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The inequality of charge and spin diffusion coefficients
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2Department of Electrical and Computer Engineering and Computer Science, University of Cincinnati,
Cincinnati, Ohio 45221, USA

�Received 31 August 2007; accepted 27 April 2008; published online 7 July 2008�

Since spin and charge are both carried by electrons �or holes� in a solid, it is natural to assume that
charge and spin diffusion coefficients will be the same. Drift-diffusion models of spin transport
typically assume so. Here, we show analytically that the two diffusion coefficients can be vastly
different in quantum wires. Although we do not consider quantum wells or bulk systems, it is likely
that the two coefficients will be different in those systems as well. Thus, it is important to distinguish
between them in transport models, particularly those applied to quantum wire based devices.
© 2008 American Institute of Physics. �DOI: 10.1063/1.2951448�

In the drift-diffusion model of spin transport, it is cus-
tomary to assume that the same diffusion coefficient “D”
describes charge and spin diffusion. This assumption is com-
monplace in the literature �see, for example, Refs. 1–5�. Ref-
erence 6 considers a two-dimensional system with different
spin and charge diffusion coefficients but ultimately assumes
that the bare spin diffusion coefficient is the same as the
charge diffusion coefficient. Reference 7 also examines this
issue, and based on an heuristic assumption that spin trans-
port is analogous to bipolar charge transport, reaches the
conclusion that the two diffusion coefficients are equal as
long as the populations of up-spin and down-spin carriers are
equal. In spin polarized transport, the two populations are
unequal by definition. Therefore, it is imperative to examine
if these two diffusion coefficients are still equal in spin po-
larized transport, and if not, then how unequal they can be.
In this paper, we show that these two diffusion coefficients
can be vastly different in quantum wires. Although we do not
consider quantum wells and bulk systems, there is no reason
to believe a priori that even in those systems, the two diffu-
sion coefficients will be equal.

We first consider a narrow semiconductor quantum wire
where only the lowest subband is occupied by carriers at all
times. All higher subbands are unoccupied. We will assume
that there are Rashba8 and Dresselhaus9 spin orbit interac-
tions in the wire, but no external magnetic field to cause spin
mixing.10 In that case, we can ignore the Elliott–Yafet spin
relaxation mechanism11 since it will be very weak unless the
carrier mobility is extremely poor. Spin relaxation via hyper-
fine interaction with nuclear spins, or via the Bir–Aronov–
Pikus mechanism,12 is also typically very weak in semicon-
ductor quantum wires with only one kind of carriers
�electrons or holes, but not both�. Therefore, the only spin
relaxation mechanism that is important is the D’yakonov–
Perel’ relaxation.13

In the single channeled quantum wire, we will prove two
remarkable results for the D’yakonov-Perel’ relaxation: �i�

spin will relax in time �i.e., the spin relaxation time �s will be
finite�, but it will not relax in space �i.e., the spin relaxation
length Ls will be infinite�, and �ii� if the drift-diffusion model
is valid in this system �this model relates Ls and �s as Ls

=�Ds�s�, then we must conclude that the spin diffusion co-
efficient Ds is infinite. However, since there is scattering in
the system, the charge diffusion coefficient Dc must be finite.
Therefore, the two diffusion coefficients are completely dif-
ferent. This is an extreme case, but even in less extreme
cases �multichanneled quantum wires�, these two coefficients
can be very different. Later, we provide an analytical proof
for the single channeled quantum wire case.

Consider an ensemble of electrons injected in a quantum
wire at time t=0 from the end x=0 as shown in Fig. 1. Only
the lowest subband is occupied in the wire at all times. There
is an electric field Ex driving charge transport, and there is
also a transverse electric field Ey breaking structural inver-
sion symmetry, thereby causing a Rashba spin orbit
interaction.8 We will assume that the quantum wire axis is

a�Author to whom correspondence should be addressed. Electronic mail:
sbandy@vcu.edu.

FIG. 1. �Color online� A quantum wire structure of rectangular cross sec-
tion. A top gate �not drawn� applies a symmetry breaking electric field Ey to
induce Rashba interaction. A battery �not drawn� applies an electric field
−Exx̂, Ex�0, along the channel. Spin polarized electrons are injected at x
=0. These electrons travel along x̂ and may gradually lose their initial spin
polarization. We investigate the spin depolarization of these electrons in
time domain as well as in space domain.
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along the �100� crystallographic direction and that there is
crystallographic inversion asymmetry along this direction
giving rise to Dresselhaus spin-orbit interaction.9 We choose
this system because it is the simplest and includes the two
major types of spin orbit interactions found in semiconductor
nanostructures, namely the Rashba and the Dresselhaus in-
teractions. Reference 5 has considered this system within the
framework of the drift-diffusion model and shown that there
is a single time constant describing spin relaxation. In con-
trast, spin relaxation in a two-dimensional system �quantum
well� may be described by more than one time constant.5

For illustration purposes, we will assume hypothetically
that the spin injection efficiency is 100%, so that at x=0, all
electrons are spin polarized along some particular, though
arbitrary, direction �̂0 in space. Their injection velocities are
not necessarily the same �in fact, they will be drawn from the
Fermi–Dirac distribution in the contact�. We are interested in
finding out how the net spin polarization of the ensemble
���S��� decays in time or space due to the D’yakonov-Perel’
process.

In the quantum wire, the electrons experience various
momentum relaxing scattering events. Between successive
scattering events, they undergo free flight and during this
time, their spins precess about a velocity-dependent pseudo-
magnetic field Bso�vx� caused by Rashba and Dresselhaus
spin-orbit interactions. This magnetic field can be shown to
be spin independent.

The spin precession of every single electron occurs ac-
cording to the well-known Larmor equation

dS

dt
= ��vx� � S , �1�

where S is the spin polarization vector of the electron and
��vx� is a vector whose magnitude is the angular frequency
of spin precession. It is related to Bso�vx� as ��vx�
= �g�B /��Bso�vx�, where g is the Lande g factor in the ma-
terial, and �B is the Bohr magneton. Equation �1� is actually
the well-known equation for Larmor spin precession and can
be derived rigorously from the Ehrenfest theorem of quan-
tum mechanics.

The vector ��vx� has two contributions due to Dressel-
haus and Rashba interactions

��vx� = �D�vx� + �R�vx� , �2�

where the first term is the Dresselhaus and the second term is
the Rashba contribution. In our quantum wire, these two con-
tributions are given by

�D�vx� =
2m�a42

�2 	
 �

Wy
�2

− 
 �

Wz
�2�vxx̂ = �D0vxx̂ ,

�3�

�R�vx� =
2m�a46

�2 Eyvxẑ = �R0vxẑ ,

where Wz and Wy are the transverse dimensions of the wire,
a42 and a46 are material constants, x̂ is the unit vector along
the x direction and ẑ is the unit vector along the z direction.

Note that the vector � lies in the x−z plane and sub-
tends an angle 	 with the 
x axis �quantum wire axis� given
by

	 = arctan	 �R0

�D0
� = arctan	 a46Ey

a42
� �
Wy

�2 − � �
Wz

�2�� . �4�

Note also that since 	 is independent of vx, the axis �but not
the magnitude� of both � and Bso is independent of electron
velocity. Therefore, every electron, regardless of its velocity,
precesses about the same axis, as long as only one subband is
occupied. The direction of precession �clockwise or counter-
clockwise� depends on the sign of the velocity and therefore
can change if the velocity changes sign, but the precession
axis remains unchanged. However, the precession frequency
depends on the velocity and is therefore different for differ-
ent electrons as long as there is a spread in their velocities
caused by varying injection conditions or random scattering.
As a result, at any given instant of time t= t0, the spins of
different electrons will be pointing in different directions be-
cause they have precessed by different angles since the initial
injection. Consequently, when we ensemble average over all
electrons, the quantity ��S�� decays in time, leading to spin
relaxation in time.

To show this more clearly, we start from Eq. �1� describ-
ing the spin precession of any one arbitrary electron

dS

dt
= x̂

dSx

dt
+ ŷ

dSy

dt
+ ẑ

dSz

dt
= ��vx� � S

= det� x̂ ŷ ẑ

�D�vx� 0 �R�vx�
Sx Sy Sz

�
= − x̂��R�vx�Sy� − ŷ��D�vx�Sz − �R�vx�Sx�

+ ẑ��D�vx�Sy� , �5�

where Sn is the spin component along the n axis of that
arbitrary electron.

Equating each Cartesian component separately, we get

dSx

dt
= − �R0vxSy ,

dSy

dt
= �R0vxSx − �D0vxSz, �6�

dSz

dt
= �D0vxSy .

If every electron in an ensemble had the same vx at every
instant of time �no dispersion in velocity�, then the last equa-
tion tells us that every electron would have the exact same
spin components Sx, Sy, and Sz at any instant of time as long
as they were all injected at time t=0 with the same spin
polarization. In that case, we could replace Sn in the last
equation by the ensemble averaged value �Sn� over the entire
ensemble, so that
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d��S��2

dt
=

d�Sx�2

dt
+

d�Sy�2

dt
+

d�Sz�2

dt

= 2�Sx�
d�Sx�

dt
+ 2�Sy�

d�Sy�
dt

+ 2�Sz�
d�Sz�

dt

= − 2�R0vx�Sy��Sx� + 2�R0vx�Sx��Sy� − 2�D0vx�Sz��Sy�

+ 2�D0vx�Sy��Sz� = 0. �7�

In that case, ��S�� will not decay in time and there will be no
D’yakonov-Perel’ spin relaxation in time. However, if vx is
different for different electrons either due to different injec-
tion conditions, or because of scattering, then we cannot re-
place Sn with �Sn� in Eq. �6�. As a result, Eq. �7� will not
hold, so that d��S�� /dt�0, and there will be a D’yakonov–
Perel’ relaxation in time. As a result, the spin relaxation time
�s will be finite.

Next, let us consider D’yakonov–Perel’ spin relaxation
in space. From Eq. �6�, we obtain �using the chain rule of
differentiation�

dSx

dx

dx

dt
=

dSx

dx
vx = − �R0vxSy ,

dSy

dx

dx

dt
=

dSy

dx
vx = �R0vxSx − �D0vxSz, �8�

dSz

dx

dx

dt
=

dSz

dx
vx = �D0vxSy .

The earlier equation shows that the spatial rates dSn /dx are
independent of velocity. This is a remarkable result with re-
markable consequence. It tells us that even if different elec-
trons have different velocities, as long as they were all in-
jected with the same spin polarization at x=0, they will all
have the exact same spin polarization at any arbitrary loca-
tion x=X0! That is, every electron’s spin at x=X0 is pointing
in exactly the same direction. Therefore, we can always re-
place Sn in the earlier equation by its ensemble averaged
value �Sn� whether or not there is scattering causing a spread
in the electron velocity between different members of the
ensemble. Consequently,

d��S��2

dx
=

d�Sx�2

dx
+

d�Sy�2

dx
+

d�Sz�2

dx

= 2�Sx�
d�Sx�

dx
+ 2�Sy�

d�Sy�
dx

+ 2�Sz�
d�Sz�

dx

= − 2�R0�Sy��Sx� + 2�R0�Sx��Sy� − 2�D0�Sz��Sy�

+ 2�D0�Sy��Sz� = 0. �9�

Thus, there is never any D’yakonov–Perel relaxation in
space as long as a single subband is occupied. Therefore, the
spin relaxation length Ls is infinite. This is true whether or
not there is scattering.

The earlier result has been confirmed independently with
a many-particle Monte Carlo simulation of spin transport in a
single channeled quantum wire.14 Here, we have provided an
analytical proof.

The foregoing analysis also shows that in a quantum
wire with single subband occupancy and D’yakonov–Perel’
as the only spin relaxation mechanism, there is a fundamen-
tal difference between spin relaxation in time and spin relax-
ation in space. Spin can relax in time while not relaxing in
space. The physical origin of this difference is explained
later.

From Eq. �3�, we see that the precession frequency for
any arbitrary electron is given by

d��t�
dt

= ����t� = ��D0
2 + �R0

2 vx�t� = �0vx�t� , �10�

where ��t� is the angle by which the electron’s spin pre-
cesses in time t.

If all electrons are injected with the same spin polariza-
tion at time t=0, then the angle by which any given elec-
tron’s spin has precessed at time t= t0 is

��t0� = �0�
0

t0

vx�t�dt = �0�x�t0� − x�0�� = �d0, �11�

where d0 is the distance between the location of the electron
at time t0 and the point of injection. Obviously d0 is history
dependent because different electrons with different injection
velocities and/or scattering histories would traverse different
distances in time t0. Consequently, if we denote the angle by
which the nth electron’s spin has precessed in time t0 as
�n�t0�, then �1�t0���2�t0�� , . . . ,�m�t0�. As a result, if we
take a snapshot at t0, we will find that the spin polarization
vectors of different electrons are pointing in different direc-
tions. Therefore, ensemble averaged spin at t0 is less than
what it was at time t=0. Consequently, spin depolarizes with
time leading to temporal D’yakonov–Perel’ relaxation.

The spatial rate of precession, on the other hand, is ob-
tained as

d��t�
dt

=
d��x�

dx

dx

dt
=

d��x�
dx

vx�t� = �0vx�t� ,

�12�
d��x�

dx
= �0.

Therefore, the angle by which any given electron’s spin has
precessed when it arrives at a location x=X0 is

��X0� = �
0

X0 d��x�
dx

dx = �0�
0

X0

dx = �0X0. �13�

This angle is obviously history independent since it depends
only on the coordinate X0 which is the same for all electrons
at location X0, regardless of how and when they arrived at
that location. In fact, an electron may have visited the loca-
tion X0 earlier, gone past it, and then scattered back to X0. Or
it may have arrived at X0 for the first time. It does not matter.
The angle by which an electron’s spin has precessed when it
is located at X0 is a constant independent of past history.
Therefore, if all electrons were injected with their spins ex-
actly parallel to each other at x=0, then every single electron
at x=X0 has its spin polarization vector pointing in the same
direction as every other electron, and the ensemble averaged
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magnitude of spin at x=X0 is the same as that at x=0. Con-
sequently, spin does not depolarize in space and there is no
D’yakonov–Perel spin relaxation in space, unlike time.

Since spin relaxes in time but not in space, the relaxation
time ��s� is finite whereas the relaxation length �Ls� is infi-
nite. According to the drift-diffusion model, these two quan-
tities are always related in steady state as4

Ls = �Ds�s, �14�

where Ds is the spin diffusion coefficient. Note that the quan-
tities Ls, Ds, and �s are spin transport constants. As such, they
are independent of both space and time.

Since Ls is infinite while �s is finite, the only way the
earlier equation can be satisfied is if the steady-state spin
diffusion coefficient Ds is infinite. But the steady state diffu-
sion coefficient Dc associated with charge transport is cer-
tainly finite since we have frequent momentum relaxing scat-
tering in our system. Therefore, there must be two very
different diffusion coefficients Ds and Dc associated with
spin and charge diffusion. This completes our analytical
proof that Dc�Ds.

Two final questions remain regarding the generality of
the earlier result. First, is it only valid for the extreme case of
a quantum wire with single subband occupancy �single chan-
neled transport� and second, is it only true for D’yakonov–
Perel’ relaxation? We cannot treat the case of multichanneled
transport analytically, but we have examined that case nu-
merically using Monte Carlo simulation in both space15 and
time.16 We studied spin transport in a GaAs quantum wire of
cross section 30 nm�4 nm, where multiple subbands are
occupied and D’yakonov–Perel’ relaxation does occur in
both time and space. At a lattice temperature of 77 K and a
driving electric field Ex=2 kV /cm, the value of Ls extracted
from that study is �10 �m while the value of �s�1 ns.
This yields Ds�103 cm2 /s �from Eq. �14�� which is still
several orders of magnitude higher than the charge diffusion
coefficient Dc in the same quantum wire calculated under the
same conditions.17,18 Thus Ds�Dc, even in multichanneled
transport, and the two quantities can be vastly different.

Finally, what if we include other modes of spin relax-
ation, such as Elliott–Yafet?11 If Elliott–Yafet is the domi-

nant mode, then spin relaxation is intimately connected with
momentum relaxation. In that case, the charge diffusion con-
stant, determined by momentum relaxing scattering, and spin
diffusion constant may not be as unequal. Nonetheless, there
is no reason to assume a priori that the two diffusion coef-
ficients are exactly equal even in this case. A rigorous Monte
Carlo simulation �based on random walk model� recently
carried out by us has shown that the two diffusion coeffi-
cients, in general, are vastly different. How different they are
depends on the details of the scattering processes that relax
momentum and spin.19

In conclusion, we have shown that in quantum wires the
spin and charge diffusion coefficients can be vastly different.
Although we have not examined quantum wells and bulk
systems in this study, there is no reason to presuppose that
the charge and spin diffusion coefficients will be equal in
these systems either. Thus, it is important to distinguish be-
tween these two diffusion coefficients in solid state systems.
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