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We present the results of photoelectron velocity-map imaging experiments for the photodetachment
of small negatively charged BimGan �m=1–2, n=0–2�, and Pbn �n=1–4� clusters at 527 nm. The
photoelectron images reveal new features along with their angular distributions in the photoelectron
spectra of these clusters. We report the vertical detachment energies of the observed multiple
electronic bands and their respective anisotropy parameters for the BimGan and Pbn clusters derived
from the photoelectron images. Experiments on the BiGan clusters reveal that the electron affinity
increases with the number of Ga atoms from n=0 to 2. The BiGa2

− cluster is found to be stable, both
because of its even electron number and the high electron affinity of BiGa2. The measured
photoelectron angular distributions of the BimGan and Pbn clusters are dependent on both the orbital
symmetry and electron kinetic energies. Density-functional theory calculations employing the
generalized gradient approximation for the exchange-correlation potential were performed on these
clusters to determine their atomic and electronic structures. From the theoretical calculations, we
find that the BiGa2

−, Bi2Ga3
− and Bi2Ga5

− �anionic�, and BiGa3, BiGa5, Bi2Ga4 and Bi2Ga6 �neutral�
clusters are unusually stable. The stability of the anionic and neutral Bi2Gan clusters is attributed to
an even-odd effect, with clusters having an even number of electrons presenting a larger gain in
energy through the addition of a Ga atom to the preceding size compared to odd electron systems.
The stability of the neutral BiGa3 cluster is rationalized as being similar to BiAl3, an all-metal
aromatic cluster. © 2009 American Institute of Physics. �DOI: 10.1063/1.3069295�

I. INTRODUCTION

Information on the structure and energetics of clusters is
used to gain insight into the microscopic details of intermo-
lecular interactions.1,2 Metal clusters have been the subject of
intensive experimental and theoretical studies due to their
importance in fundamental and practical applications, with
particular focus on the dependence of their electronic struc-
ture, chemical and catalytic activities on the atomic structure,
and cluster size.3–5 Main-group elements play an important
role in semiconductor materials, and there has been extensive
spectroscopic and theoretical works on these compounds in
the solid state for band gap determination.6 Due to their tech-
nological and fundamental importance, mixed clusters of
semiconductors formed of groups III and V elements have
also been extensively studied, and the evolution of their elec-
tronic properties as a function of size and composition has
been investigated.7–13 Unlike transition-metal clusters, which
exhibit very high densities of low-lying electronic states due
to the d orbitals, main-group metal clusters including dimers
have discernible low-lying electronic states because of the
bonding through open np shells.14 Also, among the important
members in the main group metals are tetravalent elements,
which provide an interesting case for understanding chemical
bonding.15 The ability of carbon to form multiple bonds and

a variety of structures as rings and chains lays the foundation
for organic chemistry.16,17 Other tetravalent elements as Si,
Ge, Sn, and Pb show different bonding properties that sig-
nificantly vary with the atomic number, where Si is found to
form a network diamond structure, while Pb exhibits a close-
packed metallic lattice.18 The trend toward metallic packing
with higher atomic number results in part from the reduced
s-p hybridization caused by the increase in the s-p valence
electron energy differences.19

Negative ion photoelectron spectroscopy has been an
important tool for studying metal clusters due to the favor-
able combination of mass selectivity and flexible transition
selection rules.20 Another valuable technique is photoelec-
tron imaging, which has been recently applied to investigate
negative ions.21 Photoelectron imaging simultaneously mea-
sures the kinetic energies and the angular distributions of the
detached electrons, thus providing information about the par-
tial wave functions composition of the orbital through which
the photodetachment process occurs.22 In the present study,
we report the results of the photoelectron imaging experi-
ments on small semiconductorlike clusters made of gallium
and bismuth, groups III and V elements, respectively. The
photoelectron images of BiGan

− and Bi2Gan
− clusters �n

=0–2�, obtained using 527 nm and the stability of the BiGan

and Bi2Gan series are investigated. Also, small Pbn
− clusters

�n=2–4� were studied using the same wavelength. The re-a�Electronic mail: awc@psu.edu.
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corded images show distinct variation in the angular distri-
bution of the electronic bands arising from the change in the
cluster size. There are several studies on Pbn

− clusters using
negative ion photoelectron spectroscopy.23–25 However, to
the best of our knowledge, this is the first time that anionic
gallium-bismuth and Pbn

− clusters have been studied using
photoelectron imaging.

II. EXPERIMENTAL AND COMPUTATIONAL METHODS

The experimental setup is briefly discussed, and further
details can be found in a previous work.26 The binary metal
target is made from a mixture of nearly equal weights of
bismuth and gallium melted and molded in the form of a
0.25 in. diameter rod. The second harmonic of a neodymium-
doped yttrium aluminum garnet laser �532 nm, 20 mJ/pulse�
is focused on the rotating and translating target. The bime-
tallic clusters are formed through the expansion of He at 90
psi pressure from a pulsed valve running at 10 Hz into a
vacuum chamber. A cold cluster beam is formed by super-
sonic expansion of the vaporized metal-carrier gas mixture
through an expansion nozzle and collimated through a skim-
mer. The clusters are then perpendicularly extracted and ac-
celerated into a Wiley–McLaren time-of-flight mass
spectrometer.27 Ions are detected with a high gain micro-
channel plate detector �MCP� that can be placed off-axis to
allow photofragmentation studies by analyzing the daughter
fragments using a single-stage reflectron mass spectro-
meter.28 Upon arrival to the center of the velocity-map pho-
toelectron imaging spectrometer, the mass-selected nega-
tively charged clusters are intercepted with the output of the
second harmonic of a neodymium:yttrium lithium fluoride
�Nd:YLF� laser at 527 nm �2.35 eV�, which is linearly po-
larized parallel to the detector surface. The detached elec-
trons are focused through the use of appropriate voltages on
the imaging plates and projected on a position-sensitive
MCP coupled to a phosphor screen. In order to reduce the
background, the potential difference across the imaging
MCPs is pulsed from 1.2 to 1.8 kV for an interval of 300 ns
to coincide with the arrival time of the photodetached
electrons.28 The images are acquired over 30 000–40 000 ex-
perimental cycles through a charge coupled device camera.
The three-dimensional distributions are reconstructed from
the photoelectron images using the BASEX program29 The
velocity distribution and photoelectron energy spectra are
then obtained from the reconstructed images. The anisotropy
parameter � is determined from the photoelectron angular
distributions obtained from the images and the photoelectron
differential cross-section equation,

I��� = ��/4���1 + �P2�cos ��� , �1�

where � is the total detachment cross section, � is the angle
between the laser polarization and the electron velocity vec-
tor, and P2�cos �� is the second-order Legendre polynomial
equal to ��3 cos2 �−1� /2�.30 The measured electron affinities
�EAs� and anisotropy parameter values are reproducible
among different sets of experiments. The electron kinetic en-
ergies are calibrated using the EAs of Ag, Cu, and Bi atomic
ions.

To aid in the assignment of the experimentally measured
photoelectron spectra, and to investigate the stability of the
clusters, we carried out first-principles electronic structure
investigations on the anion and neutral forms of BimGan �m
=0–2; n=1–6� and Pbn �n=1–4� clusters. These calcula-
tions were performed within the density functional formal-
ism �DFT� and employed the Perdew et al.31 generalized
gradient approximation �GGA�. The electronic orbitals and
eigenstates were determined by using a linear combination of
Gaussian atomic type orbitals molecular orbital approach.
The actual calculations were carried out using the DEMON2K

software.32 For Ga we employed the double-� valence plus
polarization �DZVP� basis set optimized for GGA exchange-
correlation functionals.33 The Bi and Pb atoms were de-
scribed respectively using the 23 and 22 electron scalar rela-
tivistic effective core potentials proposed by Metz et al.,34 in
combination with the correlation consistent aug-cc-pVDZ
valence basis sets.35 The A2 auxiliary function set for Ga and
the GEN-A2* auxiliary function set for Bi and Pb were used.
The exchange-correlation potential was calculated from the
orbital density.

In order to determine the ground state geometries, the
configuration space was sampled by starting from several
initial configurations, optimizing the geometry in redundant
coordinates without symmetry constraints,36 and where after
the resulting ground states were characterized via a fre-
quency analysis. The molecular geometries and orbitals were
plotted using the SCHAKAL

37 and MOLEKEL
38 software, re-

spectively. In general, we found the BimGan clusters to have
many isomers, some of them being very close in energy. In
this study, we report the isomers that are within a range of
less than 0.10 eV higher in energy with respect to the ground
state. In order to test the reliability of our computational
method, we calculated several properties of the Ga, Bi, and
Pb atoms and clusters. For the Ga atom, the EA was calcu-
lated as 0.26 eV in agreement with the experimental values
that range from 0.30�0.15 to 0.430�0.03.39 For the Bi
atom, we correctly predicted the ground state spin multiplic-
ity of the neutral species as a quartet, the anion as a triplet,
and the EA was calculated to be 0.85 eV in good agreement
with the experimental value of 0.942 eV.40 The Bi2 was cal-
culated as a singlet with a bond length of 2.67 Å and a
binding energy of 2.74 eV. The determined bond length is in
excellent agreement with the experimental value of 2.66 Å,41

while the calculated binding energy overestimates the experi-
mental value of 2.04 eV,42 as higher binding energies are
generally known to occur in DFT.43 To further benchmark
our methodology, we calculated the geometries of pure neu-
tral and anionic Gan clusters, �n=1–6� where previous cal-
culations exist by Zhao et al.44 and Song and Cao.45 We were
able to reproduce the reported ground states geometries and
multiplicities, while our calculated vertical detachment ener-
gies �VDEs� reproduced the experimental and theoretical
trends with fair agreement. For the Pbn clusters �n=2–4�, the
calculated optimized geometries and binding energies are in
excellent agreement compared with the GGA theoretical cal-
culations of Rajesh et al.46 Finally, our calculated VDEs are
in very good agreement compared to the experimental values

054304-2 Sobhy et al. J. Chem. Phys. 130, 054304 �2009�
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reported in this study, and with those measured by Ganteför
et al.23 and Ho et al.25

III. RESULTS AND DISCUSSION

The time-of-flight mass spectrum of bismuth and gal-
lium bimetallic cluster anions is shown in Fig. 1. In this
study, we investigate the photoelectron spectra and atomic
structures of BimGan clusters with one and two Bi atoms. The
Bi3Gan series is studied in a separate work.47 The Bi2Gan

−

with n=1–3 clusters are more abundant compared to the
BiGan

− with n=1–2, and Bi3Gan
− with n=1–3 clusters. The

photoelectron images of atomic Bi− and BiGan
− n=1,2 clus-

ters recorded at 527 nm �2.35 eV� are depicted in Fig. 2. The
raw and reconstructed photoelectron images are shown in
columns �A� and �B�, respectively, where the laser polariza-
tion vector is coincident with the vertical axis of the images.
The reconstructed images show better resolved features and
qualitatively indicate the preferential orientation of the elec-
tronic bands in relation to the laser polarization. The highest
occupied molecular orbital �HOMO� and HOMO-1 charge
density plots along with the respective symmetry are shown
in column �C� of Fig. 2. The measured detachment energies,
the anisotropy parameters, and calculated detachment ener-
gies for the respective transitions are given in Table I.

The photoelectron image of the atomic Bi− ion shows
two electronic transitions marked X and A. The ground state
of Bi− is a spin triplet in a 3P2 state and the removal of one
electron results in a neutral either with spin quartet �4S3/2
state�, or doublet �2D3/2 state� depending, respectively, on
whether the electron is removed from the minority or major-
ity spin state. The transition X corresponds to the quartet
neutral ground state and results from the removal of one
electron from a paired p-orbital. Our studies also indicate
that the neutral spin doublet results form the removal of one
of the unpaired p electrons in Bi−, hence the transitions X
and A can be regarded as resulting from two orthogonal
p-orbitals. The electronic band X exhibits partial parallel dis-
tribution while band A is isotropic.

The EAs of the BiGan clusters increase as the number of
Ga atoms increase from 0 to 2 as seen from the progressive
decrease in size of the electronic bands in the photoelectron
images of BiGa− and BiGa2

− clusters. The ground state of
BiGa− is a doublet and the HOMO and HOMO-1 are almost
degenerate �energy difference �0.03 eV�, with � and �
symmetries, respectively, as shown in column �C� of Fig. 2.
Column �C� also gives the percentage of s and p atomic
composition of the molecular orbitals, with upper and lower
case letters for Bi and Ga atoms, respectively. In BiGa− both
HOMO and HOMO-1 have dominant p character although
the HOMO-1 has partial atomic s orbital composition. The
photoelectron angular distribution of transition X resulting
from the detachment of the HOMO is partially parallel to
laser polarization, while the electronic band A is nearly iso-
tropic. The calculated vertical transition energy from the
BiGa−, which has a doublet ground state, to the neutral BiGa
with a triplet ground state is 1.92 eV, reasonably close to the
experimental value of 1.63�0.1 eV. The vertical transition
to the singlet state was not adequately described within the
density-functional framework and is not reported here. There
is only one accessible transition in the BiGa2

− cluster at the
used photon energy and the calculated value of 2.33 eV
matches the experimental finding of 2.17�0.15 eV. The EA
of the BiGa2 cluster is significantly higher than that of BiGa
as shown from the measured EAs as well as by the theoret-
ical calculation results. As shown in Table I, the calculated

FIG. 1. The time-of-flight mass spectrum of bimetallic cluster anions pro-
duced by laser ablation of a mixed Bi/Ga target is shown. The Bi2Gan

−�n
=1–3� clusters are more abundant compared to the BiGan

−�n=1–2� and
Bi3Gan

−�n=1–6� clusters.

FIG. 2. �Color online� The raw and reconstructed photoelectron images of
Bi− atomic ion and binary BiGan

− with n=1,2 clusters recorded at 527 nm
are depicted in columns A and B, respectively. The symbols X and A denote
the electronic transitions from the anionic ground state to the first and sec-
ond excited states of the neutral, respectively. The arrow indicates the po-
larization direction of the laser electric field, which is vertical in the image
plane. The reconstructed images are drawn to a larger scale than the corre-
sponding raw photoelectron image to emphasize the electronic band fea-
tures, but they have the correct relative size among themselves. The charge
density of the HOMO and HOMO-1 along with their symmetry and percent-
age of atomic composition are shown in column C.

054304-3 PE imaging and DFT on bimetallic cluster ions J. Chem. Phys. 130, 054304 �2009�
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EAs of BiGa2 and BiGa are 2.18 and 1.71 eV, respectively.
The BiGa2

− is also found to have a stable even electron count.
The observed electronic band X results from detachment of
HOMO of B2 symmetry, which is predominantly composed
of p orbitals with partial atomic s composition. The elec-
tronic band distribution is nearly isotropic with partial orien-
tation parallel to the laser polarization.

Figure 3 depicts the optimized geometries of the ground
state and low-lying energy isomers of the anionic and neutral
BiGan clusters with n=1–6 series. The clusters exhibit the
lowest possible multiplicity, singlet and doublet for the even
and odd electron systems, respectively, with the exception of
BiGa, which has a triplet ground state. The Bi–Ga bond
lengths in the anionic BiGan clusters with n�2 ranged from
2.59 to 2.68 Å, and are relatively smaller than those of the
neutral clusters. For n	2, the Bi–Ga bond in both anionic
and neutral clusters ranged from 2.80 to 3.0 Å. The BiGa3

cluster, however, presented Bi–Ga bond lengths of only 2.69
Å in a planar C2v symmetry. At n	4 the clusters favored
compact structures, although the low-lying energy isomer of
BiGa4

− also exhibits a compact structure in the triplet state.
The BiGa5 anion and neutral clusters show similar compact
geometries, but while neutral BiGa5 has Cs symmetry, the
anionic cluster exhibits a nonsymmetric structure. For BiGa6,
the anionic low-lying energy isomer and the neutral ground
state have similar geometries with the anionic ground state
being more compact. In general, Bi tends to coordinate with
mostly Ga atoms, which can be explained based on the larger
experimental binding energy of the Bi–Ga dimer of 1.65 eV
�Ref. 42� compared with Ga–Ga of 1.43 eV.42

The raw and reconstructed photoelectron images of
Bi2Gan

− with n=0,1 ,2 clusters are shown in Fig. 4. Three
electronic transitions are observed for Bi2

− designated as
bands X, A, and B, respectively, according to their increasing
EAs. Both transitions X and B are nearly isotropic with
slightly perpendicular orientation with respect to the laser
polarization. Band B shows three peaks whose anisotropy
parameters are slightly negative or close to zero, since iso-
tropic distributions become dominant at very low electron
kinetic energies.22 Band A shows almost perpendicular ori-
entation to the laser polarization. The transition of band X
results from the HOMO mostly composed of p atomic orbit-
als and corresponds to the final neutral ground state 1
g

+ of
Bi2, as discussed by Polak et al.9 In our case, the calculated
transition energy of 1.17 eV is in excellent agreement with
the experimental value of 1.20�0.1 eV �Table I�. Transition
from band A and B has been previously assigned9 based on
the ordering of spin-orbit states calculated by Balasubrama-
nian et al.48 to the triplet states 3
u

+ �1u� and 3
u
+ �0u

−�, re-
spectively. We calculated only one triplet state for which the
transition resulting from the HOMO-1, and with an energy of
2.34 eV that agrees with the transition energy of band B of
2.32�0.1 eV.

The photoelectron binding energy spectra of the BiGan
−

n=1, 2 and Bi2Gan
− n=1,2 clusters are shown in Fig. 5. The

spectra are normalized and plotted on the same electron
binding energy scale. The features in the spectra are labeled
with the same letters used to mark the corresponding elec-
tronic bands in the photoelectron images of the respective
species. The vertical dotted line marks the EA of the Bi

TABLE I. Relative energies �Erel�, experimental and theoretical VDEs to neutral states of M �1, adiabatic EA,
and calculated HOMO-LUMO gaps of the neutral and anionic BiGan �n=1–6� clusters. The superscripts
indicate the M spin multiplicity. All values are given in units of eV.

Erel. Band VDE exp. �-parameter VDE theo. EA exp. EA theo. HOMO-LUMO gap

3Bi− X 0.94�0.1 0.52�0.1 0.85 0.94 0.85 0.57
A 2.11�0.1 0.05�0.1 2.33

2BiGa− 0.0 X 1.63�0.1 0.66�0.15 1.92 0.12
A 2.18�0.1 0.18�0.15

0.01 X 1.79 0.06
3BiGa 1.5 1.71 0.72
1BiGa2

− 0 X 2.17�0.15 0.35�0.1 2.33 1.63
0.09 X 2.38 1.63

2BiGa2 0.0 1.90 2.18 0.73
0.08 0.35

2Bi2
− X 1.20�0.1 −0.2�0.1 1.17 0.13

A 1.96�0.1 −0.7�0.1 2.34
B 2.32�0.1 −0.18�0.1

2.33�0.1 −0.06�0.1
2.34�0.1 0.06�0.1

1Bi2 1.00 1.10 1.99
1Bi2Ga− X 2.11�0.1 0.22�0.15 2.03 0.52

A 2.32�0.15 0.06�0.15
2Bi2Ga 1.95 1.90 0.60
2Bi2Ga2

− 0.0 X 1.96�0.1 −0.02�0.15 2.12 0.50
A 2.25�0.1 0.45�0.15 2.38

0.0 X 2.07 0.56
A 2.49

1Bi2Ga2 2.00 1.78 0.90

054304-4 Sobhy et al. J. Chem. Phys. 130, 054304 �2009�
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atom. The photoelectron image of the Bi2Ga− cluster in Fig.
4 shows two isotropic electronic bands corresponding to the
two transitions X and A in the photoelectron spectrum in Fig.
5. Transition X arises from the HOMO of B2 symmetry
mainly of p orbital character and exhibit a nearly isotropic
with slight parallel angular distribution. The photoelectron
angular distributions in clusters and molecular species can be
dependent on several parameters, for example, the electron
kinetic energies and the symmetry of the orbital from which
the electron is detached leading to deviations from the ex-
pected angular distributions for photodetachment from an
atomic orbital. The calculated EA of Bi2Ga2 is slightly lower
than that of the Bi2Ga cluster. There are two accessible elec-
tronic transitions in the Bi2Ga2 cluster, where the lower bind-
ing energy band X appears as a faint halo in the photoelec-
tron image in Fig. 4 and as a side peak in the photoelectron
spectrum of the Bi2Ga2

− cluster depicted in Fig. 5. The iso-
tropic band X results from the detachment of the HOMO of
B1 symmetry, similar in shape to a d orbital. Band A has
slight orientation parallel to the laser polarization and occurs
from the detachment of HOMO-1 of B2 symmetry with par-

tial s orbital character. The calculated transitions of both the
ground state and the nearly degenerated energetic isomer
agree quantitatively with the experimental transitions �Table
I�.

The optimized geometries of the ground states and low-
lying energy isomers of the anionic and neutral Bi2Gan with
n=1–6 series are shown in Fig. 6. All clusters show the
lowest possible multiplicity. The Bi–Bi bond was found to be
maintained at larger size, which can be explained based on
the experimentally determined binding energy of the Bi–Bi

FIG. 3. �Color online� Optimized geometries of BiGan�n=1–6� anionic and
neutral clusters. Bond lengths are given in angstroms and the superscripts
indicate spin multiplicity. The relative energies of the low lying energy
isomers are given in units of eV. The gray circles correspond to Bi atoms,
while the yellow circles represent Ga atoms.

FIG. 4. �Color online� The raw and reconstructed photoelectron images of
the Bi2

− dimer and binary Bi2Gan
− with n=1,2 clusters recorded at 527 nm

are depicted in columns A and B, respectively. The symbols X, A, and B
denote the electronic transitions from the anionic ground state to the first
and higher excited states of the neutral species. The HOMO and HOMO-1
charge density plots along with their respective symmetry and percentage of
atomic composition are shown in column C. �See caption of Fig. 2 for more
details.�

FIG. 5. The photoelectron energy spectra of BimGan
− cluster anions, where

m=1,2 and n=1,2, obtained using photons of 527 nm wavelength. The
spectra are normalized and plotted on the same energy scale. The dotted
line, which denotes the EA of the Bi atomic ion, is drawn for comparison
with the EAs of the BiGan clusters.

054304-5 PE imaging and DFT on bimetallic cluster ions J. Chem. Phys. 130, 054304 �2009�
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dimer of 2.04 eV �Ref. 42�, which is higher than that of the
Bi–Ga and Ga–Ga dimers. The Bi2Ga neutral and anionic
clusters show C2v symmetries in which the Bi–Bi bond is
stretched compared to the respective neutral and anionic Bi2
dimers bond lengths. Although one anionic Bi2Ga2 isomer
was found to have a nonplanar geometry with both Ga atoms
in a bridge configuration, an energy-degenerate isomer ex-
hibited a planar configuration in which both Ga2 and Bi2
dimers are bonded parallel to each other. The geometry of
neutral Bi2Ga2 is similar to the anion cluster, but has a higher
symmetry planar D2h structure. Compact geometries were
found for n	3, and in general two types of geometries were
found. In the first type, which is present in most of the
ground states, the Bi–Ga bonds are favored where the Ga
atoms connects to the Bi2 dimer. In the second type, the Ga
atoms form clusters to which the Bi2 dimer binds externally.

In order to investigate the stability of the anionic and
neutral BiGan and Bi2Gan series, we calculated the gap be-
tween the HOMO and the lowest unoccupied molecular or-
bital �HOMO-LUMO gap �LUMO denotes lowest unoccu-

pied molecular orbital��, the EAs, and the energy gain �EGa

when successive Ga atoms bind to Bi and Bi2, respectively,
�EGa=E�BimGan−1�+E�Ga�−E�BimGan�. Here E�BimGan�,
E�BimGan−1�, and E�Ga� are the total ground state energies of
the BimGan, BimGan−1 clusters, and that of the Ga atom. A
large HOMO-LUMO gap is commonly used as an indicator
of chemical stability, where the system resists both the
change in the number of electrons and the deformation of the
electronic cloud. In addition it should be noted that a cluster
containing an odd number of electrons will generally have a
zero HOMO-LUMO gap in a spin restricted calculation since
the HOMO is singly occupied. In a spin-unrestricted ap-
proach, however, the up and down spin orbitals are allowed
to have different spatial characters; the energy levels do not
occur “in pairs” for the two spin components and a HOMO-
LUMO gap does open up. For comparisons of HOMO-
LUMO gap, we analyze variations between closed shell clus-
ters only. Maxima in the EA among a series imply a special
stability of the corresponding anionic species, while a large
energy gain �EGa in the formation of a cluster from a sto-
ichiometry with one less atom and a small gain in energy
when one extra atom binds to the cluster attest for energetic
stability. Figure 7 shows the HOMO-LUMO gaps and calcu-
lated �EGa of the anionic and neutral BiGan and Bi2Gan clus-
ters, while the corresponding values are given in Table S1 in
the supplementary material49 of this article.

Inspection of Fig. 7 shows that BiGa2
−, Bi2Ga3

−, and
Bi2Ga5

− �anionic�, and BiGa3, BiGa5, Bi2Ga4 and Bi2Ga6

�neutral� clusters have higher �EGa than the neighboring
clusters. These clusters also have significant HOMO-LUMO
gaps. Additionally, the calculated EAs yield maxima for
BiGa2, Bi2Ga3, and Bi2Ga5 of 2.18, 2.64 and 2.32 eV, respec-
tively as shown in Tables S2 and S3,49 attesting for the sta-
bility of the corresponding BiGa2

−, Bi2Ga3
−, and Bi2Ga5

− an-
ionic species. In order to examine the special stability of
BiGa2

− we analyzed the electronic levels and the nature of the
orbitals of Bi, and the molecular orbitals of Ga2

− and BiGa2
−

as shown in Fig. S1.49 The neutral Bi atom has a quartet
ground state with a 6p3 electronic configuration and three
single occupied p levels. On the other hand, Ga2

− is also a
quartet state with three electrons of p character. The three p
levels of Ga2

− can then be considered to interact with the
three empty levels of Bi forming covalent bonds and gener-
ating the BiGa2

− even electron system with a large HOMO-
LUMO gap. Following the same principle, BiGa3 is formed
through the bonding interaction of 3p electrons from Bi and
3p electrons of Ga3. In this case, the cluster acquires further
stability as the pz orbitals perpendicular to the plane of the
molecule combine to form a delocalized � orbital, while the
px and py orbitals are oriented radially toward the center of
the ring, and tangentially around the ring, respectively, form
two delocalized � orbitals, as shown in Fig. S2.49 Attesting
for the delocalized nature of these orbitals, the BiGa3 pre-
sented shorter Bi–Ga and Ga–Ga bonds than the rest of the
series, as discussed above. In this way, BiGa3 has features of
an all-metal aromatic cluster in analogy to the recently re-
ported BiAl3 cluster.50 Similarly, the stable BiGa5 cluster
could be regarded as an analog of BiAl5,50 which has a com-
pact and symmetric structure. The electron energy levels and

FIG. 6. �Color online� Optimized geometries of Bi2Gan �n=0–6� anionic
and neutral clusters. Bond lengths are given in angstroms and the super-
scripts indicate spin multiplicity. The relative energies of the low lying en-
ergy isomers are given in units of eV. The gray circles correspond to Bi
atoms, while the yellow circles represent Ga atoms.
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molecular orbital isosurfaces are shown in Fig. S3.49 The
shapes of the orbitals suggest an electronic ordering of the
types 1s2, 1p6, 1d10, and 2s2 reminiscent of a closed shell at
20 electrons.

An analysis of �EGa for the Bi2Gan series in Fig. 7
shows an even-odd oscillation with respect to the number of
Ga atoms. Previous studies of similar III-V clusters: In2P3

−,51

Ga2As3
−,52 and Ga2P3

−,53 concluded that systems having an
even number of electrons exhibit enhanced stability when
compared with systems with an odd number of electrons. In
the present study, we found that the enhanced stability of the
neutral and anionic Bi2Gan series can be explained by the
same even-odd behavior.

The photoelectron images of Pbn with n=1–4 clusters
obtained using 527 nm are shown in Fig. 8. The photoelec-
tron image of atomic Pb− anion shows three transitions at
this photon energy. The band of the ground state transition X
is partially parallel while those of the two higher binding
energy transitions A and B are partially perpendicular to the
laser electric field. The angular distribution in transition X is

dependent on the kinetic energy of the detached electrons,
where at high kinetic energies �2 eV, transitions resulting
from a p orbital can exhibit partial perpendicular distribution
with respect to the laser field. The dependence of the aniso-
tropy parameters for p-orbital detachment on the electron
kinetic energy was demonstrated for atomic ions,54 where
near threshold the angular distribution is nearly isotropic; at
�1 eV � becomes � �1 �i.e., perpendicular distribution�
then � increases to 2 �i.e., parallel distribution� by increasing
the electron kinetic energy.25 The photoelectron image of Pb2

−

has three accessible electronic transitions at this photon en-
ergy, where band X appears as an isotropic ring, while bands
A and B show perpendicular and parallel distributions to the
laser polarization, respectively. The measured detachment
energies, anisotropy parameters, and the calculated detach-
ment energies for the Pbn

− clusters �n=2–4� are given in
Table II. For Pb2

− the symmetry of both the HOMO and
HOMO-1 orbitals, shown in Fig. 8, is �u with the same
partial atomic orbital composition of p and d orbitals. The
transition of band X results from the HOMO and corresponds
to the final neutral ground state 3
g

− of Pb2, as discussed by
Ho et al.25 We calculated a transition energy of 1.56 eV in
good agreement with the experimental value of
1.48�0.1 eV �Table II�. Transition from bands A and B has
been previously assigned25 based on the ordering of spin-
orbit states calculated by Balasubramanian and Pitzer55 to the
triplet states 3
g

− �1g� and 3�u �2u�, respectively. In these
works, two other transitions at slightly higher binding ener-

FIG. 7. �Color online� Calculated Ga gain energies ��EGa� and HOMO-
LUMO gaps �in units of eV�, of �a� the neutral and anionic BiGan�n
=1–6� clusters, and �b� the neutral and anionic Bi2Gan�n=1–6� clusters. Ga
gain energies include zero point energy corrections.

FIG. 8. �Color online� The raw and reconstructed photoelectron images of
Pbn

− clusters with n=1–4 recorded at 527 nm are depicted in columns A and
B, respectively. The symbols X, A, and B denote the electronic transitions
from the anionic ground state to the first and higher excited states of the
neutral species. Column C depicts the charge density of the HOMO and
HOMO-1, and their symmetry character and percentage of atomic orbital
composition. �See caption of Fig. 2 for more details.�
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gies were also reported to a triplet 3�u �1u� and singlet
1�g�2g� electronic states. In our case, we calculated a transi-
tion to a singlet state resulting from the HOMO-1 at an en-
ergy of 2.16 eV, in good agreement with the observed band B
of 2.28�0.1 eV.

The Pb3
− cluster has a stable atomic structure and slightly

higher detachment energy than those of the dimer and tet-
ramer. The electronic band X in the photoelectron image of
the Pb3

− cluster exhibits a preferential perpendicular angular
distribution consistent with p-orbital detachment at low to
medium energies. The HOMO has B2 symmetry and is
mostly composed of p orbitals. The photodetachment in the
A transition in the Pb3

− cluster results from an orbital of simi-
lar symmetry and composition than that for the X transition.
However, in transition A the detachment occurs near the
threshold where an isotropic angular distribution is predomi-
nant. The electronic affinities of Pb2 and Pb4 are close in
value, 1.366�0.01 �Ref. 25� and 1.37�0.03,24 respectively.
The transition X in the Pb4

− cluster has partially perpendicular
distribution relative to the polarization direction. The photo-
electron detachment occurs from a HOMO of B1g symmetry
mainly formed from a p orbital. Transition A results from the
HOMO-1 of B2u symmetry and shows isotropic angular dis-
tribution due to the low kinetic energy of the detached elec-
trons. In summary, the photoelectron angular distributions in
Pbn clusters are dependent on both the kinetic energy of the
detached electrons and the symmetry of the orbital, where a
perpendicular distribution occurs at intermediate kinetic en-
ergies while parallel and isotropic distributions are dominant
at high and near threshold detachment energies, respectively.

The optimized geometries of the ground states of the
anionic and neutral Pbn with n=2–4 series are shown in Fig.
9. The Pb2 dimer is optimized to a triplet state configuration
with a bond length of 2.94 Å. The Pb3 cluster also in a triplet
state exhibits an equilateral-triangle geometry �D3h� with
side bond length of 3.03 Å. These results are in good agree-
ment with the DFT GGA study of Rajesh et al.46 and with the
results reported by Balasubramanian et al.56 using the

CASSCF and MRSDCI methods for Pb3. The Pb4 cluster in
a singlet state adopted a planar rhombus geometry �D2h� with
a Pb–Pb distance of 3.02 Å, similar to that calculated by
Rajesh et al.46 All the anionic Pbn

− �n=2–4� clusters are op-
timized to doublet spin states with similar geometries to
those of the respective neutral Pbn, but in general with
shorter Pb-Pb bond lengths. Pb3

− is optimized to an isosceles
�C2v� triangle, while Pb4

− presented D2h symmetry.

IV. CONCLUSIONS

In this study, we reported the results of photoelectron
imaging experiments of negatively charged bimetallic
BimGan and Pbn clusters using photons of 527 nm wave-
length. The BiGan clusters show higher EAs with increasing
number of Ga atoms from n=0 to n=2, while the photoelec-
tron images of Pbn with n=1–4 exhibit significant variation
in the photoelectron angular distributions with the change in
the cluster size. The anisotropy parameters of the BimGan and
Pbn clusters were found to be dependent on both the orbital
symmetry and electron kinetic energies. The optimized
atomic structures for the anion and neutral BimGan clusters
were shown to exhibit the lowest possible multiplicity, sin-

TABLE II. Experimental and theoretical VDE to neutral states of M �1, adiabatic EA, and calculated HOMO-
LUMO gaps of the neutral and anionic Pbn�n=1–4� clusters. The superscripts indicate the M spin multiplicity.
All values are given in units of eV.

Band VDE exp. �-parameter VDE theo. EA exp. EA theo. HOMO-LUMO gap

2Pb2
− X 1.48�0.1 −0.02�0.15 1.56 0.05

A 1.9�0.1 −0.48�0.15 2.16
B 2.28�0.1 0.42�0.1

1.45�0.10 a

3Pb2 1.366�0.01 b 1.53 0.41
1Pb3

− X 1.68�0.1 −0.45�0.1 1.89 0.30
A 2.31�0.1 −0.16�0.1 2.19

2Pb3 1.700�0.088 a 1.84 0.58
1.45

2Pb4
− X 1.58�0.1 −0.55�0.1 1.66 0.60

A 2.23�0.1 0.027�0.1 2.68
1Pb4 1.550�0.088 a 1.65 1.14

1.370�0.030 c

aReference 23.
bReference 25.
cReference 24.

FIG. 9. �Color online� Optimized geometries of Pbn�n=2–4� anionic and
neutral clusters. Bond lengths are given in angstroms and the superscripts
indicate spin multiplicity.
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glet and doublet for the even and odd electron systems, re-
spectively, with the exception of BiGa which has a triplet
ground state.

From the analysis of �EGa and the EAs, we found that
the BiGa2

−, Bi2Ga3
− and Bi2Ga5

− anionic, and BiGa3, BiGa5,
Bi2Ga4, and Bi2Ga6 neutral clusters are quite stable. The sta-
bility of the anionic and neutral Bi2Gan clusters is attributed
to an even-odd effect, with clusters having an even number
of electrons also displaying larger HOMO-LUMO gaps. The
stability of the neutral BiGa3 cluster is rationalized as being
similar to BiAl3, an all-metal aromatic cluster.
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