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RESEARCH ARTICLE Open Access

Anticancer activity of a thymidine quinoxaline
conjugate is modulated by cytosolic thymidine
pathways
Qiong Wei1, Haijuan Liu1, Honghao Zhou2, Dejun Zhang1, Zhiwei Zhang2 and Qibing Zhou1,3*

Abstract

Background: High levels of thymidine kinase 1 (TK1) and thymidine phosphorylase (TYMP) are key molecular targets
by thymidine therapeutics in cancer treatment. The dual roles of TYMP as a tumor growth factor and a key activation
enzyme of anticancer metabolites resulted in a mixed outcome in cancer patients. In this study, we investigated the
roles of TK1 and TYMP on a thymidine quinoxaline conjugate to evaluate an alternative to circumvent the contradictive
role of TYMP.

Methods: TK1 and TYMP levels in multiple liver cell lines were assessed along with the cytotoxicity of the thymidine
conjugate. Cellular accumulation of the thymidine conjugate was determined with organelle-specific dyes. The impacts
of TK1 and TYMP were evaluated with siRNA/shRNA suppression and pseudoviral overexpression. Immunohistochemical
analysis was performed on both normal and tumor tissues. In vivo study was carried out with a subcutaneous liver tumor
model.

Results: We found that the thymidine conjugate had varied activities in liver cancer cells with different levels of TK1 and
TYMP. The conjugate mainly accumulated at endothelial reticulum and was consistent with cytosolic pathways. TK1 was
responsible for the cytotoxicity yet high levels of TYMP counteracted such activities. Levels of TYMP and TK1 in the liver
tumor tissues were significantly higher than those of normal liver tissues. Induced TK1 overexpression decreased
the selectivity of dT-QX due to the concurring cytotoxicity in normal cells. In contrast, shRNA suppression of TYMP
significantly enhanced the selective of the conjugate in vitro and reduced the tumor growth in vivo.

Conclusions: TK1 was responsible for anticancer activity of dT-QX while levels of TYMP counteracted such an activity.
The counteraction by TYMP could be overcome with RNA silencing to significantly enhance the dT-QX selectivity in
cancer cells.

Keywords: Thymidine conjugate, Thymidine phosphorylase, Thymidine kinase 1, Anticancer selectivity, Liver cancer

Background
Thymidine kinase 1 (TK1) and thymidine phosphorylase
(TYMP) are key cytosolic thymidine salvage enzymes and
targeted by anticancer thymidine therapeutics [1-5]. Two
isoforms of TKs have been identified in cells, TK1 in cyto-
sol and TK2 in mitochondria, which convert thymidine,
2’-deoxyuridine and 5-substiuted-2’-deoxyuridine or

2’-deoxycytidine (TK2) to the 5’-monophosphate form
[2-4]. Low levels of TK1 are generally expressed in
normal adult cells while high levels of TK1 are charac-
teristic of cancer cells [6-9]. High levels of TYMP have
been reported in the liver, lung and breast tumors and
associate with poor prognostic outcome of cancer pa-
tients [6,10-13]. TYMP converts thymidine to thymine
and 2-deoxyribose-1-phosphate reversibly as the catabolic
pathway. Simultaneously, TYMP also acts as a platelet de-
rived endothelial cell growth factor in tumor angiogenesis
and metastasis [6,14-16]. The contradictive role of TYMP
in cancer therapy refers to that high levels of TYMP
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are required for the activation of 5-fluorouracil pro-
drugs such as capecitabine to 5-fluoro-2’-deoxyuridine-
5’-monophosphate (5-FdUMP) as the thymidylate synthase
inhibitor via the reverse catabolic pathway, whereas high
levels of TYMP at the same time act as the tumor growth
factor [17-19]. Overexpression study has confirmed that al-
though induced overexpression of TYMP gene resulted in
enhanced responses to capecitabine, endothelial cell migra-
tion was simultaneously induced [20]. Due to the dual roles
of TYMP, mixed and complex outcomes were reported
in clinical trials of thymidine therapeutic [18,19,21,22].
For example, capecitabine or capecitabine combined
with oxaliplatin resulted in only modest improvement in
advanced hepatocellular carcinoma (HCC) patients [21,22].
3’-Deoxy-3’-(18 F)-fluorothymidine in positron emis-
sion tomography is an effective contrast agent for the
diagnosis of liver metastasis, fibrosarcoma and lung tu-
mors [23,24]. However, the results did not correlate to the
progressive levels of TK1 in tumor tissues, suggesting a
complicated mechanism, possibly involving catabolism by
TYMP [25,26].
One strategy to circumvent the dual roles of TYMP in

anticancer thymidine therapeutic is to use cytotoxic thymi-
dine analogs other than capecitabine that do not require
metabolic activation by TYMP. For instance, 5-fluoro-
2’-deoxyuridine (FdUrd) can be directly converted to
active 5-FdUMP by the high levels of TK in cancer cells.

Unfortunately, FdUrd shows far less anticancer potency
with high toxicity due to the rapid catabolism by TYMP
as compared with 5-fluorouracil and capecitabine [27,28].
Thus, a different selective cytotoxic thymidine analog
would be needed. Recently, we reported a thymidine qui-
noxaline conjugate (dT-QX) with a broad spectrum of an-
ticancer activity and low cytotoxicity on the normal liver
cell line [29]. Although the selectivity of dT-QX was at-
tributed to its unique thymidine linked chemical structure
(Figure 1a), the molecular pathways responsible for the se-
lectivity are unclear. Thus, dT-QX serves a chemical entity
to investigate how TK1 and TYMP impact the activity
in cancer cells. This may potentially reveal an alternative
strategy for thymidine anticancer therapeutic to overcome
the dual roles of TYMP. In this study, we reported the
involvement of TK1 and TYMP in the biological activ-
ity of thymidine analog dT-QX in different liver cancer
cell lines, methods to enhance the anticancer selectivity
and in vivo study with a mouse tumor model.

Methods
Cells
Liver cancer cell lines Hep3B and HepG2 were obtained
from American Type Culture Collection, USA. Human
liver cells HL-7702 and liver cancer cells Bel-7402 and
Bel-7404 were from Shanghai Institute of Life Science Cell
Culture Center, China. Cells were maintained in high

Figure 1 Levels of dT-QX cytotoxicity and cellular TYMP and TK1 proteins among human liver cell lines. (a) Chemical structure of thymidine
analog dT-QX; (b) Cell viability MTT assay on human liver cell lines including HL-7702, Hep3B, HepG2, Bel-7402 and Bel-7404 after treatment of dT-QX
at 50 μM for 24 h (Each data point in the graphs was the mean of triplicates with SEM); (c) Western blot analysis of TYMP and TK1 protein expression
in HL-7702, Hep3B, HepG2, Bel-7402 and Bel-7404 liver cells.
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glucose DMEM medium (Invitrogen, USA) supplemented
with 10% heat-inactivated fetal bovine serum, 25 mM
HEPES, 2 mM L-glutamine, 0.1 mM nonessential amino
acids, 1.0 mM sodium pyruvate, 50 U/mL penicillin, and
50 μg/mL streptomycin at 37°C and 5% CO2.

Cell MTT viability assay
Cells were plated overnight at 5,000 per well on a 96-well
plate and then treated with 50 μM dT-QX for 24 h in the
growth media containing 10% serum and 0.1% DMSO.
MTT assay was carried out as reported [29], and cell
viability was plotted using GraphPad Prism software
(GraphPad Software, USA). Thymidine analog dT-QX
was synthesized as previously reported [29]. Stock solu-
tions of dT-QX (50 mM) were prepared in DMSO and
then diluted in water as a 10× treatment solution con-
taining 0.1% tween-80 and 1% DMSO.

Fluorescence study of dT-QX accumulation in cells
Cells were plated overnight at a density of 20,000 cells
per well on a 48-well plate. For staining with organelle-
specific fluorescent trackers, cells were treated with the
DMSO control (0.1%) or dT-QX (50 μM) in the full growth
media for 5 h. The treatment media were replaced with an
endoplasmic reticulum (ER) Tracker Red staining solu-
tion (1 μM in PBS, Invitrogen, USA) or a mitochondrial
MitoTracker Orange CMTMRos staining solution (100
nM in PBS, Invitrogen, USA) at 37°C for 30 min and then
PBS. Live cell images were captured in PBS with Olympus
IX71 inverted microscope (Tokyo, Japan) equipped with a
digital camera under appropriate fluorescence filter
sets. For ER-specific GFP expression, cells after plating
overnight were transfected with BacMam ER Cell Light
GFP reagent (6 μL, Invitrogen, USA). After 24 h, treatment
of dT-QX or DMSO for 5 h were carried out similarly as
described above. Live cell images were then captured in
PBS with Olympus fluorescence microscope similarly.

Western blot analysis
Cells were plated overnight at a density of 1 × 106 cells
per well on a 6-well plate. Cells were washed with PBS
and lysed with 150 μL RIPA buffer containing protease
and phosphatase inhibitor cocktail. The supernatants were
collected by centrifuge at 14,000 g × 10 min at 4°C and
stored at −80°C. The total protein content in lysates was
determined by enhanced BCA protein assay kit (Beyotime
Institute of Biotechnology, China). Electrophoresis was
carried out on NuPAGE Novex Bis-Tris 4-14% gel
(Invitrogen, USA) under the reduced condition with 5 μg
of proteins per lane. The membrane was incubated with
rabbit anti-TK1 monoclonal (ab76495, Abcam, USA) or
anti-TYMP polyclonal antibody (ab69120, Abcam, USA)
and mouse GAPDH antibody (Invitrogen, USA). Targeted
proteins were visualized with Qdot 625 conjugate kit

(Invitrogen, USA). Gel images were captured with ZF-258
Gel Imaging System (Shanghai Jiapeng Scientific Co. Ltd,
China) under illuminating light of 350 nm wavelength.

siRNA suppression study
Suppression of TK1 or TYMP proteins in cells was per-
formed using Amaxa Nucleofector Kit V with program
T-028 (Lonza, Germany) and Silencer-select Validated
siRNAs for human TK1 (100 nM, 1:1 mixture of s14158
and s14159, Ambion, USA), TYMP (400 nM, s4433) or
control (100 nM) according to manufacturer’s protocol.
After electroporation, cells were plated for 40 h and then
divided into two portions for western blot and MTT via-
bility studies. Western blot analysis of TK1 and TYMP
in cells were carried out at 48 h post transfection as de-
scribed above. For MTT study, cells were treated with 0,
10, 20 or 50 μM of dT-QX in the growth media at 48 h
post transfection. Cell viability MTT assay was carried
out after treatment for 24 h and analyzed with GraphPad
Prism software (GraphPad Software, USA).

Transduction with TK1 lentiviral particles
A lentiviral open reading frame plasmid Lv-TK1 (EX-
C0529-Lv105) containing human TK1 mRNA complete
sequence [PubMed cDNA clone MGC number: 3644] and
a control plasmid (EX-NEG-Lv105) were obtained from
GeneCopoeia, USA. The sequences of cloned plasmids
were confirmed by DNA sequencing using 5’-GCGGT
AGGCG TGTAC GGT and 5’-ATTGT GGATG AATAC
TGCC as the forward and reverse primers, respectively.
Pseudo lentiviral particles for TK1 overexpression and
the control were produced with Lv-TK1 or the control
plasmid and Lenti-Pac HIV expression packaging kit
(GeneCopoeia, USA) on 293T cells according to manufac-
turer’s protocol. Pseudovirus titer was estimated on Hep3B
cells under the selection of puromycin (0.5 μg/mL) as
1.6 × 107 and 1.2 × 107 transducing units/mL for TK1 and
the control, respectively. Transduction of HL-7702 and
Bel-7402 cells was carried out at a cell density of 50,000 in
a 24-well plate with 80 μL pseudovirus stock solution
plus poloxamer F108 (100 μg/mL, 10 μL) and polybrene
100 (100 μg/mL, 10 μL). After 24 h, the transduction
media were replaced with the normal DMEM growth
media, and cells were grown in a 6-well plate for 7 days.
Western blot analysis and cell viability MTT assay with
compound treatment were then carried out similarly as
described in siRNA study.

shRNA suppression of TYMP
Suppression of TYMP in cells was performed with
Amaxa Nucleofector Kit V with program T-028 (Lonza,
Germany) and SureSilencing shRNA TYMP plasmid
(25 μg, KH02651P, clone No 4, Qiagen, USA) or the
ontrol plasmid (25 μg, NEG4-P). The inserted sequence
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in shRNATYMP plasmid was confirmed by DNA sequen-
cing. After electroporation, cells were plated for 60 h and
then divided into two portions for western blot and MTT
viability studies. Western blot analysis of TK1 and TYMP
levels in cells and cell viability MTT assay were carried
out at 72 h post electroporation similarly as described
above.

Immunohistochemical analysis
The use of human pathological tissue slides was ap-
proved by the Medical Ethnical Committee of Huazhong
University of Science and Technology. Immunohistochem-
ical (IHC) analysis was carried out according to manu-
facturer’s recommendation. Briefly, after deparafinization,
antigen retrieval and protein block, tissue section slides
were incubated with rabbit TK1 (ab59271, Abcam, USA)
or TYMP polyclonal antibody (ab69120, Abcam, USA) in
Tris saline buffer with 1% BSA (1:200 dilution). Staining
was achieved using rabbit specific HRP/DAB detection
IHC kit (ab64261, Abcam, USA). Staining of nuclei was
carried out with a hematoxylin solution. Slides were
mounted, and images were captured with Olympus IX71
inverted microscope (Tokyo, Japan).

Mouse tumor model study
Animal protocol was approved by the Animal Care and
Use Committee of College of Life Science and Technology
at Huazhong University of Science and Technology. SFP
male nude BALB/c mice (approximately 24 g) were ob-
tained from Hunan Slake Jingda Experimental Animal Co.
Ltd., China. Human liver cancer Bel-7402 cells (1x107 cells
per mouse) were injected subcutaneously at the lower
back of nude BALB/c mice [30]. Once the tumor reached
to an average size of 9 × 9 mm, mice were randomly
divided into groups for the following studies. In vivo
transfection control and TYMP shRNA plasmid complex
(200 μL) were prepared in a sterile 5% glucose solution
with TurboFect agent (ThermoFisher, USA) and injected
intratumorally at a dose of 10 μg DNA, 50 μL per mouse.
In vivo suppression of TYMP in tumor tissue via intratu-
moral injection was first validated by western blot analysis.
After 72 h, mice were euthanized and tumor tissues
were collected and homogenized at 4°C in 750 μL RIPA
lysis buffer containing protease and phosphatase inhibi-
tor cocktail. The supernatants were collected by centri-
fuge at 14,000 g × 10 min at 4°C, and western blot analysis
was carried out as described above. Treatment groups
included: a) iv injection of PBS for 4 day (3 mice); b) iv
injection of dT-QX (0.75 mg/kg body weight) for 4 days
(3 mice); c) intratumoral injection of TYMP shRNA
followed by iv injection of PBS after 2 days for 4 days
(4 mice); and d) intratumoral injection of TYMP shRNA
followed by iv injection of dT-QX (0.75 mg/kg body
weight) after 2 days for 4 days (4 mice). The treatment

was repeated one more time on day 8. During the
treatment, the growth of tumors and body weight were
monitored daily. Statistical analysis of the treatments was
performed with GraphPad Prism software using two way
ANOVA with Bonferroni posttests. No significant abnor-
mal behavior or weight loss was observed throughout the
treatment. Images of tumors were obtained on day 18 at
the end of treatment study.

Results
dT-QX exhibits varied cytotoxicity on liver cancer cells that
have different levels of TK1 and TYMP
In addition to the reported selective activity of dT-QX
[29], significant variation in the cytotoxicity of thymidine
analog dT-QX was found among five different liver cell
lines, with 70% for Hep3B cells, 60% for Bel-7404 cells,
and down to 45% and 40% for HepG2 and Bel-7402,
respectively after 24 h incubation. In contrast, only
14% cytotoxicity was observed in HL-7702 cell line
(Figure 1b). Because dT-QX is an analog of thymidine,
levels of key thymidine salvage and metabolic enzymes
such as TYMP and TK1 in these cells were investigated to
see whether there was any correlation to the levels of the
cytotoxicity. Western blot analysis revealed that there was
a significant contrast in the levels of TYMP and TK1
among these cell lines (Figure 1c). For catabolic TYMP,
only a basal level was found in Hep3B cells while low
levels of expression were observed in HL-7702, HepG2
and Bel-7404 cells. In contrast, Bel-7402 cells had signifi-
cantly high levels of TYMP. Simultaneously, TK1 was
highly expressed in Hep3B, HepG2 and Bel-7404 cells,
intermediately in Bel-7402 and minimal in HL-7702 cells.
These results implied that the cell toxicity of dT-QX
might correlate with TK1 levels in cells, i.e., high in Hep3B
and Bel-7404 cells, intermediate in Bel-7402 and low in
HL-7702 cells except that HepG2 cells did not fit well
with this hypothesis. The role of TYMP on the biological
activity of dT-QX was not clear based on these data. The
possible correlation of high levels of TK1 with the cyto-
toxicity of dT-QX suggested that dT-QX might be signifi-
cantly converted to the 5’-phosphate form in Hep3B
cells by the salvage pathway as a thymidine analog. Thus,
HPLC analysis of the Hep3B cells lysate after treatment of
50 μM dT-QX was carried out under various conditions
with HPLC separation conditions for nucleosides and
nucleotides [31]. Unfortunately, only intact dT-QX was
observed in HPLC analysis based on the unique UV ab-
sorbance signals of dT-QX at 365 nm coupled with mass
analysis. Therefore, the roles of thymidine pathways on
the dT-QX cytotoxicity needed to be determined and were
investigated by the following alternative methods.
The cellular accumulation of dT-QX was first assessed

by the fluorescent property of dT-QX. dT-QX has a
maximum excitation and emission at 398 and 483 nm,
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respectively [see Additional file 1: Figure S1], similar to
the fluorescent dye Hoechst 34580 [32]. It was implied
that dT-QX accumulated mostly at ER in Hep3B cells
because the blue fluorescence of dT-QX matched with
most of ER-specific red fluorescence in cells (Figure 2a).
Cellular accumulation of dT-QX was also compared
with mitochondria-specific fluorescent tracker because
mitochondrial TK2 could also phosphorylate thymidine
analogs as an additional salvage pathway besides cytosolic
TK1 [33,34]. The resulting images suggested that dT-QX
accumulated at sites other than the mitochondria
(Figure 2b), although there were some overlaps of dT-
QX in the mitochondria. Further studies with HepG2
and HL-7702 cells also indicated a similar ER accumula-
tion of dT-QX by ER-specific tracker [see Additional
file 1: Figure S1]. Complementary ER-specific GFP ex-
pression using transfection method also consistently
suggested ER as the major accumulation site of dT-QX
[see Additional file 1: Figure S1]. In addition, the ER
location of dT-QX in cells did not change significantly
with extended incubation time over 10 h. These results
suggested that the cytotoxicity of dT-QX were modu-
lated via cytosolic processes.

Significant inhibition of DNA synthesis in cells has been
previously reported upon the treatment of Hep3B and
HepG2 cells with dT-QX for 5 h, but not in HL-7702 cells
with low TK1 and TYMP expression [29]. On the other
hand, the cellular accumulation of dT-QX was only ob-
served in the cytosol not in the nuclei of cells (Figure 2).
In addition, no 5’-phoaphate metabolite of dT-QX was
found by HPLC analysis with Hep3B cell lysates in this
study. These results presented a dilemma on the mechan-
ism of dT-QX because phosphorylated dT-QX was ex-
pected to be formed and observed in the nuclei of cancer
cells. The key question would be whether TK1 and TYMP
were involved in the cytotoxic action of dT-QX in cancer
cells. Thus, we focused on the following investigations
on the cell-based study to assess the impact of TK1 and
TYMP on the activity of dT-QX, rather than the purified
recombinant TK1 and TYMP protein study.

Cellular TK1 and TYMP levels regulate the selective
cytotoxicity of dT-QX
Investigation of the involvement of TYMP and TK1 in the
cytotoxicity of dT-QX was verified with transient siRNA
silencing of either protein followed by MTT viability assay

Figure 2 Fluorescence images of intracellular accumulation of dT-QX in Hep3B cells. Cells were treated with 50 μM dT-QX or DMSO for 5 h
and then stained with organelle-specific ER Tractor Red (a) or Mito-tracker Orange fluorescent dye (b). Images were representative from three
independent studies.
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after dT-QX treatment. Hep3B and Bel-7402 cells were
investigated as representatives because TK1 protein was
predominantly expressed in Hep3B cells with basal
levels of TYMP while Bel-7402 has the highest level of
TYMP (Figure 1c). Upon transient silencing TK1 protein
in Hep3B cells, the cell viability was markedly increased at
all concentrations compared with those of siRNA-control,
e.g., from 38% to 65% at 50 μM dT-QX (Figure 3d).
Increase of the cell viability was similarly observed in
Bel-7402 cells, although at a less extent (Figure 3c). In
contrast, a reduced TYMP level in Bel-7702 cells led to
a pronounced decrease of cell viability by 15% (Figure 3c).
These results implied that TK1 was involved in the cyto-
toxicity of dT-QX and that high levels of TYMP coun-
teracted the biological activity of dT-QX in cells. This
observance was also consistent with the low cytotoxicity
of dT-QX observed in HL-7702 cells where neither TK1
nor TYMP was significantly expressed (Figure 1c). Simi-
larly, for HepG2 cells, siRNA silencing study showed that
transient suppression of TK1 led to a significant decrease
of dT-QX cytotoxicity at all concentrations whereas silen-
cing TYMP produced a 7% increase of dT-QX activity at
50 μM [see Additional file 2: Figure S2].
To further confirm TK1 were mainly responsible for

the dT-QX cytotoxicity in cells, lentiviral overexpression
of TK1 was carried out on Bel-7402 cells and HL-7702
cell line as a comparison (Figure 4). The pseudo lentiviral
viral particles can deliver and integrate a human TK1 gene
into the genome of targeted cells without virus replication.

Western blot analysis confirmed that the overexpression
of TK1 was achieved in Bel-7402 cells by 1.5 folds and 9
folds in HL-7702 cells (Figure 4a-b). Consistently with
TK1 activation, the cytotoxicity of dT-QX increased by
20% at all concentrations from 10 to 50 μM versus those
of Bel-7402 cells alone (Figure 4c). More importantly, a
phenomenal cytotoxicity of dT-QX was observed in
HL-7702 cells with lentiviral overexpression of TK1
versus those of cells alone (Figure 4d). Therefore, the
results from our siRNA suppression and viral overex-
pression studies indicated that high levels of cytosolic
TK1 were responsible for the cytotoxicity of dT-QX in
liver cancer cells while high levels of TYMP counter-
acted the biological activity.

High levels of TYMP are an important clinical subtype
and can effectively be counteracted by shRNA silencing
Clinical relevance of high levels of TK1 and TYMP was
then assessed on human HCC tumor and normal liver
tissues with immunohistochemical (IHC) analysis. Normal
human liver tissue showed only low basal levels of TYMP
and TK1 protein expression as compared to those of
tumor samples (panel A versus B, C and D, Figure 5a).
This result validated that HL-7702 cells with low levels of
TYMP and TYMP was a derived normal liver cell line
for this study (Figure 1c). In contrast, TYMP and TK1
positive staining were overwhelmingly observed in the
tumor tissues, suggesting that Bel-7402 cell line indeed
represented such a subtype of liver tumors. These results

Figure 3 Silence of TK1 or TYMP expression impacted dT-QX cytotoxicity. (a) Western blot analysis of TYMP and TK1 in Bel-7402 and Hep3B
cells at 48 h post siRNA suppression; (b) Relative percent protein expression of TYMP and TK1 in western blot analysis after normalization with
that of GADPH; (c) and (d) Cell viability MTT results after 24 h treatment with dT-QX at 48 h post siRNA suppression in Bel-7402 and Hep3B cells.
Each data point in the graphs was the mean of triplicates with SEM. All experiments were independently repeated at least two times (*P < 0.05 as
compared to those under the same dT-QX concentration in controls).

Wei et al. BMC Cancer  (2015) 15:159 Page 6 of 11



Figure 4 Viral overexpression of TK1 enhanced the cytotoxicity of dT-QX. (a) Western blot analysis of TYMP and TK1 level post transduction
of Bel-7402 and HL-7702 cells with either control or TK1 pseudo lentiviral particles; (b) Relative percent protein expression of TYMP and TK1 in western
blot analysis after normalization with that of GADPH; (c) and (d) Cell viability MTT results after 24 h treatment with dT-QX post viral transduction in
Bel-7402 and HL-7702 cells. Each data point in the graphs was the mean of triplicates with SEM. All experiments were independently repeated
at least two times (*P < 0.05 as compared to those under the same dT-QX concentration in cells alone).

Figure 5 High levels of TYMP and TK1 are clinically significant in liver tumor tissues. (a) IHC analysis of TK1 (top) and TYMP (below) on human
normal liver tissue sample (A) and human liver cancer tumor tissue sample (B, C and D) co-stained with hematoxylin; (b) IHC analysis of TK1
(top panels) and TYMP (bottom panels) on mouse normal liver tissue (E) and mouse Bel-7402 tumor tissue (F, G and H) co-stained with hematoxylin.
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indicated that high expression of TYMP and TK1 in liver
tumors was an important subtype of liver cancers that was
needed to be addressed specifically for anti-cancer thymi-
dine analog dT-QX. Moreover, induced high level of
TYMP has been found in tumor tissues due to inflam-
matory infiltration or after radiotherapeutic treatment
and chemotherapy such as paclitaxel, doxorubicin and
oxaliplatin [18,35,36]. Furthermore, tumor tissues from the
established Bel-7402 mouse model had consistently high
expression of TYMP and TK1 by IHC analysis, whereas
the mouse normal liver tissue showed only basal level
of either protein (panels F-H versus panels E, Figure 5b).
Thus, the Bel-7402 mouse tumor model was validated
and used for the following in vivo dT-QX treatment study.
To enhance the selective cytotoxicity of dT-QX, viral

overexpression of TK1 in cells clearly was not an effective
strategy on cancer cells due to a concurring high cytotox-
icity in normal liver HL-7702 cells (Figure 4). Alternative
way was to significantly knock down the TYMP level as
indicated with siRNA suppression (Figure 3). However,
siRNA suppression was not effective to significantly lower
TYMP level in Bel-7402 cells even at a high concentration
of 400 nM (Figure 3a-b). Recently, shRNA silencing has
been shown to be an effective method for both in vitro
cellular and in vivo animal studies [37]. Thus, transfection
of shRNA TYMP plasmid on Bel-7402 was carried out.
Western blot analysis confirmed that approximately 70%
suppression of TYMP was achieved in Bel-7402 cells while

the level of TK1 was not impacted (Figure 6a-b). Subse-
quent cell viability study revealed a significantly elevated
cytotoxicity of dT-QX versus those of cells alone. In con-
trast, no impact on TYMP or TK1 was found in HL-7702
cells under the same condition. More importantly, no
significant cytotoxicity was observed in HL-7702 cells
(Figure 6c). All these results indicated that suppression
of TYMP by shRNA is an effective approach to enhance
the selective cytotoxicity of dT-QX on cancer cells with
high levels of TYMP and TK1.

Combination of TYMP suppression plus dT-QX treatment
is effective in the liver tumor model in vivo
In vivo validation of the combined treatment of TYMP
shRNA suppression plus dT-QX was carried out in a sub-
cutaneous tumor model of human liver cancer Bel-7402
cells. Western blot analysis indicated that intratumoral
injection of TYMP shRNA complex in vivo significantly
reduced the TYMP level in tumor tissue than those of con-
trol at 72 h post injection [see Additional file 3: Figure S3],
confirming the effectiveness of intratumoral delivery of
shRNA. The combined treatment was then carried out in
the tumor model with the intratumoral delivery of TYMP
shRNA complex first and then intravenous injection of
dT-QX or PBS (Figure 7). Clearly, TYMP shRNA plus
dT-QX significantly inhibited the tumor growth as com-
pared to those of shRNA alone after two rounds of treat-
ment. Consistently, three out of four tumors in the

Figure 6 ShRNA suppression of TYMP was effective to enhance the selective cytotoxicity of dT-QX. (a) Western blot analysis of TYMP and
TK1 level at 72 h post transfection of HL-7702 and Bel-7402 cells with either the control or TYMP shRNA plasmid; (b) Relative percent protein
expression of TYMP and TK1 in western blot analysis after normalization with that of GADPH; (c) and (d) Cell viability MTT results after 24 h
treatment with dT-QX at 72 h post shRNA suppression in Bel-7402 and Hep3B cells. Each data point in the graphs was the mean of triplicates
with SEM. All experiments were independently repeated at least two times (*P < 0.05 as compared to those under the same dT-QX concentration in
cells alone).
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combined treatment have a much smaller cluster size
than those with shRNA alone (Figure 7b). On the other
hand, intravenous injection of dT-QX alone without
shRNA suppression showed no significant inhibition
of the tumor growth as compare with that of PBS
(Figure 7). These in vivo results demonstrated that
TYMP suppression plus dT-QX treatment was able to
control the aggressive progression of Bel-7402 tumors
and suggested that a combined treatment had a thera-
peutic potential on tumors with high levels of TYMP
and TK1.

Discussion
Our results indicated that high levels of TK1 were
responsible for the cytotoxicity of dT-QX and high levels
of TYMP counteracted this activity. In Hep3B cells, the
transient suppression of TK1 led to a significant reduc-
tion of dT-QX cytotoxicity (Figure 3) while the overex-
pression of TK1 in HL-7702 resulted in a pronounced
cytotoxicity (Figure 4). Similarly, the overexpression of
TK1 in Bel-7402 cells led to increased cytotoxicity of
dT-QX (Figure 3). These results in combined with the
ER accumulation of dT-QX implied that cytosolic TK1
played a significant role on the cytotoxicity of dT-QX
in cells. In contrast, TYMP counteracted the activity of
dT-QX, which was supported by the enhanced cytotox-
icity of dT-QX observed with siRNA or shRNA suppres-
sion in Bel-7402 cells (Figures 3 and 6). The counteraction
of TYMP was further supported by the difference in cyto-
toxicity observed between Hep3B and other liver cancer
cells that had high levels of TYMP (Figure 1). The coun-
teraction by TYMP on dT-QX may be attributed to the
possible catabolism of the thymidine quinoxaline conju-
gate to inactive metabolites, of which a recombinant en-
zymatic study could provide further insights. Unfortunately,

the exact molecular targets by dT-QX have not so far been
identified. In addition, the conversion of dT-QX to
activated metabolites by TK1 has not been observed as
expected by HPLC analysis in the cell treatment lysates.
These results suggested that there were additional
unknown pathways and mechanisms besides TK1 and
TYMP for the action of dT-QX in cancer cells, which
are currently under investigations.
Different levels of dT-QX cytotoxicity among these

liver cancer cell lines reflected a common challenge in
cancer chemotherapy due to the heterogeneity of tumor
cells (Figure 1). All cancer cell lines had consistently high
TK1 expression as compared to the normal liver derived
HL-7702 cell line (Figure 1c), which was validated by IHC
on human normal liver versus tumor samples (Figure 5a),
supported TK1 as a tumor-specific target. In contrast,
levels of TYMP protein varied dramatically among liver
cancer cells but remained at a low level in normal liver
cells. Clinically, induced high levels of TYMP have been
commonly observed in tumor tissues due to inflamma-
tory infiltration or after radiotherapeutic treatment and
chemotherapy such as paclitaxel, doxorubicin and oxa-
liplatin [18,35,36]. Thus, high levels of TYMP in liver
tumors are important subtypes and/or variations of liver
cancers that need to be addressed specifically due to
TYMP as a growth factor in tumors [14-16]. Our results
showed that induced overexpression of TK1 via viral parti-
cles was unfortunately an ineffective approach to enhance
the selective activity of thymidine analog due to induced
cytotoxicity in the normal cells (Figure 4c vs 4d). Overex-
pression of herpes TK1 via viral gene delivery has been
shown to increase the efficacy of nucleoside analogs in
HCC models [38,39], while our data suggested that non-
specific cytotoxicity might concur in the liver cells. More
importantly, our in vitro studies demonstrated that the

Figure 7 In vivo study of TYMP shRNA plus dT-QX treatment in the subcutaneous Bel-7402 mouse tumor model. (a) Growth profile of
the tumor size over 2 repeated treatment with or without intratumoral injection of TYMP shRNA followed by intravenous injection of dT-QX or
PBS; Statistical analysis of the treatments was performed with GraphPad Prism software using two way ANOVA with Bonferroni posttests, indicating
that there was significant difference over time between the group of it-TYMP shRNA+ iv dT-QX and other three groups (P < 0.05). (b) Images of the
tumors after 2 repeated treatment with intratumoral shRNA injection.
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suppression of TYMP by shRNA significantly enhanced
the selectivity of thymidine analog dT-QX on cancer
cells that have high levels of TYMP and TK1 (Figure 6).
In addition, our in vivo subcutaneous Bel-7402 tumor
model further supported the effectiveness of this approach
(Figure 7).
The potential of this combination strategy has recently

manifested by the result from clinical phase II trial of
TAS-102 on colorectal cancer [40], although additional
studies on refractory subtype are needed [41]. TAS-102
is a combination of antimetabolite α,α,α-trifluorothymi-
dine plus a potent TYMP chemical inhibitor. Trifluor-
othymidine is activated via cytosolic TK1 phosphorylation
to block thymidylate synthase [42] yet is highly toxic and
has short plasma half-life [18]. The efficacy of TS-102 has
been shown to correlate with the ratio of TK1/TYMP [42]
and had limited responses in patients with solid tumors
[43,44]. In contrast, our dT-QX selectively blocked cellular
DNA synthesis in liver cancer cells with subsequent
mitochondrial superoxide stress, possibly via DNA inter-
calation [29]. More importantly, our results in this study
indicated that TYMP alone was a critical target to
enhance the selectivity of a thymidine conjugate on
cancer cells.

Conclusions
Our study demonstrated that TK1 was responsible for
anticancer activity of thymidine conjugates while TYMP
as the thymidine metabolic enzyme was responsible for
the varied biological activity. By taking advantage of low
levels of TK1 and TYMP in normal liver tissue, the use
of anticancer thymidine conjugate combined with TYMP
suppression could directly target thymidine salvage
pathway in liver cancer cells with various levels of TYMP
addressed as tumor heterogeneity to be fully inhibited.
Thus, the treatment of thymidine conjugate combined
with TYMP suppression could be a promising direction
to control the aggressive growth of liver tumors that
had high levels of TYMP and TK1. This strategy may
well be expanded in the applications of other thymidine
analogs used for cancer diagnosis and therapeutics.

Availability of supporting data
The data supporting the results of this article are included
within the article and its additional files.

Additional files

Additional file 1: Figure S1. Fluorescence spectra of dT-QX and images
in cellular accumulation studies. (a) The excitation and emission spectra
were obtained with a 0.5 mM dT-QX methanol solution with Hitachi
F-4500 fluorescence spectrometer (Tokyo, Japan) at room temperature;
the maximum fluorescence excitation and emission wavelengths are at
398 and 483 nm, respectively. (b) Fluorescence images of intracellular
accumulation of dT-QX in HepG2 and HL-7702 cells with co-staining of

ER Tractor Red dye. Cells were treated with either DMSO (top panels) or
50 μM dT-QX (bottom panels) for 5 h and then stained with ER tracker
Red. (c) Fluorescence images of intracellular accumulation of dT-QX in
Hep3B, HepG2 and HL-7702 cells with ER-specific GFP expression. Cells
were first treated with Beckmam ER-GFF transfect agent for 24 h and
then treated with either DMSO (top panels) or 50 μM dT-QX (bottom
panels) for 5 h and then images were captured with fluorescence
microscope.

Additional file 2: Figure S2. Modulation of TYMP and TK1 by siRNA
suppression in HepG2 cells. Western blot analysis of TYMP and TK1
expression in HepG2 cells was carried out at 48 h post siRNA suppression.
Cell viability was obtained after 24 h treatment with dT-QX at 48 h post
siRNA suppression (*P < 0.05 as compared to those under the same
dT-QX concentration in cells alone).

Additional file 3: Figure S3. Western blot analysis of TYMP/TK1 expression
in mouse tumor tissues at 72 h post intratumoral injection of control or TYMP
shRNA plasmid complex.
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