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Using a modified symbiotic genetic algorithm approach and many-body interatomic potential
derived from first principles, we have calculated equilibrium geometries and binding energies of the
ground-state and low-lying isomers of Be clusters containing up to 41 atoms. Molecular-dynamics
study was also carried out to study the frequency of occurrence of the various geometrical isomers
as these clusters are annealed during the simulation process. For a selected group of these clusters,
higher-energy isomers were more often found than their ground-state structures due to large
catchment areas. The accuracy of the above ground-state geometries and their corresponding
binding energies were verified by carrying out separate ab initio calculations based on
molecular-orbital approach and density-functional theory with generalized gradient approximation
for exchange and correlation. The atomic orbitals were represented by a Gaussian 6-311G** basis,
and the geometry optimization was carried out using the GAUSSIAN 98 code without any symmetry
constraint. While the ground-state geometries and their corresponding binding energies obtained
from ab initio calculations do not differ much from those obtained using the molecular-dynamics
approach, the relative stability of the clusters and the energy gap between the highest occupied and
the lowest unoccupied molecular orbitals show significant differences. The energy gaps, calculated
using the density-functional theory, show distinct shell closure effects, namely, sharp drops in their
values for Be clusters containing 2, 8, 20, 34, and 40 electrons. While these features may suggest
that small Be clusters behave free-electron-like and, hence, are metallic, the evolution of the
structure, binding energies, coordination numbers, and nearest-neighbor distances do not show any
sign of convergence towards the bulk value. We also conclude that molecular-dynamics simulation
based on many-body interatomic potentials may not always give the correct picture of the evolution
of the structure and energetics of clusters although they may serve as a useful tool for obtaining
starting geometries by efficiently searching a large part of the phase space. © 2005 American
Institute of Physics. �DOI: 10.1063/1.2001655�

I. INTRODUCTION

The last two decades have witnessed considerable inter-
est in the study of clusters1 of metallic and semiconducting
elements. One of the most important reasons for this interest
is that atomic clusters constitute an intermediate phase of
matter between atoms and bulk. Thus, one expects that stud-
ies of atomic clusters can illustrate how structure and prop-
erties of matter evolve with size and composition—one atom
at a time. While much progress has been made in this regard,
some fundamental questions still remain to be answered. For
example, how many atoms does it take for a metal cluster to
behave like a metal?

The difficulty in answering this question underscores
two important points: �1� How does one define a metal at the

nano- or subnanometer scale, which typically is the size of
clusters? If one uses the conventional definition that metals
are good conductors of heat and current, atomic clusters are
too small for those measurements. �2� One could use elec-
tronic signature as a means to study the onset of metallic
transition. For example, the electronic band structure of a
metal exhibits no gap, i.e., the Fermi energy �the energy of
the highest occupied electron� passes through an energy
band. In atomic clusters, there are no energy bands, and the
electrons occupy discrete molecular orbitals. As clusters
grow, the gap between the highest occupied molecular orbital
�HOMO� and lowest unoccupied molecular orbital �LUMO�
is expected to decrease, and when this gap vanishes, one
could argue that the cluster is metallic.2,3 Leaving aside the
issues of how one measures or calculates these gaps accu-
rately, a nagging question is what if the variation of the
HOMO-LUMO gaps is not monotonic? How can a cluster ofa�Electronic mail: snkhanna@saturn.vcu.edu
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a smaller size be metallic while it ceases to be metallic at a
larger size? �3� Another signature of metallic behavior, in at
least some systems, is that conduction electrons are nearly
free, i.e., they move in a crystal uniformly and their densities
are nearly constant throughout the lattice. This is the so-
called jellium behavior4 where the electrons move in a con-
stant field provided by a uniform distribution of the positive-
ion cores. Does this mean that if the electronic structure of a
cluster can be described by this free-electron jellium model,
it can be classified as “metallic” even if the cluster contains
only two atoms?

The bottleneck that prevents us from answering these
fundamental questions is that electronic and atomic struc-
tures of the clusters are intimately linked. There are currently
no direct experimental methods that can reveal the geometry
of a cluster. The clusters are too small for diffraction probes
and too large for spectroscopic techniques. The only way to
arrive at the geometry �i.e., atomic arrangements� of a cluster
is through theoretical techniques. Even though we ignore for
the time being the issue concerning the accuracy of a theo-
retically derived structure, there are other daunting problems
one faces. For example, a cluster can and often may have
isomers �i.e., different geometrical forms�, which can lie very
close in energy. Secondly, it is not clear if experimentally
one would always observe the ground-state structure. It is
possible that a higher-energy isomer with a large catchment
area may be more abundant in a cluster beam than the
ground-state structure with a small catchment area. Third,
and perhaps the most important factor is that the number of
these isomers grows exponentially with cluster size. In a
computational procedure it is virtually impossible to search
the entire phase space to locate all possible isomers. Thus,
one has to be content with mapping the energetically relevant
regions of the phase space to determine the isomers that are
most likely to be seen in an experiment, and then calculate
various measurable properties. If these compare well with
experiment, one could be reasonably certain that the geom-
etry and the electronic structure have been properly calcu-
lated. One can then see if this cluster possesses electronic
signature of metallicity.

As mentioned earlier, these difficulties are the reasons
why the above studies have been few and far between. In this
paper we address this issue in Be clusters. Using a many-
body interatomic potential derived from first principles5 and
a modified genetic algorithm,6–9 we have calculated the ge-
ometries and binding energies of hundreds of isomers of Be
clusters containing up to 41 atoms. By a simulated annealing
technique, we have also studied the probability that these
isomers could be present in a cluster beam. Typically this
probability is given by the Boltzmann factor, e−�E/kT, namely,
if �E, energy of the isomer defined with respect to the
ground state is large compared to temperature, its probability
of being found is small. However, if the potential-energy
surface for this isomer is such that there is a large catchment
area, its probability of existence may be significant. We have,
therefore, searched the energetically relevant regions of
phase space and have determined these probabilities. While
in most cases the ground-state structure is the most abundant

species, there are isolated cases where higher-energy isomers
are more abundant than the ground-state structure.

To verify the accuracy of these structures, we have per-
formed independent calculations of the cluster geometries up
to 21 atoms using an all-electron density-functional theory
�DFT� with generalized gradient approximation for
exchange-correlation potential.10 The optimized geometries
are obtained by using the geometries obtained from
molecular-dynamics simulation as starting points and then
reoptimizing the final structure without any symmetry con-
straint as has been done for Ni clusters.11 While the geom-
etries and binding energies obtained using the first-principles
calculations do not differ significantly from those obtained
from molecular-dynamics simulation, the relative stability
and the HOMO-LUMO gap differ markedly as these are sen-
sitive to the details of the geometry.

In Sec. II we outline our theoretical procedure. The re-
sults are discussed in Sec. III and compared with earlier the-
oretical calculations,12–16 which are limited to the clusters
containing up to 21 Be atoms. A summary of our conclusions
is given in Sec. IV.

II. THEORETICAL PROCEDURE

As pointed out earlier, obtaining the geometrical struc-
ture of a cluster is the first step in understanding any of its
properties. This is not a simple task as the potential-energy
surface may contain a large number of local minima. If any
of these minima are protected by a large energy barrier, it is
possible that one could arrive at different structures by start-
ing from different initial configurations. As clusters grow, the
number of such local minima grows exponentially, and find-
ing the global minimum structure becomes prohibitively dif-
ficult. Thus an efficient algorithm is needed to search for the
global minimum as well as local minima with large catch-
ment areas. Molecular-dynamics simulation is usually the ac-
cepted route for efficiently searching the minima in a
potential-energy surface. For this, one needs an interatomic
potential, and any error in this choice translates to errors in
the computed geometry of the clusters. While a common
practice has been to obtain this potential by fitting to some
experimental data of the bulk system, its application to
atomic clusters is questionable.

In this paper we have adopted the following procedure.
�1� We have started with a many-body interatomic potential
�Vn� derived for clusters from first principles by Blaisten-
Barojas and Khanna.5 They calculated the total energies of
Be clusters containing up to five atoms in various structural
forms and then fitted these energies simultaneously to an
analytic form containing two-body V2 and three-body V3

terms. This form was so chosen that as the cluster size in-
creases, three-body interaction term diminishes and one ap-
proaches the cohesive energy of the bulk. Using this poten-
tial and a modified genetic algorithm, we have studied the
potential-energy hypersurface of Be clusters containing up to
41 atoms. For each cluster we have obtained geometries of
numerous low-lying isomers by heating the clusters to differ-
ent temperatures. �2� We used the geometries of the ground-
state and those of the low-lying isomers obtained from the
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molecular-dynamics simulation as a starting point in a first-
principles all-electron calculation based on molecular-orbital
formulation and density-functional theory. The geometries of
these clusters containing up to 21 atoms were reoptimized
without any symmetry constraint. The binding energies, rela-
tive stability, and the geometries thus obtained were then
compared with those obtained from molecular-dynamics
simulation. �3� The HOMO-LUMO gaps were first calcu-
lated using the ab initio all-electron molecular-orbital theory
on geometries obtained from molecular-dynamics simula-
tion. These were compared with the results of our ab initio
calculation where the geometries were further reoptimized
without any symmetry constraint. In the following we outline
the two separate theoretical procedures.

A. Molecular dynamics using modified genetic
algorithm

Among successfully used molecular-dynamics
methods6–9 are quenched molecular dynamics, simulated an-
nealing, genetic algorithms �GAs�, and “symbiotic” GA as
well as GA-inspired Monte Carlo method. Here we use a
simple “coordinate-based” GA to find the global and many
low-lying local minima of Be clusters. Our goal is to find the
geometries of the lowest-energy state and those of the low-
lying isomers as a starting point in a more accurate ab initio
simulation.

GA is a heuristic approach that mimics the process of
natural selection to optimize systems by representing pos-
sible states of the system as one-dimensional strings �genes�.
Optimization then consists of improving the fitness of mem-
bers of the ensemble of genes �population� by performing
operations of crossover, mutation, and selection. Crossover is
a binary operation that takes two genes �parents� and re-
places them by two other genes �children� obtained by swap-
ping halves of the parents’ genes at a randomly chosen posi-
tion in the gene �crossover point�. Mutation consists of small
random changes of some members of the population. Selec-
tion consists of choosing a subset of the population with the
best fitness �lowest potential energy in our case� and replac-
ing the rest of the population by new, usually randomly cho-
sen members. The process is then repeated with the newly
obtained population until no significant improvement of the
fitness of the population is achieved.

This general scheme of GA can be implemented in many
different ways. The GA used in this work starts from an
ensemble of randomly chosen clusters with n atoms. Each
cluster is then represented by a gene consisting of a sequence
of coordinates xi, yi, and zi of the ith atom of the cluster, in
the order they were generated. The crossover point is chosen
between one pair of 3n coordinates. Mutation consists of a
small displacement in random direction of one randomly
chosen atom of the cluster. The parameters such as the size
of the population, the number of configurations with lowest
energy kept in the selection, and the number of mutated
states are chosen for easier comparison of performances of
two algorithms.

The algorithm starts with a population of random clus-
ters of atoms, and the iteration consists of applying
crossover-mutation-selection process to a subcluster of atoms

within a sphere of radius R around the ith atom of the cluster
until the best-found energy has not changed for several con-
secutive steps. �We found that generally seven steps were
enough to guarantee the convergence.� The subcluster is then
accepted as part of the cluster only if it further reduces the
total energy. This is repeated in sequence for each atom of
the fittest cluster with one important difference—R is chosen
to be 2.5–4.1 Å, going from small to large n, which is large
enough so that the sphere typically encloses all of the atoms
of the cluster. In other words, rather than optimizing subclus-
ters containing about seven atoms of the fittest cluster as in
the symbiotic GA �SGA�, our algorithm typically optimizes
the whole cluster. After applying 200–1000 iterations and
repeating the whole process 20–50 times, the fittest clusters
thus obtained are then further “locally” optimized using the
conjugate-gradient �CG� method.

The most important advantage of our method over SGA
is that it converges toward the global minima for the large
number of iterations. This, in turn, is the consequence of
doing optimization over the whole cluster rather than sub-
clusters, and, thus, takes into account long-range nature of
interatomic forces. SGA, on the other hand, does not neces-
sarily converge toward the global minima because it opti-
mizes subclusters of the whole cluster, whose optimal con-
figurations are usually not beneficial for the entire cluster.
The large number of iterations limit of SGA is dominated by
subcluster optimizations that do not improve energy of the
cluster, and the amount of redundant computation depends
sensitively on the degree to which subcluster energy is
optimized—better is this optimization done, more likely is
that the optimized subcluster will not improve the energy of
the entire cluster.

If we furthermore notice that the three-body term of the
potential requires O�n3� evaluations of V3, the total time that
SGA takes for evaluation will be dominated by the number
M of CG minimizations done. Assuming that M is about the
same as in the case of the Lennard-Jones potential, M =5
�104, it can be estimated that our algorithm has available
M �500 to perform the same number of operations. In prac-
tice, on the other hand, it seems that M �300 used in this
work is sufficient to locate the global and low-lying local
minima.

Compared with the methods of Ref. 17, we notice that
these employ both “cutting” of clusters using planes and lo-
cal Monte Carlo �MC� moves at a fixed temperature. Quali-
tatively, the crossover operation employed here contains
these cutting operations as well as a considerably larger set
of operations of combining two clusters into one that cannot
be represented through few cutting operations, while the mu-
tation produces local moves. For these reasons, we do not
expect that these methods can outperform ours.

In order to further check whether global minima are
reached in the simulations, we carried out additional five
simulations, each 104 steps long, for n�25 and without fur-
ther CG minimization, and the best energy found was less
than 0.1% higher from the already found ground state.

074329-3 Electronic structure of Be clusters J. Chem. Phys. 123, 074329 �2005�
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B. Density-functional calculations

The total energy of a cluster with a given geometry is
calculated using DFT and generalized gradient approxima-
tion �GGA� for exchange-correlation potential. We have used
the BPW91 �Ref. 18� form for the GGA which incorporates
Becke’s exchange and Perdew-Wang’s prescription for cor-
relation. The forces at each atomic site are calculated from
the gradient of the total energies. The atoms are then moved
to a new location following the path of steepest descent until
the forces at every atomic site vanish. No symmetry was
enforced during this optimization procedure. We have used
the GAUSSIAN 98 code19 for these calculations. The atomic
orbitals were given by 6311-G** Gaussian basis. The binding
energies per atom Eb and the energy gain �E in adding an
atom to an existing cluster are calculated from the total en-
ergy E�n� using the following equations:

Eb = − �E�n� − nE0�/n , �1�

�E = − �E�n + 1� − E�n�� . �2�

Here n is the number of atoms in the cluster and E0 is the
energy of the atom. The vertical ionization potential �I.P.�
was calculated as the difference in energy between the neu-
tral and positively charged clusters at the neutral geometry,
namely,

I.P. = − �E�n� − E+�n�� . �3�

III. RESULTS AND DISCUSSIONS

The geometries of Be clusters containing up to 21 atoms
have been studied previously using different theoretical
techniques.12–16 While quantum-chemical methods have been
used for Be clusters containing less than eight atoms,
density-functional theory combined with Car-Parrinello
molecular-dynamics simulation has been used by Kawai and
Weare12 and by Wang et al.16 to calculate the geometry, bind-
ing energy, and HOMO-LUMO gap of Be clusters up to 21
atoms. The authors conclude that Be clusters exhibit a me-
tallic behavior with as small as seven atoms because of sig-
nificant p character of the molecular orbitals. In addition,
Kawai and Weare claim that Be clusters containing as small
as 11 atoms can be regarded as a fragment of the hcp lattice.
While much of our cluster geometries and structural proper-
ties agree with these authors, our conclusions are different.
For example, we see icosahedric growth pattern up to the
largest cluster we have studied, namely, 41 atoms. This is not
a signature of bulk behavior. In addition, we have computed
the ionization potentials of these clusters and compared these
with the systematic variation in the HOMO levels and com-
mented on the validity of the Koopmans theorem.

We present our results in two different steps: �1� We
discuss the evolution of the geometry, nearest-neighbor dis-
tance, coordination number, and binding energy per atom
calculated from the ground-state structure of clusters as ob-
tained from the molecular-dynamics study. We also discuss
the existence of isomers for each of the 41 clusters. �2� We
next present the ground-state geometries as obtained from
the molecular-orbital approach within the DFT up to 21 at-

oms and compare their properties with those obtained from
the molecular-dynamics study mentioned above. We also
compare the relative stability and the evolution of the
HOMO-LUMO gaps calculated from the molecular-orbital
approach and molecular-dynamics geometries up to 21 at-
oms. Finally, we present results on the evolution of the ion-
ization potentials and compare them with the variations
based on Koopmans theorem.

A. Results based on molecular-dynamics study

In Fig. 1 we plot the relative energies of isomers lying
within 0.075 eV/at. of the ground-state energy for clusters
containing up to 41 atoms. We note that the number of iso-
mers increases dramatically as the cluster size increases. Not
all the parts of configuration space are equally accessible in
the course of a simulation. In Fig. 2 we plot the density of
occurrences of the isomers. This is determined by calculating
how many times each of the low-lying minima has been
found. Since our algorithms converge toward the global
minima in the limit of large number of iterations �when the
corresponding distributions are � functions at the ground-
state energy�, distributions in Fig. 2 are indicative of the
algorithm dynamics on a short time scale which, in turn, are
influenced by the size of the “catchment areas” of different
local minima. Low density of occurrence of a particular glo-
bal minimum then suggests that the cluster configuration cor-
responding to the global minima will be suppressed in ex-
periments that do not produce highly equilibrated
distributions of cluster, and therefore, the cluster configura-
tions corresponding to the higher-energy isomers with high
number of occurrences are expected to be much more abun-
dant and, therefore, relevant for the correct interpretation of
experimental findings.

Depending on the properties of the distribution of occur-
rences, we tentatively notice the following three classes: �i�
The largest class corresponds to clusters where the ground
state was most frequently observed. These correspond to n
=2–6, 8, 10–13, 15, 16, 19, 20, 22–26, 28, 30, and 35. �ii�
Clusters where there is a single local minimum that is sig-
nificantly more frequently obtained than all other minima,
including the lowest one, occur at n=7, 14, 18, 21, 31, 32,
and 34, and �iii� clusters where there are several local
minima approximately equally frequently obtained are at n
=17, 33, and 36–41.

In Fig. 3 we plot the ground-state geometries of Be clus-
ters containing up to 41 atoms. The clusters assume three-
dimensional form while containing as few as four atoms. A
pentagonal arrangement of atoms, which is the seed for
icosahedric growth, first appears in the Be7 cluster. Be13 is
the first complete icosahedric cluster. As cluster size in-
creases, one notes that the icosahedric structure remains as
the building block. The structure of Be19, for example, is a
double icosahedron. Even the largest cluster studied here
does not mimic the hcp crystal structure of Be. Thus, one can
say that as far as the atomic structure of Be is concerned, the
41 atom cluster does not represent a fragment of the bulk
crystal. It is worth noting that the icosahedric growth pattern
has also been observed for Na clusters containing up to 59
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atoms by Kummel et al.20 In general, as we will show in the
following, the electronic shell effects and the icosahedric
growth work hand-in-hand for metal clusters.

In Fig. 4�a� we plot the evolution of the nearest-neighbor
distance calculated using Eqs. �4� and �5�. This is calculated
by summing up all the bond lengths—Rij in a cluster that is
within 20% of the bulk nearest-neighbor distance, R0 and
dividing the result by the number of such bonds, N, namely,

R = �Rij/N . �4�

Rij/R0 � 1.20. �5�

Note that the nearest-neighbor distance increases monotoni-
cally with cluster size. Although the incremental change in
these distances diminishes with cluster size, there is no indi-
cation that the values have saturated. Even for the largest
cluster studied, the nearest-neighbor distance is about 5%
larger than the bulk value of 2.22 Å. This is in contrast with
most metals where the average nearest distance in clusters is
less than the bulk value. The anomaly in the Be clusters can
be understood by comparing the results with interplanar re-
laxation at the �0001� surface of Be �Refs. 21 and 22� where
the surface layer was found to relax outward by 5.8%.22 This
anomalous relaxation has been attributed to the closed elec-
tronic shell �1s22s2� of the Be atom. The surface atoms, due
to low coordination, behave more like the closed-shell at-

oms. The bulk atoms, on the other hand, are more metallic
due to strong hybridization between the s and p states. Note
that in the Be clusters studied here most of these atoms are
surface atoms. One can, therefore, conclude that the elec-
tronic structure of Be clusters containing up to 41 atoms has
not reached the bulk limit. This is contrary to the conclusion
made by Kawai and Weare.12

In Fig. 4�b� we plot the coordination number CN as a
function of cluster size. This is calculated by counting the
number of nearest-neighbor atoms Nij lying within a distance
of Rij from each atom i in the cluster and dividing by the
number of atoms n in the cluster.

CN = �Nij/n . �6�

Note that the coordination numbers evolve rather slowly to-
ward the bulk value of 12 as most of the atoms are surface
atoms.

In Fig. 5�a� we plot the binding energy per atom as a
function of size. The energies increase rapidly up to six at-
oms and then slowly for larger clusters. But the energy of the
largest cluster studied here is significantly lower than the
bulk cohesive energy of 3.32 eV. To determine the accuracy
of the binding energies calculated from the many-body inter-
atomic potential, we have recalculated these using the DFT-
based molecular-orbital approach with the geometries ob-

FIG. 1. Energies of low-lying minima
relative to the ground-state energy per
atom �En

i −En
0� /n �in eV� vs the cluster

size n.
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tained in GA simulation. These energies are given in Table I.
These two energies agree well with each other for most clus-
ters within an accuracy of 0.07 eV. The exceptions are for
Be4, Be6, Be7, and Be13 where the GA-computed binding
energies differ from the self-consistent-field �SCF�-linear
combination of atomic-orbital �LCAO�-molecular-orbital
�MO� values with GA geometries by −0.12, −0.38, 0.14, and
0.23 eV, respectively.

To demonstrate more clearly the relative stability of the
clusters, we have calculated the energy �E gained in adding
a single atom to an existing cluster �Eq. �2��. In Fig. 6�a� we
plot �E’s obtained from our all-electron calculations based

on geometries obtained from the GA simulation. The �E
values obtained from our fully reoptimized geometries using
DFT and the GAUSSIAN98 code are given in Fig. 6�b�. We first
note that while the binding energy per atom Eb plotted in Fig.
5 at different levels of theory does not appear to be very
different from each other, the values of �E in Fig. 6 show
marked differences. For example, the results in Fig. 6�b�
based on the molecular-orbital approach yield sharp drop at
n=4, 10, 17, and 20. These correspond to the clusters con-
taining 8, 20, 34, and 40 electrons which are precisely the
values at which shell closings occur in a jellium model. The
�E’s obtained from the geometries based on GA simulation
in Fig. 6�a� do not exhibit such a clear pattern. This indicates

FIG. 2. Distribution of density of occurrences of different isomers corresponding to the low-lying minima. The vertical axis scales the number of times a given
isomer occurred during the simulation process.
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that even the most comprehensive molecular-dynamics simu-
lation can fail to account for the correct physics if the many-
body potential does not take into account relaxation of elec-
tron eigenfunctions with changing geometry. We will show

later that the same difficulty arises in accounting for the
HOMO-LUMO gaps.

B. Results based on molecular-orbital calculations

Molecular-dynamics approach discussed above is ca-
pable of yielding geometrical structures and their corre-

FIG. 3. Geometries corresponding to the ground state of clusters obtained in
the GA simulation. The number of reflection planes for each cluster is given
in parentheses. Clusters are plotted such that the symmetry as well as
“atomic shell” structures is clearly visible.

FIG. 4. �a� Nearest-neighbor distance and �b� coordination number as a
function of size.

FIG. 5. Binding energies per atom as a function of size. �a� Results from GA
calculation. �b� SCF-LCAO-MO results based on GA geometries. �c� SCF-
LCAO-MO results with reoptimized geometries.

TABLE I. The binding energy per atom �eV� evaluated from the GA �col-
umn 2� simulations, SCF-LCAO-MO calculations with geometries as in GA
simulation �column 3�, and SCF-LCAO-MO calculations on optimized ge-
ometries �column 4�.

n GA
SCF-LCAO-MO with

GA geometries
SCF-LCAO-MO optimized

geometries

3 0.50 0.57 0.61
4 1.10 1.22 1.24
5 1.30 1.32 1.36
6 1.59 1.21 1.38
7 1.62 1.48 1.52
8 1.67 1.61 1.69
9 1.70 1.74 1.84

10 1.78 1.82 2.03
11 1.86 1.81 2.08
12 1.95 1.92 2.08
13 2.11 1.88 2.08
14 2.05 2.00 2.16
15 2.06 2.05 2.18
16 2.06 2.03 2.24
17 2.07 2.07 2.35
18 2.12 2.17 2.27
19 2.19 2.18 2.30
20 2.19 2.22 2.37
21 2.20 2.26 2.41
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sponding binding energies but provides no information on
the electronic structure such as electron charge distribution,
electron energy-level spectrum, and, hence, the HOMO-
LUMO gap. To obtain such information, one has to use the
molecular-orbital calculations.

We have, therefore, reoptimized the geometries of Be
clusters up to 21 atoms starting with the GA ground-state
geometries and those of low-lying isomers as starting con-
figurations. No symmetry constraint was imposed. Larger
clusters were not attempted due to significant computational
costs. In Fig. 7 we compare the geometries obtained from
our ab initio calculation with those based on the GA simula-
tion. Note that apart from a small difference in bond dis-
tances, geometries of most clusters agree with each other.
The exceptions are for n=11, 12, 14, and 17. We will show
that in spite of these small differences, the calculated
HOMO-LUMO gaps are rather sensitive, as we have noticed
to be the case for relative stability in Fig. 6.

We next discuss the evolution of the binding energies per
atom. The results are plotted in Fig. 5�c� as a function of
size. Although the trend in the variation of Eb is similar to
that in Figs. 5�a� and 5�b�, significant differences are noticed.
For example, the binding energies of Be5 and Be6 clusters
are nearly the same in the molecular-orbital approach while
in the GA approach, Be6 binding energy is significantly
larger than that of Be5. Similarly Be13 is found to be locally
more stable than the Be12 or Be14 in the GA approach. No
such behavior is seen from the molecular-orbital calcula-
tions. These differences are accentuated in the plot of �E in
Fig. 6�b�. Note that in the MO calculations, we do find sharp
drops at n=4, 10, 17, and 20 as expected from shell closure
effects.

The striking difference, however, appears in the HOMO-
LUMO plot in Fig. 8. In Fig. 8�a� we plot the HOMO-
LUMO gaps calculated using the ground-state geometries
obtained in the GA approach. We note that there are sharp
drops in these gaps at n=1 and 4 which correspond to 2 and
8 valence electrons, respectively. This is consistent with shell
closure effects. But we do not observe any such sharp drops
at n=10, 17, or 20 which contain 20, 34, and 40 electrons,
respectively. These correspond to shell closures in a jellium
model, and experimental data on Mg clusters2,3 do exhibit
drops in the HOMO-LUMO gaps that are consistent with the
jellium model. Figure 8�b� presenting data from optimized
MO calculations shows the drops at all of these sizes, i.e., at
n=1, 4, 10, 17, and 20, corresponding to magic clusters.

In Fig. 9�a� we plot the vertical ionization potentials.
Note that these decrease with size with significant drops at
n=1, 4, 10, 17, and 20 which are consistent with shell struc-
ture effects as well as with large HOMO-LUMO gaps in Fig.
8. The vertical ionization potentials are often linked to the
HOMO energy level through the Koopman’s theorem. This
theorem which is based on Hartree-Fock approximation
states that the energy difference between two systems con-
taining N and N−1 electrons is equal to the energy required

FIG. 6. �E increment energy in adding an atom to a preexisting cluster. �a�
SCF-LCAO-MO results based on GA geometries. �b� SCF-LCAO-MO re-
sults with reoptimized geometries.

FIG. 7. Comparison of geometries obtained from �a� GA method and �b�
reoptimized at the SCF-LCAO-MO level of theory.
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to remove an electron from state, say j, to state i, namely,
�E=Ei−Ej, where Ei�Ej� is the energy of state i�j�. The
validity of the Koopman’s theorem requires that the one-
electron wave functions remain unchanged during this pro-
cess. The questions regarding the validity of Koopman’s
theorem in clusters or within the framework of density-
functional theory notwithstanding, we plot in Fig. 9�b� the
negative of the HOMO levels obtained from our MO study
as a function of cluster size. We note that the HOMO levels
reproduce the variation with size of the ionization potential
remarkably well. For example, the sharp drops in the HOMO
values at n=1, 4, 10, 17, and 20 are as we have noted in Fig.
9�a�. However, the magnitude of the HOMO levels is con-
sistently smaller than the vertical ionization potential by
about 2 eV. To demonstrate this clearly, we have shifted the
HOMO values in Fig. 9�b� upwardly by 2.1 eV and plotted

these results as open circles in Fig. 9�a�. Note that the agree-
ment is quite good in the range of 4�n�12. The HOMO
values are underestimated in n�4 clusters and overestimated
in n�13 clusters. Thus, the HOMO levels obtained in the
density-functional theory can account for the trend in the
ionization potential, although not its magnitude.

IV. SUMMARY AND CONCLUSIONS

Equilibrium geometries of the ground-state and low-
lying isomers of Be clusters containing up to 41 atoms were
obtained from a rigorous search of the available phase space
by using molecular-dynamics simulation based on a
coordinate-based genetic algorithm and many-body inter-
atomic potential. The evolution of the structures bears the
signature of an icosahedric growth. The structural parameters
such as equilibrium geometries, the average nearest-neighbor
distances, and the coordination numbers do not resemble the
bulk. Similarly, the binding energy evolves slowly and no
evidence of bulklike behavior is found.

FIG. 7. �Continued�.

FIG. 7. �Continued�.

074329-9 Electronic structure of Be clusters J. Chem. Phys. 123, 074329 �2005�

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.172.48.58 On: Tue, 13 Oct 2015 15:40:00



Calculations were repeated with the MO formalism
within the framework of density-functional theory for clus-
ters containing up to 21 atoms. While the optimized ground-
state geometries at this level of theory do not differ much

from those based on GA approach, the relative stability and
the electronic properties such as HOMO-LUMO gaps are
found to be very sensitive to cluster geometry. Distinct shell
structure effects are noticed from the calculated stability,
HOMO-LUMO gaps, and ionization potentials. The latter
shows characteristic drops at n=1, 4, 10, 17, and 20 atoms
which correspond to 2, 8, 20, 34, and 40 electron systems.
Although small Be clusters show features in agreement with
the jellium model, their significant HOMO-LUMO gaps do
not permit them to be classified as metallic. We also con-
clude that while molecular-dynamics simulation based on in-
teratomic potential may be useful in searching the available
phase space more efficiently for the geometries of the
ground-state and low-lying isomers, a quantitative and in
some cases even qualitative understanding of the evolution
of the structure and binding energies of clusters may require
a first-principles approach.
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