protein, then knocking down host cell derlin-1 would have no
effect on the antibody’s ability to recognize the cross-reactive
bacterial protein. As observed for HL-60 cells, the antibody
detected a single band of the expected size for derlin-1 in
all three samples. The band of interest was in considerably
lower abundance in the infected, derlin-1 siRNA treated sample
(Figure 3B). To verify that the ability to immunolabel A.
phagocytophilum organisms was not unique to the derlin-1
antibody that had been used for all experiments performed thus
far, indirect immunofluorescence analyses of A. phagocytophilum
infected RF/6A cells were repeated to compare this antibody
alongside a second derlin-1 antibody purchased from a different
company. The immunolabeling patterns of the host cell ER
and intravacuolar bacteria were comparable for both antibodies
(Figure 3C). Taken together, these data confirm that derlin-1
antibody labeling of A. phagocytophilum organisms within the
ApV is not due to cross-reactivity and is reproducible for two
separate derlin-1 antibodies.
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FIGURE 1 | The ApV engages the host ER throughout A. phagocytophilum infection of mammalian host cells. (A) ER markers localize to and within the ApV

in mammalian cells. A. phagocytophilum infected RF/6A cells that had been screened with antibodies against calreticulin or PDI were visualized using LSCM. (B) The

ER is recruited to the ApV early and the association is retained throughout the course of infection. RF/6A cells that had been synchronously infected with

A. phagocytophilum organisms were screened with antibodies against calreticulin and the pathogen derived ApV membrane protein, APH0032, and examined at

several post-infection time points using LSCM. (A,B) Host cell nuclei and bacterial DNA were stained with DAPI (blue). The regions that are demarcated by hatched

lined boxes indicate the regions magnified in the insets that are demarcated by solid lined boxes. Scale bars, 5µm. (C) Percentages of calreticulin-positive ApVs, as

identified by DAPI stained intravacuolar A. phagocytophilum bacteria, over the course of a synchronous infection. Data are the means and standard deviations for

triplicate samples. (D) Calreticulin cofractionates with A. phagocytophilum organisms. Uninfected (U) or A. phagocytophilum-infected HL-60 cells (I) were

homogenized and the post-nuclear supernatants were separated by density gradient centrifugation. Successive one-ml fractions were analyzed by Western blot using

antibodies against calreticulin and the A. phagocytophilum major surface protein, P44. Results shown are representative of two experiments with similar results.

Ectopically Expressed mCherry-Derlin-1 is
Delivered into the ApV, but Inhibits Its
Development
As an additional means of confirming that derlin-1 associates
with intravacuolar A. phagocytophilum organisms, HEK-293T
cells were transfected to express mCherry-tagged derlin-
1 or mCherry alone and subsequently infected. At 24 h,
mCherry was diffusely distributed throughout the cytosol
and nuclei of transfected cells, but not in the ApV lumen
(Figure 4A). mCherry-derlin-1 signal exhibited a reticulate-
like pattern reminiscent of the ER, as previously described
(Nery et al., 2011), and also labeled DAPI-stained intravacuolar
A. phagocytophilum bacteria. Notably, however, ApVs were
considerably smaller both in diameter and in number in cells
expressing mCherryl-derlin-1 as compared to cells expressing
only mCherry or mock-infected cells. This result was consistent
whether the cells were transfected prior to or after infection.
Thus, fluorescently-tagged overexpressed derlin-1 is delivered

into the ApV lumen and associates with A. phagocytophilum
bacteria. However, ApV development is pronouncedly hampered
in these cells. We rationalized that derlin-1 may become
detrimental to A. phagocytophilum at higher levels. We further
hypothesized that if derlin-1 negatively influences the bacterium,
then knocking down derlin-1 levels would lead to higher
A. phagocytophilum loads. Indeed, QPCR analyses of HEK-293T
cells that had been treated with derlin-1 or non-targeting siRNA
prior to infection confirmed that the A. phagocytophilum load
was higher, albeit insignificantly, in cells in which derlin-1 had
been knocked down (Figure 4B). This result indirectly suggests
that derlin-1 and cellular processes that it regulates may be
detrimental to A. phagocytophilum intracellular growth.

A. marginale-Occupied Vacuoles (AmVs)
Engage the ER
To determine if the ability to interface with the ER is conserved
in the genus Anaplasma, the above analyses were extended

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5 March 2016 | Volume 6 | Article 22

http://www.frontiersin.org/cellular_and_infection_microbiology
http://www.frontiersin.org
http://www.frontiersin.org/cellular_and_infection_microbiology/archive


Truchan et al. Two Anaplasma spp. Engage the ER

FIGURE 2 | Derlin-1-positive ER vesicles are delivered into the ApV lumen where they associate with A. phagocytophilum organisms. (A–D)

Derlin-1-positive vesicles are present within the ApV. A. phagocytophilum infected RF/6A cells were screened with antibodies against derlin-1 (A) or derlin-1 and

APH0032 (B) and visualized using LSCM. (C) Z-stack series shows derlin-1-labeled vesicles within the ApV. Successive focal planes of the region in (B) that is

demarcated by a hatched line box are presented. (D) 3D rendering of the Z-stack series presented in (C) shows derlin-1-positive vesicles encasing

A. phagocytophilum organisms within the vacuole. (E) Derlin-1-positive vesicles are recruited to and delivered into the ApV early and continue to detected within the

ApV throughout the course of infection. RF/6A cells that had been synchronously infected with A. phagocytophilum organisms were screened with antibodies against

derlin-1 and APH0032 and visualized at several post-infection time points using LSCM. (A,E) Regions that are demarcated by hatched lined boxes correspond to the

regions magnified in the insets that are demarcated by solid lined boxes. (A–E) Host cell nuclei and bacterial DNA were stained with DAPI (blue). Scale bars, 5µm.

(F) Percentages of ApVs in which derlin-1 signal is detectable within the lumen closely associated with intravacuolar A. phagocytophilum organisms over the course of

a synchronous infection. Data are the means and standard deviations for triplicate samples. Results in all panels are representative of two experiments with similar

results.

to A. marginale infected RF/6A cells. Calreticulin and PDI
pronouncedly accumulated at the peripheries of AmVs
(Figure 5A). Derlin-1-positive vesicles were detected around
and within AmV lumen in close proximity A. marginale
organisms (Figures 5B,C). Z-stack analysis and 3D rendering
of a representative AmV from infected cells that had been
stained with DAPI and labeled with antibodies against

derlin-1 and the A. marginale OMP, Msp5 (Visser et al.,
1992), confirmed delivery of ER-derived vesicles into the
AmV and their association with the bacteria (Figures 5C–E;
Supplementary Movie 2). Thus, identical to that observed
for the ApV, the AmV interacts with the ER in mammalian
host cells and ER derived vesicles are translocated into its
lumen.
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FIGURE 3 | Derlin-1 immunolabeling of intravacuolar A. phagocytophilum bacteria is specific and is reproducible among different derlin-1 antibodies.

(A,B) Derlin-1 antibody does not cross-react with any A. phagocytophilum protein. Western blotted lysates of uninfected HL-60 cells and host cell-free A.

phagocytophilum (Ap) bacteria (A) or A. phagocytophilum infected derlin-1 siRNA treated (Der1), non-targeting siRNA treated (NT), or uninfected, untreated (U) control

HEK-293T cells (B) were probed with antibodies against derlin-1, A. phagocytophilum P44, or ß-actin. (C) Two different derlin-1 antibodies produce comparable

immunolabeling patterns of the host cell ER and intravacuolar A. phagocytophilum organisms. A. phagocytophilum and/or uninfected RF/6A cells were screened with

derlin-1 antibodies obtained from two different commercial sources. Scale bars, 5µm. Results shown are representative of two experiments with similar results.

Anaplasma spp.-Occupied Vacuoles
Interact with Both the RER and SER, and
RER Derived Vesicles are Delivered into
the ApV Lumen
Because antibodies specific for markers of both the RER and
SER were used in the above analyses, it was unclear if the
ApV and AmV engage one or both of these compartments.
Therefore, RF/6A cells infected with either bacterium were
screened with antibodies against kinectin-1 or reticulon-4, which
are found on the membranes of the RER and SER, respectively
(Lynes and Simmen, 2011; Terasaki et al., 2013). Both markers
pronouncedly localized in aggregate patterns around ApVs
and AmVs (Figure 6). Vesicles positive for kinectin-1, but not
reticulon-4 were detected within the ApV in close apposition to
DAPI-stained A. phagocytophilum organisms. Neither kinectin-
1 nor reticulon-4 were detected within the AmV. Thus, the
ApV and AmV associate with both the SER and RER, but only
RER-derived vesicles are translocated into the ApV lumen.

Structured Illumination Microscopy
Analyses Confirm That ER Derived Vesicles
are Present in Anaplasma spp.-Occupied
Vacuoles and Associate with Intravacuolar
Bacteria
LSCM analyses suggested that ER derived vesicles are present
within the ApV and AmV intravacuolar bacteria. However,
because LSCM has a lateral resolution of approximately 200 nm,
structures that are separated by less than 200 nm in the XY plane
appear as single fused objects (Allen et al., 2014).Within cells, and
presumably within POVs, macro-molecular associations occur in
spatial distances of less than 200 nm. To more accurately evaluate

if ER derived vesicles associate with intravacuolar Anaplasma
spp. organisms, structured illumination microscopy (SIM), a
form of super-resolution microscopy that has a lateral resolution
of approximately 100 nm (Allen et al., 2014), was employed.
Similar to that observed via LSCM, SIM imaging detected
signals for calreticulin and derlin-1 as vesicle-like patterns that
accumulated around the peripheries of clusters of DAPI-stained
A. phagocytophilum and A. marginale bacteria (Figure 7), which
were presumably within POVs. Moreover, derlin-1 signal also
pronouncedly colocalized with bacteria-associated DAPI signals.
These data verify that derlin-1-positive ER derived vesicles are
within 100 nm of the surfaces of A. phagocytophilum and A.
marginale organisms within POVs.

A. phagocytophilum- and
A. marginale-Occupied Vacuoles Interact
with the ER in Tick Cells
Because A. marginale and A. phagocytophilum are tick-
transmitted pathogens, it was examined if their POVs interact
with the ER in ISE6 tick cells. There is a paucity of commercial
antibodies against I. scapularis proteins. A BLAST (basic local
alignment tool) search revealed that the linear epitopes of
human calreticulin and PDI recognized by the commercial
antibodies used in this study are present in the I. scapularis
orthologs of these proteins (data not shown). Uninfected and
A. phagocytophilum- or A. marginale-infected ISE6 cells were
subjected to LSCM analyses using these antibodies together
with antibody specific for APH0032 (for A. phagocytophilum)
or Msp5 (for A. marginale). Both ER markers exhibited the
expected perinuclear and network-like pattern in uninfected
cells (Figure 8C). In infected cells, calreticulin- and PDI-labeled
vesicles were pronouncedly enriched around ApVs and AmVs
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FIGURE 4 | Ectopically overexpressed mCherry-derlin-1 is delivered

into and inhibits development of the ApV, and knocking down derlin-1

increases the A. phagocytophilum bacterial load. (A) mCherry-derlin-1 is

delivered into the ApV, associated with intravacuolar A. phagocytophilum

bacteria, and inhibits ApV development. HEK-293T cells transfected to

express mCherry, mCherry-derlin-1, or mock-transfected were incubated with

A. phagocytophilum. At 24 h, the cells were fixed, stained with DAPI, and

visualized using LSCM. The white arrow in (A) denotes a small

mCherry-derlin-1-positive ApV. Scale bars, 0.5µm. (B) The A.

phagocytophilum load is increased in derlin-1 siRNA-treated cells. HEK-293T

cells were treated with derlin-1-targeting or non-targeting (NT) siRNA for 72 h.

Following siRNA treatment, the cells were infected with A. phagocytophilum

for 24 h and total DNA was isolated and subjected to QPCR analysis.

and also colocalized with Anaplasma organisms within both
POV types (Figures 8A,B). Thus, A. phagocytophilum and
A. marginale establish interactions with the ER in not only
vertebrate, but also invertebrate host cells.

Ultrastructural Analyses of
A. phagocytophilum- and
A. marginale-Occupied Vacuole
Interactions with the ER
To investigate the interactions of Anaplasma spp.-occupied
vacuoles with the ER at the ultrastructural level, host cells

infected with either species were examined by transmission
electron microscopy. As previously reported (Niu et al.,
2012), autophagosomes were observed closely apposed to
ApVs and autophagic bodies were observed within ApVs in
A. phagocytophilum infected HL-60 cells (Figures 9A–C,G,I).
ApVs (Figure 9A) and AmVs (Figures 10A–D) were observed
in close proximity to ribosome studded RER sheets and
the RER formed contacts with and/or wrapped portions of
both POV types (Figures 9A–C, 10A–D). Sites where the
RER formed contacts on the POV membrane’s cytosolic face
corresponded with where RCs were closely apposed to the POV
membrane’s lumenal face (Figures 9A,C, 10A–D). Membrane
bound vesicles were commonly observed within ApV and AmV
lumen in close proximity to bacteria (Figures 9G–I, 10A–C). A.
phagocytophilum organisms were occasionally observed wrapped
by membranes (Figures 9F,G). The cytosolic faces of ApVs
(Figures 9D,E) and AmVs (Figures 10A–D) were often studded
with ribosomes. While it could not be ruled out that these
were cytosolic ribosomes, the data presented thus far suggested
that they were likely derived from the RER and possibly
signify ER-Anaplasma spp.-occupied vacuole membrane fusion.
Alternatively, the inability to detect a RER sheet in such instances
could simply be due to the thin section nature of the sample. In
both A. phagocytophilum infected HL-60 cells (Figure 9B) and
A. marginale infected ISE6 cells (Figures 10C,D), POVs were
commonly observed butted up against the nucleus, phenomena
that are potentially related to these pathogens’ ER tropism, given
that the ER membrane is continuous with the nuclear membrane
(Puhka et al., 2012). These data substantiate the association of
the ER with A. phagocytophilum- and A. marginale-occupied
vacuoles, suggest potential fusion of and/or synapse formation
between POV and ER membranes, and evidence the presence
of vesicles and membranes within POVs in close proximity to
bacteria.

Association of the Apv with the ER is
Rab10-Independent
Among the Rab GTPases that A. phagocytophilum selectively
recruits to its vacuole are Rab10 and Rab1, both of which
are ER associated (Stenmark, 2009; Huang et al., 2010a;
English and Voeltz, 2013). Whereas, Rab10 is abundantly
detected on ApVs, Rab1 is considerably less so (Huang
et al., 2010a). To determine if the association between the
ApV and ER is Rab10-dependent, ER recruitment to the
ApV was assessed in HEK-293T cells that had been treated
with Rab10 or non-targeting siRNA. Rab10 knockdown was
confirmed by Western blot (Figure 11A). Despite multiple
attempts, Rab1 could not be knocked down. As previously
reported (English and Voeltz, 2013), Rab10-depletion resulted
in altered ER morphology. The organelle had lost its network
appearance and instead displayed regions of expansive cisternae
(Figure 11B). No difference in calreticulin accumulation at the
ApV periphery or the abundant detection of derlin-1 within
the ApV lumen was observed between Rab10 knockdown
and control cells (Figure 11B). Thus, A. phagocytophilum
does not require Rab10 to establish interactions with the ER
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FIGURE 5 | AmVs interact with the ER in mammalian host cells. (A,B) The AmV interacts with the ER and ER-derived vesicles are delivered into its lumen. A.

marginale infected RF/6A cells were screened with antibodies against calreticulin (A), PDI (A), or derlin-1 (B). The regions that are demarcated by hatched lined boxes

indicate the regions magnified in the insets that are demarcated by solid lined boxes. (C–E) Derlin-1-positive vesicles are present within the AmV in close association

with A. marginale bacteria. A. marginale infected RF/6A cells were screened with antibodies against derlin-1 and Msp5 and visualized using LSCM. (D) Z-stack series

shows derlin-1-labeled vesicles within the AmV. Successive focal planes of the region in (C) that is demarcated by a hatched line box are presented. (E) 3D rendering

of the Z-stack series presented in (D) shows derlin-1-positive vesicles in close proximity to intravacuolar A. marginale organisms. Host cell nuclei and bacteria were

stained blue with DAPI. Scale bars, 5µm. Results shown are representative of two experiments with similar results.

or to facilitate translocation of ER-derived vesicles into its
vacuole.

DISCUSSION

In this study, we demonstrated that the ApV and AmV engage
the ER and that ER derived vesicles are delivered into their

lumen in mammalian and tick host cells. This strategy is likely
important to Anaplasma spp. intracellular survival, as it is
initiated in the early hours following the bacterial entry event
that generates the POV and continues throughout the entirety
of the infection cycle. The delivered vesicles are positive for
derlin-1, an ER membrane-associated protein that pronouncedly
localizes to the ERQC dynamically and on demand during
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FIGURE 6 | ApVs and AmVs interact with both the RER and SER. Uninfected, A. phagocytophilum infected, or A. marginale infected RF/6A cells were screened

with antibodies targeting kinectin-1 or reticulon-4, which are markers for the RER and SER, respectively, and examined using LSCM. Host nuclei and bacterial DNA

were stained with DAPI. Scale bars, 5µm. Results shown are representative of two experiments with similar results.

FIGURE 7 | SIM analyses confirm that calreticulin- and derlin-1-positive vesicles are present in the ApV and AmV lumen in close proximity to

intravacuolar Anaplasma spp. bacteria. A. phagocytophilum (A) and A. marginale infected RF/6A cells (B) that had been screened with antibodies against

calreticulin or derlin-1 were examined by SIM. The regions in the Merge panels that are demarcated by hatched line boxes indicate the regions that are magnified in

the Enlargement panels. Host cell nuclei and bacterial DNA were stained with DAPI (blue). Scale bars, 5µm. Results shown are representative of two experiments with

similar results.
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FIGURE 8 | ApVs and AmVs associate with the ER in ISE6 tick cells. Uninfected (C), A. phagocytophilium- (A), or A. marginale-infected ISE6 tick cells (B) were

labeled with antibodies against either calreticulin or PDI in combination with APH0032 (for A. phagocytophilum) or Msp2 (for A. marginale) and examined using LSCM.

Host nuclei and bacteria were stained blue with DAPI. Scale bars, 5µm. Results shown are representative of two experiments with similar results.

ER stress (Lederkremer, 2009; Groisman et al., 2011; Leitman
et al., 2014; Benyair et al., 2015). This suggests that the bacteria
may selectively hijack membrane traffic from the ERQC. Rab10
is important for vesicular trafficking from the TGN, for ER
membrane dynamics, and for maintaining ER morphology,
but has not been implicated in ERQC formation or function
(Liu and Storrie, 2012; English and Voeltz, 2013). Consistent
with this, while Rab10 is essential for A. phagocytophilum
TGN parasitism (Truchan et al., 2016), it is dispensable for
it to interface with the ER. Thus, the bacterium targets the
TGN and ER by distinct mechanisms. Legionella pneumophila
modulation of Rab1 is essential for the bacterium to pirate
membrane traffic emanating from ERESs (Sherwood and Roy,
2013). Though our inability to knock down Rab1 prevented us
from discerning if Rab1 is important for A. phagocytophilum
to hijack ER membrane traffic, we speculate that it is not,
primarily because, like Rab10, Rab1 does not associate with the
ERQC (Lederkremer, 2009). Whereas, Anaplasma spp.-occupied
vacuoles associate with the RER and SER, RER derived vesicles

were detected within lumen of ApVs but not AmVs. Thus,
while targeting the ER is a conserved thematic strategy between
A. phagocytophilum andA.marginale, species-specific differences
exist.

Consistent with immunolabeling of endogenous derlin-1,
mCherry-tagged derlin-1 is detected within the ApV lumen
and appears to label intravacuolar bacteria. However, ApVs
are pronouncedly smaller in both size and number in cells
ectopically overexpressing mCherry-derlin-1, but not mCherry.
This result suggests that overstimulation of a derlin-1-influenced
cellular process may result in aberrantly small ApVs. Derlin-
1 overexpression has been reported to lead to severe ER stress
and ER stress-induced apoptosis (Liang et al., 2014), either or
both of which may prevent A. phagocytophilum intracellular
growth. A recent study indicated that the translocation of
ER associated markers may be exaggerated during chemical
fixation and argued that live cell imaging is the gold standard
for assessing the significance of such phenomena (Kokes and
Valdivia, 2015). Due to the toxic effect of mCherry-derlin-1
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FIGURE 9 | The ApV interacts with the ER as visualized by TEM. A. phagocytophilum infected HL-60 cells were examined by TEM. White hatched boxes denote

areas in the images presented in (B,D) that are presented as enlarged panels in (C,E), respectively. The white arrow in (A) denotes a RER-ApV contact site. Black

arrows in (A,C,G) denote autophagosomes contacting the ApV membrane. Black arrowheads in (A,C,G), and (I) demarcate autophagic bodies present within the

ApV lumen. White arrowheads in (E) denote ribosomes that label the cytosolic face of the ApV membrane. Thin white arrows in (F,G) demarcate membranes within

the ApV lumen associating with A. phagocytophilum organisms. Thin black arrows in (G,H,I) point to vesicles within the ApV lumen in close apposition to A.

phagocytophilum bacteria. Scale bars, 0.5µm. Results shown are representative of two experiments in which a combined total of over 200 different electron

micrographs were analyzed.

overexpression, we could not extend our analyses using live
cell imaging. That being said, several lines of indirect evidence
collectively argue that derlin-1-positive vesicles are delivered
into the ApV lumen to associate with intravacuolar bacteria.
First, antibodies specific for derlin-1, but neither calreticulin
nor PDI immunolabeled intravacuolar A. phagocytophilum
organisms. Second, derlin-1 antibody specifically recognizes its
target protein in eukaryotic cells and does not cross-react with
an A. phagocytophilum protein. Third, two different derlin-1

antibodies immunolabeled the bacteria. Fourth, mCherry-derlin-
1, but not mCherry is detected within the ApV lumen even
though both proteins are abundantly present and adjacent to
the ApV membrane in transfected cells. Thus, while live cell
imaging is a powerful and important technique for assessing
the delivery of organelle-derived vesicular traffic into POV
lumen and should be employed whenever possible, it is not
always going to be a feasible option. In such instances,
employing multiple alternative control experiments, as we did
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herein, can circumvent this technical obstacle to reach a valid
conclusion.

Anaplasma spp.-occupied vacuoles contact the ER and
possibly fuse with its membrane at distinct sites. Anaplasma
bacteria associate closely on the lumenal sides of such POV-ER
membrane contact sites, an observation that is reminiscent
of the pathogen synapses formed by chlamydial Type III
secretion system apparatuses that connect intravacuolar
chlamydiae to the inclusion membrane at ER contact sites
(Dumoux et al., 2012). Such chlamydial inclusion membrane-
ER points of contact are also where the bacterial inclusion
membrane protein, IncD, recruits host ceramide transfer protein
(CERT) that, in turn, interacts with its binding partners and
ER membrane resident proteins, VAMP-associated protein-
A/B. Recruitment of host sphingomyelin synthases 1 and 2
together with CERT completes a proposed sphingomyelin
biosynthetic factory at this host-pathogen interface that
may be important in satisfying the chlamydial need for
sphingomyelin and may also be a pathogen-orchestrated
signaling platform (Derré et al., 2011; Elwell et al., 2011;
Agaisse and Derre, 2014). Given that we recently demonstrated
that host cell-free A. phagocytophilum DCs are enriched in
multiple ceramide and sphingomyelin sub-species (Truchan
et al., 2016), moving forward it will be important to discern
whether Anaplasma spp.-occupied vacuoles have similar
metabolic/signaling platforms at their ER-POV membrane
contact sites, the bacterial factors responsible for facilitating
their formation, and their contributions to Anaplasma spp.
pathobiology.

Though other intracellular bacterial pathogens have been
shown to replicate within ER-derived compartments (Swanson
and Isberg, 1995; Roy et al., 2006; Dumoux et al., 2012; Celli
and Tsolis, 2015), the concept of intact ER vesicles being
delivered into the POV is fairly novel. Prior to this study,
the chlamydial inclusion was the only POV demonstrated
to intimately contact the ER and ingest intact ER derived
vesicles into its lumen (Dumoux et al., 2012). The ApV and
the chlamydial inclusion each also associates with the Golgi
apparatus and selectively hijacks its exocytosed vesicles, which,
like ER vesicles, are translocated into the POV lumen to associate
with intravacuolar bacteria (Heuer et al., 2009; Capmany and
Damiani, 2010; Moore et al., 2011; Pokrovskaya et al., 2012; Al-
Zeer et al., 2014; Dille et al., 2014; Truchan et al., 2016). Hijacking
ER- and Golgi-derived traffic is essential for chlamydiae to
convert from the replicative to infectious form (Heuer et al.,
2009; Dumoux et al., 2012). TGN parasitism is critical for
A. phagocytophilum to complete its biphasic developmental
cycle (Dumoux et al., 2012; Truchan et al., 2016). Whether
pirating a derlin-1-positive ER sub-compartment contributes to
Anaplasma spp. RC-to-DC conversion is unknown, as is the
pathobiological benefit that hijacking this specific ER domain
affords. Regardless, data presented here and in our previous
study demonstrate the importance of hijackingmultiple secretory
organelles to Anaplasma spp. infection. Moreover, this study
adds to a growing body of literature that demonstrates that
pathogens in the families Anaplasmataceae and Chlamydiaceae,
while evolutionarily distinct in terms of whether or not

FIGURE 10 | The AmV interacts with the ER as visualized by TEM. A.

marginale infected ISE6 cells were examined by TEM. White hatched boxes

denote areas in the images presented in (A,C) that are presented as enlarged

panels in (B,D), respectively. The white arrow in (A) denotes a RER-AmV

contact site. White arrowheads in (B,D) point to ribosomes that label the

cytosolic face of the AmV membrane. Thin black arrows in (A–C) demarcate

vesicles within the AmV lumen in close apposition to A. marginale organisms.

Scale bars, 0.5µm. Results shown are representative of two experiments in

which a combined total of over 40 different electron micrographs were

analyzed.

they are vector-transmitted and the host cell types that
they infect, exhibit a conserved demand for parasitizing the
secretory pathway and targeting secretory organelle derived
vesicles into their POVs (Beatty, 2006; Cocchiaro et al., 2008;
Capmany and Damiani, 2010; Dumoux et al., 2012; Boncompain
et al., 2014; Truchan et al., 2016). While the responsible
mechanism(s) for such membrane fusion-independent delivery
is undefined, it was recently demonstrated that two Toxoplasma
gondii encoded proteins that localize to the parasitophorous
vacuole membrane form a conduit that facilitates passage
of small molecules between the vacuole and host cytosol
(Gold et al., 2015). Perhaps functionally analogous proteins
exist on bacterial POVs to import intact host cell derived
vesicles.

What possible benefits could hijacking ER traffic afford
A. phagocytophilum and A. marginale? As the pathogens are
auxotrophic for most amino acids (Brayton et al., 2005; Rikihisa,
2011), ER vesicles transported into their vacuoles could provide
proteins that get degraded and used as an amino acid source, as
has been demonstrated for autophagic bodies that are delivered
into the ApV as a result of ApV-autophagosome fusion (Niu
et al., 2012). Anaplasma spp. could use the amino acids for
protein synthesis or as a source of carbon, nitrogen, and energy
by feeding the amino acids into the Kreb’s cycle. The latter
strategy has been well-documented for L. pneumophila (Pine
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FIGURE 11 | ApV association with the ER is Rab10-independent. HEK-293T cells were treated with Rab10-targeting or non-targeting siRNA for 72 h. (A)

Lysates of non-targeting or Rab10 siRNA treated cells were examined by Western blot for Rab10 knockdown. (B) Following siRNA treatment, the cells were infected

with A. phagocytophilum for 48 h, fixed, screened with antibodies against APH0032 and calreticulin or derlin-1, and examined using LSCM. Host cell nuclei and

bacterial DNA were stained with DAPI. Regions demarcated by hatched line boxes are magnified in the corresponding inset images that are denoted by a solid line

boxes. Arrows point to regions of expansive cisternae, which is characteristic ER morphology in Rab10-depleted cells. Scale bars, 5µm. Results shown are

representative of two experiments with similar results.

et al., 1979; Tesh et al., 1983; Price et al., 2014). Autophagosomes
are believed to be formed from ERmembrane and it was recently
found that 70% of autophagosomes contain portions of the ER
(Hayashi-Nishino et al., 2009; Shibutani and Yoshimori, 2014).
However, autophagosomes do not contain ribosomes, which
were detected on or in close apposition to the cytosolic faces of
ApVs and AmVs, or calreticulin and PDI (Dunn, 1994; Hayashi-
Nishino et al., 2009; Lamb et al., 2013; Shibutani and Yoshimori,
2014), which heavily label Anaplasma spp.-occupied vacuoles.
Thus, while the ApV engages autophagosomes (Niu et al.,
2012), both it and the AmV establish separate interactions with
the ER.

The recently penned term, nutritional virulence, refers
to the condition that without access to essential nutrients,
pathogens cannot survive to cause disease (Abu Kwaik and
Bumann, 2013). ER-POV interactions may help satisfy the
nutritional virulence requirements of A. phagocytophilum during
infection of leukocytes and of both it and A. marginale during
infection of endothelial and tick cells. It will be important to
verify which specific ER subdomain(s) Anaplasma spp. target,
the relevance of this strategy to their infection cycles, and
the molecular mechanisms by which they are orchestrated.
Such knowledge could potentially be exploited as a novel
means for treating human or animal infections caused by
Anaplasma spp. or for eliminating the pathogens from their tick
vectors.
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