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Single spin Toffoli–Fredkin logic gate
Amit Ranjan Trivedi and S. Bandyopadhyaya�

Department of Electrical and Computer Engineering, Virginia Commonwealth University,
Richmond, Virginia 23284, USA

�Received 22 June 2007; accepted 4 April 2008; published online 29 May 2008�

The Toffoli–Fredkin �TF� gate is a universal reversible logic gate capable of performing logic
operations without dissipating energy. Here, we show that a linear array of three quantum dots, each
hosting a single electron, can realize the TF gate, if we encode logic bits in the spin polarization of
the electrons and allow nearest neighbor exchange coupling. The dynamics of the TF gate is realized
by selectively driving spin resonances in the coupled spin system with an ac magnetic field. The
conditions for gate operation are established, and an estimate of the switching speed and gate error
are provided. © 2008 American Institute of Physics. �DOI: 10.1063/1.2937200�

I. INTRODUCTION

The Toffoli–Fredkin �TF� gate is a universal classical
reversible logic gate1 that can be switched without dissipat-
ing energy.2 This makes it attractive for low-power and/or
high density logic circuits.

The TF gate has three inputs �A ,B ,C� and three outputs
�A� ,B� ,C��. A and B are the so-called control bits and C is
the target bit. The output-input relations are

A� = A ,

B� = B ,

C� = �A · B� � C ,

where · denotes the Boolean AND and � denotes the Bool-

ean XOR operations. In other words, C�= C̄ if A=B=1 and
C�=C otherwise. If we can realize these input-output rela-
tions, we will have realized the TF gate.

The feasibility of implementing reversible logic opera-
tions in generic spin based systems have been discussed
many times in different contexts,3–6 but without any concrete
scheme. More recently, there has been a spate of activity in
realizing quantum computers with spins in NMR systems7

and, more importantly, in semiconductor quantum dots.8–12

Unlike NMR based schemes, the quantum dot based schemes
are scalable and hence more attractive. These schemes do not
specifically address the TF gate but rather arbitrary unitary
�reversible� operations on spin, which, of course, can be ul-
timately configured to implement a TF gate. Here, we pro-
pose a direct and concrete scheme for the realization of the
TF gate with coupled spins. It is based on the selective driv-
ing of resonances that is often used for reversible logic op-
erations in other �nonspin� systems.13–15

II. THE SINGLE SPIN TF GATE

The TF gate is realized with a linear array of three ex-
change coupled spins, each housed in a quantum dot. The

entire array is placed in a global dc magnetic field. The spin
polarization in any dot can be either parallel or antiparallel to
this global field. No other spin polarization is stable since it
will not be an eigenstate of the Hamiltonian.

The three-dot array is shown in Fig. 1. The quantum
mechanical wavefunctions of electrons in nearest neighbor
dots overlap in space causing exchange coupling between
them. We will assume that the “upspin” state �aligned anti-
parallel to the global magnetic field� encodes the classical
logic bit 1 and the “downspin” state �parallel to the global
field� encodes bit 0.

We will regard the spin polarizations in the three dots as
the output bits A�, B�, and C� at any time. Since A�=A and
B�=B, inputs can be provided directly to the peripheral dots
A and B by orienting the spins in these dots along chosen
directions with local magnetic fields generated by inductors,
so that they conform to the control bits A and B. We will now
find the spin polarizations in dot C. To prove the dynamics of
the TF gate, we merely have to show that C toggles if A
=B=1, and nothing happens otherwise. This will be shown
next.

If the charging energy �intradot Coulomb repulsion�
within each dot is sufficiently strong, then at half-filling �one
electron per dot�, the three-spin array in Fig. 1 can be de-
scribed by the Heisenberg Hamiltonian,16

a�Author to whom correspondence should be addressed. Electronic mail:
sbandy@vcu.edu.

FIG. 1. Potential profile of three exchange coupled quantum dots. Wave-
functions of nearest neighbors overlap causing exchange coupling between
them.
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HHeisenberg = �
�ij�

Jij
�
�zi�zj + �

�ij�
Jij

���xi�xj + �yi�yj�

+ �
input dots

�zihzi
inputs + �

i

�zihzi
global,

where the �s are Pauli spin matrices. We adopt the conven-
tion that the direction of the global magnetic field, as well as
the local magnetic fields writing input data in dots A and B,
is the z direction. Therefore, the last two terms above ac-
count for the Zeeman energies associated with these mag-
netic fields. The first two terms account for the exchange
interaction between nearest neighbors �the angular brackets

denote nearest neighbors�. We will assume the isotropic case
whereby Jij

�=Jij
� =J, where J is the exchange energy, which is

nonzero if the wavefunctions in dots i and j overlap in space.
If we designate the upspin and downspin states as ↑ and

↓ respectively, then the three-spin basis states representing
the spin configurations in the three-dot array are 	↓↓↓�, 	↓↓↑�,
	↓↑↓�, 	↓↑↑�, 	↑↓↓�, 	↑↓↑�, 	↑↑↓�, 	↑↑↑�, where the first entry is
the spin polarization in dot A, the second in dot C, and the
third in dot B. These eight basis functions form a complete
orthonormal set. The matrix elements ��m	HHeisenberg	�n� are
given in the matrix below, where the �m,n are the three-
electron basis states enumerated above,



2J − hA − hB − 3Z 0 0 0 0 0 0 0

0 − hA + hB − Z 2J 0 0 0 0 0

0 2J − 2J − hA − hB − Z 0 2J 0 0 0

0 0 0 − hA + hB + Z 0 2J 0 0

0 0 2J 0 hA − hB − Z 0 0 0

0 0 0 2J 0 − 2J + hA + hB + Z 2J 0

0 0 0 0 0 2J hA − hB + Z 0

0 0 0 0 0 0 0 2J + hA + hB + 3Z

� .

In the above matrix, Z is one-half of the Zeeman splitting
energy associated with the global magnetic field, while 2hA

and 2hB are the Zeeman splitting energies in dots A and B
caused by the local magnetic fields that write control bits A
and B. If the local magnetic field is in the direction of the
global magnetic field �downspin direction� and writes bit 0,
then the corresponding h is positive; otherwise, it is negative.
The quantity J is always positive.

We will evaluate the eight eigenenergies En �n=1–8� by
finding the eigenvalues of the 8�8 matrix above and the
corresponding eigenstates,

�n = c1
n	↓↓↓� + c2

n	↓↓↑� + c3
n	↓↑↓� + c4

n	↓↑↑� + c5
n	↑↓↓�

+ c6
n	↑↓↑� + c7

n	↑↑↓� + c8
n	↑↑↑�

= �c1
n,c2

n,c3
n,c4

n,c5
n,c6

n,c7
n,c8

n� .

This exercise will be repeated for four cases, hA= �h and
hB= �h, which correspond to the four possible control bit
combinations �A=1,0 and B=1,0�.

Case I: hA=hB=h: This is the case when A=B=0.
The eigenenergies and eigenstates corresponding to this

case are shown in Table I. The eigenenergies are arranged in
ascending order �i.e., the first entry is the ground state and
the last entry is the highest excited state�, provided that h
�J and J�Z /2. The reason for these inequalities will be-
come clear next.

We will be interested in states 	↓↑↓� and 	↓↓↓� since these
are the two relevant states when A=B=0 �i.e., both periph-
eral dots have downspin polarization�. The ground state and

the fifth excited eigenstate in Table I contain state 	↓↑↓�,
while the first excited eigenstate is purely 	↓↓↓� with no other
state mixed in. The ground state and the fifth excited eigen-
state are entangled states and neither is purely 	↓↑↓�.

We can make the ground state approach the pure unen-
tangled state 	↓↑↓� if we make 	�1 /2J	�1, i.e., if h�J. In
order to make the fifth excited eigenstate approach the unen-
tangled state 	↓↑↓�, we need to make 	�6 /2J	�1, but this is
unachievable by any means. Therefore, if we make h�J,
then the ground state is approximately state 	↓↑↓� and the
first excited state is state 	↓↓↓�. The energy difference be-
tween these two states is 4J−2Z. Consequently, when A=B
=0, the energy splitting between the three-body states corre-
sponding to opposite spin polarizations in dot C �which is

TABLE I. Eigenenergies and eigenstates when the inputs �A ,B� are �0,0�.
	1=��h+J�2+8J2, 	2=��h−J�2+8J2, �1=−J−h−	1, �3=J−h+	2, �6=

−J−h+	1, �7=J−h−	2, and 
n=���n /J�2+8 .

Eigenenergies �En� Eigenstates ��n�

−J−h−Z−	1 �0, 2 /
1, �1 / �J
1�, 0, 2 /
1, 0, 0, 0�
2J−2h−3Z �1, 0, 0, 0, 0, 0, 0, 0�

−J+h+Z−	2 �0, 0, 0, 2 /
3, 0, −�3 / �J
3�, 2 /
3, 0�
−Z �0, 1

�2
, 0, 0, − 1

�2
, 0, 0, 0�

Z �0, 0, 0, − 1
�2

, 0, 0, 1
�2

, 0�
−J−h−Z+	1 �0, 2 /
6, �6 / �J
6�, 0, 2 /
6, 0, 0, 0�
−J+h+Z+	2 �0, 0, 0, 2 /
7, 0, −�7 / �J
7�, 2 /
7, 0�
2J+2h+3Z �0, 0, 0, 0, 0, 0, 0, 1�
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the energy difference between states 	↓↓↓� and 	↓↑↓�� is

��AB = ��00 = 4J − 2Z . �1�

This energy difference is positive as long as J�Z /2. In other
words, state 	↓↑↓� is lower in energy than state 	↓↓↓� if the
exchange coupling strength 2J is larger than one-half of the
Zeeman splitting energy 2Z caused by the global magnetic
field. Because of the stronger exchange coupling, which
tends to orient spins in neighboring dots along antiparallel
directions, the spin in dot C prefers to be aligned antiparallel
to the global magnetic field �lower energy state�.

Case II: hA=hB=−h: This is the case when A=B=1. The
eigenenergies and eigenstates are shown in Table II. They are
obtained by replacing h with −h in Table I.

The two states of interest when A=B=1 are 	↑↓↑� and
	↑↑↑�, which correspond to upsin polarizations in the periph-
eral dots. Once again, the ground state and the fifth excited
eigenstate contain state 	↑↓↑� and the first excited eigenstate
is purely state 	↑↑↑�. The ground state and the fifth excited
eigenstate are entangled states. We can make the ground state
approach the pure unentangled state 	↑↓↑� if we make h�J,
but we could never make the fifth excited eigenstate ap-
proach the unentangled state 	↑↓↑�. In other words, if we
apply strong enough input signals to dots A and B such that
h�J, then the first excited eigenstate is state 	↑↑↑� and the
ground state is state 	↑↓↑�. The energy difference between
these two states is 4J+2Z. Consequently, when A=B=1, the
energy splitting between upspin and downspin states in dot C
is

��11 = 4J + 2Z . �2�

In this case, the spin in dot C tends to align along the global
magnetic field since the exchange interaction and Zeeman
splitting act in concert, while in the previous case, they op-
posed each other. Exchange had won since it was stronger
and made the spin in dot C preferentially orient itself against
the global magnetic field.

Case III: −hA=hB=h: This is the case when A=1, B=0.
The eigenenergies and eigenstates are shown in Table III.

The states of interest in this case are 	↑↓↓� and 	↑↑↓�. The
ground state is an entangled state, but it approaches the pure
unentangled state 	↑↓↓� if we make h�J. Similarly, we can
make the entangled first excited state approach the unen-
tangled state 	↑↑↓� if we make h�J. In other words, if we
apply strong inputs signals, i.e., strong local magnetic fields
to align the spins in dots A and B, such that h�J, then the

first excited eigenstate is approximately the unentangled state
	↑↑↓� and the ground state is the unentangled state 	↑↓↓�. The
energy difference between these two states is 2Z. Conse-
quently, when the inputs are A=1 and B=0, the energy split-
ting between the upspin and downspin states in dot C is

��10 = 2Z . �3�

Case IV: −hA=hB=−h: This is the case when A=0, B=1. The
eigenenergies are the same as in Table III since these ener-
gies depend on h2 and are therefore insensitive to the sign of
h. However, the eigenstates change since they depend on h.
The new eigenstates are found by replacing p

�q� with ̂p
�q�

�p=1–4, q=1–8�, where

̂p
�q��h� = p

�q��− h� . �4�

We can show following the previous procedure that

��01 = 2Z . �5�

Thus, in the end, we have a situation whereby

�11 � �00,�01,�10. �6�

This is all we need for the dynamics of the TF gate.

III. DYNAMICS OF THE TF GATE

The TF gate is realized if the spin in dot C toggles only
when A=B=1, and not otherwise. To achieve this, we utilize
Rabi oscillations.17–19 A rotating ac magnetic field is applied
in the x-y plane, which has an angular frequency of rotation
equal to �11. This field will flip the spin in dot C only when
A=B=1, by virtue of the inequality in Eq. �6�. This realizes
the TF gate. Note that the spin in dot C undergoes a transi-
tion by coherently emitting or absorbing a photon from the
ac magnetic field. No energy dissipation takes place, consis-
tent with the reversible nature of the TF gate.

TABLE II. Eigenenergies and eigenstates when the inputs are �1,1�; hA

=hB=−h�0. .

Eigenenergies Eigenstates

−J−h+Z−	1 �0, 0, 0, 2 /
1, 0, �1 / �J
1�, 2 /
1, 0�
2J−2h+3Z �0, 0, 0, 0, 0, 0, 0, 1�

−J+h−Z−	2 �0, 2 /
3, −�3 / �J
3�, 0, 2 /
3, 0, 0, 0�
−Z �0, − 1

�2
, 0, 0, 1

�2
, 0, 0, 0�

Z �0, 0, 0, − 1
�2

, 0, 0, 1
�2

, 0�
−J−h+Z+	1 �0, 0, 0, 2 /
6, 0, �6 / �J
6�, 2 /
6, 0�
−J+h−Z+	2 �0, 2 /
7, −�7 / �J
7�, 0, 2 /
7, 0, 0, 0�
2J+2h−3Z �1, 0, 0, 0, 0, 0, 0, 0�

TABLE III. Eigenenergies and eigenstates when the inputs are �0,1�; −hA

=hB=h�0. �1=J�9�h /J�2−10+3i�3�h /J�6+12�h /J�4+69�h /J�2+27�1/3,
�2=−�4J2 /3�1���h /J�2+7 /3�, �3=2�1 /3+3�2 /2=2i Im�2�1 /3�, �4=2�1 /3
−3�2 /2=2 Re�2�1 /3�, 1

�1�=−�4 /2−2J /3+2h+ ��3i /2��3, 2
�1�=−�4 /2

−2J /3−Z+ ��3i /2��3, 3
�1�= �2

�1��2+22
�1��Z+J+h�+4Jh+2JZ−4J2

+Z2+2hZ, 1
�2�=1

�1�, 2
�2�=1

�1�+2Z, 3
�2�= �2

�2��2+22
�2�

��−Z+J+h�+4Jh−2JZ−4J2+Z2−2hZ, 1
�3�=1

�1�−�3i�3, 2
�3�=2

�1�

−�3i�3, 3
�3�= �2

�3��2+22
�3��Z+J+h�+4Jh+2JZ−4J2+Z2+2hZ, 1

�4�=1
�2�

−�3i�3, 2
�4�=2

�2�−�3i�3, 3
�4�= �2

�4��2+22
�4�

��−Z+J+h�+4Jh−2JZ−4J2+Z2−2hZ, 1
�7�=�4−2J /3+2h, 2

�7�=�4

−2J /3−Z, 3
�7�= �2

�7��2+22
�7��Z+J+h�+4Jh+2JZ−4J2+Z2+2hZ, 1

�8�

=1
�7�, 2

�8�=2
�7�+2Z, 3

�8�= �2
�8��2+22

�8�

��−Z+J+h�+4Jh−2JZ−4J2+Z2−2hZ, 4
�n�= ��3

�n��2 /J4+4�1
�n��2 /J2

+16�1/2 �n=1–8� .

Eigenenergies Eigenstates

−�4−2J /3−Z+�3i /2�3 �0,3
�1� / �J24

�1�� ,21
�1� / �J4

�1�� ,0 ,4 /4
�1� ,0 ,0 ,0�

−�4−2J /3+Z+�3i /2�3 �0,0 ,0 ,3
�2� / �J24

�2�� ,0 ,21
�2� / �J4

�2�� ,4 /4
�2� ,0�

−�4−2J /3−Z−�3i /2�3 �0,3
�3� / �J24

�3�� ,21
�3� / �J4

�3�� ,0 ,4 /4
�3� ,0 ,0 ,0�

−�4−2J /3+Z−�3i /2�3 �0,0 ,0 ,3
�4� / �J24

�4�� ,0 ,21
�4� / �J4

�4�� ,4 /4
�4� ,0�

2J−3Z �1, 0, 0, 0, 0, 0, 0, 0�
2J+3Z �0, 0, 0, 0, 0, 0, 0, 1�

�4−2J /3−Z �0,3
�7� / �J24

�7�� ,21
�7� / �J4

�7�� ,0 ,4 /4
�7� ,0 ,0 ,0�

�4−2J /3+Z �0,0 ,0 ,3
�8� / �J24

�8�� ,0 ,21
�8� / �J4

�8�� ,4 /4
�8� ,0�
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The switching time is determined by the amplitude of
the ac magnetic field Bac. It is given by17–19

ts =
h

2g�BBac
,

where g is the g-factor of the quantum dot material, h is the
Planck constant, and �B is the Bohr magneton. The switch-
ing speed increases with increasing g-factor. A giant g-factor
with an absolute value larger than 900 has been reported in

InSb1−xN1−x.
20 With such large g-factors, the switching time

is 4 ps with a reasonable Bac=0.01 T. This is sufficiently
fast.

The ac magnetic field is turned on only for the duration
ts given by the above expression. Such an ac magnetic field
pulse is called a -pulse.

IV. GATE ERROR

When the frequency of the ac magnetic field is resonant
with �11, the probability of flipping the spin in dot C is

FIG. 2. �a� Gate error probability
Perror

00 �ts� and Perror
01 �ts��=Perror

10 �ts�� as a
function of the Zeeman splitting Z or
exchange coupling J for ac magnetic
flux density amplitude of 0.01 T �ts

=4 ps� and �b� the same error prob-
abilities plotted as a function of the
switching time ts when J=Z=1 meV.

104311-4 A. R. Trivedi and S. Bandyopadhyay J. Appl. Phys. 103, 104311 �2008�
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100% when A=B=1. However, it is not zero when either A
or B, or both, is 0. If the spin flips when either A or B, or
both, is 0, then we have a gate error. The probability of
nonresonant Rabi spin flip, which is the gate error probabil-
ity, is17–19

P�t�nonresonant = Perror�t�

=
�1

2/2
�1

2 + ��11 − ��2 1 − cos�t��� − �11�2 + �1
2�� ,

where t is the duration during which the ac magnetic field is
kept on, �1=g�BBac /�, and �=�00 or �01 or �10.

In Fig. 2, we plot Perror�ts� for three cases: �i� A=B=0,
�ii� A=1, B=0, and �iii� A=0, B=1. There is no difference
between the last two cases.

The error probability Perror�ts� decreases with increasing
difference 	�11−�	. Note that 	�11−�00 	 =4Z and 	�11

−�01 	 =4 J. Therefore, in Fig. 2�a�, we plot Perror
00 �ts� as a

function of Z and Perror
01 �ts� �=Perror

10 �ts�� as a function of J, for
Bac=0.01 T �ts=4 ps�. The error probability oscillates, but
the envelope decays monotonically with increasing J. When
J�1 meV, or Z�1 meV, the error probability falls below
0.03.

The error probability should also decrease if we decrease
�1 and, therefore, Bac �thus increasing ts�. The penalty in-
curred in doing this is a slower switching speed. Thus, there
is a tradeoff between the switching speed and gate error
probability. In Fig. 2�b�, we plot Perror

00 �ts� and Perror
01 �ts�

�=Perror
10 �ts�� as a function of ts for J=Z=1 meV. This value

of J is realistic for semiconductor quantum dots.21 For mo-
lecular systems, the value of J can be as high as 6 meV.22

Once again, the error probability oscillates, but the envelope
decays monotonically with increasing switching delay. When
ts�4 ps, the error probability falls below 0.03.

There is no inherent error correction capability in revers-
ible gates since there is no dissipation. Any error correction,
if necessary, must be achieved with “software,” using error
correction algorithms. It has been recently shown that the
most sophisticated error correction algorithms can correct er-
rors occurring with probability up to 0.03.23 Therefore, the
fact that the error probability remains below 0.03 for reason-
able values of parameters is immensely reassuring and raises
hopes that spintronic TF gates will be achievable in the near
term.

Before we conclude, let us estimate the strengths of the
global dc magnetic field and the local magnetic fields that we
need to write control bits A and B. Since Z�2 J and J
=1 meV, the global magnetic flux density Bglobal�0.04 T if
g=900. The strength of the local magnetic field is dictated by

the requirement that h�J. How large should the ratio h /J be
for the TF gate to work as described here? It turns out that it
is adequate to have h /J�10.24

Therefore, if the strength of the global magnetic field is
0.04 T, the strengths of the local magnetic fields required to
write control bits A and B need not exceed 0.4 T. Fields of
this strength can be easily generated on a chip.

V. CONCLUSION

In conclusion, we have presented a concrete scheme for
the realization of a reversible spintronic TF gate. Single spin
realization of irreversible single spin gates �e.g., NAND
gate� has been proposed before,25 but to our knowledge, this
is the first concrete proposal for a reversible TF gate based
on single spins. Using high g-factor materials, the switching
speed can be made fast �few picoseconds�. The gate error
probability is within the handling capability of modern error
correction algorithms.
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