
Virginia Commonwealth University
VCU Scholars Compass

Physics Publications Dept. of Physics

1996

Equilibrium structure and bonding of small iron-
carbon clusters
Beth K. Nash
Virginia Commonwealth University

B. K. Rao
Virginia Commonwealth University

Puru Jena
Virginia Commonwealth University, pjena@vcu.edu

Follow this and additional works at: http://scholarscompass.vcu.edu/phys_pubs

Part of the Physics Commons

Nash, B. K., Rao, B. K., & Jena, P. Equilibrium structure and bonding of small iron-carbon clusters. The Journal of
Chemical Physics, 105, 11020 (1996). Copyright © 1996 American Institute of Physics.

This Article is brought to you for free and open access by the Dept. of Physics at VCU Scholars Compass. It has been accepted for inclusion in Physics
Publications by an authorized administrator of VCU Scholars Compass. For more information, please contact libcompass@vcu.edu.

Downloaded from
http://scholarscompass.vcu.edu/phys_pubs/140

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by VCU Scholars Compass

https://core.ac.uk/display/51293272?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.vcu.edu/?utm_source=scholarscompass.vcu.edu%2Fphys_pubs%2F140&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.vcu.edu/?utm_source=scholarscompass.vcu.edu%2Fphys_pubs%2F140&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu?utm_source=scholarscompass.vcu.edu%2Fphys_pubs%2F140&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/phys_pubs?utm_source=scholarscompass.vcu.edu%2Fphys_pubs%2F140&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/phys?utm_source=scholarscompass.vcu.edu%2Fphys_pubs%2F140&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/phys_pubs?utm_source=scholarscompass.vcu.edu%2Fphys_pubs%2F140&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/193?utm_source=scholarscompass.vcu.edu%2Fphys_pubs%2F140&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/phys_pubs/140?utm_source=scholarscompass.vcu.edu%2Fphys_pubs%2F140&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libcompass@vcu.edu


Equilibrium structure and bonding of small iron–carbon clusters
Beth K. Nash, B. K. Rao, and P. Jena
Physics Department, Virginia Commonwealth University, Richmond, Virginia 23284-2000

~Received 29 May 1996; accepted 20 September 1996!

The equilibrium geometries, binding energies, and electronic structure of neutral FeCn ~n<3!
clusters have been calculated self-consistently usingab initio molecular orbital theory. The
exchange and correlation contributions to the total energy were computed using both the density
functional method~with and without nonlocal correction! as well as the Hartree–Fock–Mo¨ller–
Plesset theory. All levels of theory predict the equilibrium geometries to be cyclic. The binding
energies, bond lengths, and the Mulliken charges obtained from both methods of calculations are
also in agreement. The results are compared with recent mobility and photoelectron spectroscopy
experiments. ©1996 American Institute of Physics.@S0021-9606~96!02048-X#

INTRODUCTION

The last two decades have witnessed an upsurge in the
interest in atomic clusters.1 While a large body of work on
atomic clusters is confined to the study of homonuclear clus-
ters, not much is known on the properties of compound clus-
ters. This is particularly important since in small clusters
even a single heteroatom can cause a substantial change in
the atomic and electronic structure of the ‘‘host’’ cluster. In
this regard, the interaction of carbon clusters with transition
metals poses a specially interesting problem. In the bulk
phase, carbon–transition metal systems form very stable car-
bides with rather high melting temperatures. However, in
clusters the composition of carbon and transition metal at-
oms that exhibit unusual stability is not always the same as
what one finds in the bulk phase. For example, Castleman
and co-workers2 have discovered that Ti8C12 and V8C12 are
extremely stable. After their experiments, many other transi-
tion metals3 ~e.g., Cr, Fe, Mo, Zr, Hf!, have also been ob-
served to exhibit unusual stability at the same composition,
namely, M8C12.

The iron–carbon systems are, however, unlike other
transition metal–carbon systems. For example, the mass
spectra of FexCy clusters show pronounced stabilities4 for
(x,y)5~7,8! and~12,12! in addition to the above mentioned
‘‘magic number’’ of ~8,12! for Ti–C and V–C systems. In
the bulk phase, formation of Fe3C is endothermic and it eas-
ily decomposes to iron and graphite.5 These anomalies have
prompted a systematic experimental study of the electronic
structure of FexCy clusters in their neutral and anionic forms.

Von Heldenet al.6 have studied the structures of FenCm

~n51,2,3 andm52–8! using gas phase ion chromatography.
In FeCm

2 clusters, the structures are linear form<4 while
larger clusters exhibit cyclic structures. As the Fe content
increases, the clusters convert from two dimensional to three
dimensional structures. That the Fe content substantially
modifies the structures and properties of carbon clusters can
be seen by comparing the evolution of geometry of Cn

2 clus-
ters with those of FeCn

2 clusters. Clusters of Cn
2 are linear for

n,10. Beyond this size, cyclic structures of Cn
2 begin to

appear.7 However, adding a single Fe atom changes the onset
of this linear to cyclic structure fromn510 ton54.

Fan et al.8,9 have studied the electronic and vibrational
structures of FeCn

2 ~n<4! clusters by using photoelectron
spectroscopy. The photoelectron spectra for FeC2

2 and FeC3
2

show two broad peaks. This Franck–Condon broadening car-
ries with it the signatures of the relative changes in the ge-
ometries of the anionic and the neutral clusters. In general,
the geometries of anionic and neutral clusters are different.
As an electron is detached from the anionic cluster by cross-
ing the cluster beam with a fixed frequency photon beam, the
remnant neutral cluster is left in an excited state which ap-
proaches the ground state through a progression of vibronic
states. The broadening results if the ground states of anionic
and neutral clusters have different geometries. Since the an-
ionic clusters in this size range are known from earlier
experiments6 to be linear, one could conclude that the geom-
etry of neutral FeCn ~n<4! clusters are cyclic.

However, the theoretical results of Fanet al.9 provide a
conflicting picture of the geometry of the neutral FeCn clus-
ters. These authors have calculated the equilibrium geom-
etries using the molecular orbital theory where the atomic
orbitals forming the cluster wave function are taken to be of
the numerical form. The authors have used the density func-
tional theory and two forms for exchange-correlation poten-
tial: the local density approximation~LDA ! and the nonlocal
correction. While the LDA theory yielded cyclic structures
for neutral FeC3 and FeC4, the linear structures were pre-
ferred when nonlocal exchange-correlation potential was
used. As mentioned earlier, the neutral structures consistent
with the photoelectron spectra should be cyclic. It is this
discrepancy that has lead us to examine theoretically the
equilibrium structures and relative stabilities of FeCn ~n<3!
clusters.

THEORETICAL PROCEDURE

Our theoretical procedure is based on two different ap-
proaches. In the quantum chemical approach we use the self-
consistent field linear combination of atomic orbitals–
molecular orbital~SCF-LCAO-MO! method.10 In this case
we use the Hartree–Fock~HF! theory to calculate the elec-
trostatic and exchange contributions to energy. The self-
consistent energy calculated by this process still needs to be
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corrected for the correlation effects between two electrons
which has been approximated by the HF theory. We have
chosen to use the Mo¨ller–Plesset perturbation theory10 upto
the fourth order~MP4! for this correction. The quantum
chemical method as discussed is computationally very de-
manding.

The other method used by us is based on density func-
tional theory~DFT!.11 This method groups together the spin
exchange and the effect of correlation as exchange-
correlation~XC!. In spite of the simplification for the XC
energy, density functional theory used with the local density
approximation~LDA !12 has been very successful13 in calcu-
lating properties of atomic clusters although there are cases14

where the LDA is inadequate in explaining experimental re-
sults. Efforts15,16 have been made to go beyond LDA by
including gradient corrections. In our calculations we have
used the nonlocal~NL! method due to Becke15 in addition to
the standard LDA method to obtain the total energies. Com-
putationally, the LDA and the NL versions of the DFT are
less demanding than the HF-MP4 formalism.

Starting with the same atomic basis functions we have
calculated the geometries and energetics of FeCn ~n<2! clus-
ters using HF-MP4, LDA, and NL methods. Comparison of
these results illustrates the accuracy of the DFT based meth-
ods. For FeC3, we have used the LDA and the NL methods.

Unlike the calculation of Fanet al.,9 in all our calcula-
tions, the atomic orbitals are expressed as linear combina-
tions of Gaussians. This helps improve the accuracy of the
results as the integrals are obtained analytically. TheGAUSS-

IAN 94 software17 designed for integral spin multiplicity has
been used for our calculations. The equilibrium geometries
were obtained by calculating the gradient forces and allow-
ing the structures to change until the forces vanished. Several
initial configurations as well as spin multiplicities were tried
to ensure that we have located the global minimum structure
with the correct spin configuration. In such calculations, the
choice of the atomic basis is of importance. We have used
(9s5p1d/3s2p1d) basis functions for C and (13s8p5d/
5s3p3d) basis functions for Fe. This choice was found to be
satisfactory in explaining the ionization potentials, binding
energies, and bond lengths of C2 and Fe2. The results are
given in Table I and compared with experimental
values.18–22

RESULTS AND DISCUSSIONS

In the literature, the experimental binding energies of C2
for a single, double, and triple bond are quoted as being 3.6,
6.2, and 8.4 eV, respectively.18 The corresponding bond
lengths18,19 are 1.54, 1.33, and 1.21 Å. Detailed
experiments20 report the values for the binding energy for the
double bonds as 6.08 eV with a corresponding bond length
of 1.31 Å. Note that the results in Table I are in good agree-
ment with experiment20 for the double bond of C2. The
variation in the binding energy from LDA to nonlocal cor-
rection to HF-MP4 is as expected. The local density
overbinds while the quantum chemical methods underbind.
The result based on the nonlocal correction is in between and
is also closest to the experimental value. For Fe2 the bond
length of 2.01 Å obtained using the nonlocal version of the
theory is in close agreement with the nonlocal result of 2.00
Å by Castro and Salahub.23 The bond length of Fe2
measured21 in the neon matrix is 2.02 Å. Other available
values22 for the bond lengths of Fe2 range from 1.73 to 2.04
Å. The binding energies22 range between 0.61 and 1.28 eV.
The preferred spin multiplicity of 7 is also in agreement with
experiment22 as well as the work of Castro and Salahub.23

Note that Fe2 is not bound at the current HF-MP4 level of
theory.

The equilibrium geometries of FeCn ~n<3! clusters are
shown schematically in Fig. 1. The corresponding geometri-

TABLE I. Test of basis sets: Comparison of calculated ionization potentials
~difference between the ground state energies of the atom/cluster and the
corresponding cation!, binding energy, and bond length of C and Fe dimers.

System Property

Level of theory

Expt.LDA NL HF-MP4

C2 I.P. ~eV! 12.52 11.79 11.36 12.15
B.E. ~eV! 7.62 6.51 5.70 6.08
Re ~Å! 1.32 1.33 1.34 1.31
Multiplicity 3 3 3 3

Fe2 Re ~Å! 1.96 2.01 1.73–2.04
B.E. ~eV! 3.54 2.26 0.61–1.28
Multiplicity 7 7 7

FIG. 1. Optimized geometries of FeCn ~n<3! clusters.
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cal parameters, preferred spin multiplicities, and binding en-
ergies are given in Table II. All levels of theory predict the
samegeometry, namely,cyclic for FeC2 and FeC3. This is in
contrast to the work of Fanet al.9 where the structures were
linear in nonlocal and cyclic in LDA version of the density
functional theory. The fact that the Hartree–Fock theory with
Möller–Plesset treatment of correlation provides the same
result as those based on our density functional calculations
gives us additional confidence in our statement that the equi-
librium geometries of neutral FeCn clusters are cyclic. We
now discuss the results on each cluster individually.

The binding energy of FeC ranges from 6.21 to 4.14 eV
depending on the level of theory. However, the correspond-
ing bond lengths vary little. Assuming integral spin, the spin
multiplicity is triplet at all levels of theory. An analysis of
the Mulliken population for the spin up and the spin down
states reveals that the magnetic moment of 2mB lies prima-
rily at the Fe atom. It is also interesting to note that the
binding energy of FeC is about 1 eV lower than the binding
energy of C2, irrespective of what level of theory one uses.
This observation will be shown to have significant impact on
the equilibrium geometries of FeC2 and FeC3 in the follow-
ing.

Consider first the case of FeC2. The structure can either
be linear or cyclic. In the linear structure the Fe atom can
either insert itself into carbon–carbon bond forming
CvFevC structure or can attach to one end of the C2 dimer
forming Fe–CwC structure. The first one is unfavorable as
the C2 bond is stronger than the FeC bond. Thus one needs to
compare the energetics of linear structure of FeC2 where the
Fe atom attaches to an end-on position with the cyclic struc-
ture. In the linear structure the C–C bond is a triple bond
while in the cyclic structure the C–C bond is a double bond
and, as mentioned before, the triple bond is favored by an
energy of 2.2 eV. However, in a cyclic structure there are
two Fe–C bonds and, as we have seen before, these energies
range between 6.21 to 4.14 eV depending on the level of
theory. Thus this simple minded comparison already demon-
strates that the most likely structure of FeC2 is cyclic. This is,
indeed, what our self-consistent calculations yield. To verify

this further we confined FeC2 in a linear structure and opti-
mized the Fe–C and C–C distances. The bonds between
Fe–C and C–C at the HF-MP4 level of theory are 2.0 and
1.22 Å, respectively, and the structure lies 3.1 eV above the
cyclic structure. The magnetic moments are again confined at
the Fe site. The C–C bonds at all levels of theory~see Table
II ! remain very close to the double bond value of 1.33 Å
while the Fe–C bonds are slightly stretched. There is a dis-
crepancy among the various levels of theory concerning the
preferred spin multiplicities of FeC2. The nonlocal and HF-
MP4 levels of theory predict a quintet ground state in con-
trast to the triplet state predicted by the LDA. However, the
triplet–quintet energies are rather close. For example, at the
nonlocal level of theory, the triplet state is only 0.2 eV above
the quintet state.

For FeC3 we have optimized the geometries only at the
density functional level as the HF-MP4 level of theory is
computationally very demanding. Both the LDA and nonlo-
cal exchange level of theory predict the structure to be cy-
clic. The geometrical parameters are in close agreement with
each other as are the preferred spin multiplicities. We have
also forced the structure to be linear and optimized the bond
distances. At the nonlocal exchange level, the linear structure
is higher in energy by 0.5 eV. Thus we conclude that the
equilibrium structures of neutral FeCn are cyclic. Since the
FeCn

2 ~n<4! are linear, the broadening of the photodetach-
ment peaks can be easily understood to be due to structural
changes. We are currently studying the energetics and equi-
librium geometries of FeCn

2 clusters with a view to under-
standing the photodetachment spectroscopy experiments.
The results will be published in due course.

CONCLUSIONS

The equilibrium geometries, total energies, and elec-
tronic structures of FeCn ~n<3! clusters have been calculated
using three levels of theory: Hartree–Fock–Mo¨ller–Plesset
fourth order perturbation, local density approximation, and
nonlocal correction to the density functional theory. All lev-
els of theory predict the structure of neutral FeCn to be cy-
clic. This is consistent with the experimental broadening ob-
served in the photodetachment of FeCn

2 clusters. The density
functional theory is found to be accurate in explaining the
experiment and can be used to study larger clusters of FeCn

reliably where the quantum chemical approach can be com-
putationally prohibitive. All the clusters have nonvanishing
magnetic moments which are primarily located at the Fe site.
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