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Effect of size and dimensionality on the magnetic moment 
of transition metals 

Feng Liu, S. N. Khanna, and P. Jena 
Physics Department, Virginia Commonwealth University, Richmond, Virginia 23284-2000 

The effect of size and dimensionality on the magnetic moments of Fe, Co, and Ni have been 
studied theoretically by confining the atoms to various structural forms such as chains, 
surfaces, and thin films. The size of these systems is controlled by limiting the number of 
ato~s. A new first-principles theory is developed that enables us to study the electron spin 
denSIty of states and moments of atoms in clusters containing two to a few thousand atoms. 
The theory is based upon the elementary principles governing the tight binding and linear 
combination of atomic orbitals formulations. It contains no adjustable parameters and can be 
applied to systems with or without topological symmetry. We have discovered quantum size 
effects on the magnetic moments oflinear chains and these effects disappear when the chains 
contain more than 20 atoms. We have also found distinct effects of the local environment on 
the magnetic moment. For example, the moments increase with decreasing coordination 
number and increasing interatomic distance. Our results will be compared with available 
experimental and theoretical results. 

I. INTRODUCTION 

Study of magnetism is one of the ancient fields of re­
search. In spite of numerous experiments and theories dedi­
cated to understanding the origin of magnetic order, the in­
terest in this field still remains strong. Part of this arises from 
the fact that magnetic materials play an important role in 
our technology and consequently there is a constant search 
for finding ways to produce new magnetic materials. These 
studies have been possible through developments and new 
techniques of preparation such as molecular-beam epitaxyl 
(MBE), cluster beams,2 and techniques of characterization 
such as scanning tunneling microscopy.3 One can produce 
materials in layers of varying thickness and clusters of vary­
tng sizes. The magnetic properties of these materials depend 
on their dimensionality (chains, planes, and films) and size 
(microclusters, nanocrystals). 

Experiments in the past few years4 have concentrated on 
these novel magnetic materials because of the continuing 
demand by modern technology and by the limitations posed 
by nature on the number of elemental ferromagnets avail­
able. While these experimental studies have lead to a new era 
in the research on magnetism, an understanding of how and 
why the environment of the material has a controling influ­
ence on the magnetic moment remains primarily an un­
solved puzzle. In the past few decades, impressive develop­
ments5

-
7 have been made in designing theories that can 

predict magnetic moments of clean surfaces and bulk with 
quantitative accuracy. These theories, however, rely on the 
symmetry of the system and make use of the Bloch theorem. 
Unfortunately, such methods have limited use when one has 
to deal with a particle of arbitrary size and composition. One 
needs to (a) develop a theory that is versatile enough to be 
used in systems with lower symmetry and dimension and 
(b) to be assured that such a theory can predict magnetic 
moments with quantitative accuracy. In this paper we for­
mulate a theory from first principles and show how the basic 
interactions in a dimer can be used to calculate the spin den-

sity of states, and hence the magnetic moment of a wide 
range of systems starting from clusters to crystals. The accu­
racy of its prediction can be tested against those from well 
established state-of-the-art ab initio theoretical techniques. 
We then proceed to study the magnetic moments of hitherto 
unexplored novel systems. We find correlations between the 
size, dimensionality, and topology of a system and its mag­
netic moment. In Sec. II, we outlined briefly our theoretical 
method and discuss results on a few chosen systems in Sec. 
III. Section IV contains a brief summary of conclusions. 

110 THEORETICAL FORMULATION 

Our method8 is based upon a cross between the tight­
binding theory9 and the linear combination of atomic orbi­
tals (LeAO). 10 The former determines the density of states 
in terms of tight-binding parameters. Those are obtained 
from first-principles using the latter method applied to a 
dimer. Thus, the combined tight-binding LeAO technique, 
referred to as the ab initio tight-binding theory (ATB), con­
tains no adjustable parameters and needs no experimental 
input to calculate the electronic structure. The method is 
based upon a real-space technique and, therefore, is not lim­
ited to systems of high symmetry and long-range order. 

We start with the expression for the density of states, 
nj(E), withj as the site and A as the orbital index. The den­
sity of states for each spin can be obtained by averaging over 
the partial density of states, niCE), namely 

1 M 
nj (E) = - L nj(E), 

M,l=l 
0) 

where M is the number of orbitals. The partial density of 
states can be expressed using the moment and the continued 
fraction approach,ll 

nj(E) = _.l 1m Gj(E + i€). 
1T 

(2) 
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The Green's function G(E) is related to the moments fln of 
the density of states by 

G.(E) = ~ ti/ 
J p-f:oEP-tl 

(3) 

E-a{ 
(4) 

. b~ 
E-a~ -~ 

Here a j and b j are continued fraction coefficients related to 
the moments pin. The moments f.t~;t are given by the relation 

p,v, ... 

x(k,viH"'Hii,A ). (5) 

In conventional applications of the tight-binding technique9 

the off-diagonal matrix elements in Eq. (5) between adja­
cent sites are the only ones that are taken into account and 
are obtained by fitting known band-structure results. The 
problem with such a procedure is twofold. First, the param­
eters depend upon the data they were fitted to and secondly, 
are not easily transferable to other systems. 12 However, this 
technique has the merit of being computationally very easy. 

We have developed a technique where the parameters 
involving the matrix elements (i,A IH [j,ft> can be obtained 
from first principles. We show8 that jf one were to evaluate 
these matrix elements by solving a self-consistent Schro­
dinger equation for a dimer in the LeAO framework and use 
them in the tight-binding equation (5), the resulting density 
of states agrees well with the conventional band-structure 
results. Furthermore, these parameters are transferable to 
other systems with differing topology and symmetry. The 
only requirement is that these parameters are to be obtained 
for interatomic distances appropriate to the system under 
consideration. In the LCAO framework, the molecular spin 
orbital is given by 

(6) 
ja 

where [i,a) are the atomic orbitals of site j and orbital index 
a. The variational coefficients Cja are obtained by solving 
the Rayleigh-Ritz equation 

(H - ES)C = 0, (7) 

where Hand S are the Hamiltonian and overlap matrices 
and E is the eigenvalue. With Cja determined self-consistent­
ly, the matrix elements in Eq. (5) can be evaluated in a 
straightforward manner. The magnetic moment can now be 
obtained by integrating the spin density of states. 

m. RESULTS AND DISCUSSIONS 

The Slater-Koster parameters have been obtained for 
Fe, Co, and Ni using the density functional theory and the 
discrete variational method? (DVM) for dimers as a func­
tion of interatomic distances. These were fitted to a form 

(8) 

which gives the dependence of the parameters on interato-
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wc distance R. Ro defines the nearest-neighbor distance of 
the atoms in the bulk and X Q is the corresponding tight­
binding parameter. The exponent Q andXo and Ro have been 
tabulated by us in an earlier publication. 3 We have verified 
that the density of states obtained using the formulation de­
scribed here predicts the saliant features in bulk band struc­
ture data. The magnetic moments calculated by our method 
for Fe, Co, and Ni are, respectively, 2,53/lB , 1.69flB' and 
O.59tLn. These agree very well with the corresponding ex­
perimental values of 2.2Pn, 1.6tLn, and O.59Pn' The mo­
ments on various layers of Fe (100) slabs and Ni (100) and 
Ni ( 111) slabs also agree very well with fun potential1inear­
ized augmented plane-wave (APW) (FLAPW) results.s In 
Fig. 1 we present our results of the magnetic moments b.p 
defined with respect to the bulk moment fho, namely, 
/::.ft = /l - J.lo for Fe, Co, and Ni confined to various topolog­
ical forms. These include linear chains, surfaces, thin films of 
different crystallographic directions, and bulk. The number 
of nearest-neighbor atoms in these systems vary over a wide 
range. For example, in Fe, the number of nearest neighbors 
in a linear chain, (100) monolayer, and bulk, are, respective­
ly, 2, 4, and 14. These numbers are commonly referred to as 
coordinate number (CN), and can be varied by simulating 
different structural arrangements. For example, a monova­
caney in Fe will reduce the eN from 14 to 13. In Ni, the 
coordination numbers of2, 4, 6, 8, 9, and 12 can be obtained 
from linear chains, (100) monolayer, (111) monOlayer, 
(l00) surface, (111) surface and bulk respectively. Note 
that the moments all decrease systematically as the coordi­
nation numbers increase. This decrease in the moment is 
caused by broadening of the density of states as the orbitals 
ofincreasing nearest neighbors overlap with the probe atom. 
Consequently, the atom is most magnetic and the bulk is 
least magnetic. The broadening of the density of states 
(DOS) can also be caused by changing the interatomic sepa­
ration. Reducing the distance between two magnetic atoms 
will cause the overlap to increase and the moments to de­
crease. It is possible to artificially separate two magnetic 
atoms to a distance longer than they would like to be in the 
bulk by putting them on substrates of appropriate lattice 

0.& 

o 

2 4 6 8 10 12 14 
COOROIiiATlON HUMBEII 

FIG. 1. Deviation from the bulk magnetic moment 1lp in Fe, Co, and Ni as a 
function of nearest coordination number (in various structures) < (a), (b), 
and (c) correspond to Fe, Co, and Ni, respectively. The smooth lines are 
drawn simply to guide the eye. 
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spacing. Such techniques called inverse pressure is currently 
being used with the aid of MBE apparatus, 

We now discuss the magnetic moments of Fe, Co, and 
Ni atoms confined to linear chains of varying length. The 
coordination number of an atom in a chain is two, and if the 
nearest neighbor is the only important factor on the mo­
ment, one would think that the moment of the probe atom 
would not depend on the chain length. OUf results of the 
moment per atom as a function of the total number of atoms 
in the chain (e.g., chain length) in Fig. 2 speak to the con­
trary. The moments oscillate with size and converge to the 
infinite limit rather quickly. The results in Ni are most re­
vealing. Note that here the moment per atom in chains con­
taining an odd number of atoms is larger than the adjacent 
chains having an even number of atoms. The origin of this 
odd~even alternation in the moments can be understood by 
calculating the spin density of states. We found that for even 
atom chains the bonding and antibonding states are well sep­
arated from the d manifold. For odd atom chains, on the 
other hand, a nonbonding s-state occurs in the center of the d 
manifold below the Fermi energy. This nonbonding s band 
has to be filled by transferring electrons from the minority d 
band. Consequently, the moment is enhanced over that in 
the even atom chain. It is this s~d mixing that is responsible 
for the moment fluctuation at small sizes. As the size of the 
chain increases, the broadening of the levels reduces the dif­
ference in s-d mixing between odd and even atom chains. 
Thus, one witnesses the disappearance of the quantum size 
effect. 

The results in Fig. 2 can also be used to answer another 
important question concerning the adequacy of modeling 
infinite systems with finite clusters, One often wonders if the 
size of a cluster has been large enough so that the boundary 
does not affect the calculated properties, It is difficult to find 
an unambiguous answer using first principles theory due to 
the heavy demand on computer time. However, using our 
A TB method, we can easily calculate the electronic struc­
ture of a few thousand atoms. OUf results in Fig. 2 indicate 
that the moments of chains converge with as few as 20 atoms. 

We should stress that the moments in Fig. 2 are based 
upon a non-self-consistent theory, although it contains no 
adjustable parameters. Since there are no experiments on 
chains with which our prediction can be compared, it is legi~ 
timate to question the quantitative accuracy of OUf predic­
tion in Fig. 2. We have, therefore, repeated the calculations 
of moments for Ni chains containing 2,3,4,5,6, and 7 atoms 
using the self-consistent LCAO-MO (molecular orbital) 
theory within the discrete variation method (DVM) 
scheme.7 Our results using the A TB theory for the moments 
of 2, 3, 4, 5, 6, and 7 atom chains are, respectively, 1.0,ul!' 
1.32,uB' 1.0PE' 1.19,ls' LOpB' and 1. 12,us. These are in ex~ 
cellent agreement with the corresponding results based on 
the self~consistent DVM, namely, 1.0Pn, 1.3 lpn, 1.0ttn, 
1.l7pn, 1.0tte, and L14,uB' 
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FIG. 2. Magnetic moment fJ- in Fe, Co, and Ni chains as a function of num­
ber of atoms ill the chain, 

In conclusion, we have formulated a new scheme to cal­
culate the electronic structure and magnetic properties of a 
wide range of systems with quantitative accuracy and little 
demand on computer time. Using this method we have dis­
covered the quantum size effect on the magnetism of finite 
systems and the role of coordination number of magnetic 
moments. 
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