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Structure and hydration of the C4H4
•+ ion formed by electron impact

ionization of acetylene clusters
Paul O. Momoh, Ahmed M. Hamid, Samuel A. Abrash,a) and M. Samy El-Shallb)

Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, USA

(Received 14 March 2011; accepted 30 April 2011; published online 27 May 2011)

Here we report ion mobility experiments and theoretical studies aimed at elucidating the
identity of the acetylene dimer cation and its hydrated structures. The mobility measure-
ment indicates the presence of more than one isomer for the C4H4

•+ ion in the cluster
beam. The measured average collision cross section of the C4H4

•+ isomers in helium (38.9
± 1 Å2) is consistent with the calculated cross sections of the four most stable covalent
structures calculated for the C4H4

•+ ion [methylenecyclopropene (39.9 Å2), 1,2,3-butatriene
(41.1 Å2), cyclobutadiene (38.6 Å2), and vinyl acetylene (41.1 Å2)]. However, none of the single
isomers is able to reproduce the experimental arrival time distribution of the C4H4

•+ ion. Combi-
nations of cyclobutadiene and vinyl acetylene isomers show excellent agreement with the experi-
mental mobility profile and the measured collision cross section. The fragment ions obtained by the
dissociation of the C4H4

•+ ion are consistent with the cyclobutadiene structure in agreement with
the vibrational predissociation spectrum of the acetylene dimer cation (C2H2)2

•+ [R. A. Relph, J.
C. Bopp, J. R. Roscioli, and M. A. Johnson, J. Chem. Phys. 131, 114305 (2009)]. The stepwise hy-
dration experiments show that dissociative proton transfer reactions occur within the C4H4

•+(H2O)n

clusters with n ≥ 3 resulting in the formation of protonated water clusters. The measured binding
energy of the C4H4

•+H2O cluster, 38.7 ± 4 kJ/mol, is in excellent agreement with the G3(MP2)
calculated binding energy of cyclobutadiene•+ · H2O cluster (41 kJ/mol). The binding energies of the
C4H4

•+(H2O)n clusters change little from n = 1 to 5 (39–48 kJ/mol) suggesting the presence of mul-
tiple binding sites with comparable energies for the water–C4H4

•+ and water–water interactions. A
significant entropy loss is measured for the addition of the fifth water molecule suggesting a structure
with restrained water molecules, probably a cyclic water pentamer within the C4H4

•+(H2O)5 clus-
ter. Consequently, a drop in the binding energy of the sixth water molecule is observed suggesting
a structure in which the sixth water molecule interacts weakly with the C4H4

•+(H2O)5 cluster pre-
sumably consisting of a cyclobutadiene•+ cation hydrogen bonded to a cyclic water pentamer. The
combination of ion mobility, dissociation, and hydration experiments in conjunction with the theo-
retical calculations provides strong evidence that the (C2H2)2

•+ ions are predominantly present as
the cyclobutadiene cation with some contribution from the vinyl acetylene cation. © 2011 American
Institute of Physics. [doi:10.1063/1.3592661]

I. INTRODUCTION

Many complex organics including polycyclic aromatic
hydrocarbons (PAHs) are present in flames and combustion
processes as well as in outer space.1–5 In fact, well over 100
organic molecules including acetylene, vinylacetylene, cy-
clobutadiene, benzene, and PAHs, are present in interstellar
clouds, molecular clouds, solar nebulae, and in envelopes ex-
pelled by evolved stars.5–10 Gas phase polymerization, ion–
molecule and intracluster reactions, and catalysis on nanopar-
ticles are important synthetic pathways for the formation of
complex molecules in the atmosphere and in space.5, 11–14 In
ion–molecule reactions, the processes of particular interest
are those that lead to larger molecules, which may lead to the
PAHs found in soot, meteorites and interstellar clouds.15–17

a)Permanent Address: Department of Chemistry, University of Richmond,
Richmond, VA 23173.

b)Author to whom correspondence should be addressed. Electronic mail:
mselshal@vcu.edu.

Intracluster ion–molecule reactions are uniquely suited
for the discovery of novel catalytic pathways that can lead
to the formation of complex organics. Since acetylene is the
smallest organic molecule that can be polymerized, extensive
studies have been focused on the ion chemistry of acetylene
clusters not only due to the important roles of acetylene in
flames and combustion processes including the mechanisms
of soot formation, but also for the origin of larger molecu-
lar species such as benzene and polycyclic aromatic hydro-
carbons (PAHs) in space.16, 18–20 For example, the formation
of benzene ions within ionized acetylene clusters, (C2H2)•+n,
has been suggested by several cluster studies conducted over
many years.21–28 Early experiments found the fragment ions
observed from the photoionization of acetylene trimers to
be identical to those obtained from other stable C6H6

+ iso-
mers such as benzene, 2,4-hexadiyne, 1,3-hexadiyne, and
1,5-hexadiyne.21 However, photoelectron–photoion coinci-
dence experiments and ab initio calculations showed that ion-
ized acetylene dimer and trimer ions rearrange to produce

0021-9606/2011/134(20)/204315/13/$30.00 © 2011 American Institute of Physics134, 204315-1
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stable covalent core ions (C4H4
•+ and C6H6

•+, respectively)
with a large release of energy that leads to loss of a neu-
tral acetylene molecule from the ionized clusters.23 Elec-
tron impact (EI) ionization of acetylene clusters (C2H2)n

+

with n up to ∼25 showed magic numbers at n = 3 and 14
which were attributed to the formation of benzene (C6H6

•+)
and C28H28

•+ molecular ions, respectively.24 Mass-selected
ion mobility and collisional induced dissociation (CID) ex-
periments coupled with theoretical calculations support the
efficient formation of the benzene cations following the
EI ionization of large acetylene clusters ((C2H2)n

•+ with
n up to ∼50.25, 26 Ion hydration experiments show that
the enthalpy and entropy changes for the stepwise hydra-
tion of the acetylene trimer cation are identical to those
of the benzene cation.26 Subsequent reactions of the ben-
zene cation with acetylene molecules at higher temperatures
(650 K) show evidence for sequential covalent addition lead-
ing to the formation of naphthalene-type ions.27 Recently,
Relph et al., using infrared predissociation spectroscopy in
conjunction with harmonic frequency calculations, showed
that electron impact ionization of neutral (C2H2)n clus-
ters results in the formation of a covalently bound C4H4

•+

“core ion” which could lead to the presence of several isomers
of the n = 3 species including a weak absorption attributed to
the formation of the benzene cation.28 This work suggests that
the structure of the C4H4

•+ ion could play an important role
in the cluster-mediated ion chemistry.28

In the present work, we report ion mobility experiments
and theoretical studies aimed at elucidating the identity of the
acetylene dimer ion, (C2H2)2

•+, formed by EI ionization of
neutral acetylene clusters. The ion mobility approach requires
a comparison of the average collision cross section calculated
for likely structures to those formed in the experiment. We
employed density functional theory (DFT) (Ref. 29) to de-
termine lowest energy structures of the C4H4

•+ potential en-
ergy surface. We also probe the thermochemical properties
and reactivity of the (C2H2)2

•+ ion by measuring its hydra-
tion energies by one to six water molecules using equilibrium
thermochemical measurements at different temperatures. The
comparison of the stepwise hydration enthalpy and entropy
changes of the acetylene dimer cation with the thermochemi-
cal data recently reported for the acetylene trimer cation26 and
the benzene cation30 provides further evidence for the cova-
lently bound structure of the C4H4

+ ion.
The organization of the paper is as follows. In Sec. II,

we briefly describe the mass-selected ion mobility system and
methods used for measuring the mobility and determining

the corresponding collision cross section of the mass-selected
ions in helium. We also briefly describe the measurement
of ion–molecule equilibrium and the determination of the
stepwise enthalpy and entropy changes associated with the
hydration of the C4H4

•+ ion. The computational methods
used for the structural calculations are briefly described in
Sec. III. In Sec. IV, we present and discuss the results of the
mass spectra, dissociation and mobility of the acetylene dimer
ion (C2H2)2

•+. We also present the calculated structures of
the C4H4

•+ ion and utilize these structures to calculate colli-
sion cross sections of the C4H4

•+ ion for comparison with the
experimental cross sections obtained from the mobility mea-
surements. This comparison provides the basis for suggesting
the likely structures of the C4H4

•+ ion involved in our exper-
iments. Finally, we present the successive hydration enthalpy
and entropy changes of the C4H4

•+ ion with up to six wa-
ter molecules and discuss the calculated hydrated structures
with one and two water molecules. In Sec. V, we provide a
brief summary of the results and highlight the new physical
insights provided by this work on the structure and hydration
of the C4H4

•+ ion.

II. EXPERIMENTAL

The ion mobility, dissociation, and hydration experi-
ments were performed using the VCU mass-selected ion mo-
bility spectrometer. The details of the instrument can be found
in several publications and only a brief description of the ex-
perimental procedure is given here.30–32

Figure 1 illustrates the essential components of the ion
mobility system. In the experiments, acetylene clusters were
generated by supersonic expansion of a 2% acetylene/helium
mixture (He ∼4 atm). The mixture was passed through dry
ice and moisture traps to diminish water vapor and acetone
impurities (acetone is used as a stabilizing agent for pressur-
ized acetylene). Typical ionizer electron energies ranged from
40 to 80 eV.

The ion mobility measurements are described in Sec. IV.
For the ion hydration experiments, mass-selected (C4H4

•+)
ions were injected (in 5–15 μs pulses) into the drift cell con-
taining 0.2–0.6 Torr of pure H2O vapor. Flow controllers are
used to maintain a constant pressure inside the drift cell.
The temperature of the drift cell can be controlled to better
than ±1 K using four temperature controllers. Liquid nitro-
gen flowing through solenoid valves is used to cool down the
drift cell. The reaction products can be identified by scan-
ning a second quadrupole mass filter located coaxially after

FIG. 1. Schematic diagram of the mass-selected ion mobility system at VCU.
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the drift cell. The arrival time distributions (ATDs) are col-
lected by monitoring the intensity of each ion as a function
of time. The reaction time can be varied by varying the drift
voltage. The injection energies (IEs) used in the experiments
(5–20 eV, laboratory frame) are slightly above the minimum
energies required to introduce the ions into the cell against
the H2O vapor outflow from the entrance orifice. Most of the
ion thermalization occurs outside the cell entrance by colli-
sions with the water vapor escaping from the cell entrance
orifice. At a cell pressure of 0.2 Torr, the number of collisions
that the C4H4

•+ encounters with the water molecules within
the 1.5 ms residence time inside the cell is about 104 colli-
sions, which is sufficient to ensure efficient thermalization of
the C4H4

•+ ions.
The ATDs of the injected C4H4

•+ and the
(C4H4

•+)(H2O)n formed inside the cell are measured as a
function of the drift voltage across the cell. The ion intensity
ratio (C4H4

•+)(H2O)n/(C4H4
•+)(H2O)n−1 is measured from

the integrated peak areas of the ATDs as a function of decreas-
ing cell drift field corresponding to increasing reaction times,
and equilibrium is achieved when a constant ratio is obtained.
Applying drift fields of 1–4 V/cm inside the drift cell at a tem-
perature of 302 K and water pressure, P(H2O), of 0.4 Torr cor-
responds to ion residence times between 0.4 and 3.0 ms, re-
spectively. Under these conditions, equilibrium is ascertained
by a constant (C4H4

•+)(H2O)n/(C4H4
•+)(H2O)n−1 ratio and

the equilibrium constants are then obtained using Eq. (1).

Keq= I [C4H•+
4 (H2O)n]

I [C4H•+
4 (H2O)n−1]P(H2O)

, (1)

where I is the intensity of the ion peak taken from the
integrated ATD. The equilibrium constants measured as a
function of temperature yield �H◦ and �S◦ from the slopes
and intercepts, respectively of the van’t Hoff plots. All of the
results are replicated three or more times.

III. THEORETICAL

Geometries and relative energies for a number of interest-
ing isomers of the empirical formula C4H4

+ were calculated
using the unrestricted Perdew, Burke, and Enzerhof exchange
and correlation functional (UPBEPBE) and the augmented
correlation-consistent polarized valence double ζ basis set
(aug-cc-pVDZ).33 The aug-cc-pVDZ basis is a 5s2p/3s2p set
for H, and a 10s5p2d/4s3p2d set for C. Likely geometry
candidates for the dimer ions were derived from the known
C4H4

+ isomers obtained from the NIST databases.34 All ge-
ometry optimizations were followed by vibrational frequency
calculations to confirm all minima on the relevant potential
energy surface. All relative energies were zero point energy
(ZPE) corrected. All calculations were performed using the
GAUSSIAN 03 suite of programs.35

IV. RESULTS AND DISCUSSION

A. Mass spectra and dissociation of the acetylene
dimer cation

Figure 2 displays a typical mass spectrum obtained by
46 eV EI ionization of neutral acetylene clusters formed by
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FIG. 2. Mass spectrum of EI ionized (46 eV) acetylene clusters.

supersonic expansion. The distribution of the cluster ions
formed reveals some striking features corresponding to the
enhanced intensities (magic numbers) for the (C2H2)n

•+ ions
with n = 2, 3, 14, 17, 22, 29, 35, and 46. The strong magic
numbers at n = 2 and 3 are consistent with previous work
and suggest the formation of stable C4H4

•+ and C6H6
•+ ions

in exothermic processes that can lead to extensive evapora-
tion of neutral acetylene molecules from the cluster.21–24 The
other magic numbers such as n = 14, 17, etc. probably re-
flect the solvation of the C4H4

•+ and C6H6
•+ ions with acety-

lene molecules where solvent shells are formed with specific
numbers of the acetylene molecules. Others have hypothe-
sized the isomerization of the (C2H2)14

•+ cluster to a covalent
C28H28

•+ ion.24

Figure 3 displays the mass spectra obtained upon injec-
tion of the mass selected (C2H2)2

+ ions into the drift cell
containing 0.46 Torr of He using different IEs. At lower IE
(13 eV), no significant dissociation is observed except for
the hydrogen loss to form the even-electron C4H3

+ ion. The
lack of dissociation is consistent with the formation of a co-
valent C4H4

•+ ion as opposed to an ion–molecule acetylene
dimer ion (C2H2)2

•+. At high IE (53 eV), the observed frag-
ments are C4H4

•+, C4H3
+, C4H2

•+, C4H+, C3H3
+, C2H5

+,
C2H3

+, C2H2
•+, and C2H+ corresponding to m/z values of

52, 51, 50, 49, 39, 29, 27, 26, and 25 respectively. The
observed fragments are in agreement with previous colli-
sion activated spectra of the C4H4

•+ cation generated from
different precursor molecules.36 However, the observation
of very minor fragments corresponding to the C3H3

+ and
C3H2

•+ ions suggests that losses of CH and CH2 units from
the C4H4

•+ cation are very unlikely. This suggests that the
methylenecyclopropene and the 1,2,3-butatriene structures
are not likely candidates for the C4H4

•+ cation formed in
our experiment. The apparent stability of the C4H4

•+ ion
towards dissociation (no dissociation observed with injec-
tion energies up to 20 eV) and the dominant high energy
dissociation channels involving the loss of 1, 2, and 3 hy-
drogen atoms provide some support for the cyclobutadiene
structure.
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FIG. 3. Dissociation patterns resulting from the injection of mass selected
(C2H2)2

•+ ions into the drift cell containing 0.46 Torr helium at 298 K using
different injection energies (IEs, eV).

B. Mobility of the acetylene dimer cation

The mobility K of an ion is defined as:37

K = υd

E
, (2)

where E is the drift field (E = V/z, V is the drift voltage, and
z is the length of the cell (cm)) and υd is the drift velocity
(υd = z/td , td is the drift time in s). In order to effectively
compare mobility measurements at different cell conditions or
different instruments, K is normalized to standard conditions
(STP) and referred to as reduced mobility, Ko.

Ko = K

(
273.15

T

) (
P

760

)
. (3)

Here, T is the buffer gas temperature (K) and P is the buffer
gas pressure (Torr). Combination of Eqs. (2) and (3) gives

td =
(

z2 × 273.15

T × 760 × Ko

)(
P

V

)
+ to, (4)

where to is the effective time spent outside the drift cell. A
plot of the drift time (td) versus P/V gives a straight line with
slope containing Ko and an intercept corresponding to to. In
the experiment, a packet of the mass selected ions of inter-
est is injected into the drift cell and the arrival time distri-
bution (ATD) is collected at varying cell voltages, V (with
T and P held constant). All the mobility measurements were
carried out in the low-field limit where the ion’s drift velocity

is small compared to the thermal velocity and the ion mobil-
ity is independent of the field strength (E/N < 6.0, where E
is the electric field intensity and N is the gas number density
and E/N is expressed in units of Townsend (Td), where 1 Td
= 10−17 V cm2).37

The average collision cross section, �(1,1), of the ions in
the helium buffer gas is calculated according to the kinetic
theory:

K = 3qe

16N

(
2π

kB Teff

)1/2 (
Mi + Mb

Mi Mb

)1/2 1

�
(1,1)
avg

, (5)

where qe is the ion charge, N is the number density of the
buffer gas, Teff is the effective temperature, Mi and Mb are the
masses of the ion and buffer gas, respectively, and �(1,1)

avg is the
orientationally averaged collision integral.

Figure 4 displays the ATDs for the mass selected
(C2H2)2

•+ ions measured at various cell voltages. The inset
in Fig. 4 shows a plot of td versus P/V with the solid line rep-
resenting the least square fitting to the data points. The result-
ing reduced mobility Ko is determined to be 14.2 ± 0.4 cm2

V−1 s−1 which corresponds to a collision cross section in he-
lium of � = 38.9 ± 1.4 Å2.

The ATDs of the injected ions are calculated for a finite
packet of ions, φ(t), exiting a cylindrical drift tube through an
aperture area (a) of 78.5 μm2 using the transport Eq. (6):38

φ(t) = sae−αt

4
√

π DLt

(
υd + z

t

) (
1 − exp

(
− r

4DT t

))

× exp

(
− (z − υd t)2

4DLt

)
, (6)

where r and s represent the radius and surface density of a
thin disk of injected ions, respectively, with the latter used as
a scaling factor, z is the length of the drift cell, and α is the
reaction frequency set to zero.

Comparisons of the ATDs of the mass selected acety-
lene monomer, dimer, and trimer ions with the calculated pro-
files are shown in Fig. 5. The measured Ko, at 303 K for the
C2H2

•+, (C2H2)2
•+, and (C2H2)3

•+ ions are found to be 19.02
± 0.3, 14.2 ± 0.4, and 11.54 ± 0.3 cm2 V−1 s−1 correspond-
ing to � of 30.2 ± 1.4, 38.9 ± 1.4, and 47.9 ± 1.4 Å2, respec-
tively. As shown in Fig. 5, comparisons of both experimental
(open circles) and calculated (solid line) ATDs show excellent
fits for the monomer C2H2

•+ and trimer (C2H2)3
•+ ions indi-

cating the presence of one isomer of for each ion. However,
for the (C2H2)2

•+ ions, the experimental ATD is consider-
ably broader than that calculated using the transport equation
(Eq. (6)) suggesting the existence of more than one C4H4

•+

isomer in the cluster beam. The broadened ATD indicates that
the collision cross sections of the C4H4

•+ isomers present in
the beam are not sufficiently different to be able to resolve
their ATDs in our drift cell where isomers with less than 5%
difference in collision cross section cannot be resolved.31

C. Calculated structures and collision-cross sections
of the C4H4

•+ ions

The four lowest energy structures of the C4H4
•+ ion

calculated using the aug-cc-pVDZ basis set are shown in
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FIG. 4. ATDs of the mass selected acetylene dimer ion at different drift voltages (decreasing from left to right) and helium pressure of 4.1 Torr at 302 K. Inset:
plot of td versus P/V used in calculating the reduced mobility of the (C2H2)2

•+ ions.

Table I. As expected, the most stable C4H4
•+ isomer is

the methylenecyclopropene ion (MC, C2v).39 The 1,2,3-
butatriene ion (OB, D2) is the second most stable with a
relative energy of 12.2 kJ/mol. The third isomer with a rel-
ative energy of 25.8 kJ/mol is the planar cyclobutadiene ion
(CB, D2h). Next, is the 1-buten-3-yne ion (vinyl acetylene,
VA), predicted to be 37.8 kJ/mol less stable than MC. The
fifth most stable C4H4

•+ isomer, the methyleneallene ion, is
significantly less stable (138.1 kJ/mol relative to MC) than
those included in Table I, and therefore is not considered any
further.

Interestingly, all the predicted C4H4
•+ isomers are of

a tight, covalent linear/branched type conformation. No
ion–molecule complex of the form C2H2

•+C2H2 was found
using the UPBEPBE/aug-cc-pVDZ method. However, it
should be noted that the previously predicted C2H2

•+C2H2

complex has a T-type structure (similar to the neutral) with
C2v symmetry with intermolecular distance of ∼4 Å.39

The relative energies of the C4H4
•+ isomers as predicted

by the UPBEPBE/aug-cc-pVDZ method are in qualitative
agreement with the results reported from the UQCISD/6-
31G* calculations39 but differ from the UB3LYP/6-31G*

TABLE I. Total energy (relative to the energy of the methylenecyclopropene ion), structure, and calculated
collision integral (�, Å2) of the four lowest energy C4H4

+ isomers calculated using the DFT/UPBEPBE/aug-cc-
pVDZ method. The collision integrals in helium at 300 K are calculated using the trajectory method (Ref. 2).

Name Optimized structures Relative energy (kJ/mol) � (Ǻ2)calc

MC Methylenecyclopropene 0 39.9

OB 1,2,3-Butatriene 12.2 41.1

CB Cyclobutadiene (D2h) 25.8 38.6

VA 1-Buten-3-yne 37.8 41.1
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FIG. 5. Comparisons of the experimental ATDs (open circles) of the acetylene monomer, dimer, and trimer ions and the calculated profiles (solid lines) from
the transport equation (Eq. (6)) assuming a single structure for each ion.

calculations40 where the 1-buten-3-yne ion was predicted to
be more stable than the cyclobutadiene ion.

To investigate the identities of the C4H4
•+ isomers

present in the cluster beam, the calculated structures were
used to obtain average collision cross sections and mobili-
ties using the trajectory calculations.41 Although the calcu-
lated collision cross section of the CB isomer (38.6 Å2) is
the closest to the measured value (38.9 ± 1.4 Å2), the ex-
perimental error precludes a definitive structural conclusion
based only on the calculated cross sections. Also, the experi-
mental ATD of the C4H4

•+ ion indicates the presence of more
than one isomer and therefore, a single isomer with a cross
section that perfectly matches the experimental value will not
reproduce the experimental ATD. To illustrate this point, the
calculated mobility for each isomer was used to calculate the
corresponding ATD (Eq. (6)) for comparison with the exper-

imental ATD. The effective time the ions spent outside the
drift cell (to) (obtained from the intercept of the plot of the
drift time (td) versus P/V, Eq. (4)) was added to the calculated
ATD of each isomer for comparison with the experimental
ATD. The results are shown in Fig. 6. As expected, the calcu-
lated ATD of the CB isomer is the closest to the experimental
ATD because of the similar mobility. The other three isomers
show displacements from the experimental ATD due to the
differences between the calculated and experimental mobili-
ties. However, none of the four isomers alone including CB is
able to reproduce the experimental ATD of the C4H4

•+ ion.
This is consistent with the broadened ATD shown in Fig. 5
resulting from the presence of more than one isomer of the
C4H4

•+ ion in the experiment.
To investigate the possibility of the presence of more than

one C4H4
•+ isomer in the ionized acetylene cluster beam,
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FIG. 6. Comparisons of the experimental ATD of the (C2H2)2
•+ ions (open circles) and the calculated ATDs (solid lines) for the four lowest energy isomers of

the C4H4
•+ ion. The effective time the ions spent outside the drift cell was added to the calculated ATD of each isomer for comparison with the experimental

ATD.

hypothetical relative concentrations of all combinations of
the four lowest energy isomer pairs were fitted to the exper-
imental ATD. For example, MC and CB at different relative
concentrations (50:50, 40:60, 30:70, etc.) were fitted to the
experimental ATD. Of all six C4H4

•+ isomer combinations,
only mixtures containing the cyclobutadiene ion in combi-
nation with the 1-buten-3-yne (vinyl acetylene) ion gave ex-
cellent fits to the experimental ATDs as shown in Fig. 7.
Slightly reasonable fits could be also obtained by using com-
binations of the cyclobutadiene and the 1,2,3-butatriene ions
as shown in the supplementary material.42 It is interesting
to note that combinations containing methylenecyclopropene
ion, the most stable C4H4

•+ isomer, with other low energy
isomers resulted in poor fits as shown in the supplementary
material.42 Because of the similarity of the calculated colli-
sion cross section of CB and the experimental value, isomer
combinations containing CB are expected to result in an av-
eraged collision cross section close to the experimental value
(38.9 ± 1.4 Å2). However, as indicated earlier, a successful

pair of isomers should be able to reproduce the width of the
experimental ATD and not only the peak maximum which de-
termines the mobility value. Therefore, based on the compar-
ison of the experimental and calculated ATDs, it appears that
the C4H4

•+ isomers produced in the ionized acetylene clus-
ters under our experimental conditions are the cyclobutadiene
and vinyl acetylene ions.

The mechanism of formation of the cyclobutadiene and
vinyl acetylene ions involves intracluster ion–molecule reac-
tions of the C2H2

•+ ion with the neutral acetylene molecule
in the cluster. Energy transfer to the low frequency cluster
modes leading to evaporation of neutral acetylene molecules
can dissipate the excess energy resulting from the covalent
addition reactions producing the cyclobutadiene and vinyl
acetylene ions. In this way, these isomers can be stabilized
within the cluster by evaporative cooling which is analogous
to collisional stabilization of the ionic intermediates in the gas
phase at high pressures.39 Formation of the cyclobutadiene
ion is the most kinetically favored pathway for all the low
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FIG. 7. Comparisons of experimental ATDs of the (C2H2)2
•+ ions (open circles) and the calculated ATDs for different combinations of the cyclobutadiene

(CB) and the vinyl acetylene (VA) isomers (solid lines). In order to account for the effective time the ions spend outside the drift cell, the peak maximum of the
combined ATDs of each isomer pair was adjusted to coincide with the peak maximum of the experimental ATD.

energy C4H4
•+ isomers as it is the only isomer that requires

no H shift from its precursor cluster ion, C2H2
•+C2H2.39, 43

Therefore, intracluster cyclization to produce the cyclobuta-
diene ion is expected to be kinetically driven (within the time
frame of our experiment) since the heat produced by dimer-
ization of the loose C2H2

•+C2H2 complex can be efficiently
dissipated by evaporation of neutral acetylene molecules from
the cluster. In fact, Ono and Ng described a van der Waals
type well for the loose C2H2

•+C2H2 ion;43 which may favor
a cyclobutadiene ion route on the reaction coordinate if ex-
cess energy dissipation is efficient. Efficient stabilization of
the cyclobutadiene ion by evaporation of acetylene molecules
from the cluster is analogous to condensed-phase condi-
tions where the cyclobutadiene ion formation is the favorable
product.44, 45

The second C4H4
•+ isomer suggested by the current mo-

bility experiment, the vinyl acetylene ion, is consistent with

the results of Ono and Ng using photoionized acetylene clus-
ters where a linear C4H4

•+ isomer was identified as the vinyl
acetylene ion.43 Also, photoelectron–photoion coincidence
experiments by Booze and Baer23 concluded that the C4H4

•+

species resulting form photoionization of acetylene clusters
are likely to be the cyclobutadiene ion in addition to the vinyl
acetylene or butatriene ions. Furthermore, detailed theoreti-
cal investigation of the C4H4

+ potential energy surface by
Hrouda et al.39 concluded that isomerization of the (C2H2)2

•+

to cyclobutadiene is kinetically more favorable than any of
the other C4H4

•+ isomers due to the absence of H shifts in its
production. Finally, the most recent results Relph et al., us-
ing infrared predissociation spectroscopy in conjunction with
harmonic frequency calculations, showed that the C4H4

•+ ion
produced by sequential addition of acetylene molecule onto
the C2H2

•+ ion is predominantly present as the cyclobutadi-
ene cation.28

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.172.48.59 On: Wed, 14 Oct 2015 17:32:53



204315-9 Acetylene dimer cation and hydration J. Chem. Phys. 134, 204315 (2011)

20 40 60 80 100 120 140 160 180 200

n

C
4
H

4

+

T
c
=290 K

P
c
=0.45 Torr H

2
O

n

5

6

4

32

1

5

3

4

6

7

C
4
H

4

+

T
c
=337 K

P
c
=0.55 Torr H

2
O H+(H

2
O)

n
=

C
4
H

4
(H

2
O)

n

+=
In

te
ns

ity
 (

ar
b.

 u
ni

ts
)

m/z

4

3
2

1

5

3
6

4

FIG. 8. (Top) Mass spectrum resulting from the injection (15.4 eV) of
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D. Stepwise hydration of the C4H4
•+ ion

To shed more light on the identity of the (C2H2)2
•+

ion formed from the ionization of acetylene clusters, we
studied the sequential addition of water molecules onto the
(C2H2)2

•+ ion under thermal conditions. Figure 8 displays
the mass spectra obtained upon injection of the mass se-
lected (C2H2)2

•+ into the drift cell containing water va-
por at 0.55 Torr (337 K) and 0.45 Torr (290 K). At
these temperatures (337 and 290 K), the main peaks ob-
served are the dimer and its hydrated ions, (C2H2)2

•+(H2O)n

with n = 1–4 at 337 K (n = 1–6 at 290 K) and proto-
nated water clusters, H+(H2O)n with n = 3–6 at 337 K
(n = 3–7 at 290 K).

The hydrated (C2H2)2
•+(H2O)n ions are formed accord-

ing to the stepwise association reaction (7), and the protonated
water clusters H+(H2O)n are attributed to proton transfer reac-
tions within the C4H4

•+(H2O)n clusters with n ≥ 3 according
to reaction (8). These reactions have been observed for the hy-
drated benzene cation C6H6

•+(H2O)n and hydrated acetylene
trimer ion (C2H2)3

•+(H2O)n with n ≥ 4.26, 30

C4H•+
4 (H2O)n−1+H2O ⇔ C2H•+

4 (H2O)n, (7)

C2H•+
4 (H2O)n−1+H2O → (H2O)nH++C4H•

3, n ≥ 3.,

(8)
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FIG. 9. van’t Hoff plots of the temperature dependence of the equilibrium
constant of the stepwise hydration of the C4H4

•+ ion.

The observation of the deprotonation reaction (8) within the
C2H4

•+(H2O)n clusters with n ≥ 3 indicates that the pro-
ton affinity of the radical generated by the deprotonation
of the C4H4

•+ ion is lower than that of the water trimer
(218 kcal/mol).30

Figure 9 displays van’t Hoff plots for the stepwise asso-
ciation of reaction (7), and the resulting �H ◦

n−1,n and �S◦
n−1,n

are given in Table II. The �H ◦
1,2 and �S◦

1,2 values could not be
measured due to diminished ion count of the C4H4

•+(H2O)2

cluster as a result of the proton transfer reaction with the next
water molecule to generate the (H2O)3H+ ion. It is clear that
the binding energies of the C4H4

•+(H2O)n clusters change lit-
tle from n = 1 to 5, similar to the hydration behavior observed
for the benzene ion.41 This can be explained by the presence
of multiple binding sites with comparable energies for the
water molecules to attach to the C4H4

•+ cation and, by the
similarity of the bonding strength between the C4H4

•+ ion–
water and between water–water interactions. The measured
�S◦

3,4, and �S◦
4,5 values of −95.3, and −108.2 J mol−1 K−1

also suggest the formation of adducts with restrained wa-
ter molecules particularly for C4H4

•+(H2O)5 cluster.30, 46 The
significant entropy loss for the addition of the fifth water
molecule could be explained by the formation of a cyclic wa-
ter pentamer within the C4H4

•+(H2O)5 cluster. This is con-
sistent the model potential/DFT investigation by Hodges and
Stone which found the lowest structures of the n = 4 and 5
clusters of H3O+(H2O)n to be cyclic.47 The drop in the bind-
ing energy of the sixth water molecule (�H ◦

5,6) by approxi-
mately 14 kJ/mol and the drop in the −�S◦

5,6 value (Table II)
suggest a structure in which the sixth water molecule perhaps
hangs loose and interacts weakly with the C4H4

•+(H2O)5

cluster. This suggests that the C4H4
•+(H2O)5 cluster could

consist of a cyclobutadiene cation hydrogen bonded to a
cyclic water pentamer. As discussed in Sec. IV C, both the cy-
clobutadiene and the vinyl acetylene isomers are expected to
be major constituents of the C4H4

•+ ion in our cluster beam.
The measured binding energy for the C4H4

•+ · H2O cluster,
38.0 ± 4 kJ/mol, is in excellent agreement with the G3(MP2)
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TABLE II. Measured thermochemistry (�H◦
n−1,n and �S◦

n−1,n) of hydra-
tion reaction (7).

Thermochemical dataa

n �H◦
n−1,n �S◦

n−1,n

1 −38.7 −61.8
2 − (38.5–40.3)b

3 −48.9 −89.0
4 −48.1 −95.3
5 −47.6 −108.2
6 −33.6 −69.6

aUnits are �H◦ (kJ/mol); �S◦ (J/mol K). Estimated error: �H◦ ±4 kJ/mol, �S◦ ±10
J/mol K.
bBased on G3(MP2) calculated binding energies for CB-2W and VA-2W since
�H ◦

1,2 and �S◦
1,2 values could not be measured due to diminished ion count of the

C4H4
•+(H2O)2 cluster resulting from the deprotonation reaction (8).

calculated binding energies for selected C4H4
•+ · H2O clus-

ters as presented in the next section.

E. Calculated structures of the hydrated ions
C4H4

•+(H2O)n for n = 1–2

The G3//MP2 predicted geometries of the C4H4
•+ · H2O

complex for the four most stable C4H4
•+ isomers are shown

in Table III.
The most stable hydrated methylenecyclopropene com-

plex (MC-W) consists of a carbon based CHδ+. . . OH2 hydro-
gen bond (2.0 Å) to one of the methylenecyclopropene hy-
drogens. Mulliken charge analysis35 shows that the charge re-
mains on the methylenecyclopropene radical cation. The cal-
culated CHδ+. . . OH2 binding energy is 11.0 kcal/mol. The
hydrated cyclobutadiene ion (CB-W) exhibits a CHδ+. . . OH2

length of 2.1 Å with a calculated binding energy of 41.0

TABLE III. Optimized structures of the C4H4
•+ · H2O species for selected

C4H4
•+ isomers using the G3(MP2) method. Energies are relative to the

most stable species for a particular C4H4
•+ isomer. Binding energies are

for the removal of a water molecule from C4H4
•+(H2O) cluster.

Name Optimized structures Binding energies (kJ/mol)a

MC-W 46.0

CB-W 41.0

OB-W 41.4

VA-W 49.7

aAll energies are ZPE corrected.

kJ/mol in excellent agreement with the measured binding en-
ergy of 38.7 ± 4 kJ/mol. However, no conclusive evidence
regarding the C4H4

•+ isomer identification can be drawn
from the calculated binding energies of the hydrated struc-
tures since the four hydrated C4H4

•+ isomers have bind-
ing energies within the experimental uncertainty. For exam-
ple, the hydrated 1,2,3-butatriene ion (OB-W) complex con-
sists of a CHδ+. . . OH2 (2.1 Å) type hydrogen bond with a
binding energy of 41.4 kJ/mol. The final C4H4

•+ · H2O com-
plex investigated was that of the 1-buten-3-yne ion (VA-W)
where the lowest energy structure has a CHδ+. . . OH2 (1.9 Å)
type hydrogen bond and a significantly higher binding energy
(11.9 kcal/mol) compared to the other three C4H4

•+ isomers.
Although the 1-buten-3-yne radical ion is expected to be the
other C4H4

•+ isomer in our beam, the predicted binding en-
ergy of 49.7 kJ/mol is significantly larger than the measured
value of 38.0 kJ/mol.

The G3//MP2 predicted geometries, relative energies and
binding energies for selected C4H4

•+(H2O)2 clusters are dis-
played in Table IV. The most stable bi-hydrated methylenecy-
clopropene ion, MC-2Wa, has two CHδ+. . . OH2 hydrogen
bonds with similar bond lengths of 1.9 Å; shorter than that of
the mono-hydrated analog MC-W (2.0 Å). Other stable struc-
tures, MC-2Wb and MC-2Wc are, respectively, 4.2 and 5.0
kJ/mol less stable than MC-2Wa. It is clear that the second
water molecule prefers to form a second hydrogen bond with
the MC ion rather than with the first water molecule. The same
trend is observed in the bi hydrated cyclobutadiene structures
where the most stable isomer CB-2Wa has two bifurcated
CHδ+. . . OH2 bonds opposite to each other with bond lengths
(2.2 and 2.1 Å) similar to the bond length of the first wa-
ter molecule CB-W (2.1 Å). The second stable structure has
two H-bonds with the two water molecules through the oppo-
site hydrogen atoms of the CB ion. The third stable structure
CB-2Wc involves water–water hydrogen bonding and is less
stable than the structures involving H-bonds to the CB ion.
The most stable structure for the hydrated 1,2,3-butatriene
cluster (OB-2Wa) consists of two carbon based bifurcated
CHδ+. . . OH2 hydrogen bonds with bond lengths of 1.5 and
1.6 Å, significantly shorter than that of the mono-hydrated ion
OB-W (2.1 Å). For the final bi-hydrated C4H4

•+ isomer in-
vestigated (1-buten-3-yne, VA), the most stable structure con-
sists of the second water molecule forming a CHδ+. . . OH2

hydrogen bond across from the mono-hydrated unit. It is in-
teresting to note that in all cases, none of the most stable
structures of the bi-hydrated ions are “externally” solvated.30

In other words, the most stable structures consist of arrange-
ments in which both water molecules are directly bound to the
C4H4

•+ · ion rather than to another water molecule. This trend
is somewhat different from the ROHF/6-31+G** predictions
for hydrated benzene cation.30

V. SUMMARY AND CONCLUSIONS

The structure and hydration of the C4H4
•+ ion formed by

electron impact ionization of neutral acetylene clusters have
been investigated using the mass-selected ion mobility tech-
nique. The mobility measurement indicates the presence of
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TABLE IV. G3(MP2) structures of the C4H4
•+(H2O)2 clusters for selected C4H4

•+ isomers. Energies are relative to the most stable species for a particular
C4H4

•+ isomer. Binding energies are for removal of a water molecule from C4H4
•+(H2O)2.

Name Optimized structures Relative energies (kJ/mol) Binding energies (kJ/mol)a

MC-2Wa 0.0 42.2

MC-2Wb 4.2 37.6

MC-2Wc 5.0 37.0

CB-2Wa 0.0 38.5

CB-2Wb 1.7 36.5

CB-2Wc 2.5 35.9

OB-2Wa 0 38.5

OB-2Wb 0.8 38.0

OB-2Wc 2.5 35.9

VA-2Wa 0 40.3
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TABLE IV. (Continued)

Name Optimized structures Relative energies (kJ/mol) Binding energies (kJ/mol)a

VA-2Wb 2.2 48.0

VA-2Wc 5.4 34.7

aAll energies are ZPE corrected.

more than one isomer for the C4H4
•+ ion in the cluster beam.

The measured average collision cross section of the C4H4
•+

isomers in helium (38.9 ± 1.4 Å2) is consistent the calculated
cross sections of the four most stable covalent structures
calculated for the C4H4

•+ ion [methylenecyclopropene
(39.9 Å2), 1,2,3-butatriene (41.1 Å2), cyclobutadiene
(38.6 Å2), and vinyl acetylene (41.1 Å2)]. However, none
of the single isomers is able to reproduce the experimental
arrival time distribution of the C4H4

•+ ion. Combinations of
cyclobutadiene and vinyl acetylene isomers show excellent
agreement with the experimental mobility profile and the
measured collision cross section. The fragment ions obtained
by the dissociation of the C4H4

•+ ion are consistent with the
cyclobutadiene structure. Both the ion mobility and dissocia-
tion experiments suggest the presence of the cyclobutadiene
structure in agreement with the vibrational predissociation
spectrum of the acetylene dimer cation (C2H2)2

•+.28

The stepwise hydration experiments show that both the
C4H4

•+(H2O)n clusters with n = 1–6 and H+(H2O)n clusters
with n = 3–6 are formed. The protonated water clusters are
generated by dissociative proton transfer reactions within the
C4H4

•+(H2O)n clusters with n ≥ 3. The measured binding
energy of the C4H4

•+ · H2O cluster, 38.7 ± 4 kJ/mol, is in
excellent agreement with the G3(MP2) calculated binding en-
ergy of cyclobutadiene•+ · H2O cluster (41 kJ/mol). The bind-
ing energies of the C4H4

•+(H2O)n clusters change little from
n = 1 to 5 (39–48 kJ/mol) suggesting the presence of mul-
tiple binding sites with comparable energies for the water–
C4H4

•+ and water–water interactions. A significant entropy
loss is measured for the addition of the fifth water molecule
suggesting a structure with restrained water molecules proba-
bly a cyclic water pentamer, within the C4H4

•+(H2O)5 cluster.
Consequently, a drop in the binding energy of the sixth wa-
ter molecule is observed suggesting a structure in which the
sixth water molecule interacts weakly with the C4H4

•+(H2O)5

cluster, presumably consisting of a cyclobutadiene•+ cation
hydrogen bonded to a cyclic water pentamer. The combina-
tion of ion mobility, dissociation and hydration experiments in
conjunction with the theoretical calculations provides strong
evidence that the (C2H2)2

•+ ions are predominantly present
as the cyclobutadiene cation with some contribution from the
vinyl acetylene cation.
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