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Dual-doped thermographic phosphor particles as surrogates for green
fluorescent protein-labeled cells in tests of cytometric neurocatheters
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6054, USA
2Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia
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Virginia 23298-0631, USA

�Received 11 December 2009; accepted 7 February 2010; published online 30 March 2010�

We investigated the laser-induced fluorescence of particles of a compound thermographic phosphor
La2O2S:Eu�1%� and Gd2O2S:Eu�1%� to see if they can serve as a surrogate for cells transfected
with the green fluorescent protein, in tests of neurocatheters used for intraparenchymal cell delivery.
At an excitation wavelength of 337 nm and a concentration of �2�106 particles ml−1, the resulting
slurries produced fluorescence intensities at 625 nm that were within a factor of 2 of those produced
by similar number densities of relevant cells, thus suggesting the utility of this approach. © 2010
American Institute of Physics. �doi:10.1063/1.3359656�

I. INTRODUCTION

We are developing a novel cell delivery catheter that is
capable of in situ flow cytometry,1,2 for eventual clinical use
in the treatment of Parkinson disease.3,4 In such therapies,
delivery into the brain of too few viable cells constitutes an
ineffective dose, while delivery of too many results in exces-
sive competition for nutrients and oxygen. Hence, the goal is
to confirm the intraoperative delivery of the appropriate
number of cells to optimize the efficacy of the procedure.

Several technical steps are needed to bring such a device
to productive clinical testing. For instance, optical fibers will
be used to photonically monitor the cells as they pass
through the port hole of the catheter. Specifically, they must
deliver light to the cells, collect the resulting cellular fluo-
rescence, and then convey it to an appropriate detector in the
monitoring system. It is important to determine the best con-
figuration of the optical fibers within the tip of the catheter
for this purpose, with the resulting design�s� tested initially
using inexpensive and readily available in vitro models of
positive pressure infusion,5,6 which is a method for intracra-
nial cell delivery. In some of our preliminary studies, green
fluorescent protein �GFP�-transfected RT2 cells7 were used
as luminescent cellular beacons in suspensions that were
pumped through the port hole of an early prototype of the
catheter, for purposes of testing the feasibility of this ap-
proach to cytometric delivery. This has been a useful method
because it involves living cells and thus mimics a realistic
clinical situation. However, the complexities and expense of
experiments involving viable cells argues for the introduc-
tion of an inexpensive surrogate that would be easier to use
in routine testing of catheter design details, noncritical per-
formance studies, etc. Cell-sized particles of thermographic
phosphors are candidates for such a surrogate because of
some cost and performance advantages over, e.g., fluorescent

polymeric microbeads. In particular, such materials exhibit a
well-characterized temperature dependence in their fluores-
cence decay lifetimes, and thus offer the additional possibil-
ity of in situ thermometry, in those cases where such a diag-
nostic would be useful. Therefore, we investigated the laser-
induced fluorescence of slurries of phosphor particles that
were pumped through the distal tip side port hole of the same
catheter through which actual cell slurries had been pumped,
to validate the utility of such particles as surrogates for GFP-
labeled cells.

II. BACKGROUND

The term thermographic phosphor describes a large class
of oxides and oxysulfides, the fluorescence of which is acti-
vated by inclusion of one or more rare-earth dopants. We
have studied many different types of applications for these
materials,8 including their use as flow tracers in simulations
of positive pressure infusion for the treatment of brain
tumors9 and their performance in nanoscale fluorescence
thermometry at physiological temperatures.10 With respect to
the present study, the key feature of such materials is the
particle luminescence. To serve as a useful surrogate for vi-
able cells in our cytometric catheter, the particles must ex-
hibit measurable fluorescence when passing through the ex-
citation optical field that interrogates the port hole. The
results of many previous studies8–10 suggested that the fluo-
rescence signal strengths from any number of different can-
didate phosphors should be suitable for this purpose. There-
fore, the choice of the particular material to be used was
largely a question of other considerations, such as particle
size, cost of material, and availability. The mean diameter of
a postnatal, postmortem human neural progenitor cell
�hNPC� is known11 to be within the range of 5–10 �m.
Specific variances within these dimensions will depend on
the actual type and source of cells, the method of culture,
handling techniques, etc. Moreover, the cells also tend to
clump together in media, thus further complicating the ques-
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tion of mean diameter and necessitating sonication of the
suspensions to keep the cells separated. Likewise, particles
of most thermographic phosphors will agglomerate under
various conditions but aspirative mixing can minimize the
problem. At the micrometer scale the as-supplied phosphors
have typically been sifted through fine mesh screens to set a
maximum particle size for a particular batch. Our candidate
phosphor was a 50:50 mix of La2O2S:Eu�1%� and
Gd2O2S:Eu�1%� �Phosphor Technology Ltd., Stevenage,
U.K.�. As per the manufacturer, the La2O2S:Eu component
had a mean particle size of 8.6 �m at a volume percentage
of 95% �i.e., 95% of the particles were 8.6 �m or smaller�,
and 4.2 �m at a volume percentage of 50%. Likewise, the
Gd2O2S:Eu component had a mean particle size of 7.9 �m
at a volume percentage of 95% and 4.0 �m at a volume
percentage of 50%. The resulting overlap in the nominal size
ranges of the phosphor particles and the hNPC cells was
deemed sufficient for our purposes.

The fluorescence spectrum of compound phosphors of
this kind can be more complex than that of single-component
phosphors �such as La2O2S:Eu by itself�. However, we have
previously made photospectrometric measurements of such
materials8,12 and thus further reason for choosing one here.
In fact, the emission characteristics have been studied in de-
tail in other contexts,8,13 and it is known that the positions of
the spectral lines are essentially identical in both components
of this phosphor. The luminescence is easily distinguishable
from any spurious or stray light that might be present in the
experimental arrangement, and the fluorescence of this phos-
phor does not quench when the particles are submerged in
aqueous media. This latter point is important here because a
liquefied suspension of the particles must be pumped through
the catheter under test in order to properly simulate the cell
delivery process. Finally, the broad emission above 600 nm
originates from 5D0 states and is temperature-independent
for both phosphor components.14 Future work could exploit
the temperature dependence of 5D2 emission, typically below
about 520 nm, which is most striking for the lanthanum
phosphor. It is distinguishable from the gadolinium material
by a much shorter decay time. Thus, potential exists for si-
multaneous determination of particle concentration and tem-
perature.

III. EXPERIMENTAL ARRANGEMENT

In preparation for use, a volume of roughly 100 mm3 of
the dual-doped phosphor was mixed into approximately 5 ml
of Triton X-100 �SPI-Chem, West Chester, PA� nonionic sur-
factant solution and 45 ml of water, to form 50 ml of sus-
pension. The surfactant was used to help prevent clumping of
the particles. The suspension was stirred thoroughly and then
aspiratively mixed within a polyethylene suction pipette
from which it could then be passed into the catheter via a
Luer port.

The catheter under test was a modified version of the
inner tube of a NexGen Medical Systems, Inc. �Reno, NV�
CNS-I acute neurological catheter, as described elsewhere by
Fillmore et al.3 The modification consisted of mounting two
optical fibers �with a nominal diameter of 100 �m each�

onto the outer surface of the catheter body such that the tips
of the optical fibers were positioned against the proximal
edge of the catheter’s side port hole, as shown in the photo-
micrograph of Fig. 1. A simple ray trace in relation to the
diameter of the port hole is shown to scale in Fig. 2. One
optical fiber delivers light over a portion of the surface area
of the port hole, and that light emerges at a characteristic
angle of expansion usually denoted as the numerical aperture
�NA�. For these optical fibers, NA=0.22, corresponding to a
half-angle of about 13°. The diameter of the optical fiber’s
core is 100 �m, with a cladding diameter of 110 �m, and a
polyimide jacket �the golden-colored material seen in the
color version of Fig. 1� that yields a final outer diameter of
�120 �m. With reference to Fig. 2, let the upper optical
fiber deliver the laser light, the conical emergence of which
is denoted by the light- and medium-shaded regions, 1 and 2,
respectively, of the figure �the yellow and blue regions in the
color version of the figure�. The bottom optical fiber then
acts as the receiver, and it conveys the cellular fluorescence
signals to an attached detector. It views the medium- and
dark-shaded regions, 2 and 3, respectively, �the blue and
green regions in the color version of the figure�. To be de-
tected, a fluorescent particle or GFP-labeled cell must be
within the illumination zone of the top optical fiber and the
acceptance zone of the bottom one. The overlap of these two
regions constitutes the medium-shaded �blue� zone, 2, shown

FIG. 1. �Color online� Photomicrograph of the port hole at distal tip of
catheter, with a pair of 100 �m diameter optical fibers positioned just at the
left edge. The port hole is approximately 1 mm in diameter.

FIG. 2. �Color online� Schematic diagram of fiber illumination and collec-
tion profiles. The light from the illumination fiber fills the light- and
medium-shaded �yellow and blue� zones, 1 and 2. The receiver fiber views
the medium- and dark-shaded �blue and green� zones, 2 and 3. The medium-
shaded �blue� zone, 2, shows the region in which the fluorescent particles
will be both illuminated and detected.
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in Fig. 2. In the present catheter design, �1/3 of the port
hole’s surface area was sampled because a relatively small
optical fiber size was chosen in order to keep the profile of
the outer wall of the catheter as smooth as possible. Modifi-
cations of the arrangement that enable sampling the full sur-
face area are described elsewhere.16

To detect the fluorescence of the phosphor particles that
were passing through the catheter’s port hole, we used a high
sensitivity photomultiplier tube �PMT� to monitor the optical
signal that was conveyed within the return fiber. Also, for
inspection purposes, a Sony SSC-C374 CCD color video
camera with an InfiniVar™ video microscope attachment
was used for visual observation of the flow through and the
fluorescence within the port hole of the catheter. To drive the
fluorescence, a train of uv pulses from a VSL-337ND laser
�wavelength=337 nm� was conveyed to the port hole
through the delivery optical fiber. The PMT output signal
was acquired by a high speed digitizing oscilloscope from
which the data could be downloaded to a laboratory com-
puter for offline analysis. The catheter under test was
mounted on a precision laboratory jack to aid in proper po-
sitioning of it relative to the video microscope. The optical
fibers were coupled to the laser output port and the PMT
inlet port via Sub Multi Assembly �SMA� connectors. Care-
ful alignment of the components was critical, in part because
of the small apertures at the fiber ends �nominally 100 �m
in diameter�. The entire measurement system was situated on
a large surface area optical table for mechanical stability,
convenience of alignment, etc.

During the experiments, the pipette containing the phos-
phor suspension was inserted into the catheter’s Luer port,
and its bulb was compressed manually to initiate flow of the
suspension through the lumen. Control measurements using
only water as the surrogate cell suspension were also carried
out, with the catheter lumen flushed and dried between all
consecutive runs. In each of the experiments, the video mi-
croscope image was displayed on a high resolution monitor
to identify fluorescence or the lack thereof, and thus corrobo-
rate that the PMT signals arose from the target luminescence.
All data were taken with the laboratory darkened to reduce
noise and minimize the detector’s background level.

IV. RESULTS

At low pulse rates ��20 Hz�, the average power of the
laser was �6 mW, with 300 �J per pulse.15 At these levels
of illumination and with the phosphor suspension just filling
the distal tip of the catheter but not flowing out of the port
hole �i.e., not dripping from it�, fluorescence signals such as
those shown in Fig. 3�a� were obtained routinely. As seen
there, test no. 1 produced a peak signal of roughly 200 mV
while that of test no. 2 was somewhat smaller, roughly 150
mV, most likely due to a slight shift in the very sensitive
alignment of the fibers at the edge of the port hole. On the
other hand, the control measurements showed no signal re-
solvable above the background. Figure 3�b� shows the emis-
sion spectrum of the phosphor obtained with an Ocean Op-
tics �Dunedin, Florida� model USB2000 FLG
minispectrometer.

In earlier �unpublished� experiments with the GFP-
transfected RT2 cells, we found that the same experimental
arrangement had a sensitivity of �7 mV per fluorescent cell.
The number of such cells that would produce the larger of
the signals shown in Fig. 3�a� would thus be �200 mV�/�7
mV�, or about 30 cells. In what follows, we make an order-
of-magnitude estimate of the number of fluorescing phosphor
particles needed to produce this 200 mV signal, to see how it
compares against this number of cells.

As mentioned above, �100 mm3 of phosphor was used
to create the 50 ml suspension. Given a particle diameter
rounded-up to 10 �m and an assumed packing fraction of
0.5, we estimate that there were on the order of 108 particles
in the sample used to create the suspension, i.e., 2
�106 particles ml−1 �=2�103 particles �l−1� within the 50
ml volume. The diameter of the port hole was 1 mm. The
surface area of the port hole times the inner diameter of the
catheter �1.2 mm� thus yields an estimate on the order of
1 �l as the �cylindrical� volume of suspension inside the
region bounded geometrically by the structure of the port
hole and the inner lumen of the catheter. At the particle den-
sity found above, that would mean there were roughly 2,000
phosphor particles within that region. As per Fig. 1, the op-
tical fibers were positioned on the catheter above the lip at

FIG. 3. �Color online� �a� The fluorescence decay curves from two different
measurements made on a suspension of La2O2S:Eu�1%�, Gd2O2S:Eu�1%�.
�b� The fluorescence spectrum for this material showing a dominant peak at
�625 nm.
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the edge of the port hole. The resulting viewing angle would
thus permit coverage of �1� the meniscus layer of the suspen-
sion above the surface of the port hole and �2� that part of the
interior region below the surface of the port hole accessible
within the NA of the fiber. We estimate that this interrogation
zone constituted perhaps a percent of the �1 �l volume of
the particle suspension contained beneath the port hole of the
catheter. Hence, there would have been about 20 particles
within it. This is within a factor of 2 of the number of cells
��30� that were needed to produce the corresponding signal,
as noted above. Of course, if the fluorescence intensity per
cell were substantially weaker than that per particle, this ratio
would change by the appropriate numerical factor. In any
case, this result does demonstrate that the low-density sus-
pension of phosphor particles used here has photo-optical
characteristics that were similar enough to those of the GFP-
labeled cells to warrant further investigation and use in our
application.

V. DISCUSSION AND CONCLUSIONS

As noted above, the alignment of the optical fibers ap-
peared to be a critical factor in these studies. This can be
understood by inspection of Fig. 2, the area of the overlap
region, 2, clearly depends on not only on how parallel the
fibers are but also the relative distance between the emitter
and receiver optical fibers. Even though the distal tips of the
fibers were glued in place with cyanoacrylate next to the
edge of the port hole, the bonds were still relatively delicate
and it is not surprising that handling of the catheter between
experiments would lead to the observed differences in signal
strength. To overcome any such problem, we have rede-
signed the distal tip of the catheter.16 In this new version of
it, the tip has channels in which the optical fibers are rigidly
embedded, and beam steering via counter-positioned optical
fiber stubs with ends polished at 45° angles is used to convey
the illumination signals across the surface area of the port
hole. Preliminary versions of it have been built and tested,
and the results are reported elsewhere.2

Moreover, there are several other approaches to design-
ing a configuration of optical fibers that will sample the en-
tire area of the port hole rather than just a conical fraction of
it as was done here, and thus significantly increase the size of
the working signal. For instance, more optical fibers could be
added, but at the expense of increasing the roughness of the
surface profile of the catheter. If this were impractical, the
optical fiber pair in the original design might be retracted
from the edge of the port hole to a distance where the region
of overlap expanded to include the entire region of interest.
In this case, a beam homogenizer placed at the optical fiber
terminus could serve to contain and homogenize both the
delivery and receiving profiles.17 One such suitable device
would be a rectangular prism of sufficient length. Moreover,
there is another reason to consider a homogenizer. Since the
light emerging from the optical fiber is characterized by a
Gaussian distribution, the acceptance profile can be as well.

In the preliminary experiments reported here, we fol-
lowed a conservative protocol that was applied uniformly to
all measurements, in which the chemistry and mixing of each

sample was carried out as per best estimates of how the
suspension should be prepared. This was done because it was
outside the scope of the present feasibility study to make a
full range of detailed measurements of signal strength versus
particle concentration in the suspension, at all of the concen-
trations that would be of interest in the cell suspensions.
However, measurements of that kind are planned for future
work. In particular, aliquot ratios similar to those in our cell
studies will be prepared in which not only the number den-
sity of particles but also the volume percentage of the sur-
factant will be varied. The limiting cases, of course, would
be for measurements made on water with no particles �i.e.,
0% concentration, as a null signal control� and similarly on a
fluidless film of the phosphor �i.e., 100% concentration, to
provide the upper bound on signal strength�. Further tests in
this series will include measurements in which the variables
of interest are �a� mixing time, �b� settling time, and �c�
temperature of the suspension. Gaining an empirical under-
standing of these factors will be important in clarifying quan-
titatively how the degree of particle agglomeration affects
signal strength. The results from those studies will also be
compared against our cell measurements in order to further
validate the usefulness of thermographic phosphors in this
application.

In conclusion, slurries containing particles of thermo-
graphic phosphors can serve as surrogates for fluorescent cell
suspensions in studies aimed at developing in situ flow cy-
tometry capabilities in neurocatheters. Our data have shown
that the similarities in particle size and fluorescence charac-
teristics warrant their use for this purpose.
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