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Ab initio equilibrium constants for H20-H20 and H20-C02 

Nancy Renyou Zhang and Donald D. Shillady 
Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006 

(Received 19 January 1993; accepted 16 December 1993) 

Ab initio 6-31G** electronic structure calculations have been used to determine the minImUm 
energy geometries and vibrational frequencies of molecular clusters of water and carbon dioxide. 
Application of statistical thermodynamics leads to theoretical equilibrium constants for gas phase 
dimerization of water and the formation of an adduct of carbon dioxide with water. The low energy 
vibrations of the clusters lead to much larger contributions to the vibrational partitioning of the 
energy than do the fundamental vibrations of the monomeric species. A new "Harmonic-Morse" 
formula is derived to estimate anharmonicity from optimized harmonic frequencies and two addi­
tional values on the potential surface for each vibration. These ab initio calculations of equilibrium 
constants are very close to recent measurements and fall within the range of values obtained by 
other methods. This no-parameter treatment gives excellent agreement for the equilibrium of 
H20-COz near the supercritical fluid range of COz and suggests that a "Theory of Significant 
Clusters" may be extended to a model of supercritical fluids which includes the effects of anhar­
monicity. 

I. INTRODUCTION 

The statistical thermodynamical formulation of equilib­
rium constants for gas phase reactions has been readily avail­
able in a number of texts 1,Z for many years. However, the 
major barrier to practical application of these well known 
equations is the need to know the vibrational frequencies of 
all the species in the reaction. Even if one uses the extensive 
JANAF Thermochemical Tables3 for the reactant species, 
there is still a need to know the additional frequencies cre­
ated when a cluster is formed. 

New vibrations caused by the formation of a weakly 
bound cluster of monomers are typically a few hundred wave 
numbers which then appear as a negative exponent in the 
vibrational partition function. Thus, these low energy vibra­
tions have much larger numerical importance than do the 
terms caused by vibrations in true chemical bonds, which 
typically have energies of several thousand wave numbers. 

Weak interactions need to be treated accurately if a sta­
tistical thermodynamics approach is used to calculate the 
equilibrium constant. The importance of these low-frequency 
modes was demonstrated recently in a proof-of-concept 
paper4 based on the Ph.D. thesis of Nguyen. 

There are really two problems related to the use of cal­
culated vibrational frequencies. First, the frequencies are of­
ten 15%-20% too high.5 This is due to limitations in basis 
set completeness and less than full configuration interaction 
treatment of the electronic wave function. Second, the har­
monic force field may be inadequate for weak interactions. 
There is a need to introduce anharmonicity corrections. Hess, 
Schaad, Carsky, and Zahradnik's5 review indicates that an­
harmonicity correction is easy for diatomics, but there is still 
a need for a way to introduce anharmonicity in the poly­
atomic case. This work provides a new "Harmonic-Morse" 
approach which includes anharmonicity into poly atomic vi­
brations based on a fully optimized harmonic force field cal­
culation. The success of this new approach may be judged 
from the results obtained for a full statistical thermodynamic 

treatment of two equilibria involving weak interactions (1) 
hydrogen bonding in the case of water dimerization; (2) 
Lewis-donor-acceptor interactions in water and carbon diox­
ide. 

II. METHOD 

The GAMESS electronic structure program6 was used with 
a 6-31G** basis set7 at the single-determinantal level to op­
timize the geometry of HzO, COz, HzO-HzO, HzO-COz and 
to compute the vibrational frequencies in the harmonic ap­
proximation. The geometries were exhaustively optimized to 
a maximum gradient of 0.000 001 hartreelbohr. This fully 
optimized the harmonic force field, and the harmonic fre­
quencies values were computed directly with no scaling. The 
optimized geometry was in excellent agreement with the ex­
perimental intermolecular distance measured by Dyke and 
Muenter7 and the water-carbon dioxide complex agreed 
with the overall shape reported by Peterson and Klemperer8 
as shown in Table I. Tables II and III may be used to check 
results presented later. Uniform scaling of the calculated vi­
brational frequencies JO was also carried out. The results are 
shown below. 

The main effort of this work is to determine the accuracy 
of equilibrium constants calculated at the 6-31G** single­
determinantal level without use of any empirical adjust­
ments. The moment-of-inertia tensor was set up using the 
atomic coordinates determined from the optimization. The 
tensor was diagonalized and the moments about the principal 
axes were obtained to be used in the rotational partition func­
tions. Simple expressions were used for the translational par­
tition functions with the masses of the average natural abun­
dance atomic weights. A straightforward program was then 
written in the notation of McQuarriez to compute the full 
expression for Kp using results from the GAMESS program 
output. These expressions have been known for many years, 
but vibrational frequencies are necessary to evaluate K p • 

Here we test the concept of "Significant Clusters" ap-
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TABLE I. Ab initio calculations for H20-H20 and H20-COz. 

H2O-H2O H2O-C2O 

Calc. 2.9802 2.7820 
R" (A) 

Expt. 2.98:':0.01b 2.836c 

E,otal (a.u.) -152.0560 -263.6699 
tiE vib (kcal/mol) 3.5576 2.6556 
E binding (kcaVrnol) -5.5270 -3.2630 

"R: Ro_o for H20-H20. Rc_o for HzO-C02 and Rc_c for COz-C02, re­
spectively. 

"T. R. Dyke and 1. S. Muenter, 1. Chern. Phys. 60,2929 (1974). 
cK. I. Peterson and W. Klemperer, J. Chern. Phys. 80, 2439 (1984). 

plied to gas clusters based on the Eyring-Jhon "Theory of 
Significant Liquid Structures. ,,4,11 We also investigated ap­
plication of the low pressure formulation to the case of 
H20-C02 at 1 atm pressure for temperatures between the 
boiling point of H20 and the sublimation point of CO2 , The 
success of this simple case may lead to future extension in a 
study of H20 in supercritical fluid CO2 , 

The concentration equilibrium constant Kc and the par­
tial pressure equilibrium constant K p of the reaction can be 
written in terms of the partition functions qj, where N j is the 
number of particles in the canonical ensemble. This can be 
related to a stoichiometric coefficient n in the reaction equa­
tion by multiplying n by Avagadro's number, 

Q(
N V T»)q(g)jN(g) 

" N(g)! 
(1) 

Here, Q(g) is the canonical ensemble partition function 
of a product N(g) cluster, and q(g) is the partition function 
for a single g-mer cluster. Note that g-c1usters are of the 
same species and mixed clusters are treated here. 
Rushbrooke I2 has shown that the total partition function can 
be factored as long as a reversible, sequential addition pro­
cess can be used to build the final cluster from its constitu­
ents. 

This "build-up process" is rigorously true when one 
considers the cases of a single molecule colliding (and react­
ing) with another monomer, a dimer of the same species, or 

TABLE II. Coordinates of H20-H20 and H20-C02 (A). 

X Y Z 

H2O-H2O 
H 1.053406 0.145143 0.000860 
0 0.127567 -0.056414 0.000404 
H -0.317605 0.774257 0.000501 
H 3.407186 -0.160809 -0.753798 
0 3.085779 0.305062 0.001713 
H 3.406631 -0.161384 0.757107 

H2O-CO2 

H 0.756874 0.000000 -0.612823 
0 0.000000 0.000000 -0.050386 
H -0.756874 0.000 000 -0.612823 
0 1.143390 0.000000 2.758561 
C 0.000000 0.000 000 2.731670 
0 -1.143390 0.000000 2.758561 

TABLE III. Calculated moments of inertia (10-39 erg s2). 

I. Ib Ie 

H2O 0.0958 0.1898 0.2856 
CO2 0.0000 0.0000 6.9430 
H2O-H2O 0.3810 13.6420 13.6430 
H2O-COz 7.1364 17.5070 24.6430 

even a single molecular adduct such as COz-HzO. This is 
the main principle of the recently adapted "Significant Struc­
ture Theory of Clusters" from Eyring and Jhon11 to gas 
phase clusters by Nguyen et al. 4 

Contributions to each species partition function q(g) can 
also be factored to include translation q t, rotation q r' vibra­
tion qv' electronic energy qe, and nuclear energy qn . There­
fore, q(g) can be written as follows: 

(2) 

The electronic partition function is as follows: 

q e(g) = WeI eD 
e
lkT

• (3) 

Here, (-De) is the energy of the ground electronic state (at 
the 6-31G** level), qn(g)=1 excluding nuclear excitations 
and WeI is the degeneracy of the electronic ground state 
which is also 1 here since all species are ground state sin­
glets. The formula of the cluster partition function q(g) is 
obtained upon substitution of ql> q" qv' and qe into 
Q(N, V,T) as Eq. (4), 

( 
27TmkT) 3/Z 7T

I/Z 
( T3 ) liZ 

q(g)= h2 V -;;:- E>AE>BE>C 

3n-6 exp ~ 

( { 
(-hV')} 

X J!. [ 1 - OXP( -k
h
;, ) 1 

(4) 

Here, a is the rotational symmetry number of the g-c1uster 
and E>r is the rotational temperature; r = A, B, C; and I r = lA, 
I B, Ie, are the principal moments of inertia. Note in the 
vibrational partition function (-h v/kT) is negative, and the 
contribution of each mode to q v is greater as the frequency is 
lower. Thus, new frequencies resulting from interaction be­
tween molecules in clusters are very important in calculating 
the vibrational partition function. 

The equilibrium constant Kp can then be expressed in 
terms of partition functions. For a general chemical reaction 

(5) 

Assuming a mixture of ideal gases, the partition function of 
the system is a product of the partition functions of the indi­
vidual components,1,Z,12 

N N qj(V,T)Ni 

Q(N,V,T)=TI Q(N;,V,T)=TI (6) 

Here, i=A,B,C. We have 
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(7) 

Kc is the concentration equilibrium constant of the reaction. 
Also, Ni is taken to be positive for products and negative for 
reactants. For an ideal gas system (up to about 2 atm pressure 
here because of the nonideal behavior of COz), K p can be 
expressed in terms of partial pressures, then 

(8) 

Thus the equation of the equilibrium constant is obtained 
under low pressure gas phase conditions. 

Next consider whether such a formulation is applicable 
to the case of gaseous COz in equilibrium with HzO vapor 
below the boiling point of liquid water. Note that the 
Eyring-Jhon "Significant Structure Theory of Liquids,,11 
was quite successful in prediction of the properties of liquid 
water and heavy water.13 It was suspect because the vibra­
tional partition function used frequencies taken from solid 
ice and monomeric water vapor. This work uses calculated 
vibrational frequencies for the "Significant Clusters" and ap­
plies the gas phase equations to data on vapor equilibria. A 
new method is derived in the Appendix for the inclusion of 
anharmonicity effects.14,15 This study of the low pressure 
equilibrium forms a basis for future study of the effect of 
water on the supercritical fluid state of COz. Thus, we tested 
the "Significant Structure of Clusters,,4 for application to 
fluids in the spirit of the Eyring-Jhon "Significant Structure 
Theory of Liquids,,11 by assuming the partition function of 
the vapor is given by an equilibrium of "Significant Struc­
tures" as 

n 

q = (q CO)A (q g - HzO)BII [q (H20lnC02]Ni 
i=l 

(9) 

and n = 1. In order to compare to data for HzO in COz at 1 
atm pressure above the sublimation temperature of COz, the 
simple cluster of HzO-COz may be the most significant clus­
ter. Seen below, this gives good agreement with experiment 
even up to 60 atm pressure and implies this is the dominant 
cluster. Future work may refine this treatment to include 
larger clusters as indicated in Eq. (10), 

C(HzO)n(C02 )m 
Kc = ----::-------,,. 

[C(HzO»)[C(C0
2
») . 

(10) 

(11) 

The Kp of (HzO)n-(COz}m can be obtained from Kc of 
(HzO)n-(COZ)m using Eqs. (8) and (11), assuming ideal gas 
behavior. Here nand m are restricted to only one significant 
structure (n = m = 1). It is then possible to calculate the ther­
modynamic properties of COz-HzO vapor using this simple 
significant structure theory. Inclusion of (Hz0}z-COz, 
HzO-(COz}z, etc., may be necessary at higher supercritical 
pressures. However, this requires estimation of mole frac­
tions of such species by searching for shallow local minima 
in the Helmholtz free energy hypersurfaceY Larger clusters 
of (HzO)n-(COZ)m may also require a partition function 

TABLE IV. Thermodynamic properties of H20-H20 and H20-C02 , 

Kp llG llH IlS 
(I/atm) (kcal/moI) (kcal/mol)C (e.u.) 

H2O-Hpd 
Calc. SCF 0.009 3.48 -3.61 

Scaled 0.014 3.16 -4.67 
(Morse).1 0.0092 3.48 -3.55 
(Morse).15 0.0092 3.48 -3.27 

Expt.' 0.011 0 3.34 -3.63 

H20-C02 e 

Calc. SCF 0.0076 2.89 -2.28 
Scaled 0.0019 2.63 -4.15 
(Morse).1 0.00765 2.89 -2.11 
(Morsel.15 0.00760 2.89 -2.91 

Expt.b 0.008 2.94 -4.80 

'L. A. Curtiss et al., Chern. Phys. Lett. 54, 575 (1978). 
bC. R. Coan and A. D. King, J. Am. Chern. Soc. 93, 1857 (1971). 
cllH is computed by the formula llH=IlEbinding+llEvib-4RT. 
dData at 373 K. 
"Data at 298 K. 

-19.00 
-20.97 
-18.85 
-18.10 
-18.61 

-18.34 
-22.75 
-16.77 
-19.45 
-25.9 

which includes the nonideal behavior of CO2 and HzO at 
supercritical pressures. Nguyen et al. 4 used an expression 
which included an accurate empirical fit to the vapor pres­
sure of the bulk material. This may be necessary for even 
more precise treatment of supercritical fluid COz containing 
HzO. However, this work emphasizes a completely nonem­
pirical (no parameters) treatment of equilibrium constants 
using the "Significant Cluster" concept, without any correc­
tion for non ideal behavior of either bulk HzO or bulk CO2 , 

III. RESULTS AND DISCUSSION 

Using direct comparison to experimental data, the first 
case is the gas phase thermal conductivity measured by Cur­
tiss, Frurip, and Blander16 which is given at four tempera­
tures (358.4, 367.1, 375.9, and 386.4 K) near the boiling 
point of water. They found that the primary measurements 
could be accounted for by including only monomeric water 
and <4% of dimers without any other species. This is a clear 
cut application for the use of only the "Significant Struc­
tures" of the monomer and dimer structures found using the 
GAMESS program. Table IV shows results for 373 K and their 
estimated experimental uncertainty is 1 % absolute error. 
Note that previous measurements of the enthalpy of associa­
tion from measurement of the second virial coefficient17- 19 

range from about -3.0 kcallmol to about -5.7 kcallmol. 
Therefore the values of -3.61, -3.55, and 3.27 kcallmol 
obtained from the plots of the "Significant Cluster" In( K p) 
vs (liT) are all in excellent agreement with experiment. Us­
ing the average atomic masses and harmonic vibrational fre­
quencies without scaling, the computed values of K p , Gibbs 
free energy and enthalpy of formation are within 17% with­
out any parameters. 

The anharmonicity correction applied through the 
"Harmonic-Morse" formula (Appendix) made the most im­
provement in the computed entropy of association. Appar­
ently, the ability of the vibrational partition function to de­
scribe larger geometrical distortions is due to the use of the 
anharmonic Morse potential. This improved the entropy cal-
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culations more than the quantities which depend primarily on 
simple energy differences at the bottom of the energy wells. 

Although GAMESS provides muIticonfigurational capabil­
ity, the computer memory required exceeded that available 
on the workstation (24 Mb) used in this work. The hydrogen 
bonding in the dimer is undoubtedly highly anharmonic in 
vibrational levels above the lowest level used here to sum 
over higher multiples in the vibrational partition function. In 
addition, only the lowest energy dimer geometry (Table II) 
was used here. Another dimer geometry is possible4 which 
permits a metastable energy form to participate in the "ran­
domness" of the dimer. Thus, the Gibbs free energy and the 
enthalpy are given in reasonable agreement mainly due to 
direct energy differences. Additional randomness does show 
up in the experimental entropy due to additional states not 
included in this simple model. 

The precedent of Eyring-Jhon "Significant Structures" 
in liquids and the great interest in supercritical fluid CO2 
(Ref. 20) prompts a comparison to data obtained by Coan 
and King21 for water vapor in compressed COz. These data 
ranged over pressures from 1-60 atm and temperatures from 
25-100 °C compared to the critical temperature of 31.05 °C 
and a critical pressure of 72.8 atm for CO2.18 The "Signifi­
cant Cluster" partition functions depend on gas phase con­
cepts. Therefore, a supercritical fluid may be more suited to 
this analysis than a true liquid at a temperature below the 
atmospheric boiling point. While high pressure can force 
molecules in a gas to be almost as near together as in a 
liquid, temperatures above the normal boiling point provide 
sufficient energy to populate higher translational, rotational, 
and even vibrational states than is the case below the boiling 
point at 1 atm pressure. Thus, the "Significant Cluster'; con­
cept should be valid to varying degrees in vapors and even 
supercritical fluids. 

In Table VI the calculated Kp value for one molecule of 
H20 combining with a single molecule of CO2 compares 
favorably with the measured (reciprocal) value of H20 
dissolved21 in gaseous CO2, The Gibbs free energy of for­
mation is in excellent agreement with the measured value. 
Reasonable agreement is obtained for the entropy of associa­
tion. Here the deviation shows up in the enthalpy of associa­
tion. In this case there is only one clear geometry for the 
complex of H20-C02,8 so the main uncertainty is probably 
due to the single-determinantal treatment of the electronic 
wavefunction. In such a weakly bound complex, the correla­
tion energy effect becomes a much larger fraction of the total 
binding energy and other electronic configurations may be 
important. Efforts to carry out multi configurational treatment 
of the vibrational frequencies proved to be just slightly be­
yond available workstation memory and disk space. Note 
that scaling all the vibrational frequencies by a uniform 
factor lO of 0.89 actually made the agreement with experi­
ment worse than direct use of the self-consistent field (SCF) 
harmonic frequencies. 

It is interesting that the experimental binding Gibbs free 
energy values in Table IV indicate very good agreement with 
experiment. This was the case even though the H20-C02 
complex has a larger enthalpy change than (H20h, while the 
calculated electronic binding energies indicate the reverse 

0.06~---------------"'" 

0.06 

270 370 

80IId lne (Moree).115 H2O - H2O 
_ Nne (Moree).115 H2O-CO2 

x data from Ref. 14 

+ c:I&ta from Ref. 19 

470 1570 

Temperature (K) 
1570 

FIG. 1. Plot of the "no-parameter" equilibrium constant compared to ex­
periment. 

order in Table I. Coan and KingZl found two cross-virial 
interactions in their data. They interpreted this in terms of 
one "physical" interaction and another "chemical" interac­
tion between HzO and CO2, Since the van der Waals com­
plex used here8 as a "Significant Structure" did not form 
HzC03 and the calculated binding energy is too small, it 
seems that under 1:1 conditions the "physical" interaction is 
the van der Waals complex used here. At higher concentra­
tions of H20 (perhaps as HzO-H20-COZ) a true chemical 
rearrangement to H2C03 may occur so that the experimental 
binding energy of -4.80 kcal/mol may be the effect of both 
van der Waals complex formation and a true chemical reac­
tion to form H2C03 . 

Another uncertainty is the basis set superposition error 
(BSSE) due to formation of a supermolecule from two 
smaller molecules using an incomplete basis set. Recent 
work on the cyclic form of the hydrogen peroxide dimer 
(H20 2h by Dobado and Molina,23 using the same 6-31G** 
basis set as here, found a BSSE value of 1.40 kcal/mol out of 
a total binding energy of -6.75 kcal/mol for two hydrogen 
bonds. Thus, even the good agreement of the calculated 
binding energy for the water dimer in Table IV is uncertain 
by about 0.7 kcal/mol for a single hydrogen bond with per­
haps a larger BSSE for the H20-C02 complex since the CO2 
portion of the complex includes d orbitals which might be 
used by the H20 portion to lower the energy further. How­
ever, Jackels and Phillips24 noted in their study of hydroxy 
and hydroperoxy radicals that the 6-31G** basis generally 
produces calculated dissociation energies which are too 
small by about 5%-15% (cf. Ref. 24, p. 5017). 

With these uncertainties in the binding energies of about 
1 kcal/mol out of some 4 kcal/mol, this no-parameter work 
chooses to proceed with the calculated values and use Kp 
shown in Fig. 1, and Table IV as the "merit-value" of the 
overall agreement with experiment because it derives di­
rectly from the Gibbs free energy which contains a "bal­
ance" between enthalpy and entropy effects. Thus the 
Harmonic-Morse frequencies described in the Appendix are 
given in Tables V and VI compared to scaled and unscaled 
harmonic frequencies. In our judgement, the merit-value of 
Kp in Table IV indicates that Harmonic-Morse frequencies 
based on a finite step size of 15% in the normal (harmonic) 
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TABLE V. Calculated vibrational frequencies for Hp-H2O. 

YIBSCF • YIBO.89 
h 

(YIBM)o.1 e 8Wl c (YIBM)OIS 8~d YIBExpt 

4256 3787 3898 -1 3886 -13 3899 
4238 3772 3884 3 3871 -10 3881 
4142 3686 3803 7 3793 -4 3797 
4100 3649 3768 50 3757 39 3718 
1797 1600 1735 66 1734 65 1669 
1767 1573 1707 54 1707 54 1653 
612 545 605 605 
377 335 374 374 
177 158 176 176 
143 127 143 143 
138 123 137 137 
117 104 117 117 

'YIBsCF are the calculated vibrational frequencies by the SCF method. 
bYIBo.89=0.89XYIBsCF' 
c8Wl = (YIBMit - YIBExpt ' 

d8w2=(YIBMits- YIBExpt ' 

eYIBM are the corrected frequencies by MORSE potential function. 

f 

fThe experimental data of the water dimer, L. Fredin, B. Nelander, and G. 
Ribbegard, J. Chern. Phys. 66, 4065 (1977). 

coordinate give best agreement with experiment. Tables V 
and VI indicate nonlinear scaling of harmonic frequencies 
[Appendix, Eq. (A13)] gives better agreement with known 
experimental frequencies,25-28 but the accuracy of the low 
energy frequencies can only be inferred from the computed 
Kp values. Since uniform scaling of the harmonic frequen­
cies by 0.89 actually produced Kp values in worse agreement 
with experiment than the unscaled frequencies, it may be that 
the very low frequencies should not be scaled as much as the 
higher frequencies. Although the low frequencies are not 
known, the Harmonic-Morse correction seems to improve 
the computed Kp value. Further study is indicated for exten­
sive evaluation of the nonlinear Harmonic-Morse frequency 
correction. However, it should be clear that this data is a fair 
comparison to a large data base of compounds in Ref. 10 
using a 6-31G** basis and direct comparison to experimental 
frequencies in Refs. 25-28. Furthermore, the Harmonic-

TABLE VI. Calculated vibrational frequencies for H2O-CO2 , 

YIBSCF • YIBO.89 
b 

(VIBM)o.1 c 8Wl d (YIBM)OIS 8~e YIBExpt 

4270 3800 4152 427 3954 229 3725 
4151 3694 4040 408 3853 221 3632 
2583 2299 2540 189 2468 117 2351 
1762 1568 1742 144 1709 110 1598 
1516 1349 1501 116 1477 92 1385 
753 670 749 84 743 78 665 
739 658 736 64 720 64 656 
213 190 213 213 
157 139 157 156 
115 102 115 115 
52 46 52 52 
48 43 48 48 

'YIBSCF are the calculated vibrational frequencies by the SCF method. 
bYIBo.89 =0.89X YIBSCF • 

"VIBM are the corrected frequencies by the Morse potential function. 
d8w1 =(YIBM )I-VIBExpt ' 

f 

e8~=(YIBMlts-YIBExpt ' 

fThe experimental data of H20-C02; L. Fredin, B. Nelander, and G. Ribbe­
gard, Chern. SCT. 7, 11 (1975). 

Morse formula (A 13) does not depend on single­
determinantal energy surfaces. The formula may be applied 
to frequencies derived from multiconfigurational SCF (MC­
SCF), configuration interaction (CI), or other methods in­
cluding electron correlation which use the harmonic normal 
mode analysis. 

IV. CONCLUSIONS 

A completely ab initio set of equations has been given to 
apply a no-parameter treatment of "Significant Clusters" to 
vapor phase equilibria which border on the conditions nec­
essary for water vapor in supercritical fluid CO2, 20 Standard 
single-determinantal 6-31G** vibrational frequencies of 
small molecular cluste"rs were used with "Harmonic-Morse" 
anharmonicity correction to eliminate any parameterization 
at the level of the vibrational partition function (the SCF 
harmonic frequencies are high compared to experimental 
values3,25-28). The vapors were treated as ideal gases. The 
full partition function form of the equilibrium constants us­
ing only natural abundance atomic masses produced agree­
ment within 21 % of K p for water vapor at 373 K and within 
5% of Kp for water vapor in equilibrium with carbon dioxide 
at 298 K. This suggests statistical thermodynamics of "Sig­
nificant Clusters" may be a good model of supercritical flu­
ids once a full quantum level spectrum is available for the 
predominant molecular species. 

One of the most interesting results is that the usual prac­
tice of scaling the vibrational frequencies (Table II) by a 
factor lO of 0.89 made the calculated equilibrium constants 
worse (see Table IV)! One interpretation is that the higher 
energy values of known frequencies are not important in the 
vibrational partition function, and the polarization functions 
of the 6-31G** basis do a good job of representing the very 
low energy "new frequencies." Since there is no known 
available experhnental data for the six new frequencies, this 
work presents results using these frequencies as found with 
only small anharmonicity corrections. 

The enzymatic assistance of the release of CO2 from 
aqueous media29 has been characterized and is undoubtedly 
of great interest. However, further studies of the effects of 
small amounts of H20 in supercritical CO2 are needed to 
characterize the solubilizing mechanism(s) of such a solution 
in supercritical fluid chromatography.20 The entropies of as­
sociation in these equilibria are sensitive to the presence of 
alternate molecular structures. A trade-off between accuracy 
in enthalpy and entropy holds while the Gibbs free energy of 
association appears to be reasonably accurate at the 6-31G** 
level. The accuracy in Kp follows from the logarithmic de­
pendence on the Gibbs free energy. The present treatment 
makes use of the ideal gas law for pressures up to about 2 
atm. Future work to model supercritical fluid behavior of 
CO2 may require the use of an empirical expression for the 
monomeric gas. Nguyen et al. 4 have shown this to give good 
results for H20 vapor. Also, it will probably be necessary to 
include structures of the type (C02)n(H20) for the supercriti­
cal fluid "phase," but this work shows only one significant 
cluster of H20-C02 gives a very good description of the 
equilibrium compared to data up to 60 atm. 
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This work has explored the accuracy of an ab initio "no­
parameter" method and found the "Significant Cluster" 
model to give very good results in the pressure realm where 
the ideal gas law is valid. A new "Harmonic-Morse" method 
of correcting the harmonic frequencies gave improved results 
compared to either scaled or unsealed harmonic frequencies. 
The 6-31 G * * single-determinantal energy calculations pro­
vide a near-quantitative treatment of two types of weak in­
teractions, provided the molecular geometries are fully opti­
mized and anharmonic corrections are included within the 
context of a separate Morse potential fitted to each normal 
mode. 
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APPENDIX 

Anharmonicity in water cluster vibrations has recently 
been treated by numerical solution of the Schrodinger equa­
tion along as many as 12 points in each normal coordinate.3o 

However, this work employed a simpler method based on 
only three points fitted by a Morse potential,3! 

(AI) 

Here D <' is the depth of the potential minimum calculated by 
the SCF/HF method for the "Significant Cluster" relative to 
the energies of the separated atoms in the same basis. In the 
case of weak interactions, De might better be thought of as a 
partial dissociation of a molecular fragment along a normal 
coordinate. This is an energy which is less than that of com­
plete dissociation into atoms. Refer to a single-point energy 
calculation with new coordinates relative to the equilibrium 
geometry by a displacement along the harmonic normal co­
ordinate of 10%-15% as potential value V in Eq. (1). Then 
rearrange Eq. (1), 

1- ~=exp[-a(r-re)] (A2) 
e 

and the parameter a is written in the following form: 

(AJ) 

Then an effective value of De can be obtained if two values 
of single-point energy V + and V_are known for a ± sym­
metrical displacement, 

(A4) 

The exact eigenvalues of energy levels with a Morse 
potential14 are as follows: 

EMorse=hCWe( n+~) -hCXeWe( n+~r. (A5) 

where 

(A6) 

Here Xe is called the anharmonicity constant. Alternately, if 
one knows the perturbation parameter b, the energy levels 
derived from the first-order perturbation theory of a har­
monic osciIIator!5 by a fourth order displacment are 

Epert=hVo( n+~) + 6:7T4 (2n2+2n+ 1) ;:~5' (A7) 

Equation (A 7) can be rewritten as the following two 
forms, Eq. (A8) and Eq. (A9) , 

(A8) 

The "Harmonic-Morse" method constrains the parameter b 
to be such that the exact Morse eigenvalues are met in terms 
of the harmonic frequency and an "apparent value of De." 
When we set E Morse =E pert' the coefficients of (n +~)2 in Eq. 
(A5) and in Eq. (A9) are equal, and the constant b can be 
obtained from this relation, 

87T
4m2vri 

b = - 3D ---1--
e 

1+4(n+~r 

1 
(AlO) 

Also, the coefficients of (n +!) in Eq. (A5) and in Eq. (A8) 
are equal, 

(All) 

Substitute Eq. (All) and the expression of constant b into 
Eq. (AS) to obtain 
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Since the dominant transitions occur from n = 1-. n = 0, the 
difference in energy is expressed as follows: 

21h2v~ h3 v3 h4 v4 

Ej-Eo=hvo- 40D
e 

+ 80D
o
; - 2560~; . (A13) 

Thus, the vibrational frequency can be computed with Eq. 
(A13) using an optimized harmonic force field and two ad­
ditional energy evaluations along the harmonic normal coor­
dinate to determine De. The final corrected frequency can 
then be expressed in terms of the effective well depth and the 
perturbed harmonic frequency. The only approximation in 
this numerical procedure is the assumption that the harmonic 
normal coordinates map directly onto the Morse normal co­
ordinates for small displacements. This work used displace­
ments of 10% and 15%. 
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