

Virginia Commonwealth University VCU Scholars Compass

Physics Publications

Dept. of Physics

1999

Thermodynamical stability of CH3ONO and CH3ONO-: A coupled-cluster and Hartree-Fockdensity-functional-theory study

Gennady L. Gutsev Virginia Commonwealth University

Puru Jena Virginia Commonwealth University

Rodney J. Bartlett University of Florida

Follow this and additional works at: http://scholarscompass.vcu.edu/phys_pubs

Part of the <u>Physics Commons</u>

Gutsev, G. L., Jena, P., Bartlett, R. J. Thermodynamical stability of CH3ONO and CH3ONO-: A coupled-cluster and Hartree-Fock-density-functional-theory study. The Journal of Chemical Physics 110, 403 (1999). Copyright © 1999 AIP Publishing LLC.

Downloaded from

http://scholarscompass.vcu.edu/phys_pubs/144

This Article is brought to you for free and open access by the Dept. of Physics at VCU Scholars Compass. It has been accepted for inclusion in Physics Publications by an authorized administrator of VCU Scholars Compass. For more information, please contact libcompass@vcu.edu.

Thermodynamical stability of CH₃ONO and CH₃ONO⁻: A coupled-cluster and Hartree–Fock-density-functional-theory study

Gennady L. Gutsev,^{a)} and Puru Jena

Physics Department, Virginia Commonwealth University, Richmond, Virginia 23284-2000

Rodney J. Bartlett

Quantum Theory Project, P.O. Box 118435, University of Florida, Gainesville, Florida 32611-8435

(Received 17 August 1998; accepted 29 September 1998)

The structure and thermodynamic stability of methylnitrite and its anion are studied by the infinite-order coupled-cluster method with all singles and doubles and noniterative inclusion of triple excitations [CCSD(T)] and Hartree–Fock-density-functional theory (HFDFT). We have optimized the geometries and computed the harmonic vibrational frequencies of major fragments, H₂, CH, NH, OH, CN, N₂, CO, NO, O₂, CH₂, NH₂, H₂O, HCN, HNC, HCO, HNO, O₂H, CO₂, NO₂, CH₃, NH₃, CNH₂, HCO₂, HNO₂, CH₃N, CH₃O, CH₃ON, CH₂ONO, CH₂NO₂, and their anions, when the latter exist. Fragmentation energies obtained at both levels of theory are rather close to each other, except for channels involving CN as a product. The CH₃ONO⁻ and CH₃NO₂⁻ anions are shown to possess lower fragmentation energies than their neutral parents. This implies that the attachment of an extra electron to CH₃NO₂ or CH₃ONO may have a crucial role in initiating the decomposition of these compounds. Also, the attachment of an extra electron to CH₃NO₂ or CH₃ONO leads to the appearance of new exothermic decay channels of the anions. © *1999 American Institute of Physics*. [S0021-9606(99)30801-1]

I. INTRODUCTION

Nitromethane is the simplest prototype of monopropellants and explosives and has been the subject of numerous experimental and theoretical investigations (see, e.g., Refs. 1 and 2 and references therein). Its isomer, methylnitrite, has been found³ to be responsible for a low-energy dissociation channel

$$CH_{3}NO_{2} \rightarrow [CH_{3}NO_{2}]^{*} \rightarrow [CH_{3}ONO]^{*} \rightarrow CH_{3}O + NO.$$
(1)

However, reaction path (1) is competitive with the direct decomposition through the basic channel

$$CH_3NO_2 \rightarrow [CH_3NO_2]^* \rightarrow CH_3 + NO_2$$
(2)

due to a high barrier to isomerization in reaction (1). The barrier height appears to be close to the dissociation energy corresponding to reaction (2) according to experimental observations³ and results of *ab initio* studies.^{4,5}

Formation of negative ions is believed^{6,7} to be rate controlling in the detonation of liquid nitromethane. Gas-phase nitromethane was shown^{8,9} to form both dipole-bound and conventional (valence) anionic states upon attachment of an extra electron. A dipole-bound state of $CH_3NO_2^-$ can be produced via attachment of a low-energy electron to the groundstate nitromethane and then this state may transform^{8,9} to the ground state of the nitromethane anion, which should possess lower decomposition energies. On the other hand, it might be anticipated that the nitromethane anion will have a lower

^{a)}Electronic mail: glgutsev@hsc.vcu.edu

barrier to transformation to the methylnitrite anion, which would produce methylnitrite upon detachment of an extra electron.

The aim of the present work is to evaluate decomposition energies through different decay channels of methylnitrite and its anion with the infinite-order coupled-cluster method with all singles and doubles and noniterative inclusion of triple excitations [CCSD(T)] and the Hartree–Fockdensity-functional-theory (HFDFT) approach using the 6-311++G(2d,2p) basis set, which has been applied in our previous calculations⁹ on nitromethane and nitromethane anion as well. Thus, one would know also the thermodynamic stability of nitromethane and its anion estimated at the same levels of theory.

II. COMPUTATIONAL DETAILS

The calculations have been performed with the ACES II suite of programs¹⁰ at the CCSD(T)^{11,12} and HFDFT ^{13–16} levels of theory using the 6-311++G(2*d*,2*p*) basis set¹⁷ ([12*s*6*p*2*d*/5*s*4*p*2*d*] for C, N, O, and [6*s*2*p*/4*s*2*p*] for H). Harmonic vibrational frequencies of heavier species are computed at the MBPT(2)/6-311++G(2*d*,2*p*) level of theory. The optimizations were carried out until the root-mean-square (RMS) gradients fell below the threshold value of 0.1E-3 a.u.

Generally, the HFDFT approach is computationally faster and its results are less dependent upon inclusion in the basis set of functions with higher angular momentum, which are required to recover the correlation energy in coupled-cluster methods. When performing the HFDFT calculations we have used the hybrid B3LYP exchange-correlation potential^{18,19} defined as

0021-9606/99/110(1)/403/9/\$15.00

FIG. 1. Equilibrium geometrical configurations of heavier fragments of CH₃ONO and CH₃ONO⁻.

$$V_{xc} = (1 - A) * E_x^{\text{Slater}} + A * E_x^{\text{HF}} + B * E_x^{\text{Becke}} + C * E_c^{\text{LYP}} + (1 - C) * E_c^{\text{VWN}}, \qquad (3)$$

where E_x^{Slater} is the classical Slater exchange, ${}^{20} E_x^{\text{HF}}$ is the HF exchange, E_x^{Becke} is a gradient correction to the exchange introduced by Becke, ${}^{21} E_c^{\text{LYP}}$ is the Lee–Yang–Parr correlation potential, ${}^{22} E_c^{\text{VWN}}$ is the Vosko–Wilk–Nusair correlation potential, 23 and *A*, *B*, and *C* are the constants obtained when fitting the theoretical results to the experimental heats of formation. 18 Even within a Kohn–Sham approach, the partial inclusion of the HF exchange permits some self-interaction correction.

The adiabatic electron affinity (A_{ad}) of a molecular system is defined as the difference in the ground-state total energies of the system and its anion. Within the Born–Oppenheimer (BO) approximation, one may evaluate the A_{ad} as

$$A_{\rm ad} = E_{\rm tot}(N, R_e) + Z_N - E_{\rm tot}(A, R_e^{-}) - Z_A = \Delta E_{\rm el} + \Delta E_{\rm nuc},$$
(4)

where R_e and R_e^- denote the equilibrium geometrical configurations of the neutral molecule and the anion, respectively. The zero-point vibrational energies (Z) are estimated within the harmonic approximation.

Fragmentation energies are calculated as the differences in the total energies of fragments F_i formed in a particular decay channel and the total energy of an initial compound *M* corrected for the corresponding *Z*s

$$D_0(M) = \sum_i [E_{\text{tot}}(F_i) + Z_{F_i}] - E_{\text{tot}}(M) - Z_M$$
$$= D_e(M) + \Delta Z_{\text{nuc}}.$$

TABLE I. Results of our calculations for diatomic species and their anions performed at the CCSD(T)/6-311++G(2d,2p) and HFDFT/6-311++G(2d,2p) levels together with experimental data. Total energies are in hartrees, bond lengths are in Å, and vibrational frequencies are in cm⁻¹.^a

	C	CSD(T)	HFDFT					
Species	R_{e}	ω_e	$E_{\rm tot}$	R_{e}	ω_e	$E_{\rm tot}$ (B3LYP)		
H_2	0.7421	4413	-1.170865	0.7452	4381	-1.172 545		
Exp.	0.7414	4401		0.7414	4401			
CH	1.1191	2839	-38.419455	1.1267	2784	-38.465475		
Exp.	1.1199	2829		1.1199	2829			
CH^-	1.1373	2593	-38.457546	1.1356	2592	-38.509264		
NH	1.0368	3271	-55.145915	1.0442	3232	-55.207726		
Exp.	1.0362	3282		1.0362	3282			
$\rm NH^-$	1.0397	3175	-55.144 545	1.0465	3122	-55.217427		
OH	0.9695	3748	-75.635 869	0.9806	3646	-75.724 429		
Exp.	0.9697	3738		0.9697	3738			
OH^-	0.9626	3763	-75.690781	0.9710	3684	-75.783862		
CN	1.1729	2116	$-92.577\ 623$	1.1230	2804	$-92.657\ 661$		
Exp.	1.1718	2068		1.1718	2068			
CN^{-}	1.1831	2050	-92.716317	1.1778	2077	-92.827098		
N_2	1.1029	2329	$-109.380\ 021$	1.0989	2365	-109.498742		
Exp.	1.0977	2359		1.0977	2359			
CO	1.1340	2158	-113.160786	1.1304	2181	-113.237 286		
Exp.	1.1281	2170		1.1281	2170			
NO	1.1541	2083	-129.714851	1.1361	3072	-129.861 103		
Exp.	1.1508	1904		1.1508	1904			
NO^{-}	1.2759	1366	-129.709 253	1.2647	1427	-129.865 916		
O ₂	1.2168	1563	-150.120937	1.2208	1559	-150.295 696		
Exp.	1.2070	1580		1.2070	1580			
O_2^-	1.3608	1107	-150.127 392	1.3612	1130	-150.310 979		

^aExperimental data from Ref. 28.

III. RESULTS AND DISCUSSIONS

A. Geometrical configurations

In order to estimate fragmentation energies of CH₃ONO and CH₃ONO⁻, we performed geometry optimizations and harmonic vibrational frequency calculations on the following species and their anions when the latter exist. Diatomics are H₂, CH, NH, OH, CN, N₂, CO, NO, and O₂; triatomics are CH2, NH2, H2O, HCN, HNC, HCO, HNO, O2H, CO2, and NO₂; tetra-atomics are CH₃, NH₃, CNH₂, HCO₂, and HNO₂; penta-atomics and sexta-atomics are CH₃N, CH₃O, CH₃NO, CH₃ON, and CH₂NO₂. The neutral species have been the subject of an enormous amount of computations and we recalculated them in order to have the results at the same levels of theory which should be used in estimating fragmentation energies and adiabatic electron affinities. The equilibrium configurations of heavier species are presented in Fig. 1. Detailed discussions on the structures of "difficult" CH₃N (NHCH₂) and CH₂NO₂ can be found in Refs. 24 and 25 and Refs. 26 and 27, respectively.

Table I compares the results of our computations to experimental data²⁸ for the diatomics in order to get an insight into the accuracy to be expected at the CCSD(T)/6-311++G(2d,2p) and HFDFT/6-311++G(2d,2p) levels. Generally, agreement is rather good, except for CN computed at the HFDFT level. Tables II and III present our results for triatomics and tetra-atomics and their anions, and Table IV contains the total energies and Zs

This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP

(5)

TABLE II. Results of our calculations for triatomic species and their anions performed at the CCSD(T) and HFDFT levels with the 6-311++G(2d,2p) basis. Total energies are in hartrees, bond lengths are in Å, bond angles are in degree, and Zs are in kcal/mol.

	CCSD(T)				HFDFT	
Species	Geometry	Ζ	$E_{\rm tot}$	Geometry	Ζ	E _{tot} (B3LYP)
$CH_2, {}^3B_2$	R(C-H) = 1.0763 $\angle HCH^{\circ} = 133.49$	10.88	-39.085 769	R(C-H) = 1.0788 $\angle HCH^{\circ} = 136.30$	10.23	-39.132 985
CH_2^- , 2B_2	R(C-H) = 1.1212 / HCH° = 102.31	9.74	-39.099 081	R(C-H) = 1.1244 / HCH° = 102.62	9.61	-39.154 938
NH_2 , 2B_2	R(N-H) = 1.0242	12.03	-55.796 160	R(N-H) = 1.0321	11.73	-55.864 358
NH_2^- , ${}^1\mathrm{A}_1$	R(N-H) = 1.0271 (HNH° = 101.63	11.72	-55.812 740	R(N-H) = 1.0330	11.45	-55.884 828
$H_2O, {}^1A_1$	R(O-H) = 0.9575	13.58	-76.329 639	R(O-H) = 0.9673	13.12	-76.329 639
HCN, ${}^{1}\Sigma^{+}$	R(H-C) = 1.0651 R(C-N) = 1.1588	9.95	-93.285 048	(H-C)=1.0682 R(C-N)=1.1527	10.14	-93.392 608
HNC, ${}^{1}\Sigma^{+}$	R(H-N) = 0.9952 R(H-N) = 1.1743	9.54	-93.260 990	R(C-N) = 1.1527 R(H-N) = 1.0008 R(C-N) = 1.1605	9.47	-93.370 039
HCO, ² <i>A</i> ′	R(C-H) = 1.1743 R(C-H) = 1.1186 R(C-O) = 1.1815	8.14	-113.687 752	R(C-H) = 1.1095 R(C-H) = 1.1295 R(C-O) = 1.1761	7.96	-113.822 240
$\text{HCO}^{-}, {}^{1}A'$	\angle HCO° = 124.32 R(C-H) = 1.2246 R(C-O) = 1.2420	6.29	-113.690 096	\angle HCO° = 123.07 R(C-H) = 1.2579 R(C-O) = 1.2289	5.97	-113.830 029
HNO, ${}^{1}A'$	\angle HCO° = 109.68 R(N-H) = 1.0512 R(N-O) = 1.2178	8.69	-130.295 482	\angle HCO° = 110.21 R(N-H)=1.0646 R(N-O)=1.2123	8.56	-130.443 193
HNO ⁻ , ${}^{2}A''$	\angle HNO° = 108.05 R(N-H) = 1.0459 R(N-O) = 1.3449	7.78	-130.299 350	\angle HNO° = 108.37 R(N-H)=1.0555 R(N-O)=1.3413	7.77	-130.460 339
O ₂ H, ² A″	\angle HNO° = 105.57 R(O-H) = 0.9693 R(O-O) = 1.3418	8.93	-150.703 912	\angle HNO° = 105.88 R(O-H)=0.9807 R(O-O)=1.3238	8.75	-150.876 349
$O_2H^-, {}^1A'$	$\angle \text{OOH}^\circ = 104.08$ R(O-H) = 0.9574 R(O-O) = 1.5402	8.13	-150.734 293	\angle HNO° = 105.35 R(O-H)=0.9670 R(O-O)=1.5191	8.20	-150.913 374
CO_2 , ${}^1\Sigma_g^+$	$\angle \text{OOH}^\circ = 96.98$ R(C-O) = 1.1654 $\angle \text{OCO}^\circ = 180.0$	7.21	-188.324 975	$\angle \text{OOH}^\circ = 98.80$ R(C-O) = 1.1655 $\angle \text{OCO}^\circ = 180.0$	7.20	-188.542 052
CO_{2}^{-} , ${}^{2}A_{1}$	R(C-O) = 1.2364	5.15	-188.297 106	R(C-O) = 1.2355	4.90	-188.520 668
NO_2 , 2A_1	R(N-O) = 1.2025	5.57	-204.792 618	R(N-O) = 1.2011	6.85	-205.027 644
NO_2^- , 1A_1	R(N-O) = 1.2670 $\angle ONO^{\circ} = 116.55$	4.76	-204.868 845	R(N-O) = 1.2665 $\angle ONO^{\circ} = 116.32$	4.90	-205.108 012

of heavier fragments required for calculations of fragmentation energies.

Table V displays the results of our computations for *cis* and *trans* conformations of CH₃ONO, which are compared to experimental geometries²⁹ and fundamentals,³⁰ as well as for two conformations of CH₃ONO⁻. Both *cis* and *trans* conformations correspond to stationary states of CH₃ONO and CH₃ONO⁻, whereas configurations obtained from them by π rotations around the C–N axis (see Fig. 2) are transition states and have one imaginary frequency each. The *trans* and *cis* conformations of both CH₃ONO and CH₃ONO⁻ differ in total energy by ≈ 1 kcal/mol only. The transition states are higher in total energy by several kcal/mol, in agreement with a theoretical result ³¹ stating that the barrier height for the CH₃ONO isomerization equals 9.8 kcal/mol and experimental data (10 kcal/mol).²⁹ On the whole, the results of our computations for CH₃ONO are in rather good agreement

with both experimental data^{29,30} and previous theoretical results.^{4,5}

B. Adiabatic electron affinities

Since there are a lot of experimental data ³² on the A_{ad} of fragments entering CH₃ONO, it is interesting to compare the ability of the CCSD(T) and HFDFT levels in reproducing the A_{ad} s when using the same moderate-sized basis, such as 6 -311++G(2d,2p). Let us start with atomic electronic affinities presented in Table VI. Both CCSD(T) and HFDFT methods indicate the nonexistence of a stable nitrogen anion, in correspondence with the experiment.³³ However, while the HFDFT(B3LYP) approach reproduces all experimental values rather well, the CCSD(T) method underestimates the oxygen electron attachment (EA) by 0.4 eV. This can be attributed to the relative insensitivity of density fuctional

TABLE III. Results of calculations for tetra-atomic species and their anions performed at the CCSD(T)/6-311++G(2d,2p) and HFDFT/6-311++G(2d,2p) levels. Total energies are in hartrees, bond lengths are in Å, bond angles are in degree, and Zs are in kcal/mol.

	CCSD(T)			Н	FDFT	
Species	Geometry	Ζ	$E_{\rm tot}$	Geometry	Ζ	$E_{\rm tot}$ (B3LYP)
$CH_3, {}^2A_2''$	<i>R</i> (C–H)=1.0768	18.69	-39.766 397	R(C-H) = 1.0809	18.45	-39.819 105
	$\angle ZCH_{1,2,3} = 90.0$			$\angle ZCH_{1,2,3}^{\circ} = 90.0$		
CH_{3}^{-} , ${}^{1}A_{1}$	R(C-H) = 1.1016	17.9	-39.760 117	R(C-H) = 1.1024	17.51	-39.816 672
	$\angle ZCH_{1.2.3}^{\circ} = 110.44$			$\angle ZCH_{1,2,3}^{\circ} = 109.04$		
$NH_3, {}^2A_2''$	R(N-H) = 1.0108	21.76	-56.474293	R(N-H) = 1.0183	20.96	-56.542955
	$\angle ZNH_{1,2,3}^{\circ} = 112.02$			$\angle ZNH_{1,2,3}^{\circ} = 111.74$		
CNH_2 , 2A_1	R(C-N) = 1.2996	16.71	-93.784491	R(C-N) = 1.2921	16.33	-93.899 648
	R(N-H) = 1.0160			R(N-H) = 1.0257		
	$\angle CNH^{\circ} = 122.64$			$\angle CNH^{\circ} = 122.90$		
NCH ₂ , ${}^{2}A_{1}$	R(C-N) = 1.2517	15.84	-93.831 964	R(C-N) = 1.2124	16.34	-93.939 187
	R(C-H)=1.0932			R(C-H) = 1.1009		
	$\angle \text{NCH}^\circ = 121.07$			$\angle \text{NCH}^\circ = 121.47$		
$NCH_{2}^{-}, {}^{1}A_{1}$	R(C-N) = 1.2536	14.25	-93.841 301	R(C-N) = 1.2399	13.79	-93.960 009
	R(C-H) = 1.1417			R(C-H) = 1.1554		
	$\angle \text{NCH}^\circ = 125.72$			$\angle \text{NCH}^\circ = 126.24$		
HCO_2 , 2A_1	R(C-H)=1.1573	9.62	-188.807401	R(C-H)=1.1535	190.66	-189.031 587
	R(C-O) = 1.2292			R(C-O) = 1.2282		
	\angle HCO° = 107.80			\angle HCO° = 107.96		
$HCO_{2}^{-}, {}^{1}A_{1}$	R(C-H)=1.1285	12.57	-188.934 947	R(C-H) = 1.1389	12.28	-189.159 845
	R(C-O) = 1.2569			R(C-O) = 1.2577		
	\angle HCO° = 114.87			\angle HCO° = 114.78		
HNO_2 , 1A_1	R(N-H) = 1.0313	13.71	-205.412175	R(N-H) = 1.0436	13.63	-205.648745
	R(N-O) = 1.2251			R(N-O) = 1.2258		
	$\angle HNO^\circ = 115.90$			$\angle HNO^\circ = 115.98$		
	\angle ONHO° = 180.0			$\angle \text{ONHO}^\circ = 180.0$		
HNO_2^- , $^2A'$	R(N-H) = 1.0235	12.44	-205.413001	R(N-H) = 1.0353	11.82	-205.659770
	R(N-O) = 1.3177			R(N-O) = 1.3164		
	$\angle HNO^{\circ} = 112.71$			\angle HNO° = 112.23		
	\angle ONHO° = 145.75			\angle ONHO° = 143.16		

theory (DFT)-based approaches to augmentations of *spd* basis sets by functions with higher angular momentum l,³⁴ whereas the convergence of the correlation energy in coupled-cluster methods is proportional to $1/L^4$,^{35,36} where *L* is the maximum angular momentum of spherical harmonics in a given basis. In particular, harmonics up to L=5 are required in order to reach 0.03 eV accuracy in the computed atomic EA values.³⁷

Tables VII and VIII compare our A_{ad} s computed at both levels of theory to experimental data ³². Note that all the A_{ad} s obtained at the different levels from HF to CCSD(T) are computed at the geometries optimized at the CCSD(T) level and the ΔZ corrections are obtained from harmonic vibrational frequency calculations performed also at the CCSD(T) level. The HFDFT A_{ad} s are obtained at the geometries optimized with the BLYP exchange-correlation functional. Generally, the HFDFT approach provides A_{ad} s which are somewhat closer to experimental data than the CCSD(T) method does, except for CN, where HFDFT fails seriously. This was also found previously³⁸ when using larger basis sets in conjunction with different exchange-correlation functionals.

The A_{ad} of CH₃ONO is somewhat higher than that of CH₃NO₂ computed at the same levels of theory. Since the HFDFT A_{ad} of CH₃NO₂ is very close⁹ to the experimental

value of $0.26 \pm 0.08 \text{ eV}$,⁸ the HFDFT value of 0.60 eV could be recommended as the A_{ad} of CH₃ONO. Contrary to CH₃NO₂, CH₃ONO has a relatively small dipole moment of 2.2 D, which seems not to be sufficient to sustain a dipolebound state of CH₃ONO⁻, because extensive investigations for organic compounds haveshown^{39,40} that the critical value of the dipole moment required to sustain a dipole-bound state is 2.5–2.7 D.

TABLE IV. Results of our calculations for heavier species and their anions performed at the CCSD(T)/6-311++G(2d,2p) and HFDFT/6-311++G(2d,2p) levels. Total energies are in hartrees and Zs are in kcal/mol.

	CCSD(T))	HFDFT				
Species	$E_{\rm tot}$	Ζ	$E_{\rm tot}$ (B3LYP)	Ζ			
$CH_3N(C_s, {}^1A')$	-94.479 902	25.32	-94.594 186	24.64			
$CH_3O(C_s, {}^2A')$	-114.876 179	23.22	-115.015 096	20.67			
$CH_3O^- (C_{3v}, {}^1A_1)$	-114.923 677	22.27	-115.066 624	21.52			
$CH_3NO(C_s, {}^1A')$	$-169.545\ 047$	29.35	-169.742293	26.49			
CH_3NO^- (C_s , $^2A''$)	-169.544 190	27.68	-169.751 449	25.34			
$CH_3ON(C_s, {}^1A')$	-169.466480	27.40	-169.662577	26.13			
$CH_2NO_2 (C_{2v}, {}^2B_2)$	-243.990115	22.87	$-244.275\ 308$				
$CH_2NO_2^- (C_{2v}, {}^1A_1)$	-244.074974	22.74	$-244.367\ 268$	28.92			

TABLE V. Results of calculations for CH₃ONO (C_s ,¹A') and CH₃ONO⁻ (C_s ,²A'') at the CCSD(T)/6-311++G(2d,2p) level. Frequencies are computed at the MBPT(2)/6-311++G(2d,2p) level. Raman intensities are in brackets. Total energies are in hartrees, bond lengths are in Å, angles are in degrees, vibrational frequencies are in cm⁻¹, Zs are in kcal/mol, and dipole moments (μ) are in Debye.

		CH ₃	CH ₃ ONO ⁻			
Property	Cis	Exp. ^a	Trans	Exp. ^a	Trans	Cis
R(C-O)	1.4369	1.436	1.4379	1.436	1.3693	1.3765
$R(C-H_1)$	1.0800	1.089	1.0875	1.09	1.1135	1.1098
$R(C-H_{2,3})$	1.0848	1.094	1.0862	1.09	1.1104	1.1097
$\angle \text{OCH}_1^\circ$	104.44	102.6	109.62	109.5	111.43	111.55
$\angle \text{OCH}_{2,3}^{\circ}$	110.67	110.4	108.52	109.5	113.56	113.47
R(O-N)	1.4011	1.418	1.4323	1.415	1.9549	1.9206
$\angle \text{CON}^{\circ}$	114.09	114.5	109.33	109.9	107.14	102.12
R(N-O)	1.1933	1.181	1.1772	1.164	1.2096	1.2048
∠ONO°	114.41	114.5	111.05	111.8	109.52	110.25
$\angle H_1 COH_{2,3}^{\circ}$	119.34	120.7	120.16	120.0	119.21	119.40
$\omega(a')$	359[1]	377	372[14]	340	297[0.3]	236[29]
$\omega(a')$	653[213]	623	562[160]	567	345[76]	285[35]
$\omega(a')$	852[91]	836	812[408]	812	551[16]	545[103]
$\omega(a')$	1024[133]	991	1071[61]	1048	1124[106]	1115[157]
$\omega(a')$	1197[1]	1171	1210[31]	1208	1188[2]	1178[5]
$\omega(a')$	1467[8]	1411	1485[5]	1423	1495[46]	1470[9]
$\omega(a')$	1519[6]	1460	1539[7]	1460	1511[23]	1511[7]
$\omega(a')$	1557[118]	1620	1620[162]	1678	1983[2379]	1852[266]
$\omega(a')$	3103[14]	2957	3101[37]	2943	2818[429]	2877[237]
$\omega(a')$	3241[4]	3040	3203[7]	3040	2876[116]	2892[366]
$\omega(a'')$	220[0.2]	186	100[1]		136[2]	77[3]
$\omega(a'')$	369[2]	249	227[1]	213	216[1]	138[1]
$\omega(a'')$	1177[1]	1140	1187[1]	1156	1177[0.1]	1175[0.1]
$\omega(a'')$	1507[10]	1446	1515[5]	1446	1493[3]	14903]
$\omega(a'')$	3190[14]	3000	3204[14]	3000	2870[285]	2876[272]
Ζ	30.65	30.73	29.03	29.22	28.71	28.19
μ	2.23		1.82		2.37	1.23
$\langle 2S+1 \rangle$	1.0		1.0		2.006	2.005
HF	-243.740560		-243.739 119		-243.735353	-243.736517
MBPT(2)	$-244.608\ 205$		-244.606224		-244.615548	-244.612814
CCSD	-244.618050		$-244.616\ 627$		-244.624544	-244.622 951
CCSD+T	-244.659 647		$-244.658\ 071$		-244.669051	-244.666721
CCSD(T)	-244.656520		-244.654 913		-244.664978	-244.662703
B3LYP	-244.935 245		-244.934 505		-244.953 093	-244.952290

^aExperimental geometries and frequencies are from Refs. 29 and 30, respectively.

As a matter of fact, we have computed the binding energy of a dipole-bound electron to be 0.05 meV (0.47 cm^{-1}) using the recently developed electron-attachment equation-of-motion coupled cluster (EA– EOMCC) method⁴¹ and the

FIG. 2. Stationary configurations of CH₃ONO and CH₃ONO⁻.

6-311++G(2d,2p) basis augmented by seven diffuse *sp* shells in the same manner as was done before⁹ for CH₃NO₂.

C. Fragmentation energies

Fragmentation energies of the ground-state CH_3ONO and CH_3ONO^- species, presented in Tables IX and X, re-

TABLE VI. Total energies (in hartrees) of the H, C, N, O atoms and their anions calculated with the 6-311++G(2d,2p) basis. Electron affinities are in eV.

Species	CCSD(T)	B3LYP	$EA_{CCSD(T)}$	EA _{B3LYP}	Exp. ^a
Н	-0.499 818	-0.498499	0.676	0.773	0.754
H^{-}	-0.519726	-0.526899			
С	-37.792982	-37.832963	1.104	1.221	1.263
C^{-}	-37.833535	-37.877 834			
Ν	-54.523227	-54.572287	-0.607	-0.122	≤ 0
N^{-}	$-54.500\ 887$	$-54.567\ 803$			
0	-74.973873	$-75.055\ 601$	1.057	1.426	1.461
O^-	-75.012 704	$-75.108\ 020$			

^aSee Ref. 33.

This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 128.172.48.58 On: Wed, 14 Oct 2015.18:51:28

TABLE VII. Adiabatic electron affinities (in eV) calculated with the 6-311+G(2d,2p) basis. ΔZs are calculated at the CCSD(T) level.

Level	CH	NH	OH	NO	O ₂	CN	HCO	HNO	CH_2	NH_2	O_2H	CO_2	NO_2	NCH ₂	HCO_2	HNO_2	CH ₃
HF	0.44	-1.51	-0.26	-0.28	-0.81	2.90	-0.78	-0.16	-0.97	-1.09	-0.53	-1.09	1.50	-1.30	3.07	0.14	-1.47
MBPT(2)	1.16	0.04	1.82	-0.11	0.17	4.76	0.06	0.13	0.34	0.68	1.12	-0.85	2.04	0.81	3.39	-0.17	-0.33
CCSD	1.00	-0.13	1.37	-0.09	0.15	3.76	0.09	0.17	0.32	0.34	0.76	-0.68	2.15	0.20	3.44	0.20	-0.24
CCSD+T	1.06	-0.02	1.52	-0.10	0.22	3.70	0.14	0.15	0.43	0.47	0.85	-0.66	2.10	0.32	3.44	0.08	-0.13
CCSD(T)	1.05	-0.02	1.50	-0.10	0.20	3.77	0.14	0.15	0.41	0.46	0.86	-0.67	2.11	0.32	3.34	0.08	-0.14
LDA	1.64	0.63	2.19	0.18	0.44	4.86	0.51	0.47	0.87	1.07	1.23	-0.53	2.23	1.14	3.34	0.08	-0.30
BLYP	1.20	0.38	1.73	0.10	0.46	4.64	0.29	0.44	0.72	0.65	1.14	-0.54	2.11	0.75	3.12	0.21	0.02
B3LYP	1.21	0.28	1.62	0.17	0.44	4.61	0.29	0.50	0.65	0.57	1.04	-0.49	2.22	0.64	3.36	0.36	-0.03
Exp.	1.24	0.38	1.83	0.02	0.44	3.82	0.30	0.34	0.65	0.78	1.08	-0.6	2.275			0.29	0.08

spectively, are calculated according to Eq. (5) with the ΔZ corrections obtained from CCSD(T) calculations. As is seen, there is rather good agreement between fragmentation energies obtained at the CCSD(T) and HFDFT levels, except for some channels involving CN as a product. This is apparently due to a poor description of the CN radical at the HFDFT level (see Tables I and VII). Therefore, the CCSD(T) results should be considered as more reliable in general. Our theoretical values compare well (within 5 kcal/mol accuracy) with experimental data,^{1,42–44} which are known for several decay channels of CH₃NO₂ and CH₃NO₂⁻.

Table IX shows that the source of the high-energy density of CH₃ONO and CH₃NO₂ is due to their highly exothermic decomposition, into NH₃ and CO₂. Note that ammonia and formic acid were found to be major products of the thermal decomposition of CH₃NO₂.⁴⁵ Obviously, the direct decay CH₃NO₂ \rightarrow NH₃+CO₂ requires three bonds to be ruptured, which energetically is highly unfavorable. Formic acid is a decay product through the next lowest bimolecular channel, NH₂+HCO₂, which is twice as low in energy as the basic channel (1).

According to our results presented in Table X, the CH₃ONO⁻ anion has additional exothermic fragmentation channels with respect to those of its neutral parent. Especially interesting is the appearance of an exothermic channel CH₃ONO⁻ \rightarrow NH₂+HCO₂⁻, whose exothermity is due to a rather large A_{ad} of HCO₂ (\approx 3.3 eV, see Table VII). Formally speaking, the HCO₂ radical belongs to the class of superhalogens⁴⁶⁻⁴⁸ of the general MX_2Y type. A relatively low electron affinity of HCO₂ with respect to MX_3 super-

TABLE VIII. Electron affinities (in eV) calculated with the 6-311++G(2*d*,2*p*) basis. ΔZs are calculated at the MBPT(2)/6-311++G(2*d*,2*p*) level.

Level	CH ₃ O	CH ₃ NO	CH ₂ NO ₂	CH ₃ NO ₂	CH ₃ ONO
HF	-0.32	-0.20	1.23	0.02	0.03
MBPT(2)	1.66	0.00	2.42	-0.25	0.27
CCSD	1.21	0.05	2.27	0.13	0.26
CCSD+T	1.35	0.05	2.31	0.05	0.33
CCSD(T)	1.33	0.03	2.32	0.03	0.30
LDA	2.03	0.28	2.86	0.01	0.59
BLYP	1.53	0.23	2.48	0.07	0.36
B3LYP	1.44	0.30	2.51	0.22	0.60
Exp.	1.57		2.48	0.27	

halogens where X is a halogen $atom^{47}$ appears to be due to smaller electronegativities of H and O with respect to F or Cl.

Keeping in mind that formic acid was observed as a primary product of thermal decomposition of CH_3NO_2 , one might surmise that the formation of formic acid could be due to decomposition of $CH_3NO_2^-$ through the channel $NH_2 + HCO_2^-$. Subsequent detachment of an extra electron from HCO_2^- and attachment of the electron to another CH_3NO_2 or CH_3ONO could initiate a chain reaction process.

The $CH_3NO_2^-$ and CH_3ONO^- anions possess two other basic decay channels: to CH_3O^-+NO and $CH_3+NO_2^$ which are lower in the energy than the corresponding decay channels of CH_3NO_2 and CH_3ONO to CH_3O+NO and CH_3+NO_2 , respectively. On the whole, the fragmentation energy of a particular decay channel of $CH_3NO_2^-$ and

TABLE IX. Fragmentation energies (in eV) of CH₃ONO computed at the CCSD(T)/6-311++G(2d,2p) and HFDFT/6-311++G(2d,2p) levels according to Eq. (5). Fragmentation energies of CH₃NO₂ are larger by 0.06 and smaller by 0.23 eV at the CCSD(T) and HFDFT levels, respectively. Experimental data are obtained for CH₃NO₂.

	CCS	D(T)	B3I	LYP	
Channel	D_e	D_0	D_e	D_0	Exp.
$CH_3ONO \rightarrow NH_3 + CO_2$	-3.97	-4.01	-4.12	-4.14	
\rightarrow NH+CO ₂ +H ₂	0.32	-0.19	0.31	-0.15	
\rightarrow CO+HNO+H ₂	0.72	0.48	0.86	0.39	
\rightarrow NH ₂ +HCO ₂	1.36	1.00	1.03	0.71	
\rightarrow NHCH ₂ + O ₂	1.43	1.43	1.19	1.20	
\rightarrow CH ₃ O+NO	1.70	1.54	1.57	1.46	1.68 ^a
\rightarrow HCN+H ₂ O+O	1.77	1.49	1.84	1.60	
\rightarrow CH ₃ + NO ₂	2.57	2.33	2.37	2.22	2.5 ^b , 2.46 ^c
\rightarrow H ₂ O+OH+CN	3.00	2.54	3.22	3.06	
\rightarrow HCO+H ₂ O+N	3.01	2.66	3.64	3.36	
\rightarrow NCH ₂ + \tilde{O}_2 H	3.20	2.98	3.30	2.93	
$\rightarrow CH_3NO+O$	3.66	3.64	3.71	3.60	
\rightarrow CH ₂ + HNO ₂	4.23	4.00	4.14	3.92	
$\rightarrow CH_2NO_2 + H$	4.45	4.15	4.35	4.05	
\rightarrow HNO+HCO+H	4.64	4.07	4.62	4.09	3.89 ^c
\rightarrow H ₂ O+CH+NO	5.26	4.76	5.15	4.77	
$\rightarrow CH_3ON + O$	5.80	5.69	5.87	5.81	
\rightarrow CH ₂ + OH + NO	5.91	5.44	5.86	5.41	
$2CH_3ONO \rightarrow 2CO + N_2 + 2H_2O + H_2$	-6.08	-6.87	-5.71	-6.41	
$2NO \rightarrow N_2 + O_2$	-1.98	-2.18	-1.99	-1.98	
S D (12					

^aSee Ref. 42.

128.172.48.58 On: Wed, 14 Oct 2015 18:51:28

^bSee Ref. 43. ^cSee Ref. 1.

This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP

TABLE X. Fragmentation energies (in eV) of CH₃ONO⁻ computed at the CCSD(T)/6-311++G(2*d*,2*p*) and HFDFT/6-311++G(2*d*,2*p*) levels according to Eq. (5). Fragmentation energies of CH₃NO₂⁻ are smaller by 0.21 and larger by 0.02 eV at the CCSD(T) and HFDFT levels, respectively.

	CCS	D(T)	B3I	LYP	
Channel	D_e	D_0	D_e	D_0	
$\overline{\text{CH}_3\text{ONO}^- \rightarrow \text{NH}_3 + \text{CO}_2 + e}$	-3.65	-3.64	-3.59	-3.64	
\rightarrow NH ₃ + CO ₂ ⁻	-2.90	-2.98	-3.01	-3.16	
\rightarrow NH ₂ + HCO ₂ ⁻	-1.80	-1.98	-1.94	-2.17	
\rightarrow H ₂ O+OH+CN ⁻	-0.46	-0.76	-0.44	-0.79	
\rightarrow CH ₃ O ⁻ +NO	0.72	0.57	0.69	0.48	
\rightarrow CH ₃ + NO ₂ ⁻	0.81	0.58	0.71	0.41	0.56 ± 0.2^{a}
\rightarrow NH ₂ ⁻ + HCO ₂	1.22	0.91	1.00	0.64	
\rightarrow H ₂ O+OH ⁻ +CN	1.82	1.53	2.55	2.20	
$\rightarrow O_2H+H_2+CN^-$	2.01	1.55	2.10	1.61	
\rightarrow CH ₂ NO ₂ ⁻ + H	2.45	2.20	2.38	2.09	
\rightarrow NCH ₂ +O ₂ H ⁻	2.69	2.48	2.73	2.53	
\rightarrow CH ₃ NO+O ⁻	2.92	2.95	2.79	2.67	
\rightarrow NCH ₂ ⁻ +O ₂ H	3.26	3.02	3.18	2.88	
\rightarrow CH ₂ ⁻ + HNO ₂	4.18	3.95	4.07	3.80	
\rightarrow CH ₂ + HNO ₂ ⁻	4.52	4.29	4.36	4.05	
$\rightarrow CH_2 + OH^- + NO$	4.72	4.18	4.77	4.30	

^aSee Ref. 44.

 CH_3ONO^- is lower than the fragmentation energy of the corresponding channel of their neutral parents by the A_{ad} of a decay fragment in the neutral channel, if the fragment possesses a positive A_{ad} . Since anions are generally more loosely bound than their neutral parents, the formation of $CH_3NO_2^-$ or CH_3ONO^- would greatly facilitate initiating a decomposition reaction of nitromethane.

D. Geometrical transformations

Following McKee⁴ and Saxon and Yoshimine,⁵ who have considered transformations of nitromethane into methylnitrite, we can consider a transformation from $CH_3NO_2^-$ to CH_3ONO^- . However, the anions have different ground-state symmetries ${}^2A'$ and ${}^2A''$, respectively. Therefore, such a transformation should be nonadiabatic and presumably proceed through a transition state of an appropriate symmetry. Optimized transition states of $CH_3NO_2^-$ are displayed in Fig. 3. Optimizations as well as all other subsequent calculations are performed at the MBPT(2)/6-311++G(2*d*,2*p*) level. Note, that ${}^2A'$ transition configuration is similar to that of the ground state of $CH_3NO_2^-$ and was obtained in optimizations starting with an initial configuration where the oxygens were

Gutsev, Jena, and Bartlett 409

FIG. 4. A transformation of CH_3ONO^- to a A'' transition configuration of $CH_3NO_2^-$.

tilted towards two hydrogens. This configuration is higher (than the ground-state) in total energy by 0.12 eV.

The barrier height to transformations of the ground-state CH_3ONO^- anion into the ²*A*" transition configuration (see Fig. 3) was evaluated on the basis of calculations for intermediate configurations obtained via optimizing all geometrical parameters while keeping R(C-N) to be fixed and stepped by 0.2 Å. Fig. 4 shows that there is a rather high barrier for this transformation. The barrier height is approximately the same as that found previously for the transformation $CH_3NO_2 \rightarrow CH_3ONO.^{4,5}$ Thus, this way of anion transformation appears not to be favorable.

We have considered another transformation path starting with the ${}^{2}B_{2}$ transition configuration and using the R(O-C) distance as a stepping parameter. Several steps of this transformation are shown in Fig. 5. The barrier height with respect to the CH₃ONO⁻ ground state decreases to about 2 eV and the barrier corresponds to equalizing the C–O and C–N bond lengths as in the preceding case. Thus, one cannot conclude from these two sets of calculations that the anion formation could greatly facilitate the transformation CH₃NO₂ \rightarrow CH₃ONO.

Because of controversial points of view^{3,49} on the existence of a barrier for the direct decomposition of ni-

FIG. 3. Transition configurations of the $CH_3NO_2^-$ anion.

FIG. 5. A transformation of a B_2 transition configuration of $CH_3NO_2^-$ to CH_3ONO^- .

This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IF

FIG. 6. Direct dissociation pathways $CH_3NO_2{\rightarrow}CH_3{+}NO_2$ and $CH_3NO_2^-{\rightarrow}CH_3{+}NO_2^-$.

tromethane through channel (2), we performed a simulation of the decomposition of CH_3NO_2 and $CH_3NO_2^-$ to CH_3 $+NO_2$ and $CH_3+NO_2^-$, respectively. In both cases we started with the equilibrium configurations and kept stretching the C–N distance by 0.2 Å, while optimizing the rest of the geometrical parameters, to a C–N distance of 3.5 Å. The results of our simulation are presented in Fig. 6. Since a restricted Hartree–Fock (RHF)-based solution for CH_3NO_2 has the wrong dissociation limit, we have optimized also the triplet state of CH_3NO_2 (based on a unrestricted HF wave function) and found the total energies of the triplet and singlet states to cross at $R(C-N)\approx 2.5$ Å. At larger distances, one should use the total energy of the triplet state as corresponding to a proper dissociation to two doublet radicals.⁵⁰

We have not found any barrier for CH₃NO₂ when stretching the C-N bond length, in accord with experimental findings of Wodtke et al.³ The behavior of the anion is somewhat different. The anion preserves his NO₂ tilting shape up to R(C-N)=3.5 Å, where the dissociation limit is practically achieved. However, the long-range Coulombic interaction still favors sharing an electron between a peripheral hydrogen and oxygens. Note that nitrogen has no positive electron affinity,³³ and the near-planar CH₃ itself cannot sustain an additional electron.⁵¹ We found a barrier of about 0.35 eV, which appears when the CH₃ group inverts through its planar configuration at $R(C-N) \approx 2.0$ Å. However, this barrier seems to be an artifact of the BO approximation, which has been found⁵² to be invalid for the cation dissociation $CH_3NO_2^+ \rightarrow CH_3O^+ + NO$, because the anion wave function at this separation has an appreciable spin contamination $(\langle 2S+1 \rangle = 2.16)$ which is indicative of the appearance of some other close-lying states which, probably, correspond to decay channels $CH_2 + HNO_2$ or $CH_2 + HNO_2$.

Nonadiabatic transformations in ions appear to be more common than in neutral systems. An example of such a nonadiabatic transformation is shown in Fig. 7, obtained when we simulated the dissociation of $CH_3NO_2^-$ starting with a ${}^2A''$ transition state. Stretching the C–N bond, one reaches

FIG. 7. Decomposition of a A'' transition configuration of $\rm CH_3NO_2^-$ to $\rm CH_3+NO_2^-$.

 ${}^{2}A''$ configurations corresponding to autodetachment of an extra electron, whereas the bonding configurations at similar geometries have ${}^{2}A'$ symmetry. Applications of a complicated diabatic approach (see, e.g., Ref. 53) to anion fragmentations are further complicated by the necessity of checking at each intermediate geometry whether there exists a supporting neutral parent state which can prevent autodetachment of the extra electron. Applications of electron-nuclear dynamics methods,⁵⁴ which avoid constructions of potential energy surfaces, could be a promising alternative for considering anion decay channels, especially if done purely quantum mechanically.

IV. CONCLUSIONS

Our coupled-cluster and Hartree–Fock-density-functional-theory studies of high-energy density compounds CH_3ONO and CH_3ONO^- as well as of their major fragments can be summarized briefly in several conclusions:

(i) The fragmentation energies obtained at both the CCSD(T) and HFDFT levels of theory are in fair agreement with each other (and experimental data) except for channels containing CN as a product, where HFDFT fails seriously.

(ii) The adiabatic electron affinities of all the fragments computed at the HFDFT(BLYP) and HFDFT(B3LYP) levels are, generally, in somewhat better accord with experiment, except for CN, whose A_{ad} is overestimated by 0.8 eV.

(iii) Attachment of an extra electron to CH_3ONO or CH_3NO_2 reduces substantially the fragmentation energies and leads to the appearance of new exothermic decay chan-

nels whose product anions correspond to the neutral parents with the high adiabatic electron affinity, such as CN or HCO_2 .

(iv) One of possible mechanisms of aging processes in nitromethane and similar high-energy density materials could be related to attachment of low-energy electrons with subsequent transformations of diffuse dipole-bound anionic states to conventional (valence) anionic states, whose decomposition is much easier than the decomposition of neutral systems.

ACKNOWLEDGMENTS

This work was supported by the Office of Naval Research Grant No. N00014-95-1-0614, Army Research Office Grant No. DAAL03-92-G-0106, and in part by a grant of HPC time from the DoD HPC Center. The authors appreciate the assistance of Dr. John Watts in performing some complicated frequency calculations.

- ¹G. M. Nazin and G. B. Manelis, Russ. Chem. Rev. **63**, 313 (1994).
- ²C. F. Melius, J. Phys. (Paris), Colloq. 5, C4-535 (1995).
- ³A. M. Wodtke, E. J. Hintsa, and Y. T. Lee, J. Chem. Phys. **84**, 1044 (1986).
- ⁴M. L. McKee, J. Phys. Chem. **93**, 7365 (1989).
- ⁵R. P. Saxon and M. Yoshimine, Can. J. Chem. 70, 572 (1992).
- ⁶R. Engelke, W. L. Earl, and C. M. Rohlfing, J. Chem. Phys. **84**, 142 (1986); Int. J. Chem. Kinet. **18**, 1205 (1986).
- ⁷R. F. M. Lobo, A. M. C. Moutinho, K. Lacmann, and J. Los, J. Chem. Phys. **95**, 166 (1991).
- ⁸R. N. Compton, H. S. Carman, C. Desfranois, H. Abdoul-Carime, J. P. Schermann, J. H. Hendricks, S. A. Lyapustina, and K. H. Bowen, J. Chem. Phys. **105**, 3472 (1996).
- ⁹G. L. Gutsev and R. J. Bartlett, J. Chem. Phys. 105, 8785 (1996).
- ¹⁰ ACES II is a program product of the Quantum Theory Project, University of Florida, by J. F. Stanton *et al.*, Integral packages included are VMOL (J. Almlöf and P. R. Taylor), VPROPS (P. R. Taylor), and ABACUS (H. J. Helgaker, Aa. Jensen, P. Jørgensen, and P. R. Taylor).
- ¹¹ M. Urban, J. Noga, S. J. Cole, and R. J. Bartlett, J. Chem. Phys. 83, 4041 (1985).
- ¹² R. J. Bartlett, J. D. Watts, S. A. Kucharski, and J. Noga, Chem. Phys. Lett. 165, 513 (1990).
- ¹³E. Clementi and S. J. Chakravorty, J. Chem. Phys. **93**, 2591 (1990).
- ¹⁴P. M. W. Gill, B. G. Johnson, and J. A. Pople, Int. J. Quantum Chem., Symp. **26**, 319 (1992).
- ¹⁵N. Oliphant and R. J. Bartlett, J. Chem. Phys. **100**, 6550 (1994).
- ¹⁶H. Sekino, N. Oliphant, and R. J. Bartlett, J. Chem. Phys. **101**, 7788 (1994).
- ¹⁷R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople, J. Chem. Phys. **72**, 650 (1980); M. J. Frisch, J. A. Pople, and J. S. Binkley, *ibid.* **80**, 3265 (1984).
- ¹⁸A. D. Becke, J. Chem. Phys. **98**, 5648 (1993).
- ¹⁹P. J. Stevens, F. J. Devlin, C. F. Chablowski, and M. J. Frisch, J. Phys. Chem. **98**, 11623 (1994).
- ²⁰J. C. Slater, Phys. Rev. **81**, 385 (1951).
- ²¹A. D. Becke, Phys. Rev. A **38**, 3098 (1988).
- ²²C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B **37**, 785 (1988).
- ²³S. H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. **58**, 1200 (1980).
- ²⁴C. Richards, C. Meredith, S.-J. Kim, G. E. Quelch, and H. F. Schaefer III, J. Chem. Phys. **100**, 481 (1994).
- ²⁵ M. T. Nguyen, J. Rademakers, and J. M. L. Martin, Chem. Phys. Lett. 221, 149 (1994).

- ²⁶M. L. McKee, J. Chem. Phys. 81, 3580 (1984).
- ²⁷Z.-L. Cai, Int. J. Quantum Chem. **49**, 781 (1994).
- ²⁸K. P. Huber and G. Herzberg, *Constants of Diatomic Molecules* (Van Nostrand-Reinhold, New York, 1979).
- ²⁹B. J. van der Veken, R. Maas, G. A. Guirgis, H. D. Stidham, T. G. Sheehan, and J. R. Durig, J. Phys. Chem. **94**, 4029 (1990).
- ³⁰H. D. Stidham, G. A. Guirgis, B. J. van der Veken, T. G. Sheehan, and J. R. Durig, J. Raman Spectrosc. **21**, 615 (1990).
- ³¹J. A. Darsey and D. L. Thompson, Chem. Phys. Lett. 145, 523 (1988).
- ^{32}CH and $\text{CH}_2\text{:}$ see references in G. L. Gutsev, and T. Ziegler, J. Phys. Chem. 95, 7220 (1991); NH: see references in G. L. Gutsev and R. J. Bartlett, Chem. Phys. Lett. 265, 12 (1997); OH, CN, NH₂, CH₃: see references in T. Ziegler and G. L. Gutsev, J. Comput. Chem. 13, 70 (1992); NO: D. T. Alle, M. J. Brennan, and S. J. Buckman, J. Phys. B 29, L277 (1996); O2: R. H. Gelotta, R. A. Bennet, J. L. Hall, M. W. Siegel, and J. Levine, Phys. Rev. A 6, 631 (1972); HCO: K. K. Murray, T. M. Miller, D. G. Leopold, and W. C. Lineberger, J. Chem. Phys. 84, 2520 (1986); HNO: H. B. Ellis and G. B. Ellison, ibid. 78, 6541 (1983); O₂H: J. M. Oakes, L. B. Harding, and G. B. Ellison, ibid. 83, 5400 (1985); CO2: see references in G. L. Gutsev, R. J. Bartlett, and R. N. Compton, ibid. 108, 6756 (1998); HNO2: J. M. Van Doren, A. A. Viggano, R. A. Morris, A. E. S. Miller, T. M. Miller, J. F. Paulson, C. A. Deakyne, H. H. Michels, and J. A. Montgomery, Jr., *ibid.* 98, 7940 (1993); CH₃O: P. C. Engelking, G. B. Ellison, and W. C. Lineberger, ibid. 69, 1826 (1978); CH₂NO₂: R. B. Metz, D. R. Cyr, and D. M. Neumark, J. Phys. Chem. 95, 2900 (1991).
- ³³H. Hotop and W. C. Lineberger, J. Phys. Chem. Ref. Data 14, 731 (1985).
- ³⁴ M. Klobukowski, G. H. F. Diercksen, and J. M. García de la Vega, Adv. Chem. Phys. 28, 189 (1997).
- ³⁵R. J. Bartlett and J. F. Stanton, in *Reviews in Computational Chemistry*, edited by K. B. Lipkowitz and D. B. Boyd (VCH, N.Y., 1994), Vol. 5, pp. 65–169.
- ³⁶R. J. Bartlett, in *Modern Electronic Structure Theory*, Part II, edited by D. R. Yarkony (World Scientific, Singapore, 1995), pp. 1047–1131.
- ³⁷G. L. Gutsev, P. Jena, and R. J. Bartlett, Chem. Phys. Lett. **291**, 547 (1998).
- ³⁸P. M. W. Gill, B. G. Johnson, J. A. Pople, and M. J. Frisch, Chem. Phys. Lett. **197**, 499 (1992).
- ³⁹G. L. Gutsev and L. Adamowicz, J. Phys. Chem. **99**, 13412 (1995).
- ⁴⁰C. Desfrançois, H. Abdoul-Carime, and J. P. Schermann, Int. J. Mod. Phys. B **12**, 1339 (1996).
- ⁴¹M. Nooijen and R. J. Bartlett, J. Chem. Phys. 102, 3629 (1995).
- ⁴²L. Batt, K. Christie, R. T. Milne, and A. J. Summers, Int. J. Chem. Kinet. 6, 877 (1974).
- ⁴³ J. H. M. Beijersbergen, W. J. van der Zande, P. G. Kistemaker, J. Los, T. Drewello, and N. M. M. Nibbering, J. Phys. Chem. 96, 9288 (1992).
- ⁴⁴ R. N. Compton, P. W. Reinhardt, and C. D. Cooper, J. Chem. Phys. 68, 4360 (1978).
- ⁴⁵G. J. Piermarini, S. Block, and P. J. Miller, J. Phys. Chem. **93**, 457 (1989).
- ⁴⁶G. L. Gutsev and A. I. Boldyrev, Chem. Phys. **56**, 277 (1981).
- ⁴⁷G. L. Gutsev and A. I. Boldyrev, Adv. Chem. Phys. **61**, 169 (1985).
- ⁴⁸G. L. Gutsev, R. J. Bartlett, A. I. Boldyrev, and J. Simons, J. Chem. Phys. 107, 3867 (1997).
- ⁴⁹B. H. Rockney and E. R. Grant, J. Chem. Phys. **79**, 708 (1983).
- ⁵⁰G. L. Gutsev, A. L. Sobolewski, and L. Adamowicz, Chem. Phys. **196**, 1 (1995).
- ⁵¹G. L. Gutsev and R. J. Bartlett, Pol. J. Chem. (Kołos Memorial Issue) 72, 1604 (1998).
- ⁵²B. Leyh-Nihant and J. C. Lorquet, J. Chem. Phys. 88, 5606 (1988).
- ⁵³G. J. Atchity and K. Ruedenberg, J. Chem. Phys. **99**, 3790 (1993).
- ⁵⁴ E. Deumens, A. Diz, R. Longo, and Y. Öhrn, Rev. Mod. Phys. 66, 917 (1994).